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Chapitre 1

Introduction

1.1 Physique statistique : a I’équilibre et au-dela

La physique statistique a pour but de décrire les propriétés thermodynamiques
de systémes composés d'un grand nombre de particules a partir de leur dynamique
microscopique. Pour les systemes « a 1’équilibre », la dynamique peut étre com-
pletement oubliée et la valeur d'une observable macroscopique statique est donnée
par une moyenne d’ensemble. Calculer cette moyenne peut étre extraordinairement
difficile en pratique, mais conceptuellement, le probléeme est bien compris.

Le formalisme de la physique statistique d’équilibre permet d’étudier, avec les
mémes outils théoriques, des systemes tres différents, des cristaux liquides aux
superfluides. Cela a permis de nombreuses avancées industrielles au XX siecle,
de 'utilisation des cristaux liquides pour 'affichage aux applications de la matiere
molle dans I'industrie agro-alimentaire et cosmétique.

Le concept d’équilibre n’est cependant pas univoque et on peut en donner deux
définitions aux implications différentes.
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1.1.1 Deux définitions de I’équilibre

Pour la plupart des manuels de physique statistique [1, 2], un systéme a atteint
I'équilibre lorsqu’il est décrit par la distribution de Boltzmann (ou son équivalent
dans l’ensemble statistique approprié). Par exemple, dans I’ensemble canonique,
un systeme est a I’équilibre quand la probabilité d’un micro-état C est donnée par
P(C) = e /7 out H est 'Hamiltonien du systeme et Z la fonction de partition.
La connaissance de la fonction de partition permet de retrouver toutes les relations
de la thermodynamique, faisant ainsi le lien entre la dynamique microscopique et
les propriétés macroscopiques d’un systéme (pression, température, entropie, etc. ).

Si, conceptuellement, la fonction de partition contient toute la thermodyna-
mique d’un systeme, en pratique elle est souvent impossible a calculer analyti-
quement. On peut alors recourir a des simulations numériques. On est dans ce
cas libres d’utiliser des dynamiques « non physiques » qui ne représentent pas la
dynamique microscopique du systéme (comme les algorithmes de Monte-Carlo) si
elles conduisent a la méme distribution d’équilibre, le but étant simplement de
I’échantillonner de la fagon la plus efficace possible.

Une définition alternative considere a 1’équilibre tout systeme dont la dyna-
mique vérifie le bilan détaillé par rapport & sa distribution stationnaire [3]. Cette
symétrie de la dynamique permet d’obtenir des relations de fluctuation-dissipation.
En particulier, la théorie de la réponse linéaire permet d’exprimer la réponse d’une
observable a une petite perturbation du systeme comme une fonction de corrélation
calculée a I'équilibre.

Pour les systémes isolés dont la dynamique microscopique est celle de la méca-
nique classique, le bilan détaillé est naturellement satisfait dans ’état stationnaire
comme conséquence de la réversibilité des équations du mouvements. Toutefois, la
définition d’un systeme a ’équilibre comme satisfaisant le bilan détaillé est bien
plus générale, et ne se limite pas aux systemes hamiltoniens. En particulier, pour
certains systémes dont on ne connait pas les détails microscopiques, on peut vouloir
écrire une dynamique effective a une échelle plus grande (comme nous le ferons, par
exemple, pour une bactérie). Si a cette échelle mésoscopique la dynamique satisfait
le bilan détaillé, on peut alors définir une énergie libre effective et la dynamique au-
tour de I’état d’équilibre est contrainte par des relations de fluctuation-dissipation.
Cependant, ’énergie libre effective n’est pas reliée a un Hamiltonien. Elle n’a donc
a priori pas d’interprétation physique, et ses dérivées ne sont pas associées a des
forces thermodynamiques.

On distinguera donc dans la suite 1’équilibre thermique caractérisé par la dis-
tribution de Boltzmann de la propriété de bilan détaillé.
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Figure 1.1 — Contrairement a lapplication d'un champ extérieur (par

exemple un champ électrique sur des particules chargées), les particules ac-
tives sont propulsées chacune par des forces internes.
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1.1.2 Différentes physiques statistiques hors d’équilibre

L’idée qu’on pourrait étendre le formalisme de Gibbs et Boltzmann pour rendre
compte de fagon unifiée des systemes hors d’équilibre semble utopique car cette
dénomination regroupe des situations diverses. En effet, un systeme peut étre hors
d’équilibre de différentes manieres.

Un systeme hamiltonien, méme isolé, est hors d’équilibre si le temps de relaxa-
tion vers son état stationnaire diverge. C’est le cas des verres qui restent piégés dans
un paysage d’énergie accidenté sans pouvoir relaxer vers un état d’équilibre [4].
Un systéme hamiltonien peut également étre maintenu hors d’équilibre par ses
conditions aux limites. Par exemple, une barre de métal maintenue a des tempéra-
tures différentes a ses extrémités est traversée par un flux de chaleur et atteint un
état stationnaire hors d’équilibre. D’une fagon similaire, un flux d’énergie traverse
un écoulement turbulent en trois dimensions des grandes échelles vers 1’échelle
microscopique ou I’énergie est dissipée.

On trouve ensuite une infinité de modeles dont la dynamique brise le bilan dé-
taillé a 1’échelle microscopique, de différentes fagons. Certains partagent un com-
portement commun et peuvent étre regroupés dans des classes d'universalité. Sans
chercher 'exhaustivité, on trouve par exemple les modeles de gaz sur réseau soumis
a un champ extérieur [5], la classe KPZ pour la croissance d’interfaces [6] ou la
percolation dirigée [7]. Dans cette thése nous nous intéresserons a une autre classe
de systemes ayant une dynamique microscopique irréversible : la matiere active.

1.2 La matiére active

Les systemes actifs sont composés de particules capables de transformer 1’éner-
gie stockée dans leur environnement pour s’autopropulser. Contrairement a 1’ap-
plication d'un champ extérieur, l’autopropulsion correspond a un degré de liberté
interne (une direction de déplacement), propre a chaque particule (voir figure .
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1.2.1 Intérét des physiciens pour la matiere active

L’engouement assez récent des physiciens pour 1’étude de la matiere active,
dont témoignent les multiples revues parues ces dernieres années [8H12], tient en
partie au fait que les systemes actifs présentent une phénoménologie riche dont on
peut rendre compte par des modeles simples.

Le modele proposé par Vicsek et ses collaborateurs en 1995 [13] est fondateur.
Celui-ci décrit des particules ponctuelles qui se déplacent dans le plan a vitesse
constante et alignent imparfaitement leur direction de déplacement avec leurs voi-
sins. Quand le bruit sur l'interaction d’alignement est diminué, on observe une
transition de phase d’un état désordonné vers un état de mouvement collectif avec
un ordre a longue portée. Cette transition serait impossible a 1’équilibre thermique,
le théoreme de Mermin-Wagner [14] interdisant de briser une symétrie continue en
2d si l'on a seulement des interactions a courte portée. Elle est donc intrinseque-
ment liée au caractere actif des particules qui rend possible une phénoménologie
plus riche qu’a ’équilibre.

La phénoménologie de la matiere active ne se limite pas aux mouvements col-
lectifs et nous essaierons d’en donner un rapide apercu dans la suite de cette
introduction.

1.2.2 Reéalisations expérimentales

L’excitation pour I’étude de la matiere active tient également aux nombreuses
expériences qui sont réalisées dans le domaine. Celles-ci couvrent des systemes tres
différents, biologiques ou inertes, micro- ou macroscopiques.

On trouve les réalisations les plus évidentes de systemes actifs dans le monde
vivant, a différentes échelles (voir figure pour quelques illustrations). Les dé-
placements en groupe d’animaux, des nuées d’oiseaux aux bancs de poissons en
passant par les troupeaux de moutons et les foules humaines, sont les exemples
les plus communs de mouvement collectifs. Certains de ces comportements ont été
étudiés in vivo comme les mouvements d’une nuée d’étourneaux [15-17] ou ceux
des spectateurs d’un concert de heavy metal |18], d’autres dans des expériences
plus contrdlées, par exemple sur des poissons en aquarium [19-21].

A plus petite échelle, la motilité cellulaire est trés étudiée [27], notamment
pour son role dans la migration collective de cellules a I'oeuvre dans le dévelop-
pement de métastases cancéreuses [28] ou dans la cicatrisation de tissus apres une
plaie [25]. De plus, de nombreuses souches de bactéries comme FEscherichia coli
ou Bacillus subtilis s’autopropulsent, ce qui conduit dans certaines conditions a
des comportements d’agrégation [23], la formation de motifs [26] ou des écoule-
ments chaotiques [29]. L’autopropulsion est également importante a 1’échelle sub-
cellulaire. Dans la cellule, les moteurs moléculaires utilisent 1’énergie libérée par
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Figure 1.2 — Exemples de mouvements collectifs a ’échelle macroscopique
(haut) et (sub)cellulaire (bas). (a) Vol d’étourneaux [15], (b) troupeau de
moutons, (¢) banc de maquereaux, (d) groupe de canards, (e) propagation
de bandes de filaments d’actine [22], (f) agrégats de myxobactéries [23], (g)
vortex de microtubules [24], (h) cicatrisation d’un tissu [25], (i) formation
de motifs dans des colonies de bactéries

I’hydrolyse de I’ATP pour se déplacer le long de filaments d’actine ou de microtu-
bules. A Pinverse, si des moteurs moléculaires sont attachés & un substrat, comme
dans les expériences de motility assay, ils exercent des forces mettant en mouve-
ment les filaments du cytosquelette. Utilisés a 'origine pour étudier les propriétés
des moteurs moléculaires et du cytosquelette, les motility assays permettent en
outre d’observer des comportements collectifs intéressant comme la formation de

vortex [24, [30] ou d’écoulements macroscopiques 31].

De nombreux types de particules actives inertes ont également été étudiés en
laboratoire. Plusieurs mécanismes peuvent étre utilisés pour engendrer 1'autopro-
pulsion. Les colloides Janus ont, comme le dieu Janus de la mythologie romaine,
deux faces aux propriétés différentes. Ainsi, des billes micrométriques de latex re-
couvertes de platine sur la moitié de leur surface et placées dans une solution de
peroxyde d’hydrogene s’autopropulsent par diffusiophoréseEl, un mécanisme illustré
a la figure [1.3] Ces colloides été utilisés pour étudier, par exemple, la sédimenta-
tion et 1'agrégation de particules actives [34-39]. L’autopropulsion peut aussi étre
induite mécaniquement dans des systémes de grains vibrés [40-H42], par une in-
stabilité hydrodynamique pour des gouttes autopropulsées ou par un champ
électrique extérieur induisant une instabilité électro-hydrodynamique . Toutes
ces particules actives inertes peuvent étre fabriquées en grand nombre et per-

1. Il existe cependant un débat sur les différents mécanismes qui participent & I’autopropulsion
de ces colloides
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Figure 1.3 — Autopropulsion par diffusiophorese de colloides Janus recou-
verts de platine sur la moitié de leur surface. La réaction chimique entre le
platine et le peroxyde d’hydrogene H,O5 crée un gradient de concentration
qui propulse la particule. Reproduite de [33].

mettent d’explorer la phénoménologie de la matiere active de fagon souvent mieux
controlée que dans les systemes biologiques.

Des avancées techniques permettent de créer des systemes actifs dans lesquels
les interactions microscopiques peuvent étre ajustées tres finement. Citons deux
exemples récents. Les progres de 'ingénierie génétique permettent d’inclure dans
des organismes vivants des réseaux génétiques visant a remplir différentes fonc-
tions. On peut ainsi observer la formation de motifs (représentés a la figure
dans des colonies de bactéries auxquelles un circuit a été ajouté pour qu’elles
adaptent leur motilité suivant la concentration d’une molécule dans le milieu [26].
Dans un autre registre, une intense recherche vise a la création de nuées de robots
auto-organisées, dont les éléments interagissent localement. Ceux-ci sont envisagés
pour remplir diverses taches comme dépolluer les océans ou explorer de nouvelles
planétes, et des prototypes atteignent déja le millier d’individus [45]. Les interac-
tions entre robots sont alors facilement programmables.

On voit donc qu’il est possible de controler de plus en plus finement les inter-
actions microscopiques de certains systemes actifs. Dans ce contexte, comprendre
la physique de larges classes de systemes laisserait plus de liberté pour concevoir
des matériaux aux propriétés nouvelles.

1.2.3 Outils d’étude

Plusieurs outils sont a notre disposition pour étudier les systemes actifs. Expé-
rimentalement, les situations sont souvent complexes. Il nous faut donc isoler les
phénomenes pertinents liés a 'activité pour pouvoir les comprendre dans un cadre
simple.

Une approche consiste a postuler des équations hydrodynamiques phénoméno-
logiques incluant tous les termes autorisés par la symétrie d’un probléme. Etant
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définies a ’échelle mésoscopique, ces équations peuvent rendre compte de systémes
qui ont des interactions microscopiques différentes mais qui conduisent a un méme
type d’interaction effective. Par exemple, une interaction d’alignement peut résul-
ter d’une interaction « sociale » pour des groupes d’animaux, d’interactions sté-
riques entre des particules anisotropes (par exemple dans des modeles de batonnets
autopropulsés [46]), ou d’interactions hydrodynamiques [44]. L’enjeu est ensuite de
faire le lien entre les équations hydrodynamiques et les modeles microscopiques.
Les (rares) cas ou il est possible de construire les équations hydrodynamiques par
coarse graining sont alors précieux.

Les équations phénoménologiques qui contiennent tous les termes autorisés
peuvent toutefois s’avérer extrémement complexes et donc dures a analyser. Une
approche différente, dans I’esprit de la théorie de Landau des transitions de phase,
consiste a écrire les équations phénoménologiques les plus simples possibles rendant
compte d'un certain comportement. C’est dans cet esprit que le modele B actif [47]
et le modele H actif [48] ont été introduits, en étendant les classes d'universalité
dynamiques de Hohenberg et Halperin [49]. Ils décrivent la séparation de phase
d’une suspension décrite par une théorie ¢* sur un substrat ou dans un solvant
pour les modeles B et H respectivement. L’unique addition par rapport a la théorie
d’équilibre est un terme de gradient ne dérivant pas d’une énergie libre dont les
effets peuvent étre analysés.

Enfin, de nombreuses études théoriques sont consacrées a des modeles mini-
maux. Ils seront au coeur de cette these. Une possibilité pour les construire est de
partir de modeles d’équilibre dont la phénoménologie est bien connue et de regar-
der l'effet de I'introduction de l'activité. Ces modeles sont souvent tres éloignés
de la réalité expérimentale mais permettent de comprendre certains phénomenes
en détail. Ils guident alors notre intuition pour la compréhension de cas plus com-
plexes.

Dans la suite de cette introduction nous commencerons par décrire les dynamiques
de particules autopropulsées qui seront utilisées dans le reste du manuscrit (sec-
tion [1.3). Nous présenterons ensuite les deux transitions de phase de la matiere
active qui sont au centre de notre travail (section et terminerons cette intro-
duction par I’idée directrice du travail de these : la tentative de construction d’une
thermodynamique de la matiére active (section [1.5]).

1.3 Dynamiques actives

Dans cette these, nous considérerons de la matiere active dite « seche », pour
laquelle le substrat sur lequel les particules se déplacent agit comme un réservoir
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de quantité de mouvement. Tout se passe alors comme si I'autopropulsion était
une force extérieure appliquée a chaque particule et ’on ne se préoccupe pas de la
dynamique du substrat liée aux forces qui lui sont imposées par les particules. De
nombreux systeémes expérimentaux rentrent naturellement dans cette catégorie :
cellules qui rampent sur la matrice extracellulaire ou dans un gel d’agar [25-27],
colloides roulant sur une surface |39, |44], motility assays [22, 24], etc. Nous consi-
dérerons deux cas : des particules propulsées par une force active constante ou par
une force fluctuant selon un processus d’Ornstein-Uhlenbeck.

Pour des particules nageant en solution (par exemple des bactéries ou des col-
loides Janus), il faut parfois adopter une description plus fine. Les nageurs exercent
une force sur le fluide qui est alors mis en mouvement et peu donner lieu a des
interactions hydrodynamiques a longue portée. Quand ces interactions sont im-
portantes il faut prendre en compte la dynamique du fluide dans la description
du systeme. On distingue typiquement deux classes de nageurs suivant le type
d’écoulement de champ lointain qu’ils induisent dans le fluide : les pushers, comme
la plupart des bactéries, qui s’autopropulsent par l'arriere, et les pullers, comme
I’algue Chlamydomonas, qui se propulsent par I'avant. Il est possible de simuler
numériquement des suspensions de nageurs, par exemple en utilisant la méthode de
lattice Boltzmann pour calculer les interactions hydrodynamiques de champ loin-
tain [50] ou le modele de squirmers [51] qui tient compte des interactions de champ
proche en considérant des particules circulaires a la surface desquelles le fluide a
une vitesse imposée. Dans cette theése, nous resterons au niveau de description de
la matiere active séche. Ce choix sera motivé a la section [L.4l

1.3.1 Particules autopropulsées a vitesse constante

En premiere approximation, 'autopropulsion peut étre modélisée par une force
d’amplitude constante F, suivant la direction de déplacement ey d’une particule.
En I'absence de force extérieure autre qu'une dissipation visqueuse avec un coeffi-
cient de frottement ~, la dynamique d’une particule active s’écrit alors

mi = —1 + Fuep (1.1)

Dans la limite suramortie, pertinente pour la plupart des systemes expérimentaux,
la particule se déplacera donc a vitesse constante v = F, /7.

Distinguons deux types de particules autopropulsées a une vitesse constante v
qui different par leurs mécanismes de réorientation, illustrés par la figure [[.4] Ces
deux dynamiques correspondent a deux types de particules actives fréquemment
rencontrées en laboratoire : les bactéries et les colloides autopropulsés.

Les particules browniennes actives (ou ABPs pour Active Brownian Particles)
se réorientent par une diffusion rotationnelle qui peut étre due au mouvement
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Figure 1.4 — Exemples de trajectoires d'une RTP (gauche) et d'une ABP
(droite). Reproduite de [52)]

brownien environnant ou a un bruit actif dans le mécanisme d’autopropulsion. La
dynamique de ces particules s’écrit alors en 2d

r=veg 0=/2D,n (1.2)

ou D, est le coefficient de diffusion rotationnelle et 1 un bruit blanc gaussien de
variance unité. C’est un modele minimal permettant de décrire les colloides Janus
propulsés par une réaction chimique que nous avons évoqués plus haut, ou encore
les particules vibrées étudiées dans [42].

Les RTPs (pour Run and Tumble Particles) ont une dynamique différente,
caractéristique de bactéries comme F.Coli. Celles-ci nagent en ligne droite et
prennent aléatoirement une nouvelle direction de déplacement a des instants dis-
crets (les culbutes). La durée des culbutes étant courte devant le temps de nage
entre deux culbutes, on peut la négliger en premiere approximation et considérer
des culbutes instantanés. De méme, nous ne tiendrons jamais compte dans cette
these du fait que les culbutes ne sont en réalité pas parfaitement isotropes [53].

1.3.2 Mouvement brownien corrélé

L’autopropulsion peut également étre modélisée comme un mouvement brow-
nien corrélé dans le temps [54-56]. A la différence de 'approche précédente, la force
qui s’applique sur les particules fluctue suivant un processus d’Ornstein-Uhlenbeck

t=uf f=—f+,/2D/m (1.3)
ou 7 est un temps de relaxation et m un bruit blanc gaussien de variance unité.

L’équation sur f peut étre résolue et la dynamique de r est alors un mouvement
brownien corrélé sur un temps 7 avec

(F0£(5)) = ZLerims, (1.4
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Le coefficient D; fixe Pamplitude de la force active, Dy = 7(f?). Dans la limite
7 — 0, on retrouve un mouvement purement brownien.

En I’état, 1’équation peut étre interprétée comme un mouvement brow-
nien inertiel, la force f jouant le rdle de la vitesse. Le caractere hors d’équilibre de
ce systeme apparait lorsqu’on ajoute des forces extérieures. Celles-ci entrent dans
I’équation sur 1, le systéme étant considéré dans la limite suramortie. Fussent-elles
ajoutées sur f (interprétée comme une accélération), nous obtiendrions 'équation
de Kramers qui satisfait le bilan détaillé par rapport a la distribution de Boltz-
mann.

Les particules autopropulsées par la force fluctuante f présentent quelques dif-
férences qualitatives par rapport aux particules se déplagant a vitesse constante.
En particulier, la probabilité P(i) d’observer une vitesse I est une Gaussienne cen-
trée en zéro. Cela peut expliquer, par exemple, que dans un piege harmonique tres
confinant, la densité de particules propulsées par la force d’Ornstein-Uhlenbeck est
toujours gaussienne, centrée au milieu du piege [54]. Au contraire, les particules
propulsées par une force constante s’accumulent sur les bords du piege, comme
nous le verrons au chapitre [2|

1.4 Transitions de phases

Parmi les phénomenes variés observés dans la matiere active, nous nous inté-
resserons plus particulierement a deux transitions de phases qui sont spécifiques
aux systemes actifs : la séparation de phase induite par la motilité (ou MIPS pour
Motility-Induced Phase Separation) et la transition vers le mouvement collectif.
Ces deux transitions peuvent étre capturées par des modeles simples qui sont a la
base de notre compréhension de ces phénomenes.

1.4.1 Séparation de phase induite par la motilité

Les particules actives, contrairement aux particules browniennes, tendent a
s’accumuler dans les régions de I'espace ou leur vitesse est plus faible. Si, de plus,
la vitesse d’autopropulsion diminue quand la densité de particules augmente, cela
crée une boucle de rétroaction menant a une séparation de phase entre une phase
dense, ou les particules se déplacent lentement, et une phase diluée ou leur motilité
est élevée (voir fig. [L.5] gauche).

Cette séparation de phase fut décrite pour la premiere fois par Tailleur et
Cates [57] dans un modele ou la dépendance de la vitesse d’autopropulsion avec
la densité est explicite. Les particules se déplacent a une vitesse v(p) ou p est
la densité locale de particules actives. Pour ce systeme, la séparation de phase
intervient lorsque v(p) décroit suffisamment rapidement.
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Figure 1.5 — Transitions de phase dans la matiere active. Gauche : sépa-
ration de phase induite par la motilité dans un systeme de spheres dures
autopropulsées. Reproduite de . Droite : phase inhomogene du modele
de Vicsek. Des bandes ordonnées de haute densité se propagent dans un gaz
désordonné de particules. Reproduite de .

La dépendance de la vitesse avec la densité peut également étre implicite,
résultat d’interactions stériques. A haute densité, leffet des collisions, dans la
limite suramortie, est d’entrainer une diminution effective de la vitesse. Ainsi, la
MIPS est observée dans des modeles de sphéeres dures autopropulsées, qui ont attiré
beaucoup d’attention ces derniéres années [58-67].

Ces deux approches correspondent a deux types d’interaction présentes dans
des systémes expérimentaux. L’interaction v(p) est typique du comportement de
bactéries qui sondent la densité locale par quorum sensing, en mesurant la concen-
tration d’'une molécule dans le milieu, et répondent en modifiant leur propriétés
cinématiques . Les interactions de coeur dur sont importantes, par exemple,
dans des suspensions de colloides autopropulsés.

Les deux types d’interaction engendrent des comportements macroscopiques
tres similaires. Elles produisent par exemple la méme dynamique de coarsening .
Cependant, la possibilité de décrire completement les spheres dures par une vitesse
effective v(p) est un probléme ouvert dont nous discuterons au chapitre [4

1.4.2 Transition vers le mouvement collectif

Le modele de Vicsek, déja mentionné & la section fait figure de paradigme
pour I'étude de la transition vers le mouvement collectif , . Celui-ci peut
étre vu comme un modele XY dynamique dans lequel des particules autopropulsées
possedent un spin vectoriel (leur direction de déplacement) qu’elles alignent via
des interactions ferromagnétiques. Quand le bruit sur I'interaction d’alignement (la
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Autopropulsion
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Figure 1.6 — Variations autour du modele de Vicsek étudiées dans la lit-
térature [68-71]. L’interaction peut étre métrique ou topologique (ici avec
les trois plus proches voisins). L’autopropulsion est polaire ou nématique et
I’alignement ferromagnétique ou nématique.

température dans un modele XY') diminue, ou que la densité augmente, on observe
une transition d’un état désordonné vers un état inhomogene ou des bandes denses
et ordonnées se propagent dans un gaz désordonné de particules (voir fig.
droite). A plus haute densité, ou plus faible bruit, on observe un état homogene
ordonné, toutes les particules se déplacant en moyenne dans la méme direction.

Plusieurs variantes du modele de Vicsek, considérant toujours des particules
ponctuelles se déplacant a vitesse constante, ont été proposées pour décrire diffé-
rents types d’alignement que nous illustrons a la figure [L.6, Dans le modele de Vic-
sek « topologique », les particules s’alignent avec leurs n plus proches voisins, peu
importe leur distance. Ce type d’interaction a été suggéré suite a des mesures faites
dans des nuées d’oiseaux [15]. L’alignement peut également étre nématique |70],
au lieu de ferromagnétique, pour décrire, par exemple, des bactéries allongées qui
s’alignent par interaction stérique |46]. Enfin, dans les modeéles de nématiques ac-
tifs, alignement et la propulsion sont nématiques [71]. On a alors des particules
qui oscillent le long d'un axe sans étre vraiment autopropulsées, une situation qui
permet de décrire des grains vibrés [40, 41]. Tous ces modeéles présentent une tran-
sition vers un état ordonné, avec cependant des différences notables. Les phases
inhomogenes sont différentes dans chaque modele et absentes du modele topolo-
gique. De plus, la phase homogene de basse température du modele de nématiques
actifs est seulement quasi-ordonnée en 2d, avec un parametre d’ordre qui décroit
avec la taille du systéme comme une loi de puissance |71].

Un point commun est que tous ces modeles possedent dans leur phase (quasi)
ordonnée des corrélations a longue portée. Ces corrélations, qui sont anisotropes,
sont dures a mesurer précisément mais peuvent étre mises en évidence en mesurant
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les fluctuations de densité. Pour cela, on mesure le nombre moyen n de particules
dans des boites de tailles variables et la taille typique An des fluctuations de n.
Dans un systeme qui possede des corrélations a courte portée, pour des boites
dont la taille linéaire est grande devant la longueur de corrélation, le théoreme
central limite impose An ~ y/n. Au contraire, pour le modele de Vicsek et ses
dérivés, An croit avec un exposant anormal (environ An ~ n%® dans le modele
original [68]). Ces « fluctuations géantes » de densité sont une des propriétés spé-
cifiques de la matiere active et sont également observées expérimentalement [22,
40, [72|. Les équations hydrodynamiques phénoménologiques de Toner et Tu [73-
75], qui comprennent tous les termes autorisés par la symétrie du probléme, per-
mettent, moyennant certaines approximations, de calculer les exposants associés
aux fonctions de corrélations.

Bertin et collaborateurs ont proposé une version simplifiée du modele de Vic-
sek ne prenant en compte que des collisions binaires [76]. On peut alors construire
I’équation de Boltzmann associée au modele. Celle-ci peut étre étre étudiée numé-
riquement [77] mais permet surtout de construire des équations hydrodynamiques
relativement simples en partant de la dynamique microscopique |76} [78-81]. Une
tentative pour étendre cette approche a des collisions multiples par une procédure
de Chapman-Enskog conduit quant a elle & des équations bien plus complexes [82,
83]. L’étude de la stabilité linéaire des équations hydrodynamiques permet de re-
trouver une partie du diagramme des phases du modele de Vicsek et d’expliquer
I’existence d'une phase inhomogene. Nous verrons cependant au chapitre [5| qu’elles
n’expliquent pas la diversité des phases inhomogenes observées dans les modeles
microscopiques. En effet, nous montrerons que les fluctuations jouent un role cru-
cial dans la sélection de la forme de ces phases inhomogenes.

1.4.3 Importance des interactions hydrodynamiques

Dans cette thése nous considérerons toujours des interactions locales et né-
gligerons en particulier les interactions hydrodynamiques. Malgré les nombreuses
situations physiques ou I’hydrodynamique est prépondérante, I'importance des in-
teractions hydrodynamiques a parfois été surestimée dans la matiere active. Par
exemple, I’hydrodynamique de champ lointain a été invoquée pour expliquer 'ac-
cumulation de particules actives pres de parois [84], ce que des modeles négligeant
les interactions hydrodynamiques expliquent trés bien [85-87]. De plus, une me-
sure précise du flot créé par la nage d’une bactérie E.Coli [8§] a montré que les
interactions hydrodynamiques a longue portée sont négligeables devant les inter-
actions stériques entre bactéries et avec les parois. Les interactions hydrodyna-
miques peuvent toutefois avoir des effets importants en déstabilisant des états
ordonnés [89, 90|, en arrétant le coarsening dans la séparation de phase induite
par la motilité [48,/91,|92], en induisant un mouvement circulaire pour des bactéries
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pres d'une surface [93] ou en modifiant la viscosité du milieu [94-96].

La théorie des gels actifs permet, sans décrire explicitement la dynamique du
fluide, de prendre en compte les interactions hydrodynamiques de fagon effective (8|
97,|98]. Basée sur la théorie des cristaux liquides, les interactions hydrodynamiques
apparaissent comme une contribution supplémentaire au tenseur des contraintes,
différente suivant le type de nageur, pusher ou puller. Ces équations phénomé-
nologiques permettent, entre autres, de décrire I'apparition d'un écoulement et
de défauts topologiques dans des suspensions actives denses et pourraient étre
pertinentes pour décrire le mouvement de cellules se déplagant en étirant des la-
mellipodes [§] ou la cytocinese [99] (le moment de la séparation d'une cellule en
deux dans le cycle de division cellulaire).

Comme nous le verrons, les interactions hydrodynamiques ne sont pas néces-
saires pour observer les phénomeénes qui vont nous intéresser dans cette these.
Toutefois, étendre les modeles qui seront présentés ici pour les inclure permet-
trait d’avoir une modélisation plus exacte de certains systemes expérimentaux et
pourrait révéler des effets intéressants.

1.5 Thermodynamique de la matiere active

Pourrait-on construire une thermodynamique de la matiere active qui permet-
trait de prédire de facon unifiée le comportement de larges classes de systemes
actifs ? Notre approche, qui s’appuie sur des modeles minimaux pour les relier a
des équations hydrodynamiques, mettra en évidence I'universalité des phénomenes
étudiés. En outre, la forte ressemblance de certains comportements, individuels ou
collectifs, avec la phénoménologie de systemes d’équilibre améne a se poser cette
question.

1.5.1 De la matiere active d’équilibre ?

En effet, certains systemes actifs peuvent étre décrits comme des systemes
d’équilibre. Le mouvement d’une particule autopropulsée, a des échelles de temps
grandes devant son temps de persistance, est diffusif. La particule se comporte
alors comme un colloide chaud a une température effective dépendant de la vitesse
d’autopropulsion [100]. La séparation d’échelle est ici importante, de la méme fagon
que pour une particule passive dans un fluide, qui est décrite par un mouvement
brownien a une échelle grande devant 1’échelle nanométrique des collisions avec les
molécules du fluide.

Le concept de température effective reste également valable pour des particules
actives dans un potentiel extérieur V' de taille caractéristique grande devant la
longueur de persistance [100]. La densité de particules en un point r de I'espace
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est alors donnée par la distribution de Boltzmann

o(r) oc exp (—kVB(T)) (15)

On a ainsi un systeme a 1’équilibre thermique et les différentes définitions de la
température effective (par le théoreme de fluctuation-dissipation, la distribution
de Boltzmann ou le coefficient de diffusion) coincident, comme nous le verrons au
chapitre 2|

Les modeles décrivant des particules dont la vitesse dépend explicitement de la
densité par un v(p) sont également proches de systémes d’équilibre. En premiere
approximation dans un développement en gradients du champ de densité, la dy-
namique de ces systemes vérifie le bilan détaillé par rapport a une énergie libre de
Landau qui permet de prédire la séparation de phase MIPS [57, |101]. La proba-
bilité d’observer un champ de densité p est alors donnée par P|[p| o< exp(—F][p]).
Toutefois, nous verrons au chapitre 4| qu’il est indispensable de prendre en compte
des termes d’ordre supérieur pour décrire précisément la séparation de phase. On
définira alors une nouvelle énergie libre, plus complexe, gouvernant la coexistence
de phase.

On peut se demander jusqu’ou il est possible de pousser la comparaison avec
des systemes d’équilibre. En effet, MIPS et la transition vers le mouvement col-
lectif peuvent toutes deux étre comprises comme des coexistences de type liquide-
gaz ayant une phénoménologie proche de I’équilibre. Cependant, nous verrons au
chapitre [3| que la pression mécanique d'un fluide actif n’admet en général pas
d’équation d’état. Méme pour les cas ou la dynamique vérifie le bilan détaillé par
rapport a une énergie libre effective, la distribution stationnaire n’est pas celle de
Boltzmann et 1’énergie libre n’est donc pas reliée de fagon simple a la pression
mécanique. Une thermodynamique de la matiere active sera donc nécessairement
assez différente de la thermodynamique d’équilibre, 1’énergie libre ne contrdlant
plus les propriétés mécaniques du systeme.

1.6 Organisation de la these

Nous nous sommes intéressés pendant cette these a différents aspects de la
matiere active. Les résultats obtenus seront présentés en s’appuyant sur les ar-
ticles publiés pendant la these, qui seront reproduits dans le corps du texte. Deux
autres publications sont reproduites en annexe [102, [103] pour ne pas introduire
de redondance dans le texte.

Nous commencerons par étudier au chapitre 2| des particules actives sans in-
teraction, soumises a un potentiel extérieur. Les cas de la sédimentation et d’un
piege harmonique circulaire seront traités en détail. Nous verrons que nos résultats
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peuvent étre comparés de facon quantitative a une expérience de sédimentation de
colloides autopropulsés [39].

Le chapitre |3| sera consacré a 1’étude de la pression mécanique d’un fluide de
particules actives, avec ou sans interaction entre particules. Nous définirons la pres-
sion mécanique comme la force exercée sur les parois du récipient dans lequel les
particules sont confinées. La pression ainsi définie a des propriétés tres différentes
de la pression d’un fluide & 1’équilibre. A part quelques exceptions notables, la
pression dépend des détails de I'interaction entre particules et parois et n’est donc
pas donnée par une équation d’état.

La séparation de phase induite par la motilité sera abordée au chapitre [ par les
deux voies évoquées plus haut : spheres dures et particules dont la vitesse dépend
explicitement de la densité. Nous montrerons comment des équations hydrodyna-
miques fluctuantes peuvent étre construites dans les deux cas. Les spheres dures
autopropulsées sont un des cas particulier pour lesquels la pression mécanique sa-
tisfait une équation d’état. Comme pour un fluide d’équilibre, lorsque 1’on observe
une coexistence de phase, la pression mécanique est la méme dans les deux phases,
ce qui impose une contrainte sur les densités de coexistence. L’équation d’état
nous permettra également de décrire partiellement les spheres dures comme des
particules propulsées a une vitesse v(p).

Finalement, le chapitre [5| sera consacré a la transition vers le mouvement col-
lectif. Notre étude sera décomposée en trois étapes :

1. Nous introduirons le modele d’Ising actif qui présente une phénoménologie
plus simple que celle du modele de Vicsek et dans lequel la transition vers la
mouvement collectif peut étre comprise comme une transition liquide-gaz.

2. Nous étudierons une classe d’équations hydrodynamiques décrivant la tran-
sition vers le mouvement collectif. Ces équations contiennent de fagon géné-
rique toutes les solutions inhomogenes observées dans les modeles microsco-
piques (Ising actif et Vicsek en particulier) mais ne permettent pas d’expli-
quer comment telle ou telle solution est sélectionnée dans chaque modele.

3. Nous montrerons que les fluctuations sont essentielles pour comprendre la
forme des phases inhomogenes. La séparation de phase observée dans le mo-
dele d’Ising actif devient une séparation en microphases dans le modele de
Vicsek, ce que 'on peut relier a la présence des fluctuations géantes de densité
(absentes du modele d’Ising actif). Cela nous conduira a définir deux classes
d’universalité pour la transition sur la base de la symétrie de I'interaction
d’alignement.



Chapitre 2

Particule active dans un potentiel
extérieur

Avant de s’attaquer au probléme plus complexe des comportements collectifs,
il semble judicieux de commencer par une situation tres simple : une particule
active dans un potentiel extérieur. Des potentiels extérieurs, comme des parois ou
des pinces optiques, peuvent étre employés pour manipuler des particules auto-
propulsées. Il s’agit donc de comprendre la réponse d'une particule a ce type de
manipulation. De plus, I’étude de I’état stationnaire d’une particule active dans un
potentiel est un premier pas naturel si 'on espére découvrir des comportements
génériques dans la matiere active.

A Déquilibre thermique, le probléme d’une particule brownienne dans un po-
tentiel V' est completement résolu. La probabilité de trouver la particule a une
position r est donnée en toute généralité par la distribution de Boltzmann

V(r)
p(r) o< exp (— kBT> (2.1)

Le méme probléme pour une particule autopropulsée peut sembler lié — il s’agit
apres tout d’un mouvement brownien persistant — mais n’admet pas de solution
générale.

Les deux cas qui vont nous intéresser particulierement, et qui seront traités en
détail dans I'article [A] sont la sédimentation (potentiel constant) et le confinement
dans un potentiel harmonique de particules ABP et RTP se déplacant a vitesse
constante.

Le cas de la sédimentation est intéressant pour sa phénoménologie proche d'un
systeme a 1’équilibre thermique. En effet, si I'on reproduit I'expérience de Jean
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Perrin avec des particules actives, on observe également une atmosphére exponen-
tielle [36, 39, 100]. A une distance z du fond du récipient, p(z) o exp(—z/x) (ol &
est la longueur de sédimentation), comme pour des particules passives. Cependant,
un régime d’équilibre effectif n’est atteint que lorsque la vitesse de sédimentation
vs = umg (ou p est la mobilité et m la masse d’une particule) est faible devant la
vitesse d’autopropulsion v [100]. La distribution stationnaire est alors une distribu-
tion de Boltzmann, soit k! = mg/(kgTeg) [100, 104]. Au contraire, quand v, ~ v,
on sort du régime d’équilibre effectif. On peut donc étudier dans ces systemes le
passage d'une distribution de Boltzmann a un autre état stationnaire en variant
Vs OU V.

Nous verrons que le régime d’équilibre effectif s’étend de facon plus générale a
tous les potentiels qui varient sur une échelle grande devant le temps de persistance.
Dans ce cas, la séparation d’échelle est telle que le mouvement local des particules
est diffusif. Elles se comportent alors exactement comme des colloides « chauds ».

L’étude d'un piege harmonique circulaire nous permettra d’observer le phéno-
mene tres étudié de accumulation de particules actives preés de parois [85-87]. Ce
phénomene est propre aux particules autopropulsées. En effet, si 'on modélise un
mur par un potentiel répulsif, la distribution de Boltzmann prédit que, pour des
particules passives, la densité est toujours décroissante pres du mur. C’est ce qui
est observé pour des particules actives dans un piege peu confinant, dans le régime
d’équilibre effectif. Au contraire, pour des potentiels tres confinants, les particules
s’accumulent sur les bords, de fagon différente pour les ABP et les RTP (c’est un
des cas ou 'on observe une différence qualitative entre ces deux systemes).

Quelques résultats exacts sont déja présents dans la littérature. La longueur de
sédimentation a été calculée par Tailleur et Cates pour des RTP en dimension d = 1
et 3 [100]. Nous étendrons ces résultats en calculant la distribution stationnaire
complete pour des RTP (pour d = 2,3) et ABP (pour d = 2). Pour des particules
propulsées par une force fluctuant suivant un processus d’Ornstein-Uhlenbeck,
la distribution stationnaire pour la sédimentation et un potentiel harmonique a
été calculée par Szamel [54]. Notons que dans le cas du potentiel harmonique, la
physique est qualitativement différente de celle des particules a v = cte : la densité
reste toujours gaussienne et aucune accumulation sur les bords n’est observée.

Nous introduirons d’abord 1’équation maitresse qui décrit le mouvement d’une
particule active ABP ou RTP dans un potentiel extérieur (section et nous
I'utiliserons pour calculer exactement la distribution stationnaire d’'une RTP en 1d
dans un potentiel quelconque (section [2.2)). Nous reproduirons ensuite I'article
a la section 2.3 dans lequel les cas de la sédimentation et du piege harmonique en
2d, ainsi que le régime d’équilibre effectif pour un potentiel arbitraire, seront trai-
tés. (La derniére partie de cet article concerne la séparation de phase induite par
la motilité et sera donc reproduite au chapitre correspondant.) Nous compléterons



2.1. Equation maitresse 27

cette section par une comparaison de nos résultats avec des expériences de sédi-
mentation sur des colloides Janus [39] et aborderons le cas d = 3 a la section

2.1 Equation maitresse

Ecrivons 'équation maitresse qui permet de décrire, en dimension d’espace
arbitraire, une particule autopropulsée a une vitesse constante v dans un potentiel
V. Pour étre le plus général possible on considére des particules ayant les deux
types de réorientation, diffusion rotationnelle et culbutes :

OP(rut) = =V - [(vu — uVV)P] — aP + & / Plead ,t)du’ + D,AyP + D,AP

(2.2)
ou P(r,u,t) est la probabilité de trouver la particule a la position r avec l'orienta-
tion u a l'instant ¢ et u est la mobilité de la particule. La réorientation des ABP est
donnée par le Laplacien rotationnel D,A,P. Les culbutes sont prises en compte
par les termes de perte et de gain proportionnels a «; I'intégration par rapport a
u’ est faite sur la sphere unité |u’| = 1, d’aire Q. Les ABP et RTP correspondent
respectivement aux cas limites a = 0 et D, = 0. Le terme D;AP rend compte
du mouvement brownien passif sur la position des particules. Contrairement au
cas d'une particule passive, D, et D, ne sont pas reliés car ils sont en général
d’origine différente : D; provient des collisions avec les molécules (passives) en-
vironnantes tandis que D, est en général dominé par le bruit sur le mécanisme
d’autopropulsion.

2.1.1 Coefficient de diffusion effectif

En l'absence de potentiel extérieur, le mouvement d’une particule active est
isotrope et diffusif sur une échelle de temps grande devant le temps de persis-
tance d’une particule. L’équation maitresse peut étre utilisée pour calculer
le coefficient de diffusion effectif. Nous présentons simplement ici I'idée de la dé-
monstration. La méthode utilisée a été introduite dans [101] et sera détaillée dans
larticle

On commence par développer la distribution de probabilité P en harmoniques
angulaires (en 2d) ou sphériques (en 3d)

Prut)=p+p-u+Q:(uu— ;) + O(P) (2.3)

ou p, p et Q sont des foncions de r et ¢t mais pas de u. L’opérateur © projette P
sur les harmoniques d’ordre supérieur. I est la matrice identité.
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Les équations d’évolution de p, p et Q sont ensuite obtenues en projetant
I’équation sur les harmoniques d’ordre 0, 1 et 2 respectivement. La densité
p est un mode lent tandis que p et Q sont des modes rapides qui relaxent en un
temps de lordre 1/, 1/D,. A Tordre V2, 'équation sur la densité s’écrit alors

U2

d(a+(d—1)D,)

8tp =V (Deﬁ‘vp) s Deff = Dt + (24)

On voit qu’a cette échelle les ABP et les RTP sont équivalentes, au remplace-
ment « <> (d —1)D, pres. La contribution de la diffusion passive est découplée de
celle de I'autopropulsion et vient simplement s’ajouter au coefficient de diffusion
effectif.

On peut définir la température effective d’une particule active, qui sera ren-
contrée a plusieurs reprises dans ce chapitre et le suivant, par

Dt U2

Deg = pkpTs kpleg = — +
ff = HFRBLeff Bleff u " ud(at (d—1)Dy)

(2.5)

Notons qu’a ce point, T, n’a a priori aucune raison de jouer un role « thermody-
namique » [105].

2.2 Particules actives a une dimension

Les RTP en 1d sont le seul cas ou 'on sait calculer la distribution de densité
stationnaire exactement, pour un potentiel arbitraire. Notons qu’en 1d, seules deux
directions sont possible u = £x, les ABP n’existent donc pas dans cette dimension.

On notera P, (x,t) et P_(z,t) les densités de particule se déplagant vers la droite
et la gauche, et p(x,t) = Py + P_ et m(x,t) = P, — P_ la densité et l'orientation
locales. L’équation maitresse s’écrit en 1d

0Py = =0p (v — p0:V) Py] — P-) (2.6)

2
+5(Py —P) (2.7)

(Py
OP- = ~8,[(—v— ud,V) P-] %

Dans I'état stationnaire, les dérivées temporelles sont nulles. En prenant la
somme et la différence des deux équations précédentes, on obtient

0= =0, [vm — (0, V)p] (2.9)
0= =0, [vp— (0, V)m] —am (2.10)
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La premiére équation impose que le flux de particule J = vm — u(9,V)p soit
constant. Pour des particules confinées dans un potentiel, on a J = 0 et donc
vm = p(0,V)p. En reportant ceci dans la seconde équation, on obtient

0=—0, {(1)2 — /ﬁ(axV)?) p} — pa (0, V)p (2.11)
Utilisons maintenant 1’Ansatz p(x) = ppe~% qui donne
0= [v? = p2(0.V)?] 0:Q + 2*(9:V) (V) — (0, V) (2.12)

On peut intégrer cette équation pour trouver

—1In v? — (ud,V(x))? v pad,V(z) y
@ L)Q - (MaxV(O))Q] +/0 V2 — (M&EV(ZL"))QCZ (213)

La densité de probabilité stationnaire est donc donnée par une fonction non-locale
du potentiel, différente de la distribution de Boltzmann.

Ce n’est que dans la limite |40, V| < v que I'équation (22.13)) se simplifie pour
donner

_ po[V(z) ~ V(0)

2

Q

La densité est alors donnée par la distribution de Boltzmann a la température
T = Tug.

(2.14)

(%

2.3 Sédimentation et piege harmonique en deux
dimensions

Dans l'article reproduit ci-apres, nous traitons en détail les cas de la sédi-
mentation et du confinement harmonique de particules actives, ABP et RTP, en
dimension 2. Pour la sédimentation, nous montrons que ’on peut obtenir la dis-
tribution stationnaire, de densité et d’orientation, exactement. De plus, le régime
d’équilibre effectif, mis en évidence pour des RTP en d = 1 a la section précédente,
sera étendu de facon générale aux ABP et RTP pour d < 3.
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Abstract. Active Brownian particles (ABPs) and Run-and-Tumble par-
ticles (RTPs) both self-propel at fixed speed v along a body-axis u
that reorients either through slow angular diffusion (ABPs) or sud-
den complete randomisation (RTPs). We compare the physics of these
two model systems both at microscopic and macroscopic scales. Us-
ing exact results for their steady-state distribution in the presence of
external potentials, we show that they both admit the same effective
equilibrium regime perturbatively that breaks down for stronger exter-
nal potentials, in a model-dependent way. In the presence of collisional
repulsions such particles slow down at high density: their propulsive
effort is unchanged, but their average speed along u becomes v(p) < v.
A fruitful avenue is then to construct a mean-field description in which
particles are ghost-like and have no collisions, but swim at a variable
speed v that is an explicit function or functional of the density p. We
give numerical evidence that the recently shown equivalence of the fluc-
tuating hydrodynamics of ABPs and RTPs in this case, which we de-
tail here, extends to microscopic models of ABPs and RTPs interacting
with repulsive forces.

1 Introduction

Outside the realm of exact results, and despite recent progress [1], non-equilibrium
statistical mechanics largely remains (paraphrasing Harish-Chandra [2]) messy, elu-
sive and non-rigorous. However, we may say (paraphrasing Dyson [2]) that this is
precisely why it is such an interesting research field. While a fully general exten-
sion of the well-established framework of equilibrium statistical physics remains out
of reach, there are important classes of non-equilibrium systems for which progress
towards a comprehensive theory seems achievable. Colloidal self-propelled particles
(SPPs), which represent a central focus of research into active matter [3,4,5,6], ar-
guably offer such a prospect. This applies at least in some simplified limits, such as
spherical SPPs interacting by central forces only (a restriction that excludes hydro-
dynamic interactions). In developing theories of such systems, an important general
question is how far macroscopic behaviour is sensitive to the detailed dynamical rules.
For thermal systems, steady-state properties are governed by Boltzmann equilibrium,
and hence sensitive to the energy landscape but not the dynamics used to explore it
— so0 long as this dynamics obeys the principle of detailed balance (as it must do in
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such cases). For non-equilibrium systems, such as SPPs, the question must be asked
afresh. In this article we address this issue, by studying two classes of active particles,
ABPs and RTPs. These have related but distinct dynamics, and have become two
major workhorses of recent simulation and theoretical studies of active matter. We
will find instances where their dynamical differences disappear on coarse-graining,
to give the same macroscopic physics; and other instances where these differences
remain important — typically when there is short-scale structure in the problem, such
as confinement in small traps.

In active matter, a continuous supply of energy destroys microscopic time-reversal
symmetry (TRS) and allows phenomena to arise that are impossible in thermal equi-
librium systems, where detailed balance restores TRS in the steady state. Inspired in
large part by experiments on synthetic self-propelled colloidal particles [7,8,9,10,11,12,13,14],
many recent theory and simulation papers have addressed the physics of a simplified
model comprising spherical active Brownian particles (ABPs) [15,16,17,18,19,20,21,22,23,24,25].
In parallel, growing experimental interest in bacterial motion [26,27,28,29,30,31,32]
has brought run-and-tumble particles (RTPs) to the fore as a second prototypical
model of self-propelled particles at the colloidal scale.

In these models, each particle feels a constant external force vy oriented along
its swim direction u. At low density this is equal and opposite to the local drag
force felt by a particle moving at speed vg. (At high density the external force may
be partly opposed instead by conservative interparticle forces.) This is a one-body
drag and thus the models entirely omit hydrodynamic interactions and all the other
physics associated with the presence of an incompressible solvent. These can have
important effects, for instance generating self-pumping states [33,34] or causing ro-
tation by collision [35,36]. On the contrary, in the spherical ABP model the angular
dynamics comprises rotational diffusion with a fixed diffusivity D,.. Idealized RTPs
differ from ABPs only in their rotational relaxation; instead of continuous diffusion,
RTPs undergo discrete tumbling events of short duration that completely randomize
their swimming direction; these events occur randomly in time at mean rate a and
the mean time between two tumbles is therefore exponentially distributed !. Both
models share an important simplification, which would be inadmissible for any par-
ticles capable of exerting significant torques on one another (such as non-spherical
SPPs at high density). Specifically, the angular dynamics of each particle remains
unperturbed by interactions of any kind, and proceeds independent of the positions
or orientations of all other particles in the system. In what follows, the terms ABP
and RTP refer to this spherical, torque-free case unless stated otherwise.

Another key feature of these two models is that each particle exchanges momentum
with external driving and drag forces, not with a suspending solvent. The resulting
non-conservation of momentum within the system greatly complicates the discussion
of the macroscopic force balances that normally underly mechanical properties such
as pressure [22,23,24]. Indeed, the force per unit area on a wall in general depends
on the wall-particle interactions [39]; this dependence does cancel out for the case of
spherical (torque-free) ABPs moving with constant propulsive force [40], but not if
the propulsive force is itself density-dependent [39] (a case we return to below).

In this paper, we present a comparative study of these simplified models of self-
propelled particles. We first consider the steady-state distribution of non-interacting
SPPs submitted to an external potential V. Using exact results on the sedimen-
tation of active particles, we show that ABPs and RTPs each admit an “effective
temperature” regime when the Stokes speed vy = —V Vi /¢ is small compared to
the swim speed v. We show how the effective temperature concept breaks down

1 Other type of distributions, possibly with large tails, may also be considered. See,
e.g., [37,38]



32

Will be inserted by the editor 3

outside this regime in model-specific ways; this issue has attracted lots of interest
recently [10,34,41,42,43]. We then consider the confinement of SPPs in circular or
spherical traps, and show how the different angular dynamics between the two systems
result in qualitatively different behaviours outside the effective equilibrium regime.

We then turn to interacting SPPs and consider models that replace interpar-
ticle collisions with a density-dependent propulsion force. Therefore we avoid any
detailed discussion of the mechanical pressure, although it may offer an interesting
alternative perspective on phase equilibria [24,40,44]. We explore an approximation
scheme for torque-free SPPs with collisional interactions whereby the conservative
forces responsible for collisional slow-down of the particles are replaced at mean-field
level by a “programmed” slow-down, that is, an effective reduction in the propulsive
force at high density. This path was first sketched out in [45] and pursued further in
[17,19,46,47,48]. In a more general context it is both legitimate and interesting to con-
sider, in its own right, the case with no conservative force field between particles, and
ask about the effects of programmed slow-down among such “ghost” particles. While
not forgetting its original motivation in the collisional case, we will often adopt this
viewpoint here. Indeed, the concept of a programmed slow-down is well established in
biological systems such as bacteria, where density-dependent dynamics can be effec-
tively introduced through a biochemical pathway called quorum sensing [4,30,49,50].
This causes bacteria to change behaviour in response to the concentration of a short-
lived chemical that they also emit. Because of the short lifetime, the response is
then directly sensitive to the number of neighbours within a short but finite dis-
tance, and hence to a local coarse-grained density. Note that this is distinct from
chemotaxis [51,52] in which organisms swim preferentially up or down gradients of a
long-lived chemical signal—effectively creating a long-range repulsion or attraction.
(Chemotaxis might also arise in synthetic, self-phoretic colloids [53].) An interesting
study of chemotactic interactions in ABPs, showing some features resembling phase
separation of the type discussed below, can be found in [54].

In bacteria such as F. coli angular relaxation is an RTP process, for which the
consequences of density-dependent speed were first worked out in [45]. However, some
bacterial types, including mutant strains of E. coli known as “smooth swimmers”,
do not tumble. In practice the genetic engineering strategies used in [30,49] to give
density-dependent slow-down primarily achieve this by altering tumble times and fre-
quencies (reducing the time-averaged speed). However, were it possible to directly link
the actual propulsion speed of bacteria to their local density in a smooth-swimming
strain, then this would offer an unambiguous physical realization of ABPs (as opposed
to RTPs) with a density dependent speed. As in [30,49], this could probably be made
to happen at densities too low for collisional or crowding effects to be important.

In summary, the study of SPPs with density-dependent propulsion speed is moti-
vated (i) as an approximate representation of the collisional slow-down in SPPs with
pairwise repulsions; (ii) as a representation of smooth-swimming or run-and-tumble
bacteria with slow-down caused by quorum sensing or a related, non-collisional mech-
anism; and (iii) as a model in its own right, with which to explore generic collective
phenomena in active matter systems. In the last context, it offers further insights into
the degree to which macroscopic outcomes depend on local dynamical rules, and we
shall focus on this below in comparing the ABP and RTP cases in some detail.

The most striking many-body phenomenon seen in this class of models is motility-
induced phase separation, or MIPS. This is by now a well-established concept [4,45,46,47,48,55,56,57,58,59]
and is the result of two effects in combination. First, the mean speed of a motile
particle along its propulsion direction decreases with density (in contrast to the equi-
librium case where the velocity statistics of a particle are separable, and fixed solely
by equipartition). Second, particles tend to accumulate in spatial regions where they
move slowly (a possibility ruled out, in isothermal equilibrium, by the fact that the
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speed distribution cannot depend on position). This combination creates a positive
feedback which is the origin of MIPS [4,45,56].

In what follows, after exploring in Section 2 the one-body behaviour of ABPs and
RTPs in external potentials, we turn in Section ?? to their many-body physics, show-
ing first how the large-scale dynamics with density-dependent v(p) can in each case
be mapped on the equilibrium dynamics of passive particles with attractive forces,
and then outlining how gradient terms affect this mapping. Sections 2 and ?7 offer a
more complete presentation of results reported in [41,46] respectively. In fact we add
substantially to these results: our discussion of ABPs in traps and of angular distri-
butions for ABPs and RTPs under gravity are both new to the current paper. In the
many-body section we carefully compare our approach with recent work by others
on the role of leading order nonlocality (gradient corrections) in an effective free en-
ergy picture. We show further that, somewhat surprisingly, the large-scale equivalence
between ABPs and RTPs established at the level of fluctuating hydrodynamics for
particles with density-dependent swim speed [46] effectively extends to microscopic
simulations of ABPs and RTPs interacting with repulsive forces.

2 Steady-state of active particles in external potential

Consider the classical experimental geometry, devised by Jean Perrin, in which dilute
colloidal particles are allowed to sediment under gravity in a cuvette. Equilibrium
statistical mechanics asserts that we can forget all details of the diffusive dynamics
of the colloids: the steady-state probability of finding a particle at a given height z is
a Boltzmann distribution, P(z) o exp(—dmgz/kT), where dm is the mass difference
between the particle and a corresponding volume of liquid 2. Let us now replace the
Brownian random-walk diffusion of the colloids by an active random walk, powered by
some microscopic non-equilibrium process. In the SPP context the latter is a persistent
random walk of fixed speed, with either continuous (ABP) or discrete (RTP) changes
of direction. (Its persistence length is much longer than for true Brownian motion,
although the latter is finite in principle. More importantly, the instantaneous speed
of true Brownian motion is not fixed, but has unbounded fluctuations given by the
Maxwell-Boltzmann distribution.) Though not identical, clearly the equilibrium and
non-equilibrium diffusive processes cannot be completely unrelated, at least in a limit
where the persistence length is much smaller than the sedimentation length. Outside
this regime, however, very different physics may be encountered.

Previous studies of sedimenting active particles confirm this line of reasoning.
Exact results for RTPs in one, two and three spatial dimensions have shown the
density profile to be exponential p(z) o« exp(—Az) far away from the containing
boundaries [41,45]. The sedimentation length reduces to A=! = kTog/dmg, with Tog =
v2(¢/da and ¢ the inverse mobility of the particle; this result holds in the limit where
the sedimentation speed v, = (~1émg is much smaller than the swim speed v.

This effective equilibrium regime, where the sedimentation profile is given by a
Boltzmann weight with a temperature T.g independent of the potential Voyy, was
observed experimentally for ABPs in [10,43] and derived analytically in [34]. Its
breakdown for stronger confinement, predicted in [41], was not observed experimen-
tally so far [10,43], triggering a debate about the generic sedimentation behaviour
for SPPs [42]. Below, for both RTPs and ABPs (Sections 2.1,2.2) we derive in 2D
the full probability distribution P(z,6) for finding a particle at height z swimming
in direction #. The outcome is that ABPs and RTPs both admit the same effective

2 Note that in all this article but the sedimentation sections, we silently assume the mass
of particles to be equal to one.
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equilibrium regime — up to a simple parameter mapping between « and D,.. However,
beyond this regime the density profiles are dynamics-dependent, and various defini-
tions of the “effective temperature”, which all coincide within the regime of small vy,
are found to differ beyond it.

In Section 2.4 we turn from sedimentation (which has vy uniform in space) to
address the steady-state distributions of ABPs and RTPs in harmonic traps, where
vs(r) = —kr. Again, ABPs and RTPs yield the same limiting effective equilibrium
regime but lead to very different physics once the persistence length (respectively
v/a or v/D,) is much larger than the trap radius v/k. In this regime, the cases of
continuous (ABP) and discrete (RTP) angular rotation give entirely different statistics
for the density at the centre of the trap, for reasons we discuss.

2.1 Sedimentation of 2D RTPs

Let us consider the dynamics of a 2D RTP in the presence of an external potential
Vext (r) = dmgz. The self-propulsion velocity vu(f) is supplemented by a sedimenta-
tion velocity —vse, = —( 1V Ve (r) so that the master equation reads

(%

P(r,0) = =V - [(vu(f) — v.e.)P(r,0)] — aP(r,0) + 5

/ a'P(r0) (1)

We consider a system which is not free-falling, i.e. such that a wall at z = 0 prevents
the particles from crossing this plane. A number of boundary conditions can be used
to model the relevant interaction; for example, one can simply cancel the z component
of the particles velocity [60], or take into account the torque that a wall would exert
on actual bacteria [41]. Different boundary layer structures then arise proximal to
the wall, depending on the details of the dynamics and the boundary condition,
which typically show strong particle accumulation in this region [61,62]. Beyond this
proximal regime (typically a few run lengths in height) a stationary profile is reached
at larger z whose form is independent of the boundary condition.

In what follows we consider only this distal part of the profile. Its form can be
found by assuming a factorized steady-state P(z,60) = p(z)f(0); from Eq. 1, the
factors must then satisfy

5 i (1) = !

where ) is a constant, a priori unknown. Eqs. (2) directly give

1
C2m[1— 2(vcosf — v,)]

o

p(2) = poe ™ f(0)

The constant A can then be fixed by the normalization condition fO% F(0)do = 1,
which yields
AMvs +v)+a
= A(vs 4
Nos—0) ta (vs +v) + (4)

Finally, the inverse sedimentation length is given by

2000

A= —

02
v — 03
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Fig. 1. Sedimentation of RTPs and ABPs (o« = D, = v = 1). Symbols correspond to
simulations data and full lines to analytical predictions. The conditional probability P(6]z)
for ABPs (top left) and RTPs (top right) is independent of z in the distal part of the profile.
(For each value of vs, several P(0|z) are constructed for different z in the distal region; they
show perfect overlap.) The simulation data matches the theoretical predictions given by (6)
and (10). Bottom left: Inverse sedimentation length X as vs/v is varied. The equivalence
between ABPs and RTPs breaks down as soon as one leaves the effective equilibrium regime
(bottom right). The dashed lines correspond to the first order corrections of the two systems
given in (12) and (15).

so that

1-%
7(6) = g 6)
2 [1 - 2% cos 0+ 13)]

These exact results extend those of [41] where only p(z) was computed; they perfectly
fit simulations of sedimenting RTPs, as shown in figure 1.

2.2 Sedimentation of 2D ABPs

A similar path can be followed for sedimenting ABPs in 2D, starting from the master
equation

P(r7 0) = =V - [(vu(f) — vse,)P(r,0)] + D, 0o P(r,0) (7)

Again, a separation of spatial and angular variables is confirmed numerically beyond
a boundary layer proximal to the wall. The steady-state P(z,#) is found by using the
ansatz P(z,0) = p(z)f(0) in Eq.7, to give

0= —0,[(vcost — vs)P(z,0)] + Do P(z,0) (8)
which yields \
P =—Mla)  1(6) = —p-(weost — v)f(0) (9)

As before, this yields an exponential atmosphere p(z) = po exp(—Az) where the inverse
sedimentation length A is set by the normalisation of f(#). The equation for f(#) is

35
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the Mathieu equation. Given that f(6) is even, it admits the general solution

e 2
7(0) = eC (— DQ: - Df,ze) (10)

where C(a, q,1) is the cosine Mathieu function [64]. For fixed ¢, this is m-periodic in
9 only for a countable subset of a values, a = a,(q), which satisfy a,,(0) = n2. Since
A — 0 when vy — 0, the solution of interest has n = 0 which implies

AUg v
— 45 = a (—QD—T) (11)

Solving this numerically gives A(vs, v, D;). (The numerics can be done using either
a formal solver like Mathematica or by procedures based on series expansion of the
an’s [65].) The resulting values of A match perfectly the results found by simulating
sedimenting ABPs; the full distribution is then obtained by plotting the corresponding
Mathieu function, and also agrees very well with the numerics (see Fig 1).

2.3 Effective equilibrium regimes

Boltzmann distributions. When v, /v < 1, both ABPs and RTPs admit an effec-
tive equilibrium regime. This is most easily seen for RTPs where A can be readily
expanded:

2004 v?

(1+-3) (12)

~
Vs KLV ’[)2 v

A

Keeping only the dominant contribution, the steady-state thus reduces to the Boltz-
mann form
Ve (2) /KT v*¢
p(z) = poe™ "ot FERett kT = o (13)
e
where the last equality is an effective Stokes-Einstein relation that connects the mo-
bility ¢! to the diffusivity Dy = v?/(2a) through an effective temperature Tog.
For ABPs, one can use the expansion

1, 7 4
~ _tp2 T 14
ao(q) = —54 + 1354 (14)
to get
2D, v, 71)3
’\USZ@ v2 (1+41)2) (15)

Again, the system admits a Boltzmann distribution as steady-state, at the dominant
order in v, /v, with an effective temperature

v

kTeg =
eff 2Dr

(16)

Equating the mean time 7 = a~! between two tumbles in RTPs and the rotational
diffusion time 7 = D! in ABPs, the two effective equilibrium regimes match. (In
general dimensions, the parameter mapping is from a=* to (d—1)D, !, which are the
angular autocorrelation times for RTPs and ATPs respectively [46].) However, even
the first order corrections in (12) and (15) are different in form (see Fig. 1). Match-
ing the angular relaxation times gives exponential decay of the angular correlator
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(u(t)u(0)) = exp[—t/7] in both cases, but unless vs/v < 1 the sedimentation length
depends on the details of the angular dynamics.

Note that one can also expand the angular distribution f(6) close to the effec-
tive temperature regime vs < v. For 2d RTPs, this gives (using the normalisation

[ d6£(6) =1)

kv 3K%ovg K202 9

2nf(0) =1+ (; + o2 ) cosf + 502 cos 20 + O(k*) (17)

2 202 3
=142 coseJr%cosQGJrO((E) ) (18)

v v v
where on the last line we used that
2aw; v?
~ 14 = 1

Ry A+ 3) (19)

We can do the same for 2d ABPs using the Fourier expansion of characteristic
Mathieu functions [64], to get

2,2

_ kU KU e 2
27rf(9)—1+Dr C059+8D2 cos 20 + O(k*) (20)
20, ’U? Vs 3
=1+ ” cosf + 502 c0529+0((?> ) (21)
where on the last line we used that
2D, v, Tv2
vev 12 (1+ 41}2) (22)

The difference between f(0) for ABPs and RTPs can thus be seen at the level of
the second harmonics. As for the difference between the density profiles of RTPs and
ABPs, it appears at second order in vs/v. Note that the first order correction to
f(0) = 1/(27) however suffices to distinguish these distributions from equilibrium
ones.

