

M

ATLAB

The Language of Technical Computing

Computation

Visualization

Programming

Using M

ATLAB

 Graphics

Version 5.2



How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com

Web

ftp.mathworks.com

Anonymous FTP server

comp.soft-sys.matlab

Newsgroup

support@mathworks.com

 Technical support

suggest@mathworks.com

 Product enhancement suggestions

bugs@mathworks.com

 Bug reports

doc@mathworks.com

 Documentation error reports

subscribe@mathworks.com

 Subscribing user registration

service@mathworks.com

 Order status, license renewals, passcodes

info@mathworks.com

 Sales, pricing, and general information

Using MATLAB Graphics



 COPYRIGHT 1984 - 1997 by The MathWorks, Inc. All Rights Reserved.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc

.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing New for 5.0
June 1997 Revised for 5.1 (Online version)
January 1998 Revised for 5.2 (Online version)

☎PHONE

FAX

✉MAIL

INTERNET

@
E-MAIL

What Is MATLAB? ii

MATLAB Documentation iii

How to Use the Documentation Set. iii
Typographical and Alphabetic Conventions iv
Preface

Preface

What Is MATLAB?
MATLAB® is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar
mathematical notation. Typical uses include:

• Math and computation

• Algorithm development

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations, in
a fraction of the time it would take to write a program in a scalar
noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally
written to provide easy access to matrix software developed by the LINPACK
and EISPACK projects, which together represent the state-of-the-art in
software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In
university environments, it is the standard instructional tool for introductory
and advanced courses in mathematics, engineering, and science. In industry,
MATLAB is the tool of choice for high-productivity research, development, and
analysis.

MATLAB features a family of application-specific solutions called toolboxes.
Very important to most users of MATLAB, toolboxes allow you to learn and
apply specialized technology. Toolboxes are comprehensive collections of
MATLAB functions (M-files) that extend the MATLAB environment to solve
particular classes of problems. Areas in which toolboxes are available include
signal processing, control systems, neural networks, fuzzy logic, wavelets,
simulation, and many others.
ii

MATLAB Documentation

MATLAB Documentation
MATLAB comes with an extensive set of both online and printed documenta-
tion. The online MATLAB Function Reference is a compendium of all MATLAB
commands functions. You can access this documentation from the MATLAB
Help Desk. Users on all platforms can access the Help Desk with the MATLAB
doc command. MS-Windows and Macintosh users can also access the Help
Desk with the Help menu or the ? icon on the Command Window toolbar. From
the Help Desk main menu, choose “MATLAB Functions” to display the Func-
tion Reference.

The online resources are augmented with printed documentation consisting of
the following titles:

• Getting Started with MATLAB describes MATLAB fundamentals.

• Using MATLAB explains how to use MATLAB as both a programming lan-
guage and a command-line application.

• Using MATLAB Graphics describes how to use MATLAB’s graphics and
visualization tools.

• Building GUIs with MATLAB dicusses the construction of graphical user
interfaces and introduces the Guide GUI building tool.

• The MATLAB Application Programmer’s Interface Guide explains how to
write C or Fortran programs that interact with MATLAB.

• The MATLAB 5 New Features Guide provides information useful in making
the transition from MATLAB 4.x to MATLAB 5.

• The MATLAB 5 Late-Breaking News provides additional information about
new features that are not covered in the other guides. They also include lists
of problems fixed since the previous release and known documentation
errors.

How to Use the Documentation Set
If you need to install MATLAB, you should read the appropriate booklet. Once
you install MATLAB, you can decide which document you prefer to use to learn
the MATLAB commands.

If you are a new MATLAB user, you should start by reading Getting Started
with MATLAB. Using MATLAB provides an extensive description of the
MATLAB language.
iii

Preface

Using MATLAB Graphics describes how to use MATLAB for visualizing data
with both high-level functions and Handle Graphics. Information about con-
structing user interfaces is provided in Building GUIs with MATLAB.
iv

Typographical and Alphabetic Conventions

Typographical and Alphabetic Conventions
This manual uses certain typographical conventions.