Fluctuation-dissipation relations. A quantity that is frequently looked at in non-
equilibrium statistical physics is the ratio between correlation and response func-
tions [66]. Here we examine this for active particles in a sedimentation setup. For
simplicity we only consider RTPs where we have explicit formulae, but conceptually
what follows applies equally to ABPs. Let us consider a small force f applied along
e, and compute the response function

o(2)
af |;_q

The steady-state distribution is then p(z) o< A(f) exp[—A(f)z] where A(f) is obtained
by replacing v, — vy — (71 f in Eq. (5). Since (z) = A(f)~!, R is given by
N'(0)

=507 (24)

R= (23)

Since the correlation function C' = (22) — (z)2 = A\(0)~2, one directly gets

c !
0] (25)
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In the effective equilibrium regime, where A(f) = 2(vs — f/¢)/7v? this gives
c Cv3T

R 2
which is the usual form for a system with an effective temperature; the system satisfies
a fluctuation dissipation theorem (as it should) governed by that temperature.

For larger v, the same ratio can be computed explicitly for RTPs using the exact
result 5, yielding

= kT (26)

22,2 .2
& CTU — v V7 — V]

R 2 w242
In this regime, there is no longer an FDT at temperature Teg for the response to a
force along z. Moreover, an alternative definition of the effective temperature (which
coincides with the fluctuation-dissipation ratio in the effective equilibrium regime)
is found by applying a force instead along e,, and asserting a Stokes-Einstein rela-
tion between the mobility (~! and the lateral diffusivity defined via the mean-square
displacement along z. This yields kT.g = (v?7/2, just as in Eq.(26), with no de-
pendence at all on vs. For large v, the resulting “horizontal” effective temperature
controls neither the density profile nor the fluctuation-dissipation in the z direction.
In summary, outside the effective equilibrium regime, the three equally plausible
definitions

(27)

V:sxt (Z)
log P(z)

yield three different effective temperatures. It follows that none is really effective, in
the sense that if a new one is needed to describe each property measured, the concept
of effective temperature is itself ineffective. In contrast, for both ABPs and RTPs
within the effective equilibrium regime (arising in the limit of weak gravity) all three
definitions of temperature coincide and the dynamics effectively reduces to an equilib-
rium problem. For this reason we prefer the term “effective equilibrium” to describe
this regime over the less explicit “effective temperature” name used earlier [41].

Interestingly it was recently shown experimentally, by measuring density profiles,
that the addition of repulsive interactions between the particles does not immediately
destroy the effective equilibrium regime [43]. Note that observing its breakdown ex-
perimentally requires a rather large ratio of v, /v (for vs/v ~ 0.4, the difference in A
is only 40% for ABPs). This may explain why this breakdown has not been reported
experimentally so far. The more general question of effective equilibrium in active
particles remains a subtle one. For instance, if the fixed self-propulsion speed v is re-
placed by a fluctuating one, using an Ornstein-Uhlenbeck process [42,43], the effective
equilibrium regime extends to arbitrary sedimentation speed vg, which clearly differs
from the RTP and ABP cases treated here. As discussed in [41], fixed propulsion
speed is qualitatively different from any dynamics that can sample very high speeds,
even if these are rare (as they are in the thermal Maxwell-Boltzmann distribution).
One reason for this is clear: if there is a fixed maximum speed, then when v, exceeds
this, all particles are moving only downwards and the sedimentation length must
be strictly zero (in the absence of particle-particle interactions). Rare sampling of
high molecular speeds is why, in thermal equilibrium, a nonzero sedimentation length
A~1 = kT/dmg is maintained even for very large vy = dmg/(.

C
kTog = = and kTeg = — and kTeg = Cthm (z2(t)/t) (28)
—00

2.4 Trapping of SPPs

Apart from RTPs in one dimension [45], there are no exact results available for the full
steady-state distribution of ABPs and RTPs in a harmonic trap. While the approach
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Fig. 2. SPPs in a harmonic trap (v = x = 1 in simulation units). As & = k7 increases, p(r)
goes from a Gaussian centered on r ~ 0 to a distribution peaked at r ~ v/x; this holds for
both RTPs (top left) and for ABPs (top right). As & diverges, the density of RTPs in the
bulk scales as 1/® (bottom left), while the density of ABPs in the bulk scales exponentially
with D,, and the profile p(r) decreases exponentially with the distance to the trap boundary
(bottom right).

presented in the previous section does not apply here, because P(r, ) is not factorized,
some progress is still possible as we show below. The Stokes velocities of SPPs are
now position-dependent and read vy = —kr/(, where r is measured from the center of
the trap. The physics is very different from the sedimentation case since the particles
are effectively confined to r < rr = v/k; At r = rp the trapping and propulsive forces
compensate exactly, hence preventing the particles from moving further outside.
The effective equilibrium regimes correspond to 7 < A~! and, as expected, are the
same for ABPs and RTPs, with Boltzmann weights for the steady-state distribution

p(r) (see Fig. 2) ,

o) ocexp (= gz )i Kl =

UQTC
2

(29)

As the ratio @ = k7 between the persistence-length v7 and the trap radius rr = v/k
increases, the time needed for the particles to cross the trap becomes much smaller
than the mean reorientation time. Particles thus accumulate at the outskirts of the
trap where, on average, they point outward radially. How long they persist in this
state depends on the dynamical details; in consequence, the density distributions of
RTPs and ABPs differ in this regime, particularly in the central region of the trap.
Note that, once again, this scenario differs from the fluctuating speed model of [42]
where the steady-state in a harmonic trap is always a Gaussian, with fast enough
particles reaching arbitrarily large distances and slow enough particles remaining in
the center of the trap.

RTP in a harmonic trap. RTPs pointing outward at the trap boundary undergo
instantaneous tumble events at rate o whereafter they move across the trap along a
certain path. Despite the trap force, and somewhat surprisingly, we show below this
path to be a straight line segment, which fully crosses the trap for large @; In this
limit, the trajectory is thus a succession of chords of the circle in 2D. The fraction of
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time spent by a particle in the bulk then corresponds to the fraction of its run-time
needed to reach the other side of the trap; this time is proportional to 1/®. (This
scaling is correct although in practice the path is not followed at constant speed.)

Beyond the scaling p(r) o< «/k in the bulk, one can furthermore compute a limiting
shape of p(r) as a/k — 0. Let us consider a particle at position ro on the trap
boundary which tumbles to make an angle 6§ with the horizontal axis. Its trajectory
until the next tumble is simply given by

r(t) =roe " + %(1 — e ") (cos 0, sin §) (30)

which generalizes the intuitive result r = (v/k)(2 exp[—kt] — 1) for ro = (v/k,0) and
cosf = —1. (The latter describes overdamped relaxation across a diameter of the
circle to a new equilibrium position opposite the previous one, and applies in the case
where the tumble exactly reverses the swim direction.) Eq. (30) describes a linear
trajectory joining ro to “u(f), where the trap force balances again the propulsion
force. The angular momentum L(¢) = (r(t) — ro) A £(¢) about the initial position rg
satisfies L(0) = 0 and L = —xL so that L(t) = 0. The velocity t and r — ro are thus
always parallel: the torques about ry exerted by the trap force and the propulsion
force balance to produce a straight trajectory at an angle intermediate between u
and ro; Only the speed |7 ()] o< exp(—«t) is thus varying.

Let us now consider ro = (v/k,0). As shown in Fig. 3, the distance to the center of
the trap first decreases from 7 ~ v/k t0 Tmin(0) = v| cos 4| /k, which is reached after a
time ¢ = (log 2)/k. The distance then increases again until (almost) reaching r ~ v/k
before the next tumble happens. (Since the speed |v + v| vanishes as r — v/k, the
particle never reaches exactly the trap boundary.) The trajectory thus crosses twice
any annulus of radius r > 7y (0) within the trap, where it spends a fraction of
its duration o a(1/|¢[t4(0)]] + 1/|E[t—(6)]|). Here, we have assumed that the total
duration of the trajectory is 1/a and t4(6) are the times at which the particle reaches
|r| = r. These times satisfy

(v — K%r) exp(ts) = v*(1 - cosb) & \202(1 —cosB)(r2 —r2,,)  (31)
so that the probability of finding a particle at position r can be computed as
1 2w —2 arccos(kr/v) a a
p(r) =2 <— + ) (32)
2w Jo arccos(kr/v) |I‘(t1)| |I‘(t2)|

Note that p(r) formally diverges as r — v/k; in practice this is cut off because the
finite duration (~ 1/«) of the trajectory ensures that no particle exactly reaches the
maximal radius 7 = v/k at which its net speed vanishes. The smaller «, the closer to
the trap boundary this cut-off takes place. We have taken « out of the normalization Z
to make the scaling of p(r) apparent; Z is then independent of a and equals Z ~ /2.
The bottom-left quadrant of Fig 2 shows a very good agreement between Eq. (32)
and simulations of RTPs for a/k < 0.1.

ABP in a harmonic trap. Contrary to RTPs, the orientation of ABPs diffuse slowly
so that, as 6 varies, they simply slide along the boundary of the trap, rarely visiting
its inner region. This was used recently [67,68] to compute the distribution of ABPs
along the boundary of small traps of arbitrary shapes, assuming that the particles
effectively never leave the boundary of the trap. As we show below, this asumption is
a sound one since the density of particles decreases exponentially as one moves away
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Fig. 3. SPPs in a harmonic trap (o« = D, = 0.1, v = k¥ = 1 in simulation units). Left
and right plots correspond to real-space trajectories and the evolution of r(t), respectively.
The arrows in the top left panel show the orientations of the particles. Top and bottom
correspond to RTPs and ABPs, on similar time-scales. The dashed line in the bottom right
panel correspond to r = v[1 — D, /(2k)]/k.

from the boundary and is exponentially small in @ at the trap centre. Introducing
the angle ¢ between the direction of the particle and the normal to the trap e, the
dynamics in the (r, @) variables become

7= —Kr + vCosp »=+/2Dn(t) — % sin ® (33)
r

where 7(t) is a Gaussian unit white noise. Using dimensionless variables 7 = ¢D,,
7 =rk/v, and 7(7) = n(t)/v/D;, Egs. (33) become

F= —Dir(f—cosgo) p= \/577— 7:;7" sin (34)

where 7(7) is also a Gaussian unit white noise. The angle ¢ thus undergoes rotational
diffusion in an effective potential =75~ (1 —cos ¢) whose amplitude diverges as D, /k —
0. In this limit, ¢ oscillates around ¢ = 0 with Gaussian fluctuations (¢?) = D,./k.
Consequently, 7 ~ 1—D,./(2k): the particle is almost always at the border of the trap,
although the fluctuations of ¢ prevent it from reaching exactly r = v/ (see Fig. 3).
The density of particles in the bulk of the trap is thus much smaller than in the RTP
case since in a time t ~ 1/D,., the particles are exponentially unlikely to escape the
trap boundary while RTPs would typically cross the trap in times ¢ ~ 1/a. (Recall
that these two times are interchangeable in the effective equilibrium regime.) The
occurrence of an effective potential, preventing particles from diffusing in angle away
from the outward normal direction, at first seems to violate the fact that the dynamics
of ABPs is torque-free. Note however that there is no real potential for the angle 0;
the effective potential for ¢ arises not because there is a torque, but because the
translational motion of a particle along the trap boundary naturally leads it towards
a location where the outward normal is parallel to the current orientation, hence
leading to ¢ ~ 0. This effect is also present for RTPs but the discrete angular dynamics
effectively allows the RTP to immediately escape the reorientation potential.

To reach the bulk part of the trap, Eq. (34) tells us that ¢ needs to climb the effec-
tive potential to turn and face its destination. In principle, there are many stochastic
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paths leading from the boundary to some inner target point at distance r from the
center. As x/D, — 0, however, the transition probability is dominated by the most
probable path leading to such a point [69] (an instanton). The probability of this path
will be given by exp kAE/D,., where AE(r/rr) is a geometric function depending on
the exact location of the target. Since reaching the center of the trap requires a fluc-
tuation of ¢ much larger than any required to reach another point close to the trap
boundary, the energy barrier increases as the distance of a target from the boundary
increases. In practice, a linear function AE(r/rr) fits very well the effective energy
barrier:

p(r) ~ 512 Pexp [CD(r/rr —1)] (35)

.
where C' is a dimensionless constant. The density in the center of the trap indeed
decreases much faster than for RTPs, as @ exp(—C®). Somewhat surprisingly, this
simple argument gives reasonably good agreement, with a geometric factor C' whose
fit yields C' ~ 2.15, with the bulk density measured in numerical simulations (See

Fig. 2).

2.5 Effective equilibrium for generic potentials

In this section we show that for generic potentials Vi, sufficient conditions to observe
an effective equilibrium regime are given by

€7 VVexe(r)] <v; and €7 AVex(r)| < @, Di(d 1) (36)

To show this, let us consider a system for which (36) holds. The fluctuating hydro-
dynamics for ABPs and RTPs in the presence of external drifts derived in [46] reads:

p = —2V(vp) + V- [ VVerip] + V(D Vp) (37)
Apa = _Va(vp/g) + vb(gilvb‘/ex‘ﬁpa) + O(VZ) (38)

where {2 is the surface of the unit sphere in d dimensions and A equals « for RTPs and
D,.(d—1) for ABPs. This description is valid at times ¢ > A~! and for fields p, p whose
gradients are small on the scale of the persistence length of SPPs, |[Vp|/p, |Vp|/|p| <
A/v; its derivation in the isotropic case is the subject of section ??, whose notation
differs slightly through introduction of a quantity ¢ = p/£2.

Expanding the second term of the r.h.s of Eq. (38) then yields

(A=Y AVit)pa = —Va(vp/2) + €V Vg - Vipa + O(V?) (39)

Equation (39) thus shows that p, ~ O(V). Using (36), the Laplacian of Vey, can then
be neglected and (39) simplifies into

v
P = 2 Va(p/2) + O(V?) (10)
The dynamics of p is then given by
. U2 1
p= V- [(Di+ )0+ € W] (41)

which is nothing but the equilibrium Fokker-Planck equation of a colloid of mobility
& subject to an external potential Ve, at a temperature

2

KT = £[D; + UZ] (42)
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The steady-state solution of this equation is the Boltzmann weight p(x) o« exp[—Best Vext),

which satisfies
v Vp|_ |0 & Ve
Ap |

b 43
A.Dt"i‘% (43)

-1
< '6 VV:axt
v

which is indeed small, thanks to (36).

The two conditions (36) are enough to show the long time dynamics of the SPP
to amount to the equilibrium dynamics of a colloid subject to an external potential
Vext- Physically, they require that the Stokes speed vy = —VV be much smaller that
the self-propulsion speed v of the SPP, but also that its variations over a run-length
Vus.v/A be much smaller than v.
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2.3.1 Sédimentation en deux dimensions avec diffusion trans-
lationnelle

On peut étendre les résultats de l'article [A] sur la sédimentation en 2d pour
inclure un mouvement brownien passif de coefficient D; sur la position des parti-
cules. Cela nous permettra ensuite de comparer avec une meilleure précision nos
résultats et des données expérimentales sur les colloides autopropulsés.

Pour D; = 0, on observe un effondrement gravitationnel lorsque la vitesse de
sédimentation tend vers la vitesse d’une particule vy, — v. L’autopropulsion ne peut
alors plus contrebalancer la gravité et la longueur de sédimentation tombe a 0. Si
I'on ajoute un mouvement brownien passif, on s’attend a retrouver une longueur
de sédimentation finie pour vy > v, contrélée par la diffusion brownienne.

La démonstration suit exactement le méme chemin que pour D, = 0. Pour les
RTP, la distribution stationnaire satisfait maintenant 1’équation

0= —0. [(vcosh — v;)P(2,0)] + D,2P(2,0) — aP(z,0) + %p(z) (2.15)

On peut toujours supposer que I’état stationnaire est factorisé P(z,0) = p(z) f(0).
L’équation ([2.15)) nous donne alors

Az _ o
p(z) = poe , f0) = 2m(a — vAcosf)

(2.16)

avec a = o +v A — Dy A2, La constante ) est fixée par la condition de normalisation
2T £(0)df = 1. Cette équation se réduit & un polynéme du 4™ ordre en A qui
admet une seule solution réelle telle que A — 0 quand v, — 0. Cette solution a
une expression compliquée qu’il est inutile de reproduire ici. Elle est tracée a la
figure 2.1] ou elle est comparée avec des simulations.

Dans la limite vy < v, I'expression de A se simplifie :

2000 2000*03 vs\?
A\ = > s O (S) 2.17
v2 + 2D« + (v2 4+ 2Dya0)* * [ v ] (2.17)

Le premier ordre correspond au régime de température effective A\ = mg/kpTeq
avec kpTog = pt (% + Dt), ou u est la mobilité.

Dans la limite vy — 00, on trouve A = (v —v)/D; 4+ O(1/vy), ce qui correspond
A une particule brownienne a la température du fluide kT = p~'D, dans un
champ de gravité effectif ¢’ = g —v/(um). Comme on peut le voir sur la figure
on interpole donc entre un régime d’équilibre effectif dominé par l'activité a petit
v, et un régime d’équilibre passif a grand v,.

Les ABP montrent la méme phénoménologie. Par le méme calcul que dans
larticle [A] A est donné par la solution de

ao(=2A/Dy) = ——-(v; — DiA) (2.18)
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A A
101 101

101 101
— RTP, D, = 1, théorie — RTP,D, =1
o o RTP, D; = 1, simulations / — ABP, D, =1

1034 — RTR.D, =0 103 vy / (kg Tesr)

v/ (kpTesr) — (vs —v)/(kpT)
— (v.—)/(ksT)  Us/V vs /v
| | | | | |
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Figure 2.1 — Longueur inverse de sédimentation A\ pour des ABP et RTP
en 2d. Gauche : Simulations avec D; = 1 montrant un accord parfait avec
la prédiction théorique. On voit que D; # 0 permet d’éviter I'effondrement
gravitationnel a vy = v que I’'on observe quand D; = 0. Droite : Comparaison
entre ABP et RTP. Les limites d’équilibre effectif & petit et grand vs/v sont
identiques entre les deux types de particules. vs/v est varié en changeant v,
a v constant. Parametres : v =10, a = D, = 1.

ol ag est la premiere valeur caractéristique de I’équation de Mathieu. La distribu-
tion angulaire est donnée par la fonction de Mathieu paire

f(0) = e1C | =2~ (vs = D), =2/ D, 29] (2.19)

ol ¢ est fixé par la normalisation de f. On peut utiliser les développements connus
de la fonction ag pour obtenir A dans les limites de petit et grand v,. Pour vy < v

on trouve s ;
2D, v, 7D, v*v; Vs
+ 5+ 0 [() ] (2.20)

" 02 +2D,D, ' 2(v?+2D,D v

En comparant avec 1’équation (2.17]), on voit qu’a 'ordre vs/v (dans le régime de
température effective) les ABP et RTP ont la méme longueur de sédimentation, la
premiére différence apparaissant & 'ordre suivant. A grand v, on trouve, comme
pour les RTP, A = (vs — v)/D;. Les deux limites (petit et grand vs) sont donc
identiques pour les deux types de particules qui ne different que dans le régime
intermédiaire comme on peut le voir a la figure (droite).

Intéressons-nous également a la distribution angulaire, f(6), dans la limite de
petit vy, qui sera ensuite comparée & Pexpérience. A ordre (vs/v)?, on obtient

20 2U2U2 v, 3
2 0) =1+ 55— cosf+ 250020+ O () 22
WfRTP( ) + UQ _|_ 2Dt05 cos + (1}2 —|— 2Dta)2 o8 + [ v ] ( )
- 0202 v\ >
7 fagp(0) T2 +2D,D, cosv+ 2(v?2 +2DD,)? cosr T [ v 1 2:22)
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Comme pour la longueur de sédimentation, au premier ordre en vs/v (i.e. en
tronquant les expressions apres le terme en cosf), les ABP et les RTP ont la
méme distribution angulaire lorsque o« = D,.. La différence entre les deux types de
particules n’apparait qu’a l'ordre (v,/v)?%.

2.3.2 Sédimentation de colloides Janus

Nous voulons maintenant comparer les distributions angulaires obtenues ana-
lytiquement pour la sédimentation d’ABP en 2d, équation , a l'expérience
de Ginot et collaborateurs sur des colloides autopropulsés [39].

Les colloides étudiés dans [39] sont recouverts de platine sur la moitié de leur
surface et propulsés par la réaction du platine avec le peroxyde d’hydrogene présent
en solution, qui crée un gradient de concentration de O, et HyOy entre les deux
faces de la particules (voir figure . Les colloides sont alors mis en mouvement
par diffusiophorese. L’autre face des colloides étant en or, des effets d’électropho-
rése s’ajoutent probablement a la diffusiophorese, ce qui expliquerait leur vitesse
plus élevée que les colloides platine-latex considérés dans [36]. La vitesse d’autopro-
pulsion peut étre ajustée en changeant la concentration en peroxyde d’hydrogene
de la solution dans laquelle les particules sont immergées. Le systéme expérimen-
tal, schématisé a la figure 2.2] est incliné légerement par rapport a ’horizontale
(d’un angle de l'ordre de 1073 radians) de telle sorte que les colloides forment une
monocouche sur la surface inférieure de la chambre d’observation. Ce dispositif
permet d’observer le comportement des colloides sur toute une gamme de densité,
de 'empilement compact jusqu’a un gaz tres dilué (voir figure .

Nous nous intéresserons ici aux profils d’orientation dans la phase diluée, oul’on
peut négliger les interactions. Toutes les quantités présentes dans I’équation
peuvent étre mesurées indépendamment. La vitesse de sédimentation v, est me-
surée sur des particules passives en cours de sédimentation. D, et v sont mesurés
sur des particules libres a plat. Pour le coefficient de diffusion passive D; nous uti-
liserons la valeur donnée par la relation de Stokes-Einstein pour une spheére dans
l'eau D; = kgT/(6mnR), le rayon d’une particule étant mesuré par microscopie
électronique. Notons qu’'une mesure (peu précise) de D, utilisant le déplacement
quadratique moyen des particules donne une valeur compatible avec la prédiction
théorique, bien que les particules soient proches dune surface.

On peux donc comparer les prédictions de ’équation avec les données
expérimentales sans aucun parametre ajustable. Cette comparaison est montrée
a la figure pour deux valeurs de v, /v, obtenues en variant v & v, constant. A
vs/v = 0.08, dans le régime d’équilibre effectif, les distributions angulaires données
par équation ([2.22)), tronquées au premier ou au deuxiéme ordre, avec D; = 0 ou
D, # 0, sont toutes indistinguables a I’échelle de la figure et donnent un bon accord
avec I'expérience. A v, /v = 0.28, les prédictions a 'ordre 1 et 2 sont toujours tres
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Figure 2.2 — Le systeme expérimental est incliné d’un petit angle €, indui-
sant un champ de gravité g sin 6. De gauche a droite : profils de sédimentation
pour une activité de plus en plus grande, I'image de gauche correspondant
au cas passif. La barre d’échelle est de 20pum. Figure reproduite de .

proches. L’effet de la diffusion brownienne n’est cependant pas du tout négligeable
et prendre en compte D; # 0 permet d’avoir un meilleur accord avec les données.
On peut quantifier la qualité de I'accord entre les données expérimentales et les
prédictions théoriques en calculant la quantité

9 2w 9
R® = ﬁ Z [fexp(ei) - fth(el)] (2'23>

P 4

ou N, est le nombre de points expérimentaux 6;. La normalisation est telle que
R? soit I'analogue discret de la norme ||fup — finllz = J™ [fexp(0) — fin(0)]” d6.
Les valeurs de R? pour les différentes prédictions théoriques sont reportées sur la

figure 2.3

Notons qu’il est expérimentalement difficile de se placer a des ratios v, /v plus
grands, qui permettraient de montrer la différence entre ’équation dévelop-
pée a l'ordre 2 en vs/v et la distribution angulaire compléte donnée par 1'équa-
tion . En effet, a grand vy /v, la longueur de sédimentation est trop petite
pour permettre d’obtenir assez de statistiques sur la durée de vie de I'expérience.

Notons finalement que ceci est un travail en cours, la prochaine étape étant
de comparer les longueurs de sédimentation mesurées expérimentalement avec les
prédictions pour A\~! données dans ce chapitre.
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Figure 2.3 — Comparaison entre les distributions angulaires expérimentales
et théoriques, sans parametre d’ajustement, pour deux valeurs de v, /v. R?,
donné par ’équation , quantifie la qualité de I’accord entre expérience
et théorie. D, = 0.64s~ !, D, = 0.274 ym?.s7!, v, = 0.33 pm.s L.
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2.4 Sédimentation en trois dimensions

Attaquons-nous pour terminer au cas d = 3. Pour la sédimentation, tout se
passe dans une direction de 'espace, celle du champ de gravité. On peut donc
espérer résoudre le probleme en 3d comme en deux dimensions. C’est le cas pour
les RTP mais pas pour les ABP, pour lesquelles la solution en 2d repose sur notre
connaissance des fonctions de Mathieu.

En 3d, la direction u d’une particule est paramétrée en coordonnées sphériques
par deux angles 6 et ¢ tels que u = (sinf cos ¢, sin @ sin ¢, cosf). Le champ de
gravité sera toujours pris suivant 2. Par symétrie, la distribution stationnaire ne
dépend que de z et 0 et ’équation maitresse se réduit alors pour des RTP a

) 6—v)Pl—aP+- [Tag [ gl sing P(=.0.0
0=-0.[(vcosh —vs)P] — « +E/o d /0 d¢'sin0' P(z,0',¢") (2.24)

En utilisant P(z,0,¢) = P(z,0)/(27), on peut intégrer sur ¢ et réécrire 1'équation
précédente

0= ~0.[(veos — v, P(z0)] — aP(z0) + 5 / "0 sm@'P(20)  (2.25)
0

Le calcul se poursuit comme en 2d, en séparant les variables P(z,0) = p(z)f(0),
avec la condition de normalisation [; f(6)sinfdf = 1. L’équation (2.25) donne
alors

p(z) = Cexp(—Az) (2.26)

1
10 = 2 [1 A (ycosf) — vs)}

«

(2.27)

et la condition sur la normalisation de f donne I’équation

Av AV
tanh = — 2.28
arctan (}\US n a> - ( )

qui peut étre résolue numériquement pour fixer la longueur de sédimentation. En
développant I'équation ([2.28) & petit A, on retrouve le régime d’équilibre effectif

_ My vs)? e
A= k}BTeff + O [( y ) ] y /{ZBTCff = U (3@) (229)

Pour des ABP en 3d, apres les simplifications liées a la symétrie du probleme,
I’équation maitresse donne pour I'état stationnaire

0=—-0.[(vcost —vs)P(2,0)] + &89(Sin 00y P(2,0)) (2.30)

sin 6
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et apres séparation des variables

§(2) = Mol 2.31)
£7(6) + Dy tan 0(6) + 2-(vcosf — ) f(6) = 0 2.32)

T
Le profile de densité reste bien exponentiel mais I’équation sur f n’est plus une
équation de Mathieu comme en 2d, a cause du terme en f’(6). Pour obtenir une
équation fixant A, il faudrait donc construire une théorie analogue a celle des
valeurs caractéristiques de I’équation de Mathieu pour ce nouveau type d’équation,
ce que nous réservons pour un travail futur.

On peut aussi comparer les RTP et ABP en 3d en utilisant des simulations
numériques. Pour les RTP il n’y a pas de probleme particulier, les culbutes sont
toujours distribuées exponentiellement avec un taux a. A chaque culbute, une
nouvelle direction est tirée sur la spheére unité. Pour simuler des ABP, il nous faut
obtenir I’équation de Langevin pour la diffusion rotationnelle. Celle-ci doit étre
équivalente au Laplacien rotationnel

P(0,p) = AyD,P(0,p) = D L9 (ne L L o P (2.33)
= 2uldr ) = Ur |7 A | SIU— - a9, 2 :
o 7 sin 6 00 00 sin 62 Q2
Dans la littérature sur les ABP [62, 64, 66], on lit généralement que I’équation
de Langevin en 3d est donnée par

du

dt
ou A est un bruit blanc gaussien dont les composantes vérifient, en coordonnées
cartésiennes, (A;(r,t)A;(r',t")) = 0;;6(r—r')6(t —t'). Le bruit dans I'équation ([2.34))
est multiplicatif et il est donc important de spécifier la discrétisation que 'on
choisit, ce qui est rarement discuté [62, 64, 66].

En pratique, c’est la discrétisation d’Ito qui est utilisée en simulation numérique
car le terme de bruit ne dépend alors pas des coordonnées futures ; elle permet donc
d’utiliser une intégration temporelle explicite, comme la méthode d’Euler. Or, il
est facile de voir que I’équation ne décrit pas la diffusion rotationnelle dans
I'interprétation d’Ito. En particulier, elle ne conserve pas la norme du vecteur u :

= /2D, (u x A) (2.34)

djul? .
ou la matrice o contient les corrélations du bruit u x A :

Opw = ((uyA, — usz)2> = u? —i—uz, Ouy = ((uyAy — uzAy) (uAy —u L)) = —uyuy,
(2.36)
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Figure 2.4 — Longueur inverse de sédimentation A pour les ABP et RTP en
3d. Parametres des simulations : v =10, « =1 D, = 0.5.

et des expressions analogues pour les autres composantes. Le premier terme du
membre de droite de I’équation ([2.35)) s’annule en interprétation d’Ito et on trouve
alors

dt

Nous montrons a l'annexe [A| que I"équation (2.34) correspond en fait a une
diffusion rotationnelle dans l'interprétation de Stratonovich. L’équation correcte
dans l'interprétation d’Ito s’écrit

d 2
<h”>=2m§)m=4mmﬁ (2.37)

d
zgzyﬂDduxA)—ﬂLu (2.38)
et conserve la norme du vecteur u :
d 2
<‘;‘>::@u-u>+4p4m2=o (2.39)

Nous avons donc utilisé cette équation de Langevin pour simuler des ABP
en 3d et ainsi comparer les longueurs de sédimentation des ABP et RTP. Les
résultats sont montrés a la figure 2.4 Comme en 2d, les deux types de particules
sont équivalents dans la limite d’équilibre effectif, a la substitution o = (d — 1) D,
pres.
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Chapitre 3

Pression d’un fluide actif

Les forces actives qui s’exercent dans les tissus biologiques, que ce soit a I’échelle
intracellulaire ou au niveau du groupe de cellules, sont 'objet d’une intense re-
cherche. Elles sont essentielles pour comprendre la motilité cellulaire qui trouve
son origine dans les forces exercées par les moteurs moléculaires sur le cytosquelette
et qui joue un roéle clé dans 'apparition de métastases cancéreuses, la morphoge-
nese ou la cicatrisation de blessures |25, (106, |107]. Ces systémes sont toutefois tres
complexes et beaucoup moins d’attention a été portée a des questions beaucoup
plus simples, telles que la pression exercée par un fluide de particules actives sur
les parois de son contenant. Comme nous allons le voir dans ce chapitre, cette
question est néanmoins subtile et réserve de nombreuses surprises.

Diftérentes définitions de la pression d’un fluide coexistent. La pression « méca-
nique » est définie comme la force par unité de surface qu’un fluide exerce sur son
contenant. Une définition alternative, fréquemment rencontrée en mécanique des
fluides, est reliée au tenseur des contraintes o qui apparait par exemple dans
les équations de Navier-Stokes. Cette pression « hydrodynamique » est définie
par P = —Tro/d, ou d est la dimension de 'espace. Enfin, pour un systéme
a l’équilibre thermique, on peut définir une pression « thermodynamique » par
P =—0F/0V, ou F est I’énergie libre et V' le volume du systéme.

Pour un systeme passif, 'équivalence des pressions mécanique et hydrodyna-
mique découle de la conservation de la quantité de mouvement. Cette équivalence
traduit le fait qu’on peut mentalement diviser un fluide en petites boites en équi-
libre mécanique les unes avec les autres et avec les parois. De plus, pour un systeme
décrit par la distribution de Boltzmann, on peut montrer que les deux définitions
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mécanique et hydrodynamique de la pression sont équivalentes a la définition ther-
modynamique (voir les suppléments de l’article pour une démonstration). L’éner-
gie libre étant extensive, et donc proportionnelle au volume, la contribution des
interactions particules-parois, proportionelle a la surface, est sous-dominante dans
la limite thermodynamique. La pression est alors donnée par une équation d’état :
elle ne dépend que de quantités physiques mesurées dans le coeur du systeme et
non pas du détail des interactions entre les particules et les parois.

Dans les systemes actifs, aucune des équivalences entre les trois définitions de la
pression données plus haut n’est vraie a priori. En effet, la quantité de mouvement
n’est pas conservée du fait de 'autopropulsion et, a part dans le régime d’équilibre
effectif étudié au chapitre précédent (pour des particules sans interaction dans un
potentiel peu confinant), les systémes actifs ne sont pas décrits par une distribution
de Boltzmann. Il n’y a donc pas de raison non plus de supposer I'existence d'une
équation d’état.

Des études théoriques récentes sur la pression de systemes de spheres dures
autopropulsées [65H67, [108-110] semblent toutefois indiquer, sans le démontrer,
que la pression peut étre définie de facon équivalente comme la trace du tenseur
des contraintes ou comme la force exercée par unité de surface sur le contenant.
Elle est alors donnée par une équation d’état. En outre, une équation d’état a été
mesurée expérimentalement, de facon indirecte, en reliant la pression a des profils
de sédimentation [39).

Nous montrerons dans 'article [B| qu'une équation d’état existe dans des cas
exceptionnels mais qu’en général, la pression mécanique exercée par un fluide ac-
tif sur son contenant dépend des interactions microscopiques avec les parois. Le
méme fluide dans deux récipients différents exercera alors des pressions différentes.
C’est le cas des que des couples s’exercent entre particules ou entre les particules
et les murs. La majorité des systémes expérimentaux sont concernés. En effet,
des interactions d’alignement sont induites par la répulsion stérique pour toutes
les particules asymétriques. De plus, des particules actives en solution (mémes
sphériques), s’autopropulsent en appliquant un dipdle de force, qui a une symétrie
axiale, au fluide environnant. Les interactions hydrodynamiques vont donc générer
des couples a longue distance entre particules et avec les parois (voir par exemple
[111]). D’autres interactions, comme des particules se déplagant a une vitesse v(p),
conduisent aussi a une absence d’équation d’état.

Une équation d’état existe néanmoins dans deux cas particuliers notables : le
gaz parfait et les spheres dures autopropulsées. Pour un gaz parfait de particules
sphériques (ne s’alignant pas avec les murs), la pression est donnée par la loi du
gaz parfait a la température effective calculée au chapitre 2l Nous montrerons a la
section que ce résultat est valide pour plusieurs types de dynamiques. Le cas
des spheres dures sera, quant a lui, traité en détail dans l'article [D] au chapitre
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Figure 3.1 — Géométrie utilisée pour calculer la pression d’un fluide actif.
Les particules sont confinées, suivant 'axe Z, par un potentiel répulsif (sché-
matisé par les régions vertes). Le systéme est considéré comme infini dans la
direction 7.

sur la séparation de phase induite par la motilité, I’équation d’état donnant alors
une relation entre les densités des deux phases en coexistence. Nous montrons
également dans 'article |B| que, méme dans les cas ou une équation d’état existe,
la pression peut avoir des propriétés inhabituelles. Elle peut par exemple étre
anisotrope ou inhomogene sans que cela ne génere d’écoulement dans le systeme.

A la section , nous calculerons la pression pour un systeme satisfaisant le
bilan détaillé, mais dont la distribution stationnaire n’est pas une distribution de
Boltzmann. Dans ce cas, la pression mécanique n’est pas donnée par une équation
d’état, ce qui montre la nécessité de bien faire la différence entre les deux définitions
d’un systéme d’équilibre discutées en introduction de cette these.

Notons que plusieurs études s’intéressent a la pression dans des systeémes tres
confinants pour lesquels la taille du récipient est comparable a la longueur de
persistance des particules [66, 67, (109, |110]. Pour des parois mobiles, cela conduit
a des interactions a courte portée, décroissant exponentiellement sur une longueur
de l'ordre de la longueur de persistance des particules [112]. Au contraire, nous ne
considérerons ici que des systemes grands devant la longueur de persistance.

Le dispositif que nous utiliserons dans tout ce chapitre est schématisé a la fi-
gure [3.1] Par soucis de simplicité, on considérera des particules en 2d confinées sui-
vant I’axe Z par un potentiel et un systéme infini (ou des conditions aux bords pé-
riodiques en simulation) suivant I’axe 7. Tous les résultats présentés ici s’étendent
trivialement si I'on rajoute une troisieme direction 2 infinie (ou avec des condi-
tions aux bords périodiques). Il serait néanmoins intéressant, pour aller plus loin,
d’étudier d’autres géométries comme une cavité sphérique ou, plus généralement,
des murs non plans.

On peut tester le dispositif de la figure [3.1 en calculant la pression mécanique
exercée par un gaz parfait passif. La densité de particules a une abscisse = est
alors donnée par la distribution de Boltzmann p(z) = e=V®/=8T) /7 o1t V est le
potentiel répulsif modélisant les bords de la boite. La pression mécanique s’exprime
simplement comme la force par unité de longueur exercée par les particules sur ce
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potentiel
+00
p= / p(2)(8,V)dx, (3.1)
0

le point x = 0 étant choisi dans le coeur du systeme, loin des parois. En remplacant
p(x) par son expression, on peut calculer I'intégrale de 1’équation ([3.1])

too o=V(@)/(kaT) o~V (0)/(6T)
p= / SOV = kT = ks Ty (3.2)
0

ol pg est la densité au coeur du systeme. On retrouve donc, sans surprise, la loi du
gaz parfait. On voit que le potentiel V' est présent dans la définition de la pression
mais disparait du résultat final, traduisant le fait que la pression est donnée par
une équation d’état.

3.1 La pression d’un fluide actif n’est en général
pas une fonction d’état
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Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal
equilibrium, it depends only on bulk properties (density, temperature, etc.) through an equation of state. Here
we show that in a wide class of active systems the pressure depends on the precise interactions between the
active particles and the confining walls. In general, therefore, active fluids have no equation of state; their
mechanical pressures exhibit anomalous properties that defy the familiar thermodynamic reasoning that holds
in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active
models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.

For fluids in thermal equilibrium, the concept of pressure, P, is familiar as the force per unit area exerted by the fluid on
its containing vessel. This primary, mechanical definition of pressure seems to require knowledge of the interactions between
the fluid’s constituent particles and its confining walls. But we learn from statistical mechanics that P can also be expressed
thermodynamically, as the derivative of a free energy with respect to volume. The pressure therefore obeys an equation of
state, which only involves bulk properties of the fluid (temperature 7', number density p, etc.). Hydrodynamics provides a third
definition of P, as the trace of the bulk thermodynamic stress tensor, whose microscopic definition in terms of momentum fluxes
is again well known [1]. In thermal equilibrium, all these definitions of pressure coincide. The corresponding physical insight
is that the fluid may be divided into blocks that are in mechanical equilibrium with each other and with any confining walls, so
bulk and wall-based pressure definitions must agree.

Purely thermodynamic concepts, like temperature, are well known to be ill-defined in systems far from equilibrium [2].
However, one could hope that mechanical properties, like pressure, are less problematic. Here we investigate this question
for active fluids, in which energy dissipation at the microscopic level drives the motion of each particle to give strong non—
equilibrium effects [3]. Assemblies of self-propelled particles (SPPs) have been proposed as simplified models for systems
ranging from bacteria [4, 5] and active colloidal ‘surfers’ [6—8], to shaken grains [9-11] and bird flocks [12]. We define the
mechanical pressure P of an active fluid as the mean force per area exerted by its constituent particles on a confining wall. This
was studied numerically for a number of active systems, showing some surprising effects for finite-size, strongly confined fluids
[13-19]. Alternatively, when describing the dynamics of such active fluids at larger scales, some authors have introduced a bulk
stress tensor and defined pressure as its trace [3, 17-19], leading to recent experimental measurements [20]. Since we are far
from equilibrium, an equivalence between these different definitions, as seen numerically in [13, 17, 18], requires explanation.

In this article, we show analytically and numerically that the pressure P exerted on a wall by generic active fluids directly
depends on the microscopic interactions between the fluid and the wall. Unless these interactions, as well as the interactions
between the fluid particles, obey strict and exceptional criteria, there is no equation of state relating the mechanical pressure to
bulk properties of the fluid. Therefore, all connections to thermodynamics and to the bulk stress tensor are lost. Nevertheless,
we provide analytical formulas to compute the wall-dependent pressure for some of the most studied classes of active systems.
Exceptional models for which an equation of state is recovered include the strictly spherical SPPs considered in [13, 17, 18].
Below we find that such simplified models are structurally unstable: small orientation-dependent interactions (whether wall-
particle or particle-particle) immediately destroy the equation of state. Such interactions are present in every experimental
system we know of.

A clear distinction exists between the present work and that of Ref [21]. The latter includes an explicit proof that pressure is,
after all, well defined within a narrow class of models: spherical SPPs with torque-free wall interactions and torque-free pairwise
interparticle forces. Because this class has been a major focus of theory and simulation studies, that finding is important, creating
in those cases a direct link between pressure and correlation functions that can be exploited in future theoretical advances.
However, in general terms it is even more important to know that an equation of state for the pressure is the exception, rather
than the rule, in active matter systems. This we establish here.

To appreciate the remarkable consequences of the generic absence of an equation of state, consider the quasi-static compres-
sion of an active fluid by a piston. Since the mechanical pressure depends on the piston, compressing with a very soft wall—into
which particles bump gently—or with a very hard one requires different forces and hence different amounts of work to reach
the same final density. This is not the only way our thermodynamic intuition can fail for active systems. We will show both
that pressure can be anisotropic, and that active particles admit flux-free steady-states in which the pressure is inhomogeneous.
Finally, in the models we consider (which best describe, e.g., crawling bacteria [4] or colloidal surfers or rollers near a supporting
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surface [22, 23]) there are situations in which the confinement forces at the edges of a sample do not sum to zero. We show how
this unbalanced force is compensated by momentum transfer to the support. The issue of whether an equation of state exists in
so-called “wet” active matter [3]—in which full momentum conservation applies throughout the interior of the system—remains
open.

NON-INTERACTING PARTICLES

We consider a standard class of models for SPPs in which the independent Brownian motion of each particle (diffusivity D;)
is supplemented by self-propulsion at speed v in direction u,

dr
- out 2Dy n(t) , )]

with 77(¢) a Gaussian white noise of unit variance. The reorientation of the direction of motion u then occurs with a system-
specific mechanism: active Brownian particles (ABPs) undergo rotational diffusion, while run-and-tumble particles (RTPs)
randomly undergo complete reorientations (‘tumbles’) at a certain rate. These well-established models have been used [5, 7, 24—
28] to describe respectively active colloids [6, 8, 22, 23], or bacterial motion [4, 28] and cell migration [29]. Such models neglect
any coupling to a momentum conserving solvent, and are thus best suited to describe particles whose locomotion exploits the
presence of a gel matrix or supporting surface as a momentum sink. This is true of many active systems, such as crawling
cells [30], vibrated disks or grains [9, 10, 31], and colloidal rollers [23] or sliders [22].

We address a system of SPPs with spatial coordinates r = (z, y) in 2D; we assume periodic boundary conditions, and hence
translational invariance, in the ¢ direction. The system is confined along & by two walls at specified positions, which exert forces
—VV(z) on particles at z; these forces have finite range and thus vanish in the bulk of the system. The propulsion direction of
a particle is u = (cos 6, sin #) with § = 0 along the Z direction. In the absence of interactions between the particles, the master
equation for the probability P(r, , t) of finding a particle at position r at time ¢ pointing along the 6 direction reads

P =—V-[(v—uVV ()P — D;VP] — [uT(2,0)P — D,9yP] — aP + % /Pde’ . )

Here 1y and D, are the translational mobility and diffusivity; likewise p, and D, for rotations. The propulsive velocity is
v = vu(f), and « is the tumble rate. ABPs correspond to & = 0 and RTPs to D, = 0. Here we allow all intermediate
combinations, to test the generality of our results. In addition to the external force —VV (x), we include an external torque
I'(x, 0), which may, for example, describe the well-documented alignment of bacteria along walls [32]. Generically, just as
in passive fluids, a wall-torque will arise whenever the particles are not spherical and its absence is thus strictly exceptional.
Obviously, the asphericity of (say) water molecules does not violate the thermodynamical precepts of pressure; remarkably, we
show below that, for active particles, it does so.

Since our setup is invariant along the ¢ direction, the mechanical pressure can be computed directly from the force exerted by
the system on a wall (which we place at z = x,, > 0), as

P= /OO p(x)0,V () dx . 3)

0

Here an origin = 0 is taken in the bulk, and p(z) = fozﬂ P(x,0)d0 is the steady-state density of particles at . As stated
previously, for a passive equilibrium system (v = 0) with the same geometry, the mechanical definition (3) of pressure is
equivalent to the thermodynamic definition, as proved for completeness in the Supplementary Information (SI). Note that Eq. (3)
still applies in the presence of other particles, such as solvent molecules, so long as those particles do not themselves exert any
direct force on the wall (which is thus semi-permeable). Under such conditions P is, by definition, an osmotic pressure; the
results below will still apply to it, whenever Eq.(2) remains valid.

As described in the SI, the pressure can be computed analytically from Eq. (2) as:

’02 Dt

[ 21
Vfdy .
+ — - da:/ I'(z,0)sin0P(x,0)do . 4
P Mt(Dr+04)/o 0 (#:6) (@) @

P=|———
2u(Dy + ) g

This is a central result, and exact for all systems obeying Eq. (2). Clearly, I'(x,6) in general depends on the wall-particle
interactions, as does P(x, §) which is sensitive to both I'(x, 0) and V (). Thus the mechanical pressure P obeying Eq. (4) is
likewise sensitive to these details: it follows that no equation of state exists for active particle systems in the general case.

To illustrate this effect and show that (4) can indeed be used to compute the pressure, we study a model of ABPs with elliptical
shape (see SI for details). We choose a harmonic confining potential, V (z) = 3 (z — 2,,)? for z > z,,, with V' = 0 otherwise,
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FIG. 1. Non-interacting self-propelled ellipses. Left: Normalized pressure as the particle anisotropy « and the wall stiffness A are varied
for ABPs and RTPs. The theoretical prediction for ABPs correspond to Eq. (5) Right: Density profiles for spherical particles for four different
wall stiffness all yielding a pressure equal to pkTes. The full lines are Boltzmann distributions at k7, showing that the pressure is given by
the effective temperature far outside the Boltzmann regime A < D,. v = D, = 1 and D; = 0, with box size L, x L, = 10 x 1.

accompanied by a torque T' = A sin 26 (again, for 2 > x,, and zero otherwise). With x = (a? — b%)/8, this is the torque
felt by an elliptical particle of axial dimensions a, b and unit area 7ab, subject to the linear force field —VV (z) distributed
across its body. Assuming the steady-state distribution P(z, #) to relax to its bulk value outside the range of the wall potential,
P (x4, 8) = po/27, the pressure in such an ABP fluid (for D; = 0) is given by

2
Pov /\/'I”I’"V‘:
P=——|1- - . 5

2/\Mtur’i |: eXp( Dr >j| ( )

For k > 0 the torque reduces the pressure by orienting the ABPs parallel to the wall. Equation (5) shows explicitly how
walls with different spring constants A experience different pressures, in sharp contrast with thermodynamics. We checked this
prediction by direct numerical simulations of ABPs and found good agreement (see Fig. 1). We also found similar behavior
numerically for (likewise elliptical) RTPs, confirming that the failure of thermodynamics is generic.

For passive particles in thermal equilibrium, v = 0 and Eq. (4) reduces to the ideal gas law, P = pokpT, upon use of the
Einstein relation (D;/p; = kgT). Another case where an equation of state is recovered is for torque—free (e.g., spherical)
particles, with I' = 0. In that case Eq. (4) reduces to the same ideal gas law but with an effective temperature

P 7.)2 Dt

o ke Tt 2114(Dy + @) * [
This explains why previous numerical studies of torque—free, non—interacting active particle fluids gave consistent pressure
measurements between impenetrable [14, 15] or harmonically soft walls [13]. Related expressions for the pressure of such
fluids were found by computing the mean kinetic energy [13], or the stress tensor [17—-19], possibly encouraging a belief that all
reasonable definitions of pressure in active systems are equivalent. However, Eq. (4) shows that these approaches cannot yield
consistent results beyond the simplest, torque—free case.

The “effective gas law” of Eq. (6) for the torque—free case is itself remarkable. For ABPs or RTPs in an external potential
V (z), the effective temperature concept predicts a steady-state density p(z) o< exp[—V (z)/kpTes] that is accurate only for weak
force fields [33, 40]. Yet Eq. (6) holds even with hard-core walls for which the opposite applies and the steady-state density
profile is far from a Boltzmann distribution (see the simulation results of Fig. 1 and the analytical results for one—dimensional
RTPs in SI). In fact the result stems directly from the exact computation of fooo p(x)0,V (x) dx, which can be done at the level
of the master equation and leads to Eq. (4), so that no broader validity of the T¢ concept is required, or implied.

(6)

INTERACTING ACTIVE PARTICLES

Equation (4) gives the pressure of non—interacting active particles and we now address the extent to which our conclusions
apply to interacting SPPs. Clearly, interactions will not restore the existence of an equation of state in the presence of wall
torques and we thus focus on “torque-free” walls.
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FIG. 2. Interacting self-propelled spheres. Pressure versus density P(po) for interacting particles (Ly x Ly = 200 x 50). Left: Aligning
ABPs. The torque exerted by particle j on particle i is F'(6; — 0;,ri,r;) = N(r sin(; — 6;) if |r; — r;| < R and 0 otherwise, where A/ (r;)
is the number of particles interacting with particle s. v = 1, D, = 1, Dy = 0, R = 1 and v = 2. Center: “Quorum sensing” interactions
v(p) = vo(l — p/pm) + v1 withvg = 10, v1 = 1, p, = 5, D, = D; = 1. Right The pressure of particles interacting with repulsive WCA
potentials is independant of the wall potential. Triangles and circles represent RTPs and ABPs with v = 10, D, = 1, « = 1 and D; = 0.
Open and full symbols correspond to linear and harmonic wall potentials. (See SI for numerical details.)

Interparticle alignment is probably the most studied interaction in active matter [3]. To measure its impact on pressure, we
consider N ABPs whose positions r; and orientations #; evolve according to (1) and

N
= Wy Z F((g] — (91',1‘1', I‘j) + v/ 2D,«€Z(t) (7)
j=1

where F' is an aligning torque between the particles. As shown in SI, the pressure can be computed analytically to give

2
— {2;ZDT +%} po — /Z’“l‘) /dac/ dy/ /dr /deF ' —0,r,r')sin0(P(r, 0)P(r',0)) @)

where the integral over r’ is over the whole space. Since the distribution P(r, §) = Ef\il 0(r—r;)0(0 —6;) depends (for z > 0)
on the wall potential, so does the pressure. Therefore, even in the absence of wall torques, alignment interactions between
particles destroy any equation of state. Figure 2 shows the result of ABP simulations with a particular choice of interparticle
torque F': The measured pressure indeed depends on the wall potential and agrees with equation (8).

In active matter, more general interactions than pairwise torques often have to be considered. For example, in bacteria with
“quorum sensing” (a form of chemical communication), particles at position r can adapt their dynamics in response to changes in
the local coarse—grained particle density p(r) [37]. Also shown in Fig. 2 are simulations for the case v(p) = vo(1 — p/pm) + v1,
reflecting a pairwise speed reduction (see SI for details). This is an example where even completely torque-free particles have
no equation of state. Again, we show in SI how an explicit formula for the pressure can be computed from first principles.

The case of torque—free ABPs with short range repulsive interactions [24, 25, 34, 35] was recently considered in [17, 18].
The mechanical force exerted on a wall was found to coincide with a pressure computed from the bulk stress tensor, suggesting
that in this case an equation of state does exist. To check this, we choose a Weeks—Chandler—Andersen (WCA) potential:

Ulr) = 4 [( )12 (%)6] +1if r < 260 and U = 0 otherwise, where 7 is the inter-particle distance and o the particle

diameter. Using simulations we determined P as a function of bulk density po for various harmonic and linear wall potentials.
As shown in Fig. 2, all our data collapses onto a wall-independent equation of state P(pg). An analytical expression for P(p) in
this rather exceptional case is derived and studied in [21] in the context of phase equilibria.

The cases explored above show that there is generically no equation of state in an active fluid, one exception being when
wall-particle and particle-particle torques are both negligible. Given this outcome, a simple test for the presence or absence of
an equation of state, in simulations or experiments, would be welcome. If the pressure is set by bulk properties of the fluid,
when an asymmetrically interacting partition is used to separate the system in two parts, no force acts upon the partition and
it does not move. Conversely, if the partition does move, there is no equation of state. To check this, we simulated a large
box of homogeneous active fluid, introduced at its centre a mobile wall with asymmetric potentials on its two sides, and let the
system reach steady state. In the cases shown above to have an equation of state, the wall remains at the center of the box so
that the densities on its two sides stay equal. In the other cases, however, the partition moves to equalize the two wall-dependent
pressures, resulting in a flux-free steady-state with unequal densities in the two chambers (Fig. 3).
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FIG. 3. Simple test for the existence of an equation of state. Four snapshots of the steady-state of 10000 ABPs in a 200 x 50 cavity split
in two by a mobile asymmetric harmonic wall (A = 1 on the left and A\ = 4 on the right, v = 10, D, = 1, D; = 0) for: non-interacting
spherical ABPs (top left), non—interacting elliptic ABPs with y, = x = 1 (top right), ABPs interacting via the WCA potential (bottom left)
and via v(p) (bottom right) with vo = 10, v1 = 1, pn, = 4.8. A spontaneous compression of the right half of the system is the signature of
the lack of equation of state.
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FIG. 4. Anisotropic pressure. RTPs with anisotropic speed v(6) = vo + v1 cos(26), with vg = 10, v1 = 1, D; = 0. The pressure depends
on the angle ¢ between the wall and the axis g but not on the stiffness of the potential.

ANOMALOUS ATTRIBUTES OF THE PRESSURE

A defining property of equilibrium fluids is that they cannot statically support an anisotropic stress. Put differently, the normal
force per unit area on any part of the boundary is independent of its orientation. This applies even to oriented fluids (without
positional order), such as nematic liquid crystals [38], but breaks down for active nematics [3].

We next show that it can also break down for active fluids with isotropic particle orientations, as long as the propulsion speed
is anisotropic, i.e. v = v(#). This could stem from an anisotropic mobility 1, (6) as might arise for cells crawling on a corrugated
surface. We suppose v(6) = v(6 + 7) so that oppositely oriented particles have the same speed; Eq. (2) then shows that the bulk
steady state particle distribution P(r, #) remains isotropic. In addition, as shown in SI, the pressure P(¢) acting on a wall whose
normal is at angle ¢ to the & axis remains independent of the wall interactions, but is ¢-dependent; for RTPs (D,. = 0) it obeys

poDy Po /27r 2 2
P = — .
(9) " + Srma Jo v () cos®(0 — ¢) dd )

To verify that the pressure is indeed anisotropic we performed numerical simulations for v(0) = vg + v1 cos(26) which show
perfect agreement with Eq. (9) (see Fig. 4).

For passive fluids without external forces, mechanical equilibrium requires that the pressure is not only isotropic, but also
uniform. This follows from the Navier—Stokes equation for momentum transport [38], but also holds in (say) Brownian dynamics
simulations which do not conserve momentum [1].

We now show that P need not be uniform in active fluids, even when an equation of state exists. Consider non—interacting
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FIG. 5. Inhomogeneous pressure. Spherical ABPs interacting with WCA potential, with speeds vy for ¢ < 0 and v for z > 0. Left:
Snapshot of the cavity in steady state (vy = 1, vo = 5). Middle: Pressures P; and P» as va/v; is varied. Right: As v /vy varies, the
densities evolve to equalize pv rather than P ~ pv?. D, =1, Dy = 0, A = 1, L, x Ly = 200 x 50.

spherical ABPs in a closed container with different propulsion speeds in different regions, say v = v; for z < 0 and v = vy for
x > 0. This is a realizable laboratory experiment in active colloids whose propulsion is light-induced [8, 22]. From Eq. 2, the
flux-free steady state has p oc 1/v throughout [26, 27, 36], so that the pressures P; o  pv? are unequal. Though different, the
pressures in the two compartments are well defined, uniform within each bulk, and independent of the wall-particle interactions.
They remain different when interparticle interactions are added (see Fig 5). Indeed, if for v; # vo equality of the ideal pressure
is restored by setting D, o v, the effect of such interactions is to reinstate a pressure imbalance. Nonuniformity of P is thus
fully generic for nonuniform v.

The above example implies a remarkable result, that also holds for systems with no equation of state enclosed by spatially
heterogeneous walls. In both cases the net force acting across the system boundary is generically nonzero. Were momentum
conserved, this would require the system as a whole to be accelerating. Recall however that Eq. (2) describes particles moving
on, or through, a medium that absorbs momentum and this net force is exactly cancelled by the momentum exchange with the
support. The latter vanishes on average in the isotropic bulk, but is nonzero in a layer of finite polarization (m; # 0) close to
each wall.

DISCUSSION

Our work shows that in active fluids the concept of pressure defies many suppositions based upon concepts from thermal
equilibrium. The generic absence of an equation of state is the most striking instance of this. Despite its absence, we have
shown how to compute the mechanical pressure for a large class of active particle systems. Clearly, the concept of pressure
is even more powerful in the exceptional cases where an equation of state does exist. This excludes any chemically-mediated
variation in propulsion speed, and also requires wall—particle and interparticle torques both to be negligible. Because it can
easily be achieved on a computer, though not in a laboratory, the torque-free case of spherical active Brownian particles without
bulk momentum conservation has played a pivotal role in recent theoretical studies of active matter [13, 17, 18]. The proof [21]
that an equation of state does exist for this system is all the more remarkable because, as we have seen, such an outcome is the
exception and not the rule.

It is interesting to inquire how our results would change for systems with full momentum conservation in the bulk. As men-
tioned previously, if Eq. (2) still applies, our exact results for P remain valid so long as this is taken as an osmotic pressure.
For dilute systems Eq. (2) should indeed hold in bulk, even though particles now propel by exerting force multipoles on the
surrounding solvent. (Since the walls of the system are semipermeable, the solvent can carry momentum across them, and effec-
tively becomes a momentum sink for the active particles.) However, even for spherical swimmers, hydrodynamic interactions
can now cause torques, both between the particles and near the wall [39], making an equation of state less likely. Its absence
would then manifest as a nonzero net force on a semipermeable partition between two identical samples of (say) a swimming
bacterial fluid. We predict this outcome whenever the two faces of the partition have different interactions with the swimming
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particles.
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Supplementary Information
(Dated: May 21, 2015)

I. DETAILS OF NUMERICAL SIMULATIONS

Time-stepping: Simulations were run using Euler time-discretization schemes over total times
T = 10* or larger (up to T = 10?).

Non-interacting particles: At each time step dt, particles update their direction of motion
0;, then their position r;. For ABPs, 6; = /2D, £(t) where £(t) is a Gaussian white noise of unit
variance. For RTPs, the time At before the next tumble is chosen using an exponential distribution
P(At) = e 2. When this time is reached, a new direction is chosen uniformly in [0, 27 and
the next tumble time is drawn from the same distribution. This neglects the possibility to have
two tumbles during dt. Both types of particles then move according to the Langevin equation
i = veg, — VV + /2Dy (t) where n(t) is a Gaussian white noise of unit variance.

Hard-core repulsion: To model hard-core repulsion we use a WCA potential V(r) =
4[(%)12 — (%)6] +1if r < 265 and 0 otherwise. The unit of length is chosen such that
the interaction radius 21/6¢ = 1. Because of the stiff repulsion, one needs to use much smaller
time steps (dt = 5.107° for the speeds considered in the paper).

Aligning particles: Particles exert torques on each other to align their directions of motion
6;. The torque exerted by particle j on particle i reads F(6; — 6;,rj —r;) = ﬁsin(ﬂj —0;) if
lr; — r;j| < R and 0 otherwise, where N (r;) is the number of particles interacting with particle i.
The interaction radius R is chosen as unit of length. For the parameters used in simulations v = 1,
v = 2, with a time-step dt = 1072

Quorum sensing v(p): The velocities of the particles depend on the local density p. The unit

of length is fixed such that the radius of interaction is 1. To compute the local density, we use the
1
1—7r2

constant. The average density around particle ¢ is then given by p; = >, K(|ri —rj|) and the

Schwartz bell curve K(r) = + exp(— ) for » < 1 and 0 otherwise, where Z is a normalization
velocity of particle i is v(p;) = vo(1 — pi/pm) + v1. We used dt = 5.1073.

Asymmetric wall experiment: The simulation box is separated in two parts by an asym-
metric wall which has a different stiffness A1 and A2 on both sides. At each time step, the total
force F exerted on the wall by the particles is computed and the wall position is updated according
t0 Twall = fiwalF, Where fiyan = 2. 107% <y is the wall mobility.

SI movie 1: Asymmetric wall experiment with non-interacting ABP particles. The particles
are spherical (no torque) for ¢ < 1000 and ¢ > 3000 and ellipses with £ = 1 for 1000 < ¢ < 3000.
Wall potentials are harmonic and other parameters are v = 10, D, = 1, A = 10 (external box) and
for the asymmetric mobile wall A = 1 on the left and A = 4 on the right.

II. EQUILIBRIUM PRESSURE

Here, for completeness, we show that in equilibrium 1) the thermodynamic pressure equals the
mechanical pressure given by Eq. (3) of the main text, and 2) that it is independent from the wall
potential. For simplicity we consider a system of interacting point-like particles in one-dimension
where the pressure is a force and we work in the canonical ensemble. The extension to other cases
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is trivial.
The thermodynamic pressure is defined as

oF

P=—-— 1
5|, 1)

where L is the system length, F' is the free energy, and the number of particles NV is kept constant.
Note that since F' is extensive, any contribution from the potential of the wall is finite and will
therefore not influence the pressure. Next, the free energy is given by

1
F=—InZ, 2
5 (2)
where
Z - E e B+ V(wi=L)] | (3)

is the partition function, 8 = 1/T with T the temperature, and the sum runs over all micro-states.
The origin of the wall is chosen at x = L, as opposed to = x,, in the main text. The energy
function of the system is given by H+ >, V(z; — L), where V(x; — L) is the wall potential, z; is the
position of particle ¢, and H contains all the other interactions in the system. Using the definition
of P we have

where the angular brackets denote a thermal average, and p(z) = >, 0(z — x;) is the number
density. Exchanging 0y, for —0,, we obtain the expression from the main text

P= < / dap(2),V (z — L)> . (5)

ITII. DERIVATION OF THE PRESSURE FOR NON-INTERACTING SPPS
To compute the mechanical pressure P for SPPs, we first define m,,(z) = fo% cos(nb)P(z, 0)do.
Taking moments of the master equation, Eq. (2) in the main text, we find that in steady state

0= —0,(vmy — pugpd,V — DiOyp) , (6)
p+ma

2w
(D + a)my = =0y <v — im0,V — Dt(')xm1> — / sin @ p, I'(z,0)P do . (7)
0

Equation (6) is tantamount to setting d,J = 0, where J is a particle current that must vanish in
any confined system; while Eq. (7) expresses a similar result for the first moment m;. Equation (3)
of the main text and Eq. (6) together imply that

P= / 1 [vmy — D0yp) dx . (8)
0 Ht

Next, from Egs. (6,7) we see that, apart from the term involving the torque I', m1(z) is a total
derivative. We can trivially integrate this contribution to Eq. (8), noting that at x = 0, isotropic
bulk conditions prevail so that m; = mgo = 0, and p = pg (say), while as  — oo, far beyond the
confining wall, p = m; = mg2 = 0. Restoring the I" term we finally obtain Eq. (4) of the main text.



69

Figure 1. An illustration of the axes (Z, &) and (&, &,), and the angle 6.

IV. PRESSURE FOR AN ELLIPSE IN A HARMONIC POTENTIAL

In what follows we first compute the torque applied on an ellipse in a harmonic potential. We
then derive an approximate expression for the pressure, Eq. (5) of the main text, which is valid as
long as the density distribution P(r, ) equals its bulk value as soon as the wall potential vanishes
(at x = xy).

A. Torque on an ellipse

We consider an ellipse of uniform density and long and short axes of lengths a and b respectively.
We define two sets of axes: 1) (&, ) are the real space coordinates with the wall parallel to the
y axis, and 2) (Zp, §p) are the coordinates associated with the ellipse so that x,, is parallel to its
long axis. The angle between the two sets of coordinates is 6, which is also the direction of motion
of the particle (see Fig. 1). For simplicity, we assume that the particle is moving along its long
principal axis.

Since the wall is perpendicular to the & axis, the force acting on an area element of the ellipse
is given by Fy,(zo+x) = —0,V (xo + x), where ¢ is the position of the center of mass of the ellipse
and x the relative coordinate of the area element within the ellipse, both along the & direction.

The torque applied by the force at a point r is then given by

v=rx Fy(2o+2)T, (9)
= (xp> X Fy(zo + xpcost — ypsinh) ( CO,SH ) . (10)
Yp —sind

Next, we integrate over the ellipse, taking its mass density to be uniform p(xp,y,) = m/(mab).
Rescaling the axes as a:;, = z,/a and yz’, = 1p/b to transform the ellipse into a unit circle, and
switching from (x},,y,) to polar coordinates (r, ¢), yields

I'= m/da:pdypv (11)

"~ 7wab

m _ ax, cos @
- 7T/dx;,/dy;)Fw(xo + az), cos § — by, sin 6) <by§> X (_ sinH)

27 1
d 6
=m / i / drrFy(zg 4 ar cos ¢ cos § — brsin ¢ sin 0) ar C.OS 7 x CO.S .
o 7™ Jo brsin —sind
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4
For a harmonic wall potential F,(z) = —Az, the integral can be computed, and we get
A
I = %(aQ — b?)sin(20) = Ak sin(20) (12)

which has the expected symmetries: it vanishes for a sphere (a = b), and for particles moving along
or perpendicular to the z-axis. Note that the torque is constant, independent of the position of
the particle as long as the whole ellipse is within the range of the wall potential. In the main text
we assume that this is always the case, which means that the ellipse is very small when compared
to the typical decay length of p(z) due to V. In the simulations, we thus simulated point-like
ABPs with external torques I' = £k sin 20 for left and right walls. For real systems, the collision
details would clearly be different, hence giving different quantitative predictions for the pressure
P, but the qualitative results would be the same. We set m = 1 for ease of notation and define the
asymetry coeficient x = (a? — b?)/8 as in the main text.

B. Approximate expression for the pressure

We now turn to the derivation of the approximate expression Eq. (5) in the main text for the
pressure. In particular we focus on the case of ABP (a = 0) ellipses confined by a harmonic wall
potential and for simplicity neglect the translational diffusion Dy = 0. In that case the contribution
of the torque to the pressure reads

v [T 2m
C = / dx/ df sin(0) sin(20)P(x,0) , (13)
Mt Jo 0

where we have used expression (12) for I' and defined A\ = p,x\/D,..

We will now expand the pressure P as a power series in A. If we make the approximation
P(zy,0) = po/(27), so that the steady-state distribution relaxes to its bulk value as soon as the
system is outside the range of the wall potential, we can resum the series to obtain Eq. (5) of main
text.

We first expand the probability distribution P(x, ) in powers of A

k=0
so that the pressure is given by
L —ﬁicxk“ (15)
2 Dy po 2put Dy po 1t = F '
where
00 2T
Cr = / dm/ df sin 6 sin(20) Py (z, 0) . (16)
Tw 0

1. Computation of the coefficients Cj,

Cy is known since Py = po/2w. Using the hypothesis P(xy, 0) = po/(27), so that Pr>1(xy) = 0,
we can now relate Py to Pr_1 and then compute iteratively the Cj’s.
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In steady-state, the master equation gives for & > x,,, order by order in \:

D, .
0= —0,(vcosOPy — K ( — 20)Pr_1) + DrOFPr — Dy0p(sin(20)Py_1), k>1

T

0= —0,(vcosOPy) + D, 03P .

Multiplying Eq. (17) by an arbitrary function f(6) and integrating over 6 and z, one gets

00 2w 00 2
/ dm/ aof" P, = —/ dac/ dof'sin(20)Py_1, k>1
Tw 0 Tw 0

00 2 1 2 vpo
" _ _
/xw dx/o dof Py = Dr/o dOv cos 0 fPy(x4,0) D, dfcosOf .

For conciseness, we define the operators T and T

T(f)zsin(ze)/daf : T*(f):cose/da/def,

where the integral signs refer to indefinite integrals, to rewrite Eqgs. (19-20) as

27 27
/ dl‘/ d0g(6)Py = / dx/ doT(g(0))Pr_1, k>1

21
/ da / d9g(6 " 40T (9(6)Po (0, 0) = — ;;pl?)r / doT*(9(0)) ,

where g = f”. The C}’s then reduce to the explicit integrals

C — k+1 Up() 2m dQT*Tk:+1 9
o= (cos)

where we use sin 0 sin(26) = T'(cos 6) so that Tk(sinﬁsin(%)) = Tk (cos h).
Let us now compute the Cy’s. By inspection, one sees that T%(cos#) is of the form

k
T*(cos ) = Z o cos((2i +1)6) ,
=0

where the coefficients oaf obey the recursion

k-‘rl z+1
2i+3 21 — 1 ’

N S
k 2 Qk -1’
kel L aﬁ
k1 99k 417
which solution is
—1)J
a? ) H (k+1—1).

k+1 k+]+1'

(17)

(18)

(21)

(24)

(26)

(27)

(28)

(29)

(30)



72

After the application of T* in Eq. (24), the only term that contributes to Cy in T*(cosf) is

af = ﬁ, because [ df cos cos|(2i + 1)8] = 0 for i > 0. One thus finally gets

Cp = (—1)k 220 QﬂdGakHcosz(Q):(—l)k& (32)
F 27D, J, 0 2D, (k+2)!

2. Approximate expression for the pressure

The series (15) can now be resummed to yield

v2 > k plas 1-— 675‘
P = 1-— —1)'——— | =P, = , 33
sup (1 X ) =7 )

where P; is the ideal gas pressure. As expected, the pressure tends to P as A — 0.
As can be seen in the right panel of Fig. 1 in the main text, the approximation that the wall
does not affect the probability density for x < x,, is not satisfied when \ is large. However, this

happens only when P()) is already very small, so that the analytic formula Eq. (33) compares very

well with the P()\) curve obtained numerically, as shown in Figure 1 of main text.

V. NON-BOLTZMANN DISTRIBUTION

While the analytical computation of the full distribution for RTPs and ABPs in two dimensions
is beyond the scope of this paper, here we show explicitly that the steady—state density is not a
Boltzmann distribution for 1D RTPs. The master equation for the probability densities of right
and left-movers (P, (z,t) and P_(x,t)) is given by (see Ref. (26) of the main text)

Py = 0y (v — V) — % (PL—P.),
OP- = =0, (—v = udaV) = 5 (P- = P) . (34)
Note that D; = 0 for this system. The equation for the steady-state density then reads
0 [(v* = 117 (0V)?) p] + e (0:V)p = 0. (35)
First, rescale the potential so that the equation reduces to
0 [(1= @:V)?) p] + 9070 =0, (36)
with ¢ = /v and V = Vi /v. The steady state distribution is then given by
plx) = poe_Q , (37)

and

Q= Il — (0,7 ()] + /0 ’ dx’% . (39)

The probability distribution is non-local inside the wall and not given by a Boltzmann distribution.
(Note that particles are confined within the region [0, z*] where (8,V)? < 1 and p(z) = 0 outside.)
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Despite the absence of a Boltzmann distribution, the pressure is well defined (as for the 2D
case considered in the text). To see this explicitly in one dimension consider the expression for the

pressure
v [T
P=— 0.V (z)p(z) , (39)
e Jo
with 0,V (2*) = 1. Then using the explicit expression of the steady-state distribution, P can be
written as
* - 8 _,V(x')
v [7 —g [T da! — 2
P = —po— dzdye 9Jo dz 1—(8,/V(a))2 , (40)
gut Jo
so that
o, OuV()
P=—py—— T EveE _ ) (41)
gl
Now, since at the upper bound of the integral within the exponential the integrand diverges we
have
2
v v
P=po— =po— . (42)
ghit aupu

VI. ANISOTROPIC PRESSURE

We consider spherical particles whose speeds depend on their direction of motion 6. As discussed
in the main text, such situations could arise, for example, when the motion takes place on a
corrugated surface. For simplicity, we consider only run—and—tumble particles (D, = 0). The case
of active Brownian particles can be treated following the same argument.

In steady—state, the master equation yields

0= -0, [(v(0) cosb — 11:0,V — D9;) P(6,%)] — aP + % /d@"P(G’,X) ) (43)

We want to restrict ourselves to cases where the bulk currents along any direction vanish (the
system is therefore uniform in the bulk), which we achieve by assuming that v(6 + w) = v(6).
Following the same steps that lead to Eq. (4) in the main text, we get in steady state

0= 781:(7%1 - Mtpa:rv - Dtaxp) ) (44)

27
0= -0, [/ 0(9)2 COSQ(Q)PdQ — w0 Vg — DiOping | — iy (45)
0

where we have defined m; = fo% v(0) cos(8)Pdf (which differs from m; in section III because it
includes the speed).

From these two equations, we can express the mechanical pressure as a function of the bulk
density and v(0), as

x

P = / p(x)0,Vdr = 1 (M1 — DyOyp) = <
0

(46)

Ht 2may

27 2 2
D dfv=(0) cos*(0
) ())po
Kt Jo
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This holds for a wall perpendicular to the & axis. For a wall tilted by an angle ¢, one obtains the

anisotropic pressure

(D [T dOv?(6) cos*(0 — ¢)
- (2 Frs =0 "

which is Eq. (9) of the main text.

VII. INTERACTING ACTIVE BROWNIAN PARTICLES

In the following we study ABPs with aligning interactions (Section VITA) and quorum-sensing
interactions (Section VIIB). In particular, we derive exact expressions for the pressure P in terms
of microscopic correlators evaluated near the wall. These show P to depend explicitly on the details
of the interaction with the wall, hence forbidding the existence of equations of state.

A. Aligning particles

We consider a system of N spherical ABPs which can exert torque on each other, for instance
to promote the alignment of their directions of motion, but which do not feel any wall-torque. The
positions and orientations of the particles evolve according to the Ito-Langevin equations

dri
dt
db;

a :/J'r;F(gj —0i,ri,rj) + /2D, 6(1) (49)

=V — ut&tV + 2Dt7]z‘(t) (48)

where 7; and §; are uncorrelated Gaussian white noises of unit variance and appropriate dimen-
sionality. F'(6; — 6;,r;,r;) is the torque exerted by particle j on particle i.
We now define a microscopic density field P(r, ) as

P(r,0) = 5(r—1;)5(0 —0;) (50)
Following [1], its evolution equation is given by
8P (r,0) = —V-[(v — V'V (2))P(r,8) — D,VP(r,0)] + V- ( 2Dt7317) + 5 (szmg)
21
— Oy {,ur/dr / d9'F (0 9,1‘,1")77(1',9)73(1",6’)] + D,33P(r,0) (51)

where the integral [ dr’ is performed over all space.

We then follow the same reasoning as for non-interacting particles to derive an expression for
the pressure. We first average Eq. (51) in steady-state, assuming translational invariance along y,
to get

2w
0= —0u[(v — 11daV (2))(P) — D;3,(P)] — 0 {MT / dr’ /O dOF (O — 0,r,v')(P(r,0)P(x', )

+D,05(P) (52)
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Figure 2. Lack of equation of state for ABPs with interparticle alignment interactions but no wall torques.
The mechanical force per unit area P exerted on the wall is equal to its theoretical expression (56) and
depends on the stiffness A of the wall potential. The torque exerted by particle j on particle i is F/(0; —
0;,ri,rj) = Nar_,) sin(f; — 6;) if [r; — r;] < R and 0 otherwise, where N (r;) is the number of particles
interacting with particle i. (v=1, D, =1, D; =0 and v = 2.)

where the brackets (-) denote averaging over noise realisations. Note that the noise terms average
to zero due to our use of the Itd convention.

Multiplying Eq. (52) by 1 and cos@ and then integrating over 6 gives the analog of Eq. (6)
and (7)

0 = =0 [vm1 — up(0, V) — D10y p] (53)

p+ma
2

D,mq = —0, [v — um1 (0, V) — Dtaxml}

T/ 31n0/dr /27r dO'F(O —0,v,v')(P(r,0)P(r',0)) (54)

where my,(z f cos(nB)(P(z,0))dd and p(x) = 027r<73(x,9)>d9.
Insertmg Eq. (54) in Eq. (53) allows us to rewrite the pressure P = [ dzpd,V exactly as

pP= [ v? Dt} lais /Oodx /Ood / /dr / dO'F (0 — 0,v,v')sin0(P(x, 0)P(r,0))
QMtD 0o MtD'r 0 _OOZ/ 0 ) ) )

(55)

We see that, just as in Eq. (4) in main text, the mechanical pressure depends explicitly on the

density P(r,60) close to the wall, which in turn depends on the detail of the interaction V(x)
between the particles and the wall. There is thus no equation of state.

Using the microscopic definition of P, Eq. (50), one can rewrite the integral in Eq. (55) as a
sum over all particles, more suitable to numerical measurements:

1}2 Dt Vhty N
{mDr " ] ° utDT<,jZ: (6 = 03, xi,v;) sin 6:6(x1)) (56)

where ©(x;) = 1 if 2; > 0 and zero otherwise. In Fig. 2, we compare measurements of P from
the force applied on the confining wall and from Eq. (56), for a particular choice of F'. They show
perfect agreement, thus confirming Eq. (55).
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B. Quorum-sensing interactions

A similar path can be followed to compute the pressure exerted by ABPs that adapt their swim
speed to the local density computed through a coarse-graining kernel p(r) = >, K(|r —r;|), where
the sum runs over all particles. The dynamics of the system is now given by the Ito-Langevin
equations

dI‘Z‘
dt

& — VD) (58)

As before, the dynamics of the density field can be obtained using Ito calculus [1]

=v(p)e; — w0V + /2Dym;(t) (57)

OP(r,0) = =V - [(v(p)eg — 1 VV (z))P(r,0) — D;VP(r,0)] + D,02P(r,0) (59)

V- ( 2Dt7777) + 5 (\/Wg)

By the same procedure as for aligning particles (except that we first multiply Eq. (59) by v(p)
for the second equation) we get the two relations

0= —0z[(v(p)1) — ptp(02V) — Di0ypl (60)

D to(phin) = = (o0s [o() 5™ = s 0.7) - D2 ) (61)

where m,(z) = fO% cos(nf)P(z,0)dd and p(x) = 027T P(z,0)dl are fluctuating quantities whose

averages are my, and p.
We can now rewrite the pressure using these two equalities:

p- / depd,V = 2 [ dz [(w()in) — Dydap] (62)
0 Ht Jo
D, 1 (> _ N LT B .
= 00 Do /0 dx <U(p)5‘x {v(p) 5 w1 (0V) Dtﬁxml} > (63)

Integrating by part the last integral, we obtain

<v(p)22(£ ;Tm2)>o B de(zzgzrmmo N Zt 20 (64)

[ as <3xv(ﬁ) {v(p)ﬁ LR Dtaxml] >

P =

+

Dr,uft

where the brackets ()¢ denote an average done in the bulk of the system.
As for aligning particles, one can use Eq. (50) to obtain a “microscopic expression” for P which

is more suitable for numerical evaluation:

N
Dy (v(p;)?(1 4+ cos(20;)))o 2Dy {0z, v(p;) cos 91‘>0>
P="Lp + + : 65

" ; ( 2: Dy D, (65)

N .
—i—Z@(xi)Dl’u <(')xiv(ﬁi) {v(ﬁi)HC(;S(%Z) — Jit COS Qi((')xV)] + Dt(agiv(ﬁi))cos 9i>
i—1 rHt
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Here, for ease of notation, we have written p; = p(r;). Again this exact formula shows that no
equation of state relates the mechanical pressure to bulk properties of the system.

[1] Farrell, F. D. C., Tailleur, J., Marenduzzo D. and Marchetti M. C. , Pattern formation in self-propelled
particles with density-dependent motility, Phys. Rev. Lett. 108, 248101 (2012)
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3.2 Gaz parfait pour différentes dynamiques

La fait que la pression mécanique d’un gaz parfait de particules actives sa-
tisfasse une équation d’état peut paraitre surprenant. En effet, la pression est
toujours donnée par la loi du gaz parfait a la température T,g méme dans le ré-
gime ou le concept de température effective n’est plus valable, i.e. pour un mur
trés confinant |u0,V| ~ v. Pour s’assurer que ceci n’est pas une curiosité ma-
thématique du modele de particules a vitesse constante dans la limite suramortie,
nous généralisons ici le résultat a deux autres cas. Nous considérerons tout d’abord
des particules autopropulsées avec inertie, puis des particules propulsées par une
force active fluctuant suivant un processus d’Ornstein-Uhlenbeck, qui ont attiré
beaucoup d’attention récemment [54, 56| |113].

3.2.1 Particule active avec inertie

Considérons le cas d'une ABP sphérique (sur laquelle aucun couple ne s’exerce)
en 2d, confinée par un potentiel V' et propulsée par une force active F, constante.
La dynamique d’'une telle particule s’écrit

r=v (3.3)
mv =—yv+ F,u—VV +,/2D,n (3.4)

6=\/2D,¢ (3.5)

ou u = (cosf,sinf) est la direction d’autopropulsion et 1 et £ sont des bruits
blancs gaussiens de dimension appropriée. L’équation de Fokker-Planck associée
s’écrit

F, \YA%4
OP(r,v,0)=—-V, [vP] =V, - K—vv +—u— —

D
) P} + — AP+ D,;P
m m m m
(3.6)
Comme dans article [B] on considére un systéme confiné suivant X et infini sui-
vant ¥. Dans ’état stationnaire, P est donc invariante suivant y. On peut alors

remplacer V, - [VP] par 0, [v,P] et intégrer I'équation (3.6)) sur y et v,. On obtient

F,
O = _8,7; [pr] - 8111, [(—va + e COSQ _ axv
m m

D
P| + —02 P+ D,0;P (3.7)
m m2

ou, de maniere abusive, P(x,v,,0) = [ dy [ dv,P(r,v.0).
On notera dans la suite pour une observable O

O)w) = [ dv, | 400 (2,00.,0)P(2,02.0) (3.9)

o0
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ou P(z,v,,0) est la distribution stationnaire. Intégrer 'équation (3.7) suivant v,
et 6 donne

0= —0,(va) (3.9)

qui traduit un flux de particules J = (v,) constant. Pour un systéme confiné
suivant Z, on a donc (v,)(z) = 0 pour tout x. Multiplier I’équation (3.7) par v, et
intégrer suivant v, et  donne

r m m

0=—0,(v) + <—;va + i cosf — 8xV> (3.10)

ou l'on a utilisé une intégration par partie pour obtenir le dernier terme. Comme
montré ci-dessus, le terme (Lv,) est nul. On peut alors utiliser I'équation ({3.10)
pour réécrire la pression

p= /O°°<axv> = m{v?) +/000<Fa cos 0) (3.11)

ou (-)p dénote une moyenne dans le coeur du systeme, en = 0. Multiplier I’équa-
tion (3.7) par 6 et intégrer suivant v, et § donne

0 = —0, (v, cos) — D,(cosb) (3.12)

de sorte que la pression s’écrit comme une quantité calculée dans le coeur du
systéme
Fa
E(vx cos 6)o (3.13)
L’équation constitue d’ores et déja une équation d’état qui relie la pres-
sion mécanique a des quantités physiques calculées dans le coeur du systéme, ne
dépendant pas des interactions avec les parois.

On peut aller plus loin en utilisant le calcul d’Ito pour exprimer les moyennes

de I"équation (3.13). On trouve

P =m(v})+

x

2D,

2y 2F, 2D,
= _E@i) + - (v cos @) + ( " ) (3.15)

ol les moyennes sont ici sur les réalisations des bruits n et £. On a également
9y (v cos B) = (0, cos§ — vfsin§ — D,v, cos ) (3.16)

v F, )
-7 4 Ca D 1
(v, cos ) (cos”0) (Vg cos ) (3.17)
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On utilise ensuite cos?§ = 3(1 4 cos26) et (cos26), = 0, cette derniere égalité
venant du fait que la distribution angulaire est uniforme dans le coeur du systeme,

par symétrie. Les équations (3.15) et (3.17)) donnent alors
F, D, P2
2m(D, +v/m) ym  2ym(D, +y/m

(v cosB)y = 00, (v2)o = l )] po (3.18)
ou l'on a noté py = (1)g la densité dans le coeur du systeme.

Définissons D; = D, /72, v = F,/v et u; = 1/~. En reprenant 'équation (3.13)),
on trouve pour la pression

D,  F2 D, 1
[ v T 2Dw} P [m * Q,UtDr] po (3.19)

qui est exactement le résultat donné dans 'article |B| pour la dynamique suramortie.

3.2.2 Mouvement brownien corrélé

On considére maintenant une particule propulsée par un processus d’Ornstein-
Uhlenbeck, toujours dans la géométrie de la figure La position de la particule
est donnée par les équations de Langevin

t=uf-VV) rf=—f4,/2Dm (3.20)

ou M est un bruit blanc gaussien. L’équation de Fokker-Planck associée s’écrit

f 1 D
OP(rft) = —V - [u(f — VV)P] + V¢ [P] + AP (3.21)

T

Comme précédemment, la distribution stationnaire est invariante suivant y et on
peut intégrer '’équation (3.21]) suivant y et f,. La distribution stationnaire est alors
donnée par

0=—0, [u(fs — 0,V)P] + 0y, HP] + ifaj%zp (3.22)

ou P = P(z,f,) est la distribution stationnaire moyennée sur y et f,.
On note pour une observable O

©O)@) = [ O L)P(0.) (3.23)

Intégrer I'équation (3.22) sur f, donne alors

0= —0, [u(fs) — u(0: V)], pour tout x (3.24)
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et donc, pour une particule confinée, (9,V) = (f,). La pression se réécrit alors

p= 0,V da = Ji () da (3.25)

On peut calculer (f,) en multipliant I’équation (3.22)) par f, et en intégrant suivant
fz- On trouve

0=0u[ul12) = nirov)] - () (3.26)

ou le dernier terme est obtenu par intégration par partie. La pression s’écrit alors
comme une moyenne dans le coeur du systeme, notée (-)q

P= [ =r0 [0l - 0] = {2 (3.27)

car 0,V = 0 dans le coeur du systeme.
On peut finalement utiliser le calcul d’Tto pour obtenir (f2),. De I’équation (3.20))
on déduit

AP0) _ow 2D 2, 2D
AVARIANG) it A = 3.28
SO oy + B = 2+ e (3.25)
Dans 'état stationnaire on a donc (f?) = D;py/T et la pression s’écrit
P = pur{f7)o = pDypo (3-29)

La pression est donc bien donnée par une loi du gaz parfait. C’est la quantité Dy
qui fixe la température effective kpTer = nDjy.

3.3 Pression et bilan détaillé

Nous voulons mettre ici en évidence une différence entre les deux définitions
d’un systéeme a ’équilibre : satisfaire le bilan détaillé ou étre décrit par une distri-
bution de Boltzmann. La définition par le bilan détaillé est beaucoup plus faible
car elle ne dit rien sur les propriétés mécaniques du systéme, en particulier sur la
pression.

Prenons un exemple concret. Dans [57], Tailleur et Cates ont montré que des
RTP en 1d se déplacant a une vitesse v(p), ot p est la densité locale, satisfont le
bilan détaillé sur une échelle de temps grande devant le temps de persistance d’une
particule. Le champ de densité est alors décrit par 1’équation

Ouolet) = V- [pm,o)v‘f;; ‘ \/2pD(p)n] (3.30)
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ou 7 est un bruit blanc gaussien satisfaisant (n;(z,t)n;(z',t")) = 6;;0(z —2")o(t —t')
et D(p) = v(p)?/(2a). La probabilité d’observer un certain champ de densité est
donnée par une énergie libre effective P(p) oc e=71l différente de la distribution
de Boltzmann,

+oo P
Flol= [ def(e(a).  flp) = plogp—1)+ [Tlogu(uydu  (331)

On peut de plus confiner les particules dans un potentiel V' et regarder la
pression qu’elles exercent sur ce potentiel. On négligera le bruit pour s’intéresser
a I’évolution déterministe

0OF
Op(x,t) =V - lpD(p)V(Sp + ,upVV] =-V-J (3.32)
Notons qu’il n’est pas clair qu’en présence du potentiel V', le systeme satisfasse
toujours le bilan détaillé. Le courant J s’annule dans 1’état stationnaire et on peut
alors réécrire la pression

oo 1 [teo oF

P= / p(x)VVdr = ——/ pD(p)V—dx (3.33)

0 wJo op
L’intégration peut étre menée a bien explicitement en utilisant V% =V/fip) =
1" (p)Vp. Définissons g(p) telle que ¢'(p) = pD(p)f”(p). La pression s’écrit alors

P = —; /;OO Vy(p)dx = g(Zo) (3.34)

ol pg est la densité dans le coeur du systeme. On voit donc que la pression est don-
née par une équation d’état mais n’est pas reliée de la fagon habituelle a 1’énergie
libre effective F.

Toutefois, I'existence d'une équation d’état dans ce systéme est fragile. En effet,
si 'on complete I’énergie libre par un terme de tension de surface

Flol = [ flpt)] + 51V Pz, (339)

I'équation ([3.33)) est inchangée et la pression s’écrit maintenant

C o

po 9l ¢ / pD(p)V(Ap)da (3.36)
M K Jo

Le dernier terme n’est en général pas intégrable. On retrouve alors le résultat de

I’article [B]: la pression mécanique dépend explicitement du profil de densité proche

des parois et n’est donc pas donnée par une équation d’état.
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Au contraire, lorsque D = cte, comme c’est le cas pour le gaz parfait actif dans
lequel v = cte, l'existence d’une équation d’état est bien plus robuste. Cela tient
au fait que le potentiel peut étre écrit comme une contribution supplémentaire a
I’énergie libre

Flol = Flol + [ pla)V (w)da (3.37)

C’est cette propriété, qui est naturellement vérifiée pour les systemes décrits par
une distribution de Boltzmann, qui permet de relier la pression mécanique et la
pression thermodynamique. En effet, lorsque D = cte = ukgT, 'équation (|3.34])
donnant la pression mécanique se réécrit

ou kT [pof' — f] est Pexpression habituelle de la pression thermodynamique pour
des systémes a 1’équilibre thermique.

L’ajout de la tension de surface ne modifie pas ce résultat. Le dernier terme de
I’équation devient intégrable lorsque D = cte

o0 1 (o)
/ pDV(Ap)dz = D |pp = [Vl (3.39)
0 0

Il ne contribue donc pas a la pression mécanique d’'une phase homogene.
L’existence d’'une équation d’état n’est pas directement liée au fait qu'un sys-
teme vérifie ou non le bilan détaillé. La propriété déterminante est de pouvoir
rendre compte de l'effet d’'un potentiel extérieur par une contribution additive a
I’énergie libre effective, comme c’est le cas pour une distribution de Boltzmann.
Toutefois, nous avons vu que parfois la pression mécanique satisfait une équation
d’état alors que cette propriété n’est pas vérifiée. L’existence d’une équation d’état
est alors sensible a I'ajout d’ingrédients supplémentaires (ici, la tension de surface).
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Chapitre 4

Séparation de phase induite par
la motilité

4.1 Introduction

Dans ce chapitre, nous nous intéresserons a une transition de phase spéci-
fique aux systemes actifs : la séparation de phase induite par la motilité (que 1'on
désignera aussi par son acronyme anglais MIPS pour Motility-Induced Phase Sepa-
ration). Ce phénomene peut étre compris de fagon assez intuitive. Il requiert deux
ingrédients essentiels.

Le premier ingrédient est générique pour des particules autopropulsées : celles-
ci tendent a s’accumuler dans les régions ou elles se déplacent le moins vite. On
peut voir cela facilement en modifiant I’équation maitresse décrivant des ABP
et des RTP pour considérer, au lieu de particules se déplacant a vitesse constante,
une vitesse d’autopropulsion v(r) variant spatialement. Pour des particules libres,
on a

OP(xt) =~V - [o(r)uP] - aP + & / Plru t)du + D, AP (4.1)

La distribution stationnaire est alors isotrope et satisfait P o« 1/v(r). On a donc
une accumulation dans les régions ou v(r) est faible. Au contraire, pour des par-
ticules passives a 1’équilibre thermique, 1’état stationnaire n’est controlé que par
la température et ne serait pas affecté, par exemple, par une mobilité inhomogene

p(r).
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Le second ingrédient nécessaire pour observer la MIPS est une vitesse d’auto-
propulsion qui dépend de la densité. Si la vitesse d'une particule décroit suffisam-
ment rapidement lorsque la densité augmente, les deux ingrédients se combinent
dans une boucle de rétroaction qui conduit a une séparation de phase entre une
région dense ou les particules se déplacent lentement et une région diluée ou elles se
déplacent vite. Un des enjeux de I’étude de la MIPS est de comprendre comment les
densités de coexistence des régions denses et diluées sont fixées. La phénoménologie
de cette séparation de phase est tres similaire a celle d'une séparation liquide-gaz
d’équilibre, qui survient par exemple dans un fluide de Lennard-Jones. On est donc
tenté de généraliser les relations de la thermodynamique d’équilibre qui fixent les
densités de coexistence par la construction d’'une « tangente commune » sur I’éner-
gie libre ou, de fagon équivalente, par la construction de Maxwell d’« aires égales »
sur la pression thermodynamique. Bien siir, la possibilité de construire les ana-
logues de I’énergie libre et de la pression est une question complétement ouverte
des lors que I'on considere des systemes hors d’équilibre.

La simplicité du mécanisme a l'origine de la MIPS est telle que celle-ci se
rencontre dans de nombreux contextes. Nous considérerons dans ce chapitre deux
facons d’obtenir une vitesse dépendant de la densité, qui correspondent a deux
classes de systemes que nous utiliserons pour étudier la MIPS.

4.1.1 Vitesse dépendant de la densité v(p)

La maniere la plus évidente est d’imposer explicitement une vitesse d’auto-
propulsion v(p) aux particules. C’est une bonne description des interactions entre
certaines bactéries ou cellules qui interagissent par quorum sensing, en adaptant
leur motilité a la concentration d’une molécule qu’elles sécretent. Ces molécules
diffusent dans le milieu et se dégradent, chaque individu mesurant ainsi une concen-
tration d’autant plus grande qu’il est entouré de nombreux congéneres. Une telle
interaction peut également étre induite chez des bactéries par ingénierie géné-
tique [26].

La question se pose alors de savoir comment les particules mesurent la densité
locale. Dans ce chapitre, nous étudierons successivement trois cas, schématisés a la
figure : un v(p) purement local, un v(p) ou p est la densité moyennée de fagon
isotrope dans un certain rayon d’interaction, et un v(p) ou la moyenne est faite de
fagon asymétrique par rapport a la direction d’autopropulsion d’une particule.

v(p) local
C’est en étudiant des particules actives dont la vitesse v(p) dépend explicitement de

la densité p que la MIPS fut décrite pour la premiere fois par Tailleur et Cates [57,
101] (voir aussi [52] pour une revue récente). En particulier, ils ont pu montrer
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v(p(r)) v(p(r)) v(p(r + eu))

Figure 4.1 — Les trois facons de calculer la densité au voisinage d’une
particule que nous considérerons : une mesure de la densité purement lo-
cale (gauche), une moyenne isotrope dans un rayon d’interaction fini et une
moyenne anisotrope effectuée a une distance eu de la particule.

que pour des systémes d’ABP ou RTP autopropulsées a une vitesse v [p(r)], la
probabilité d’observer un certain champ de densité p(r) est donnée par une énergie
libre de Landau P[p] o e 7. Le systéme satisfait alors le bilan détaillé par
rapport a cette distribution stationnaire. Comme pour la théorie de champ moyen
de la séparation liquide-gaz a 1’équilibre, I’énergie libre de Landau peut s’écrire sous
la forme Flp] = [drf[p(r)]. Lorsque f(p) a une forme non-convexe, on observe
une séparation de phase. On peut alors utiliser f(p) pour prédire (toujours au
niveau champ moyen) des densités de coexistence, par la construction de tangente
commune.

Dans la théorie de Tailleur et Cates, 'interaction est purement locale. En effet,
le champ de densité considéré est microscopique, défini formellement par

p(r) = 3 b(r — 1) (4.2)

ou r; est la position de la particule 2. Au niveau des équations hydrodynamiques,
le rayon d’interaction nul se traduit par une absence de tension de surface. En
pratique, on n’observe donc pas de coarsening et donc pas de séparation de phase
avec ce modele. L’interaction purement locale est donc une approximation utile
dans une description continue mais ne permet pas d’observer réellement la MIPS.
De plus, il n’est pas possible d’implémenter une interaction de portée nulle dans
des simulations de particules en espace continu, comme le schéma de la figure [4.1{le
laisse apparaitre. On peut toutefois I'implémenter sur réseau. Une particule au site
k se déplace dans ce cas avec une vitesse v(py), ol py est le nombre de particules au
site k. Le probleme peut alors étre résolu exactement pour des RTP [114]. I’énergie
libre effective est factorisée F({pr}) = Y1 f(px) et I'on observe une coexistence
entre des sites de faible et haute densité prédite par ’énergie libre mais pas de
coarsening, et donc pas de séparation de phase, comme illustré a la figure [4.2]

v(p) isotrope
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Figure 4.2 — RTP sur un réseau 1d. Une particule au site k se déplace a
une vitesse v(pg) ot pr dénote le nombre de particules au site k. Gauche :
Energie libre effective donnant de facon exacte la probabilité d’observer une
certaine occupation py sur chaque site. Droite : Instantané d’un systeme de
200 sites avec 2400 particules. Figure reproduite de [114].

Pour observer la MIPS, il faut inclure des corrélations spatiales pouvant mener a
un coarsening et une séparation de phase. Ceci arrive naturellement lorsque I'on
considére un rayon d’interaction non nul. Nous montrerons comment ceci induit
I’apparition d’une tension de surface effective au niveau de 'hydrodynamique fluc-
tuante.

Dans un premier temps, nous considérerons une densité p mesurée de fagon
isotrope dans un rayon d’interaction ry. On utilise pour ce faire une convolution
entre un noyau K (r), qui s’annule pour |r| > ro, et la densité microscopique p(r)

A(r) = / d' K (x' = 1)p(r') = Y K (xi — ) (4.3)

ou la derniére égalité est obtenue en utilisant la définition de la densité microsco-
pique, équation . Une particule a la position r se déplace alors a une vitesse
o(p).

Concretement, pour des bactéries interagissant par quorum sensing, le role du
moyennage par le noyau K est joué par la diffusion dans le milieu extérieur de la
molécule qui sert d’intermédiaire pour la mesure de densité. Le rayon d’interaction
est alors fixé par le coefficient de diffusion et le temps de vie de cette molécule.

Nous verrons que, par rapport au cas v(p) local, le moyennage isotrope se
traduit par une tension de surface dépendant de la densité. A 'équilibre, la tension
de surface apparait comme une contribution & I’énergie libre F, = [(c/2)|Vp|*dr.
Elle contrdle alors la forme des interfaces pour un systeme séparé en deux phases,
mais ne joue pas de role dans la sélection des densités de coexistence. Au contraire,
nous verrons que dans notre cas la tension de surface ne peut pas étre écrite comme
un terme supplémentaire dans I’énergie libre, et nous devrons donc étudier ses effets
sur la coexistence de phase.
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v(p) asymétrique

Nous étudierons finalement le cas ou la mesure de la densité est anisotrope, dé-
pendant de la direction de déplacement des particules. Plus particulierement, nous
considérerons que la moyenne est effectuée a une distance eu de la particule (ou u
est la direction d’autopropulsion). Les particules se déplacent alors a une vitesse
v(p(r + eu)) (voir figure [4.1)).

Il est assez naturel de considérer cette situation pour des particules actives. Par
exemple, pour mesurer la densité d’une molécule dans le milieu, une bactérie réalise
une moyenne temporelle le long de sa trajectoire. En premiere approximation, on
peut donc considérer qu'une bactérie mesure la densité « derriere elle », la densité
a l'avant n’ayant pas encore été échantillonnée. Au contraire, les spheres dures
autopropulsées, que nous abordons au prochain paragraphe, interagissent par des
collisions qui sont en majorité frontales. On peut donc essayer de modéliser cette
situation par une densité mesurée a l'avant des particules.

4.1.2 Spheres dures autopropulsées

La MIPS a également été étudiée intensivement ces dernieres années dans des
systémes composés de particules ABP avec des interactions de coeur dur [58-65].
Pour ces systémes, ce sont les collisions entre particules qui, de fagon indirecte,
entrainent une diminution de la vitesse lorsque la densité augmente. En effet, dans
la limite suramortie, deux particules actives entrant en collision frontale restent en
contact jusqu’a ce qu’elles se soient réorientées pour repartir dans des directions
différentes. Cet effet peut étre quantifié, par exemple en mesurant la fonction de
corrélation a deux points centrée sur une particule : la probabilité de trouver
une particule devant soi (dans la direction de déplacement) est plus élevée que
derriere [61]. On observe alors, & vitesse et densité suffisantes, une séparation de
phase entre un gaz dilué et un liquide dense. Comme pour les particules nageant
a une vitesse v(p), les deux phases sont désordonnées, les interactions stériques
entre spheres ne produisant pas d’alignement.

Pour étudier analytiquement ces systémes de spheres dures autopropulsées, on
peut tenter de les modéliser comme des particules ponctuelles se déplacant a une
vitesse v(p). Ainsi, la vitesse effective des sphéres dures, fonction de la densité, a
été mesurée en simulation |58} |62]. En premiere approximation, elle décroit linéai-
rement avec la densité v(p) = vo(1 — p/py) ol py est une constante ne dépendant
pas de vy, la vitesse d’autopropulsion des spheres dures. On peut alors comparer
un systeme de sphéres dures autopropulsées et un systeme de particules ponc-
tuelles se déplagant a la vitesse v(p). Les deux conduisent a la méme dynamique
de coarsening et présentent qualitativement la méme séparation de phase (voir
figure [4.3). Cependant, les densités de coexistence différent significativement [62].
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Figure 4.3 — Exemples de MIPS pendant la phase de coarsening. Gauche :
Pour des RTP nageant & une vitesse v(p) ou p est la densité moyenne au voi-
sinage d’une particule. Reproduite de I'article [C} Droite : Pour des sphéres

dures ABP. Reproduite de .

En outre, le fait méme de décrire les sphéres dures par un v(p) est une approxima-
tion forte, dont la validité n’est pas évidente. En effet, les deux systemes présentent
des différences importantes. Par exemple, comme nous [’avons montré au chapitre
précédent, la pression mécanique d'un fluide de spheres dures ABP satisfait une
équation d’état, contrairement a celle des systémes avec v(p). De fagon surpre-
nante, c’est pourtant ’étude de la pression mécanique des spheres dures qui nous
permettra, dans 'article |D| de montrer rigoureusement qu’un lien existe entre les
deux types de systemes.

4.1.3 Expérimentalement

La MIPS est engendrée par un mécanisme relativement simple et a été observée
dans de nombreuses études numériques. Cependant, les observations expérimen-
tales sont moins nombreuses. En particulier, les colloides autopropulsés, qui sont la
réalisation expérimentale la plus directe des spheres dures ABP, ne présentent pas
toujours une séparation de phase [35] 37]. Ceux-ci forment souvent, au contraire,
des agrégats ayant une taille caractéristique finie qui se cassent et se reforment
continiment. L’absence de séparation de phase complete dans ces systémes pour-
rait étre due au fait qu’a faible densité, I'effet de 'autopropulsion serait de casser
une séparation de phase induite par des interactions attractives plutét que de la
favoriser , . Ce n’est qu’a plus haute densité, dans des régimes qui ne sont
pas étudiés dans 37], que la séparation de phase induite par la motilité serait
observée. Cette explication est appuyée par les expériences décrites dans qui
montrent une transition entre des agrégats de taille finie et une séparation de phase
quand la densité augmente. Les interactions hydrodynamiques peuvent également
limiter la MIPS a haute densité , , en arrétant le coarsening a une taille
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caractéristique.

En ce qui concerne les systemes biologiques, il est souvent difficile d’isoler un
phénomene physique, comme la MIPS, des processus biochimiques complexes a
I'oeuvre dans ces systemes. La MIPS pourrait toutefois jouer un role dans la for-
mation de certains agrégats cellulaires ou dans la formation de biofilms [118]. On
trouve la réalisation la plus probante de MIPS chez des bactéries génétiquement
modifiées pour adapter leur motilité a la concentration d’une molécule qu’elles re-
lachent dans le milieu [26]. Une petite colonie sphérique de ces bactéries s’étend
alors en formant des anneaux concentriques dont la taille est fixée par la compéti-
tion, bien comprise [119-H121], entre la MIPS et la dynamique de reproduction et
de mort des bactéries.

Dans ce chapitre, nous aborderons en premier lieu, a la section[4.2] la théorie qui
permet de décrire des particules interagissant par un v(p) purement local. Ainsi,
l'article [C] montrera comment construire ’hydrodynamique fluctuante et I’énergie
libre effective de ces systemes. Nous étudierons ensuite a la section 4.3 'effet d'un
v(p) non-local et asymétrique. Enfin, nous considérerons a la section contenant
l'article [D] des spheres dures autopropulsées. Nous montrerons en particulier que
I’équation d’état satisfaite par la pression mécanique permet d’expliquer en partie
I’équilibre de phases de la MIPS et de relier les sphéres dures aux théories en v(p).

4.2 Particules avec une vitesse v(p) : hydrodyna-
mique fluctuante et énergie libre effective

L’article [C] que nous reproduisons ici, constitue la deuxiéme partie de I’ar-
ticle [Al II présente en détail la construction de I’hydrodynamique fluctuante qui
permet de décrire des ABP ou RTP interagissant par un v(p) local. On peut diviser
la démonstration en trois étapes :

1. Pour des particules se déplagant a une vitesse v(r) variant spatialement, un
développement en harmoniques sphériques permet d’écrire, en partant de
I’équation maitresse, une équation d’advection-diffusion pour la densité de
particules.

2. Remplacer la vitesse v(r) par une dépendance indirecte v[p(r)] permet alors
de passer de l'équation d’advection-diffusion a une équation de Langevin
décrivant des particules interagissant par un v(p). La méthode introduite
par Dean [122], généralisée au cas d'un bruit multiplicatif, permet ensuite de
construire ’hydrodynamique fluctuante du champ de densité.
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3. Passer de I'hydrodynamique fluctuante a 1’équation de Fokker-Planck cor-
respondante permet finalement d’écrire une condition pour 'existence d'une
énergie libre effective par rapport a laquelle le systeme satisfait le bilan dé-
taillé.

Les détails techniques associés a ces trois étapes sont développés dans les trois
annexes de 'article, reproduites a sa suite. Cette approche, pour un v(p) purement
local, a déja été traitée par Tailleur et Cates [57,|101], ma contribution personnelle
étant limitée a 'affinement de certains points techniques. Il nous semblait toutefois
important de présenter ce cas en détail ici car il constitue le point de départ pour
dépasser la théorie de Landau de la transition de phase induite par la motilité,
en considérant un v(p) non-local et asymétrique. Ces développements sont, eux,
entierement nouveaux.

La section 3.2 de l'article décrit ensuite la similarité des ABP et RTP pour
la MIPS. Nous observons numériquement que pour les deux types d’interactions
(v(p) et spheres dures), les ABP et RTP ont les mémes densités de coexistence
et donc exactement le méme diagramme des phases. Cela est surprenant car, les
interfaces entre les phases ayant une taille de I'ordre de la longueur de persistance
d’une particule, on s’attendrait a ce que la dynamique microscopique des particules
soit importante. Nous verrons a la section suivante que cette observation peut
s’expliquer pour les particules avec v(p).
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3 Fluctuating Hydrodynamics of ABPs and RTPs

Following [46], we address a model using a general angular relaxation dynamics, com-
bining smooth angular diffusion with diffusivity D, with pointwise random reorienta-
tions (tumbles) at rate a. The model has ABPs as one limit and RTPs as another. An
intrinsic translational diffusivity D; is also allowed for; the swim speed v is allowed to
be position-dependent in the first part of the derivation, v(r), and we will then turn
to density-dependent v(p). For a single particle, the probability density ¢ (r,u,t) of
finding the particle at position r moving in direction u obeys exactly (in d = 2, 3)

YP(r,u)=-V- [vuw(rv u)] +Vu- [Drvuw(r: u)}

+ V- (D:Vi(r,u)) — arp(r,u) + %/w(r, u')d’ (44)

where V,, is the rotational gradient acting on u and the integral is over the unit sphere
|u’| = 1 of area £2. The first term on the right is the divergence of the advective current
resulting from self propulsion and the last two terms are loss and gain due to tumbling
out of and into the direction u. The second and third terms account for rotational
and translational diffusion.

3.1 Coarse-graining procedure

The first part of the derivation below consists in using a moment expansion to show
that at large time and space scales, the dynamics (44) amount to a Langevin equa-
tion, whose drift and diffusion terms can be fully characterised. Using It6 calculus,
we will then start from this single-particle Langevin dynamics to derive a collective
Langevin dynamics of the density field of NV non-interacting active particles. Since all
the computations will be done allowing for dependence of the microscopic parameters
v, a, D, on the spatial position r of the active particle, our computation applies to the
case where these dependencies occur through the density field p(r). This derivation
will thus provide the stochastic dynamics for the density field of N interacting active
particles. Were we to consider purely ABPs, one could directly use Ito calculus to
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construct the dynamics of the density field, as was done in [55,70,71]. In the general
case, it is the presence of the tumbles that makes it necessary to take a first diffusive
limit. Note that in lattice models, field theoretic methods can be used directly that
bypass this limitation and give the same final result [47].

3.1.1 Moment expansion

We first decompose ¥ as

Y(r,ut) =p+pu+Q: (uu—1/d)+ O] (45)

Here, ¢, p, Q are functions of (r,t), which parameterize the zeroth, first and second
angular (d = 2) or spherical (d = 3) harmonic components of ¢, while @ projects onto
the higher harmonics. Note that in 2 dimensions, the angular harmonics are Fourier
sine and cosine series in 6; clearly

) Q11 — Q22
2

=2 % cos20
5 cos 20+

Q12 ;r Q21 sin 20

pu=p;sinf+pycosfd and Q:(uu;—

span the subspaces generated by the first and second harmonics, respectively. The
same holds in d = 3, where the components of any unit vector u; are linear combina-
tions of Y7, m = —1,0, 1 whereas the components of the traceless tensor uw;u; —d;;/3
are linear combinations of 3", m = —2... + 2.

We now proceed order by order in the harmonics. Integrating Eq. (44) over u gives

b= —2¥(p) + V(DVy) (16)

whereas multiplying eq. (44) by u and then integrating over u gives

Pa = —Va(vp) = (Dp(d — 1) + Q)pa + V(D:Vp,) — ﬁvb[anb] (47)

Finally, multiplying eq. (44) by uu — I/d and integrating over u yields

: d+2
Qab = _TBabcdvcvpd — (2dDT + Q)Qab + V- [Dthab] - VCUXabc (48)

where Bgapeda = ((5(1651,(1 + 0adOpe — 25ab5cd/d)/(d + 2) and Yqpbe, which comes from
higher order harmonics, will not play any role in the following. The derivations of
Eqs. (46-48) are detailed in Appendix A.

3.1.2 Diffusion-drift equations

So far, beyond the assumed isotropy of v(r), D, +(r) and «(r), no approximation has
been made; Eqs. (46-48) are exact results for the time evolution of the zeroth, first
and second harmonics of ¢ (r, u, t). We then note that Eq. (46) is a mass conservation
equation:
1

$=-V-J with J= VP DV (49)
with a current J which involves the first harmonic p. We will now use a large time
and space scale limit to obtain J as a function of .
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We first note that ¢ is locally conserved and is thus a slow mode: the relaxation
of a density perturbation on a scale ¢ occurs in a time that diverges as ¢ — oo.
On the contrary, p and Q are fast modes, whose relaxation rates are given by t, =
a+ D,(d—1) and tq = a + 2dD,. For times greater than ¢, q, one thus assumes
p=Q= 9[1/)} = 0. Egs. (47) and (48) then give the ordinary differential equations
that p and Q satisfy quasi-statically as ¢ evolves on time-scales much larger than
lp.q- By itself, this creates a non-local constitutive relation between J and v which
still involves all harmonics.

Next we explicitly carry out a gradient expansion, yielding for Q:

1 (d—|—2

Qb = 24D, +a \ 2

Babcdvc(vpd) + vc(XrLbc)) + O(vz) (50)
from which the quasi-stationary p then follows via (47) as

p= s V(ug) + O(V?) (51)

d—1)D, +

At this order in the gradient expansion, closure is achieved without needing further
information on harmonics beyond the first; the current J is given by

v

At this order, Eq.(49) corresponds to a diffusion-drift approximation of the micro-
scopic master equation (44), given by:

$=—V-[-DVe+Vy (53)
where the diffusivity and drift velocity obey

v —ovVou
D, and V=— Y%
voa d(d—1)D, + da

(54)
At this level of description, though not for the exact results that preceded it, RTPs and
ABPs are seen to be equivalent. That is, in (53), the tumble rate o and rotational
diffusivity D, enter only through the combination (d — 1)D, + «, so that the two
types of angular relaxation are fully interchangeable. Conversely, given a sequence
of snapshots showing the large-scale evolution of the local densities of SPPs, one
cannot determine whether the system is composed of ABPs or RTPs. Note that
“large scale” here excludes some of the trap problems considered in Section 7?7 where
the confinement length is smaller than the persistence length of the self-propelled
motion.

3.1.3 Many-body physics

Egs. (49) and (53) give the evolution for the probability density of one particle at
diffusion-drift level. Following [45] we can now consider an assembly of particles whose
motility parameters v, a, D, and D; depend on position both directly and indirectly,
through a functional dependence on the microscopic density p(r,t) ~ >° , 0(r—r,(t)).
Since we are considering a multiplicative noise whose variance is a functional of the
density field p, the construction of the Langevin equation associated to p is technically
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more involved than in the additive case [72]. First, we go from the Fokker-Planck equa-
tion (53) to the equivalent Ito-Langevin equation for an individual particle position
r,(t):

. )

t,(t) = V+ViD(r,, [p]) + (VT#W)D(% [p]) + V2Dn (55)

o
where V1D(r,, [p]) represents a gradient with respect to the first argument of D
and not with respect to its implicit dependence on r, through the field p(r') =
Yo 0(r' —ry). On the contrary, the operator Vruﬁi) applies to the functional
dependence of D on the field p(r’) and the subscript r, shows V., to apply to
dependencies on r, and not on r’ or rq, that may appear in D. (For more technical
details, see Appendix B.) The two terms V1D(r, [p]) + V., %D(rm [p]) form the
I

so-called “spurious drift” term due to the Ito time discretisation. (This term is, of
course, not spurious, but necessary once one uses the Ito convention to define that
discretization [73,74].) The atypical form of this spurious drift is due to D depending
on r, both explicitly, which explains the first term, and implicitly—through p(r’)—
which explains the second one. In Appendix B, we show that the density p(r,t) then
obeys the many-body Langevin equation [45]

p=-V. (V[p]p — D[plVp + (Vr%(r)

with white noise (A;(r,¢)A;(r', ")) = 6;;6(xr —r')6(t — t’). The gradients in (56) have
no subscript ‘1’ since there are no more ambiguities at this stage: the derivatives are
taken with respect to the spatial coordinate r, which does not enter p(r’), and not
with respect to the position of one of the N particles as in (55). Note that when the
diffusivity of particle p does not include ‘self-interaction’, i.e. D = D(r,, [p—d(r—r,)]
or is the result of a convolution between p(r’) and a symmetric kernel K(r), i.e. D =
Jdr'K(r, —x')p(r'), then V,, ﬁm)D(rH7 [p]) = —VK(0) vanishes (see Appendix B
for details) and one recovers the more standard equation

DO ) + (20928 ) (50

p==V.(Vidlp — DIp]Vp+ (2Dp)"/2A) (57)

The functionals v[p|, a[p] and Dy [p] in (54) then define for the interacting particle
system the many-body drift velocity and diffusivity V[p] and D[p] for use in Eq. (56).

Starting from the many-body Ito-Langevin equation (56), one can then derive
a functional Fokker-Planck equation for the evolution of the probability density
Plp(r),t] of finding the system with a density field p(r) at time ¢:

Pl = [ars v [pv DYy Dp (v%())} Pl (58)

The technical details, which show the importance of the atypical spurious drift, are
detailed in appendix C.

3.1.4 Connection to large-deviation functionals; role of noise

A crucial observation, first made for RTPs in [45], is that (56) reduces, under specific
conditions, to a description of passive Brownian particles (PBPs) with a specified
free energy functional SF[p] = BFex[p] + [ p(Inp — 1)dz. (In what follows we use
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thermal units in which 8 = 1.) This is best seen by noting that the Fokker-Planck
equation (58) admits flux-free solution

é
V —DVp—-Dp|Ve—— || Plp] =0 59
p p p( r5p(r))] (o] (59)
whenever there exists a functional Fey[p] which satisfies the condition

V([pl,r)/D([p),x) = =V (6 Fex[pl/0p(r)) (60)

Indeed, in such a case P[p] = exp[—pF][p]] satisfies (59). As was noted in [71,47],
slp] = BF/V, with V the volume of the system, is the large deviation function of the
density profile p

slpl =~ Jim_ < log Pl (61)

It is at first sight very surprising that one can compute this object for any kind
of interacting out-of-equilibrium system. However its computability depends on (60)
holding true, and indeed this is not true in any general manner. It is however satisfied
to leading (zeroth) order in a gradient expansion of F... If (60) holds, the system is
completely equivalent to an equilibrium system of passive particles with excess chem-
ical potential gradient § Fex/dp(r). This equivalence holds not only at the level of the
steady-state but also at the level of the dynamics (58). This means that, at this macro-
scopic level, the dynamics is effectively an equilibrium one and, for instance, satisfy
the Onsager-Machlup symmetry between excursion and relaxation [69]. However this
does not mean that the phenomenology of the system reduces to an equilibrium one.
For instance, the slowing down of active particles at high density causes an effective
many-body attraction between the equivalent passive particles, characterized by a
Feox whose local part has negative curvature in p. This kinetic slowdown can trigger
a phase separation mechanism, which we detail in the following section, which would
be impossible at equilibrium. (Making the viscous drag on each particle an increasing
function of local density would generate a similar kinetic slowdown in an equilibrium
system, but the Boltzmann distribution would be insensitive to this effect.)

If the condition (60) is not met, however, the dynamics is not equivalent to PBPs
with conservative interactions and is therefore “irreducibly” active. As we will show
later, the equivalence established above will only hold for homogeneous systems and,
when the kinetic slow-down triggers a phase-separation, higher-order gradient terms
comes into play at the large-deviation level, and break the mapping to equilibrium.

3.1.5 Mapping to equilibrium

The simplest case is where D; = 0. Here the left hand side of (60) is —V Inv[p] and
we then require d.F.;[p]/dp(r) = In(v([p];r). The simplest first approach is to assume
that the functional dependence of swim speed on density is strictly local, so that
v([p);r) = v(p(r)). We then have Fop = [ fea(p(r))dr where fop = [ Inv(A)dA. This
structure in the free energy is equivalent to having a passive system whose chemical
potential obeys p = In(pv); the mean particle current then obeys

J = —pDV In(pv) (62)

Noting that in our chosen units (8 = 1) the mobility coincides with the diffusivity D,
this is the expected form for the stated chemical potential. When D;« is a nonzero
constant, the result for f., generalizes to

1 P
fa=2 /0 m[u(A)? + dDyaldA (63)
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This case is explored in [56].

To approximate the excess free energy by a local function is a widely used ap-
proximation in equilibrium systems which makes sense at (Landau) mean-field level
where fluctuations are neglected. (If the excess free energy were genuinely local, short-
length scale fluctuations would be out of control, so to go beyond mean field theory
requires treatment of nonlocality even if that is weak). The chosen form (with D, = 0)
leads to a spinodal instability whenever dv/dp < —v/p [45,56]. The system is then
equivalent to an equilibrium system undergoing liquid-gas phase separation due to
attractive forces and the spinodal instability is complemented by binodals, which can
be characterised analytically in some cases (See [56] for a recent review).

For ABPs with collisions, one finds empirically that v(p) ~ vo(1 — p/p*) with p*
a near-close-packed density beyond which self-propulsion is effectively arrested. The
system is then spinodally unstable for p > p*/2 [15,17,19]. Stability is restored by
packing constraints at high enough density, but in the present approach (collisions
replaced by an effective density-dependent propulsion speed), empirical corrections
to Fes are needed to account for this [17]. An alternative is to impose a sharp cutoff
so that f = 400 for p > p*; this is used in [40].

The presence of a finite Dy, either due to Brownian motion or resulting from the
random collision of particles (in which case D; will depend on p), alters the shape
of the spinodal curves which instead obey 1 + pv'/v < —dD;/(v?7). This causes
the spinodals to meet at a critical point; while in qualitative agreement with the
shape of the phase diagram reported for ABPs with repulsions (see, e.g. [15,17,21]),
this is somewhat accidental since the actual role of D; in the simulated dynamics is
negligible. The observed critical point is better viewed in terms of the competition
between slowing down at high density (promoting motility-induced phase separation)
and the buildup of particle mechanical pressure [40]. The latter stems primarily from
the pair interaction, rather than the small ideal gas part which is proportional to D,
[24,40]. Numerically, the spinodals are hard to locate precisely, whereas binodals can
be located by looking directly at the coexisting densities in phase-separated states.
The point at which phase separate is seen kinetically in ABP simulations often lies
in between the spinodal and binodal; it depends in general on nucleation rates and is
subject to large finite-size corrections. Very large scale simulations are thus required
for accurate phase diagram determination [17,19].

3.1.6 Beyond the local approximation

When a system phase separates, large gradients develop and the gradient expansion
cannot be truncated at lowest order: the local approximation to F no longer yields a
good approximation to the large deviation functional. In such a case, one has to look
for higher order gradient terms, which stem from two different mechanisms. First,
for real particles, the interactions between particles are never perfectly local: even
for hard-core repulsions, the particle size defines a finite interaction range. Second,
we have dropped higher angular harmonic contributions by appeal to a gradient
approximation. Retaining higher order gradients thus requires two different type of
terms whose impact on motility-induced phase separation we now discuss.

Non-local v(p). The local form of the free energy can be used to predict the binodal
densities for phase coexistence via the the common tangent construction on f =
fex + p(lnp — 1) [45]. In this construction one equates the chemical potential df /dp
and the ‘thermodynamic’ pressure pdf/dp — f in the two phases; this means that a
single line can be drawn on a plot of f(p) that is tangent at the binodal densities and
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lies below f everywhere else. However, there is a hidden pitfall here: this construction
implicitly assumes that, whatever the nonlocal terms are, these continue to obey (60).
Whenever they do, a free energy still exists and, so long as it does, the binodal
densities do not depend on the precise form of the nonlocal terms. Conversely, if
a free energy does not exist, then the binodal conditions can depend explicitly on
the nonlocal terms. This is explored in some detail, within the simplification of a ¢*
effective field theory, in [48]. For ABPs, numerical evidence of the breakdown of the
common tangent construction was reported in [17,19].

The lowest order nonlocal theory can be constructed by assuming that the func-
tional dependence of swim speed on density takes the form [45]

v[p] = v(p) ~ v(p+7°V?p) = v(p) + ' (p)¥*V?p (64)

This represents a quasi-local dependence on a quantity p that samples the local den-
sity isotropically in a region of size 7. For programmed slowing-down (e.g., quorum-
sensing) the simplest assumption is that v is a density-independent constant. However
for collisional slowing down in ABPs, a better estimate is v ~ yov(p)/[(d — 1) D, + ]
which, with - of order unity, is the distance travelled during one angular relaxation
time. Substituting the nonlocal form for v in (62) gives to leading order

J=—pDVyu (65)
2

p=In(pv) — 'V (66)
v

Only if 42v'/v is a constant, independent of density p, does this form of chemical
potential support the existence of a free energy. If this combination is constant — such
as for the case where v is constant and v(p) ~ exp[—ap] [45] — then the common
tangent can legitimately be used to predict the binodal densities. In all other cases
it cannot be relied upon [17,48]. Note that in practice, only quantitative differences
with the local theory have been noticed when simulating models with such non-local
v([p]) [17,48]: the phase separation still occurs, the coarsening law is not much affected,
and one only observes quantitative shifts of the binodals. Importantly, the concept of
a binodal is maintained: the densities of coexisting phases do not change as the global
average density in the system is varied between the two coexistence values.

Other gradient terms. The second source of higher order gradient terms is the gradi-
ent expansion used to close the spherical harmonics expansion in Section 3.1.2. Were
we to pursue this gradient expansion to higher orders, we would obtain a set of ordi-
nary differential equations for p, @, etc. rather than the simple algebraic relation (51)
between p, ¢ and V. Solving these equations in terms of ¢ and reinjecting into J
would then not lead to a simple Fokker-Planck equation, from which we would not
be able to derive a microscopic Langevin equation like (55), which is the starting
point of our approach. The equivalence between ABPs and RTPs at this higher order
in gradients is thus questionable. This echoes the fact that the difference between
the two models becomes more important at short length scales. As we will show in
Section 3.1.7, however, these differences hardly impact the phase diagram.

For ABPs, since one directly starts at the microscopic level with coupled Langevin
equations, one can bypass the construction of the microscopic Langevin equation (55)
and directly use Ito calculus to obtain a stochastic equation for the probability density
p(r,u) of finding particles at r going in the direction u [55,70,71]. One then has to
project this equation onto successive harmonics and use an appropriate truncation.
Again, the equation (56) amounts to second order gradient expansion. It is then easier
to pursue this development to higher orders, which would yield coupled stochastic
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equations for p, p, @, etc.. As far as we are aware, this has not be carried out in the
literature for ABPs or RTPs, but progress along this path can be found for aligning
nematic particles [75].

For ABPs, a similar path has been followed at mean-field level, albeit without a
proper derivation of the noise terms, to arrive at [15,25,59]

p=DAp—V-[vp]

. 1 (67)
p=-D,p— §V[vp} + DAp

One can then always complete these equation by adding ad-hoc Gaussian noise [15]
or by assuming that, were the coupled equations (67) to be written in a gradient form
(implying the existence of a free energy functional) the noise terms would be whatever
is required to give an equilibrium like-dynamics. As we have shown in Section 3.1.4,
however, the derivation of the noise terms is a crucial step to determine whether
or not the system really maps onto an equilibrium one. Indeed, the integrability
criterion (60) is derived by requiring a flux-free steady-state in the Fokker-Planck
equation. This condition crucially relies on the fact that the variance of the noise
obeys a fluctuation-dissipation relation with the mobility.

Nevertheless, since the derivations of these noise terms are particularly difficult, a
first strategy can be to look at whether the equations (67) have the gradient structure
of an equilibrium model. While analyzing the linear stability of (67) for a linearly
decreasing v(p) reveals a spinodal decomposition scenario very similar to the one
described in section (3.1.5), it was explicitly shown in [59] that these equations are
not of gradient form. However, expanding close to the linear instability, the authors
of [59] were able to map these equations onto a Cahn-Hilliard model, but with an
effective free energy which depends on where in the phase diagram the expansion is
carried out. This revealed a rather surprising feature: the addition of the Ap terms
breaks the global mapping to equilibrium but seems to preserve a local one. This
however fundamentally changes the structure of the phase diagram: there is nothing
to guarantee that the binodals stay in fixed positions as one moves along the ‘tie line’
between them (and without this property the concept of a binodal is inapplicable).
Moreover, according to this calculation, a large part of the transition line is changed
from a first order to a second order transition, in contrast to the isolated critical point
usually seen in liquid-gas type phase-separation.

To test the predictions of this approach, we simulated directly the equations (67)
using spectral-methods and semi-implicit time-stepping. We chose a form of v(p)
which does not lead to v(p) < 0 at any density and thus does not require an ad-hoc
cut-off at the level of the effective free energies:

v(p)? = vj + (v — ) (1 — e "/?) (68)

For this choice, we can compute analytically spinodals and binodals predicted by the
local theory [56] and hence evaluate precisely the impact of the Ap term. The sce-
nario revealed by our simulations does not show any of the surprising phenomenology
predicted by the methods of [59]: the binodals are quantitatively shifted by this new
gradient term, in qualitative agreement with the effect of gradient terms stemming
from a non-local v(p) [48], but the binodals do not vary along the tie-line in the co-
existence region (where the lever rule still applies). Also, the transition line seems to
remain first-order on approach to the critical point, exhibiting the familiar hysteresis
curves (see fig. 1).

In principle, this outcome could depend on our choice of v(p); note that direct
comparison with [59] is not possible since the theory developed there relies on the
addition of confining terms at the level of the free energy that do not exist at the level
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Fig. 1. The phase diagram (left) predicted by the theory without the Ap term (red and
green lines) are only qualitatively affected by the Ap term (blue). Hysteresis loops (right),
showing the first order nature of the transition, can be seen on approach to the critical point
by ramping up (solid lines) or down (connected symbols). D = 0.25, v1 = 0.25, ¢ = 4, 7 =
1/D, = 1.

Fig. 2. Coarsening dynamics of RTPs (top) and ABPs (bottom) interacting via the density-
dependent swim-speed (68) with vg = 15, v; = 0.25, ¢ =4, 7 = 1, D; = 0.25. Simulated for
N = 120000 particles in a box of side L = 100.

of the PDE, Eq. (67). However this interpretation seems unlikely given the growing
breadth of literature supporting the existence of well-defined binodals in MIPS. An
alternative possibility is that the new and unusual phenomenology predicted from the
approach of [59] is an artefact of a quasi-linear, noiseless treatement of what is in fact
a noisy nonlinear transition. Further study is needed to resolve this issue, for instance
by carrying out the analytical procedure in [59] for the particular v(p) chosen in (68).
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Fig. 3. Left: The local density distributions P(p) of ABPs and RTPs interacting via the
density-dependent swim speed Eq. (68) with vg = 15, v1 = 0.25, ¢ =4, 7 =1, Dy = 0.25.
The two systems overlap very well, showing that not only the mean coexistence densities
in the two models but also their fluctuations are very similar. As expected, changing the
mean density po does not change the coexisting densities. Right: Phase diagrams of RTPs
and ABPs interacting via WCA potential. The boundary lines are obtained by computing
the binodals as a function of v in the phase coexistence region for various global densities
po = N/L?, to check that the binodals are indeed independent of po. Again, a surprisingly
good overlap between the two systems is observed.

3.1.7 Comparison between microscopic simulations of RTPs and ABPs

Since gradient terms can alter the equivalence between ABPs and RTPs, we carried
out extensive microscopic simulations of MIPS for both models in two dimensions for
N particles in an L x L square domain. We first compared the two models in the
case of a density-dependent swim speed v(p) given by (68). The coarsening of both
phase separating systems is shown in figure 2 and shows a strikingly similar dynamics.
Beyond the apparent similarity of the two dynamics, one can compute the steady-
state density distributions P(p) of the two systems in the phase separated region,
which shows that both the mean densities and their fluctuations in each phase are
also very similar (see Fig. 3). Note that as expected, the coexisting densities along
the tie-line in the coexistence region do not depend on the mean density po = N/L?.
We then simulated both ABPs and RTPs in the case where slowing down is caused
by repulsive interactions (represented as a WCA potential as in [15,16,17]). We know
that the v(p) theory correctly captures the slowdown in these models but that it
lacks the direct interparticle forces which are responsible for saturating density in
the high-density phase [40]. Therefore, the dynamical equivalence of ABPs and RTPs
at large scales might break down for the repulsive case where much of the physics
depends on short-distance collisional events taking place below the coarse-graining
length scale of the fluctuating hydrodynamics theory. Suprisingly however, the phase
diagrams of repulsive ABPs and RTPs collapse onto each other upon the usual rescal-
ing a = (d — 1) D, (see Fig. 3). Thus, although we have shown that the details of the
angular dynamics are important for SPPs confined to traps of size comparable to the
run-length or smaller, the presence of short-length scale physics in the mechanism
for MIPS does not create a similar dependence on details, as judged either by the
qualitative kinetic observations or a quantitative study of phase diagrams.