Font Usage

Monospace Commands, function names, and screen displays;
for example, conv.

Monospace Italics Names of arguments that are meant to be
replaced and not typed literally; for instance:
cd directory.

Italics Book titles, mathematical notation, and the
introduction of new terms.

Boldface Initial Cap Names of keys, such as the Return key.
v

Preface

vi

Contents
Preface

What Is MATLAB? . ii

MATLAB Documentation . iii
How to Use the Documentation Set . iii

Typographical and Alphabetic Conventions v

1
Introduction

Overview . 1-2
High-Level Graphics . 1-3
Handle Graphics . 1-3
Building Interactive GUIs . 1-3
How It All Fits Together . 1-4
Where to Begin . 1-4

2
Building 2-D Graphs

Building a 2-D Graph . 2-2

Figure Windows . 2-3
Multiple Axis Regions (subplot) . 2-3
Default Color Scheme . 2-5
i

ii Contents
Elementary Plotting Functions . 2-7
Creating a Plot . 2-7
Adding Plots to an Existing Graph (hold) 2-10
Matrix Data Plots . 2-10
Imaginary and Complex Data . 2-12

Basic Plot Control . 2-14
Colors, Line Styles, and Markers . 2-14
Axis Limits . 2-15
Axis Tick Marks . 2-16
Axes Aspect Ratio . 2-17

Graph Annotation . 2-19
Labeling the Individual Axes . 2-19

3
Building 3-D Graphs

Building a 3-D Graph . 3-2

Elementary 3-D Plotting Functions . 3-3
Line Plots in 3-D . 3-3

Representing a Matrix as a Surface . 3-5
Mesh and Surface Plots . 3-5
Visualizing Functions of Two Variables 3-6
Parametric Surfaces . 3-9
Hidden Line Removal . 3-11

Coloring Mesh and Surface Plots . 3-12
Colormaps and Indexed Colors . 3-12
Truecolor . 3-17
Texture Mapping . 3-19

Lighting . 3-21
Light Objects . 3-21
Properties that Affect Lighting . 3-22

Controlling the Effects of Lighting . 3-24
Face and Edge Lighting Methods . 3-24
Reflectance Characteristics of Graphics Objects 3-25

Lighting Example . 3-30

Viewpoint Control . 3-32
Setting the Viewpoint . 3-32

Camera Properties . 3-35
Default Behavior . 3-36
Moving In and Out on the Scene . 3-37
Revolving Around the Scene . 3-39
Translating the Viewpoint . 3-41

View Projection Types . 3-43
Projection Types and Camera Location 3-44

Aspect Ratio . 3-47
Stretch-to-fill . 3-47
axis Command Options . 3-47

Properties That Affect Aspect Ratio 3-51
Default Behavior . 3-52
Overriding Stretch-to-Fill . 3-54
Specifying the Aspect Ratio . 3-55

4
Specialized Graphs

Bar and Area Graphs . 4-2
Bar Graph . 4-2
Overlaying Plots on Bar Graphs . 4-8
Area Graphs . 4-10

Pie Charts . 4-13
Pie Charts Missing a Piece . 4-15
iii

iv Contents
Histograms . 4-16
Histograms in Cartesian Coordinate Systems 4-16
Histograms in Polar Coordinate Systems 4-17

Discrete Data Graphs . 4-20
Two– and Three–dimensional Stem Plots 4-20
Stairstep Plots . 4-26

Direction and Velocity Vector Graphs 4-28
Compass Plots . 4-28
Feather Plots . 4-29
Quiver Plots . 4-31

Contour Plots . 4-34
Creating Simple Contour Plots . 4-34
Labeling Contours . 4-36
Filled Contours . 4-37
Drawing a Single Contour Line at a Desired Level 4-38
The Contouring Algorithm . 4-38
Changing the Offset of a Contour . 4-40
Displaying Contours in Polar Coordinates 4-40

Interactive Plotting . 4-43

Animation . 4-45
Movies . 4-45
Erase Modes . 4-47

5
Images

Overview . 5-2

Image Types . 5-3
Indexed Images . 5-3
Intensity Images . 5-3
Truecolor Images . 5-4