4 Conclusions

Motivated by a wish to understand for active systems the relation between micro-
scopic dynamics and macroscopic behaviour, we have in this paper compared in detail
two distinct but related classes of self-propelled particles: Active Brownian particles
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and run-and-tumble particles. These differ only in the details of their angular relax-
ation (continuous versus discrete). We considered first one-body-problems involving
non-interacting particles in either uniform fields (e.g., gravity) or isotropic harmonic
traps. In both cases, for weak enough forces there is an “effective equilibrium” regime
in which the characteristic length scale set by the balance of external and propulsive
forces is large compared to the run length, defined as the distance a free particle
can travel during its orientational relaxation time. In this regime, the two types of
dynamics (ABP and RTP) are equivalent modulo a simple mapping between param-
eters, which corresponds to equating the angular relaxation time in the two cases.
However, for stronger confinement the corrections to this picture are specific to the
chosen dynamics. In the case of harmonic traps, this difference is particularly striking:
in the regime where the confinement length is large compared to the run length, there
is an exponentially strong suppression of the density of ABPs at the trap centre when
compared to RTPs of the same rotational relaxation time. This can be attributed to
a subtle but physically simple mechanism whereby, in the strong trapping regime,
particles tend to remain a long time at the outer edge of the trap, where external
and propulsive forces balance. For RTPs this balance is suddenly destroyed with each
tumble event, whereas for ABPs, which update their orientations gradually, there is a
tendency to drift around the perimeter so that the balance is continually maintained,
causing only an exponentially small escape rate from the surface region. We also con-
sidered the effect of the microscopic rotational dynamics on MIPs, or motility-induced
phase separation. For this process we gave a fuller presentation of results summarized
in our earlier papers concerning the derivation of collective equations for the particle
density field, from which criteria for MIPS are easily found within a limiting approx-
imation corresponding to neglect of gradient terms in the large deviation functional.
This criterion is again insensitive to the choice of rotational dynamics. It is explicitly
derived from a model where particles interact through a programmed dependence of
their propulsion speed on the local density, but also describes, to reasonable accu-
racy, the case where slowing down is caused instead by collisions. We then considered
the role of gradient corrections, arising either from nonlocality in the dependence of
speed on density, or as additional terms in a combined expansion in spatial gradients
and angular harmonics of the local distribution of particle orientations. Although
the latter could in principle cause qualitative shifts in phase behaviour, in common
with previous studies we do not find compelling evidence for anything more than a
quantitative shift numerically. Specifically, although the “equilibrium” conditions for
phase coexistence (those derivable from the local part of the large deviation func-
tional) are violated, the system still exhibits conventional binodals whose defining
property is that the density of coexisting phases is independent of the intermediate
global density of the system. For the case where MIPS is caused by collisional rather
than programmed speed reduction, we find, somewhat surprisingly, that there is once
again almost no difference in phase behaviour between ABPs and RTPs with matched
angular relaxation time. This is despite the fact that both the collisional dynamics,
and the presence of sharp interfaces in the system, involve length scales below those
at which the equivalence of the two models can be formally established by systematic
coarse graining.
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A Moment-expansion

We start from the master equation on the probability density v (r,u,t):

J =~V [ouy] + D, Ayt + V- [DVY] — o+ / A0 () (69)

with Ay the rotational part of the Laplacian acting on u. We then use the decompo-
sition (45) of 1, which we recall here for clarity

w(r,u,t):gaerquQ(uqu/d)+9[1/1} (70)
In the following we will use the notation My, = ugup — dgp/d and the convention
that repeated indices are implictly summed upon: fig; = >, figi- Because @ enters
1 solely through the combination Z” QijM;;, it can always be chosen traceless
symmetric. (Indeed, replacing Q@ by (Q + Q)/2 or @ — 1 Tr(Q)/d does not change
this sum.)
We will use the standard notation for the scalar product on the sphere

(f.9) = / A2 f (u)g(u) (71)

for which spherical (and angular) harmonics are orthogonal. To obtain equations for

&, P, Q, we take the scalar product of equation (69) with 1, u and M. To do so, we
compute

N 0 0 2
1,4) = Qo = o = _ 2 72
< 7'¢)> Q‘Pv <11, 1/}> d P; <Maba 1/"> d Babchcd dd+ 2Qab ( )
which rely on
N i)
(ui, uj) = ECsij; (wiug, upug) = m(@ﬁu + 0300k + 0i105¢)
(73)
d 1 2
Bijre = §<Mij,Mkz> = m(éikéﬂ + 6001 — E@ﬁkz)
Projecting (69) on 1 then yields for ¢
. 1
$=—5Vlop]+ V- [DiVy] (74)
while projecting (69) on u yields for p
Or
=P = —(w, V[vug)) + Dy (u, Aw) + V- [DV(w )] ~afuv)  (75)

The last two terms are easy to compute since (u,v) = 2p/d. Then, spherical and
angular harmonics of order ¢ are eigenvectors of A, with eigenvalues —¢(¢ + 1) and
— /2, respectively, and the projection on u selects the p.u term so that

Dy (u, Ayp) = —D,(d — 1)9% (76)

The first term of the r.h.s. of (75) is harder to compute since uwp is not directly
developed in harmonics. It can however be brought to a simpler form:

(ta, Ve[vupy)]) = Vyv(Map, ¥) + va%b(l»w)

N 2 N
= 7vad + 2Qab + VQUEQO (77)

d
212 N
= mvb’l}@ab + VaUE‘P
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Note that V always applies to everything on its right, unless specified otherwise. One
then obtain for the evoluation of p

Po = ~Valog] — (D(d— 1) + 0)pa + V- [DiVpa] = ——VovQu]  (78)

d+2
Next, one projects (69) on M, to obtain
. 0 2 .
M, = —=— 79
< ab>w> dd+2Qab ( )

for the left hand side, and for the r.h.s.
- <Mab7 VUU¢> + Dr<Mab7 Au¢> + V : [Dtv<]vjab7 ¢>] - a<Mab7 ¢> (80)

Again, the last two terms are simple since (Myp,v) = 202Qup/[d(d + 2)]. Only the
second angular/spherical harmonics survive the projection on Mgy; they are eigen-
vectors of A, with eigenvalues —¢(¢ + 1) = 2d for d=3 and —(* = —2d for d = 2.
Hence the rotational diffusion term contributes a factor
n
Dr<Mab7 Au¢> = 72dDrEm

Again, the first term of (80) is slightly more difficult to handle and has to be split as

Qab (81)

_<Mab7 vc”“c"/’) = _ch<Maba ucudpd> - ch<Mab7 ’U/CQ[’(/)])

dcd 2 ~
- _vcvpd<Mab7 (Mcd + d )> - vchXabc (82)
n 0 _
= 7Evcvdeabcd - VC’UEXH.I)C

where we have introduced %)@Lbc = (Mgyp, ucB[1p]) which comes from the projection
of uO[y] on the second harmonics and whose precise expression we won’t need.
Putting everything together then yields Eq. (48) of the main text

: d+2
Qab = — ) VevpiBaped — 24D Qap + V - [Dinab} — aQab — VeUXabe (83)

with x = (d + 2)%/2.

B From microscopic to mesoscopic Ito-Langevin equations

Ito drift with functional dependences. The total gradient of D with respect to r,,
notated as D’(r,, [p]) for lack of a better notation, is given by the chain rule

§D(ry, [p])
p(r’)

where the first term on the r.h.s. comes from the explicit dependence of D on r,
and the second from the dependence of D on p(r') which itself depends on r,. By
convention, ViD(r,,[p]) is thus a “partial gradient” which acts upon the explicit
dependence of D on r,, (its first argument) but not on its implicit dependence through
p. Using the explicit expression of p(r’), one has

D/ (. ) = T1De ) + [ o Ve, 0t') (84)

Ve, p(t') = Ve, Y 00" —1;) = Vi, 0(r' —1,) = =V (r' = 1,) (85)

J
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Equation (85) shows why the notation V,,, which indicates that the gradient acts on
r, and not on r’ or rj, is essential—though cumbersome—to get the correct result.
Inserting (85) into (84) and integrating by parts, one then finds that

6D(r,,
Dty ) = VD ) + [ st 2,0, 220 )
op(x’)
5 (56)
=V1D(r,,|p +<Vru )Dr,p
(}i[]) 6(1,#) (ﬂ[D
As a consistency check, and to understand how the operator V., % works, let

us consider a simple example where the diffusivity of a particle at position r, is a
linear functional of the density of its neighbours, convoluted by some kernel K:

Dlxy (o) = [ dv'pla') ¢ = 3K (87)

In such a case, the total gradient of D with respect to r,, can be directly computed:

D'(ry,[p]) =Y VK(r, —1;), (88)
JFEH

where VK is the standard gradient of the function K (r). Applying the formula (86),
one finds

Dteylo) = [ o) VK e~ + drf[vru%

where the first term comes from the explicit derivative and the second one from the
functional derivative. Note that, in the latter term, V., does not act upon K (r, —r’).
The computation can now be readily pursued, to give

[K(ry =) (89)

D/ lp)) = [ ' S 007 =) VK 1, =)+ [ 'V, 607 =5, K, 1) (90)
J
Using again that V, é(r' —r,) = =V d(r’ —r,) and integrating by parts, one gets

D'(r,,[p )_ZVK L= Tj) = VEK(r,—r;) (91)

J#m

Interestingly, the functional derivative generates a term —V K (0) which will be
absent whenever K(r) is a symmetric kernel or when the particles are not self-
interacting. (By this we mean that the diffusivity D of particle p is a function of
r, and a functional of p(r) — é(r — r,); as such it is functionally dependent only
on the density field of other particles, which differs from the total density by the J-
function self-term.) For complete generality however, we must retain this term in the
Langevin equation (55) and throughout the construction of the Langevin equation for
p(r), in order to derive a Fokker-Planck equation which is properly ordered as this is
crucial to get the correct steady-state. Since the contribution of this term vanishes in
many cases, it is often silently omitted in the literature.

Let us further note that, looking at the simple derivation of equation (88), all
ambiguities can be overcome by coming back to the microscopic definition of p(r).
As often with functionals, the notational problem is present only when working at
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the field level, where it stems from an underlying ambiguity concerning the gradient
symbol V, which is used in different contexts to represent either a total derivative
(acting on both implicit and explicit dependences of D(r, [p]), and hence containing
in practice a functional derivative) or a partial derivative acting only on the first
argument of D. This ambiguity translates into an ordering problem at the level of the
Fokker-Planck equation. However, at the large deviation level—which corresponds
here to the large size limit—we are effectively interested in the small noise limit
of our stochastic partial differential equations. The various ordering of the Fokker-
Planck equation differ by terms, similar to those that distinguish Itc and Stratonovich
time-discretisation, which are generally negligible [69]. This is why the issue was for
instance (rightly) neglected in [71].

Mesoscopic Langevin equation. Let us now consider a function f(r) and compute
the time evolution of f(r,(t)) where r,(t) is solution of the Langevin equation (55).
Using Ito’s formula [73,74], one finds

f(r#(t)) = [A + \/ETI] Vf(ry) +DAf(r,) (92)
where
A=V 4 VD, [o]) + (Ve ﬁmw(rw B (93)

Introducing p,, = §(r —r,) and using that, for any function H, H(r,) = [ drp,H(r),
Eq. (92) can be rewritten

Flra() = / drp,,(r, D[(A + V2D0)V f(x) + D(r, [p)) Af (r)] (94)

where the derivatives in Vf(r) and Af(r) are now taken with respect to r. The
last term in (94), even though it looks harmless, requires some explanations. Indeed,
D(r,, [p]) has dependencies on r, both through its explicit dependence and through
its functional dependence on p(r') = Y 6(r' — ry). When going from (92) to (94),
we use that

(v =) D(ry, [p)) Af(ry) = 6(r — ) D(x, [p]) Af (r), (95)

where we have replaced all the r,,’s by r but the one in p, ie., p(r') =, d(r' —ra)
has not been replaced by o(r' —r) + 3, d(r" —rs). There is thus no dependence

of D on r through p. From now on, gradients V.D(r, [p]) are not ambiguous anymore:
they solely apply to the first argument of D which is the only place where D depends
on r. There is thus no need anymore for the notation V. Integrating by part Eq. (94)
then leads to

flru(®) = /drf(r)v' [—(A +V2Dn)p,(r,t) + V(Dp,)] (96)
Alternatively, f(r,) can also be written
() = [ v, 1) (97)

Since the equations (96) and (97) hold for any function f, one gets

pu = V[—(A+V2Dn)p,(r,t) + V(Dp,)] (98)
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Introducing the Gaussian white noise

V2DpA =Y "2Dn,p, (99)

whose statistics satisfy

(A =0;  (Alr, DA, ) = 6(t — t")d(r — 1) (100)
one gets
p(r) = VI=p(x)V + DVp(r) - p(vrdp%w —\/2DpA (101)

which is Eq. (56) as required.

C Functional Fokker-Planck Equation

The easiest way to derive the Fokker-Planck equation (58) starting from the Langevin
equation (56) is to spatially discretize the latter in one spatial dimension

1
pi = Ai+ 5 (Biivaniv1 + Bii-11i-1) (102)
where
1 0D; oD;
Ay =V, —piVi+ - Di(p; i ) pi 103
[ piVit 5Dilpiv1 = pic1) + 5 (8m+1 6p¢_1)p] (103)

1 1
By = 5V 2D;11pit1 and B = 5V 2D;_1pi—1 (104)

Note that we use centred differences V;0; = %(OiH —0;_1) to respect the isotropy of
the equation. One can then use the general relation between Ito-Langevin dynamics
and the Fokker-Planck equation [73],

to derive the Fokker-Planck equation satisfied by P(pi). To do so, we first note that
2 ZBikBjk = Z [\/ Dit10i+10k,i41 +/ Di—lpi—lék,i—l}
k k
x [\/ Dj11pj+10k 41+ V/ Djflpjfﬁk,jfl} (106)

= /Dis1pi+1Dj11pj+10i; — \/Di—1pi—1Dj41pj+16i—2,;
=/ Diz1pis1Dj—1pj—16i12,; + \/Di—1pi—12D;j_1p;j—16;;  (107)

To (slightly) lighten the notation, we write d,, for the operator 8 . The second order
differential operator then becomes

2 apla BZ.ICB].IC — Za i 8p1D2+1pz+1 8 Di—lpi—l
k

],

— OpiiaDig1pis1 + 0y, Di—lpi—l]
= Z 0 i (8Pi - 8Pi+2)Di+1pi+1 - Z 0 i (api—z - api)Di—lpi—l
i i
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Shifting by £1 the indices in the two sums, one finally gets

0 0 0 0
2 Z 8piaijikBjk = Z ( > < ) Dipi (108)

gk 2 api—1 a Opit1 api—1 a Opit+1

We now have to compute the drift term in the Fokker-Planck equation >, d,, 4;.
Noting that A; is a gradient, A; = V,;C;, where C; can be read in (103), the drift
term can be rewritten

2ZaPiAi = Za i(C’i+1 - Ci—l) = Z(api—l - aﬂi+1)ci (109)

i

Pit1 — Pi—1 1 aDl aDz
= (Dps — 0p, —piVi+ D 5 - ‘
i (Opi_s = Opiyr) ( piVi+D; 2 + 2 (3Pi+1 Opi—1 pi

Putting everything together yields
. 0, . —0
P = Pi—1
27

Pit1 (Psz — DiVipi — Pi( 0D; aD;
Let us now note that p; commutes with 9,, , — 0

8pi+1 B 8Pi—1

0y, — 0,
)+ Pi—1 5 leDipi)

(110)
but not D;, since the latter is
on D;

2 2

: Pit+1
in principle a function of all the p;’s. However, the application of 9, , —0,,.,
exactly cancels the one before last term in (110), so that

. 1 9 i1 0 i1
pP= Z 5(Opics = Opiis) (Pin‘ —DiVipi + DiPi%) P

Taking at this stage the continuum limit and integrating once by part yields the
correct Fokker-Planck equation

. o )
P [agisy (p<m>V<m, 1p)) — D(a. [7)Vp - D, [p])pvzm) P (1)

where one has recognised the operator

1 ) 5
E(apifl - aﬂi+1) = vzaipl — me

(112)
Equation (112) is actually the best way to make sense of this operator and to see that
the gradient really applies to the field with respect to which we are taking a functional
derivative and not to the argument of this functional derivative. The equation (111)
directly generalizes to (58) in higher dimensions. We note that to get the correct
ordering between pD and Vr%(r) in the Fokker-Planck equation, it was necessary to
correctly account for the atypical form of the spurious Ito drift as defined in the main
text.
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4.3 Effet d’un v(p) asymétrique et non-local

Nous avons discuté dans I'introduction de ce chapitre la nécessité, pour dé-
crire la MIPS, de considérer des particules autopropulsées a une vitesse v(p) ou p
est la densité moyennée autour de chaque particule. Dans un premier temps (sec-
tion [4.3.1]), nous étudierons Peffet d'une densité calculée de fagon isotrope autour
des particules. Nous considérerons ensuite (section Ieffet d’'un moyennage
asymétrique de la densité, qui dépend de la direction de déplacement. A la sec-
tion [4.3.3] nous verrons que, par un changement de variables, on peut définir
une fonction qui joue exactement le role de I’énergie libre pour la coexistence de
phases. Les densités de coexistence seront alors calculées par la construction de
tangente commune sur cette fonction, comme & 1’équilibre. A chaque étape, nous
comparerons les prédictions théoriques a des simulations des modeles microsco-
piques correspondants. A notre connaissance, il s’agit du premier systéme pour
lequel une théorie analytique prédit quantitativement le diagramme des phases de
la transition de phase induite par la motilité mesuré numériquement.

4.3.1 Effet d’'un moyennage isotrope de la densité
Calcul des termes de tension de surface

Reprenons ’hydrodynamique fluctuante construite pour un v(p) local dans ar-

ticle

p =V | DOV = pV(p) +2D(p)pm) . (4.4)

r0(p)Vo(p) ru(p)?
— a4 Py

+ D, (4.5)

ot 7 = (a+ (d — 1)D,)™" est le temps de persistance d’une particule. Par sou-
cis de simplicité, nous prendrons D; = 0 dans la suite. Comme nous I’avons vu
précédemment, I’équation décrit un systeme qui satisfait le bilan détaillé par
rapport a I’énergie libre

Fl = [ lpw)dr, ou f(p)=pnp—1)+ [‘muv(s)ds,  (46)

la dynamique s’écrivant alors

p="V- [pD(p)V(;]p: + \/2D(p)pn] (4.7)

Dans toutes ces équations, ¢’est le champ de densité microscopique p(r) = 3, d(r—
r;) qui intervient.
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Considérons maintenant des particules qui adaptent leur vitesse a la densité p
moyennée de fagon isotrope dans leur voisinage. Techniquement, la moyenne est
effectuée par un noyau K

A(r) = / K(r —t')p(r')dr' = / K()p(r — r')dr’ (4.8)

Le rayon d’interaction des particules est donné par la « taille » du noyau : le rqg tel
que K(r) = 0 pour tout r > 7. Pour un ry petit devant la longueur typique des
variations de p, on peut développer p(r — r’) dans 'équation (4.8))

o) = [ KW [plr) =2 Yo+ S PA| e + OV)  (49)

Pour un noyau isotrope, K (r) = K(|r|), les termes de gradient d’ordre impair sont
nuls et on obtient donc

p(r) = p(r) +7*Ap+ 0 (V'p) (4.10)

avec 72 = % [|P/|?K(|r'|)dr’, une constante. On peut alors développer la vitesse
pour obtenir

()] = elp(r)] + 20 ()] Ap + 0 (V') (@.11)

On peut maintenant remplacer v(p) par v(p) dans I'équation (4.4]) et développer
en gradients de p. V/D se réécrit alors

V(p) _ Vu(p)
D~ o)

et I’équation complete s’écrit donc

pzv-VD@wwéj—MMAQ+me@mﬂ, (4.13)

ou k(p) = —v*v'(p)/v(p) et F est Dénergie libre du cas v(p) local, donnée par
'équation (4.6). Par rapport au cas v(p) local, l'effet de la densité moyennée est
donc simplement, au premier ordre, de rajouter un terme de tension de surface
proportionnel & k(p).

Notons qu’il n’est pas possible de réécrire ce terme supplémentaire comme
une contribution a l’énergie libre. Ce serait le cas pour une tension de surface
avec Kk = cte, mais a cause de la dépendance en densité, une énergie libre F, =
[ k(p)|Vp|?/2dr" générerait un terme additionnel

SF,
5, = o)A - K (p)| V| (4.14)

Le systeme ne satisfait donc pas le bilan détaillé quand la tension de surface est
prise en compte.

7' (p)

v(p)

= —VInv(p) = -V [logv(p) + Ap+0O (V4p)] (4.12)
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1.0

0.5¢

Figure 4.4 — Schématisation de la construction de tangentes paralleles, re-
produite de [47]. Les densités de coexistence ne sont pas données par la
tangente commune sur ’énergie libre fo(¢) mais par des tangentes paralléles
dont I’écartement vertical, noté ici APy peut étre interprété comme un saut
de pression thermodynamique entre les deux phases.

Effet d’une tension de surface non-linéaire

Dans [47], Wittkowski et collaborateurs ont montré que 'ajout d’un terme de gra-
dient A\(Vp)? avec A constant (& la place de notre x(p)Ap) a un effet simple sur les
densités de coexistence : ce terme engendre une différence de pression thermody-
namique entre les deux phases. Les densités de coexistence sont alors données par
une construction de tangentes paralleles, schématisée & la figure [4.4] sur 'énergie
libre effective F. Nous montrons ici que notre terme de tension de surface k(p) a
le méme effet et allons plus loin en donnant une formule analytique pour calculer
la différence de pression, et donc les densités de coexistence.

Comme il est d'usage dans I’étude des séparations de phase, nous négligerons
a présent le bruit [123]. Dans I’état stationnaire, le flux de densité s’annule, ce qui

se traduit pour I’équation (4.13)) par
pD(H)Y (/(p) — 5(p)Ap) = 0 (4.15)

dont on déduit
f'(p) — k(p)Ap = cte = pu (4.16)

ol nous avons défini la constante p qui jouera le role d'un potentiel chimique dans
la suite. A I’équilibre thermique, deux relations sont nécessaires pour déterminer
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les densités de coexistence p, et p, dans le liquide et dans le gaz : I’égalité des
potentiels chimiques et des pressions dans les deux phases.

L’égalité des potentiels chimiques donne, ici aussi, une premiere relation. En
effet, les phases étant homogenes, on a directement

f(pg) = f'(pe) = p (4.17)

Pour une transition liquide-gaz d’équilibre, 1’égalité des pressions est obtenue en
multipliant ’équation par Vp et en intégrant le long d'une interface. Si 'on
répete cela ici, en prenant l'interface le long de 'axe & entre un z, dans la phase
gazeuse et un x, dans le liquide, on obtient

L 10Vp = uVlde = [ k(o) Vorpda (4.18)

g Tg

A Déquilibre, © = cte de telle sorte que le terme de droite de I’équation (4.18)
s’annule. En utilisant la relation habituelle entre I'énergie libre et la pression ther-
modynamique, P = f — up, I’équation est alors bien équivalente a 1’égalité
des pressions P(p;) — P(py) = 0 (elle-méme équivalente & la construction de tan-
gente commune). Cette relation n’est plus vraie en présence d'un x(p). Le terme
de droite de I'équation (4.18) n’étant plus intégrable, il donne une contribution
non nulle qu’on peut interpréter comme un saut de pression entre les deux phases.
L’équilibre des phases est alors donné par la construction de tangentes paralleles
de la figure [4.4] avec un saut de pression pour U'instant inconnu.

On peut toutefois obtenir une expression analytique pour les densités de coexis-
tence en définissant une nouvelle « pression » qui sera égale dans les deux phases
(c’est la seule caractéristique d’une pression que cette fonction possédera, d’ou les
guillemets). En divisant I’équation (4.16)) par x(p), on a

(4.19)

et si on définit P(p) par P'(p) = [ — f'(p)]/k, on a bien P(p,) = P(p;). Cette
derniere égalité constitue la deuxieme relation qui permet de fixer les densités de
coexistence. Nous verrons a la section [£.3.3] que I'on peut aller plus loin, en redéfi-
nissant le champ de densité, pour obtenir une nouvelle énergie libre sur laquelle les
densités de coexistence seront données par une construction de tangente commune.

Vérifications numériques

Nous voulons maintenant faire le lien entre les prédictions théoriques données
plus haut et les résultats obtenus par simulation de modeles microscopiques. Pour
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v(p) K(r)

Vg

Ve

0 le —Iro (I) 7”|0
Figure 4.5 — Gauche : Forme de v(p) utilisée dans les simulations numé-
riques, données par I'équation ([£.20). Droite : Noyau de moyennage de rayon
ro utilisé pour calculer la densité moyenne autour d’une particule, donné par
I’équation (4.21)).

cela, nous avons choisi d’utiliser une dépendance v(p), représentée a la figure
(gauche), donnée par

v(p) = v, — (%Q_M [tanh <p me> + 1] (4.20)

f

Cette forme interpole, de fagon plus ou moins abrupte suivant la valeur de Ly, entre
une vitesse rapide v, a basse densité et une vitesse plus lente vy a haute densité. En
outre, cette forme permet de changer 1’échelle de densité en changeant p,, : quand
pm augmente les densités de coexistence dans le gaz et le liquide augmentent aussi,
ce qui nous permet de les mesurer avec précision. Le noyau de moyennage que nous
utiliserons est une « cloche de Schwartz » de rayon rg

1 1
Kr)=—_exp|-—"F—3 sir <o, K(r) = 0 sinon (4.21)

2 )
R )
ou Z est une constante de normalisation telle que [ K(|r|)dr = 1. Cette fonction,
représentée a la figure (droite), a la particularité d’étre infiniment dérivable &
support compact [—rg,70].

Les simulations que nous présentons maintenant ont été réalisées pour des RTP
sur un réseau 1d avec des conditions aux bords périodiques. C’est le modele qui
est numériquement le plus efficace, nous permettant d’obtenir les meilleures statis-
tiques. Nous vérifierons cependant sur un autre exemple que 'on trouve les méme
résultats pour des particules évoluant dans un espace continu en deux dimensions.
L’algorithme que nous avons utilisé sur réseau est celui de la mise a jour séquen-
tielle aléatoire. Pour un systeme contenant N particules, a chaque pas de temps
dt/N, une particule est choisie au hasard. Elle saute alors sur le site voisin avec
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Figure 4.6 — Gauche : Densité d’énergie libre f(p) (décalée de ap avec a =
7.75 pour plus de lisibilité) et tangentes aux densités de coexistence p, et py
mesurées dans des simulations de RTP sur réseau 1d. Les deux tangentes sont
paralleles, I'erreur relative sur la pente étant W = 10~*. Droite :
Histogramme du nombre de particule sur un site. Les densités de coexistence
sont mesurées en ajustant chaque bosse par une distribution gaussienne (les
lignes pointillées rouges). Parametres : v, = 20, vy = 5, o = 1, p,, = 200,
Ly =100, ro = 2.

une probabilité v(p)dt et culbute avec une probabilité adt. La densité dans son
voisinage est calculée en utilisant le noyau de I’équation (4.21)). Pour une particule

au site k,
70

=Y K(i)pus (4:22)
i=—rg

Avant de comparer quantitativement les prédictions théoriques pour les densités
de coexistence, on peut commencer par vérifier que celles-ci sont bien données par
une construction de tangentes paralleles sur la densité d’énergie libre f(p). Pour
ce faire, on mesure les deux densités de coexistence dans une simulation et 1’on
trace les deux tangentes a 1’énergie libre aux points correspondants. Le résultat est
montré a la figure (gauche) : les deux tangentes sont bien paralléles. Notons que
cette construction est tres sensible a la valeur des densités car celles-ci sont proches
des minima de f(p). Une petite variation de densité produit alors une grande
variation de la pente, ce qui nous oblige a mesurer les densités avec précision. On
choisit donc p,, grand pour que les deux densités de coexistence soient grandes, et
on les mesure en ajustant les histogrammes P(py), ou pj, est le nombre de particules
sur un site, a des Gaussiennes (voir figure droite).

Nous avons vu que les densités de coexistence sont données par les égalités du
potentiel chimique f'(py) = f'(pe) = p et par I'égalité de notre pression thermo-
dynamique généralisée P(p,) = P(p) avec P'(p) = (f'(p) — p)/r(p). Ces deux
équations peuvent étre résolues numériquement pour obtenir p, et p,, que 'on
souhaite comparer aux simulations du modeéle microscopique. Nous montrons la
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Figure 4.7 — Densités de coexistence pour différents v, /vy, obtenus en va-
riant vy a vy constant. Comparaison entre des simulations microscopiques de
RTP (sur réseau 1d et dans le plan continu 2d), la prédiction théorique et ce
qui serait donné par une construction de tangente commune. Parametres :
ve =25, a=1, p, =200, Ly =100, ry = 2.

comparaison a la figure £.7] sur un diagramme des phases obtenu en variant v, a
vy constant. On voit que, sans aucun parametre ajustable, I'accord est excellent.
On peut aussi remarquer que la construction de tangente commune (qui revient
a prendre x = cte) donne des densités de coexistence acceptables quand v, 2 vy
mais, qu’a grand v, /vy, il faut prendre en compte le terme de tension de surface
pour prédire les binodales.

La coexistence que nous obtenons a quelques propriétés remarquables. Rappe-
lons que les densités de coexistence sont données par les égalités de f’ et P, dont
les expressions sont

£ =mlprlpll, Po) =TS o) - -2y

Le noyau de moyennage K intervient seulement dans la constante ~, qui apparait
en facteur dans k(p). Dans I’égalité des pressions, cette constante se simplifie et ne
joue donc aucun role dans I’équilibre des phases, ce qui est vérifié numériquement
a la figure[4.8] On obtient donc un résultat intéressant : toutes les manieres de faire
une moyenne isotrope de la densité conduisent a la méme coexistence de phase.
Pour une transition d’équilibre, la tension de surface ne joue aucun role dans
I’équilibre des phases. Ici, la situation est plus subtile : les dépendances en p de la
tension de surface contribuent au calcul des binodales mais pas leurs préfacteurs
constants. Nous verrons a la prochaine section que ce résultat survit pour une
moyenne anisotrope de la densité.
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Figure 4.8 — Gauche : La forme du noyau de moyennage n’influe pas sur les
densités de coexistence. On considere ici deux types de noyaux (dont on varie
la taille) : la cloche de I'équation et un noyau rectangulaire (K (r) =
1/(2ry) quand r < 7o et 0 sinon). Droite : Le temps de persistance des
particules n’influe pas non plus sur les densités de coexistence. Parametres :
RTP en 1d sur réseau, v, = 20, v, = 5, a = 1 (gauche), p,,, = 200, Ly = 100,
ro = 2 (droite).

On remarque également que le temps de persistance 7 = (o + (d — 1)D,.)™!
n’apparait pas dans les équations fixant les densités de coexistence, qui n’en dé-
pendent donc pas (voir figure . Cela explique I’équivalence, pour des particules
en v(p), entre ABP et RTP observée dans l'article [C| (voir figure 6). Le fait que
cette équivalence soit également vraie pour des interactions stériques reste une
agréable surprise quant au pouvoir prédictif des théories en v(p).

4.3.2 Effet d’'un moyennage asymétrique

Intéressons-nous maintenant au cas ou la densité n’est pas échantillonnée de
maniere isotrope autour des particules. La situation qui nous intéresse en parti-
culier, schématisée a la figure [£.1], est celle de particules qui mesurent la densité
« devant elles » (par rapport a leur direction d’autopropulsion), de la méme ma-
niere que des spheres dures autopropulsées sont ralenties par les collisions avec les
particules situées devant elles.

En pratique, nous considérerons que la densité est mesurée de fagon isotrope
a une distance eu de la particule. Les particules se déplacent alors a la vitesse
v[p(r 4+ eu)], ol p est mesurée grace a un noyau isotrope, comme ceux considérés
a la section précédente. Quand e est petit devant la longueur caractéristique des
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variations de p, on peut faire 'approximation

v[p(r+eu)] = v[p(r) + Vp(r) - eul (4.24)
~ v [p(0)] + Vo [5(r)] - 2u (4.25)

L’enjeu est alors de prendre en compte le nouveau terme Vu(p(r)) - eu dans notre
description.

Nous montrons dans 'annexe |B| que I'on peut étendre le calcul de 'annexe
A de Particle [C] pour construire une équation d’advection-diffusion décrivant des
particules se déplagant a une vitesse v(r,u) = vo(r) + vy (r) - u. Cela nous permet
ensuite, par le méme chemin que dans 'article [C], de construire I’hydrodynamique
fluctuante de particules se déplacant a la vitesse donnée par I'équation (|4.25)).
L’hydrodynamique fluctuante est la méme que pour le noyau isotrope de la sec-

tion A.3.1] S F
p=V. [,oD(ﬁ)v ((Sp - n(p)Ap> " \/2D<ﬁ>pn] (4.26)

L’énergie libre et la tension de surface sont cependant modifiées et incluent main-
tenant des contributions liées a l'asymétrie

3

F = [ e, s0)=stinp -1+ [ bt + —=Jan, -z

/ Tv(u)
w(p) = == (1= =) (4.28)

On peut alors déterminer les nouvelles densités de coexistence, fonctions de €, de
la méme maniére que pour un moyennage isotrope.

On montre a la figure la comparaison entre les densités de coexistence pré-
dites et celles mesurées en simulant des RTP sur un réseau 1d, pour des asymétries
e =1 et ¢ = 2 sites du réseau. L’accord est tres bon pour € = 1 et pour € = 2 a
petit v, /v,, beaucoup moins a grand v,/v,. La raison exacte de ce désaccord n’est
pas completement claire. Des termes d’ordre supérieur dans le développement de
'équation pourraient contribuer de facon significative a la tension de sur-
face. Une analyse plus poussée des développements effectués ici sera 'objet d'un
futur travail.

4.3.3 De nouvelles relations thermodynamiques

Nous allons montrer ici que I’on peut définir une nouvelle variable R, qui jouera
le role d’'un champ de densité, pour laquelle I’équilibre des phases est donné par
les relations de thermodynamique d’équilibre. En particulier, les densités de co-
existence seront données par la construction de tangente commune.
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Figure 4.9 — Comparaison entre les densités de coexistence prédites pour
un moyennage asymétrique et les densités observées dans des simulations de
RTP sur réseau en 1d. L’unité d’espace est la distance entre deux sites. e = k
correspond donc a un moyennage décalé de k sites par rapport a la particule.
Parametres : vy = 5, a = 1, p,, = 200, Ly = 100, 19 = 2.

Reprenons 1'équation (4.16)) exprimant la nullité du flux de particules dans
I’état stationnaire

f'(p) — k(p)Ap = cte = p (4:29)
et définissons maintenant la variable
r1
R(p) = /0 Rl (4.30)

qui vérifie dR/dp = 1/k(p).
L’équation (4.29) se réécrit alors pour la variable R
1 df dk

LY oap_ O 2 _
R K°AR /idR|VR| L (4.31)

qui peut s’écrire comme la dérivée d’une nouvelle énergie libre F
F = / [f(R(r)) + ?|VR|2 dr (4.32)

ott la nouvelle densité d’énergie libre f est définie par la relation

df _ df

_ 4.
dR ~ dp (4.33)

Les densités de coexistence sont maintenant données par la construction de tan-
gente commune sur la fonction F.
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Le statut de cette fonction F n’est pas évident. La variable R n’est pas une
quantité conservée, comme on peut le voir en écrivant sa dynamique par le calcul
d’Ito )

. OR 10°R
R=—p+-——>0’
dp P39 op?

ot 02 = 2V2[pD(p)] est la variance du bruit sur p. En définissant D(R) = pD(p),
on peut alors réécrire 1’équation (4.34))

(4.34)

Rm ¥ | DUV RD(R] - s EaDm) 39

Il reste a déterminer si cette dynamique vérifie le bilan détaillé, ce qui sera entreprit
dans le futur. Si tel était le cas, nous aurions trouvé une classe de systémes hors de
I’équilibre thermique, qui ne sont pas décrits par une distribution de Boltzmann,
mais proche d’un autre type d’équilibre. Ceci constituerait un pas encourageant
dans la construction d’approches génériques des systémes actifs.

4.4 Spheres dures : pression et équilibre de phases

Les spheres dures ABP, qui n’interagissent que par un potentiel répulsif a courte
portée, ont été beaucoup étudiées numériquement ces dernieres années [58-67].
Elles permettent en effet d’observer une MIPS induite par des effets purement sté-
riques, qui pourrait potentiellement étre pertinente dans la description de systemes
comme les colloides Janus ou certaines bactéries qui forment des agrégats [23]. Les
progres théoriques ont cependant été assez limités et ce systéeme est moins bien
compris que les particules se déplagant a une vitesse v(p) étudiées aux sections
précédentes.

Qualitativement, les collisions entre spheres tendent a réduire leur vitesse de
déplacement. Une tentative [58, |60, 61] a donc été de quantifier ce ralentissement
en fonction de la densité par un v(p) et de comparer les sphéres dures et des
particules ayant explicitement une vitesse dépendant de leur densité avec la relation
v(p) mesurée en simulation. Cette approche est phénoménologique dans le sens ot
elle suppose que des particules se déplagant a une vitesse v(p) sont une bonne
description des sphéres dures autopropulsées.

Dans ’article [D| nous donnons une expression exacte pour la pression méca-
nique de spheres dures autopropulsées. Cette expression comporte trois termes :

— Une pression de gaz parfait Py = pokpTesr ol Tog est la température effective

déja rencontrée aux chapitres [2] et [3|

— Une pression directe Pp que l'on rencontre a 1’équilibre dans 1’étude de

sphéres browniennes.
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— Une pression indirecte P; qui quantifie la perte de pression due au ralentisse-
ment des particules lors des collisions et qui n’a pas d’équivalent a ’équilibre.
Nous montrons que les particules autopropulsées avec des forces répulsives corres-
pondent a un cas exceptionnel ou la pression mécanique est solution d’une équation
d’état. Nous montrons par ailleurs que pour un systeme séparé entre une phase
gazeuse et une phase liquide, les pressions dans chaque phase sont égales. Cette
égalité fournit une des deux équations nécessaires pour fixer les densités de co-
existence. Nous montrons que, comme pour les particules avec v(p), la deuxieme
condition n’est pas fournie par les relations usuelles de thermodynamique (ici la
construction de Maxwell sur la pression).

L’article D] permet également de relier quantitativement les sphéres dures aux
particules avec v(p). En effet, dans une phase homogene a densité p, on peut définir
une vitesse moyenne v(p) comme la projection de t suivant la direction u d’une
particule : v(p) = (u- &), Cette vitesse est reliée de fagon exacte & la pression :

vov(p)
oD, "

Py+ P = (4.36)
L’équivalence entre spheres dures et particules v(p) n’est toutefois pas complete.
En effet, ’équation laisse de coté le terme de pression directe Pp. De plus,
la vitesse effective v(p) est calculée dans les phases homogenes, et ne décrit donc
pas les interfaces entre les phases. Ainsi la théorie en v(p) ne permet pas, pour
I'instant, de prédire le diagramme des phases des spheres dures.
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We derive a microscopic expression for the mechanical pressure P in a system of spherical active
Brownian particles at density p. Our exact result relates P, defined as the force per unit area on a bounding
wall, to bulk correlation functions evaluated far away from the wall. It shows that (i) P(p) is a state function,
independent of the particle-wall interaction; (ii) interactions contribute two terms to P, one encoding the
slow-down that drives motility-induced phase separation, and the other a direct contribution well known
for passive systems; and (iii) P is equal in coexisting phases. We discuss the consequences of these results
for the motility-induced phase separation of active Brownian particles and show that the densities at
coexistence do not satisfy a Maxwell construction on P.
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Much recent research addresses the statistical physics
of active matter, whose constituent particles show autono-
mous dissipative motion (typically self-propulsion), sus-
tained by an energy supply. Progress has been made in
understanding spontaneous flow [1] and phase equilibria in
active matter [2—6], but as yet there is no clear thermodynamic
framework for these systems. Even the definition of basic
thermodynamic variables such as temperature and pressure is
problematic. While “effective temperature” is a widely used
concept outside equilibrium [7], the discussion of pressure
P in active matter has been neglected until recently [8—14]. At
first sight, because P can be defined mechanically as the force
per unit area on a confining wall, its computation as a
statistical average looks unproblematic. Remarkably, though,
it was recently shown that for active matter the force on a wall
can depend on details of the wall-particle interaction so that
P is not, in general, a state function [15].

Active particles are nonetheless clearly capable of exerting
a mechanical pressure P on their containers. (When
immersed in a space-filling solvent, this becomes an osmotic
pressure [8,10].) Less clear is how to calculate P; several
suggestions have been made [9-12] whose interrelations are,
as yet, uncertain. Recall that for systems in thermal equilib-
rium, the mechanical and thermodynamic definitions of
pressure [force per unit area on a confining wall, and
—(0F/0V)y for N particles in volume V, with F the
Helmholtz free energy] necessarily coincide. Accordingly,
various formulas for P (involving, e.g., the density distri-
bution near a wall [16], or correlators in the bulk [17,18]) are
always equivalent. This ceases to be true, in general, for
active particles [11,15].

In this Letter we adopt the mechanical definition of P.
We first show analytically that P is a state function,
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independent of the wall-particle interaction, for one impor-
tant and well-studied class of systems: spherical active
Brownian particles (ABPs) with isotropic repulsions.
By definition, such ABPs undergo overdamped motion
in response to a force that combines an arbitrary pair
interaction with an external forcing term of constant
magnitude along a body axis; this axis rotates by angular
diffusion. While not a perfect representation of experiments
(particularly in bulk fluids, where self-propulsion is created
internally and hydrodynamic torques arise [19]), ABPs have
become the mainstay of recent simulation and theoretical
studies [3,5,6,20-24]. They provide a benchmark for the
statistical physics of active matter and a simplified model for
the experimental many-body dynamics of autophoretic
colloidal swimmers, or other active systems, coupled to a
momentum reservoir such as a supporting surface [24-29].
(We comment below on the momentum-conserving case.)
By generating large amounts of data in systems whose
dynamics and interactions are precisely known, ABP sim-
ulations are currently better placed than experiments to
answer fundamental issues concerning the physics of active
pressure, such as those raised in Refs. [9,10].

Our key result exactly relates P to bulk correlators,
powerfully generalizing familiar results for the passive
case. The pressure for ABPs is the sum of an ideal-gas
contribution and a nonideal one stemming from inter-
actions. Crucially, the latter results from two contributions:
one is a standard, “direct” term (the density of pairwise
forces acting across a plane), which we call Pj,, while the
other, “indirect” term, absent in the passive case, describes
the reduction in momentum flux caused by collisional
slow-down of the particles. For short-ranged repulsions and
high propulsive force, P, becomes important only at high

© 2015 American Physical Society
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densities; the indirect term dominates at intermediate
densities and is responsible for motility-induced phase
separation (MIPS) [2—4]. The same calculation establishes
that, for spherical ABPs (though not in general [15]),
P must be equal in all coexisting phases.

We further show that our ideal and indirect terms
together form exactly the “swim pressure,” Pg(p) at density
p, previously defined via a force-moment integral in
Refs. [9,10], and moreover that (in 2D) Pg is simply
pv(0)v(p)/(2D,), where v(p) is the mean propulsive speed
of ABPs and D, their rotational diffusivity. We interpret
this result and show that (for P, = 0) the mechanical
instability dPg/dp = 0 coincides exactly with a diffusive
one previously found to cause MIPS among particles
whose interaction comprises a density-dependent swim
speed v(p) [2-4]. We briefly explain why this correspon-
dence does not extend to phase equilibria more generally,
deferring a full account to a longer paper [33].

To calculate the pressure in interacting ABPs, we follow
Ref. [15] and consider the dynamics in the presence of an
explicit, conservative wall-particle force F,,. For simplicity,
we work in 2D and consider periodic boundary conditions
in y and confining walls parallel to e, = (0,1). We start
from the standard Langevin dynamics of ABPs with bare
speed vy, interparticle forces F, and unit mobility [5,6,34],

I = you(ei) + Fw(xi)ex + ZF(l'j - l'i) ++/2Dm;,
J#i

éi =+/2D,¢;. (1)

Here, r;(¢) = (x;,y;) is the position and ;(¢) the orienta-
tion of particle i at time #; u(6) = (cos(0), sin(9)); F,, =

IF,, || is a force acting along the wall normal e, = (1,0); D,
is the bare translational diffusivity; and n;(7) and &(¢) are
zero-mean unit-variance Gaussian white noises with no
correlations among particles.

Following standard procedures [2,3,35,36], this leads to
an equation for the fluctuating distribution function
W (r, 0, t) whose zeroth, first, and second angular harmonics
are the fluctuating particle density p = [§d0, the x
polarization P = J W cos(6)dd, and 0= [ cos(26)do,
which encodes nematic order normal to the wall,

p=-V- { {vou(ﬁ) +F,(x)e, + / F(r —r)ﬁ(r’)d2r’] 1,/}

+D, 030+ D,V + V- (/2D gm ) + 0, (/2D
(2)

where 1(r, ) and &(r, 1) are S-correlated, zero-mean, and
unit-variance Gaussian white noise fields. In the steady
state, the noise averages p = (p), P = (P), and Q = (Q)
are, by translational invariance, functions of x only, as is
the wall force F,,(x) [37]. Integrating (2) over 8 and then

averaging over noise in the steady state gives d,J = 0, with
J the particle current. For any system with impermeable
boundaries, J = 0. Writing this out explicitly gives

0= 0P + Fup = Ddyp + 11 (%), (3)

11 (x) E/Fx(l"—l‘)<ﬁ(l")/3(r)>d2r’. (4)

Applying the same procedure to the first angular harmonic
gives

DP =0, B’ (p+ Q) +FyP—DOP+L(x)|. (5

L(x) E/Fx(r’—r)<ﬁ(r’)75(r)>d2r’- (6)

Note that the integrals /; and I, defined in (4) and (6) are,
by translational invariance, functions only of x.

The mechanical pressure on the wall is the spatial
integral of the force density exerted upon it by the particles.
The wall force obeys F,, = —0,U,,, where an origin is
chosen so that U,, is nonzero only for x > 0. The wall is
confining, i.e., F,,p — 0 for x > 0, whereas x = A <0
denotes any plane in the bulk of the fluid, far from the wall.
By Newton’s third law, the pressure is then

P=- [T 0 )
A
In Eq. (7) we now use (3) to set —F,p = vyP—
Dtaxp + 117
P =y, /oo P(x)dx + Dp(A) + /oo Li(x)dx. (8)
A A

We next use (5), in which P and Q vanish in the bulk and
all terms vanish at infinity, to evaluate [ Pdx, giving

popo (%pm) n 12(A>) +Dp0) + [ 1w
o)

Using Newton’s third law, the final integral in (9) takes a
familiar form, describing the density of pair forces acting
across some plane through the bulk (far from any wall),

/ dx/ drF. (¢ =r)(p(r')p(r)) = Pp.  (10)
x>A x'<A

Thus, in the passive limit (vy = 0) we recover in Pj, the
standard interaction part in the pressure [18]. We call Pp
the “direct” contribution; it is affected by activity only
through changes to the correlator. Activity also enters (via
vg) the well-known ideal pressure term [9,10,13,15],

198301-2
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2
v
Po= (D, +=2)p(A). 11
o= (D25 )ota) ()
Having set friction to unity in (1), D, = kT, so that within
P, (only) activity looks like a temperature shift.
Most strikingly, activity in combination with interactions
also brings an “indirect” pressure contribution
Yo
Pr=—1L(A 12
1= b (12)
with no passive counterpart. Here, I,(A) is again a wall-
independent quantity, evaluated on any bulk plane
x = A <« 0. We discuss this term further below.
Our exact result for mechanical pressure is finally

P:P0+P1+PD, (13)

with these three terms defined by (11), (12), and (10),
respectively. P is thus for interacting ABPs a state function,
calculable solely from bulk correlations and independent of
the particle-wall force F,,(x). Because the same boundary
force can be calculated using any bulk plane x = A, it
follows that, should the system undergo phase separation, P
is the same in all coexisting phases [37]. This proves for
ABPs an assumption that, while plausible [10,38], is not
obvious, and indeed can fail for particles interacting via a
density-dependent swim speed rather than direct interpar-
ticle forces [15].

Notably, although ABPs exchange momentum with a
reservoir, (1) also describes particles swimming through a
momentum-conserving bulk fluid, in an approximation
where interparticle and particle-wall hydrodynamic inter-
actions are both neglected. So long as the wall interacts
solely with the swimmers, our results above continue to
apply to what is now the osmotic pressure.

The physics of the indirect contribution P; is that
interactions between ABPs reduce their motility as the
density increases. The ideal pressure term P, normally
represents the flux of momentum through a bulk plane
carried by particles that move across it (as opposed to those
that interact across it) [17]. In our overdamped system
one should replace in the preceding sentence “momentum”
with “propulsive force” (plus a random force associated
with D,). Per particle, the propulsive force is density
independent, but the rate of crossing the plane is not.
Accordingly, we expect the factor v3 in (11) to be modified
by interactions, with one factor v, (force or momentum)
unaltered, but the other (speed) replaced by a density-
dependent contribution v(p) < vy,

vov(p)
P P,=(D . 14
o+ P ( ¢t 2D, )ﬂ ( )

This requires the mean particle speed to obey

v(p) = vy + 201 /p. (15)

Remarkably, (14) and (15) are exact results, where (15) is
found from the mean speed of particle i in bulk v =
v+ (u(9;) - > F(rj —r;)). To see why this average
involves I,, note that the system is isotropic in bulk, so
x and y can be interchanged in I,(x), and that
cos(f) = u - e,. Relation (6) then links v to I, via the
(p 75> correlator, which describes the imbalance of forces
acting on an ABP from neighbors in front and behind.

Furthermore, the self-propulsive term in (14) is exactly
the “swim pressure” Pg of Refs. [9,10],

v (p)
2D

p=Ps

P a
(e F), (16)

r

with F¢ = vgu a particle’s propulsive force and r its
position. (The particle mobility vy/F¢ = 1 in our units.)
The equivalence of (12), (14), and (16) is proven analyti-
cally in the Supplemental Material [39] and confirmed
numerically in Fig. 1 for ABP simulations performed as
in Refs. [20,21].

Thus, for D, = 0, (13) may alternatively be rewritten as
P = Pg + Pp [9,10]. Together, our results confirm that Py,
defined in bulk via (16), determines (with Pp) the force
acting on a confining wall. This was checked numerically
in Ref. [9] but is not automatic [15]. Moreover, our work
gives via (14) an exact kinetic expression for Py with a clear
and simple physical interpretation in terms of the transport
of propulsive forces. This illuminates the nature of the

5 T I T I T T || T I

| o P,+P, Eq. (14), Pe =20 ! i
1

4l 2(P +PR) Eq.(14), Pe =20 «—p=p &

| & P,+P, Eq. (12), Pe = 40 ! |
1

> 3 P, + P, Eq. (14), Pe = 40 | N
- x Pg, Eq.(16), Pe =40 1

[on B 1 N

& o|o PoEa (10, Pe=20 | a
E P,, Pe =40 \
1

0 0.2 0.4 0.6 0.8 1
P/ Py

FIG. 1 (color online). Numerical measurements of Py + P;, Pg,
and Pp in single-phase ABP simulations at Péclet number
Pe = 3vy/(D,c) = 40, where o is the particle diameter. Expres-
sions (12), (14), and (16) for Py + P; and Pg show perfect
agreement. Also shown are data for Pe = 20, unscaled and
rescaled by factor 2. This confirms that Py = P, + P; is almost
linear in Pe; small deviations arise from the Pe dependence of the
correlators. In red is Pp for Pe = 20,40, with no rescaling. Pe
was varied using D,, at fixed v, and with D, = D,s?/3. Solid
lines are fits to piecewise parabolic (Pg) and exponential (Pp)
functions used in the semiempirical equation of state. p is a near-
close-packed density at which v(p) vanishes and p is the
threshold density above which P, > Pg. See the Supplemental
Material [39] for details.
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swim pressure Pg and extends to finite p the limiting result
Ps =P, [9,10].

The connections made above are our central findings;
they extend statistical thermodynamics concepts from
equilibrium far into ABP physics. Before concluding, we
ask how far these ideas extend to phase equilibria.

In the following, we ignore for simplicity the D, term
(negligible in most cases [3,5,20,34]). Then, assuming
short-range repulsions, we have Py = pvgv(p)/(2D,), with
v(p) = vo(1 —p/po) and p, a near-close-packed density
[5,6,20]. P, should scale as opvyS(p/py), where o is the
particle diameter and the function S diverges at close
packing; here, the factor v, is because propulsive forces
oppose repulsive ones, setting their scale [10]. Figure 1
shows that both the approximate expression for Pg (with a
fitted py == 1.19 roughly independent of Pe) and the scaling
of Pp hold remarkably well. Defining a threshold value p
by Pg(p) = Pp(p) (see Fig. 1), it follows that at large
enough Péclet numbers Pe = 3vy/(D,s), Ps dominates
completely for p < p, with Pp, serving only to prevent the
density from moving above the p cutoff. When p < p, Pp is
negligible; the criterion Pg'(p) < 0, used in Refs. [10,38] to
identify a mechanical instability, is then via (16) identical to
the spinodal criterion (pv)’ < 0 used to predict MIPS in
systems whose sole physics is a density-dependent speed
v(p) [2,3]. Thus, for ABPs at large Pe,
the mechanical theory reproduces one result of a long-
established mapping between MIPS and equilibrium col-
loids with attractive forces [2,3].

We next address the binodal densities of coexisting
phases. According to Refs. [2,3], particles with speed
v(p) admit an effective bulk free-energy density f(p) =
kT[p(Inp — 1) + [§ In v(u)du]. [Interestingly, the equal-
ity of P in coexisting phases is equivalent at high Pe and
p < p to the equality of kzT log(pv), which is the chemical
potential in this “thermodynamic” theory [2,4].] The
binodals are then found using a common tangent con-
struction (CTC, i.e., global minimization) on f, or equiv-
alently an equal-area Maxwell construction (MC) on an
effective thermodynamic pressure Py = pf’ — f, which
differs from P [11]. Formally, f is a local approximation
to a large-deviation functional [41], whose nonlocal terms
can (in contrast to equilibrium systems) alter the CTC or
MC [11,20]; we return to this issue below.

An appealing alternative is to apply the MC to the
mechanical pressure P itself; this was, in different lan-
guage, proposed in Ref. [38]. (The equivalence will be
detailed in Ref. [33].) It amounts to constructing an
effective free-energy density fp(p) # f, defined via P =
pfp— fp, and using the CTC on fp. However, fp has no
clear link to any large-deviation functional [41], and since
it differs from f, these approaches generically predict
different binodals.

To confirm this, we turn to the large Pe limit; here, for
ABPs with v(p) = vo(l —p/py) and p = py, we can

explicitly construct f(p) [and hence P;(p)] alongside
P(p) [and hence fp(p)], using our hard-cutoff approxima-
tion (i.e., a constraint p < p). All four functions are plotted
in the Supplemental Material [39]; the two distinct routes
indeed predict different binodals at high Pe (see Fig. 2)
[43]. Each approach suffers its own limitations. That via f
(or Py) appears more accurate, but neglects nonlocal terms
that can alter the binodals: although f’(p) remains equal in
coexisting phases, P is not equal once those terms are
included [11]. The most serious drawback of this approach,
currently, is that it cannot address finite Pe, where Pp no
longer creates a sharp cutoff. Meanwhile, the “mechanical”
route captures the equality of P in coexisting phases but
unjustifiably assumes the MC on P, asserting in effect that
fp, and not f, is the effective free energy [41]. Nonlocal
corrections [44] are again neglected.

At finite Pe where the crossover at p is soft, (13) shows
how P; and Pp compete, giving Pe-dependent binodals
(see Fig. 2). To test the predictions of the mechanical
approach (equivalent to Ref. [38]), we set Pp =
opoS(p/py) as above, finding the function S by numerics
on single-phase systems at modest Pe (see Fig. 1). Adding
this to P (assuming Pg « Pe scaling) gives P = P(p, Pe).
At each Pe the binodal pressures and densities do lie on this

L L L B
1.2 — &— Maxwell construction on P —
+—o ABPs

p/p,

40 60 80 100 120

FIG. 2 (color online). Simulated coexistence curves (binodals)
for ABPs (red) and those calculated via the Maxwell construction
(black) on the mechanical pressure P using the semiempirical
equation of state for Pg and P, fitted from Fig. 1. Dashed lines:
predicted high Pe asymptotes for the binodals calculated via f or
P (lower line) and calculated via P or fp (upper line). Inset:
measured binodal pressures and densities (diamonds) fall on
the equation-of-state curves but do not match the MC values
(horizontal dashed lines). Stars show the P(p) relation across the
full density range from simulations at Pe = 40 and Pe = 100.
The latter includes two metastable states at low density (high
po/p) that are yet to phase separate.
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equation of state, validating its semiempirical form, but
they do not obey the Maxwell construction on P, which
must therefore be rejected (see Fig. 2, inset). We conclude
that, despite our work and that of Ref. [38], no complete
theory of phase equilibria in ABPs yet exists.

In summary, we have given in (10)—(13) an exact
expression for the mechanical pressure P of active
Brownian spheres. This relates P directly to bulk correlation
functions and shows it to be a state function, independent of
the wall interaction, something not true for all active systems
[15]. As well as an ideal term P,, and a direct interaction
term Pp, there is an indirect term P; caused by collisional
slowing-down of propulsion. We established an exact link
between P, + P; and the so-called “swim pressure” [10],
allowing a clearer interpretation of that quantity. We showed
that when MIPS arises in the regime of high Pe = 3v,/
(D,o), the mechanical (P" < 0 [10]) and diffusive (f” <0
[2,3]) instabilities coincide. That equivalence does not
extend to the calculation of coexistence curves, for reasons
we have explained. For simplicity we have worked in 2D;
generalization of our results to 3D is straightforward [33] but
notationally cumbersome.

The established description of MIPS as a diffusive
instability [2,3,11,20] is fully appropriate in systems whose
particles are “programed” to change their dynamics at high
density (e.g., via bacterial quorum sensing [45,46]), but it is
not yet clear whether the same theory, or one based
primarily on the mechanical pressure P, is better founded
for finite-Pe phase equilibria in ABPs whose slow-down is
collisional. Meanwhile, our exact results for P in these
systems add significantly to our growing understanding of
how statistical thermodynamic concepts can, and cannot,
be applied in active materials.
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I. PROOF OF RELATION P, + P; = Ps

We prove here (setting D; = 0 for simplicity, and work-
ing in d = 2 dimensions) that the sum of the ideal pres-
sure Py = pv3/(2D;,) and the indirect interaction pres-
sure Pr = vgly/D; is the swim pressure Ps = p(r-F*)/2,
where the self-propulsion force F* = vgu was defined
n (16) in the main text. (As in the main text, we
set the particle mobility vo/F* = 1 in this section,
where F* = ||F?|.) In proving the required result, we
also establish that Ps = pvgv(p)/(2D;), and hence that
v(p) = vo +2L/p.

We start from (see (6) in the main text)

l= [Er = n) ()P () (1)

and use!
Ar)zZé(rfri), (2)
r) = Z cos(0;)6(r — 7;) (3)

as well as the fact that the system is isotropic to rewrite
(1) in the form

< > Fu(rj —7i) cos(6; )> (4)

INE)
We now take the thermodynamic limit: L, = L, =
VA — 0. Since the system is isotropic, a similar ex-
pression can be written interchanging x and y, noting
that cos(0;) = w;-e, with u; = (cos(6;),sin(6;)) and
e; = (1,0). Averaging the two results gives

b= 2DA<ZF > ®)

INE)

We may also write, using the fact that u-u =1,

Ry= 0 0 S ) ©
©Tap, T apA L M

1 Equations (2) and (3) follow from %) (r, 0) =
and the definitions of p(r) and P(r).

> 0(r—r)d(0—0;)

Hence, we obtain

Po-I-PI 2DA<Z(U0'LLZ+ZF

J#i

) > (7)

From the Langevin equation (1) in the main text, ap-
plied in bulk where the wall force Fy, vanishes, and setting
D; = 0, we have that the term vou; + Z]#Z (rj —ms)

in (7) is the instantaneous particle velocity 7;:
(S ) g
5D A ; iU ). (8)

If we redefine (-) to include an average over the particle
index, this may be written

Py+ P =

PO () = 220 0p) 9)

P°+PF2Dr 2D,

Here, the second equality follows from the definition of
v(p) = (7-u) as the average speed of a particle along its
propulsive direction (in a bulk system at density p).

Meanwhile, Ps is defined via (16) in the main text
(setting d = 2 there) as an equal-time average

Ps =L Fry = 20 ) . (10)
2 2
We rewrite r(t) = 7(—o0)+ [* (') dt’, and use time
stationarity and the fact that (r(- oo)u( )) = 0 to obtain
(r(t)u(t)) = /(*(0)'U(t')>dt' : (11)
0

Next, we use the fact that the angular dynamics of u are
autonomous: the rotational diffusion of one particle is
unaffected by the location and orientation of any other
particle. Then 7(0) and u(t') are correlated, but only
because each is separately correlated with «(0). That
separability allows us to write

1

(P(0)u(t)) = ﬂ/ﬁ"(o)\U(0)>~(U(t’)IU(0)>d9(0) (12

where the integration is over the bulk steady state ori-
entations 6(0) = arccos(u,(0)) with uniform probability



density 1/(27), and (X]Y") denotes the conditional aver-
age of X given Y. The first conditional average in (12)
obeys

(r(0)[u(0)) = v(p)u(0) (13)

which follows from the definition of v(p) [see (9)] and the
fact that the mean velocity of a particle must point along
its axis u, given isotropy of the bulk system. The second
conditional average in (12) is found from the autonomous
rotational dynamics as

(u(t')|w(0)) = w(0) exp(—Dst') (14)

which (again given isotropy) is implied by the familiar
decay of angular correlations (u(t')-u(0)) = exp(—D;t').
It follows from (13) and (14) that the product of the
conditional averages in (12) is v(p) exp(—D,t’), which is
independent of u(0) as befits an isotropic system. This
gives finally, upon performing the time integral in (11),

v(p)

)= 52

(15)
thus completing the proof that Ps defined by (10) is ex-
actly equal to Py + Pp as given by (9). Note that (15) can
also be proved directly, avoiding the use of conditional
averages, by a route involving Ito calculus [1].

Having proved in (9) that (with Py = pv3/(2D;)) the
indirect pressure Py = vglz/ D, obeys

_ PV
2D,

B (v(p) = vo) , (16)

it follows, as stated in the main text, that

v(p) =wvo + 212 /p . (17)

We know from ABP simulations [2] that, except at very
high densities, v(p) has the form v(p) = vo(1—p/po) with
a constant pg, so that I scales like Iy o< —vgp?.

Although we have set D; = 0 when deriving these re-
sults, it is simple to establish that the only direct effect of
nonzero Dy is to add a term Dyp to Py [1]. There is also
an indirect effect on Pp and P; because Dy # 0 alters the
correlation functions appearing in I; and I5.

II. NUMERICAL METHODS

All simulation results presented in the main text are
obtained for spherical particles whose centres are con-
fined to two dimensions (the zy—plane) and whose
propulsion directions w are constrained to lie in this
plane. These particles interact pairwise through a re-
pulsive Weeks-Chandler-Andersen potential:

o 12 o\ 6
=) (D] o
M=/ -]+ us
with an upper cut-off at r = 21/6¢, beyond which U = 0.
Here o denotes the particle diameter, € determines the
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interaction strength, and r is the center-to-center sepa-
ration between two particles. The model was studied by
solving the fully overdamped translational and rotational
Langevin equations. In the current section we restore an
explicit particle mobility vg/F?® = 8Dy rather than set-
ting this to unity. The Langevin equations then read:

i = BD(F© + Fu;) + /2Dy, (19)

0; = \/2D,&; (20)

where F!°" is the total conservative force acting on parti-
cle i, F* is the constant magnitude of the self-propulsion
force which acts along w;, Dy and D, = 3D;/c? denote
the translational and rotational diffusivities, respectively;
B8 =1/(kpT) is the inverse thermal energy, and n,(t) and
&i(t) are zero-mean unit-variance Gaussian white noise
random variables. Simulations were carried out using the
LAMMPS [3] molecular dynamics package, in a periodic
box with L, = L, = 1500 (corresponding to N ~ 20000
particles). The natural simulation units are o, ¢, and
Ty = 02/(eBDy) for length, energy, and time, respec-
tively. In these units, a time step of 5 x 107° was used
throughout. As discussed in [2] and in Section III below,
the Péclet number Pe = 3vy/(D,o) = 38D F?*/(D,0o)
was varied by adjusting D, (and hence D), keeping a
constant value of F* = 24¢/o.

The value of pg, the density where the linearly decreas-
ing swim speed goes to zero, was determined by fitting
sampled values at Pe = 40 (i.e., just outside the phase-
separated region) of v(p) over the density range [0, 1.15]
to the linear function v(p) = vo(1 — p/po). The value
thus obtained, pg =~ 1.19, was used in reporting the den-
sity data presented in the main text as a function of p/pq.

Binodal densities were determined from simulations by
coarse-graining the local density on a grid using a weight-
ing function w(r) oc exp(—r2,,/(r2,,—r?)), where r is the
distance between the particle and a lattice point, and
Teus 18 a cut-off distance which was taken to be slightly
larger than the lattice spacing. The local densities thus
obtained were binned and plotted as a probability dis-
tribution function, where the maxima of the two density
peaks were taken to represent the coexistence densities.

III. SEMI-EMPIRICAL EQUATION OF STATE

We now revert to our convention that the particle mo-
bility is unity, and rewrite Eq. (14) of the main text as

1 v(p,Pe)
Ps=|—+——"7P . 21
s (Pe + 6vg e) Tpvo (21)

Our semi-empirical equation drops the 1/Pe term (which
comes from passive translational diffusion) and assumes
that the Pe-dependence in v(p,Pe), which arises from
Pe-dependence in the bulk correlators, is negligible. For
v(p) we use the fitted linear function for v(p) described
above, with the further assumption that v = P = 0 for



132

p > po in order to prevent negative swim speeds (see
black curve in Fig. 1 of the main text). With these as-
sumptions (which imply that pq is itself Pe-independent),
the swim pressure scales as Ps = opvgG(p/po)Pe with the
function G(p/po) = v(p)/(6vp). This ansatz is confirmed
numerically by comparing datasets with two different Pe
in Fig. 1 of the main text.
In the main text we also state the scaling hypothesis

Pp = opvoS(p/po,Pe) = opvoS(p/po) . (22)

The first identity defines a reduced direct pressure S; the
second equality once again requires that Pe has no direct
effect on the correlators (which would enter both through
the shape of the function S and through pq itself). Again
this is confirmed by comparing Pp for two Pe values in
Fig. 1 of the main text. Since we choose to vary Pe
at fixed vy, a single Pp function then describes all our
simulations; we fit this as Pp(p) = a(1 — exp(yp)), with
« and  fitting parameters. Note that Pp is the pressure
measured from averaging Eq. (10) of the main text over
A (see red curve in Fig. 1 of the main text) which is
mathematically equivalent to using the standard virial
relation for pairwise additive forces [4, 5].

The above scaling forms (21) and (22) assume that,
once pressures are non-dimensionalized by a factor opvg
(recalling that the mobility is unity), there can be no fur-
ther dependence on vy except via the dimensionless com-
bination Pe. This is true for hard particles, but could fail
for softened interactions as actually used in our simula-
tions: in particular, at large vy the effective diameter of
the particles seen in collisions will be less than o; see [2].
Accordingly the best route for testing the scalings with
Pe is to vary this at fixed vy, as we do here.

IV. CONSTRUCTIONS OF THE BINODALS

As defined in the main text, we consider four routes
(in two equivalent pairs) to calculate binodal densities
in the high-Pe limit. We use ‘thermodynamic’ routes
(via f, P¢) and ‘mechanical’ routes (via P, fp), relying on
the Maxwell equal-area construction (MC) and common
tangent construction (CTC) as appropriate.

Method 1 starts from the effective free energy of [6, 7]

. p
Fo) =t (g~ 1)+ [Iowan) . @)
0
where for ABPs v = v9(1 — p/po). This we supplement
by a hard-core cutoff at p = pg; hence f obeys

f=f for p<py, else f=4o0. (24)

The CTC is then performed on f (see Fig. 1a). Method
2 starts from the mechanical pressure P = Ps + Pp, rep-
resenting Pp as a hard-core cutoff: Pp = 0 for p < pg
and Pp = 400 for p > pg. P therefore obeys

2
P= 5;)0 (1—p/po) for p<pg, else P=+4o00. (25)

Py’ P

Figure 1. (a) Upper curve: CTC (dashed) on f (solid) based
on (24). Lower curve: CTC (dashed) on fp (solid) based
on (27). In each case a linear term has been subtracted to
make the common tangent horizontal. (b) Upper curve: MC
(dashed) on the mechanical pressure P = Ps + Pp (solid)
based on (25). Lower curve: MC (dashed) on the pressure
Py (solid) based on (26). The curves in (a) and (b) are
rescaled/displaced vertically for improved visibility.

The MC is then applied to P (see Fig. 1b). Method
3 constructs the thermodynamic pressure Py = pf’ — p
from f, that is

Pr=pf —f for p<po,

and then applies the MC to Py. By mathematical neces-
sity, this gives the same binodals as Method 1 (see Fig.
1b). Method 4 constructs a different effective free energy
fp such that P = pfj, — fp. The result is

2 2

PV p
= mp—1)—2| f <
2Dr[p(np ) po] or p<po,

else Pr=+oo0 (26)

fr

(27)
else fp =40

from which binodals are found by the CTC on fp. By
mathematical necessity, this gives the same binodals as
Method 2 (see Fig. 1a).

As is clear from Fig. 1, Method 1 (or 3) based on f (or
Py) gives different binodals from Method 2 (or 4) based
on P (or fp). These calculations all use the sharp cut-
off approximation and hence the resulting binodals refer
to the asymptotic limit of high Pe only. In this limit,
Method 1 (or 3) is clearly more accurate than Method 2
(or 4) (see Fig. 2 of the main text).



However, we do not know how to generalize Method
1 (or 3) to the case of finite Pe, since we lack a theory
for constructing the direct interaction contributions to f
or Ps. Method 2 (or 4) does generalize, allowing use of
the semi-empirical expressions for P and Pp described
above and in the main text. However, as shown there (see
Fig. 2 of the main text) the results are unsatisfactory.

None of these methods allows for nonlocal contribu-
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tions, which are shown in [8] to alter the common tangent
construction found by Method 1. Similar nonlocal terms
are also known to arise in calculations of mechanical force
balance at phase coexistence in systems undergoing con-
tinuous driving, such as in shear banding [9]; they are
likewise unjustifiably neglected by Method 2 (or 4). We
conclude, as stated in the main text, that no adequate
theory of phase equilibria in ABPs yet exists.
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134 Chapitre 4. Séparation de phase induite par la motilité

4.4.1 Spheres dures autopropulsées par un processus d’Ornstein-
Uhlenbeck

Nous montrons ici que les résultats obtenus pour des spheres dures autopropul-
sées a vitesse constante sont aussi valables pour des spheres dures autopropulsées
par un processus d’Ornstein-Uhlenbeck. En particulier, la pression mécanique sa-
tisfait une équation d’état et peut étre décomposée en trois termes, similaires a
ceux obtenus dans le cas v = cte.

Nous considérons N particules, dont nous notons les positions r;. La particule
J exerce sur la particule i une force répulsive a courte portée F(r; — r;). Comme
depuis le début de ce chapitre, les particules sont confinées suivant I’axe X par un
potentiel V. La dynamique de r; et de la force f; propulsant la particule ¢ s’écrivent

J

On peut écrire I'équation de Fokker-Planck donnant I’évolution de la probabilité
jointe P({r;},{f;},t) de trouver les N particules aux position {r;}, avec des forces

{f:}
(%77 - — Z {Vrz .

7

1 D
+ Vg, - [BP] + =LAy P
T T

1 (f,- —VV(r;)+ ZF(I‘j — I‘z)) P

(4.38)

Définissons (O)(ry ) la moyenne d'une observable O sachant que la particule 1

est a une abscisse 71 .. Pour cela, nous intégrons sur toutes les forces, les positions
des particules 2 a NV et I'ordonnée 7, de la particule 1

(OY (1) = / dr1, / drs. . drydfy ... dfy O ({r} {EV) P ({r ) {6)  (4.39)

Dans la suite nous noterons r = (z,y) = r; et £ = (f;, f,) = fi pour alléger les
notations. La moyenne de I’équation (4.38]) nous donne dans I’état stationnaire

0=-0, <u

Jo —VV + ivj Fy(r; — r)] > = —0,J, (4.40)

=2

Le systeme étant confiné, le flux de particules J, est nul dans I’état stationnaire.
On peut alors utiliser J, = 0 pour exprimer la pression mécanique

P=N["@V)do =N [ <fx+éFx(rj—r)>dx (4.41)

Le facteur N prend en compte le fait que les N particules jouent un role symétrique.
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En multipliant I’équation (4.38]) par f, et en prenant sa moyenne, on obtient

T

0= _ar [,u <f:3 - f:tamv—'_ meFr(rj - I‘)>] - <fa:> (442>

En reportant cette expression dans I'équation (4.41)) et en effectuant 'intégration
spatiale, on obtient pour la pression

P =71uN{f*o+ TuN{ foF T g—l—N/ <ZF )>dx (4.43)

ou (-)¢ dénote une moyenne dans le coeur du systéme, en = = 0. Le role des
particules j = 2 a N étant identique dans I’équation (4.43)), on peut noter r’ = ry
et réécrire les deux derniers termes de 1’équation (4.43))

Pr=7uN({fs Z Fy(rj —1))o = TuN(N = 1) (foFo(r' = 1)), (4.44)

=2

Pp= N/ <ZF >da: — N(N—1) /OOO (F(r' —r))de  (4.45)

Comme les notations choisies le suggerent, les trois termes de I'équation (4.43))
sont les équivalents des trois termes obtenus pour des particules autopropulsées a
vitesse constante dans l'article [D] En notant Py la pression du gaz parfait actif,
Py =1uN{f2)o = uD;po, on a alors

P=Py+P+Pp (4.46)

Les trois contributions ne dépendent que des propriétés du coeur du systeme. C’est
évident pour la pression de gaz parfait Fy et la pression « indirecte » Py, qui sont
des moyennes calculées en x = 0. Pour la pression « directe » Pp, on peut le voir
en utilisant la probabilité de distribution a deux particules

Plry) = /dr3 o deydfy . dfy P ({r:) (£ (4.47)
La pression directe s’écrit alors
Pp = N(N —1) /Oo dz /OO da’ /OO dy /OO dy Fo(r' —r)P(rr)  (4.48)
0 —o0 —0o0 —00

Pour les valeurs 2’ > 0, on peut échanger le role des positions r et ', P(r,r’) =
P(r',r). Leur contribution s’annule par la loi d’action-réaction F,(r'—r) = —F,(r—
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r’). Les seules contributions a I'intégrale de 'équation (4.48)) sont donc pour z > 0
et 2’ <0

Pp=N(N-1) /OOO dx /OOO dx’ /o:o dy /O:O dy' F(r' — )P (r,r") (4.49)

Pour des forces F a courte portée, Pp est donc calculée dans une région finie de
I’espace autour de x = 0, dans le coeur du systeme.

Nous avons donc montré que, comme pour les spheres dures autopropulsées
a vitesse constante, la pression mécanique admet une équation d’état. Les trois
termes qui la composent sont les analogues des trois termes obtenus dans I’ar-
ticle DL

4.4.2 Perspectives

Dans article [D] nous avons étudié les conséquences de l'existence d'une équa-
tion d’état satisfaite par la pression mécanique sur les propriétés des phases homo-
genes. Cependant, comme nous 'avons vu pour les particules de déplagant a une
vitesse v(p), la deuxieme condition fixant les densités de coexistence fait intervenir
explicitement les termes de gradients, importants aux interfaces.

Pour aller plus loin, il serait donc nécessaire de calculer les fonctions de corré-
lations qui entrent dans les définitions de Pp et Py, en particulier les contributions
en gradients. L’enjeu sera alors de voir si ces contributions peuvent étre capturées
par une théorie en v(p), par exemple avec un noyau de moyennage asymétrique dé-
crivant bien les collisions. L’équivalence entre les spheres dures et les particules se
déplagant a une vitesse v(p) permettrait alors de mieux comprendre les premiéres
en profitant de notre connaissance de la thermodynamique des secondes.



Chapitre 5

La transition vers le mouvement
collectif

5.1 Introduction

L’émergence d'un mouvement collectif est sans doute le phénomene le plus
caractéristique de la matiere active. En effet, des particules autopropulsées qui
interagissent pour aligner leur direction de déplacement peuvent s’auto-organiser
pour se déplacer collectivement sur une échelle tres grande devant la taille typique
des particules. Contrairement a 'application d’un champ extérieur, qui imposerait
une direction de déplacement a I’ensemble des particules d'un systeme, c’est ici
une interaction d’alignement locale qui génére un mouvement collectif a grande
échelle, dont la direction résulte d'une brisure spontanée de symétrie.

Les exemples de mouvements collectifs sont nombreux dans le monde vivant, les
plus évidents étant les déplacements de groupes d’animaux (nuées d’oiseaux, bancs
de poissons, troupeaux, etc.). Pour ceux-ci, 'interaction d’alignement est d’origine
« sociale », le résultat d'un processus de « décision ». A plus petite échelle, d’autres
mécanismes sont en jeu. Les forces exercées entre cellules, ou les signaux biochi-
miques qu’elles échangent, peuvent étre a 'origine de la migration collective de
groupes de cellules [124], importante dans la morphogenese [125] ou le dévelop-
pement de cancers [126]. Des interactions stériques entre particules asymétriques,
par exemple entre des bactéries [23] ou des filaments du cytosquelette [22, 24, 130,
31|, conduisent également a un alignement effectif et & des mouvements collectifs.

Par ailleurs, il est également possible d’observer des mouvements collectifs avec
des particules actives inertes, fabriquées en laboratoire. Les exemples vont de grains
vibrés s’alignant par interactions stériques[42] aux « surfeurs » colloidaux s’alignant
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par interaction électrostatique [44] en passant par des gouttes autopropulsées [43]
alignées par des interactions hydrodynamiques.

On voit donc que des systemes variés, a des échelles différentes et avec des mé-
canismes d’alignement divers, donnent lieu a des mouvements collectifs. En tant
que physicien, on peut donc se demander si ces différents mouvements collectifs
partagent des propriétés communes, universelles. Pour répondre a cette question,
on peut étudier des modeles minimaux qui contiennent seulement les deux ingré-
dients partagés par tous les systémes que nous avons évoqués : 'autopropulsion et
une interaction locale d’alignement.

Le modele de Vicsek et collaborateurs [13, 127] a été introduit dans ce but.
Il décrit des particules ponctuelles se déplagant dans un plan continu a vitesse
constante vy suivant leur direction d’autopropulsion 6;. A chaque pas de temps
discret, At = 1, les directions de toutes les particules sont mises a jour en parallele
d’apres la regle

0i(t + 1) = (0;)jen; + & (5.1)

ou N est le disque de rayon unité autour de la particule 7, et & un nombre aléatoire
tiré uniformément dans [—m,7]. Les particules avancent ensuite dans leur nouvelle
direction r;(t+1) = r;(t) +vpe[f;(t+1)] ou e(f) = (cos #, sin ). Quand 'amplitude
du bruit sur 'alignement 7 est faible, les particules s’ordonnent pour se déplacer en
moyenne dans la méme direction. Le modele de Vicsek a donc permis de montrer
que l'autopropulsion et un alignement local suffisent a générer un mouvement
collectif.

5.1.1 Phase homogene ordonnée

Le fait méme que le modele de Vicsek montre un état ordonné apparut comme
une surprise aux yeux des physiciens. En effet, le modele de Vicsek peut étre vu
comme un modele XY dynamique, l'interaction d’alignement des vitesses étant
analogue a une interaction ferromagnétique entre des spins continus. Or, a [’équi-
libre thermique, le théoreme de Mermin-Wagner [14] montre qu’il est impossible
de briser spontanément une symétrie continue en 2d lorsque seules des interac-
tions a courte portée sont en jeu. Le modele XY n’a donc pas de phase ordonnée,
contrairement a son homologue actif.

La phase ordonnée du modele de Vicsek a d’autres propriétés inhabituelles.
Elle présente des corrélations a longue portée qui en font un systéme critique, sans
longueur caractéristique. Ces corrélations sont anisotropes et donc difficiles a me-
surer numériquement. Une maniere simple de les mettre en évidence est d’étudier
les fluctuations de densité. Pour cela, on mesure le nombre n de particules dans
des boites de taille variable et ’on compare la moyenne de n a la taille caracté-

ristique de ses fluctuations An = /(n?) — (n)2. Pour un systéme qui possede une
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longueur de corrélation &, des boites de taille grande devant £ peuvent étre divi-
sées en sous-boites indépendantes. Le nombre moyen de particules dans la boite
est alors une somme de variables aléatoires indépendantes et le théoréme central
limite impose donc An oc (n)*/2. Au contraire, pour le modele de Vicsek, on me-
sure [68] An o (n)®, avec a ~ 0.8. Ces fluctuations « géantes » de densité sont
une caractéristique récurrente des systémes actifs ordonnés, observée numérique-
ment [68 |71] et expérimentalement [40| |128] dans plusieurs systémes. La phase
ordonnée est également caractérisée par une super-diffusion dans la direction u
perpendiculaire a la direction moyenne de déplacement des particules. En effet,
une mesure du déplacement quadratique moyen des particules dans cette direction
donne [6§]

Ar = J(ro(t) —ri(0)]) ~ 1 (5.2)

avec un exposant v &~ 4/3, au lieu de ¥ = 1 pour une diffusion normale. Qua-
litativement, c’est cette super-diffusion qui permet de transmettre efficacement
I'information (la direction du mouvement) dans le systéme, et donc de stabiliser
I'ordre a longue portée.

La théorie de Toner et Tu 7375|129, |130] permet de prédire les propriétés de
la phase homogene ordonnée. Elle part d’équations pour un champ de densité p
advecté par un champ de vitesse v qui contiennent tous les termes permis par la
symétrie du probleme

Op+V-(pv)=0 (5.3)
Ov+ MV -V)v+ (V- -v)v= (a—ﬁ|v|2)v—VP (5.4)
+ D V(V V) + D Vv + Dy (v-V)Pv4f

ol f est un bruit blanc gaussien. L’équation ([5.4) est 'analogue d’une équation
de Navier-Stokes complétée par un terme de Ginzburg-Landau (« — B|v|?) v qui

tend & imposer une vitesse non nulle |v| = y/a/f pour « et § positifs. Notons
que ce terme brise l'invariance galiléenne de I'équation de Navier-Stokes, ce qui
autorise également les termes en A de I’équation . Ceci peut étre vu en posant
V(r,t) = v(r — ut) + u pour une vitesse constante u. On a alors, pour les termes
du membre de gauche de I'équation ([5.4))

ov=0v—-—u-Vv (5.5)
)\1(~ V)V:)\l [VV'V+U'VV]
M(V-¥)v =X [(V - v)v+ (V- v)u]

La dynamique de v est la méme que celle de v uniquement lorsque \; = 1 et
Ao = 0, comme c’est le cas pour ’équation de Navier-Stokes.
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Par une méthode de renormalisation dynamique, Toner et Tu sont capables,
moyennant certaines approximations [75], de calculer les exposants d’échelle de
plusieurs fonctions de corrélation. A notre connaissance, ces exposants n’ont pas été
vérifiés numériquement de facon systématique mais leurs prédictions concernant
la super-diffusion transverse et les fluctuations géantes de densités 'ont été. Ainsi,
la valeur calculée v = 4/3 pour la super-diffusion transverse correspond bien a la
valeur mesurée numériquement [68]. La loi d’échelle anormale des fluctuations de
densité peut étre obtenue a partir de la fonction de corrélation de la densité, ce
que nous détaillons ci-dessous.

La théorie de Toner et Tu prédit, pour la fonction d’autocorrélation de la
densité en espace de Fourier C,(q,t) = (|p(q,t)|?), des lois d’échelle différentes
suivant les régimes (g > q., ¢ < qLougq| ~ qu). A grande échelle, la contribution
dominante est donnée par le plus grand exposant, qui correspond aux modes g ~
q.. L’anisotropie de la fonction de corrélation devient alors sous-dominante. En
espace réel, on obtient

Colr,t) = (0p(r,t)dp(0,t)) ~ r~7 (5-8)

avec v = 8/10 et dp = p— pp ol py est la densité moyenne. On peut alors exprimer
la variance du nombre n de particules dans une boite B comme

AnQZ/Bdr/Bdr’C’p(r—r’) N/Bdr/Bdr'|r—r’\_”’ (5.9)

En adimensionnant 'équation ([5.9) par la taille ¢ de la boite, on trouve finalement

2d—~

An? ~ (277 ~pTa (5.10)

ot nous avons utilisé n = pof?. Pour d = 2, (2d — 7)/d = 1.6 ce qui donne bien
Iexposant o = 0.8 observé numériquement pour An.

5.1.2 Transition vers 1’état ordonné

Dans ce chapitre, nous nous intéresserons plus particulierement a la transition
de phase qui meéne au mouvement collectif, c’est-a-dire au passage entre 1’état
désordonné et 1'état ordonné. Celle-ci a lieu lorsqu’on change un parametre de
controle. Traditionnellement, cette transition a été étudiée en variant le bruit, qui
joue le role d'une température pour une transition ferromagnétique standard, mais
nous verrons qu’on peut 1’observer également en changeant la densité moyenne de
particules ou la vitesse d’autopropulsion.

L’article original de Vicsek et collaborateurs [13] faisait état d’une transition
continue, similaire a une transition critique dans un systéeme magnétique passif,
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Figure 5.1 — Les trois phases observées dans le modele de Vicsek. De gauche
a droite : désordonnée, inhomogene (une bande ordonnée se déplagant dans
un gaz désordonné) et ordonnée. Les fleches rouges indiquent la direction de
la bande (milieu) ou de I’ensemble des particules (droite).

entre les états homogenes désordonné et ordonné. Toutefois, Grégoire, Chaté et col-
laborateurs [68, [69] ont montré qu’a des tailles de systeme suffisamment grandes,
la transition est discontinue. En diminuant le bruit a partir de la phase désordon-
née, ils observent ’apparition de bandes ordonnées de haute densité qui se pro-
pagent dans un gaz désordonné de particules (voir figure . Ce n’est qu’a plus
faible bruit que I'on retrouve la phase homogene ordonnée. De plus, les bandes
apparaissent par nucléation et de I’hystérese est observée entre 1’état désordonné
et ’état inhomogene, comme pour les transitions du premier ordre a 1’équilibre.
Comme nous le verrons, la transition « continue » étudiée par Vicsek et collabo-
rateurs est un effet de taille finie observé quand le systeme n’est pas assez grand
pour accommoder une bande de haute densité. La transition étant faiblement du
premier ordre, la longueur de corrélation peut étre tres grande et laisser croire que
I'on est en présence d’'une transition critique.

A cause de ces effets de taille finie, ’étude du modele de Vicsek est assez diffi-
cile sur le plan numérique, malgré la simplicité apparente du modele. De plus, les
interactions entre bandes dans la phase inhomogene mettent en jeu des échelles de
temps tres grandes, ce qui rend I'étude de cette phase particulierement compliquée
numériquement. En outre, les régles qui définissent le modele de Vicsek (temps
discret, espace continu) se prétent mal & la construction d’équations hydrodyna-
miques. Pour mieux comprendre les propriétés de la transition vers le mouvement
collectif, Bertin et collaborateurs ont donc proposé un modele plus simple, qui ne
prend en compte que des collisions binaires entre particules |76} [78, 81]. Ce modele
peut étre décrit par une équation de Boltzmann, ce qui permet de construire des
équations hydrodynamiques dans la limite de basse densité, ou 1'on s’attend a ce
que ’hypothese de chaos moléculaire soit justifiée. Ces équations sont similaires
dans leur forme a celles de Toner et Tu mais leur construction explicite permet
d’obtenir I'expression des coefficients mésoscopiques en fonction des parametres
microscopiques du modele et de la densité. Les équations rendent compte du dia-
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Figure 5.2 — [llustration de la différence de symétrie entre le modele d’Ising
actif et le modele de Vicsek. Les fleches noires indiquent la direction d’auto-
propulsion des particules.

gramme des phases du modele de Vicsek, en particulier de la présence d’'une phase
inhomogene. En effet, une étude de stabilité linéaire montre que, dans une région de
I'espace des parametres, aucune phase homogene (ordonnée ou désordonnée) n’est
linéairement stable. Pour ces parametres, la solution stationnaire est donc obliga-
toirement inhomogene et les équations admettent des solutions propagatives [7§].
Toutefois, comme nous le verrons dans I'article [F], les équations de Bertin et al
admettent de nombreuses solutions inhomogenes qu’il n’est pas évident de relier
au comportement du modele de Vicsek.

5.1.3 La transition vers le mouvement collectif : une tran-
sition liquide-gaz

Le message central de ce chapitre est que la transition vers le mouvement
collectif gagne a étre interprétée comme une transition liquide-gaz, plutét quune
transition ferromagnétique. Cette affirmation fait suite a I’étude du modele d’Ising
actif, présenté en détail dans l'article [E] qui permet d’étudier la transition vers le
mouvement collectif dans un cadre plus simple que celui du modele de Vicsek. Ce
modele est basé sur les mémes ingrédients que le modele de Vicsek : 'autopro-
pulsion et une interaction d’alignement locale. La principale différence est dans la
symétrie du parametre d’ordre : les particules du modele d’Ising actif ont deux
directions d’autopropulsion possibles, vers la gauche ou vers la droite (et diffusent
symétriquement dans la direction verticale), contrairement aux particules du mo-
dele de Vicsek qui peuvent se propulser dans une direction arbitraire du plan (voir
figure pour une illustration). Le modele d’Ising actif possede donc, comme le
modele d’Ising standard, une symétrie rotationnelle discrete, tandis que le modele
de Vicsek possede une symétrie rotationnelle continue, comme le modele XY.

Quand la température, qui controle l'efficacité de l'interaction d’alignement,
diminue (ou que la densité augmente), on observe dans le modele d’Ising actif le
méme type de transition vers le mouvement collectif que dans le modele de Vic-
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sek : d'un état désordonné, on passe a un état inhomogene, ot une bande ordonnée
dense se déplace dans un gaz dilué désordonné, puis a un état homogene ordonné.
Cependant, comme pour les modeéles magnétiques d’équilibre, la différence de sy-
métrie entre le modele de Vicsek et le modele d’Ising actif entraine des différences
qualitatives importantes, en particulier dans la phase ordonnée. Ainsi, la phase
ordonnée du modele d’Ising actif a des corrélations a courte portée et des fluctua-
tions de densité normales, ce qui la rend plus simple a étudier que celle du modele

de Vicsek.

La transition vers le mouvement collectif dans le modele d’Ising actif est tres
similaire a une transition liquide-gaz passive. Dans la phase inhomogene, on ob-
serve une séparation de phase entre un liquide ordonné et un gaz désordonné. Les
densités de coexistence sont controlées par la température et la vitesse d’auto-
propulsion mais ne dépendent pas de la densité moyenne de particules py. Varier
po change donc simplement la fraction de liquide dans le systeme, qui est donnée
par la loi du levier comme pour une transition liquide-gaz d’équilibre. Cependant,
le diagramme des phases dans I'ensemble canonique (température, densité; voir
figure differe d’un diagramme liquide-gaz classique. En effet, le liquide et le
gaz ont des symétries différentes (polaire et désordonné) ; le systéme ne peut donc
pas passer contintiment de I'un a ’autre, si bien que le diagramme des phases ne
peut avoir de région supercritique. Cela se traduit par une asymptote a une tem-
pérature finie sur le diagramme des phases et un déplacement du point critique
a une densité infinie (voir figure . Cette interprétation de la transition vers
le mouvement collectif comme transition liquide-gaz n’explique pas simplement le
diagramme des phases du modele. Elle prédit également un grand nombre de ca-
ractéristiques de la transition (effets de taille finie, boucles d’hystérese, variation
de aimantation, etc.) sur lesquelles nous reviendrons dans I’article .

De plus, cette image nous a permis de porter un regard nouveau sur le modele
de Vicsek. Comme nous le montrons dans Particle [G] le modele de Vicsek présente
également une transition de type liquide-gaz et son diagramme des phases a la
méme forme que celui du modele d’Ising actif. La différence majeure entre les deux
modeles est la forme des profils de densité dans la phase inhomogene. Alors que
le modele d’Ising actif donne lieu a une séparation de phase compléte entre deux
domaines de tailles arbitraires, le modele de Vicsek donne lieu a une séparation en
microphases : on observe dans la phase inhomogene des bandes ordonnées de taille
finie réparties périodiquement dans le systeme (voir figure . Nous montrerons
dans larticle [F] que les équations hydrodynamiques supposées décrire ces modeles
admettent, de maniére équivalente, les deux types de solutions (séparation de phase
et microphases). Elles n’expliquent donc pas pourquoi un comportement ou l'autre
est observé dans les modeles microscopiques. Pour comprendre cela, nous verrons
qu’il faut impérativement tenir compte des fluctuations et donc travailler au niveau
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Figure 5.3 — Haut : Diagramme des phases dans 1’ensemble canonique
(température ou bruit, densité) pour différents modeéles microscopiques pré-
sentant une transition vers le mouvement collectif. Les diagrammes ont la
méme forme (celui des batonnets autopropulsés n’est pas présent dans la
littérature). Bas : Instantané dans la phase de coexistence, qui est qualita-
tivement différente pour chaque modele. Figures reproduites de [71] pour les
nématiques actifs et |[70] pour les batonnets autopropulsés.

des hydrodynamiques fluctuantes.

Dans ce chapitre, nous discuterons uniquement des modeles décrivant des par-
ticules autopropulsées interagissant via un alignement ferromagnétique. Toutefois,
il semble que le scénario de transition liquide-gaz soit plus général. En particulier,
le diagramme des phases du modele de nématiques actifs [71], décrivant des parti-
cules vibrant sur place et s’alignant avec une interaction nématique (voir figure
dans l'introduction de cette these), est similaire a ceux du modele d’Ising actif et
du modele de Vicsek (voir figure . Un modele de batonnets autopropulsés qui
s’alignent nématiquement [70] montre également une séparation de phase entre
un domaine liquide ordonné et un gaz désordonné. L’image qui semble se déga-
ger, et qui reste a étayer, est que, dans tous ces modeles minimaux décrivant des
particules autopropulsées qui s’alignent localement, la transition vers le mouve-
ment collectif s’inscrit dans le cadre général des transitions liquide-gaz. Dans tous
les cas, le liquide et le gaz ont des symétries différentes, ce qui impose la forme
du diagramme des phases. Cependant, les phases liquides des différents modeles
ont des propriétés différentes (ordre polaire ou nématique, fluctuations de densité
géantes ou normales), ce qui conduit a différentes formes de coexistence de phase :
séparation de phase dans le modele d’Ising actif, en microphases dans le modele de
Vicsek, phase « chaotique » dans les nématiques actifs [71] ou bandes immobiles
avec un ordre nématique pour les batonnets autopropulsés [70] (voir figure [5.3).
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Nous commencerons ce chapitre par une étude détaillée du modele d’Ising actif en
deux dimensions a la section [5.2 et montrerons que la transition vers le mouvement
collectif dans ce modele est similaire a une transition liquide-gaz. A la section ,
nous montrerons que les équations hydrodynamiques écrites pour décrire les mo-
deles de particules autopropulsées avec alignement (en particulier le modele d’Ising
actif et le modele Vicsek) admettent génériquement les mémes types de solutions
propagatives. Parmi ces solutions, certaines décrivent une séparation de phase telle
qu’observée dans le modele d’Ising actif, d’autres la séparation en microphases du
modele de Vicsek. Toutefois, les équations hydrodynamiques ne permettent pas
de comprendre comment une des solutions est sélectionnée dans chaque modele
microscopique. Nous verrons a la section que la transition dans le modele de
Vicsek est également de type liquide-gaz et montrerons que le bruit joue un role
crucial dans la sélection de la forme des profils inhomogenes. Enfin, a la section[5.5]
nous nous intéresserons a des modeles de mouvement collectif en dimension d = 1,
qui ont une phénoménologie assez différente. En effet, les fluctuations déstabi-
lisent alors I’état ordonné et conduisent a un comportement intermittent que nous
analyserons.

Notons que les articles |H]| et |I reproduits en annexes pour éviter des redon-
dances, sont des versions plus condensées des articles [E] et |F| inclus dans ce cha-
pitre. Ils peuvent donc constituer une bonne introduction aux sections et 5.3
respectivement.

5.2 Le modele d’Ising actif

Dans l'article[E] que nous reproduisons ici, le modele d’Ising actif en dimension
d = 2 est étudié en détail. Apres avoir défini le modele, nous explorerons numé-
riquement sa phénoménologie : diagramme des phases, dynamique de coarsening,
boucles d’hystérese, corrections de taille finie, etc. De plus, nous construirons expli-
citement des équations hydrodynamiques a partir du modele microscopique. Celles-
ci sont basées sur des équations de champ moyen, corrigées pour tenir compte de
I'impact des fluctuations locales sur la dynamique des champs de densité et d’ai-
mantation. Elles permettent alors de reproduire les caractéristiques principales de
la phénoménologie du modele microscopique.
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Flocking with discrete symmetry: the 2d Active Ising Model
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We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges
from the spontaneous breaking of a discrete symmetry. On a 2d lattice, active particles undergo a
diffusion biased in one of two possible directions (left and right) and align ferromagnetically their
direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry.
We show that the transition to collective motion amounts in this model to a bona fide liquid-gas
phase transition in the canonical ensemble. The phase diagram in the density/velocity param-
eter plane has a critical point at zero velocity which belongs to the Ising universality class. In
the density/temperature ‘canonical’ ensemble, the usual critical point of the equilibrium liquid-gas
transition is sent to infinite density because the different symmetries between liquid and gas phases
preclude a supercritical region. We build a continuum theory which reproduces qualitatively the
behavior of the microscopic model. In particular we predict analytically the shapes of the phase
diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and

the speeds and shapes of the phase-separated profiles.
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tablished [11, 13, 14]. When decreasing the noise on the
aligning interaction, or increasing the density, a transi-
tion takes place from a disordered gas into an ordered
state of collective motion. Between these two homoge-
neous phases lays a region of parameter space where par-
ticles gather in dense ordered bands travelling in a dilute
disordered background. These bands, which are a robust
feature of flocking models [13, 15-20], are a signature of
the first-order nature of the transition, together with in-
termittency, metastability and hysteresis [13, 14]. Unfor-
tunately, they are seen only in large systems and strong
finite size effects render the numerical study of the Vicsek
model (VM) very costly in computing power.

To overcome these numerical difficulties and gain
more insight into the flocking transition, a number of
analytical approaches have been followed. Hydrody-
namic equations for Vicsek-like models have been ei-
ther derived by coarse-graining [19, 20] or proposed phe-
nomenologically [12, 15, 21]. These equations predict
phase diagrams in qualitative agreement with the micro-
scopic models, including the existence of inhomogeneous
bands [14, 15, 19, 20]. Their analytical study is however
so complicated that little can be done beyond working
with their linearized version. Nevertheless, some progress
was made to account for the long range order and gi-
ant density fluctuations observed in the ordered phase of
the Vicsek model [12]. Interestingly, it was also recently
shown that all hydrodynamic equations derived for polar
flocking models [15, 19, 20, 22] admit the same family
of 1d propagative solutions [23]. A complete analytical
study of the Vicsek model, from micro to macro, however
remains elusive.

An alternative strategy to gain insight into the flock-
ing transition relied on the introduction of an Active Ising
Model (AIM) [22] which circumvents both the numerical
and analytical pitfalls of the Vicsek model. Using non-
equilibrium versions of ferromagnetic models has indeed
often proven a useful strategy [17, 24-26]. The AIM,
which we study in detail in this paper, contains the two
key ingredients for flocking: self-propulsion and aligning
interactions. The continuous rotational symmetry of the
Vicsek model is however replaced by a discrete symme-
try; In the AIM, particles diffuse in the 2d plane but
are self-propelled in only one of two possible directions
(left or right). It is thus akin to a dynamical Ising model
where particles have a discrete rotational symmetry. The
AIM is found to have a simpler, more tractable, behavior
than the Vicsek-like models with continuous symmetry
while still retaining a large part of their physics. Using
a lattice-based model also simplifies both numerical and
analytical studies.

After introducing the model in section II, we present a
numerical study of the 2d AIM in section III. Our main
conclusion is that the transition in the AIM amounts
to a liquid-gas transition in the canonical ensemble. At
fixed orientational noise, the system can be in two “pure”
states: a disordered gas or an ordered liquid, the latter
leading to a collective migration of all particles to the
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FIG. 1. Sketch of the two possible actions and their rates of
occurrence. The ferromagnetic interaction between particles
is purely on-site and particles diffuse freely. Beyond the biased
diffusion shown here, particles also hop symmetrically up or
down, with equal rates D in both directions.

left or to the right. When constraining the system’s den-
sity to lie between two ’spinodal lines’, no homogeneous
phase can be observed and the system phase separates,
with an ordered travelling liquid band coexisting with a
disordered gas background. A key difference with the
usual equilibrium liquid-gas transition is that liquid and
gas have different symmetries; A supercritical region is
thus prohibited since one has to break a symmetry to take
the system from a gas to a liquid state, which explains
the atypical shape of the phase diagram.

In section IV, we complement our numerical approach
by deriving a set of hydrodynamic equations for the dy-
namics of the local density and magnetisation fields. In-
terestingly, a simple mean-field theory wrongly predicts
a continuous transition, failing to account for the phase-
separated profiles. A refined mean-field model, taking
into account the fluctuations of the density and magneti-
sation fields, reproduces qualitatively the phenomenol-
ogy of the AIM. In section V, we use the hydrodynamic
equations to compute at large densities the shape of the
phase-separated profiles, the coexisting densities, the ve-
locity of the liquid domain and account for the finite-size
scalings observed in the microscopic model. Finally, we
argue in section VI in favor of the robustness of our re-
sults by considering an off-lattice version of the model
and different boundary conditions.

II. DEFINITION OF THE MODEL

We consider N particles moving on a 2D lattice of
L, x L, sites with periodic boundary conditions. Each
particle carries a spin £1 and there are no excluded vol-
ume interactions between the particles: there can thus
be an arbitrary number nzjE of particles with spins £1 on
each site ¢ = (i1,42). The local densities and magnetiza-
tions are then defined as p; = anrn; and m; = n:r -n; .
We consider a continuous-time Markov process in which
particles can both flip their spins and hop to neighboring
lattice sites at rates that depend on their spins. The hop-
ping and flipping rates, detailed in the next subsections,
are such that our model is endowed with self-propulsion
and inter-particle alignment, hence consituting a flocking
model with discrete symmetry.
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FIG. 2. A loop of four configurations involving 2 particles on
2 sites breaking Kolmogorov’s criterion[27] showing that the
system does not satisfy detailed balance even when ¢ = 0.
The numbers associated to the arrows are the transition rates
for ¢ = 0. The product of the transition rates along C1 —
C2 — C3 — C4 — C1 (left to right) is 2D%e~2? whereas the
reverse order (right to left) yields 2D%e 4.

A. Alignment: Fully connected Ising models

A particle with spin s on site ¢ flips its spin at rate
Wis -9 =yew (-s8™) ()
Pi

where = 1/T plays the role of an inverse temperature.
These rates satisfy detailed balance with respect to an
equilibrium distribution P o< exp[—BH]| where H is the
sum over the L,L, lattice sites of the Hamiltonians of
fully connected Ising models:

PR ZZS%
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The first sum runs over the lattice site index i = (i1, 12),
the next two over the particles j, k present on site i, and
S; = +1 is the value of spin j. (The factor 1/2 simply
avoids double counting.) The rate v can always be ab-
sorbed in a change of time unit so that we take v = 1,
silently omitting it from now on.

This interaction is purely local: particles only align
with other particles on the same site and, without parti-
cle hopping, the model amounts to L? independent fully
connected Ising models. The factor 1/p; in W makes the
Hamiltonian H extensive with N and keeps the inter-
action rates bounded: the rate W (s — —s) at which a
particle of spin s flips its spin varies between exp(—/3) if
all the other particles on the same site have spins s to
exp[B(1 — 2/p;)] if they all have spins —s.

B. Self-propulsion: Biased diffusion

Particles also undergo free diffusion on the lattice, with
a left/right bias depending on the sign of their spins: a
particle with spin s hops with rate D(1 + se) to its right,
D(1 — se) to its left, and D in both the up and down
directions. There is thus a mean drift, which plays the
role of self-propulsion, with particles of spins £1 moving
along the horizontal axis with an average velocity £2De.

3
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FIG. 3. Examples of density profiles (green line) and magne-
tization profiles (blue line) averaged along vertical direction
for the three phases. (a) Disordered gas, 8 = 1.4, po = 2.
(b) Polar liquid, 8 = 2, po = 7. (c) Liquid-gas coexistence,
B = 1.6, po = 5. (d) 2d snapshot corresponding to (c). (for
all figures D =1, ¢ = 0.9)

The model is designed to have the self-propulsion en-
tering in a minimal and tunable way through the param-
eter €. Importantly, the limit of vanishing self-propulsion
e — 0 is well-defined because the spins still diffuse on the
lattice. This dynamics should thus allow us to interpole
continuously between ‘totally self-propelled’ (¢ = 1), self-
propelled (e €]0, 1[), weakly self-propelled (¢ ~ 1/L) and
purely diffusive (¢ = 0) particles.

This differs from the Vicsek model where the zero-
velocity limit corresponds to immobile particles under-
going an equilibrium dynamics resembling that of the
XY model, with a quenched disorder on the bonds (only
particles closer than a fixed distance interact).

Let us note, however, that even when ¢ = 0 the model
is not at equilibrium i.e. it does not satisfy detailed
balance with respect to any distribution. This is easily
shown using Kolmogorov’s criterion [27]. In Fig. 2, we
exhibit a loop of four configurations such that the prod-
ucts of the transition rates for visiting the loop in one
order, C; — Co — C3 — C4 — Cq1, and the reverse order
are different, whence a violation of detailed balance. To
make the ¢ = 0 limit an equilibrium dynamics, one strat-
egy could be to choose hopping rates satisfying detailed
balance with respect to the Hamiltonian H defined in (2),
replacing D by D exp(—SAH/2)). The steady-state dis-
tribution would however be factorized and not very in-
teresting. An alternative would be to further add to (2)
nearest neighbours interactions but we have not followed
this cumbersome path here. Actually, as we show in sec-
tion IIT B, this microscopic irreversibility when € = 0 is
irrelevant at large scales and we recover in this limit a
phase transition belonging to the Ising universality class.
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FIG. 4. Phase-separated density (left) and magnetization

(right) profiles as the density increases. Parameters: = 2,
D =1, e = 0.9, system of size 800x100. The profiles have
been averaged over time and along the y axis.

C. Simulations

To simulate the dynamics of the model, we used a
random-sequential-update algorithm. We discretized the
time in small time-steps At. A particle is then chosen at
random; it flips its spin s with probability W (s — —s)At,
hops upwards or downwards with probabilities DAt, to
its right or to its left neighboring sites with probabilities
D(1 + se)At. Finally, it does nothing with probability
1—[4D 4+ W (s — —s)]At. Time is then incremented by
At/N and we iterate up to some final time. In practice
we used At = [4D + exp()]~! to minimize the probabil-
ity that nothing happens while keeping all probabilities
smaller than one.

Note that this algorithm does not allow a particle to be
updated twice (on average) during At and is thus an ap-
proximation of our continuous-time Markov process. We
also used continuous-time simulations, associating clocks
to each particle or each site and pulling updating times
from the corresponding exponential laws. In practice we
did not find any difference in the simulation results but
the continuous time simulations were often slower so that
we mostly used the random sequential update algorithm.

In most of this article we use simulation boxes with
L, x L, lattice sites and periodic boundary conditions. In
section VI A we discuss what happens for closed bound-
ary conditions.

III. A LIQUID-GAS PHASE TRANSITION

We explored the phase diagram using three control pa-
rameters: the temperature 7 = 37!, the average density
po = N/(L;L,), and the self-propulsion ‘speed’ e. Doing
so, we observed three different phases shown in Fig. 3.
For £ # 0, at high temperatures and low densities, the
particles fail to organize and we observe a homogeneous
gas of particles with local magnetization (m;) ~ 0. On
the contrary, for large densities and small temperatures,
the particles move collectively either to the right or to the
left, forming a polar liquid state with (m;) = mg # 0.
For intermediate densities, when pg € [pg(T',€), pe(T,€)],
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FIG. 5. Phase diagrams of the AIM. The red and blue lines de-
limit the region of existence of phase-separated profiles. Left:
Parameter spaces (T'=1/8, po) for D = 1. Red and blue co-
existence lines correspond to € = 0.9 while the green dashed
line indicates the critical points at € = 0. Right: Parameter
space (g, po) for D =1, 8 =1.9. At ¢ = 0 we recover critical
point in the Ising universality class.
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FIG. 6. Schematic picture of the differences between the
phase diagrams of the passive and active liquid gas transi-
tion. In the active case, because the liquid and the gas have
different symmetries, the critical point is sent to p = oo, thus
suppressing the supercritical region.

the system phase separates into a band of polar liquid
traveling to the left or to the right through a disordered
gaseous background.

The lines py(T,€) and pe(T,€) both delimit the do-
main of existence of the phase-separated profiles and play
the role of coexistence lines: As shown in Fig. 4, for
all phase-separated profiles at fixed T, €, the densities
in the gas and liquid part of the profiles are p, and py,
respectively. Correspondingly, the magnetization are 0
and my(T,€) # 0. Thus, varying the density po at con-
stant temperature and propulsion speed solely changes
the width of the liquid band. Consequently, in the phase
coexistence region, the lever rule can be used to deter-
mine the liquid fraction ® in the same way as for an
equilibrium liquid-gas phase transition in the canonical
ensemble:

(I):PO_pg (3)
Pt — Pg

As we shall see below, this analogy goes beyond the
sole shape of the phase separated profiles and the phase-
transition to collective motion of the active Ising model
is best described as a liquid-gas phase transition rather
than an order-disorder one.
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A. Temperature-density ‘canonical’ ensemble

The phase diagram in the (T, py) parameter plane,
computed for € = 0.9, is shown in the left panel of Fig. 5.
While the general structure of the phase diagram, with
a gas phase, a liquid phase, and a coexistence region, is
reminiscent of an equilibrium liquid-gas phase diagram,
the shapes of the transition lines are unusual. This dif-
ference can be understood using a symmetry argument.
Since the disordered gas and the polar liquid have differ-
ent symmetries, the system cannot continuously trans-
form from one homogeneous phase to the other without
crossing a transition line. There is thus no super-critical
region and the critical point is sent to T, = 1 and p. = oo.
(See Fig. 6 for a schematic picture.)

This symmetry argument should be rather general for
flocking transitions separating a disordered state and a
symmetry-broken state of collective motion. Indeed, in
Vicsek-like models, where the role of the inverse temper-
ature is played by the noise intensity, the phase diagrams
are qualitatively similar to the one shown in Fig. 5. This
is true both for the full phase diagram recently computed
in [14] as well as for earlier results [13], for a slightly dif-
ferent kinetic model and its hydrodynamic theory [19],
but also for an active nematic Vicsek-like model [28] and
a hydrodynamic theory of self-propelled rods [29].

B. Velocity-density ensemble

Conversely, one can change the strength of the self-
propulsion ¢ while keeping the temperature fixed. Again,
one obtains a phase diagram with three regions. The dif-
ference with the canonical ensemble is that in this pa-
rameter plane, the two coexistence lines merge at € = 0,
where self-propulsion vanishes, yielding a critical point at
a finite density p*(T") (See the right panel of Fig. 5). The
curve p*(T) is reported in the left panel of Fig. 5 and sat-
isfies p*(T') € [pg(T,€), pe(T,€)]. In section IITF we show
that this critical point belongs to the Ising universality
class.

The shape of this phase diagram is identical to the one
computed in [15] for a phenomenological hydrodynamic
description of self-propelled particles with polar align-
ment. The comparison with other microscopic models in
the literature is however hard to make since there seems
to be very few studies in the (e, pg) plane, probably be-
cause very few models admit a well-defined zero velocity
limit.

C. Nucleation vs spinodal decomposition

As for an equilibrium liquid-gas transition, the coex-
istence lines py(T, ) and p¢(T,€) are complemented by
spinodal lines ¢4 (T, €) and @¢(T', €) that mark the limit of
linear stability of the homogeneous gas and liquid phases,

t=0 t = 200 t = 4600 t > Tyt

gas nucl.

gas spin.

FIG. 7. Successive snapshots following quenches from homo-
geneous gas and liquid phases inside and outside the spinodal
region. Parameters: D = 1,e = 0.9,8 = 1.8, system sizes
400x400 and 1000x1000 for the quenches from the gas and
liquid phases. From top to bottom, po = 1.84, 3, 3, 4.7. See
Supplementary Movies in [49].

respectively. While p, and p, are easily measured in sim-
ulations, ¢4 and ¢, are much harder to access numerically
at non-zero temperature: When the system is in the co-
existence region but outside the putative spinodal lines,
the homogeneous phases are metastable and finite fluctu-
ations make the system phase-separate. The closer to the
spinodal line, the faster this nucleation occurs and it is
then difficult to pinpoint precisely the transition from a
‘fast’ nucleation to a spinodal decomposition. Neverthe-
less, the differences between the coexistence and spinodal
regions are clearly seen when, starting from a homoge-
neous phase, one quenches the system in the coexistence
region but relatively far away from the spinodal lines.

Quenching outside the spinodal region, the homoge-
neous phases are metastable. The closer to the binodals,
the longer it takes for a liquid (resp. gas) domain to be
nucleated in the gas (resp. liquid) background. The con-
vergence to the phase-separated steady-state then results
from the coarsening of this domain.

Quenching inside the spinodal region, the different
symmetries between gas and liquid result in different
spinodal decomposition dynamics when starting from or-
dered and disordered phases. Starting from a disordered
gas, the linear instability almost immediately results in
the formation of an extensive number of small clusters of
negative and positive spins. The coarsening then stems
from the merging of these clusters, until a single, macro-
scopic domain remains. The late stage of the coarsening
is thus dominated by the long-lived competition between
a small number of right- and left-moving macroscopic
clusters. Their shapes (see Fig. 8) are reminiscent of
the counter-propagating arrays of bands reported in [30],



FIG. 8. Snashots in the late stage of coarsening taken from
the same simulation as the first row of fig. 7 at time ¢t =
283000 (left) and t = 310000 (right). Parameters: D = 1,e =
0.9, 8 = 1.8, po = 3, system sizes 400x400.

where it was suggested, using deterministic simulations
of the Boltzmann equation derived for kinetic flocking
models, that such profiles could constitute a new phase of
flocking models. In our simulations, we always observed a
coarsening process leading to a single band, which seems
to indicate that the apparent stability of these solutions
in [30] could be due to the lack of fluctuation terms. It
would nevertheless be interesting to make a more detailed
study of the coarsening dynamics to see if these alternat-
ing bands could indeed form a stable phase (for instance
at low temperatures, where the coarsening seems to be-
come slower and slower).

Starting from the ordered phase, the linear instabil-
ity results in many liquid domains which all move in the
same direction. The coarsening then results from the
collision of liquid bands that move in the same direc-
tion, but with slightly different speeds. See Fig. 7 and SI
movies [49] for examples of these four possible dynamics.

D. Hysteresis loops

Another similarity with a liquid-gas transition is the
presence of hysteresis loops obtained by varying slowly
the density at constant 5 and ¢ in finite-size systems.
Such loops are shown in the left panel of Fig. 9, where the
liquid fraction ® is reported as the density is continuously
ramped up and down. To measure ® numerically, a first
strategy, followed in [22], is to compute average density
profiles at fixed pg, as shown in the left panel of Fig. 4
and use an arbitrary density treshold between p, and p,
to associate each site to the gas or liquid regions.

Since the interfaces between gas and liquids are not
perfectly straight, this is slightly artefactual for finite-
size systems. Here we decided to measure ¢ numerically
through:

1
By, = ———— Y m; 4

where my is the magnetization of the plateau in the lig-
uid part of the profile. (my is independent of py as long
as the system is phase-separated and corresponds to the
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Left: Evolution of the liquid fraction ¢ upon
changing continuously po. Large jumps in ® correspond to
the nucleation of bands in meta-stable homogeneous pro-
files while small jumps are finite-size effects due to the finite
width of the interfaces connecting the gas and liquid regions.
The density is increased by dpo = 0.02 every At = 2000.
L, x L, =800 x 100, 8 = 2, = 0.9, D = 1. Right Evolu-
tion of the magnetisations per particles and per sites as the
density is varied. The linear scaling typical of liquid-gas phase
transition is seen using my = M/Lz.

magnetization of a uniform liquid phase at the coexis-
tence density py.) The results are very similar to those
obtained in [22] but first (4) is faster to measure and
second it does not rely on an arbitrary density treshold.

Starting in the gas phase and increasing the density,
the system remains disordered, with a liquid fraction
¢ = 0, until a band of liquid is nucleated, at which point
¢ jumps to a finite value. Increasing again pg, the liquid
region widens until the two interfaces between gas and
liquid almost touch and the liquid phase almost fills the
system. At that point, the system jumps to a homoge-
neous liquid phase with ¢ = 1.

Upon decreasing the density, a similar scenario occurs:
A homogeneous liquid becomes metastable as the coexis-
tence line is crossed. As the density keeps decreasing, the
system thus remains in a liquid state with ® = 1 until
a nucleation event brings it to a phase-separated profile.
The liquid region then shrinks until its boundaries al-
most touch and a second discontinuity of ® occurs as the
system jumps into a homogeneous gas phase.

E. Order parameter and finite-size scaling

The liquid-gas transition picture suggests different
finite-size scaling and order parameter than those asso-
ciated to magnetic phase transitions previously used to
study flocking models. Most studies [13, 31, 32] indeed
relied on the mean magnetization per particle

1
mNZN;mi (5)

rather than the mean magnetization per unit area

1
mp = I.L, Zi:mi = pomn (6)
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FIG. 10. Hysteresis loops for system sizes 200x100, 400x100
and 800x100. For each system, the density is increased by
dpo = 0.02 every At = 2000. T'= 0.5, e = 0.9.

For models like the Vicsek model, the former is noth-
ing but the polarisation my = P while the latter is
related to the total momentum mj; = poP/v. In the
phase-separated region, both can be related to the liquid
fraction ® through Eq. (3)

Pt — Pg

mr, =¢'mg ngm (8)
Pe — Pg

1
myN = N(I)LzLymé =my

The simple linear scaling of my, with py — p, is replaced
by a non-linear dependence of my with pg, as shown in
Fig. 9, right panel. An apparently inoccent change of
the normalization used to make the magnetisation M =
>, m; intensive can thus turn the simple affine scaling
of my with pg, typical of a liquid-gas transition, into
the non-linear dependence of my that could make one
mistake the transition for a critical one.

Let us now go back to the hysteresis loops and discuss
their finite size scaling. As shown in figure 10, the discon-
tinuities of the liquid fraction get closer and closer to the
binodals pg and py as the system size increases, leading to
vanishingly small hysteresis loops in the thermodynamic
limit.

Consider first the transition from gas to phase-
separated profiles. The liquid fraction exhibits two dif-
ferent discontinuities when the density is decreased or
increased, due to two different effects. As the density
is decreased, phase-separated profiles cannot be main-
tained arbitrarily close to pgy. There is indeed a critical
nucleus, which roughly amounts to two connected domain
walls, as can be seen in Fig. 4 for pg = 1.2. As shown
on Fig. 11 (left), this critical nucleus L. is independant
of the system size. If the excess mass L;Ly(po — pg)
is smaller than a critical value ¢.L,, this critical nu-
cleus cannot be accomodated in the system, which thus
falls into the gas phase. As the system size increases,
the minimal density to observe phase-separated profiles
po = pg + pc/ (L) thus converges to p, as L, increases
and phase-separated profiles are seen closer and closer to
the binodal. The second discontinuity, met upon increas-
ing the density, corresponds to the nucleation of a liquid
band of width L, in a gaseous background. Since L; can
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FIG. 11. Left: Divergence of the critical nucleus L. when
approaching the critical points § — 1 and € — 0. To measure
L., we started in the phase-separated state and decreased con-
tinuously the density (the errorbars correspond to the density
step used) to record the density p,, at which the liquid band
disappears. L. is then defined by Lpm = Lpg+ Le(pe— pg), sO
as the length of a band at density p¢ that can be made with
the excess density pm — pg. Right: Variation of the critical
nucleus iwht L showing that, within numerical errors, it does
not depend on system size. Parameters: D = 1, ¢ = 0.9,
B8=19

be anything between L. and L,, increasing the system
size at fixed density should decrease the mean time until
nucleation of such bands, thanks to an entropic contri-
bution due to the number of places where the bands can
be nucleated. As shown in 10, this is indeed the case
and the transition to phase-separated profiles thus also
happens closer and closer to the binodal p,.

The same line of reasoning can be used to understand
the scaling of the second hysteresis window, close to py.
Thus, in the thermodynamic limit, all discontinuities dis-
appear and the liquid fraction varies continuously from
¢ =0at pgp=pgtop=1at pg = pg, as for an equi-
librium liquid-gas transition in the canonical ensemble.
Note that the width of the critical nucleus diverges as
one gets closer and closer to the critical points (¢ = 0
or f = 1), as shown in the right panel of Fig. 11. This
could explain why some studies of the Vicsek model in
the small velocity region claim to find a critical transi-
tion: as one gets closer and closer to the zero speed limit,
the system-size above which one can correctly observe the
discontinuous nature of the transition diverges[33].

F. The ¢ =0 critical point

While the g = 1, p. = oo, critical point is out of
reach numerically, the study of the ¢ = 0 critical point
is accessible. At ¢ = 0, there is no self-propulsion and
the phase transition is of a completely different nature
from the liquid-gas transition described above. As we
show below, despite the dynamics being non-equilibrium,
it turns out to be a standard critical phase transition
belonging to the Ising universality class.

We studied this critical point using a finite-size scaling
standard for magnetic systems at criticality [34]. We thus
consider the magnetization my € [0,1]. In equilibrium,
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FIG. 12. Left: Binder cumulant G(p) from which we find the critical density p* = 2.798 £ 0.002. Other three figures: data
collapse on the universal scaling functions F,,, F, and Fg (defined in the text) when the data is rescaled with the 2d Ising
exponent values 8 =1/8, y=7/4andv=1. t = Ll/"(p —p*)/p*. Parameters: D =1,¢=0.9, §=1.9.

around ferromagnetic critical points, the order parame-
(m*)

ter, susceptibility and Binder cumulant G = 1 — m7yT
are known [34] to obey the finite-size scaling relations

(m) = LIV F,,(tLY") )
x = L*((m®) — (m)?) = L"VE (tLYY) - (10)
G = Fg(tLY") (11)

where t = LY¥(p— p*)/p* is the rescaled distance to the
critical density p*. Fy,, Fy and Fg are universal scaling
functions and 3, v and v the usual critical exponents.

We used the fact that G(t = 0) is independent of L to
find the critical density, which is thus the density where
all the curves G(t) for different system sizes intersect
(Fig. 12, left). We found that the value at the cross-
ing point is the same universal value G(t = 0) ~ 0.61 as
in the 2d Ising model [35]. A very neat data collapse is
further observed for the critical exponents of the 2d Ising
model 8 = 1/8, v = 7/4 and v = 1 (see Fig. 12). We
thus conclude that the critical point at € = 0 is indeed in
the Ising universality class.

Note that a direct evalutation of the critical exponents
is much harder than for the equilibrium Ising model.
Here, the dynamics is fixed so one cannot use alterna-
tive dynamics like cluster algorithms to circumvent the
problem of critical slowing down.

G. Number fluctuations

In most flocking models the homogeneous ordered
phase exhibits giant density fluctuations [13, 15, 28, 36,
37]. These are quantified by measuring number fluc-
tuations, 4.e by counting the number of particles n(¥)
in boxes of increasing sizes ¢ < L and computing its
root mean square An(¢). When the correlation length
L is finite, a box of size £ > L can be divided in
(¢/£)* independant boxes. The total number of particles
in the large box in then the sum of independent iden-
tically distributed random variables; The central limit

theorem applies and the probability distribution of n(¢)
tends to a Gaussian. This yields the “normal” scaling
An ~ n'/2. On the contrary, one finds in the Vicsek
model the anomalous scaling An ~ n%8 [13].

In the Active Ising model the number fluctuations are
found to be normal in the liquid and gas phases, where
An ~ n'/? and trivially ‘giant’ in the phase-separated
regime where An ~ n (see Fig. 13).

Note that the scaling An ~ n is a simple consequence
of phase-separation and one should thus distinguish this
scaling from the ‘anomalous’ scaling of the Vicsek model,
which is a signature of long-range correlations. Let us
consider a system with liquid fraction ¢ that is large
enough that we can find a range of box sizes ¢ such that:
1) £ < L so that we can neglect the contribution of the
interfaces (a box is either in the liquid or the gas phase);
2) ¢ is large enough that n(¢) takes only two possible val-
ues and we can neglect the fluctuations around these two
values. With these assumptions,

P(n) = ¢d(n — pel®) + (1 = ¢)8(n — pgt?)  (12)
where p, and p, are the densities in the gas and liquid
domains. Then one finds

(n) = (¢pe + (1 = §)pg)l* = pol®

An = /(n2) = (n)? = /(1 — ¢>’”;—Opg<n>

(13)

(14)

which is a simple hand-waving explanation of the scal-
ing observed in the coexistence region of the active
Ising model, as well as in other phase-separating sys-
tems [38, 39].

IV. HYDRODYNAMIC DESCRIPTION OF THE
ACTIVE ISING MODEL

In this section we derive and analyze a continuous de-
scription of the AIM based on two coupled partial differ-
ential equations accounting for the spatio-temporal evo-
lutions of the density and magnetization fields.
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FIG. 13. Number fluctuations in the three different phases:
gas (red), liquid (green) and at coexistence (blue). n is the
number of particles in boxes of size £ and An its root mean
square. D =1, =0.9, L =400, po =5

We first show in section IV A that a standard mean-
field treatment wrongly predicts a continuous transition
between the disordered gas and the ordered liquid. In
section IV B we show that local fluctuations, which are
neglected in the mean-field approximations, are neces-
sary to correctly account for the physics of the system
when the density is finite and € # 0. We show in particu-
lar that as soon as the density is finite, fluctuations make
the transition first order. We then use our hydrodynamic
description in section V to study the inhomogeneous pro-
files.

A. Mean-field equations

The simplest way to account analytically for a non-
equilibrium lattice gas is probably to derive mean-field
equations. These are known to be quantitatively wrong,
but they often capture phase diagrams correctly [40, 41].

Their derivations follow a standard procedure which
can be applied to the AIM and which, for simplicity, we
first present in 1D. Starting from the master equation,
one first derives the time-evolution of the mean number
of 1 spins on site 4

() = D(1 £ e)(nf ) + DA F e)(nf,) — 2D(n)

+ (ny exp(Bt)) F (nf exp(—B2)) (15)

Pi Pi

which can then be rewritten for the density and magneti-
sation

(i) = D({pit1) + (pi—1) — 2(pi)) — De({mit1) — (mi_1))
(16)

(i) = D({miy1) + (mi—1) — 2(m;)) — De({pi+1) — (pi-1))

+2(p; sinh(ﬁ%)) — 2m, cosh(b’%)) (17)

3 2
One can then take a continuum limit using the rescaled
variable & = i/L € [0,1], D = D/L?, © = 2De/L and
use the Taylor expansion p+1 = p(x) £ L™10,p(x) +
L=20,,p(x)/2. We then obtain equations for the contin-
uum fields p(z), m(x), which are assumed to smoothly

interpolate the discrete occupancies p;, m;:

(p) = Dao'ca'c (p) — 00z(m) (18)

Dy (m) = DOzz(m) — 50z (p) + <2psinh 577” — 2m cosh ﬂ7m>
(19)

In higher dimension, the sole difference is that the dif-
fusive terms become DA({p) and DA(m) whereas the v
terms still involve solely Oz since the hopping is biased
only horizontally.

In practice, to compare microscopic simulations and
hydrodynamic theories it is often easier mot to rescale
space and use a continuous variable x = Lz € [0, L] (and
hence D = DL? and v = L© = 2D¢). Macroscopic and
microscopic transport parameters are then expressed in
the same units and equations (18) and (19) are then valid,
without the tilde variables. This is what we use in the
following.

Equations (18) and (19) are exact; they couple the
first moments (p) and (m) to higher moments through
the averages of the hyperbolic sine and cosine functions.
Following the standard procedure established for equi-
librium ferromagnetic models, we then make two ap-
proximations. First, we take a mean-field approximation
by replacing (f(p,m)) by f({p),{m)), for any function
f. (We then drop the (...) notation for clarity.) This
amounts to neglecting both the correlations between den-
sity and magnetisation and their fluctuations. Second,
we expand the hyperbolic functions in power series, up
to m?2/p?. This further restricts our description to the
case where m < p. We then arrive at the mean-field
equations

p=DAp—vd;m (20)
3

m = DAm —v0,p+2m(f — 1) —am—2
p

(21)
where o = 82(1 — 3/3). (For 3 > 3, one should expand
to higher order to obtain a stabilizing term.)

Let us consider the various terms appearing in the
mean-field equations. The first terms on the r.h.s of (20)
and (21) are diffusion terms arising from the stochastic
particle hopping. Let us stress that these terms do not
depend on the bias € and are thus present even in the
totally asymmetric case ¢ = 1; they do not rely on the
possibility for +1 and —1 particles to hop backwards and
forwards, respectively. The second terms, proportional
to v, are due to the bias. Their physical origin is ex-
plained in Fig. 14 where we show how positive gradients
in m or p yield negative contributions to p or 7, respec-
tively. Finally, the last two terms in (21) stem from the
ferromagnetic interaction and, apart from the p? depen-
dence of the last term, are typical of ¢* Landau mean-
field theory. Note that the alignment terms are the only
non-linear ones and thus the only terms for which the
mean-field approximation is actually an approximation.
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FIG. 14. Schematic account for the role of density and mag-
netisation gradients in the mean-field equations. Left: Ini-
tially, m = 0 and Vp > 0 around site 7. Once plus particles
jump to the right and minus particles to the left, the density
in site ¢ is unchanged but m,; has decreased. Right: Ini-
tially, p is constant and Vm < 0 around site ¢. Once particles
have jumped, the magnetisation of site ¢ is unchanged but the
density has decreased.

The mean-field equations always accept the trivial ho-
mogeneous solution
p(z) = po, m(z) =0, (22)
which is linearly stable for § < 1. As soon as 8 > 1, two
ordered homogeneous solutions appear,

208 -1
P = po, m = ipO % ) (23)
which are linearly stable (see the left panel of Fig. 15).
Therefore, at the mean-field level, a linearly stable ho-
mogeneous solution exists for all (8, pg). Furthermore,
integrating numerically Egs. (20) and (21) starting from
different initial conditions [47], the system always re-
laxes to a homogeneous solution and inhomogeneous pro-
files are never observed. Hence, the mean-field equa-
tions predict a continuous transition between homoge-
neous disordered and ordered profiles at § = 1, just as
for the Weiss ferromagnet [42]. The phase diagram is
simply split between a high-temperature disordered ho-
mogeneous phase, for 7' > 1, and a low temperature or-
dered homogeneous phase, for T" < 1. This mean-field
approach thus completely misses the phenomenology of
the microscopic model; It cannot explain the existence of
phase-separated profiles and yield a phase diagram corre-
sponding to a single (continuous) transition line at 7' = 1,
in contradiction to the crescent shape observed in the mi-
croscopic model (see Fig. 5).

B. Going beyond the mean-field approximation

Previous coarse-graining approaches of flocking mod-
els [18, 19, 43, 44] often relied on neglecting correlations
by factorizing probability distributions. For example, in
the Boltzmann-Ginzburg-Landau approach of Bertin et
al. [19] the two-particle probability distribution is re-
placed by the product of one-particle distributions. In
our case, to derive the mean-field equations (20) and (21)
we made an even cruder approximation.
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FIG. 15. Linear stability of homogeneous profiles in the naive
(left) and refined (right) mean-field models. Plain (resp.
dashed) lines denote stable (resp. unstable) solutions. In
the RMFM, for 5 < 1, only the homogeneous profile exists
and is stable at all densities.

When computing, for instance, the first non-linear
term (m?3/p?), neglecting correlations between m and p
leads to

) 5%) = () { ) (24)

We went one step further, completely discarding fluctu-
ations and replaced (1/p?), (m?®) by 1/(p)?, (m)3. As
we show below, these fluctuations are crucial to account
qualitatively for the physics of the AIM.