Summary of Image Types and Display Methods 5-5

Working with 8-Bit Images . 5-6
8-Bit Indexed Images . 5-6
8-Bit Intensity Images . 5-7
8-Bit Truecolor Images . 5-7
Summary of Image Types and Numeric Class 5-8
Other 8-Bit Array Support . 5-9

Controlling Aspect Ratio and Display Size 5-10
Printing Images . 5-13

The Image Object and its Properties 5-14
CData . 5-14
CDataMapping . 5-14
XData and YData . 5-15
EraseMode . 5-17

Reading and Writing Image Files . 5-19

6
3-D Modeling

Introduction to Patches . 6-2
Defining Patches . 6-2
Behavior of the patch Function . 6-4

Patches with Multiple Faces . 6-6
Example – Multifaceted Patch . 6-6

Patch Coloring . 6-11
Face and Edge Coloring . 6-12
Interpreting Color Data . 6-14
Interpolating in Indexed vs. Truecolor 6-18
v

vi Contents
7
Printing MATLAB Graphics

Introduction . 7-2

Printing from the Menu . 7-3
PC . 7-3
Macintosh . 7-4
UNIX . 7-4
Adjusting the Size and Location of the Graphic 7-5

Printing from the Command Line . 7-6
The print Command . 7-6
Options . 7-11

Selecting a Device Driver . 7-17
PostScript . 7-17
HPGL Compatible Plotters (–dhpgl) . 7-18
Adobe Illustrator 88 (–dill) . 7-20
Saving and Reloading Figures (–dmfile) 7-20
PC-Specific Options . 7-21
Macintosh-Specific Options . 7-24

Printing Tips and Troubleshooting . 7-25
Controlling Output Size and Aspect Ratio 7-25
Specifying Fonts and Character Sets . 7-27
Specifying Line Styles . 7-29
Selecting the Rendering Method . 7-32
Changing Background Colors . 7-35
Setting Printing Preferences (Macintosh) 7-36
Troubleshooting MS-Windows Printing 7-36

Using MATLAB Graphics in Other Applications 7-37
Creating Graphics Files . 7-37
Importing MATLAB Graphics into Other Applications 7-40

8
Handle Graphics

Handle Graphics Organization . 8-2
Graphics Objects . 8-2
Object Properties . 8-7

Graphics Object Creation Functions 8-10
Example – Creating Graphics Objects 8-11
Parenting . 8-12
High-Level Versus Low-Level . 8-13
Simplified Calling Syntax . 8-13

Using set and get . 8-15
Setting Property Values . 8-15
Getting Property Values . 8-17
Factory-Defined Property Values . 8-19

Default Property Values . 8-20
Specifying Default Values . 8-22
Examples – Setting Defaults . 8-23

Accessing Object Handles . 8-27
The Current Figure, Axes, and Object 8-27
Searching for Objects by Property Values — findobj 8-29
Copying and Deleting Objects . 8-30

Controlling Graphics Output . 8-33
Specifying the Target for Graphics Output 8-33
Preparing Figures and Axes for Graphics 8-33
Testing for Hold State . 8-38
Protecting Figures and Axes . 8-39

Efficient Programming . 8-44
Save Information First . 8-44
vii

viii Contents
Properties Changed by Built-In Functions 8-45

9
Figures

Introduction . 9-2

Figure Properties . 9-3

Positioning Figures . 9-5
The Position Vector . 9-5
Example — Specifying Figure Position 9-7

Controlling Color . 9-8
Indexed Color Displays . 9-8
Colormap Colors and Fixed Colors . 9-9
Using a Large Number of Colors . 9-10
Nonactive Figures and Shared Colors 9-12
Dithering Truecolor on Indexed Color Systems 9-13

Rendering Options . 9-15
Backing Store . 9-15
Z-Buffer . 9-15

Figure Pointers . 9-17
Custom Pointers . 9-18

Printing Figures . 9-21
Positioning the Figure on the Printed Page 9-21
Examples — Readjusting PaperPosition 9-23
Reversing Figure Colors . 9-24

Interactive Graphics . 9-27

10
Axes

Axes Properties . 10-2

Labeling and Appearance Properties 10-4
TeX Characters . 10-6

Adding Text to Axes . 10-8
Text Alignment . 10-9
Using Variables in Text Strings . 10-10
Example – Text Annotation . 10-10
Example – Multiline Text . 10-12

Positioning Axes . 10-13
The Position Vector . 10-13
Units . 10-14
Multiple Axes . 10-15

Individual Axis Control . 10-18
Changing Axis Limits . 10-18
Setting Tick Mark Locations . 10-20
Changing Axis Direction . 10-21

Automatic-Mode Properties . 10-23

Multiaxis Axes . 10-26
Example – Double Axis Graphs . 10-26

Colors Controlled By Axes . 10-29
Axes Colors . 10-29
Axes Color Limits – The CLim Property 10-31
Color of Lines Used for Plotting . 10-37
ix

x Contents

Overview . 1-1
High-Level Graphics 1-3
Handle Graphics 1-3
Building Interactive GUIs 1-3
How It All Fits Together 1-4
Where to Begin . 1-4
1

Introduction

1 Introduction
Overview
MATLAB is a high performance language for technical computing. It inte-
grates computation, visualization, and programming in an easy to use environ-
ment where problems and solutions are expressed in familiar mathematical
notation.

This manual describes MATLAB graphics features for visualizing data and
preparing presentation graphics. The organization of the manual is based on
the organization of the commands and functions: end-user oriented high-level
graphics functions and the programmable interface provided by Handle
Graphics .

Language Graphics Application
Programming

Numeric
Computation

Programming

Presentation
Graphics

Interactive
GUIs

Interoperability

Extensibility

Interface

Building
GUIs
with

Online
MATLAB
Function

MATLAB Graphics Documentation

MATLAB Feature Set

MATLABReference

Data
Visualization

Using
MATLAB
Graphics
1-2

Overview
High-Level Graphics
MATLAB provides a set of high-level graphing routines. These routines imple-
ment commonly used techniques for displaying data, such as line plots in rect-
angular and polar coordinates, bar and histogram graphs, contour plots, mesh
and surface plots, and animation. In addition, you can control color and
shading, axis labeling, and the general appearance of graphs. High-level com-
mands automatically control plot characteristics such as axis scaling and line
color to produce acceptable graphs without requiring you to manipulate
low-level properties.

Handle Graphics
You can exert more precise control over the way MATLAB displays data or you
can develop your own graphics commands using Handle Graphics, MATLAB’s
object-oriented graphics system. Handle Graphics defines a set of graphics
objects, such as Lines, Surfaces, and Text, and provides mechanisms to manip-
ulate the characteristics of these objects to achieve the desired results. You can
use Handle Graphics in a number of ways:

• On the command line, you can “fine tune” the appearance of your plots by
altering the properties of the graphics objects used to display your data.

• In M-files, you can define your own graphics commands that provide precise
control over the graphics display.

• Within existing M-files, which include many high-level graphics commands,
you can customize the behavior to meet your specific requirements.

Building Interactive GUIs
Using Handle Graphics, you can create menus, push buttons, text boxes, and
other user interface devices that allow your MATLAB program to obtain user
input and process this input within MATLAB.

With Handle Graphics, you can add a GUI to any M-file or define your own
environment that starts whenever you begin a MATLAB session. You can build
sophisticated user interfaces for any MATLAB-based application. The
Building GUIs with MATLAB manual discusses this material.
1-3

1 Introduction
How It All Fits Together
Handle Graphics provides the basis for the high-level graphics functions sup-
plied with MATLAB. User-written M-files that perform graphics operations
can use both high-level functions and Handle Graphics directly.

Where to Begin
If you are new to MATLAB, you will probably find high-level graphics functions
suitable for most of your plotting needs. If you want to customize the way
high-level routines work or if you want to create your own routines, you should
delve into Handle Graphics.