The dynamical equations (18) and (19) on the first
moments predict how (p(z,t)) and (m(z,t)) evolve in
time, given an initial distribution

Plp,m] = d(p(x) — po)d(m(x) —mo). (25)

The mean-field approximation then amounts to compute
the averages of hyperbolic functions in (19) by assum-
ing that, as time goes on, P remains a product of Dirac
functions:

P[Pamﬂ?»ﬂ,@o,mo] :5(p($,t) —ﬁ(l‘,t)) (26)
x d(m(z,t) — m(z,t))
where p(x,t) and m(z,t) are solutions of the mean-field
equations (20) and (21). In practice this means that re-
peatedly simulating the microscopic model starting from
an initial distribution (25) always yields the exact same
values p(z,t) = p(z,t) and m(z,t) = m(z,t). A bet-
ter description should allow both p and m to fluctuate
around their mean values as well as account for their cor-
relations.

We can thus improve our approximation by replac-
ing the dirac functions in (26) by Gaussians of variance
o2(x,t) and o7, (x,t). This still neglects correlations be-
tween p and m but allows for (small) fluctuations around
their mean. Note that the only approximation made in
the derivation of the mean-field equations occured at the
level of the alignment terms. Since each site of the AIM
is a fully connected Ising model, it is reasonnable to as-
sume that in the large density limit, mean-field should be
correct. We thus assume that our corrections to mean-
field should be small in the high density regions, where it
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is reasonnable to assume that the variance of p(z,t) and
m(z,t) are proportional to p: 02 = a,p and o7, = AP
where a, and «a,, are functions of 8 and v only.

The probability to observe given values of p(z,t) and

m(z,t) is then assumed to be

P[IO7 m;x,t | Po, mO] = N(p =P apﬁ)N(m —m, am:(a) )

27

where N(z,02) = e="/7" /\/2102 is the normal distri-
bution.

Under these assumptions, the alignment term in (19)
can still be computed analytically; We show in ap-
pendix A that, at leading order in a m/p expansion, the
correction to mean-field reads

=3
<2psinh pm _ 2m cosh 6_m> ~2(8—-1-— 2)1"71 — an_l—Q
P P p p
(28)
where r = 3aa,,/2 is a positive function of 8. Intu-
itively, the fluctuations “renormalize” the transition tem-
perature

Bilp) =1+ = = BMF 4 2 (29)
P p

In principle, one could expand f; to higher order to ob-
tain a better and better approximation. The correc-
tion (29) however suffices to account qualitatively for the
most salient features of the microscopic model and we
will thus stop our expansion at this order. Furthermore,
extending (28) to higher orders does not suffice to provide
quantitative agreement between microscopic simulations
of the AIM and the “corrected” mean-field equations,
probably because we still neglect correlations between
p and m. More details are provided in appendix A for
the interested reader.

C. Refined Mean-Field Model

The correction to mean-field derived in the previous
section can thus be seen as a finite-density correction
to the transition temperature ;, which converges to its
mean-field value BMF = 1 as p — co. As was already
recognized in previous studies [15, 19, 29, 43], the density-
dependence of §; is the key ingredient to describe phase
separation at the level of hydrodynamic equations. With
this correction, we obtain a refined mean-field model
(RMFM)

p=DAp—vdym (30)
3
szAm—v81p+2(ﬁ—1—£)m—a% (31)
which we now study.
The linear stability analysis of homogeneous solutions
strongly differs from the mean-field case. For > 1 the
disordered profile is stable for pg € [0, ¢4(8)] where

pe(B) =r/(B=1) (32)
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FIG. 16. Phase diagrams in the RMFM. The lines ¢, and
¢ are the spinodal lines denoting the limit of linear stability
of homogeneous profiles. The lines p, and p; are coexistence
lines that limit the domain of existence of phase-separated
profiles. Top row: temperature/density ensemble. The right
plot is a zoom of the region delimited by the grey rectangle.
D =r = v = 1. Bottom left: velocity/density ensemble.
D =r =1, = 15. Bottom right: 2d snapshot of the
density field in the phase coexistence region. Its position in
the phase diagrams is indicated by the grey squares. D =r =
v=1,08=15and pp = 2.1.

The homogeneous ordered solutions

6—1 r
QT —2— (33)

m(z) =mo = £po
Poc

p(a:) = Po,

exist for all pg > ¢4, but are only stable for py > ¢, >
@y (see Fig. 15). The explicit expression of ¢, can be
found using a standard linear stability analysis, detailed
in Appendix B:

vy/a (02K +8D(B — 1)2) + v*k 4+ 8Da(B — 1)

=P 202K + 8Da(B — 1) ’
(34)
where Kk = 2 + a — 20.
Close to the critical point at 5 =1,
r
apz=<pg+%+0(,3—l) (35)

so that ¢, and ¢, both diverge, while their difference
remains constant. Close to the v = 0 critical point, we
obtain

TV

Pt B )

so that ¢y — ¢4 when v — 0.
The homogeneous solutions are linearly unstable in the
density range [¢g4,¢¢]. Simulating the RMFM [47] for

+ O(v?) (36)



AP — py =17 — p =24

— P =2 — Py =28
pa—

interface
effect

—_—
spinodal
[decomposition

I JI I I I I U
0 200 400 600 800 15 20 25 3.0 35 40

FIG. 17. Hysteresis loops in the RMFM. Left: Density pro-
files along the loop as po is varied. Right: Evolution of the
liquid fraction ¢ upon changing continuously po. Parameters:
B=15,D=v=r=1, L =23800.

such densities yield phase-separated profiles similar to
those seen in the AIM, with macroscopic liquid bands
travelling in a disordered gas background (see bottom-
right panel of fig. 16). The densities in the gas and liquid
parts of the profiles remain constant as pg is varied; they
thus give access to the coexistence lines p, and py.

The phase diagrams of the RMFM in the tempera-
ture/density and velocity/density ensembles shown in
Fig. 16 are qualitatively similar to those of the AIM,
with an asymptote at T = 1 when pg — oo in the (T, po)
plane, and a critical point at v = 0 in the (v, pg) plane.
As before, the coexistence lines p,; and p, delimit the
domain of existence of phase-separated solutions; they
can now be complemented by the spinodals ¢, and
which mark the loss of linear stability of homogeneous
disordered and order phases, respectively.

The hysteresis loops observed in the RMFM (see
Fig. 17) are similar to those found in the microscopic
model (see Fig. 9 and 4). Starting at low density in the
gaseous phase and increasing density the system stays
in the gas phase until it becomes unstable at py = ¢q,
where it phase separates. Increasing again the density,
the liquid fraction increases linearly until the liquid al-
most fills the system. As in the AIM, the finite widths of
the interfaces set a minimum and a maximum size for a
domain, hence preventing liquid bands from completely
filling the system. This results in a discontinuous jump
of the liquid fraction close to the binodals, whose height
vanishes as the system size diverges (see Fig. 17, right
panel). The main difference with the hysteresis loops ob-
served for the AIM is that, given the absence of noise in
the RMFM, there is no nucleation and the system phase
separates only when the spinodal densities are reached.

D. Control parameters

To determine how many independent control parame-
ters are needed to describe the behavior of the RMFM,
we recast Eqgs. (30) and (31) in dimensionless form. To
do so, we first have to introduce back the rate v which
appeared in the definition of the flipping rates (1) and
that we have taken equal to one until now. Introducing
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the dimensionless variables and constants

. D
t=1t/y,x=4]—%, p=rp, m=rn, v =~yDv? (37)
Y

the refined mean-field equations become
p=Ap—09:m (38)

o= A — 00:p + [2(8 — 1 — %)m - a%] (39)

Since « is a function of 3, there are only two external
dimensionless control parameters: v is a Peclet number
comparing the advection speed v and the diffusivity D at
the length scale v/~ travelled by a particle between two
spin flips; 8 which controls the ordering of the system [48]
The average density, which sets an external constraint on
the system, constitutes a third independent parameter.
Our phase diagrams shown in Fig. 16 thus sample all the
relevant parameters of the RMFM.

V. INHOMOGENEOUS BAND PROFILES

In the previous section we have shown how one can
build a refined mean-field model by taking into account
the local fluctuations of magnetisations and densities.
Numerical simulations of the RMFM exhibit a phe-
nomenology akin to that of the microscopic AIM, con-
firming the liquid-gas picture of the phase transition. We
now focus on the inhomogeneous profiles and show ana-
lytically that the RMFM accounts for their shapes and
speeds when 8 — 1. Furthermore, the RMFM also cor-
rectly predicts the scaling of the width of the critical
bands in the vicinity of the critical points f = 1 and
v =0.

A. Propagative solutions

Let us reduce Egs. (30) and (31) to a single ordinary
differential equation. To do so, we first introduce a new
coordinate z = = — ¢t comoving with the liquid band
at an unknown speed c. In this comoving frame, the
stationnary solutions of the RMFM satisfy

Dy’ +cp —vm' =0 (40)
" / / r m3
Dm" +em' —vp +2(ﬁflf;)mfa? =0 (41)
The RMFM is a finite-density correction to the p =
oo mean-field limit and should thus work best for large
densities. As we can see on the phase diagram shown
in Fig 5, the densities p, and p, diverge as 8 — 1, as
do ¢4 and ¢, (see Egs. (34) and (35)). Furthermore,
one can check that p, — p, remains finite in this limit,
as does my (see Fig. 18). Close to f = 1, we can thus



158

expand Eq. (41) in power of € = m/py ~ dp/py, where
5p = (p—pg), to get
2rmép  m?

o™
©3 03

0=Dm" +cm' —vép’ + (42)

Besides, Eq. (40) can be solved iteratively to obtain
p(z) in terms of m(z) and its derivatives

p) = py+om() + 23 (=7
k=1

where pg is an integration constant that equals the den-
sity in the gas phase at coexistence, since p(z) = py where
m = 0. Again, the RMFM should work best close to the
critical points, where the width of band fronts diverge
(see Fig. 11), we can thus expect the development (43)
to rapidly converge in this limit and retain only

Dv vD?

plz) = py + —m(z) = G (2) + —-m"(z)  (44)

At second order in €, Eqs (42) and (44) then reduces
to

Dm" + (ag — aym)m’ — bym + bym? — bgm® =0 (45)

where we have introduced the positive constants

v2 v? 4Dvr
D=D(1+ — =c(l—- = i
( + C2 )7 ag C( 02)7 a1 (02 n ’U2)ng
- 2rv «
b1:27‘§0£}72pg7 b2:—2, b3:—2
<pg Ccpg S09

(46)

We then look for propagating solutions made of two

fronts, connecting an ordered liquid band at pg, my to a

disordered gas background at p,, my = 0. Precisely, we
look for propagating fronts given by:

:ﬂ[

m(z) 1 + tanh(kz)] (47)

To describe phase-separated domains, we need two front
solutions, an ascending front m,(z) with k, > 0 and
a descending front mg(z) with kg < 0, with the same
speed c, density p, and magnetization my. Since the
term (ag —aym)m’ breaks the symmetry of the equations
under (m,c) — (—m, —c) the fore and rear fronts need
not be the same, so that |k,| # |kq4| in general.

The complete solution, specified by (¢, pg, me, kq/a)
can be obtained by injecting the Ansatz (47) into
Eq. (45). Using the equality tanh’(kz) = k—k tanh? (kz),
the Lh.s. of Eq. (45) then yields a third order polynomial
in tanh(kz) whose coefficients all have to vanish. Tedious
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FIG. 18. Left: The magnetization m, in the liquid band and
pe — pg at phase-coexistence, measured in the microscopic
simulations, converge to the same constant when § — 1 as
predicted by the analytical solution. Parameters: D =1, ¢ =
0.9, L = 400 for the microscopic simulations. r =v =D =1,
L = 400 for the RMFM. Right: velocity c of a liquid band
propagating in a gas background. As f — 1, ¢ — v in the
microscopic model, in 1d simulation of the RMFM (31), and
in the analytical solution.

but straightforward algebra then gives

3av2p
4rv
‘= 3ac
4ro? (48)
Ps= %97 902

ey 493 ’yichgog
kg = — = {1 )14 7}
YY) \/ T3 T Tope

where v =1+ Z—;

The solution is thus completely determined, the den-
sity and magnetization profiles being given by Eq. (47)
and (44) respectively.

B. Close to the g =1 critical point

At leading orders when 8 — 1, the propagating fronts
are characterized by

4r

8r
pg:SDg_@; pe=¢g+@; (49)
. 47”. _ QD(ﬂ — 1)2.
=gy c=vt va ]
NN I GV S i
" 3vVDa 6va 3vDa 6va

Some comments are in order. First, the two coexis-
tence lines p, and p, diverge as 8 — 1, as do the spinodals
g and ¢, while their difference and the magnetization
my converge to finite constants. This behavior, which
is in line with simulations of the microscopic model (see
Fig. 18), legitimates the expansion of (41) in powers of

m/pg and 0p/¢y.



Then, we can check the validity of the gradient ex-
pansion by comparing two successive terms in Eq. (43).
When 8 — 1, we have

©)" 2

~ Dy~ (B-1)  (50)

(Q)k dkT
c dy*
so that our approximation becomes exact when g — 1.

The front solutions account for a number of interesting
features of the propagating liquid bands. First, the front
speed c is generally larger than v, the maximal mean
speed of a single spin. This may seem surprising un-
til one realizes that the front propagation is due both
to the spins in the liquid band hopping forward and to
the “conversion” of disordered sites into ordered ones at
the level of the fore front. There is thus a FKPP-like
contribution [45] to the speed of a band, which allows ¢
to be larger than v. Interestingly, despite the approx-
imations made in deriving the RMFM, the behavior of
¢/v as § — 1 coincides exactly with what is observed in
microscopic simulations of the AIM (see Fig. 18).

Regarding the propagating fronts, the analytical solu-
tion predicts |kq| < |kal, i-e., that the descending (fore)
front is steeper than the ascending (rear) front. The
asymmetric term being subleading as 8 — 1, the fore and
rear fronts become more and more symmetric as  — 1.
This is consistent with the microscopic model: In Fig. 19,
we show that the fronts are well described by two sym-
metric tanh functions close to 5 = 1. As the temperature
decreases, the fronts first remain well approximated by
hyperbolic tangents, but with different widths k, # kg,
before their functional form deviates from the tanh solu-
tion (see Fig. 19).

Let us now be slighlty more quantitative and compare
the scalings of the front widths in the AIM with the pre-
diction of our analytical solution (49). In the microscopic
model, we fitted the fronts of phase-separated profiles
by the hyperbolic tangent solutions (47) to extract their
width. Although data is hard to obtain close to critical
points, because m/p — 0, the measures are consistent
with the analytical predictions. As shown in Fig. 20,
kasq ~ (8—1) when 8 — 1. One can also see that in this
limit the two fronts become symmetric, i.e., k, — kq.
The size of the inferfaces, inversely proportional to kg4,
can be linked to the size of the critical nucleus. As ex-
plained in sec. IIID, a liquid domain can form only if
the excess number of particles with respect to the gas is
sufficient to create a band of minimal size Lo. As a first
approximation, this minimal size is set by the size of the
interfaces so that we expect L. ~ 1/kq, + 1/kq. Indeed,
the same scalings are observed for L. as for k, /4 as shown
in Fig. 11.

C. Close to the v =0 critical points

While our approach was derived to work close to the
critical point at 8 = 1, the front solution still predicts
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many correct scalings close to the v = 0 critical points.
There, the propagating bands are characterized by

B V2rv
Pg = Pg — 303 _71) D (51)

o VB
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"1 =\ 2pveDa. V- VBV

Again, the two coexisting densities merge with the
spinodal lines at v = 0 while the magnetization in the lig-
uid vanishes, hence justifying the expansion of Eq. (41)
in powers of m/p, and dp/¢,. While gradients are again
expected to vanish as v — 0, the expansion of p in deriva-
tives of m includes a diverging prefactor (D/c)* ~ 1/v*/?
at the k*" order. The comparison of two successive terms
in the expansion (44) then yields

() dm

c y + N
(Q)k dEm c ka/d O(l) (52)
c dy*

Thus, in this limit, the series may still converge but the
ratios between two consecutive terms do not vanish as
v — 0 and we cannot completely neglect higher order
gradients. Nevertheless, as shown in Fig. 20, the an-
alytical solution correctly predicts that the asymmetry
between the fore and rear fronts does not disappear in
the v — 0 limit. It also correctly predicts the scaling of
the front widths k,/q ~ /v and thus the scaling of the
critical nucleus in this regime.

Beyond accounting for the shape of the phase diagram
and the liquid-gas nature of the transition, the RMFM
can thus correctly predict the shape of the band, their
speed and the scaling of the critical nucleus in the vicin-
ity of the critical points. In order to get a more quantita-
tive agreement between the RMFM and the microscopic
model, beyond the estimation of the unknown parameter
r, one would probably needs to account for the corre-
lations between m and p. Apart from quantitative cor-
rections, these correlations however do not seem to play
any role in controling the structure of the phase transi-
tion and most features of the propagating bands. Inter-
estingly, symmetric hyperbolic tangent front were also
observed in hydrodynamic equations for self-propelled
rods [29], even though in that case the domains are not
moving.
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FIG. 19. The fore and rear fronts of propagating bands become more asymmetric as 7" decreases. The shape of the fronts in the
microscopic model (red curves) also deviate more and more from the analytical tanh solution (valid in the limit 8 — 1). Black
dashed curves are fits of the rescaled fronts by expression (47), where k is used as a fitting parameter. Parameters: D = 1,
€ = 0.9. Fronts are averaged over time and along the vertical direction.
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FIG. 20. Scaling of the front widths close to the critical points
B — 1 (left) and v — 0 (right). The data is consistent with the
predictions from the RMFM in these limits Eq. (49) and (51)
both for the scaling of k,/q and for the asymmetry between
the ascending and descending fronts. € = 0.9 (left), 3 = 1.9
(right) and D = 1.

VI. ROBUSTNESS OF THE RESULTS

Let us now discuss how the results presented in the pre-
vious sections extend beyond our lattice gas model with
periodic boundary conditions. To do so, we consider the
case of closed boundary conditions in section VIA and
study an off-lattice version of the AIM in section VIB.

A. Closed boundary conditions

Since the ordered liquid domains always span the whole
system in the vertical direction and propagates period-
ically in the horizontal direction, one could think that
their existence and stability relies on the use of periodic
boundary conditions. To check this, we simulated the
AIM in closed boxes. We tried different conditions at
the edges of the box: When particles hit a wall, their
spins were either flipped, randomized, or left unaltered.

The same behavior was observed in all cases. First, one
notice a small accumulation of particles close to the wall,
which is typical of self-propelled particles [46]. Then,
the system shows the same type of travelling bands as
with periodic boundary conditions, with a macroscopic
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FIG. 21. Active Ising model with closed boundary condi-
tions. Top: snapshot of the density field. Bottom: space-time
graph (averaged in the y-direction) showing the liquid domain
bouncing back and forth in the box. Parameters: 8 = 1.9,
po =3, D=1,e=0.9. See supplementary movies in [49].

phase-separation between a liquid domain and a gaseous
disordered background (see Fig. 21, top). When the lig-
uid domain reaches a boundary, it accumulates close to
the wall until its magnetisation flips, and crosses back the
system in the other direction. This leads to the bouncing
wave shown on Fig. 21 (bottom), which is reminiscent of
what is observed experimentally for the collective motion
of colloidal rollers (see supplementary movies of [9]).

B. Off-lattice version

To show that the phenomenology of the AIM does not
rely on the spatial discreteness of this lattice gas, we
devised an off-lattice version of our model. To do so, we
consider IV particles in a continuous space of size L, x L.
Each particle carries a spin £1, which flips at rate

W(s— —s) = exp(—ﬁﬁ)

Pi

(53)

where the local density p; and magnetization m; are com-
puted in disks of radius 1.
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FIG. 22. Phase diagram and phase-separated profiles for the
off-lattice model showing the same behavior as the lattice
model. Parameters: D = 1, v = 1 and f = 1.6 for the
profiles.

The position of the particle evolves according to the
Langevin equation

I = s;vex + V2Dn (54)

where r; and s; are the position and spin of particle ¢ and
7 is a Gaussian white noise of unit variance.

The phenomenology of this model is very similar to
that of the AIM; Its phase diagram in the temperature-
density ensemble shows the same three regions, with an
asymptote at f = 1 as p — oo (Fig. 22, left). As
in the lattice model, only the liquid fraction changes
when pg is increased at fixed temperature as shown in
Fig. 22 (right).

VII. DISCUSSION AND OUTLOOK

In this paper we have characterized in detail the tran-
sition to collective motion in the 2d active Ising model.
For any temperature T' < 1 and self-propulsion velocity
v > 0, there is a finite density range for which the sys-
tem phase-separates into a polar liquid and a disordered
gas. The densities at coexistence do not depend on T'
or v so that changing the average density only changes
the liquid fraction. This is one of the many character-
istics shared by the flocking transition of the AIM with
the equilibrium liquid/gas transition in the canonical en-
semble. Others include metastability, hysteresis, and the
existence of critical nuclei. More generally, this anal-
ogy suggests that the flocking transition should be seen
as a phase-separation transition rather than an order-
disorder transition. The fact that the liquid phase is
ordered however plays a major role by forbidding a su-
percritical region, which explains the atypical shape of
the phase diagram.

To construct a continuous theory for our model we first
noticed that one needs to go beyond a standard mean-
field approach. The latter indeed fails to capture the
phase separation behavior because it lacks a density de-
pendence of the transition temperature. Retaining part
of the fluctuations neglected at the mean-field level then
allowed us to derive a refined-mean-field model which
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accounts for the behavior of the microscopic model qual-
itatively for all parameter values.

The analytical solution for the phase-separated profile
that we derived in sec. V is only one of a two-parameter
family of solutions, as shown in [23]. Although it is the
sole propagating solution accounting for phase separa-
tion, the mecanism by which it is selected remains to
be investigated. This is particularly interesting since, as
shown in [14], most of the picture laid out for the AIM re-
mains valid for the Vicsek model, apart from the shape of
the bands in the phase separated region. The full phase
separation of the AIM is then replaced by a micro-phase
separation, something which cannot be explained at the
hydrodynamic level and necessit explicit noise terms.

Beyond the sole case of the AIM, we showed that our
results are also valid off lattice. We can thus consider the
AIM as a representative example of a flocking model with
discrete rotational symmetry. Variants with alignment
between nearest neighbours, and not simply on-site, also
yield similar results.

Our study of the AIM relies on numerical simulations,
microscopic derivation and study of hydrodynamic equa-
tions. It says little about the universality of the emerging
properties of the Active Ising Model and we strongly be-
lieve that developing proper field theoretical approaches
of the AIM and more general active spin models could
shed light on a number of interesting questions. For in-
stance, is the € = 0 limit of the AIM in the universality
class of model C [50], which couples a conserved diffu-
sive field and a non-conserved ¢* theory? Then, can one
study the divergence of the correlation length of the AIM
when approaching the 7' = 1 and v = 0 critical points?
What are the corresponding universality classes? These
questions will be addressed in future works.

Last, the analogy of the phase transition in the AIM
with an equilibrium liquid/gas transition triggers new
questions. For example, could we define a mapping, at
some level, with an equilibrium system? And would it be
possible to change ensemble in this non-equilibrium sys-
tem, for example desining a grand-canonical ensemble?
These questions, if answered, would certainly improve
our theoretical understanding of active matter systems.
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Appendix A: One step beyond mean-field

As shown in section IV A, the mean-field equations,
which neglect all fluctuations and correlations, fail to de-
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scribe the active Ising model since they predict a contin-
uous phase transition between homogeneous phases. In
this appendix we show how one can improve the mean-
field approximation. To do so, we take into account
the fluctuations of the local magnetisations and densities
when computing the dynamics of their first moments (m)
and (p).

1. Gaussian fluctuations

The simplest assumption that can be made about the
fluctuations of m(x) and p(z) around their mean values,
(m(z)) and (p(x)), is that they are Gaussian. For m(z),
this can be seen as resulting from a central limit theo-
rem: In a first approximation, the magnetisation is the
sum of many spins fluctuating independently and, indeed,
Fig. 23 shows its fluctuations to be well described by a
Gaussian. On the contrary, the distribution of the local
density is not perfectly Gaussian, as shown in Fig. 23.
A better approximation could be obtained by consider-
ing a Poisson distribution but, as will be apparent in the
following, the first correction to mean-field comes from
the fluctuations of m so this would not improve our ap-
proximation. Furthermore we believe that, to improve
our refined mean-field model, the next step should be to
include the correlations between p and m, that we ne-
glect in the following, and not higher cumulants of the
distributions of p and m.

More formally, the probability to observe a magneti-
sation m and a density p at time ¢ and position x given
initial profiles po(x) and mg(x) are assumed to be given
by
=N(p—p o) (A1)
where N (z,0?) = e_””2/°2/\/ 2702 is the normal distri-
bution and p(z,t) and m(z,t) are the average value of
the density and magnetisation fields.

We further assume that the variances of the Gaus-
sian distributions scales linearly with the local density:
o2, = a,p(z,t) and af, = a,p(z,t). Again, the underly-
ing assumption is that the fluctuations of the fields p(x)
and m(z) arise from the sum of p independent contribu-
tions. As shown in Fig. 24 this is a rather good approx-
imation in the gas phase, close to the critical point at

B=1p=00

P(pv mamat|p03m0) Uz)N(m*ﬁ%

2. Corrections to mean-field

In deriving hydrodynamic equations from Eq. (18) and
(19), the only terms that have to be approximated are the
non-linear contributions of the aligning interactions:
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FIG. 23. Rescaled probability distributions of local density
(left) and magnetisation (right) in the liquid phase at 8 = 1.1
for different densities. A(0,1) is the Gaussian distribution
with zero mean and unit variance. D =1, ¢ = 0.9, L = 100.
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FIG. 24. Variance of the distribution of local density (left)
and magnetisation (right) in the gas phase compared to a
linear scaling. D =1, ¢ =0.9, L = 100.

where

/32Ic+1 ﬂ2k
k=2 <(2k+ ] (2k)!> (43)
Using the assumption (Al), we can compute I as a
sum of Gaussian integrals which can all be evaluated by
saddle-point approximation in the limit of large p. We
first notice that, since we neglect the correlations between
p and m,

(A4)
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To compute (m?**1) we first change variables to u =

m — m so that
+oo
/ dmm*** N (m — m, amp)
— 00

(m2kH1Yy =

+oo
= / du (u + m)2** N (u, amp)

—00

(A5)

We then expand in powers of u and compute the corre-
sponding Gaussian integrals

2k+1

> 2k +1
2k+1 E (e 2k+1 —1
m) = /_ du ( i > N s amp)

ko <2k i 1) %m(mmﬁ)j
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Let us now evaluate the terms (p~2¥). First, the inte-

gral
—2k\ _ oo
(=) = o

is divergent because of the p = 0 lower limit. This is a
simple discretisation problem which can be bypassed by
introducing a cut-off ¢ at small density. For large p, the
integrals will be dominated by large values of p so this
cut-off does not play any role in the following. Changing
variable to s = (p — p)/p, we find

PN (p—prapp) (A7)

f——2k +<>o

<—2k>_\/m :

This integral can now be approximated by an asymptotic
saddle-point expansion. In the limit of large p, the in-
tegral is dominated by s ~ 0. The lower limit of the
integral % — 1~ —1 can thus be extended to —oco harm-

ds (14 )25 (AS)

lessly and one can expand (1+s) 2" to get the asymptotic
expansion

ok 2N 2]€+ -1 +oo s
=L (T [ e

+ O(ﬁ—2N—2k—1/2)

(A9)
All the odd contributions vanish by symmetry. Changing
variable to w = ps?/(2a,), one recognises the integral
form of a I' function and finally
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(A10)
Putting everything together, we obtain
© k N — 14+2k—2i
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Keeping only the dominant terms and reordering the sum
in increasing powers of m yields

® mlt2n N N-— Z(L c 1
I:Z [ZZ n+i zniz j,n+i +O(,1+N)}
n=0 =0 j=0 pJ p

(A14)
Expanding up to m® and 1/p2, we finally obtain
-3
T2 m
(B-1-L-Dym—a (1)
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where
a=—a; = [*(1 - g) (A16)
_ _albl’zlcOJ _ 3a§m (A17)
ro = 3B2(8 — 3)ama, + %4(5 —5)az, (A18)

In practice, we take ro = 0 in the RMFM since the
first order correction r/p suffices to account for the phe-
nomenology of the AIM. Expanding (A14) to higher or-
ders is not sufficient to get a quantitative agreement be-
tween microscopic simulations and our refined mean-field
model, probably because the most important correction
o (A15) would involve correlations between m and p.
As we show in section IV, however, this first correction
to mean-field is sufficient to capture the physics of the
model.

Appendix B: Linear stability analysis

The mean-field and refined mean-field equations read
p=DAp—vd,m (B1)
3

m = DAm — v0;p + 2mpu — o

g (B2)

where p = 8 —1—r/p and r = 0 for the mean-field equa-
tions. These equations admit three steady homogeneous
solutions p(z,t) = po, m(z,t) = mo. A disordered solu-
tion with mg = 0 that exists for all pg and £, and two

ordered solutions
2
mo = £po/ s
«

that exist only when p > 0.

(B3)

1. Stability of the disordered profile

Let us consider a small perturbation around the disor-
dered profile, m(r,t) = dm(r,t), p(r,t) = po + dp(r,t).
Going into Fourier space,

5,0:/ dx/ dy dp(q, t)ea=2Favy) (B4)

and linearizing Eqs. (B1) and (B2), one finds

op\ _ (—Dlaf®  —igev dp
O (5m> - <—iqxv —Dlq|? + 210 ) \om (B5)
where we noted g = (8 —1—1/pg). The eigenvalues of
the 2x2 matrix are

Ae = =D(q; + ;) + po + \/ g — v2q?

(B6)
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FIG. 25. Real part of the largest eigenvalue Ai related to
the stability of the ordered profile m = mo. of Eq. (B8) for
B=15,D=r=v=1and g, =0. Ordered profiles exist for
all po > ¢4 = 2 but are unstable for 4 < po < ¢y (red, green
and yellow curves) and stable only for po > ¢, (blue curve).
For the parameters considered here ¢, = 2.598.

The profile is linearly unstable if one of these eigenval-
ues has a positive real part. Clearly, the sign of pg
controls the stability: the disordered profile is unsta-
ble to long wavelength perturbations when 5 > 1 and
po > ¢g =1/(B—1) and stable otherwise. This gives the
first spinodal line ¢, in Fig. 16.

2. Stability of the ordered profile

Linearizing the dynamics of a small perturbation
around the ordered profile m(r,t) = mg + dm(r,t),

19
p(r,t) = po + dp(r,t) gives
0 (%) — —Dlq|? —ig,v 5p
P\om) T\ ~igev + T2 (30 + dpg) —Dlgl® —4po ) \om

(B7)
and the eigenvalues now read

2imogzv(r + 240p0)

Ay = —D(Q§+q§)—2uoi\/4u% —v2¢2 — p
0

(B8)
Equation (B8) shows ¢, to have a purely stabilizing ef-
fect; Taking ¢, = 0 thus does not affect the conclusions
about the stability of the system. Computing numeri-
cally R(A+) we observe (Fig. 25) that for small but pos-
itive pg, R(Ax) > 0 at long wave-length. The value of
o at which the system becomes stable can be deter-
mined analytically as the point where 82, R(\+) (g = 0)
changes sign (the first derivative being zero at ¢, = 0).
This yields the second spinodal line shown in Fig. 16

vy/a (02K +8D(B — 1)2) + v%k 4+ 8Da(B — 1)
202Kk 4+ 8Da (B — 1)

e = Pg
(B9)

where kK = 2+ a — 20.
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166 Chapitre 5. La transition vers le mouvement collectif

5.3 Equations hydrodynamiques

L’article [F] va nous permettre d’explorer, de fagon approfondie, les solutions
inhomogenes des équations hydrodynamiques décrivant les modeles de particules
autopropulsées avec alignement ferromagnétique. Pour cela, nous considérerons des
équations hydrodynamiques simplifiées que nous comparerons ensuite aux équa-
tions décrivant le modele d’Ising actif (construites dans Uarticle [E]) et a celles de
Bertin et collaborateurs décrivant une version simplifiée du modele de Viesek [76,
78, 81]. Toutes ces équations admettent les mémes solutions propagatives qui sont
de trois types : des solutions décrivant une séparation de phase, des solutions
périodiques décrivant une séparation en microphases et des solutions décrivant
la propagation d’un objet de taille finie isolé. La dynamique de coarsening meéne
naturellement a une séparation de phase et nous en concluons quun ingrédient
supplémentaire, qui n’est pas présent au niveau des équations hydrodynamiques,
arréte le coarsening dans le modele de Vicsek, ou une séparation en microphases
est observée.
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We study in detail the hydrodynamic theories describing the transition to collective motion in
polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomeno-
logical theory, we show the existence of an infinity of propagative solutions, describing both phase
and microphase separation, that we fully characterize. We also show that the same results hold
specifically in the hydrodynamic equations derived in the literature for the active Ising model and
for a simplified version of the Vicsek model. We then study numerically the linear stability of these
solutions. We show that stable ones constitute only a small fraction of them, which however in-
cludes all existing types. We further argue that in practice, a coarsening mechanism leads towards
phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations
proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the
phenomenology of the corresponding microscopic models.
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I. INTRODUCTION

Collective motion is the ability of large groups of motile
agents to move coherently on scales much larger than
their individual sizes. It is encountered at all scales in
nature, from macroscopic animal groups, such as bird
flocks, fish schools, or sheep herds, down to the cellu-
lar scale, where the collective migration of cells [1] or
bacteria [2] is commonly observed. At the subcellular
level, in vitro motility assays of actin filaments [3] or mi-
crotubules [4] have shown the spontaneous emergence of
large vortices. Collective motion is also observed in en-
semble of man-made motile particles such as shaken polar
grains [5], colloidal rollers [6], self-propelled droplets [7]
or assemblies of polymers and molecular motors [3, 4, 8].
Despite the differences in their propulsion and interac-
tion mechanisms, these seemingly very different systems
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Vicsek

Active Ising

FIG. 1. Top: Micro-phase separation in the Vicsek model. n = 0.4, vo = 0.5, po = 0.83, 1.05, 1.93. Bottom: Phase separation
in the Active Ising model. D =1, e =0.9, 5 = 1.9, po = 1.5, 2.35, 4.7. System sizes 800 x 100. High-density bands propagate

as indicated by the red arrows on the left snashots.

share common macroscopic behaviors that can be cap-
tured by minimal physical models. Of particular inter-
est is the emergence of directed collective motion, which
was first addressed in this context in a seminal work by
Vicsek and co-workers [9]. The Vicsek model consists
in point particles moving at constant speed and aligning
imperfectly with the direction of motion of their neigh-
bors. When the error on the alignment interaction is de-
creased, or the density of particles increased, a genuine
phase transition from a disordered to a symmetry-broken
state is observed. This flocking transition gives rise to an
emergent ordered phase, with true long-range polar or-
der even in 2D, where all the particles propel on average
along the same direction. Toner and Tu showed ana-
lytically, using a phenomenological fluctuating hydrody-
namic description, how this ordered state, which would
be forbidden by the Mermin-Wagner theorem at equi-
librium [10], is stabilized by self-propulsion [11]. The
transition to collective motion in the Vicsek model has a
richer phenomenology than originally thought. As first
pointed out numerically in [12], at the onset of collec-
tive motion, translational symmetry is broken as well.
In periodic simulation boxes, high-density ordered bands
of particles move coherently through a low-density disor-
dered background. The transition between these bands
and the homogeneous disordered profile is discontinuous,
with metastability and hysteresis loops. These spatial
patterns and the first-order nature of the transition can
be encompassed in a wider framework, which describes
the emergence to collective motion as a liquid-gas phase
separation [13, 14]. The travelling bands result from the
phase coexistence between a disordered gas and an or-
dered polarized liquid. This framework captures many of
the characteristics of the transition, from the scaling of
the order parameter to the shape of the phase diagram.
This phase-separation picture is robust to the very de-
tails of the propulsion and interaction mechanisms. More

specifically, it has also been quantitatively demonstrated
in the active Ising model [13] in which particles can dif-
fuse in a 2d space but self-propel, and align, only along
one axis. However the specifics of the emergent spatial
patterns and the type of phase separation depend on the
symmetry of the orientational degrees of freedom. While
the active Ising model model shows a bulk phase separa-
tion, the Vicsek model is akin to an active XY model and
is associated with a microphase separation where the co-
herently moving polar patterns self-organize into smectic
structures [14] (see Fig. 1).

In this paper, building on the two prototypical models
that are the Vicsek model and the active Ising model, we
provide a comprehensive description of the emergent pat-
terns found at the onset of the flocking transition from a
hydrodynamic perspective. We first recall the definitions
and phenomenologies of these two models in Sec. II. In
Sec. III, we provide a simplified hydrodynamic descrip-
tion of the flocking models. In line with [15, 16], we show
that these models support non-linear propagative solu-
tions whose shape is described using a mapping onto the
trajectories of point-like particles in one-dimensional po-
tentials. Finding such solutions thus reduces to a classical
mechanics problem with one degree of freedom. For given
values of all the hydrodynamic coefficients, and hence of
all underlying microscopic parameters, we find an infinity
of solutions, describing both phase and microphase sepa-
rations, that we fully characterize. We then show that the
same results hold specifically for the hydrodynamic equa-
tions explicitly derived for the active Ising model [13] and
for a simplified version of the Vicsek model [15]. Next,
we investigate the linear stability of these solutions as
solutions of the hydrodynamic equations in Sec. VI and
their coarsening dynamics in Sec. VII. Finally, we pro-
vide full phase diagrams constructed from the hydrody-
namic model in Sec. VIII. We close by discussing the
similarities and differences with the phenomenology of



the agent-based models and conjecture on the role of the
hydrodynamic noise in the selection of the band patterns.

II. PHENOMENOLOGY OF MICROSCOPIC
MODELS

Let us first briefly recall the phenomenology of the Vic-
sek and active Ising models. They are both based on the
same two ingredients: Self-propulsion and a local align-
ment rule. The major differences between the two models
are thus the symmetries of the alignment interaction and
of the direction of motion.

A. Vicsek model

In the Vicsek model [9], N point-like particles, labeled
by an index i, move at constant speed vy on a rectan-
gular plane with periodic boundary conditions. At each
discrete time step At = 1, the headings 6; of all particles
are updated in parallel according to

0i(t+1) = (0;())jen: +né&i (1)

where A is the disk of unit radius around particle 4, & a
random angle drawn uniformly in [—7, 7], and 5 sets the
level of noise, playing a role akin to that of a temperature
in a ferromagnetic XY model. Then, particles hop along
their new headings: r;(t+1) = r;(t) +voe! T, where e/ ™!

is the unit vector pointing in direction given by 6, (¢t + 1).

B. Active Ising model

In the active Ising model [13], particles carry a spin
41 and move on a 2D lattice with periodic boundary
conditions. Their dynamics depend on the sign of their
spin: A particle with spin s jumps to the site on its
right at rate D(1 + se) and to the site on its left at rate
D(1 — se), where 0 < ¢ < 1 measures the bias on the
diffusion. On average, +1 particles thus self-propel to
the right and —1 particles to the left at a mean velocity
vo = 2De. Both types of particles diffuse symetrically at
rate D in the vertical direction.

The alignment interaction is purely local. On a site 4,
a particle flips its spin s at rate

Wi(s — —s) = exp (—%’Z—) 2)

where T is a temperature, and m; and p; are the magne-
tization and number of particles on site i. (An arbitrary
number of particles is allowed on each site since there is
no excluded volume interaction.)
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FIG. 2. Phase diagrams of the microscopic models. The

red and blue lines delimit the domain of existence of (micro)
phase-separated profiles. The black line and squares indicate
the position of the snapshots shown in Fig. 1. vo = 0.5 for the
Vicsek model, D =1 and € = 0.9 for the active Ising model.

C. A liquid-gas phase transition

The phase diagrams in the temperature/noise-density
ensemble are shown for both models in Fig. 2, high-
lighting their similarity. At high temperature/noise or
low density both systems are in a homogeneous disor-
dered gas state. At low temperature/noise and high den-
sity they are homogeneous and ordered; in these liquid
phases, all particles move in average in the same direc-
tion. In the central region of the phase diagram, inhomo-
geneous profiles are observed, with liquid domains mov-
ing in a disordered gaseous background.

The phase transitions of both models have all the fea-
tures of a liquid-gas transition, exhibiting metastability
and hysteresis close to the transition lines [12-14]. The
main difference between the two models lies in the co-
existence region: In the active Ising model, the particles
phase separate in a gaseous background and an ordered
liquid band, both of macroscopic sizes [13]. The coexist-
ing densities depend only on temperature and bias, but
not on the average density; in the coexistence region, in-
creasing the density at fixed T, ¢ thus results in larger and
larger liquid domains whose density remains constant, as
shown in Fig. 1. Conversely, in the Vicsek model, the
system forms arrays of ordered bands arranged periodi-
cally in space which have a finite width along their direc-
tion of motion: a micro-phase separation occurs [14]. As
shown in Fig. 1, increasing the density at constant noise,
the number of bands increases but their shape does not
change [14].

Three types of propagating patterns can thus be ob-
served at phase coexistence, all shown in Fig. 1: (i) local-
ized compact excitations, (ii) Smectic microphases, and
(iii) Phase-separated polar liquid domains. In the vicin-
ity of the left coexistence line, collective motion emerges
in the form of localized compact excitations in both mod-
els [22]. At higher density, phase-separated domains are
found in the active Ising model and periodic “smectic”
bands in the Vicsek model. Understanding the emer-
gence of these three types of solutions will be the focus
of the rest of the paper.
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III. HYDRODYNAMIC EQUATIONS

A lot of attention has been given in the literature to
hydrodynamic equations of flocking models. Two differ-
ent approaches have been followed, starting from phe-
nomenological equations [11, 16, 17] or deriving explicitly
coarse-grained equations from a microscopic model [13,
15, 18-20]. All these equations describe the dynamics
of a conserved density field p(7,t) coupled to a non-
conserved magnetization field, the latter being a vector
m(7,t) for continuous rotational symmetries, as in the
Vicsek model, or a scalar m(7,t), for discrete symme-
tries, as in the active Ising model.

We first introduce in Sec. III A two sets of hydrody-
namic equations derived by coarse-graining microscopic
models which will be discussed in this paper. Then, we
turn in Sec. III B to a simpler set of phenomenological
hydrodynamic equations on which we will establish our
general results in Sec. IV.

A. Coarse-grained hydrodynamic descriptions

We first consider the equations proposed by Bertin
et al. to describe a simplified version of the Vicsek
model [15], in which one solely considers binary colli-
sions between the particles. One can then use, assum-
ing molecular chaos, a Boltzmann equation formalism to
arrive at the following hydrodynamic equations for the
density field and a vectorial magnetization field [23]

0 -

78:5) = -V -m (3)
om R S o2 Yo K -2
5 +y(m - V)m =vVem 5VP + §V(\m| )

= K(V i)+ (= ¢l |)m - (4)

The mass-conservation equation (3) simply describes the
advection of the density by the magnetization field.
Equation (4) can be seen as a Navier-Stokes equation
complemented by a Ginzburg-Landau term (pu—¢|m|?)m,
stemming from some underlying alignment mechanism,
and leading to the emergence of a spontaneous magne-
tization. Because particles are self-propelled in a given
frame of reference, these equations break Galilean invari-
ance so that one can have v # 1 and « # 0 unlike e.g. in
the Navier-Stokes equation.

In Egs. (3) and (4), to which we refer to as “Vicsek
hydrodynamic equations” hereafter, all the coefficients
v, v, K, g and ¢, depend on the local density; see [15] for
their exact expression.

The second set of equations, which we refer to as
“Ising hydrodynamic equations” in the following, has
been derived to describe the large-scale phenomenology
of the active Ising model [13]. In this case, the dynam-
ics of the density field and the scalar magnetization—

4
corresponding to the Ising symmetry—are given by
0
8—'? = DAp — vg0ym (5)
om r m>

where 8 = 1/T, o and r are positive coefficients depend-
ing on 8 only and vy = 2De. The advection term voVmi
of Eq. (3) is here replaced by a partial derivative vgd,m
because, in the active Ising model, the density is advected
by the magnetization only in the x-direction.

B. Phenomenological hydrodynamic equations
with constant coefficients

Coarse-grained hydrodynamic equations derived from
microscopic models have the advantage of expressing the
macroscopic transport coefficients in terms of microscopic
quantities (noise, self-propulsion speed, etc). However,
these possibly complicated relations may not be relevant
to understand the qualitative behavior of the models.
Thus, before discussing the Vicsek and Ising hydrody-
namic equations in Sec. V, we first study in detail, in
Sec. IV, a simpler model

Op = —voV - M (7)

Byt + (T - V)i = DV — AV + aifh — a7
(8)

where the transport coefficients vg, £, D, A and a4 are
constant. In the following, we refer to these equations as
the “phenomenological hydrodynamic equations”. This
simplified model is very similar to that first introduced by
Toner and Tu from symmetry considerations [11]. How-
ever, unlike the original Toner and Tu model, we keep
an explicit density dependence in as: az(p) = p — ¢q,
which is essential to account for inhomogeneous pro-
files [13, 15, 17].

The stability criteria of the homogeneous solutions
(p(r,t) = po, m(r,t) = mg) of Egs. (7-8) are readily
computed:

e For pg < ¢4 (a2(po) < 0) only the disordered solu-
tion (po, |mMo| = 0) exists and is stable

e For py > ¢, (a2(po) > 0) the disordered solution
becomes unstable and ordered solutions (po, || =

V/(po — ¢4)/as) appear.

e The ordered solutions are linearly stable only when
Po > o= pg + 4a4v(1)+2>\

Thus, in the range py € [y, ¢¢], homogeneous solutions
are linearly unstable. In the language of the liquid-gas
transition, ¢, and ¢, are the gas and liquid spinodals,
between which the homogeneous phases are linearly un-
stable and spinodal decomposition takes place. In the



next section we address the existence of heterogenous or-
dered excitations propagating through stable disordered
(gaseous) backgrounds. This analysis will make it pos-
sible both to identify all the possible flocking patterns
and to further understand the first-order nature of the
flocking transition.

IV. PROPAGATIVE SOLUTIONS

Let us now establish and classify all the inhomogeneous
propagating solutions of Eqs. (7-8). In order to do so, we
first recast this problem into a dynamical system frame-
work in section IV A. We then show in section IV B that
three types of propagating solutions exist with different
celerities ¢ and densities of the gaseous background p,.
Sections IV C, IVD and IV E are dedicated to a detailed
study of how these solutions depend on ¢ and py. Sec-
tion IV F shows how, once the average density is fixed, we
are left with a one-parameter family of solutions. Last,
section IV G is devoted to cases where the inhomogeneous
profiles can be studied analytically.

A. Newton Mapping

Following [15], we look for inhomogeneous polar exci-
tations invariant along, say the y direction, and which
propagate, and/or relax solely along the x direction. We
thus assume, m, = 0 and reduce Egs. (7-8) to:

Op = —vp0zm 9)
om + Emdym = DO2m — Nup + (p — g)m — agm?®
(10)

where we wrote m = m,, to ease the notation. We look for
solutions propagating steadily at a speed c. Introducing
the position z = x —ct in the frame moving at ¢: p(z,t) =
p(z), m(z,t) = m(z), we obtain

cp —vor =0 (11)
D+ (¢ — &m)in — Ap+ (p — pg)m —agm® =0 (12)

where the dots denote derivation with respect to z. Solv-
ing Eq. (11) gives p(z) = pg+ “2m(z). If p(z) is localized
in space, pg has a simple meaning. Since p(z) = pg when
m(z) = 0, the integration constant p, is the density in the
gaseous phase surrounding the localized polar excitation.
We can then insert the expression of p in Eq. (12) and
obtain the second-order ordinary differential equation

A
Dm+(c—%—€m)m—(<ﬂg—pg)m+%°m2—a4m3 =0

(13)

Following [15, 16], we now provide a mechanical inter-
pretation of Equation (13) through the well-known New-
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FIG. 3. Left: Density and magnetization profiles of a prop-
agative solution of the hydrodynamic Egs. (7-8). Center:
Magnetization profile in the comoving frame z = x — ct or,
equivalently, trajectory m(z) of a point particle in the spuri-
ous time z. Right: Phase portrait corresponding to the tra-
jectory m(z). Parameters: D =vg =X =€ = a4 = pg = 1.

FIG. 4. The green potential can give rise to physical (positive,
non-exploding) solutions while the red ones are ruled out by
our conditions (C1) (left) and (C2) (center).

ton mapping. Rewriting Eq. (13) as:

Din = — f(m)rin — % (14)

2
H(m) = ~(py = pg) 5 + gom’ = Sm*  (15)
fm) =~ —em (16)

it is clear that this equation corresponds to the mechan-
ical equation of motion of a point particle. The position
of the particle is m, z is the time variable, D is the mass
of the particle, H(m) is an energy potential and f(m)
is a position-dependent friction. The trajectory m(z) of
this fictive particle exactly corresponds to the shape of
the propagative excitations of our hydrodynamic model
in the frame moving at a speed ¢ (see Fig. 3).

We shall stress that for a given hydrodynamic model,
Eq. (14) is parametrized by the two unknown parameters
c and p, which a priori can take any value. Each pair (c,
pg) gives different potential H and friction f, and hence
different trajectories m(z). We now turn to the study
of these trajectories and of the corresponding admissible
values for the celerity ¢ and the gas density p;.

B. Three possible propagating patterns

The original problem of finding all the inhomogeneous
propagative solutions m(z,t), p(z,t) of the hydrody-
namic equations is now reduced to finding all the pairs (c,
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FIG. 5. Example of the three types of trajectories. From left to right: magnetization and density profiles, phase portrait, and
potential H. Top row: Periodic trajectory, p, = 0.835, ¢ = 1.14. Center row: Homoclinic trajectory, py = 0.83412, ¢ = 1.14.
Bottom row: Heteroclinic trajectory, p; = 0.83333, ¢ = 1.1547. Phase portrait: Crosses indicate saddle points at m = 0 and
m = m+. Squares indicate stable fixed points at m = m_. Potentials: The blue dashed line indicate where the friction changes
sign. The red portion of the potential is the one visited by the trajectory. Parameters: D = v = A =& =a4 = ¢y = 1.

pg) for which the corresponding trajectories m(z) exist.
Mass conservation, Eq. (9), imposes the boundary con-
dition m(z = —o00) = m(z = +00) so that we are looking
for solutions of (14) which are closed in the (m, ) plane.
An example of propagative solutions m(z,t), p(z,t) to-
gether with the corresponding trajectory m(z) and its
phase portraits is shown in Fig. 3.

To put a first constraint on p, and c, let us rule out
the potentials which cannot give such physical solutions.
The extrema of H, solutions of H'(m) = 0, are located
at m = 0 and m = m4 with

4 — )2
= 2 (H\/l_w(%iﬁf) an
asc v

We can already discard the case where H'(m) has two
complex roots since H then has a single maximum at
m = 0, and all trajectories wander to m = +oo (see
Fig. 4, left). This leads to a first condition on ¢, pg:

(g — ,og)c2 < a4v(2, (C1)

Without loss of generality we can assume that ¢ > 0
and look only for solutions with m > 0. This rules out the

(¢, pg) values for which m_ < 0 and m, > 0 which give
oscillations between negative and positive values of m
(see Fig. 4, central panel). At the hydrodynamic equation
level, such solutions would indeed correspond to different
parts of the profiles moving in opposite direction. The
corresponding condition
Pg < ¥g (C2)

imposes 0 < m_ < my. The potential H then has two
maxima, at m = 0 and m = m4, and one minimum, at
m = m_. The typical shape of potential which gives ad-
missible solutions is shown in Fig. 4 along with examples
of potentials ruled out by conditions (C1) and (C2).

>From the admissible shape of the potential H, we
can now list all possible trajectories m(z) and the corre-
sponding fields m(z,t), p(x,t):

e Limit cycles, whose corresponding magnetisation
profiles are periodic bands, as shown in the first
row of Fig. 5.

e Homoclinic orbits, that start infinitely close to a
maximum of H, hence spending an arbitrary large
time there, before crossing twice the potential well



in a finite time to finally return to the same maxi-
mum of H at z = co. These trajectories correspond
to isolated solitonic band profiles, as shown in the
second row of Fig. 5.

e Heteroclinic orbits that spend an arbitrary large
time close to a first maximum of H, cross the po-
tential well in a finite time, spend an arbitrary large
time close to the second maximum of H, before re-
turning to the first maximum. These trajectories
correspond to phase separated profiles. The arbi-
trary waiting times at the two maxima of H then
reflect the arbitrary sizes of two phase-separated
domains (see the third row of Fig. 5).

A third condition on pg, c arises from the non-linear
friction term. Following the classical mechanics analogy,
we define an energy function

1
E= 5Dm2 +H (18)

Multiplying the equation of motion (13) by r, we get

dE 9
= = sy (19)
Energy is injected when f(m) < 0 and dissipated when
f(m) > 0. On a closed trajectory, the friction f must
thus change sign. Since f is a decreasing function of m,
this imposes f(0) > 0 for trajectories with m(z) > 0, or
equivalently

¢ >/ A (C3)

The conditions (C1), (C2) and (C3) thus provide loose
bounds on the subspace of the (c, py) plane which con-
tains the three types of trajectories m(z) described above.
These trajectories correspond to the three types of inho-
mogeneous profiles seen in the microscopic models [24].
Before studying the stability and coarsening of these
propagative solutions, we first need to understand pre-
cisely how they are organised in the (¢, pg) plane. In
order to do so, we first analyze the phase portrait of the
dynamics (14). We then study how the phase portrait
evolves when p, and c are varied.

C. Stability of the fixed points

The structure of the phase portrait is most easily cap-
tured by locating the fixed points of (14) and studying
their stability. We first rewrite (14) as a system of two
first-order differential equations:

d (m m
a (m) _ : 20
() = (o)

The fixed points are the solutions satisfying mm = 0 and
H'(m) = 0, i.e., the constant solutions extremizing H.
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As explained before, because of the condition (C2), the
extrema of H at m = 0,m_, m4 are such that 0 < m_ <
m4, so that 0 and my are two maxima and m_ is a
minimum of H.

Linearizing the dynamics around one of the fixed
points, we define m = mg + dm with mo = 0, m_,m,
so that 1 = dm and

& (EZ) B (—H"(gzow —f(n%)/D) (m 21)

The stability of the fixed points is given by the eigenval-
ues Ap 2 of the 2 x 2 matrix which read

2 " m
Ma(mg) = —2U0) \/ (Bah) -5 e

e At the maxima mo = 0 and my = m4 of H,
H"(mg) is negative and the two eigenvalues are
thus real with opposite signs. These fixed points are
saddle points with one unstable direction (A1 > 0)
and one stable direction (s < 0).

e At the minimum my = m_ of H, H"(myg) is posi-
tive and the real part of the two eigenvalues have
the same sign, given by —f(m_). The fixed point
is stable when f(m_) > 0 and unstable when
f(m_) < 0. Physically, when the friction of the
fictive particle is negative around m = m_, small
perturbations are amplified, driving the trajectory
away from the fixed point. Conversely, a positive
friction damps any initial perturbation, leading to
trajectories converging towards m_.

When ¢ and p, are such that f(m_) =0, Ay 2 are
complex conjugate imaginary numbers. A Hopf bi-
furcation takes place, leading to the apparition of
a limit cycle.

At the onset of a Hopf bifurcation, a limit cycle ap-
pears around the fixed point whose stability changes. In
the following sections we elucidate how the interplay be-
tween the saddle-point and the Hopf dynamics rules the
non-linear dynamics of the fictive particle and hence the
polar-band shape.

D. Hopf bifurcation

Let us first provide a comprehensive characterization
of the Hopf bifurcation. It happens when the real part
of A\1,2 vanishes, i.e., when

/\U()

fm) == —gm (ep) =0 (23)

where m_, which depends on both ¢ and p, is given by
Eq. (17). Equation (23) is satisfied on the line

—c? 4+ voA) (—aac® + agvo + v
pf(c):@g‘i'( 0 )( 04252 400 0€) (24)
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FIG. 6. The four types of phase portrait (m, ) obtained
in our system when changing p, and c¢. The line p, = pf
is where the Hopf bifurcation takes place. The bifurcation is
supercritical for ¢ < ¢* and subcritical for ¢ > ¢*. The plain
(resp. open) black squares denote stable (resp. unstable)
fixed points at m = m_. The plain (resp. dashed) black
lines denote stable (resp. unstable) limit cycles. The crosses
denote the saddle points at m = 0 and m = m4. The initial
condition of each trajectory is marked by a magenta disk and
the direction of “time” z indicated by a magenta arrow.

which we call the Hopf transition line.

Following standard text books in bifurcation the-
ory [21], the type of Hopf bifurcation (super- or sub-
critical) is given by the sign of

52
~ 16wD?

myIm= (a5

H///(m_ p ;

» Mg 8pg

where w = \/H"(m_, pi')/D > 0 is the imaginary part

of the eigenvalues at the bifurcation point. Moreover

om_ -1
0 - 2
P F —daulpy — py)

is always negative because of condition (C1). The sign
of A is thus given by the sign of H"'(m_, pl"), which
changes at ¢ = ¢* with

(26)

. vo(3asA +§)
=t———" 27
¢ B (27)
Two different scenarios occur depending on whether c is
larger or smaller than c*.

e When ¢ < ¢*, the Hopf bifurcation is supercritical
(A > 0). The system branches from a stable fixed
point for pg > pf (case I, Fig. 6) to a stable limit
cycle surrounding an unstable fixed point for p, <
pf (case 11, Fig. 6).

e When ¢ > c¢*, the Hopf bifurcation is subcritical
(A < 0). The system branches from an unstable
fixed point when p, < pf (case IV, Fig. 6) to an
unstable limit cycle surrounding a stable fixed point
when py > pf (case 111, Fig. 6).

The organisation of these four typical cases in the (c, pg)
plane is illustrated in Fig. 6. We thus see that, when
¢ < c*, limit cycles exist for p, smaller than pf , whereas
when ¢ > ¢*, they exist for py larger than pf . The Hopf
bifurcation line is thus a boundary of the domain of ex-
istence of periodic propagative solutions of the hydro-
dynamic equations. Let us now consider what happens
when we explore the ¢, p, plane further away from the
Hopf bifurcation line.

E. Structure of the (¢, py) solution space

So far, we have shown that three different types of
trajectories m(z) (periodic, homoclinic and heteroclinic)
can be found by varying the values of ¢, p;. The sub-
space where these physical solutions can be found was
first bounded by the conditions (C1), (C2), and (C3). In
the previous section, we further found that the Hopf tran-
sition line pf (c) given by Eq. (24) is the upper boundary
for the admissible values of p; when ¢ < ¢* and the lower
boundary when ¢ > c*.

To explore the remaining (¢, py) space, we numerically
integrated the dynamical system (20) using a Runge-
Kutta scheme of order 4. Starting from different initial
conditions, one easily finds the basins of attraction of
the different solutions. To locate unstable fixed points
and limit cycles, we integrated the dynamics backward
in time since they are attractors when z — —oo. As
c and py vary, so do the shapes and sizes of the limit
cycles. To quantify these variations, we measured the
“amplitude” of a cycle, defined as the difference between
the two extrema of m(z)

Am = m;ax[m(z)] - mzin[m(z)] (28)

We systematically vary p, at fixed ¢, first focussing
on the case ¢ < c¢* where the Hopf bifurcation is su-
percritical. Decreasing pg, a stable limit cycle of van-
ishing amplitude appears at p, = pf (Fig. 7, panel A).
The amplitude of the cycle then increases as p, decreases
(Fig. 7, panel B) until it hits the fixed point at m = 0
where the limit cycle becomes an homoclinic trajectory
(Fig. 7, panel C). For even lower p, the particle escapes to
m = —oo. The variation of the cycle amplitude with pg
shown in Fig. 7 can be qualitatively explained. When
pg decreases, the distance m_ — my increases, where

my = %(c — Avg/c) is the value of m where the fric-

tion changes sign, i.e., f(mys) = 0. More energy is thus
injected in the system and, to dissipate this energy, the
trajectory need to go closer to m = 0.

A symmetric behavior is observed when ¢ > ¢*, for the
subcritical Hopf bifurcation. Increasing py, an unstable
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ity of the Hopf bifurcation line (A) until the homoclinic is
found (C) Bottom-left: Size of the limit cycle Am defined
in Eq. (28). The limit cycle disappears when Am is large
enough that the orbit reaches m = 0, where the trajectory is
homoclinic. Bottom-right: Average density po of the solu-
tions. Parameters: D =vg =A=& =a4 = @4 = 1.
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FIG. 8. Unstable homoclinic trajectory starting from m =
my for ¢ = 1.16. Parameters: D =vg = A =€ = a4 = @4 =
1.

limit cycle of vanishing amplitude appears at p, = pf .
The amplitude of the cycle then increases with p, until
the trajectory hits the point m = my where we have
an (unstable) homoclinic solution that starts from m =
m4 as shown in Fig. 8. Physically, when increasing pg,
my —m_ increases so that the friction around the stable
fixed point at m = m_ becomes larger and thus its basin
of attraction (whose boundary is the unstable limit cycle,
see Fig. 6) becomes larger.

All in all, the central results of this section is that
all the admissible solutions lie in a band delimited by
the Hopf bifurcation line p'(¢) and a line where the ho-
moclinic trajectories are found, as shown in Fig. 9. In-
side this band there exists stable non-degenerate limit cy-
cles, corresponding to periodic propagating profiles. The
unique heteroclinic trajectory is located exactly at ¢ = ¢*
where the Hopf bifurcation changes from supercritical to
subcritical. We thus observe a 2-parameter family of pe-
riodic solutions, a line of homoclinic trajectories and a
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FIG. 9. Space of all solutions. A 2-parameter family of pe-
riodic orbits is found inside the band delimited by the Hopf
bifurcation and the homoclinic trajectories. The constraints
(C2) and (C3) are indicated by the black dashed lines. The
constraint (C1) lies out the range of this plot. Bottom:
Zoom of the plot above around the point ¢ = ¢* where
the Hopf bifurcation changes from supercritical to subcriti-
cal. This is also where the unique heteroclinic trajectory is
found. The roman numbers refer to Fig. 6, indicating the
type of phase portrait found in each region. Parameters:
D=vw=A==a4 =g =1.

unique heteroclinic trajectory. Going back to the origi-
nal pattern formation problem, they correspond to a 2-
parameter family of micro-phase separated profiles, a line
of isolated solitonic bands and a unique phase-separated
state where a macroscopic polar liquid domain cruises
through a disordered gas.

F. Working at fixed average density

In the microscopic models and the original hydrody-
namic equations the average density pg is a conserved
quantity fixed by the initial condition. On the contrary,
when considering the trajectories of the fictive particle
m(2), po is not a priori fixed and varies between the
different solutions. To compute the mean density on a
trajectory m(z) we simply average p(z) = pg +vom(z)/c
over time.

As shown in Fig. 7 (bottom-right), we find that at fixed
¢ < ¢*, po decreases when p, decreases. It ranges from

Yo

po = pg + “2m_ when p, = pf to pp = pg at the homo-
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clinic trajectory where the portion of the trajectory with
m(z) # 0 becomes negligibly small. Note that, at the het-
eroclinic trajectory, pg can take a large range of values.
Since the size of the gas and liquid domains are arbitrary,
the average density can take any value in [p;‘, o] where
pg and ,0? are the densities in the gas and liquid domains
respectively.

Fixing po adds a constraint that selects a line of solu-
tions in the (¢, py) space, as shown in Fig. 10 (left). For
all po € [pl, p}] these lines end at the heteroclinic tra-
jectory. We also observe that, at fixed pg, the closer the
trajectories are to the heteroclinic solution, the larger
their amplitude (see Fig. 10, right). This means that
along a line pg = cst, the higher the amplitude the faster
the band excitations propagate. This point will turn out
to be crucial when discussing the coarsening dynamics at
the hydrodynamic level in Sec. VII.

Until now, we have shown that three different types
of possible trajectories m(z) exist, which correspond to
all the propagative solutions observed in the microscopic
models of flying spins. We have further identified the
subset of values of the propagation speed ¢ and the gas
density pg for which these solutions exist. We can now
turn to the study of their dynamical stability at the hy-
drodynamic equation level. However, we first discuss an-
alytically in the next section the shape of inhomogeneous
solutions.

G. Exact solution for the heterocline

There are no general analytic solutions for the propa-
gating inhomogeneous profiles. However, progress is pos-
sible for some limiting cases. In the following we show
that a complete solution for the heterocline — its position
in the (¢, pg) plane and its shape — can be determined
exactly [13]. In A, we then show that, although exact
solutions are not available, progress regarding the shape
of the homoclinic solutions is achievable in the small D
limit.

To compute the shape of the heterocline, let us start
from the ansatz

m172(z) = % |:1 + tanh (k1’2(z — Zlyg)):| (29)

Each of m1(z) and mga(z) describe an interface centered
around z = z; 2 between a disordered phase with m =
0 and an ordered phase with m = my. The complete
heteroclinic trajectory then consists of two fronts glued
together: An ascending front m4(z) with k4 > 0 and a
descending front ma(z) with ko < 0, with 2o > 2 (see
Fig. 11); Being part of the same profile, the two fronts
share the same celerity ¢ and density p,.

Moreover we know that m, must be located at the
second maximum of H so that

v 4a — pg)c?
me:m+:ﬁ<1+\/1_w> (30)
0
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FIG. 10. Top: Lines of solutions having a fixed average den-
sity po in the space of all solutions. Bottom: the amplitude
Am of the cycles, defined in Eq. (28), along the lines po = cst
increases when c¢ increases. Parameters: D = vg = A =& =
as = pg = 1.

Plugging m; and ms in Eq. (13) and replacing m, by its
expression, one obtains for each of the fronts

9(c; pg, k12) + h(c, pg, kr,2) tanh (k1 2(2 — 21.2)) =(0 :
31
where g and h are complicated functions that we omit for
conciseness. Eq. (31) can be true only if g and h vanish
independently, for both k; and k.

We can express ki and ko as functions of ¢ and p,
by linearizing the ansatz (29) around m = 0. When
k1.2(z — 21,2) = —00, one has mj 2 ~ exp(2k1,2(z —21,2))
so that we can identify ki o with the two eigenvalues of
the linear stability analysis Eq. (22). The ascending front
is associated with the unstable direction k4 = A;/2 and
the descending front with the stable direction ko = Ao /2.