Toolboxes and User-Written Applications

High-Level
Graphics
Functions

MATLAB

Handle Graphics

User-Written M-Files
1-4

Building a 2-D Graph 2-2

Figure Windows 2-3
Multiple Axis Regions (subplot) 2-3
Default Color Scheme 2-5

Elementary Plotting Functions 2-7
Creating a Plot . 2-7
Adding Plots to an Existing Graph (hold) 2-10
Matrix Data Plots 2-10
Imaginary and Complex Data 2-12

Basic Plot Control 2-14
Colors, Line Styles, and Markers 2-14
Axis Limits . 2-15
Axis Tick Marks 2-16
Axes Aspect Ratio 2-17

Graph Annotation 2-19
Labeling the Individual Axes 2-19
2

Building 2-D Graphs

2 Building 2-D Graphs
Building a 2-D Graph
The process of constructing a 2-D graph to meet your presentation graphics
needs can take as few as one step or as many as seven steps. The table below
shows seven typical steps and some example code for each.

If you are only doing analysis, you may want to view various graphs just to
explore your data. In this case, steps 1 and 3 may be all you need. When cre-
ating presentation graphics, you may want to fine-tune your graph by posi-
tioning it on the page, setting line styles and colors, adding annotations, and
making other such improvements.

This chapter describes each step in sequence and provides examples of the
options available. Note that printing is described in the Printing chapter.

Step Typical Code

1 Prepare your data x = 0:.2:12;
y1 = bessel(1,x);
y2 = bessel(2,x);
y3 = bessel(3,x);

2 Select window and position plot
region within window

figure(1)
subplot(2,2,1)

3 Call elementary plotting func-
tion

h = plot(x,y1,x,y2,x,y3);

4 Select line and marker charac-
teristics

set(h,'LineWidth',2,{'LineStyle'},{'--';':';'-.'})
set(h,{'Color'},{'r';'g';'b'})

5 Set axis limits, tick marks, and
grid lines

axis([0 12 −0.5 1])
grid on

6 Annotate the graph with axis
labels, legend, and text

xlabel('Time')
ylabel('Amplitude')
legend(h,'First','Second','Third')
title('Bessel Functions')
[y,ix] = min(y1);
text(x(ix),y,'First Min \rightarrow',...
 'HorizontalAlignment','right')

7 Print graph print −dps2
2-2

Figure Windows
Figure Windows
MATLAB directs graphics output to a window separate from the command
window called a Figure window. The characteristics of this window are con-
trolled by your computer’s windowing system and MATLAB Figure properties.

Graphics functions automatically create new Figure windows if none currently
exist. If a Figure window already exists, MATLAB uses that window. If mul-
tiple Figure windows exist, one is designated as the current Figure and is used
by MATLAB (this is generally the last Figure window used).

The figure function creates Figure windows. For example,

figure

creates a new window and makes it the current target for graphics output. You
can make an existing Figure current by clicking on it with the mouse or by
passing its number, which is indicated in the window title bar, as an argument
to figure:

figure(h)

See the figure function description in the online MATLAB Function Reference
for more information on Figure properties. See the Figure chapter for more
information on target window selection.

Multiple Axis Regions (subplot)
You can display multiple plots in the same Figure window and print them on
the same piece of paper with the subplot function.

subplot(m,n,i) breaks the Figure window into an m-by-n matrix of small sub-
plots and selects the ith subplot for the current plot. The plots are numbered
along the top row of the Figure window, then the second row, and so forth.

For example, the following statements plot data in four different subregions of
the Figure window.
2-3

2 Building 2-D Graphs
t = 0:pi/20:2*pi;
[x,y] = meshgrid(t);

subplot(2,2,1)
plot(sin(t),cos(t))
axis equal

subplot(2,2,2)
z = sin(x)+cos(y);
plot(t,z)
axis([0 2*pi −2 2])

subplot(2,2,3)
z = sin(x).*cos(y);
plot(t,z)
axis([0 2*pi −1 1])

subplot(2,2,4)
z = (sin(x).^2)−(cos(y).^2);
plot(t,z)
axis([0 2*pi −1 1])

−1 0 1
−1

−0.5

0

0.5

1

0 2 4 6
−2

−1

0

1

2

0 2 4 6
−1

−0.5

0

0.5

1

0 2 4 6
−1

−0.5

0

0.5

1

2-4

Figure Windows
Each subregion contains its own axes with characteristics you can control inde-
pendently of the other subregions. This example uses the axis command to set
limits and change the shape of the subplots.