Replacing k1 2 by their values in Eq. (31), we have four
equations for the two unknowns c¢ and pg. After some
algebra, one obtains a unique solution (c”, p’gl) with

h % U0(3CL4)\ + 5)
==X 2T > 32
c c _3a4 ( )
20,
h _ _ 0
Pa = %97 gan+ 3¢ (33)

This gives us the magnetization my, and the the fronts
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FIG. 11. Comparison between the exact solution for the het-
erocline (dashed lines) and the result from numerical integra-
tion of Eq. (20) (blue line). Parameters: D =vg = A = § =
as = pg = 1.

steepness ki 2 as

2vg

hy = Vvo(8asD +£2) — /uof (35)
4D \/304(3ai) +€)

by — —v/v0(8asD + £2) — /o€ (36)

4D 3(14(30,4)\ + f)

mey = (34)

In Fig. 11, we show that this solution matches exactly
the heteroclinic orbit found by numerical integration of
Eq. (20).

V. BACK TO THE VICSEK-LIKE AND THE
ACTIVE ISING MODELS: NON-LINEAR
SOLUTIONS OF THE HYDRODYNAMIC

EQUATIONS

In Sec. IIT and IV we consider phenomenological hy-
drodynamic equations and assumed the simplest possi-
ble dependences of their coefficients with density. Here
we extend our study to the more realistic hydrodynamic
equations presented in Sec IITA. We first consider in
Sec. V A the Vicsek hydrodynamic equations before turn-
ing to the Ising hydrodynamic equations in Sec. V B. For
sake of completeness, we also consider in Appendix B a
more general case where the potential H appearing in
the dynamical system for m(z) is not a polynomial in
m. While not directly relevant for the hydrodynamic
equations studied in this paper for the Vicsek and ac-
tive Ising model, such Hamiltonians cannot be ruled out
and may arise, for instance, from a density-dependence of
the coefficient a4 in the phenomenological hydrodynamic
equations (8).
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A. Vicsek like equations

Let us consider the hydrodynamic equations (3-4) in-
troduced by Bertin and co-workers to describe a simpli-
fied version of the Vicsek model [15]. These equations
have the same structure as the phenomenological equa-
tions (7-8) with two additional gradient terms %V (|1|?)
and —k(V - m)m. Importantly, all the coefficients v, v,
K, o and ¢ depend on the density.

We follow the same approach as before. Looking for
propagative solutions invariant in the transverse direc-
tion we set m, = 0, write m, = m, and go to the comov-
ing frame z = x — ct, to obtain

cp—vorn =0 (37)
’Ug Vo
v + (c— 2—>ﬁ1—7mﬁ1— 5/')+um—§m3 =0
c
(38)

Note that after setting m, = 0 the two s gradient terms
of Eq. (4) cancel each other.
As before, Eq. (37) directly yields

p(z) = py + ~2m(2) (39)

As we show in Appendix C, Eq. (38) can also be greatly
simplified using the explicit density-dependence of its co-
efficients. Introducing 4 = /v, ¢ = (/v, and writing
i = p1p— 2 and v~1 = v p-+vy, one obtains the second-
order ordinary differential equation

m+ (o — Em)in — agm + agm? — agm® =0 (40)
where the coefficients are all function of ¢ and p,

v3 vg _
a=(ec=35, (V1pg + 12) 5:@u1+7 (41)

az = pavy + (pav1 — pava)pg — H1vip;
U,

az = ?0 (2pgpav1 + pave — pgvy)
2

Vo
ay =G — C_2H1V1

Interestingly, Eq. (40) has exactly the same form as
Eq. (13)—the dynamical system stemming from the
phenomenological hydrodynamic equations studied in
Sec IV—although with coefficients depending in a more
complicated way on p, and c. Their propagative solu-
tions will thus be the same, up to a slightly different
organisation in the c, p, plane.

However, an important difference between the Vic-
sek and phenomenological hydrodynamic equations, is
the scaling of the magnetization with density in the or-
dered phase. The Vicsek hydrodynamic equations (3-4)
of Bertin and co-workers indeed predict that the homo-
geneous ordered solution satisfies

ol 1
| _ 1 \/E ., [l (42)
po o\ ¢ e \




178

1.4 : —
P9 . stable homo. H 1.0 H
1.3 A\ — unstable homoc. i 0.8
— Hopf bifurcation E '
1.2 E 0.6
1.1 ; 0.4
1.0 : 0.2
R 0.0 z
0.9 T T Tr T T T T
0.74 0.76 0.78 0.80 0 25 50 75
1.2
m 2.0 4™
1.0 + - - = "
0.8 1.5
0.6 10 4
0.4
0.2 0.5
0.0 z z
T T T 0.0 T T
0 25 50 75 0 100 200 300

FIG. 12. Top left: Phase diagram for the propagative solu-
tions of the hydrodynamic equations of Bertin et al. Eq. (40).
The color code and different phases are the same as for the
as = cst case Fig. 9. We obtain the same three types of in-
homogeneous profiles: periodic, homoclinic and heteroclinic.
o=0.7.

which is consistent with what is observed in microscopic
models such as the Vicsek model. On the contrary, be-
cause the coefficient a4 in Eq. (8) does not depend on den-
sity, the phenomenological equations (7-8) would yield
% — 0 as pg increases. In this region of parameter
space, which is not the main focus of this paper, the Vic-
sek hydrodynamic equations are thus more faithful to the
phenomenology of microscopic models studied in Sec. II
than the phenomenological equations (7-8). As we show
in Appendix B, however, these phenomenological equa-
tions can recover a scaling akin to that of the Vicsek
model if the coefficient a4 of Eq. (8) is allowed to depend
on density. This leads to a slightly more complicated dy-
namical system [16] that we study in the appendix for
completeness.

Coming back to the dynamical system (40), following
the same method as that introduced in Sec. IV, one can
derive analytical expressions for the Hopf bifurcation line
pf (¢) and the speed ¢* where the bifurcation becomes
subcritical. We show in Fig. 12 the phase diagram in the
(¢, pg)-plane and examples for the three types of inho-
mogeneous trajectories. Again an exact solution for the
heteroclinic trajectory can be derived and (the dashed
lines in Fig. 12) is found at speed ¢* = c*. As expected,
there is no qualitative difference with the simpler case
studied in Sec. III.

B. Active Ising model equations

The active-Ising hydrodynamic equations [13] seem a
priori different since they contain none of the non-linear

12

gradient terms found in the phenomenological and Vicsek
hydrodynamic equations. However, these terms are in
fact generated by the diffusion term in the dynamical
equation (5) for the density field [13], so that we will once
again recover the same types of propagative solutions.

Looking for stationary profiles in the comoving frame
z =x —ct, Eq. (5) and (6) reduce to

Dp+cp—vgr=0 (43)
3
Dm+cm—vop+2(ﬁ—1—£)m—a% =0 (44)
Equation (43) can be solved by expanding p in gradients
of m. Introducing the ansatz
> d*m
p(z) = pg + Zo‘kﬁ (45)
k=0
into Eq. (43), and solving order by order, we get the
following recursion relation

V) D
a =" g1 =——a, (46)
& C

from which we obtain

e k gk
g D\" d*m
= — —— ) = 4
o(2) p”ck:o( o) w

In the following we retain only the first order terms in
gradient:

Vo D’Uo . DQ'UO
p(2) = pg + - -m(z) = —5-m(2) + =3

To simplify Eq. (44) we linearize around the density
g = /(B — 1) where the disordered profile becomes
linearly unstable. As shown in [13], this is a good ap-
proximation when 5 2 1 because ¢, — oo while p — ¢,
remains finite for inhomogeneous solutions. We then ob-
tain

m(z) (48)

. . ., 2r m3
D+ ern — vop + E(p—tpg)m—a—2:0 (49)
g 9

Finally, inserting Eq. (48) in the previous equation
we obtain a second-order ordinary differential equation
with exactly the same terms as those obtained from the
phenomenological and Vicsek hydrodynamic equations,
Eq. (13) and (40):

2
Drn+ (c - %0 - §m) m—asm+azm?—asm® =0 (50)

with
- v2 4r Dy
D=p(1+% S el 1
(1+3) =@t R)7 (51)
g — 21 (g — pg) a5 = 2ruvg a0y = a (52)
5 Py [

This equation has again the same qualitative behavior
as in the phenomenological theory and the same three
types of inhomogeneous solutions are found with the
same organization in the (¢, pg) parameter space.



VI. LINEAR STABILITY OF THE
PROPAGATIVE SOLUTIONS IN THE 1D
HYDRODYNAMIC EQUATIONS

In sections IV and V, we have found and classified
all the propagative solutions of different hydrodynamic
equations. We have shown that in all cases three types
of such solutions exist: periodic patterns of finite-size
bands, solitary band solutions, and phase-separated so-
lutions. These solutions were found as stable limit cycles,
homoclinic, and heteroclinic orbits m(z) of the reduced
dynamical system (13). This study does not tell us any-
thing about the local and a fortiori global stability of
these solutions as solutions m(x — ct) and p(x — ct) of
the original hydrodynamic partial differential equations.
Indeed, a stable orbit of the reduced dynamical system
can very well be unstable to spatiotemporal perturba-
tions when re-expressed as an inhomogeneous propaga-
tive solution of the hydrodynamic equations. For ex-
ample, consider the fixed point at m = m_ which is
stable for p, > pf, in the region I and IIT in Fig. 9.
Without performing any calculation, we know that the
corresponding homogeneous solution (pg = py + “2m_,
mo = m—) is unstable in the hydrodynamic equations
because it lies inside the spinodal region where no homo-
geneous solution is linearly stable.

In this section we study the linear (local) stability of
these solutions at the hydrodynamic level. Although, it is
a well-defined linear problem, determining the stability of
inhomogeneous solutions of nonlinear partial differential
equations cannot be done analytically even in the (rare)
cases where these solutions are known analytically. A di-
rect numerical study is possible (for an example, see, e.g.
[25]), but is rather tedious, all the more so as we deal with
2D hydrodynamic equations. In the following, we study
mostly the linear stability of the hydrodynamic equations
reduced to one dimension (that of propagation), using a
simple numerical procedure explained below. For an ac-
count of some fully 2D preliminary investigation, see the
end of this section.

A. Numerical procedure

We investigated numerically the stability of the prop-
agative solutions of the phenomenological hydrodynamic
equations Eq. (7-8) reduced to one space dimension, that
of propagation. To do so, we select a solution of the corre-
sponding classical mechanics problem. (13) and use it as
initial condition of the numerical integration of Egs. (7)
and (8).

The numerical integration is done using a semi-spectral
algorithm, the linear terms being computed in Fourier
space, the non-linear ones in real space and a semi-
implicit time-stepping. This method, where the fields
p and m are represented by their N first Fourier modes
(with N large enough that the simulation has converged),
is well suited to simulate systems with diffusion terms
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FIG. 13. Stability of homoclinic orbits in the hydrodynamic
equations. Aa. is the difference in the amplitude of the
solution measured between t = 0 and t = Ts. The solu-
tion is declared to be linearly stable if dm(T%), defined in
Eq. (53) is smaller than a threshold that we take at 107%.
vo=A=¢&=as =g =1, c=1.125 (right)

and periodic boundary conditions.

Preparing the initial condition of the hydrodynamic
equations always brings in discretization errors. Indeed,
because of the periodic boundary conditions in the hy-
drodynamic equations, we need to select a portion of the
solution m(z) which is a multiple of the period. This is
done with an error of order dx, the space discretization
step used in the numerical integration of (7) and (8).

Accordingly, we observe a rapid relaxation at short
times due to the discretization errors. Subsequently, we
find that the original solution is either stable at long
times or is quickly destabilized and converges to another
solution. To analyze systematically the stability of the
propagative solutions, we defined a quantitative criterion
for the stability: We choose a time 7y = 2000 much
larger than the relaxation time of the initial perturba-
tion (which happens in a time ~ 100) but not too large
to test solely the linear stability regardless of a possible
long-time coarsening dynamics that could be induced by
numerical noise. We then measure the amplitude of the
solution |Am/|(t) defined in Eq. (28) as a function of time.
If

sm(Ty) = |Am(Ty) — Am(0)] (53)

is smaller than 1073, the solution is said to be stable
and unstable otherwise (see Fig. 13). This protocol does
not give exact answers to the question of linear stability,
since in particular the small but finite initial perturba-
tions may take the initial condition out of the basin of at-
traction of a (stable) solution. But the results presented
below are relatively robust to changing our numerical res-
olution and the conditions used to decide stability, and
we are thus confident that they represent well the ’true’
subset of linear stable solutions.

The precise criterion does not matter much for the re-
sults since we find an abrupt transition from stable to
unstable trajectories (see Fig. 13) which is visible on a
variety of observables (norm of the fields, period, max
and min values, etc).
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B. Results

Figure 14 contains one of the central results of our pa-
per: only a very small subset of the propagative solutions
are stable at the hydrodynamic level. However this sub-
set includes the three possible types of trajectories: peri-
odic bands, solitonic bands, and phase-separated profiles.
The linearly stable solutions are all found in the region of
the (¢, py) plane close to the heteroclinic trajectory and
close to the line of homoclinic orbits. Examples of stable
and unstable solutions are shown in Fig. 15.

To understand why only the vicinity of the heteroclinic
and homoclinic solutions is stable, one can argue that the
solutions must have a large enough amplitude to be dy-
namically stable. Indeed, the periodic solutions oscillate
around m = m_ which lies inside the spinodal region
of the hydrodynamic equations, where no homogeneous
solutions is stable. Small-amplitude oscillations around
this point should thus also by dynamically unstable and
only large enough amplitude cycles, found near the ho-
moclinic line and the heteroclinic trajectories, are stable.

Note that the region where stable solutions are found
has a rather rough boundary in Fig. 14. This is most
probably an artefact due to the initial discretization er-
ror which is not controlled and varies from one propaga-
tive solution to another. Close to the threshold of linear
instability, this can easily make a (linearly) stable trajec-
tory unstable.

We report finally on fully 2D simulations performed on
rectangular boxes of width L, = 100, with small noise
added to each grid point on a 1D solution extended triv-
ially along y. These yielded essentially no change with
respect to the results presented above. While this encour-
ages us to believe that no unstable mode has components
along y, and thus that the subset determined above cor-
responds to the linearly stable solutions of the full 2D
hydrodynamic equations, we remain cautious. As a mat-
ter of fact, recent results obtained in the case of hydro-
dynamic equations for active nematics have revealed the
existence of (very) long wavelength instability along the
homogeneous direction of band solutions. [26] A similar
investigation is left for future studies.

VII. COARSENING IN THE HYDRODYNAMIC

EQUATIONS

The two-dimensional subset of propagative solutions
that are linearly stable still contains an infinity of so-
lutions, including smectic patterns, solitary bands, and
phase-separated profiles. We can thus wonder whether a
single solution is selected in the hydrodynamic equation
starting from a random initial condition.

One can obtain some insight into this question by
studying the lines of propagative solutions having a given
average density po, shown in Fig. 10. Indeed, po is con-
served in the hydrodynamic equations and any stable
propagative solutions has to lie on such a line. As dis-
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FIG. 14. The blue region is the subset of admissible prop-
agative solutions which are linearly stable. None of the so-
lutions for ¢ > ¢* is stable in the hydrodynamic equations.
vo =A =& =as = g = 1. We use system sizes L, = 300
or more (adapted to fit the solution) with resolution dz = 0.5
and dt = 0.1.
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FIG. 15. Evolution of two propagative solutions in the hy-
drodynamic equations (7-8). The initial conditions are sta-
ble limit cycles of the dynamical system (13) for m(z). Top
row: unstable solution with ¢ = 1.135, p, = 0.8351. Bottom
row: stable solutions with ¢ = 1.14, p, = 0.8341. System size
340 x 100, dt = 0.1, dr =04. v =A =€ =as = pg = 1.

cussed earlier, the larger the amplitude of a solution, the
faster the propagation. We can thus expect that if several
travelling bands coexist, they will encounter and merge
because of their different speeds. This will in turn in-
crease the sizes of the surviving objects and hence their
speed. This mechanism would naturally lead the sys-
tem toward the heteroclinic solution, ¢.e., to the phase-
separated state.

We checked this scenario by simulating the phe-
nomenological hydrodynamic equations (7-8) with three
different initial conditions, as shown in Fig. 16:

e We build an initial condition made of two homo-
clines glued together, both solutions of the differ-
ential equation (13) for different speed ¢ and inside
the stability domain of Fig. 14. To avoid discon-



tinuities we interpolate smoothly between the gas
densities of the two solutions using a hyperbolic
tangent function. We then observe that the two
travelling bands get closer until, when close enough
(though not in contact), the smaller one evaporates,
its mass being transfered to the second band. The
final solution is hence a single larger isolated band.

e Starting from a random ordered solution with con-
stant p and a magnetization m fluctuating around
mg # 0, several bands form at short times that all
go in the same direction. The system then coarsens
because of the speed differences between the lig-
uid droplets until only “phase-separated domains”,
that all have the same speed, remain. In practice,
because the band speeds can be very close, a fi-
nal state with a single phase-separated profile may
not be reached within the time-scales of our simula-
tions and a precise study of this coarsening regime
is beyond our numerical capacities.

e Starting from a disordered initial condition with
m(z) fluctuating around 0 and a density inside
the spinodal region, many domains of positive and
negative magnetization form. These objects then
encounter and merge yielding a rapid coalescence
process. Because of the periodic boundary condi-
tions, this process typically yields a single phase-
separated state for the system sizes we considered.
For larger systems, the coalescence process could
result in a larger number of bands propagating in
the same direction. We should then observe the
same type of coarsening as in the second case dis-
cussed above.

At the level of hydrodynamic equations, the fact that
larger ordered domains travel faster leads to a natu-
ral coarsening towards the phase-separated states. This
coarsening relies both on a coalescence process and, when
bands travelling in the same direction are close enough,
on a ripening during which a smaller band evaporates
and is “swallowed” by its larger neighbour.

Note that we studied the stability of propagative solu-
tions and their coarsening process using the phenomeno-
logical hydrodynamic equations (7-8). While the precise
results will depend on the set of hydrodynamic equations
under study, our simulations of the Vicsek and Ising hy-
drodynamic equations, (3-4) and (5-6), did not suggest
any qualitative difference. Their comprehensive investi-
gation, which is beyond the scope of this paper, would
nevertheless be interesting, especially to quantifiy the
role played by the non-linearities in the vectorial hydro-
dynamic equations (4).
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VIII. PHASE DIAGRAM OF
COARSE-GRAINED HYDRODYNAMIC
EQUATIONS

We can now construct the full phase diagram for
the Ising and Vicsek hydrodynamic equations in the
temperature-density ensemble (or noise-density for Vic-
sek), Fig. 17. It is composed of two spinodal lines, which
are the limit of linear stability of the homogeneous disor-
dered and ordered profiles, and two binodal lines outside
which inhomogeneous solutions cannot be observed.

A. Spinodal lines

The spinodal lines can be determined analytically from
a linear stability analysis, as was previously done for the
Vicsek model [15] and the active Ising model [13]. The
lower spinodal line ¢, is simply the density at which the
coefficient of the term linear in m in the hydrodynamic
equations changes sign (in our phenomenological equa-
tion, when a2 = 0). It reads for the Ising and Vicsek
hydrodynamic equations

pg(T) =1/(B=1) (54)
m(1—e /2

b2 % (55)

90;/(0') 11 4(67‘72/2 — 2/3)

where 8 = 1/T. The higher spinodal ¢, can be deter-
mined exactly for the Ising hydrodynamic equations

vo/a (vZk +8D(B — 1)2) + v3k + 8Da(B — 1)

I
T) =
(1) = g 203k +8Da(f — 1)

(56)
where k = 2+« — 28 and a = 82(1 — 3/3). For the
Vicsek hydrodynamic equation, the exact determination
of g is much more cumbersome [15]. In Fig. 17 we show
the line ¢} (o) computed numerically by simulating the
Vicsek hydrodynamic equations at different densities in
the homogeneous ordered state and looking at the growth
of a small perturbation.

B. Binodal lines

The binodal lines p, and p; are defined as the minimum
and maximum global densities beyond which inhomoge-
neous propagative profiles cannot be observed in sim-
ulations of the hydrodynamic equations. As explained
in Sec. IVF, at the heteroclinic trajectory the size of
the liquid and gas domains are arbitrary so that phase-
separated solutions can have any density in the range
[pé%pﬂ. We find that, for all parameters we tested,
pZ‘ = py, i.e., no other stable solution has a larger density
than the liquid domain of the heteroclinic solution.

The situation is more subtle for the lower binodal p,.
Depending on the external parameters, the line of ho-
moclinic trajectories solution of the dynamical system
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FIG. 16. Coarsening in the phenomenological hydrodynamic equations (7-8) from three different initial conditions. Top: Two
homoclinic trajectories glued together. Middle: Disordered initial condition. Bottom: Ordered initial condition. System
size 500 x 100 (top and bottom), 1000 x 100 (middle). The profiles are averaged along the y-direction in which the system is
invariant. vo = A= =a4 =y =1, dt =0.1, dx = 0.1.
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FIG. 17. Phase diagram of the Visek (left) and Ising (right) hydrodynamic equations. The spinodal lines ¢4 and ¢; are known
exactly except ¢, in the Vicsek hydrodynamic equation which we computed numerically by looking at the stability of systems
of size 50 x 50. The binodals p, and p¢ are the coexisting densities of phase-separated (heteroclinic) solutions as explained
in the text. The dashed line indicate the asymptote above which only disordered solutions exist. Insets are close-ups on the
high-density regions with a logarithmic scale on the z-axis. Parameters: vo = D =1 =r =1 (Ising), vo = 1 (Vicsek).
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FIG. 18. Propagative solutions of the Vicsek hydrodynamic
equations for ¢ = 0.2 and 0.7. The solution with the lower
mean density pmin is found at the minimum of the line of
homoclinic solutions. At low noise, it does not coincide with
the heteroclinic solution (blue squares). vo = 1.

is not always monotonous as a function of c¢. For ex-
ample, in the Vicsek hydrodynamic equation it is not
monotonous at low noise, as shown in Fig. 18. In this
case the minimum density accessible to propagative so-
lutions is the minimum of the homoclinic line. This so-
lution need not be stable in the hydrodynamic equations
so that one should repeat the stability analysis done in
Sec. VI for each value of the noise to determine exactly
the binodal line. For simplicity, the lower binodal of the
Vicsek hydrodynamic equation shown in Fig. 17 is the
gas density read from the phase-separated profile, which
is true at high noise and a good approximation of p, at
lower noise values.

For the Vicsek hydrodynamic equations, the coexisting
densities of the heteroclinic trajectory are known exactly
whereas in the Ising case they can be determined analyt-
ically only after linearizing Eq. (44) around p = ¢,4. The
binodal lines in the phase diagram of the Ising hydrody-
namic equations shown in Fig. 17 are thus determined by
integrating numerically the hydrodynamic equations and
measuring the density of the liquid and gas domain of a
phase-separated solution whereas we plot the analytical
solution in the Vicsek case.

IX. CONCLUSION

Before summarizing our results, let us discuss how the
study of the hydrodynamic equations presented in this
article compares with the phenomenology of the micro-
scopic models. The phase diagrams of the Ising and Vic-
sek hydrodynamic equations shown in Fig. 17 are quali-
tatively similar. They are also consistent with the phase
diagrams of the microscopic models shown in Fig. 2. The
hydrodynamic equations thus provide a picture which
is consistent with the liquid-gas framework discussed in
Sec. I1 C. For instance, the asymptote at finite noise (or
temperature) can again be seen as the simplest way of
forcing the system to cross a transition line to go from
its gas to liquid phase.

The comparison between the phase-separated regions
of the microscopic models and hydrodynamic equations
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is however more subtle. We have indeed shown, using
the phenomenological hydrodynamic equation (7-8), that
the coarsening leads, at the hydrodynamic level, to the
phase-separated solution. This is true in the active Ising
model but not in the Vicsek model, which only shows
micro-phase separation and thus a coarsening leading
to a periodic solution (see Fig. 1). This difference be-
tween microscopic models and hydrodynamic equations
is however not surprising since it was recently shown that
fluctuations are essential to account for the selection of
micro-phase separated profiles in the Vicsek model [14].

More precisely, phase-separated and micro-phase-
separated solutions are both linearly stable in the hy-
drodynamic equations for vectorial order parameters. As
noise is added to these equations, though, large bands
are destabilized and break in periodic array of finite-size
bands, in agreement with what is seen in microscopic
simuations of the Vicsek model [14]. We can now ten-
tatively put together these results to propose a coarsen-
ing process that would lead to the micro-phase separated
states seen in the Vicsek model. Starting from a profile
with many coexisting bands, the coarsening at fized po
would tend to lead to the formation of larger and larger
bands. This coarsening would however be arrested by
the fact that the fluctuations in the Vicsek model set a
maximal size beyond which bands are (non-linearly) un-
stable. How this size is selected however remains to be
determined.

All in all, we have shown in this paper that the hy-
drodynamic equations describing polar flocking models
generically share the same propagative solutions. We
found three types of solutions that are all observed in
microscopic models: periodic orbits that describe mi-
crophase separation, homoclinic orbits describing soli-
tonic objects and heteroclinic trajectories that corre-
spond to phase separation. Only a subset is stable in the
hydrodynamic equations, but it still contains the three
types of solutions.

The coarsening in the hydrodynamic equations favors
the fastest solutions which are also the largest patterns.
It thus leads naturally to the phase-separated solution
which controls the phase diagram of the hydrodynamic
equations. The same behavior is observed in the micro-
scopic active Ising model whereas one can understand
the microphase separation of the Vicsek model as an ar-
rested coarsening, the largest pattern being non-linearly
unstable to the (giant) fluctuations of the liquid phase.

ACKNOWLEDGMENTS

We thank T. Dauxois, A. Peshkov, J. Toner, V. Vitelli
for many illuminating discussions. This project was sup-
ported through ANR projects BACTTERNS and MiTra.



184

Appendix A: Limit of small D

While we do not have an analytic solution for the ho-
moclinic profiles, lots of insight on their physics can be
gained by studying the limit of small diffusion coefficient
D. This is most easily done by introducing the auxiliary
variable Z = D + F'(m) where

N O I (A1)

c 2

such that F'(m) = f(m).
then be recast as

4 () = (B Ee)
dz \Z —H'(m)

Let us consider a large-amplitude orbits that start close
tom = 0. An example of such orbits and the correspond-
ing phase portrait for the (m, Z) variables is shown in
Fig. 19. When D is small, 1 relaxes quickly to zero so
that Z relaxes to the parabola Z = F(m) in a time ~ D.
Following the trajectory in Fig. 19, starting from point
A at m = 0, the trajectory between A and B is above
the parabola F'(m). The distance with the parabola first
increases when m < m_, which implies H'(m) < 0 and
Z > 0, and decreases afterwards when m > m_. The
distance with the parabola stays of order D, set by the
relaxation time of . When Z = f(m) at point B, m
relaxes to m = 0 in a time ~ D. This gives profiles with
sharp leading fronts and long exponential tails, which are
indeed consistent with the profiles seen at small temper-
ature in the Vicsek model and its putative hydrodynamic
description [12, 15, 18].

This picture is consistent with the fact that at leading
order in D the eigenvalues at point (m = 0, i = 0) read

Our dynamical system can

(A2)

Pg — Pg

_c—Au/c
c—Aug/c

A = -

2= (A3)

so that we have a slow unstable direction \; and a fast
stable direction Ay. These two eigenvalues indeed control
a large part of the trajectory, as shown in the right panel
of Fig. 19.

Appendix B: Phenomenological equations with a4(p)

In the hydrodynamic equation (8) the homogeneous

ordered solutions have a magnetization || = \/as/aq.
Thus, in the simplified case studied in Sec. III where
az = p — pg and a4 = cst, one observes that

|7o| _

P —Pg
0 B1
p ap?  poo (B1)

On the contrary we observe in the microscopic Vicsek
and active Ising models that, at large densities, |7ig|/po
reaches a constant Py < 1 (set by the noise intensity
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FIG. 19. Left: Phase portrait for the variables m and

Z = Drm+F(m) where F(m) is the red parabola. Right: The
corresponding trajectory. The dashed lines are the linear ap-
proximation around m = 0. The inset in semi-log scale shows
the exponential tail close to m = 0. Parameters: D = 0.01,
vo=A=f=as=pg=1.

in the microscopic models). This can be achieved by
assuming that ay = (pP2)~! as in [16] so that

p p

|m0| PO P — Py PO (B2)

p—r00

Repeating the same treatment as before, we look for
1d propagative solutions with speed ¢ which are the so-
lutions of

. Av .
Dm—l—(c—?o—gm)m—((pg—pg)m
3
Vo o m
- - = B
R T R

which can be written in the same form as Eq. (14) with
a different potential

Din = —f(m)in — H'(m) (B4)
oy g (g = py)
)2k _ 9 g Py 9 2
(m) =~ pzgm+ {2130%3 2 "
4 3
C Vo cp
— {313021) — %} m> + POQU% log(vom + cpy) (B5)
AV
f(m)=c—=2—¢m (B6)

We find a behavior very similar to the case a4 = cst
discussed in section IV. Under the same constraints (C1-
3), the potential H(m) has the same form with maxima
in m = 0 and m = my and a minimum at m = m_ given
by

CUOPO2(2pg - ‘Pg) + CPO\/(POUO¢9)2 - 462pg(¢g - pg)

e = 2(c2 — P202)

(B7)

One observes the same three types of trajectories al-
ready shown in Fig. 5: periodic, homoclinic and hetero-
clinic. The phase diagram (pg, c), shown in Fig. 20, is
also similar to the case a4 = cst except in a very small re-
gion close to the heteroclinic trajectory. We find again a
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FIG. 20. Top row: Phase diagram for the propagative so-
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2-parameter family of periodic orbits and a line of homo-
clinic solutions which terminates at a unique heteroclinic
trajectory.

As before, we can compute analytically the line pf (c)
where the Hopf bifurcation takes place and the speed c*
such that the bifurcation is supercritical for ¢ < ¢* and
subcritical for ¢ > ¢*. The difference with the previ-
ous case is that the heteroclinic trajectory, for which we
do not have an exact solution anymore, is not found at
¢ = c¢* but at ¢® > ¢*. As a consequence, we observe a
new phase (shown as number V in Fig. 20) in which two
limit cycles are found. A large stable cycle surrounds a
smaller unstable limit cycle which itself encapsulates the
stable fixed point m = m_. As seen from the phase por-
traits in Fig. 20, when increasing p, the size of the stable
cycle decreases whereas the size of the unstable one in-
creases. Thus the upper limit of existence of this phase
(the magenta line in the phase diagram) is the moment
where the cycles collide and annihilate.

Appendix C: Propagative solutions of the Vicsek
hydrodynamic equations

Here we show how the study of propagative solutions
in the Vicsek hydrodynamic equations leads to the same
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dynamical system as for the phenomenological equations,
but with coefficients depending in a more complicated
way on pg and c.

We start from the hydrodynamic equations (3-4) in the
comoving frame z = x — ct:

cp—vom =0 (C1)
v3 vo
v + (c— Q—)m—wmr'n— §ﬁ+um—Cm3 =0
c
(C2)

The coefficients in Eq. (C2) are greatly simplified by di-
viding the equation by v, thus getting

1 2 ~
M+ — C_U_O m_:ymm—v—op—ﬁ-ﬁm—gm‘o’:() (03)
v 2c 2v v

where 4 = ~/v and ¢ = ¢/v depend only on the noise o
on the alignment interaction [15]

¥ = 8 (1—?) +2e7207 6_02/2) (C4)
7

- 64 2 2 1 2
C:P(C_U /2—5) <§+€_20> (05)

while ¢ and v depend also on the density

_Avop (52 2 —o2)2
M—T<€ —5 —UQ(].—C ) (CG)

—1_i 8_P z —20? _ =207
v =2 |3 5~|—e +(1 e ) (C7)

One can solve Eq. (C1) to get p(z) = pg + “2m(z) as
before and use it in Eq. (C3) to obtain the second-order
ordinary differential equation

m+ (a — Em)m — agm + agm?® —agm® =0 (C8)

where the coefficients are all function of ¢ and p,

3 T
a=\¢"35 (vipg +v2) §:ﬁ1/1+’¥ (C9)
az = fiavs + (21 — pva)pg — M1V1P§

as (2pgpiv1 + pave — povy)
2

~ UO
ag = ¢ — a2

Vo
c

where 11 2 are defined by p = p1p—p2 and vy o by v=1 =
vip + va.
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5.4 Séparation de phase ou microphases

Depuis 'article original de Vicsek et al [13] et les travaux de Grégoire, Chaté
et collaborateurs [68, [69], peu de progres ont été réalisés, sur le plan numérique,
dans I’étude du modele de Vicsek. Dans I'article [G] guidés par I'intuition acquise
grace au modele d’Ising actif, nous proposons une image relativement complete de
la transition dans le modele de Vicsek : forme du diagramme des phases, boucles
d’hystérese, variations du parametre d’ordre, etc. Cependant, au lieu de la sépara-
tion de phase observée dans le modele d’Ising actif, nous montrerons que la région
de coexistence est le lieu d’une séparation en microphases. On ne peut alors plus
définir simplement une fraction de liquide et c¢’est le nombre de bandes qui joue a
présent ce role. De plus, nous montrons que, pour expliquer cette forme de coexis-
tence de phase, il faut prendre en compte des termes de bruit dans les équations
hydrodynamiques. Pour des modeles ayant une symétrie rotationnelle continue,
comme le modele de Vicsek, le bruit génere des fluctuations géantes de densité.
Celles-ci semblent empécher une séparation de phase compléete en déstabilisant des
domaines liquides de trop grande taille. L’origine de cette instabilité (non-linéaire)
est probablement le seul ingrédient qui manque pour obtenir une compréhension
complete du modele de Vicsek.

A la section , nous comparerons plus en détail la dynamique des bandes
ordonnées du modele de Vicsek et du modele d’Ising actif. Cela nous permettra de
mieux comprendre ce qui meéne aux deux formes de coexistence, entre phases ou
microphases. Finalement, nous étudierons a la section d’autres modeles de
spins actifs contenant les mémes ingrédients. Il semble que ces derniers puissent
chacun étre associé a I'une des deux classes d’universalité représentées par le mo-
dele d’Ising actif et le modele de Vicsek.
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We show that the flocking transition in the Vicsek model is best understood as a liquid-gas transition,
rather than an order-disorder one. The full phase separation observed in flocking models with Z, rotational
symmetry is, however, replaced by a microphase separation leading to a smectic arrangement of traveling
ordered bands. Remarkably, continuous deterministic descriptions do not account for this difference, which
is only recovered at the fluctuating hydrodynamics level. Scalar and vectorial order parameters indeed
produce different types of number fluctuations, which we show to be essential in selecting the
inhomogeneous patterns. This highlights an unexpected role of fluctuations in the selection of flock shapes.

DOI: 10.1103/PhysRevLett.114.068101

Many of the phenomena heretofore only invoked to
illustrate the many facets of active matter are now being
investigated in careful experiments, and more and more
sophisticated models are built to account for them. For
flocking alone, by which we designate the collective motion
of active agents, spectacular results have been obtained on
both biological systems [1-9] and man-made self-propelled
particles [10-12]. Nevertheless, it is fair to say that the
current excitation about flocking takes place while our
understanding of the simplest situations remains unsatisfac-
tory. This is true even for idealized self-propelled particles
interacting only via local alignment rules, as epitomized
by the Vicsek model (VM) [13], which stands out for its
minimality and popularity. Twenty years after the introduc-
tion of this seminal model for the flocking transition and
despite the subsequent extensive literature [ 14], we still lack a
global understanding of the transition to collective motion.

It took a decade to show that the transition to collective
motion in the VM, initially thought to be critical [13], was
discontinuous [15]: upon increasing the density or reducing
the noise strength, high-density bands of spontaneously
aligned particles form suddenly [15] (Fig. 1). The homo-
geneous, ordered “Toner-Tu” phase [16] is only observed
after a second transition at significantly lower noise and/or
higher density [15]. Since then, hydrodynamic-level deter-
ministic descriptions have been established and shown
to support bandlike solutions [17—-19], but it was recently
proved [20] that many such different solutions generically
coexist. In fact, the connection of these results to micro-
scopic models remains elusive. More generally, we lack
a unifying framework encompassing the two transitions
(between disordered and band phases, and between band
and Toner-Tu phases).

Such a global picture was recently proposed for the
active Ising model (AIM), where rotational invariance is

0031-9007/15/114(6)/068101(5)
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replaced by a discrete symmetry [21]: particles carrying
Ising spins diffuse in space with a constant-amplitude bias
along one arbitrarily fixed direction +u,, the sign being
given by the local magnetization (see Ref. [22] for a
detailed definition). The emergence of flocking in this
model is akin to a liquid-gas transition between an ordered
liquid and a disordered gas. Unlike the traveling bands of
the VM, inhomogeneous profiles in the AIM are fully
phase separated, with a single macroscopic liquid domain
traveling in the gas (Fig. 1). More generally, the symmetry
difference between the two models questions the relevance
of this framework for the VM.

In this Letter, we show that the flocking transition in the
Vicsek model is also best understood in terms of a liquid-
gas transition—rather than an order-disorder one—but with
microphase separation in the coexistence region. Contrary
to what was previously believed, we indeed show that the
dense ordered bands discovered in Ref. [15] for the VM are
arranged periodically in space, leading to an effectively
“smectic” phase. We define an appropriate “liquid fraction”

FIG. 1 (color online). Top: Microphase separation in the Vicsek
model. n =04, vy =0.5, p; = 1.05 (left), p, = 1.93 (right).
Bottom: Phase separation in the active Ising model. D =1,
=009, =19, p =235 (left), p, = 4.7 (right). System sizes
800 x 100. Red arrows indicate the direction of motion.

© 2015 American Physical Society
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which allows us to recover the linear scaling across the
coexistence region of a liquid-gas transition, hence closing
a long-standing debate on the nature of the transition in the
VM. But our most important results concern the hydro-
dynamic descriptions of flocking models. Surprisingly,
deterministic hydrodynamic equations for scalar (AIM)
and vectorial (VM) order parameters both support many
different coexisting stable inhomogeneous solutions
selected by initial conditions, including single-domain
and microphase smectics. They thus do not account for
the differences observed in the microscopic models. We
then show that the two scenarios are, however, discrimi-
nated at the fluctuating hydrodynamic level: the different
symmetries result in qualitatively different density fluctua-
tions, effectively providing a selection criterion. Scalar
and vectorial stochastic partial differential equations indeed
generically lead to different, unique profiles, in agreement
with the microscopic models.

We first recall the definition of the Vicsek model. N
pointlike particles, labeled by index i, move at constant
speed v, on a rectangular plane of surface § = L, L, with
periodic boundary conditions. At each discrete time step
At =1, the headings @; of all particles are updated in
parallel according to [23]

0:i(1+1) = (0;(1)) jen, +n¢i; (1)

where NV, is the disk of unit radius around particle 7, & is a
random angle drawn uniformly in [—z, z], and 7 sets the
noise intensity. Then, particles hop along their new head-
ings: r;(t+ 1) =r;(t) + voe/™!, where e/ is the unit
vector pointing in the direction given by 0,(r + 1).

In agreement with Ref. [15], we find, varying the noise #
and the density py = N/S, three different phases: a dis-
ordered gas at high noise and low density, a polar liquid at
low noise and high density, and an intermediate region
where ordered bands travel in a disordered background. In
the thermodynamic limit, the homogeneous phases are
separated from the coexistence phase by two “binodals”:
pi1(n) and py,(n), which are reported in Fig. 2(a). One could
in principle add spinodal lines in the coexistence region,
marking the limits of linear stability of the homogeneous
phases. At finite “temperature” #, nucleation prevents us
from computing them directly, but quenching the system
into the coexistence region, we see two distinct behaviors:
metastability and nucleation close to the coexistence lines
and spinodal decomposition deeper in the coexistence
region (see movies in Ref. [22]). As for the AIM, an
important difference with the phase diagram of a liquid-gas
phase transition in the canonical ensemble is its unusual
shape, which stems from the different symmetries of the
two phases. Since it is impossible to go continuously from
the polar liquid to the disordered gas, there is no super-
critical region and the critical point is sent to p, = oo.

While the phase diagrams of VM and AIM have
similar shapes, their coexistence regions are fundamentally

20
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FIG. 2 (color online). (a) Phase diagram of the Vicsek model.
The binodals p,(n7) and p; (1) mark the limit of the coexistence
region. (b) Number of bands vs L (py — pg,s) Varying either the
excess density for Lx x Ly = 2000 x 100 (squares) or the system
size along the direction of propagation (dots) for p, = 0.6
(n=0.3) or pg=1.2 (n = 0.4). The straight black lines are
guides for the eyes. (c) Density profiles of Fig. 1 averaged along
the transverse direction e, p(x)) = (p(x.,x))),, . (d) Time
average of the band profiles shown in (c). A threefold increase
of the excess density changes the number of bands but not the gas
density or the shape of the bands. v = 0.5, n = 0.4, py = 1.05
(red/light grey lines), py = 1.93 (blue/dark grey lines).

different. Starting from random initial conditions, the
dynamics of the VM rapidly leads to randomly spaced
ordered bands propagating along a direction e and span-
ning the system along e, as reported before [15,17].
On much longer time scales, unreached in previous studies,
the relaxation of compression modes actually leads to
regularly spaced bands [see Fig. 2(c) and the movie in
Ref. [22]]. In the thermodynamic limit, the bands have
well-defined profiles, independent from the average density
and the system size. In this limit, increasing p, at constant 7
thus does not change the density p,, of the gaseous
background or the celerity or the shape of the bands.
Only the band number n, increases, proportionally to
Ly (po — pgas) [Figs. 2(b) and 2(d)]. For finite systems,
the quantization of the liquid fraction has some interesting
consequences. An excess mass S(py — pgas) Which is not a
multiple of the excess mass m; of a single band does
not allow the system to relax to its asymptotic band shape.
To accommodate this excess mass, the bands are slightly
deformed, but ¢ and pg,, barely change as p, is varied
(not shown).

This smectic arrangement of finite-width bands mark-
edly differs from the more conventional liquid-gas phase
separation seen in the AIM, where increasing the density
simply widens the single liquid domain. One may thus
wonder whether all features of the liquid-gas scenario
survive. The global polarization |P| = (1/N)|>_,e;|, used

068101-2
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FIG. 3 (color online). (a) Polarization and (b) mean velocity vs
po for L = 2048 (squares) and L = 1024 (lines). Red, green,
blue, cyan, and magenta correspond to solutions with 1 to 5
bands. (c) Hysteresis loop between gas and microphase states.
(d) Hysteresis loop between microphase and liquid states. The
variance Apﬁ quantifies inhomogeneity along the direction of
motion. 100 runs are used for (c) and (d), with = 0.4, system
size 400 x 400.

in previous studies of the VM to characterize the onset of
ordering [13,15,17], does not show a linear increase of the
liquid fraction with density [Fig. 3(a)]. Such a scaling is,
however, recovered by considering |v| = (1/5)]>_,v0€;| =
vopo|P| [Fig. 3(b)]. Indeed, for a propagating band of
celerity ¢, integrating the continuity equation p = =V - W,
where W(r) = > .8(r —rj)vpe; is the momentum field,
yields c[p(r) = pg,s] = W) (r) [17]. Averaging over space,
this gives [V| = c(pg — pgas). Since ¢ and p,,s barely
depend on py, |v| scales linearly with py — pg,s. even for
finite systems where nearby values of n; coexist [see
Fig. 3(b)]. This is yet another signature of the first-order
nature of the transition and confirms the analogy with the
canonical liquid-gas transition; the apparent singularity of
|P| close to pg, is a simple consequence of its normali-
zation, not of criticality (as often assumed in the literature).

Close to p,(n), we observe expected hysteresis loops
[15] when ramping p, up and down, with two sharp jumps
in the mean velocity |v| [Fig. 3(c)]. Their interpretation is
now much clearer: if the ramping is slow enough, they
correspond to the nucleation and vanishing of a single band
which acts as a critical nucleus. Indeed, a band can only be
observed if the excess density py — pg,s is of the order of
my/S. As the system size increases, bands are hence seen
closer and closer to pg,, Which thus coincide with the
binodal p,, as in a standard liquid-gas transition. Moreover,
the critical nucleus contains a smaller and smaller fraction
of the particles as L increases so that |v| and |P| vary
continuously to 0 in the infinite-size limit [cf. Figs. 3(a) and
3(b)], something which had been missed before.

The second transition line p,(7) between the smectic
microphase and the ordered liquid is harder to locate
accurately. For py < p,,(n), the bands are indeed closely

packed and interact strongly. Although global orientational
order remains high, they break and merge in a chaotic
manner (see the movie in Ref. [22]). The resulting
dynamics is thus difficult to distinguish from the giant
density fluctuations of the homogeneous phase. Following
Ref. [15], we use Apj = ([p(x)) = po]*),,, the variance
along L of p, the density profile averaged in the transverse
direction. Figure 3(d) shows that hysteresis loops also exist
around the transition line p,(#), which we define as the
high-density end point of the loops. This allows us to
provide for the first time a complete phase diagram of the
VM in Fig. 2.

To account for the differences between the coexistence
phases of the VM and AIM, we now connect the above
results to the more theoretical level of continuous descrip-
tions. There are two important differences between the
hydrodynamic equations of VM and AIM: the nature of the
ordering field (vectorial in the VM, scalar in the AIM) and
the functional dependencies of the transport coefficients
on density and momentum fields. When looking for
one-dimensional traveling solutions, the dimension of the
ordering field, however, becomes irrelevant. Furthermore,
it was recently shown [20] that hydrodynamic equations of
flocking models admit such traveling solutions with both
smectic microphases and phase-separated profiles. We have
checked that both types of solutions exist for both the
equation proposed for the AIM [21] and for those proposed
for Vicsek-like models [17].

Since Ref. [20] only established the existence of these
solutions, a possibility to account for the different inho-
mogeneous profiles seen in VM and AIM could be that
these solutions have different stability in the corresponding
two-dimensional equations, where the dimension of the
order parameter can play a role. To test this hypothesis,
we consider scalar and vectorial versions of the “same”
minimal two-dimensional partial differential equations
(PDEs). The first one, the SPDE, has a scalar magnetization
field W corresponding to the AIM discrete symmetry

Op = =0 W, (2)
W2
0.

The second set, the vPDE, has a vectorial momentum W in
line with the continuous rotational symmetry of the VM

dp=-V-W, (4)

= |ﬁ/|2 . 2 i i

oW = (p—p,)—PT W+ vVEW = Vp — AW - V)W.
4

(5)

Clearly, the disordered solution |W| = 0 becomes linearly
unstable for py > p,. As in all active matter systems with
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FIG. 4 (color online). Density field in the PDEs after integration
over ¢ = 10°. Left: scalar PDE, ordered initial condition with a
periodic perturbation. Right: vectorial PDE, disordered initial
condition. Parameters: A = p. = D = Py = 1, py = 1.2. System
size 800 x 100.

metric interactions, the homogeneous ordered solution
|W|? = po(po — p;) P} that emerges from this mean-field
transition is itself linearly unstable to long wavelengths
until pg > p, [17,18,20]. Note that p, and p, correspond to
the spinodal lines mentioned above. Most of the inhomo-
geneous solutions classified in Ref. [20] exist in a p
range wider than [p,, p,]. It is possible to estimate p,;, and
Pmax» the extremal values of p, between which solutions
exist. For instance, setting all parameters including p,
to unity as in Fig. 4, one finds p,,;, = 0.808, p, = 1.25,
and pp. = 1.74.

We integrated numerically these two sets of equations for
various parameter values inside and outside the [p,, p,]
interval [24]. After transients, we end up with effectively
one-dimensional solutions taking constant values along e | .
In all cases, we found both smectic microphases and phase-
separated profiles. Which solution is observed depends
only on the initial condition and not on the symmetry
of the ordering field. Figure 4 shows a periodic solution
in the sPDE and a single traveling domain in the vPDE
obtained for the same parameter values, striking evidence
that the (deterministic) hydrodynamic equations alone
cannot explain the selection of different patterns observed
in microscopic models. This result was found robust to
modifications of Egs. (2)—(5).

We call sSDE and vSDE the stochastic versions of
Egs. (2)-(5) obtained by adding a zero-mean scalar
(or vectorial) Gaussian white noise of variance rpll -
(|W|?/p?)] in the W (or W) equation [25]. Integrating first
SSDE and vSDE in the homogeneous liquid phase, we

An .
10° AAAAAAAAA -°]0.8 |
a8 een ScCalar
105 Lo et P o o SSDE m
Ly " o o VSDE
102] et ° goo? wa2t05] v v AM
o e 4 & VM
1| ,--"' gcﬂﬁnﬂ] .
i A E n vectorial
|n T T T m
10° 10* 10° 10°

FIG. 5 (color online). Left: Number fluctuations An =

recover the same density fluctuations as in the correspond-
ing microscopic models (Fig. 5, left): normal fluctuations in
sSDE and giant ones in vSDE (with the same scaling as in
microscopic models). More importantly, we recover the
correct type of inhomogeneous profiles in each case,
irrespective of the initial conditions. For instance, starting
from a large liquid domain as initial condition in both sets
of equations with the same parameters, we find that sSSDE
keeps this configuration while it breaks down in vSDE,
eventually leading to a periodic array of bands (Fig. 5,
right). In the converse experiment, starting from a con-
figuration with many bands, we observe initially merging
events in both cases, but this process stops in vSDE, leading
to an asymptotic periodic state with a finite number of
bands, while coarsening proceeds for sSDE.

We conclude that fluctuations play an essential role in
selecting the phase-separated patterns. Note that similar
experiments performed in microscopic models yield similar
results. For instance, in the VM at relatively high noise
large liquid domains are metastable for a long enough time
to be observed before fluctuations break them and lead the
system to the smectic microphase state (see the movie in
Ref. [22]). Giant density fluctuations break large liquid
domains and arrest band coarsening while normal fluctua-
tions do not. Two different scenarios emerge: In the active
Ising class, magnetization is a scalar quantity, density
fluctuations are normal, and the system undergoes bulk
phase separation. In the active XY or Vicsek class,
magnetization is vectorial and density fluctuations in the
liquid are anomalously large and drive the system to the
microphase-separated state.

To summarize, we have shown that the flocking tran-
sition in the Vicsek model amounts to a microphase
liquid-gas transition in the canonical ensemble exhibiting
metastability, hysteresis, and coexistence between a dis-
ordered gas and a smectic arrangement of liquid bands.
This is in contrast with the bulk phase separation exhibited
by the active Ising model [21]. We found that while
(deterministic) hydrodynamic equations do not explain
this difference, their stochastic counterparts do: the differ-
ent nature of the order parameter produces different types

0

{n?) — (n)? where n is the number of particles in boxes of different sizes.

Measures are done in the homogeneous liquid phase. Parameters: size 400 x 400 (all), py = 5, f = 2.4 (AIM), py =5, n = 0.4 (VM),
A=p.,=D=Py=1, y¥> =04, py =3 (sSDE and vSDE). Right: Numerical integration of sSDE (top) and vSDE (bottom).
Parameters: p, = A= D = Py = 1, y*> = 0.4, system size 2000 x 100.
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of number fluctuations, which are essential in selecting the
phase-separated patterns. This unexpected role of fluctua-
tions in the selection of flock shapes calls for greater care
when trying to account for active systems based on purely
deterministic continuum equations.

Interesting questions remain open. For example, the
mechanism by which the bands interact in the VM to
reach a periodic spacing and the chaotic behavior of closely
packed bands are still to be investigated. Further, we so far
have no analytical approach and limited numerical results
to ascertain the stability of the smectic pattern in the
direction along the bands. It is not inconceivable that, like
recently found in active nematics [26], the coexistence
phase is asymptotically disordered. Last, in the large
density region, the finite sizes of real flocking agents are
not negligible and steric effects such as motility-induced
phase separation [27-29] could enrich the simple liquid-gas
scenario [30].
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5.4.1 Dynamique des bandes

Nous voulons, dans cette section, compléter l'article [G] en étudiant plus en
détail la dynamique des bandes ordonnées observées dans la région de coexistence
des modeles de Vicsek et d’Ising actif.

La figure 5 de 'article[Glmontre I’évolution d’un large domaine ordonné dans les
hydrodynamiques fluctuantes avec aimantation scalaire ou vectorielle. La bande de
liquide est stable lorsque 'aimantation est scalaire. Au contraire, elle se fractionne
lorsque 'aimantation est vectorielle. On peut réaliser 1’expérience inverse : partir
d’un systeme séparé en microphases, contenant de nombreuses bandes, et regarder
comment le nombre de bandes N, évolue. L’évolution de N, pour quatre simulations
(en partant d'une ou de 25 bandes, pour une aimantation scalaire ou vectorielle) est
tracée a la figure[5.4] Dans les équations avec aimantation vectorielle, le nombre de
bandes semble converger vers une valeur finie, entre 15 et 18, ce qui est compatible
avec la sélection d’une taille caractéristique. Au contraire, avec une aimantation
scalaire, le systeme semble tendre vers un domaine liquide unique, bien que des
simulations beaucoup plus longues seraient nécessaires pour arriver a ce résultat
en partant d’'une séparation en microphases.

La dynamique des bandes dans les modeéles microscopiques (Ising actif et
Vicsek) confirme les résultats obtenus pour les équations hydrodynamiques fluc-
tuantes. Dans le modele d’Ising actif, comme dans les équations hydrodynamiques
avec aimantation scalaire, un large domaine liquide est toujours stable. De plus,
comme on peut le voir a la figure [5.5, deux bandes ordonnées séparées d’'une dis-
tance relativement grande finissent, aux temps longs, par fusionner. C’est ’échange
de particules entre les deux bandes, plus que les fluctuations de leur vitesse, qui
semble mener a cette fusion. En effet, la largeur des deux bandes effectue une
marche aléatoire (voir figure 5.5 centre). Cela conduit a des différences de vitesse
(comme nous 'avons vu dans l'article [F] la vitesse d'une bande est corrélée a sa
taille), qui in fine les ameénent a se rencontrer.

La dynamique des bandes du modele de Vicsek est tres différente. Tout d’abord,
un large domaine liquide est métastable, comme dans les équations hydrodyna-
miques avec aimantation vectorielle. Aux temps longs, il se fractionne en plu-
sieurs bandes. Contrairement a ce qu’on observe dans le modele d’Ising actif, les
bandes échangent des particules pour égaliser leurs masses (voir figure , centre
et droite). Ainsi, dans ’état final, on observe des bandes approximativement de
méme taille. De plus, une interaction répulsive entre bandes les amene a se répar-
tir périodiquement dans I’espace. La figure montre la distance Ax entre deux
bandes en fonction du temps. On voit qu’une force répulsive, dont I'amplitude
décroit avec la distance, tend a éloigner les deux bandes.

Tous ces résultats semblent montrer que, dans le modele d’Ising actif (ou pour
les équations hydrodynamiques avec aimantation scalaire), le systéme converge
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Figure 5.4 — Evolution du nombre de bandes dans des simulations des
équations hydrodynamiques fluctuantes (définies dans l’article, en partant
soit d'un unique domaine liquide, soit d’une séparation en 25 microphases.

Les parametres, identiques pour les quatre simulations, sont ceux de la figure
5 de l'article @

Ising

Vicsek

A S

=500

Figure 5.5 — Dynamique des bandes dans le modele d’Ising actif (haut)
et dans le modele de Vicsek (bas). Haut : dans le modele d’Ising actif,
les échanges de masse entre bandes (centre) conduisent a des variations de
vitesse, si bien que deux bandes fusionnent aux temps longs (droite). Para-
metres : = 1.8, pp = 2.8, D =1, ¢ = 1.9, taille du systeme 800 x 100.
Bas : dans le modele de Vicsek, un domaine liquide est métastable (gauche).
Il se fractionne en plusieurs bandes. Les bandes échangent de la masse pour
égaliser leur taille et une interaction répulsive conduit a un arrangement pé-
riodique (droite). Parametres : v = 0.5, n = 0.4 (bruit angulaire), py = 2.25,
taille du systeme 800 x 100.
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Figure 5.6 — Evolution de la distance Az entre deux bandes dans le mo-
dele de Vicsek. Le temps ¢t = 0 correspond au moment ou une bande plus
large s’est fractionnée en deux bandes dont on suit la position. Les courbes
en couleur correspondent a six événements et la courbe épaisse noire a la
moyenne des six. Parametres : v = 0.5, n = 0.6 (bruit vectoriel), py = 1,
taille du systeme 400 x 100.

toujours vers un domaine ordonné unique se déplacant dans un gaz désordonné.
Au contraire, dans le modele de Vicsek (ou les équations hydrodynamiques avec
aimantation vectorielle), une taille caractéristique de bande est sélectionnée et le
systéme converge vers un arrangement périodique de ces microphases. Notons que,
au-dela des observations faites ici, les interactions entre bandes restent a étudier.
En particulier, le mécanisme générant une interaction répulsive entre bandes dans
le modele de Vicsek est un probleme complétement ouvert.

5.4.2 Deux classes d’universalité pour la transition vers le
mouvement collectif

Les résultats des sections précédentes montrent que 'on peut obtenir deux
types de comportement pour la transition vers le mouvement collectif. Ceux-ci
semblent intimement liés a la présence (ou non) de fluctuations géantes de densité.
Dans le modele d’Ising actif, comme dans les équations hydrodynamiques fluc-
tuantes avec une aimantation scalaire, les fluctuations de densité sont normales et
on observe une séparation de phase complete. Dans le modele de Vicsek, comme
dans les équations hydrodynamiques avec aimantation vectorielle, les fluctuations
de densité sont géantes et s’accompagnent d’une séparation en microphases.

Dans cette section, nous voulons tester la généralité de ces deux classes d’'uni-
versalité en étudiant d’autres modeles de spins actifs. En particulier, nous intro-
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duirons un modele XY actif, qui a la méme symétrie que le modele de Vicsek
mais une dynamique microscopique différente. Nous introduirons également un
modele de Potts actif dans lequel chaque particule porte une « couleur » parmi n.
En associant chaque couleur a une direction d’autopropulsion, on peut modifier
le nombre de directions possibles et ainsi obtenir des cas intermédiaires entre le
modele d'Ising actif (deux directions) et le modele XY actif (une infinité). Nous
étudierons ces modeles sur réseau, ce qui ne semble pas introduire de différences
qualitatives par rapport & des modeles similaires en espace continu (voir l'article
section VI.B, pour une version du modele d’Ising actif en espace continu).

Modele XY actif

On peut définir un modele XY actif sur un réseau 2d d’'une fagon similaire
au modele d’'Ising actif. Chaque particule porte un spin continu S; donnant sa
direction d’autopropulsion. Elles sautent alors vers le site voisin dans la direction
u (avec u = (£1,0) ou u = (0, £ 1) pour les directions horizontales et verticales)
avec un taux D(1 + eu - S;). Les particules alignent également leur direction de
déplacement avec les particules présentes sur le méme site. La dynamique de I’angle
0;, paramétrant le spin S; de la particule 7, est donnée par I’équation de Langevin

0; = —g? +V2T¢ (5.11)

ou £ est un bruit blanc gaussien de variance unité. L’Hamiltonien H est similaire
a celui d’'un modele XY dans lequel tous les spins sur un méme site k& sont couplés

H:—ZLZSi-Sj (5.12)

k Pk iz

ol la premiere somme porte sur les sites du réseau et la deuxieme sur les particules
présentes au site k. Comme pour le modele d’Ising actif, on utilise un algorithme
de mise a jour séquentielle aléatoire dans les simulations.

On retrouve dans ce modele XY actif la phénoménologie du modele de Vicsek.
En particulier, on mesure des fluctuations géantes de densité qui ont la méme loi
d’échelle que celles du modele de Vicsek (voir figure . De plus, 'expérience
numérique de article (figure 5) donne le méme résultat que dans le modele
de Vicsek : une large bande ordonnée de haute densité est métastable. Aux temps
longs, celle-ci se casse en bandes de taille finie, réparties périodiquement dans
I'espace (voir figure . Cela n’est au contraire jamais observé dans le modele
d’Ising actif, dans lequel un domaine liquide de taille arbitraire est stable.

Modeéles de Potts actifs
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Figure 5.7 — Modele XY actif. Un grand domaine liquide ordonné est méta-
stable. Aux temps longs il se brise pour former plusieurs bandes. Parametres :
T =0.3,po=0.6, D=1, e=0.9, taille de systeme 2000 x 100.

Introduisons maintenant un modele de Potts qui va nous permettre d’interpoler
entre le comportement du modele d’Ising actif (deux directions d’autopropulsion)
et celui du modele XY actif (une continuité de directions). Dans celui-ci, n « cou-
leurs », portées par les particules, sont couplées a n directions d’autopropulsion
possibles. L’Hamiltonien controlant l’alignement des particules s’écrit

1
H==> —> defires) (5.13)

ou ¢(i) est la couleur de la particule 7. Une particule change alors sa couleur de ¢;
en cy avec une probabilité

W (cr — ) = exp (-5?‘) (5.14)

Notons que ce type d’alignement est légerement différent de I'alignement ferro-
magnétique considéré précédemment : deux particules ayant des couleurs (i.e. di-
rections) différentes contribuent & H de la méme fagon, qu’elles que soient leurs
couleurs (qu’elles correspondent & des directions proches ou opposées).

Nous avons considéré les deux cas les plus évidents sur réseau : les modeles de
Potts a quatre et huit couleurs. Dans le modele a quatre couleurs, quatre directions
(haut, bas, gauche et droite) sont possibles. Avec huit couleurs, nous rajoutons les
diagonales. Une particule saute alors dans la direction donnée par sa couleur avec
un taux D(1 + €) et dans toutes les autres directions avec un taux D(1 — ).

Les comportements des modeles a quatre et huit couleurs sont qualitativement
différents. En particulier, les fluctuations de densité dans la phase ordonnée sont
normales pour le cas n = 4 et géantes, avec la loi d’échelle des modeles de Vicsek
et XY, pour n = 8 (voir figure . De plus, le modele a quatre couleurs montre
une séparation de phase entre un domaine gazeux et un domaine liquide stable
arbitrairement grand, un comportement similaire a celui du modele d’Ising actif
(voir figure [5.9)).

Notons que ces résultats sont préliminaires. Les modeles de Potts sont gour-
mands en temps de calcul (qui est proportionnel au nombre de couleurs) et leurs



198 Chapitre 5. La transition vers le mouvement collectif

An _,.LI
10" AA%° 08 o ¢ Ising
it
3 s Beno® o o Potts 4c
107 A“A:’uod VVWVDO JPTLI P Vicsek
102 ¢"‘: o VOWE_.-"'-- 0.5 o o XY
‘ ‘p_a---"'- s o Potts 8c
w0t ==
n
T T T T
10° 10* 10° 10°

Figure 5.8 — Fluctuations de densité dans les modeles microscopiques étu-
diés. On distingue deux comportements : des fluctuations normales dans les
modeles d’Ising actif et de Potts actif a quatre couleurs, des fluctuations
anormales données par le méme exposant o = 0.8 pour les modeles de Vic-
sek, XY actif et Potts actif a huit couleurs.
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Figure 5.9 — Séparation de phase dans le modele de Potts actif a quatre
couleurs. Parametres : § = 4.5, pg = 5.5, ¢ = 0.9, D = 1, taille du systeme
600 x 200.

propriétés restent a étudier plus en détail, en particulier la coexistence de phase
dans le modele a huit couleurs.

Classes d’universalité

La conclusion qui semble se dégager de ces résultats est qu’on peut organiser
les modeles de particules autopropulsées avec alignement ferromagnétique en deux
classes d’universalité, qui correspondent a deux types de coexistence de phase.
La forme de la coexistence de phase est controlée par les propriétés de la phase
ordonnée. En particulier, la présence ou non de fluctuations anormales de densité
semble cruciale. Des fluctuations normales dans la phase liquide donnent lieu a
une séparation de phase complete dans la région de coexistence. Au contraire, des
fluctuations géantes entrainent une séparation en microphases.

La présence de ces fluctuations géantes de densité est liée a la symétrie ro-
tationnelle du systéme. Lorsqu’un faible nombre de directions d’autopropulsion



5.5. Mouvement collectif en dimension 1 199

(< 4) sont possibles, le comportement est celui du modele d’Ising actif. Lorsque
les directions possibles sont nombreuses (> 8), il semble que 'on retrouve le com-
portement du modele de Vicsek. Cela reste a confirmer en étudiant la phase de
coexistence du modele de Potts a huit couleurs. De plus, il serait intéressant de
voir si I'on peut affiner la limite entre les deux classes en considérant des modeles
ayant entre 4 et 8 directions d’autopropulsion.

On peut relier l'existence des deux classes d’universalité a des observations
expérimentales. Dans I'expérience réalisée par Bartolo et collaborateurs [44], des
colloides isolants plongés dans un liquide conducteur sont autopropulsés par une in-
stabilité électro-hydrodynamique. De plus, ils interagissent pour aligner leur direc-
tion de déplacement par des interactions hydrodynamiques. Les colloides peuvent
se déplacer dans une direction arbitraire du plan mais il a été montré que, dans ce
systéme, les interactions hydrodynamiques suppriment les fluctuations géantes de
densité |44]. En ligne avec notre analyse, on observe alors une séparation de phase
complete entre un liquide ordonné et un gaz désordonné (voir figure[5.10] gauche).
Au contraire, dans un motility assay utilisant des filaments d’actine [22], des fluc-
tuations géantes de densité sont observées [12§], avec une loi d’échelle proche de
celle observée dans nos modeles. On observe alors la propagation de bandes ordon-
nées de taille finie, réminiscentes de la séparation en microphases que nous avons

décrite (voir figure [5.10] droite).

5.5 Mouvement collectif en dimension 1

Nous terminons ce chapitre par ’étude de la transition vers le mouvement col-
lectif en 1d. Nous nous baserons pour cela sur le modele d’Ising actif, défini de
la méme facon que pour d = 2. Comme pour le modele d’Ising d’équilibre, en
dimension 1, les fluctuations jouent un role prépondérant. En particulier, nous
verrons qu’elles modifient la phénoménologie de la coexistence de phase. Au lieu
d’une séparation de phase entre deux domaines liquide et gazeux, on observe un
agrégat ordonné qui se déplace dans un gaz désordonné en changeant de forme
au cours du temps et qui inverse sa direction de déplacement de fagon aléatoire.
Ce phénomene d’intermittence a été observé sur des sauterelles placées dans une
aréne circulaire [131]. Les insectes tournent alors collectivement dans Iaréne en
changeant spontanément et aléatoirement leur sens de rotation. Nous étudierons
la dynamique de ces « retournements » a la section [5.5.1} L’autre effet majeur des
fluctuations est de rendre la phase ordonnée métastable, comme nous le montre-
rons & la section [0.5.2 On observe alors seulement une transition entre un état
désordonné et I'état inhomogene intermittent.