See the axes, axis, and subplot functions in the online MATLAB Function
Reference for more information.

Specifying the Target Axes
The current axes is the last one defined by subplot. If you want to access a pre-
viously defined subplot, for example to add a title, you must first make that
axes current.

You can make an axes current in three ways:

• Click on the subplot with the mouse

• Call subplot the m, n, i specifiers

• Call subplot with the handle (identifier) of the axes

For example,

subplot(2,2,2)
title('Top Right Plot')

adds a title to the plot in the upper-right side of the Figure.

You can obtain the handles of all the subplot axes with the statement:

h = get(gcf,'Children');

MATLAB returns the handles of all the axes, with the most recently created
one first. That is, h(1) is subplot 224, h(2) is subplot 223, h(3) is subplot 222,
and h(4) is subplot 221. For example, to replace subplot 222 with a new plot,
first make it the current axes with:

subplot(h(3))

Default Color Scheme
The default Figure color scheme produces good contrast and visibility for the
various graphics functions. This scheme defines colors for the window back-
ground, the axis background, the axis lines and labels, the colors of the lines
used for plotting and surface edges, and other properties that affect appear-
ance.
2-5

2 Building 2-D Graphs
The colordef function enables you to select from predefined color schemes and
to modify colors individually. colordef predefines three color schemes:

• colordef white – sets the axis background color to white, the window back-
ground color to gray, the colormap to jet, surface edge colors to black, and
defines appropriate values for the plotting color order and other properties.

• colordef black – sets the axis background color to black, the window back-
ground color to dark gray, the colormap to jet, surface edge colors to black,
and defines appropriate values for the plotting color order and other proper-
ties.

• colordef none – set the colors to match that of MATLAB 4. This is basically
a black background with white axis lines and no grid. MATLAB programs
that are based on the MATLAB 4 color scheme may need to call colordef
with the none option to produce the expected results.

You can examine the colordef.m M-file to determine what properties it sets
(enter type colordef at the MATLAB prompt). See the Handle Graphics
chapter for information on setting properties individually.
2-6

Elementary Plotting Functions
Elementary Plotting Functions
MATLAB provides a variety of functions for displaying vector data as graphs,
as well as functions for annotating and printing these graphs. This section
describes these functions and provides examples of some typical applications.

The following table summarizes the functions that produce basic line plots of
data. These functions differ only in the way they scale the plot’s axes. Each
accepts input in the form of vectors or matrices and automatically scales the
axes to accommodate the data.

Creating a Plot
The plot function has different forms depending on the input arguments. For
example, if y is a vector, plot(y) produces a linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

For example, these statements create a vector of values in the range [0, 2π] in
increments of π/100 and then use this vector to evaluate the sine function over
that range. MATLAB plots the vector on the x-axis and the value of the sine
function on the y-axis.

t = 0:pi/100:2∗ pi;
y = sin(t);
plot(t,y)

MATLAB automatically selects appropriate axis ranges and tick mark loca-
tions:

Function Used to Create

plot Graph with linear scales for both axes

loglog Graph with logarithmic scales for both axes

semilogx Graph with a logarithmic scale for the x-axis and a
linear scale for the y-axis

semilogy Graph with a logarithmic scale for the y-axis and a
linear scale for the x-axis

plotyy Graph with y-tick labels on the left and right side
2-7

2 Building 2-D Graphs
You can plot multiple graphs in one call to plot using x-y pairs. MATLAB auto-
matically cycles through a predefined list of colors to allow discrimination
between each set of data. Plotting three curves as a function of t produces:

y2 = sin(t−.25);
y3 = sin(t−.5);
plot(t,y,t,y2,t,y3)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2-8