La littérature sur le mouvement collectif en 1d est plus restreinte qu’en di-
mensions supérieures. Deux modeéles assez similaires ont toutefois été étudiés [132,
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Figure 5.10 — Deux expériences montrant une phase inhomogene de mouve-
ment collectif. Gauche : Image reproduite de [44]. Des colloides autopropul-
sés montrent une séparation de phase entre un domaine gazeux désordonné
et un liquide ordonné, les deux étant arbitrairement grands. De fagon impor-
tante, les fluctuations de densité anormales sont absentes de ce systeme qui a
une phénoménologie proche de celle du modele d’Ising actif. Droite : Image
reproduite de |22]. Des filaments d’actine dans un motility assay forment des
bandes propagatives de taille finie. Ici, des fluctuations anormales de densité
ont été observées dans la phase homogene ordonnée. Le comportement a la
coexistence de phase est alors proche de la phénoménologie des modeles de
Vicsek ou XY actif.

133]. Dans ces deux modeles, 'interaction d’alignement est une régle de majorité :
les particules prennent la direction qui est majoritaire parmi leurs voisins, avec une
probabilité qui dépend d’'un parametre de bruit. Les deux permettent d’observer la
phase inhomogene intermittente décrite plus haut. Concernant la transition entre
I'état désordonné et la phase intermittente, les deux études [132, 133] concluent a
une transition continue, et utilisent les outils développés pour les systemes magné-
tiques d’équilibre pour calculer des exposants critiques (différents pour les deux
modeles). Nous montrerons & la section que la transition n’est en fait pas
critique mais discontinue, comme en 2d. A cause des retournements causés par les
fluctuations, cela n’apparait clairement que pour des valeurs de parametres non
explorées précédemment.

5.5.1 Retournements

La figure [5.11] montre en détail la dynamique du retournement d’un agrégat.
Une fluctuation a ’'avant de I'agrégat, si elle est d’amplitude suffisante et d’aiman-
tation opposée a celle de I'agrégat, peut se propager dans celui-ci en retournant
le spin de toutes les particules qu’elle rencontre. En 1d, une telle fluctuation loca-
lisée a une probabilité finie, c’est-a-dire indépendante de la taille du systeme, de
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Figure 5.11 - Dynamique de retournement des agrégats ordonnés. Une
fluctuation locale d’aimantation a l’avant de 'agrégat (b, encart) se propage
dans l'agrégat en retournant progressivement le spin de toutes les particules
(c). On obtient finalement un agrégat se déplacant dans la direction opposée
(d). Parametres : D =1, = 0.5, § = 1.6, po = 10.
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se produire par unité de temps. Au contraire, dans le modele d’Ising actif en 2d,
une ligne de fluctuations serait nécessaire pour retourner un domaine liquide. L’oc-
currence d’une telle fluctuation a une probabilité par unité de temps qui décroit
exponentiellement avec la taille du systéme, ce qui explique que les retournements
ne jouent pas un réle prépondérant en 2d.

Comme on peut le voir sur la figure [5.11] apreés un retournement, 'agrégat est
condensé sur quelques sites du réseau. Il s’étale ensuite en se propageant. On peut
mesurer la taille L.(t) de l'agrégat en définissant un seuil de densité ad hoc. On
trouve qu’elle augmente linéairement entre deux retournements, qui la rameénent
a une valeur plus basse (voir figure gauche).

On peut s’intéresser également au temps moyen entre deux retournements 7g,
en particulier a sa dépendance avec la taille du systeme, importante pour déter-
miner si le systéme présente une brisure spontanée de symétrie. Dans le modele
d’O’Loan et collaborateurs |133], une divergence tres lente 7g(L) ~ In L est obser-
vée. Dans notre modele, on observe que, suivant les parametres, Tg(L) peut étre
une fonction croissante ou décroissante, qui semble converger vers une valeur finie
aux grands L (voir figure[5.12] panneau central).

Un argument simple permet de montrer que, tant que 7g(L) croit moins vite que
Tr ~ L, la fraction du temps passée par le systeme dans des retournements est finie.
En effet, la durée d'un retournement est proportionnelle a taille L. de I’agrégat ; elle
est donnée par la durée de la propagation balistique de la fluctuation dans I'agrégat.
De plus, nous avons montré que la taille L. est proportionnelle a 75, la taille de
I'agrégat augmentant linéairement dans le temps. Le systeme passe donc un temps
proportionnel & L./7r ~ O(1) dans des retournements. (Si 75 croit plus vite que
Tr ~ L, la situation change car 'agrégat, dont la masse est proportionnelle a L,
a alors le temps de s’étaler complétement.) On peut vérifier 'argument précédent
en tragant I’histogramme de 'aimantation par unité de longueur m = %Zi Si,
ou S; = =1 est le spin de la particule i. Dans la limite L — oo, on observe
que la probabilité de trouver m proche de m = 0 (i.e. dans un retournement)
converge vers une valeur finie (voir figure , droite). Il n’y a donc pas de brisure
spontanée de symétrie : I'agrégat continue a changer de direction dans la limite
thermodynamique.

5.5.2 Phase ordonnée instable

Le diagramme des phases du modele d’Ising actif en 1d dans 'espace (tempéra-
ture, densité) est présenté a la figure (gauche). A la différence du cas d = 2, il
ne comporte pas de phase homogene ordonnée, celle-ci étant seulement métastable.
En effet, une fluctuation locale de I'aimantation dans la phase ordonnée (disons
une fluctuation négative dans une phase homogene d’aimantation positive) peut
se propager et ainsi retourner toute la phase homogene positive. Le systeme arrive
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Figure 5.12 — Gauche : Taille de 'agrégat intermittent en fonction du
temps. On observe un étalement linéaire entre les retournements. Para-
metres : D=1, =0.9, =2, pp = 3. Centre : Temps moyen entre deux
retournements en fonction de la taille du systeme. Parametres : ¢ = 0.9,
B = 1.7, po = 3. Droite : Probabilité d’observer une aimantation |m/| dans
le systeme. P(m =~ 0) ne s’annule pas lorsque L — oo, signifiant que I'on
n’observe pas de brisure de symétrie. Parametres : D = 1, = 0.9, § = 1.538,

po = 4.

alors dans 'état intermittent décrit plus haut. Une telle fluctuation, bien qu’im-
probable & basse température et haute densité, a une probabilité « finie de se
produire par unité de longueur et de temps.

On peut calculer, a partir de ce taux «, le temps de vie de la phase ordonnée. La
probabilité que la phase ordonnée survive un temps 7, est égale a la probabilité (i)
qu’aucune fluctuation ne survienne pendant un temps 75 et (ii) qu'une fluctuation
retourne la phase homogene a ¢t = 7,. Pour un systeme de taille L et de longueur
de corrélation finie, une fluctuation survient a un taux aL par unité de temps. On
a donc

P(1,) = aLe L™ (5.15)
Le temps moyen de métastabilité est alors donné par
o0 1

s/ — s s d s — 1 5.16

()= [ nPm)dn = — (5.16)

La loi d’échelle (75) ~ 1/L est tres bien vérifiée numériquement, comme on peut
le voir a la figure [5.13] On voit également que le taux o diminue quand la densité
augmente, ce qui est conforme a notre intuition : plus la phase ordonnée est dense,
plus les fluctuations a méme de la déstabiliser sont rares.

5.5.3 Transition liquide-gaz

Comme nous 'avons évoqué dans l'introduction de cette section, les études
précédentes sur la transition entre I’état désordonné et I’état intermittent [132,
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Figure 5.13 — Gauche : Diagramme des phases du modele d’Ising actif en
1d. Parametres : D = 1, ¢ = 0.9. Droite : Temps moyen de métastabilité de
la phase homogene ordonnée. Parametres : D =1, =0.9, § = 2.2.
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Figure 5.14 — Histogrammes et cumulant de Binder de I’aimantation totale.
Gauche : D =1, pg = 3. Droite : D = 10, pg = 0.2. Pour les deux : ¢ = 0.9
et L = 8000 pour les histogrammes.

133 concluent & une transition de phase continue. Pour cela, elles utilisent les
observables habituellement étudiées dans les transitions de phase des systemes
magnétiques d’équilibre. En particulier, le cumulant de Binder [134], défini par
G = 1 — (m?)/(3(m??) (voir article [E) a un comportement différent pour des
transitons continues ou discontinues. Pour une transition continue, il est monotone
et les courbes G, pour différentes tailles de systeme se croisent toutes en un point.
Pour une transition discontinue, G présente un pic négatif a la transition, de plus en
plus marqué pour des tailles de systeme de plus en plus grandes. Ce comportement
peut étre relier aux histogrammes de 'aimantation totale P(m) : le pic négatif de
G apparait lorsque P(m) a une forme « & trois bosses », caractéristique de la
métastabilité observée dans les transitions de phase discontinues.

Nous montrons a la figure que les deux comportements du cumulant de
Binder et de P(m) peuvent étre observés, pour différents parametres. En effet,
en augmentant le coefficient de diffusion, on diminue 'effet des fluctuations. Cela
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Figure 5.15 — Profils de densité (gauche) et d’aimantation (droite). Lorsque
le coefficient de diffusion est assez élevé, les retournements sont rares. L’agré-
gat ordonné peut alors converger vers sa forme finale, qui est similaire a celle
des domaines liquides du modele d’Ising actif en 2d. Parametres : D = 5,
po =95.5. € = 0.5, L = 3000.

se traduit notamment par 'augmentation du temps entre les retournements de
l'agrégat ordonné (voir figure . Pour un D suffisamment grand, on observe
alors un comportement similaire au cas d = 2 : une transition discontinue montrant
de la métastabilité entre 1'état désordonné et I’état inhomogene (voir figure m,
droite). Lorsque le temps entre les retournements est assez grand, I'agrégat a le
temps de s’étaler completement. I1 a alors le méme profil que les domaines liquides
du modele 2d (voir figure [5.17)).

Au contraire, pour des valeurs plus petites de D, les histogrammes de l’ai-
mantation et le cumulant de Binder ressemblent a ce que l'on trouverait pour
une transition continue. Les fluctuations masquent alors la métastabilité entre les
deux phases. La transition n’est pas critique pour autant. En particulier, aucune
longueur caractéristique ne diverge a la transition.
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Conclusion

La phénoménologie des systemes actifs est diverse, tantot proche de compor-
tements observés a ’équilibre thermique, tantot radicalement différente. Comme
nous 'avons vu tout au long de cette these, des modeles simplifiés permettent de
comprendre I’essence de certains phénomenes caractéristiques de la matiere active,
et de mettre en évidence leur généralité.

Le cas exploré au chapitre 2| d’'une particule active dans un potentiel exté-
rieur, le plus simple que nous ayons étudié, est déja intéressant pour comprendre
la différence entre particules actives et passives. Lorsque 1’échelle caractéristique
du potentiel est grande devant la longueur de persistance des particules autopro-
pulsées, celles-ci se comportent comme des colloides passifs ; I'effet de I'activité est
alors complétement pris en compte par une température effective. Au contraire,
lorsque le potentiel extérieur varie sur une échelle comparable a la longueur de per-
sistance, l'activité a des effets plus originaux comme ’accumulation de particules
actives observée sur les bords d'un piege harmonique. De plus, différentes dyna-
miques d’autopropulsion conduisent dans ce cas a des comportements différents.

Notre étude de la pression mécanique d’un fluide de particules actives, au cha-
pitre 3, nous a permis de mettre en évidence une propriété générique des systémes
actifs : 'absence d’une équation d’état. Plus généralement, la pression mécanique
des systemes actifs possede de nombreuses propriétés contre-intuitives. Nous avons
vu, par exemple, qu’elle peut étre anisotrope ou inhomogene dans 1'état station-
naire, sans engendrer d’écoulement. Ce travail est récent; I’étude des propriétés
de la pression mécanique, et des possibilités nouvelles qu’elles offrent, reste donc
a approfondir. En particulier, il serait intéressant de voir si notre compréhension
des forces exercées par des particules actives modeles peut nous permettre de nous
pencher sur des situations plus complexes. Par exemple, des cellules ont la capacité
de mesurer tres précisément la rigidité de leur substrat [135]. On peut donc ima-
giner que la réponse différente des particules actives a des matériaux de rigidités
différentes puisse jouer un role dans cette mesure.
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Les cas exceptionnels ou la pression mécanique satisfait une équation d’état
nous permettent de mieux comprendre la thermodynamique des systemes actifs.
Par exemple, nous avons vu comment la pression mécanique intervient dans la
séparation de phase induite par la motilité dans un fluide de spheres dures auto-
propulsées. Elle permet alors d’expliquer en partie 1’équilibre des phases observé.
Toutefois, une compréhension globale de la coexistence de phase dans ce systeme
nous échappe toujours. Au contraire, les travaux détaillés au chapitre [4 montrent
que la transition de phase induite par la motilité est tres bien comprise dans des
fluides de particules autopropulsées a une vitesse v(p) dépendant explicitement de
la densité. On peut, dans ces systémes, construire des fonctions thermodynamiques
prédisant quantitativement les binodales observées dans les simulations microsco-
piques. Le succes inhabituel de ces théories (méme en comparaison de systémes a
I’équilibre thermique) nous permet d’espérer arriver a une compréhension générale
de la séparation de phase induite par la motilité, incluant les fluides de spheres
dures.

Enfin, I'introduction du modele d’Ising actif au chapitre [5| nous a permis de
poser de nouvelles bases pour la compréhension de la transition vers le mouve-
ment collectif. Son interprétation comme une coexistence liquide-gaz permet de
comprendre certaines propriétés générales de la transition, en particulier la forme
du diagramme des phases. On peut ensuite dégager plusieurs types de coexistence
de phase qui correspondent a des liquides ayant des propriétés différentes. Nous
avons ainsi défini deux classes d’universalité, basées sur la symétrie des systemes,
pour les modeles de particules autopropulsées avec alignement ferromagnétique. Ce
travail reste a poursuivre de facon plus systématique pour inclure d’autres types
d’interactions générant une transition vers le mouvement collectif.

Dans cette these, nous avons étudié la transition induite par la motilité et
celle vers le mouvement collectif de fagons quelque peu déconnectées. Elles pré-
sentent pourtant des points communs, les deux étant des coexistences entre une
phase liquide dense et un gaz dilué. On peut donc se demander si une théorie plus
générale pourrait rendre compte des deux types de transition de fagon unifiée.
L’approche de la physique statistique par les fonctions de grande déviation [136]
permet, conceptuellement, de généraliser les potentiels thermodynamiques a des
systemes hors d’équilibre. Une étude des systemes actifs par la théorie des grandes
déviations pourrait donc nous permettre de comprendre s’il est possible de définir
des ensembles statistiques hors d’équilibre et d’étudier leur (in)équivalence. Dans
cette optique, les coexistences de phase observées dans les systemes actifs, qui sont
de mieux en mieux comprises, semblent un bon objet d’étude.



Annexe A

Diffusion rotationnelle en trois
dimensions

Dans cette annexe, nous voulons clarifier la relation entre 1’équation de la
diffusion rotationnelle en coordonnées sphériques, 1’équation de Fokker-Planck et
I’équation de Langevin associée dans 'interprétation d’Ito.

On considere une particule dont orientation u subit une diffusion rotationnelle
avec un temps de persistance 7 = D!, L’équation maitresse du probleme est
donnée par

P(u) = AyD, P(u) (A1)

ou A, est la partie angulaire du Laplacien écrit en coordonnées sphériques. En
utilisant I'expression standard du Laplacien, ’équation (A.1]) se réécrit

: 1 0 9, 1 o
P0.p) = D, | — 2 sing 2 + —_ &
2 sinf o0 > o6 + sin? 0 Op?

P(0,p) (A.2)

On peut remarquer que, dans cette équation, P(6,p) n’est pas la densité de
probabilité de trouver la particule avec une direction donnée par des angles dans
[0,0+d0] et [p,p+dp]. En particulier, [ d0deP(0,p) n’est pas conservée par I’équa-
tion . P(6,p) est en fait la probabilité de trouver les composantes du vecteur
u dans [u;,u; + du;|, mais écrite en coordonnées sphériques. La normalisation ap-
propriée est donc

/ dfdypsin OP(6,p) = 1 (A.3)

au lieu de la normalisation habituelle [ dfdpP(6,p) = 1 d’une densité de probabi-
lité. Cette différence est importante. Elle signifie que 1’équation (A.2) n’est pas une
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équation de Fokker-Planck, et ne peut donc pas étre utilisée pour lire I’équation
de Langevin correspondante.

Pour obtenir ’équation de Langevin décrivant 1’évolution des angles 6 et ¢, il
nous faut écrire I’équation de Fokker-Planck donnant 1’évolution de la densité de
probabilité p(r,0,) définie par

p(r,0,0)drdfdy = P(uyuy,u,)duydu,du, (A.4)
Puisque du,du,du, = r?sin @drdfdye, on a sur la sphére unité
p(0,0) = P(uy,uy,u,)sinf = P(0,p)sin 6. (A.5)

On peut en déduire 1’équation sur p

s o .0 1 97 ply)
p=sinfP =D, [30 sin 9% + g 3902] g (A.6)

qui se réécrit

, 0 dcosh 0% 1
== [892 90 sind * 0p? sin 62] p6:7) (A7)

L’équation (A.7) est bien une équation de Fokker-Planck. L’équation de Langevin
associée s’écrit alors

. cos ) 2D,
0 = /2D, + mDm Y=\ amze (A.8)

ou 7y et n, sont des bruits blancs gaussiens de variance unité.

L’équation (A.8) n’est clairement pas la mieux adaptée aux simulations numé-
riques a cause de la divergence de 1/sinf. Il est alors plus simple de revenir aux
coordonnées cartésiennes

U, = sin @ cos p; u,, = sin @ sin ; u, = cosf (A.9)
On peut écrire leur dynamique en utilisant le calcul d’Ito. On obtient

Uy = —2Duy + /2D, cos 0 cos pny — /2D, sin 1,
Uy = —2Duy, + /2D, cos 0 sin ng + /2D, cos ¢n, (A.10)

U, = —2Du, — /2D, sin Ony

Notons que les trois termes de bruit peuvent également s’écrire

f Aua = (fypz - gzpyagsz - éacpzfa:py - gypx> (A-ll)
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ou &;,§,,§. sont des bruits blancs gaussiens de variance unité. Cette forme, plus
compacte, fait intervenir trois bruits et semble donc moins bien adaptée aux simu-
lations numériques. Toutefois, I’équation (A.10]) nécessite de calculer des fonctions
trigonométriques, également cotiteuses en temps de calcul. On peut vérifier faci-
lement que les corrélations des bruits satisfont, pour les deux équations

et (A11)

22 22 22
Opw = Uy + U5 Oyy = Uy + U} Oup = Uy + Uy (A.12)

Ogy = —UgUy; Oyz = —Uylz; Ogz = —UgUy
L’équation d’Ito-Langevin s’écrit finalement
u=¢(Au—2D,u (A.13)

Le dernier terme du membre de droite correspond a I'advection due a la discréti-
sation d’Tto. II est souvent omis dans la littérature [62, 64} |66], ot la convention
de Stratonovich est (implicitement) utilisée. Toutefois, 1’équation ayant un
bruit multiplicatif, son implémentation numérique est bien plus aisée dans l'inter-
prétation d’Ito que celle de Stratonovich.
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Annexe B

Hydrodynamique fluctuante
et moyennage asymétrique de la
densité

Le formalisme présenté dans ’article [C] permet d’obtenir I’hydrodynamique
fluctuante de particules se déplacant & une vitesse v[p(r)] dépendant de la densité
locale. Ci-dessous, nous étendons ce formalisme a des particules qui mesurent la
densité de fagon asymétrique par rapport a leur direction de déplacement et se
déplacent alors a une vitesse v[p(r,u)]. Plus précisément, nous considérons le cas
ou la densité est mesurée a une distance eu de la particule. Au premier ordre en
gradient (voir section , les particules se déplacent alors a la vitesse

vlp(r +eu)] = vp(r)] + Vo p(r)] - cu (B.1)

Pour décrire cette situation, il nous faut tout d’abord construire 1’équation
d’advection-diffusion d’une particule se déplacant avec un v(r,u), comme dans
I’annexe A de larticle [C| ou nous avons considéré des particules avec un v(r).
Cette étape constitue la principale difficulté technique ; la suite de la construction
de I'hydrodynamique fluctuante suivra le méme chemin que dans l'article [C| et la

section .31l
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B.1 Equation d’advection-diffusion

Moments de la distribution de probabilité

Notre point de départ est ’équation maitresse donnant la probabilité ¢ (r,u)
de trouver une particule a la position r, avec 'orientation u

diru) = =V - [o(ru)u — DV + DAY — ot + & / iy (B2)
Nous décomposons tout d’abord 1 en harmoniques sphériques
Y(ru)=¢+p-u+Q: M+ O[], avec  Myp = uqup — dap/d (B.3)

ou la densité ¢ et les deux premiers moments p et () ne dépendent que de r.
L’opérateur © projette 1 sur les harmoniques sphériques d’ordre supérieur. En
projetant ’équation (B.2)) sur 1, u and M, on obtient les équations d’évolution de

¢, petQ

Qp = — (1,V - vwp) + QV - (D, Vo) (B.4)
Tb= (V) + OV (DVP) - DDA -1) tap (B)
QQup = — (Mo, V - vut)) + QV - (D;VQup) — Q(2dD; + ) Qup (B.6)
ol Q) = d(?ziilz)' Le produit scalaire est défini sur la sphére unité

(.90 = [ d2f (wyg(w) (B.7)

et permet d’obtenir les relations d’orthogonalité (voir I'annexe A de larticle
pour plus de détails)

(L) =96 (wd) =T (M) =004 B3

Développement de v

Les équations (B.4), (B.5) et (B.6) sont valables pour une vitesse générique
v(r,u). Pour calculer explicitement les produits scalaires apparaissant dans ces
équations, il nous faut développer également la vitesse v en harmoniques sphé-
riques. On ne prendra en considération que la premiere harmonique de v, qui est
suffisante pour décrire la vitesse asymétrique de nos particules donnée par 1’équa-

tion (B.1)). On pose alors

v(r,u) = v(r) +v'(r) -u (B.9)
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Le premier terme du membre de droite de ’équation (B.4]) peut maintenant
s’écrire

(1,V -vuy) = 0, <1,(v° + Vg ) (¢ + petie + QaeMge + @[¢])> (B.10)
Q Q ~
= Eaavopa + Eﬁavigb + Q0,0 Qap + 0a(1,uvOY)]) (B.11)
ou, pour passer a la derniére ligne, nous avons calculé explicitement (u,up, M)

et utilisé le fait que 1'on peut toujours choisir le tenseur () symétrique et de trace
nulle. De méme, le premier terme du membre de droite de I’équation (B.5|) donne

(,V - vuy) = 0, (g, (v° + vpup)ue(¢ + paug + QefMer + O[Y])) (B.12)
Q ~ ~ -
== 006 + Q0,0 Qe + Q0u (vipe + vip,) + QOvipy (B.13)

+ 0y (g, vu O[Y])

Et pour I'équation , on obtient

(M, V - vuth) = (Map,0e(v° + vguua)ue(d + petie + QpgMypq + O[Y]))  (B.14)
Q Q Q
— E cvopeBabce + Eacvgllquabcd + EacUéQfgCadefg (B15>

+ 0o (M p,ou O [1])

ou nous avons défini Bupeq = %(MabuMcd> et Cobedrg = %(Mab,ucudeg).
Les équations (B.4)), (B.5]) et (B.6]) se réécrivent alors (on permutera les indices
pour qu'’ils apparaissent dans 'ordre alphabétique)

. 1 2
g25 = —gaa (Uopa + U;Qb + ‘d T QUgQab) + aa,l)iﬁaad) + aszi) (B16>
) 2 d
Pa = —0,0% — i1 20bUOQab + i+2 (81,1);]9@ + Opvlpy + &lv;pb) (B.17)
+ abljtabpa - (Dr(d - 1) + C“) Pa + 3bX§b
. d+2
Qab = 5 (ac(vopd + Ucligb)Babcd + acvgllC)efcfabcdef) (B18)

+ 0:D10.Qup — (2dD, + ) Qb + achch

ou nous avons défini les fonctions

o _ (L%UGWD, p d<uaaubv®[¢]>, Q <MabaucU@[w]>
[ 0 ) Xab = 0 ) Xabe = ~

X (B.19)



Annezxe B. Hydrodynamique fluctuante
216 et moyennage asymétrique de la densité

Développement en gradient

Contrairement a ¢, et p sont des modes rapides, qui relaxent en un temps
de 'ordre du temps de persistance d'une particule. On peut donc poser Q = 0 et
p = 0. Au premier ordre en gradient, on a alors

1
Pa="Dd—1) + ~0,0°6 + O(V?) (B.20)
d—+2
Qap = _mawécbb’abcd +0(V) (B.21)

En reportant ces expressions dans 'équation (B.16]), on a, a I'ordre 2 en gradient,

o (UO)Q v; anavo
¢ = —0a [_ (Dt T dD,[d-1) +a)> Oa + (d T A(D,(d—1) Jm)) ¢
_MDQ—{—aUgvallBabcdacQs} (B22)

Pour la vitesse que nous considérons, donnée par I'équation (B.1)), v° = v(r)
et v = eVu(r). Lorsque Vv < v, on peut négliger le dernier terme de 1'équa-
tion (B.22)). On obtient alors 'équation d’advection-diffusion

¢=—-V-[V¢p— DV (B.23)
ol v v )
EVU TUOVU TU

avec 7 = D,.(d—1)+a. L’effet de ’'asymétrie apparait donc comme une contribution
supplémentaire au potentiel V.

B.2 Densité asymétrique non-locale

L’équation d’advection-diffusion pour une particule peut étre traitée de
la méme fagon que dans 'article [C] pour obtenir I’hydrodynamique fluctuante du
champ de densité pour des particules se déplacant & une vitesse v[p(r + eu)]. La
dynamique du champ de densité est alors la méme que pour le cas v[p(r)], au terme
additionel dans V pres.

On peut également ajouter 'effet, discuté a la section [4.3.2] d’un moyennage
isotrope de la densité, qui est effectué ici autour de la position r+cu. Les particules
se déplacent alors a une vitesse

v[p(r+eu)] =vp(r)]+ Vo [p(r)] - cu (B.25)
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Par rapport au cas € = 0, I'asymétrie apporte une contribution supplémentaire a
la tension de surface. Prenons D; = 0 pour simplifier. On trouve

D w(p)  Tu(p)?

que 'on peut développer comme précédemment en un terme local, dérivant d’une
énergie libre, et un terme de tension de surface k(p)

V__ V), Vulp)

— v llnv(ﬁ) - Wg(ﬁ)] (B.26)

X = =V [f'(p) = 5(p)Ap] (B.27)
Flo)=tnolo) = == nlp) = =" (1 - ﬂf(p)) (B.2)

L’effet de I'asymétrie entre donc comme une contribution supplémentaire dans
F et k. La dynamique du champ de densité est alors donnée par la méme équation
de Langevin que dans le cas € = 0

p=V [pmﬁ)v (‘;f - m(p)Ap) n \/2pD<ﬁ>n] 7 (8.29)
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We consider an active Ising model in which spins both diffuse and align on lattice in one and two

dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right,
which generates a flocking transition at low temperature and high density. We construct a coarse-grained
description of the model that predicts this transition to be a first-order liquid-gas transition in the
temperature-density ensemble, with a critical density sent to infinity. In this first-order phase transition,
the magnetization is proportional to the liquid fraction and thus varies continuously throughout the phase
diagram. Using microscopic simulations, we show that this theoretical prediction holds in 2D whereas the

fluctuations alter the transition in 1D, preventing, for instance, any spontaneous symmetry breaking.

DOI: 10.1103/PhysRevLett.111.078101

Active matter systems are driven out of equilibrium by
the injection of energy at the single particle level [1-4].
This microscopic breakdown of detailed balance results
in a wide range of phenomena that have aroused the
interest of physicists, from bacterial ratchets [5-8] to
self-propelled clusters [9—11]. Furthermore, this rich
phenomenology is often captured by simple models. For
instance, simple flocking models account for the patterns
found in motility assays [12,13] while bacterial clustering
was successfully modeled using self-propelled rods [14].

Nevertheless, despite the successful description of many
experiments, a full understanding of the underlying mecha-
nisms sometimes remains elusive. For instance, even though
the flocking transition is a central feature of active matter,
it remains one of the most debated questions in the field.
In their seminal work, Vicsek and co-workers [15] showed
that self-propelled particles that align locally can exhibit a
transition to long-range order in 2D. Initially thought to be
continuous [15], this transition was later shown to be first
order using large scale simulations and a finite size scaling
akin to that of magnetic phase transitions [16]. Many works
were also devoted to nematic [17-19] or metric-free inter-
actions [20], the latter yielding a continuous transition [21].
Flocking models were also studied in 1D [22,23] where,
surprisingly, the transition was found to be critical.

Obtaining conclusive numerical evidence for flocking
models is notoriously difficult due to strong finite-size
effects and the lack of a theoretical framework to analyze
them. In parallel to numerical studies, much effort was thus
devoted to construct such an analytical description of the
flocking transition. While the Vicsek model (VM) is among
the simplest to simulate, it is one of the hardest to coarse
grain, being defined off lattice, in discrete time and involv-
ing manybody interactions. Many approaches were thus
either phenomenological [24-26] or focused on simpler
models [27], and progress is slower for the VM [28]. Lots
of effort was also devoted to the nematic case [29-31] or to
topologic interactions [30,32]. The existence of long-range

0031-9007/13/111(7)/078101(5)
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order in 2D for polar alignment was established [24] but
progress is difficult since the coarse-grained equations are
hard to solve. Most analytical studies were thus restricted
to the linear stability analysis of homogeneous solutions or
the simulation of continuous equations [25-27]. While non-
linear profiles for a model with nematic alignment could
be computed explicitly [30], closed analytical solutions
are still missing for polar models despite recent progress
[25,27,28]. All in all, despite the important progresses made
during the last few years, a unifying theoretical framework
of the flocking transition is still missing.

We present below a tentative step in this direction
through the introduction of a microscopic lattice model
with discrete symmetry, which is much simpler to study
numerically and analytically than traditional flocking mod-
els. By bridging micro and macro, we show the transition
of our model to amount to a standard liquid-gas transition
in the canonical ensemble with an infinite critical density.
This sheds new light on the finite-size scaling of the tran-
sition and predicts the order parameter to vary continuously
in the temperature-density plane, in the thermodynamic
limit. Furthermore, we show that there is no critical tran-
sition in 1D, where fluctuations strongly alter the transition.

We consider N particles carrying Ising spins s = =1 on
a 1D lattice of L sites. Each particle hops at rate D(1 + s¢)
and D(1 — se) to its right and left neighboring site. (In
higher dimensions, the hopping rates are symmetric in all
but one directions.) There is no exclusion between particles
and we note ;- the numbers of = spins on site i so that the
local densities and magnetizations are given by p;, = n;" +
n; and m; = n; — n; . The particles also align their spins:
on site i each spin s flips at rate exp(—sm;/T p;) where the
temperature 7 plays a role similar to the orientational noise
in the VM [16]. When D = 0, the system thus amounts to
L4 independent fully connected Ising models. When D > 0
and € # 0, three different configurations are typically
observed (see Fig. 1): at low temperature a uniform ordered
phase, at high temperature a uniform disordered phase,

© 2013 American Physical Society
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and phase-separated profiles in between, with narrow inter-
faces connecting ordered high density bands (p; = p,,
m; = my;, # 0) to disordered homogeneous backgrounds
(p; = pg, m; = 0). These profiles are all long-lived in finite
systems even though their stability in the thermodynamic
limit depends on the number of spatial dimensions. Let us
now show how a simple theoretical framework can be
constructed to account for the phase diagram of Fig. 1.

Previous coarse-graining approaches often relied
on factorization approximation of kinetic equations
[27,29,33,34]. On a 1D lattice, this amounts to a mean-
field approximation: f((n;")) = (f(n;")), which may be
quantitatively wrong but often captures phase diagrams
exactly [35,36]. Introducing x = i/L, v = 2De/L, D =
D/L?, and B =T"!, the mean-field dynamics of the
coarse-grained fields p(x) = (p,) and m(x) = (m;) is given,
in the large L limit, by

p=Dd,p—vom (1)

= Do . m—vd.p+2p sinh'B—m —2m cosh’B—m. )
p p

In higher dimensions d,, becomes a Laplacian A, and we
use this more general form hereafter.

Looking for the onset of a flocking transition, we
linearize the dynamics for m << p, which yields [37]

3
m = DAm — vd,p + 2m(B — 1)—ozm—2 3)
p
where a = B°[1 — (8/3)]. The line B8 = 1 separates the
linear stability regions of homogeneous ordered and dis-
ordered profiles while simulations of Eqgs. (1) and (2) never
show stable phase-separated profiles [38]. The mean-field

e LAl
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FIG. 1 (color online). Top left: Phase diagram in 2D with
ordered liquid (L), disordered gas (G), and coexistence region
(G + L). The red and blue lines correspond to low and high
densities of phase separated profiles; they enclose the region
where such profiles can be seen. D = 1, € = 0.9, L = 300, p, =
N/L. Bottom: Snapshots of the different profiles averaged over
the transverse direction. Top right: Phase diagram predicted by
the RMFM. In addition to p, and p,, black and green dashed
spinodal lines signal the loss of linear stability of the homoge-
neous profiles. D = v =r = 1.

approximation thus predicts a continuous transition from
m = (1/L)Y.;m; = 0 to m = my(B) at 8. = 1, in contra-
diction with Fig. 1. As often [39,40], the mean-field ap-
proximation is only valid for p — oo; for finite densities we
thus expand the mean-field critical temperature to include
1/p corrections [41,42] and use B, = 1 + (r/p) in Eq. (3):

~ r m?
m=DAm — vd,.p + 2m(ﬁ -1 ——) —a—. @)
p p
The phase diagram corresponding to Egs. (1) and (4),
which form our refined mean-field model (RMFM), is
presented in the top-right corner of Fig. 1. When T < 1,
homogeneous disordered (resp. ordered) profiles are always
linearly stable at low enough density py < p; (resp. high
enough density py > p,). Since p; < p,, there is a finite
intermediate region [p;, p,] where neither homogeneous
profiles are stable. In this region, the system separates into
two homogeneous phases connected with sharp fronts: a
disordered region with low density p, < p; and an ordered
region with high density p, > p, and m;, # 0.
Propagating shocks can be computed analytically when
B is close to 1 by linearizing Eq. (4) around the density
p1 =r/(B— 1) at which the homogeneous disordered
profile becomes linearly unstable. We first solve Eq. (1),
by neglecting the diffusion term in a reference frame
moving at speed c, to get p as a function of m:

v
p(r) = pe + ;m(r). Q)
Equations (4) and (5) then yields for m
2 3
DAm + C(l —v—z)amer M[Pl — P +Em]m— am—2=0
C C pl

(6)

where u = 2r/p?. Looking for ascending (¢* > 0) and
descending (¢~ < 0) front solutions

m(r) = %[1 + tanh(g™x)] (7
one gets
L L EmyJa _4r 4
c v; q \/E;_D:p] s my, 3&” Pe P1 9 .

®)
Such solutions are consistent with our approximations since
[(p — p1)/p1] < 1 and DAp < vd,p when B — 1 [42].
In this regime, Eqgs. (5)—(8) and simulations of the RMFM
yield the same profiles and band velocities. For larger S,
the DA p term makes fore and rear fronts asymmetric and
¢ > v: the flocks fly faster than the birds [42].

Since p¢, pj, and m;, do not depend on p,, increasing the
density at fixed temperature only increases the width of
the high-density bands. In the thermodynamic limit, phase
separated profiles can be seen from p; to p,. One always
has p, < p; < p, < p;, so that clusters and homogeneous
profiles are linearly stable when py € [p¢, p1]1U 02 p1l-
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The refined mean-field scenario thus resembles an equi-
librium liquid-gas transition in the canonical ensemble, the
total magnetization being proportional to the fraction of the
liquid phase. Varying the density at fixed temperature, one
indeed observes hysteresis loops (see Fig. 2). Increasing
po, homogeneous disordered profiles are seen up to p;
where the system discontinuously jumps into a phase-
separated profile. Further density increases result in a
widening of the liquid phase until it almost fills the system
for p =< p;,. (The widths of the fronts connecting p, and p,,
prevent phase-separated profiles for pg = p¢/, in finite
systems.) Decreasing p,, the homogeneous ordered phase
remains metastable until p, = p, before discontinuously
jumping to a coexistent state. The fraction of gas then
increases until it fills the system at p = p,.

Unlike equilibrium liquid-gas transitions, dense and
dilute phases in flocking models have different symme-
tries. One thus cannot circumvent the transition and con-
tinuously transform the system from a gas to a liquid: the
transition line cannot stop at a finite point in the (7, pg)
plane and, indeed, the critical density is infinite. As far as
we are aware, this has not been described for other flocking
models [43] even though it should be generic and is con-
sistent with numerical results on the VM [16,27].

Simulations of the 2D active Ising model confirm both
the structure of the phase diagram (see Fig. 1) and the
nature of the transition predicted by the RMFM. The
coexistence between homogeneous and phase-separated
profiles is observed and changing p, at fixed T in the
coexistence region only changes the fraction of the liquid
phase (see Fig. 2); the velocity of the high density bands,
for instance, remains constant [42]. Since high density
bands have a minimal size €., the apparition of a flock in
a finite-size system corresponds to a discontinuous jump to
a nonzero magnetization mg = m,{,/L which vanishes as

1_
¢ —po=2.3
0'?' pp=2.6
0.6 . — py=3
o4 — down —po=34
0.2
0 Po
T T (R S
2 3 20 40 60 80 100
) —po=2
0.8  po=3
0.6 —po=3.5
0.4 —u —po=4
— down
0.2 po=4.5
0 po
— T T T T T 0

| I I I
1 2 3 4 5 6 0 50 100 150 200 250

FIG. 2 (color online). Left: Fraction of the ordered liquid
phase when p, is either increased or decreased for the RFMF
(top) and in 2D microscopic simulations (bottom). Right
Corresponding profiles of the system. Parameters: RMFM
L=100, v=D=1, r=16, B8=175, Apy=10"2 every
Ar=15000; 2D lattice model L=250, =2, D =1, ¢ = 0.9,
Apy = 1072 every At = 500.

L — oo, In this limit, as for a liquid-gas transition in the
canonical ensemble, the order parameter varies continu-
ously throughout the phase diagram.

The scenario presented here can be related to the mea-
surement of the binder cumulant G = 1 — ((m*)/3(m?)?)
done in the literature [16,31]. The coexistence between
phase-separated profiles (m = *m) and supercooled gas
phase (m = 0) yields three peaks in P(m) whose weights
vary across the transition. (The same holds for the
coexistence with superheated liquid.) Assuming a sum
of three Gaussians of variance o, the minimum of
G, Guin = —[12(a/mg)* + 36(0/mg)*]™", is only mark-
edly negative when m, >> 0. When L — oo, contrary to
what happens in a grand-canonical ensemble, both m and
o vanish, the negative peak need not become more pro-
nounced, and the transition may appear critical if o
remains comparable to m (see the 1D case below).

Let us now show that fluctuations strongly alter the
transition in 1D. First, all three profiles shown on Fig. 1
exist and are linearly stable in finite systems [44]. The
general scenario predicted by the RMFM thus holds:
homogeneous profiles are linearly unstable for p;(7T) <
po < po(T) and phase-separate between linearly stable
low-density disordered and high-density ordered regions.

To assess the impact of fluctuations, let us consider the
stability of an ordered band in the coexistence region.
In 1D, an excess of, say, positive spins on a single site
suffices to flip an approaching negative cluster (see Fig. 3);
this happens frequently and the total magnetization keeps
flipping in this region. The 2D counterpart of such a
fluctuation is an excess of positive spins on a transverse
band of ~L sites in front of the approaching cluster, which
has a negligible probability when L — oco. Similarly, the
m = mg homogeneous profile is unstable in the thermody-
namic limit in 1D, which may be why it has not been
observed before [44]. Indeed, although a fluctuation lead-
ing to a small negative cluster in a uniform profile with
m > 0 is rare, its probability does not decay exponentially
fast with L since only a finite number of sites have to be
flipped. When L increases, so does the entropy of such
local perturbations; the time it takes to exit the homoge-
neous state thus vanishes when L — oo.

In 1D, only two phases thus survive in the thermody-
namic limit: homogeneous disordered profiles and flipping

800y =10
60 m
400 ‘J@‘
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3000 1 1500 3000 1 1500 3000

150 ¢ = 200
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PRI \ sandualaaiatill
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FIG. 3 (color online). Reversal of a 1D cluster due to a localized
fluctuation. v, is greater than v, until p(x) = p,, in the whole
cluster. (See movies in [42].) pg =5,D =1, =009, B = 1.7.
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FIG. 4 (color online). Left: Cluster length as a function of
time, showing a linear spreading between reversals. D = 1
e =009 B =2 py = 3. Center and Right: P(|m|) for p, = 4;
xm(P)/L; B=1.538,D=1,¢&=009.

clusters, whose dynamics we now describe (see Fig. 3 and
movies in [42]). Starting from a localized cluster, the
ordered region spreads at constant speed: the fore front is
initially faster than the rear front, their velocity becoming
equal when the density in the band has uniformly spread
to pj,. The mean cluster size before a reversal L¥ is thus
proportional to the mean time between reversals. A rever-
sal corresponds to the progression of a fluctuation from the
front to the rear of a cluster, progressively flipping all its
sites. The average duration of a reversal is thus propor-
tional to LR and hence to the mean time between reversals.
When L — oo, there is a nonzero probability to find the
system in a reversal, P(m) does not vanish between *m,,
and (m) = 0 (see Fig. 4): there is no spontaneous symme-
try breaking in 1D. Since the reversals capture a finite part
of the steady-state measure, one cannot replace m by |m|
when computing the susceptibility y,, = L((m?*) — (m)?),
as is frequently done for the Ising model. In agreement
with the lack of ergodicity breaking, and contrary to
earlier results in 1D, y,, is simply extensive in the cluster
region.

The difficulty of analyzing Binder cumulants can be
clearly seen in 1D, where the large L limit is easily reached
and the three peaks in P(/m) at the transition can be hard to
discriminate. If the width of the peaks is larger than their
separation, no negative peak in G is observed. Increasing L
does not help since the peaks get closer as they get nar-
rower. In Fig. 5 we show two extreme cases: without the
RMFM to analyze the data, it would be very difficult to
realize that they correspond to the same transition. This
may explain why previous studies of 1D flocking models

with similar—though not identical—dynamics concluded
to a second-order transition [22,23].

Conclusion.—We have introduced a lattice model of
self-propelled Ising spins whose phenomenology is similar
to that of traditional flocking models. The simplicity of
our model allows us to show that its flocking transition
amounts to a liquid-gas transition in the canonical
ensemble with an infinite critical density. The total mag-
netization is proportional to the liquid fraction and thus
varies continuously through this first-order transition in the
thermodynamic limit, a rather counterintuitive result. This
scenario, confirmed numerically in 2D, is altered by fluc-
tuations in 1D, where neither spontaneous symmetry
breaking nor critical transitions are observed.

Despite fundamental differences between our model and
others found in the literature, such as the symmetry of the
order parameter, many features of the flocking transition
observed here seem consistent with existing numerical
results on either microscopic models [16,19,30] or continu-
ous descriptions [25-28] of self-propelled particles. For
instance, the phase diagram seems compatible with those
of nematic [19,30] or VM [16,27], even though the high
density regions have not been studied in these models. This
suggests that the analogy between the flocking transition
and a canonical liquid gas transition could be generic, while
the symmetry of the order parameter would mostly control
features of the ordered phase. For instance, giant-number
fluctuations, which have been reported in flocking models,
are trivially present in the coexistence region of our model.
There, P(p;) is peaked around p, and p,,, and the variance
of the number of particles in a box of finite size satisfies
(N?) — (N)? « (N)? [45]. They are, however, absent from
the homogeneous ordered phase [42], showing that such
fluctuations are not intrinsic to polar flocking states.

Active spin models are mostly aimed at improving our
theoretical understanding of the flocking transition. One
can nevertheless wonder whether such models could be
relevant experimentally. The discrete symmetry of the
order parameter can for instance stem out of a geometry
allowing only two flocking directions, as for locusts in a
ring-shaped arena [46,47]. Then, as for the VM, the high
density region can only be attained if the interaction range
between particles is much larger than their size, as for

— B=1.54 — 3=2.96
— B=1.55 — [L=1024 +— L =4096 — B=3.04 ~— [L=1000 <+— L =4000
— B=1.56 — [,=2048 +— L =8192 — B=3.1 ~— [L=2000 <+— L =8000
6
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FIG. 5 (color online).
(right). & = 0.9. L = 8000 for P(m).

Histograms and Binder cumulant of the total magnetization for p, = 3, D = 1 (left) and p, = 0.2, D = 10
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electrostatic, hydrodynamic, or social interactions. In other
cases, such as hard rods, the steric exclusion between
particles and other density-induced effects may alter the
flocking transition [33]. Lastly, thanks to recent progress
on the manipulation of cold atoms in optical lattices,
physicists now have a large freedom to control the inter-
actions in spin chains [48]. This could provide an interest-
ing path towards a quantum version of active spin models.

The authors thank H. Chaté, M. Cheneau, G. Grégoire,
P. Krapivksy, F. Peruani, H. Touchette, and F. van Wijland
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We show that hydrodynamic theories of polar active matter generically possess inhomogeneous traveling
solutions. We introduce a unifying dynamical-system framework to establish the shape of these
intrinsically nonlinear patterns, and show that they correspond to those hitherto observed in experiments
and numerical simulation: periodic density waves, and solitonic bands, or polar-liquid droplets both
cruising in isotropic phases. We elucidate their respective multiplicity and mutual relations, as well as their

existence domain.
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Could the emergence of collective motion in fish
schools, bird flocks, and insect swarms be understood
within a unified physical framework? A growing stream of
works has approached this provocative question following
the seminal work of Vicsek et al., who considered self-
propelled point particles interacting solely via local veloc-
ity-alignment rules [1]. This model displays a spontaneous
rotational-symmetry breaking leading to orientational order
[1-3]. In addition, a number of subsequent simulations and
experiments have revealed an even more surprising feature.
At the onset of collective motion, despite the lack of any
attractive interactions, polar active matter self-organizes in
the form of band-shape swarms [4—12]. However, depend-
ing on the specifics of the systems, these dynamical patterns
take three different forms: (i) delocalized density waves
[5,6], as exemplified in Fig. 1(a), (ii) solitonic structures
[7-9], Fig. 1(b), and (iii) phase-separated states [10—12],
Fig. 1(c). Although it is now clear that they are responsible
for the first-order nature of the transition toward collective
motion [4,9,10], no unifying theory exists to account for the
origin and the variety of these band patterns.

In this Letter, we convey a comprehensive description of
the propagative excitations of polar active matter. Using a
hydrodynamic description and dynamical system concepts,
we establish the shape of these intrinsically nonlinear band
structures, and show that they correspond to those observed
in all the available experiments and numerical simulation;
see, e.g., Refs. [5-14].

Our starting point is a hydrodynamic description of
compressible polar active fluids [3,15]. Since we are chiefly
interested in structures varying only along the main direction
of motion, we focus here on a one-dimensional problem. The
local density field p(x, ) obeys a conservation equation

0031-9007/14/112(14)/148102(5)
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which complements the equation governing the momen-
tum field W(x, 1) = p(x, 1)P(x,t), where P(x,t) € [0, 1]
is a polarization field. Following Toner and Tu [15] these
equations read

dp+0W =0, (1)

OW + EWOW = a,W — a,W3 —20,p + DO W, (2)

where all the coefficients a priori depend both on p and W2.
These phenomenological equations were introduced to
account for a continuous mean-field transition from a homo-
geneous isotropic state with p = pyand P = Owhen a, < 0,
to a homogeneous polarized state with P = py'y/a,/ay,
when a, > 0. In addition, the A term reflects the pressure
gradient induced by density heterogenities. £ and D are
two transport coefficients associated, respectively, with the

150 1

T
150 150

300 300 150 300

FIG. 1 (color online). Band patterns observed in agent-based
simulations. (a) Smectic arrangement of polar bands in the Vicsek
model with vectorial noise [5]. Speed v = 0.5, noise intensity
n = 0.6, and density p = 1.1. (b) A solitary band observed for the
same model and same parameters as in (a). (c) Polar-liquid
droplet in an isotropic phase observed in the active Ising model
[10], with inverse temperature = 6, density p = 5, hopping rate
D =1, and bias € = 0.9. More simulation details can be found
in the Supplemental Material [16].

© 2014 American Physical Society
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advection and the diffusion of the local-order parameter.
Following [7], we now look for propagating solutions of
Egs. (1) and 2): p = p(x — ct) and W = W(x — ct), where
cis the propagation speed [7,11]. This ansatz reduces Eq. (1)
to an algebraic relation,

1
p:ﬂ*+;W. 3)

When a band moves in an isotropic gas [see, e.g., Fig. 1(b)],
the constant p* corresponds to the gas density. Inserting the
latter expression in Eq. (2) leads to a second-order ordinary
differential equation,

. . dF dH
DW+W-—4+"—-=0 4
Waw Taw = @

where H(W) is defined via dH/dW = a,W — asW?,
F(W) = (¢ — (4/c))W — 1éW?, and the dot symbol denotes
the derivative with respect to 7 = x — ct. Therefore, the
band-pattern problem is recast into a dynamical system
framework: establishing the shape of the bands amounts to
describing the motion of a particle of mass D and position W
in a potential H(W), and experiencing a nonlinear friction
F(W); see Fig. 2(a). Note that the particle gains (losses)
energy when F'(W) < 0 [F'(W) > 0].

Mass conservation in the original problem, Eq. (1),
constrains the boundary conditions of Eq. (4) as
W(x - —o0) = W(x — +o0). Given this simple observa-
tion, without any further calculation, we can anticipate all
the possible band patterns: the solutions of Eq. (4) corre-
spond to closed trajectories in the (W, W) plane. Therefore,
they necessarily belong to one of the three following classes:
(i) periodic orbits, (ii) homoclinic cycles (the trajectory
includes one saddle point), or (iii) heteroclinic cycles
(the trajectory includes two saddle points). Back in real
space, as exemplified in Fig. 3, these trajectories, respec-
tively, correspond to three possible propagating patterns

0.010 T
: (@) ;
, Vo b
ows] P01 F<0 / !
H 0.000 :
N :
00051 @
' T 0.6 «
Wr W, \f)\ P c
-0.010 — T 05— T T > t
00 0.1 02 03 04 05 06 0.7 0.8 09 1.0 1.1
w c

FIG. 2 (color online). (a) Sketch of the motion of an oscillating
point particle in the effective potential H(W) for Py = 1, p. = 1,
A=05, =1, ¢c=09, and p* =0.7. The system loses or
gains energy H when F'(W) > 0 or F/(W) < 0. (b) Band phase
diagram for the same parameters. Nonlinear bands exist only in
the gray region. The dashed lines correspond to the conditions
Wy >0, and Wy > 0. For ¢ < ¢*, the black solid line corre-
sponds to the supercritical Hopf bifurcation. Polar-liquid droplet
states are observed only at ¢ = ¢y,

W (x — cr): (i) a smectic phase composed of ordered bands
(W varies periodically with x — cr), (ii) a localized solitary
wave, the length of which being set by the “time” taken to
explore the homoclinic cycle, (iii) a polar-liquid droplet
separated by domain walls from an isotropic gaseous phase,
the fraction of polar liquid being given by the ratio between
the waiting times at the two saddle points. These three
patterns exactly correspond to those hitherto observed in
model experiments, and in numerical simulations at the
onset of collective motion.

Motivated by this pivotal observation, we now turn to the
study of Eq. (4). For sake of clarity we henceforth specify
the functional dependence of the phenomenological coef-
ficients in Eq. (2). As the density is a control parameter of
the transition to collective motion for all models based
on short-range alignment interactions, a,(p) has to change
sign at a finite density p. [2,3]. Different systems may result
in different functions a,(p). We choose a simple linear
dependence a, = p — p. which is consistent, close to p,,
with all existing kinetic theories [7,8,10,17,18]. In addition,
having, for example, the original Vicsek model in mind,
we want to capture the saturation of the average polari-
zation of a homogeneous polar state of density p = p,
when p, > p., at a nonzero value P,. In agent-based
models, P, is set by the noise amplitude. Here, since
P ~pyt(po — pe)/as)'/?, the simplest possible choice
yielding the correct saturation is a4(p) = (pP3)~!. This
choice simplifies the equations studied numerically in [11].
In all that follows &, 4, and D are kept constant.

Now that Egs. (1) and (2) have been fully defined, we
can obtain their propagative solutions explicitly by solving
Eq. (4). We stress that the two functions H(W) and F(W)
are parametrized by two independent parameters: p* and c,
which specify the shape of the bands. Their explicit forms
are provided in the Supplemental Material [16] and H
is plotted in Fig. 2(a) for a given set of parameters. The
existence of closed trajectories in the (W, W) plane requires
that the system has at least one fixed point [19]. Hence,
keeping in mind that Eq. (4) describes the motion of a
massive particle in a potential, we look for trajectories that
display at least one oscillation. This obviously requires
(i) that H has a local minimum at a finite value W > 0
(and thus a local maximum at W = 0), and (ii) that the
friction /(W) changes sign at a finite W > 0 so that the
particle does not fall to, and remains stuck at, Wy, where H
is minimum. It is straightforward to show that the former
condition implies p* < p,, and the latter ¢ > v/A. In order
to establish the shape of the periodic trajectories of the
dynamical system, and in turn the shape of the bands, we
need to go beyond this simple picture. We introduce the
auxiliary variable Z = DW + F(W) and recast Eq. (4) into
the two-dimensional dynamical system,

W= Sz~ FW)], )

148102-2
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FIG. 3 (color online).

(a) Dashed lines: dynamical system trajectories, for Py = 1,p. = 0.1,A = 0.5, =4, D = 0.1, ¢ = 0.9. p* was

chosen such that W > W . Thick line: stable limit cycle. Thin line: Z = F(W) curve. (b) Polar smectic corresponding to the limit cycle
shown in (a). (¢) Homoclinic orbit; same parameters as in (a) but for a lower value of p*. (d) Solitonic band corresponding to the limit
cycle shown in (). (e) H(W), solid line, plotted for Py = 1, p. = 1,4 =1, & = 10, and D = 50. The dashed lines show the positions of
W and Wy. The values of ¢ and p* give rise to a heteroclinic cycle [16]. (f) Polar-liquid droplet for the same values of the parameters

as in (e); see also the Supplemental Material [16].

dH

Z=——].
dw

(0)
This change of variable greatly simplifies the investigation
of the fixed points of the dynamical system now defined
by Eqs (5)—(6) [20]. It has at least two fixed points: (0,0)
and (W, F(Wg)). A conventional linear stability analysis
shows that (0,0) is always a saddle point. Conversely, the
second fixed point (W, F(Wy)) calls for a more careful
discussion. It undergoes a Hopf bifurcation as Wy — W
changes sign, as can be seen on the eigenvalues of the
Jacobian matrices (see the Supplemental Material [16]).
This bifurcation, which we will thoroughly characterize
elsewhere [21], is supercritical (subcritical) if ¢ < c¢*
(¢ > ¢*), where the critical velocity c¢* is defined implicitly
by H"”(Wy) = 0. Both the bifurcation line and ¢* can be
computed analytically and are shown in Fig. 2(b). More
importantly, regardless of its sub- or supercritical nature the
Hopf bifurcation results in an unstable spiral trajectory
which can lead the system toward a cyclic attractor. We now
describe how these limit cycles are explored in the (W, Z)
plane, and relate these nonlinear trajectories to the mor-
phologies of the band patterns.

Polar smectic phase or periodic orbits.— To gain more
quantitative insight, we consider large-amplitude cycles in
the limit of small D [22]. For small W, Eq. (5) implies that
the system quickly relaxes toward the curve Z = F(W) in a
time ~D~!. Close to the origin, the dynamics is controlled
by the linear properties of the saddle point (0,0), which
defines two well-separated scales. It can be easily shown
that the stable direction is nearly horizontal, it is associated
with a fast relaxation at the rate 7! ~D~'(c —1/c).

Conversely, the unstable direction is nearly tangent to
the curve Z = F(W), and corresponds, again in the
small-D limit, to a much slower growth at the rate
7t~ (p. — p*)/(c — A/c). The shape of large-amplitude
cycles immediately follows from this discussion and from
the parabolic shape of F(W). Let us start from the left of the
cycle, point A in Fig. 3(a), close to the origin. We call W ;,
the abscissa of this point, which is the minimum value of W
in the cycle. As noted above, the trajectory first remains
near the parabola Z = F(W). If A is close enough to the
origin, this part of the cycle is explored slowly, in a time
~t,. Then the trajectory approaches the unstable point
(Wy, F(Wg)). Tt therefore leaves the parabola and starts
spiraling, at a point labeled B in Fig. 3(a) [B is here defined
as the point where the trajectory deviates from the Z =
F(W) curve by 5%]. It finally crosses the parabola again, at
point C, and W changes sign; see Eq. (5). W then decreases
and the system quickly goes back to point A in a time
typically set by ~z_. To further check this picture we have
numerically computed the phase portraits of Egs. (5) and
(6), Fig. 3(a) (dotted lines). The typical periodic orbit
shown in Fig. 3(a) (solid line) is in excellent agreement
with the scenario described above. From this analysis, we
infer the shape of the steadily propagating band pattern
W(x — ct). As anticipated, periodic orbits correspond to a
polar smectic phase composed of equally spaced bands, in
qualitative agreement with the experimental pictures
reported in [6], and Fig. 1(a). The numerical shape of a
smectic pattern is shown in Fig. 3(b). It is composed of
strongly asymmetric excitations, which reflects the time-
scale separation in the underlying dynamical system close
to the origin; the large-amplitude bands are composed of a
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long exponential tail, and of a sharp front at the head. Note
that we describe here the propagation of large-amplitude
excitations in a polarized environment. However, the
minimum polarization in the regions separating the bands,
W min» can be vanishingly small. In this limit the period of
the crystalline structure would diverge logarithmically
as 7 10g (WF/Wmin)'

Solitary bands or homoclinic cycles.—In the limiting
case where the minimal value of W goes to 0 (W ,;, = 0),
point A then corresponds to the saddle located at the origin.
Consequently, the orbits followed by the dynamical system
become homoclinic. As exemplified in Fig. 3(c), they are
not periodic anymore, as the trajectory remains stuck at
(0,0). In real space, the associated pattern is a solitary wave
emerging out of a disordered gas, Fig. 3(d). We stress that
the existence of solitonic structures at the onset of collective
motion is one of the more robust observations made in
agent-based simulations [5,7,9]; see Fig. 1(b).

Polar liquid droplets or heteroclinic cycles.—Until now,
we have restricted our analysis to the case where the
dynamical system only probes the first two extrema of H.
However, looking for high-speed solutions (¢ > Py), H
displays an additional extremum at W}, > W; see Fig. 3(e).
(WY, F(WY)) is a second saddle point. Therefore, hetero-
clinic cycles are found when A is located at the origin and C
at the second saddle. The cycles are not periodic as the
dynamics freezes both at A and C. In real space, the
corresponding structure W(x — cr) is a localized domain,
a polar-liquid droplet, traveling in a disordered gas, whose
length is given by the residence at point C; see Fig. 3(f). This
phase-separation pattern corresponds to the one numerically
observed in the active spin model, Fig. 1(c), and in a
generalization of the 2D Toner and Tu model [10,12]. In
the small P, limit, the shapes of the asymmetric domain
walls bounding the polar-liquid droplets can be computed
exactly (see the Supplemental Material [16]).

Several comments are in order. First, we emphasize that
the salient features of the swarming patterns do not depend
on the specific functional forms of the hydrodynamic
coefficients in Eq. (2). The limit-cycle solutions solely
require the existence of a Hopf bifurcation, and the dynamics
along this cycle is chiefly controlled by the stability of the
other fixed points. Therefore, at a qualitative level, only the
global shapes of the effective potential H(W) and the friction
curve F(W) matter. For instance, we shall stress that a
hydrodynamic theory where a4 = cstin Eq. (2) would yield
nonlinear patterns qualitatively identical to those shown in
Fig. I (not shown). Only the sign reversal of a,(p) at p. was
necessary to observe band patterns, in agreement with [23].

Second, we emphasize that a traveling band can exist
when the average density pg is smaller than p., though the
linear stability of Egs. (1) and (2) predicts that no small-
amplitude wave can propagate [3]. The fundamental
propagative excitations of polar active matter are intrinsi-
cally nonlinear below p..

Third, we come back to the status of the solutions
described above. Until now we have identified an infinite
family of band-type solutions, located in the vicinity of the
Hopf-bifurcation line in the (¢, p*) plane, gray region in
Fig. 2(b). The boundaries of this region are found by
looking for nondegenerate solutions satisfying W > 0 [21],
and its extent is an increasing function of the diffusivity D.
The domain of existence of the bands collapses on the
Hopf-bifurcation line in the limit D — 0. The homoclinic
cycles, corresponding to solitary waves, are constrained to
include one saddle point. Therefore, they define a one-
parameter ensemble of band-type solutions. This ensemble
corresponds to the lower boundary of the phase diagram,
Figure 2(b) (dashed-dotted line), and is established by
taking the infinite-period limit. The heteroclinic solution,
polar-liquid droplet, is constrained by the existence of two
saddles along a cycle. Therefore, if any, the heteroclinic
cycle is unique. It is a limiting case of the one-parameter
homoclinic family, point ¢}, in Fig. 2(b).

Finally, we discuss the pattern-selection problem. The
ensemble of band-type solutions described above is actually
restrained by the mass-conservation law. The mean density
po in the system is fixed; therefore, only band shapes
compatible with this value exist. However, we are a priori
left with an infinite family of solutions, which is para-
metrized by one free parameter. Hence, we predict that, for a
given value of p, several solutions propagating at different
speeds may coexist. This conjecture is again supported by
numerical evidences. In Fig. | the three-band and single-
band patterns correspond to identical values of all the
simulation parameters. The full resolution of the challen-
ging pattern-selection problem obviously goes beyond the
scope of this Letter. However, a tentative picture for the
nucleation of stationary swarms from a disordered state can
be attempted from Eq. (2). The emergence of sharp fronts
is natural since the left-hand side of (2) has the form of a
Burgers equation, which supports rarefaction shocks [24].
A density fluctuation above p. grows and polarizes via the
generic coupling between density and order embodied in the
p dependence of a, in Eq. (2). When these two competing
effects balance each other, the density at the top of the shock
is pinned, and a constant-shape asymmetric band steadily
propagates. In the transient regime, we therefore expect
several bands to form and collide, until the system reaches
one of the possible steady states. This mechanism might
favor large-amplitude or fast bands via coalescence events,
in agreement with the experiments reported in [8].

To close this Letter we comment on the role of fluctua-
tions on the transition toward collective motion [2].
Equation (2) predicts a second-order transition for homo-
geneous systems. Here, we have evidenced that stationary
polarized excitations (solitary bands, and polar-liquid
droplets) can coexist with a homogeneous isotropic phase,
which in turn confirms the first-order scenario evidenced in
numerical simulations [4,5]. This coexistence does not rely
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on any fluctuation-induced mechanism, unlike all the
conventional equilibrium scenarios making first order a
mean-field second-order transition (e.g., Brazovskii [25]
and Halperin, Lubensky, and Ma [26]). However, beyond
the mean-field deterministic picture, fluctuations are very
likely to play a major role in the stability, the selection, and
the ordering of the band patterns. These difficult but crucial
problems are a topic for future work.
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Résumé

Les systemes actifs, composés de particules capables de transformer 1'énergie
stockée dans leur environnement pour s’autopropulser, sont omniprésents dans la
nature. On les trouve a toutes les échelles : des moteurs moléculaires aux groupes
d’animaux, en passant par les tissus cellulaires et les colonies de bactéries. Ces
systemes hors d’équilibre ont attiré l'attention des physiciens car ils présentent
une phénoménologie plus riche que les systemes passifs, que I'on peut cependant
comprendre a partir de modeles simples.

Dans cette these, nous avons étudié analytiquement et numériquement des
modeles minimaux de particules actives. Ceux-ci nous ont permis de comprendre
différents phénomenes spécifiques a la matiere active et d’étudier le comportement
a grand échelle de plusieurs classes de systemes.

La thermodynamique des systemes actifs est fondamentalement différente de
celle des systémes d’équilibre. Nous montrons en particulier que la pression méca-
nique d’un fluide de particules actives n’est pas donnée par une équation d’état.
La pression n’est donc pas seulement une propriété du fluide et dépend du détail
des interactions avec les parois du récipient dans lequel il est confiné.

Nous étudions également deux transitions de phase propres a la matiere active :
la séparation de phase induite par la motilité et la transition vers le mouvement
collectif. Dans les deux cas, on observe une séparation de phase entre un liquide
et un gaz dont nous étudions la coexistence. Pour la transition vers le mouvement
collectif on distingue deux classes d’universalité, en fonction de la symétrie des
particules, qui ont des coexistences de phase différentes.

Abstract

Active systems, composed of particles capable of using the energy stored in their
medium to self-propel, are ubiquitous in nature. They are found at all scales :
from molecular motors to cellular tissues, bacterial colonies and animal groups.
These out-of-equilibrium systems have attracted a lot of attention from the physics
community because they show a richer phenomenology than passive systems that
we can still understand using simple models.

In this thesis, we study analytically and numerically minimal models of active
particles. They allow us to understand different phenomena that are characteristic
of active matter and to study the large-scale behavior of several classes of systems.

The thermodynamics of active systems is fundamentally different from that
of equilibrium systems. In particular, we show that the mechanical pressure of
an active particle fluid is not given by an equation of state. The pressure is thus



242 Bibliographie

not a property of the fluid and depends on the details of the interaction with the
containing vessel.

We also study two phase transitions that specific to active matter : The motility-
induced phase separation and the transition to collective motion. In both cases, we
observe a phase separation between a liquid and a gas and study their coexistence.
For the transition to collective motion, we exhibit two universality classes, based
on the particles’ symmetry, which have different types of coexistence phases.
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