Elementary Plotting Functions
You can assign different line styles to each data set by passing line style iden-
tifier strings to plot. Line styles are useful if you are printing the graph on a
black and white printer. For example,

plot(t,y,'−',t,y2,'--',t,y3,':')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2-9

2 Building 2-D Graphs
Adding Plots to an Existing Graph (hold)
You can add plots to an existing graph using the hold command. When you set
hold to on, MATLAB does not remove the existing graph; it adds the new data
to the current graph, rescaling if the new data falls outside the range of the pre-
vious axis limits.

For example, these statements first create a semilogarithmic plot, then add a
linear plot:

semilogx(1:100,'+')
hold on
plot(1:3:300,1:100,'--')
hold off

While MATLAB resets the x-axis limits to accommodate the new data, it does
not change the scaling from logarithmic to linear.

Matrix Data Plots
When you call the plot function with a single matrix argument,

plot(Y)

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100
2-10

Elementary Plotting Functions
MATLAB draws one line for each column of the matrix. The x-axis is labeled
with the row index vector, 1:m, where m is the number of rows in Y. For example,

Z = peaks;

returns a 49-by-49 matrix obtained by evaluating a function of two variables.
Plotting this matrix,

plot(Z)

 produces a graph with 49 lines:

In general, if plot is used with two arguments and if either X or Y has more
than one row or column, then

• If Y is a matrix, and x is a vector, plot(x,Y) successively plots the rows or
columns of Y versus vector x, using different colors or line types for each. The
row or column orientation is dependent on whether the number of elements
in x matches the number or rows in Y or the number of columns. If Y is
square, its columns are used.

• If X is a matrix and y is a vector, plot(X,y) plots each row or column of X
versus vector y. For example, plotting the peaks matrix versus the vector
1:length(peaks) rotates the previous plot.

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

8

10
2-11

2 Building 2-D Graphs
y = 1:length(peaks);
plot(peaks,y)

• If X and Y are both matrices of the same size, plot(X,Y) plots the columns of
X versus the columns of Y.

You can also use the plot function with multiple pairs of matrix arguments:

plot(X1,Y1,X2,Y2,...)

This statement graphs each X-Y pair, generating multiple lines. The different
pairs can be of different dimensions.

Imaginary and Complex Data
When the arguments to plot are complex (i.e., the imaginary part is nonzero),
MATLAB ignores the imaginary part except when plot is given a single com-
plex argument. For this special case, the command is a shortcut for a plot of the
real part versus the imaginary part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

−8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50
2-12

Elementary Plotting Functions
For example, this statement plots the distribution of the eigenvalues of a
random matrix using circular markers to indicate the data points:

plot(eig(randn(20,20)),'o','MarkerSize',6)

To plot more than one complex matrix, there is no shortcut; the real and imag-
inary parts must be taken explicitly.

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

2-13

2 Building 2-D Graphs
Basic Plot Control
MATLAB enables you to customize graphs by setting line characteristics, axis
limits, and axis tick marks. This section provides information on the available
options. The next section discusses how to annotate your graph.

Colors, Line Styles, and Markers
The plot function accepts character-string arguments that specify various line
styles, marker symbols, and colors for each vector plotted. In the general form,

plot(x,y,'color_linestyle_marker')

color_linestyle_marker is a character string (delineated by single quotation
marks) constructed from a color, a line style, and a marker type. For example:

plot(x,y,'y:square')

plots a yellow dotted line and places square markers at each data point. If you
specify a marker type, but not a line style, MATLAB draws only the marker.

You can also specify the size of the marker and, for markers that are closed
shapes, you can specify separately the color of the edges and the face. See the
line and LineSpec entries in the online MATLAB Function Reference for more
information.

Available Line Styles and Markers
The following tables show the colors, line styles, and marker types available.
You can specify the color as either the single letter abbreviation or the actual
color name. For example, 'y' and 'yellow' both specify yellow.

Symbol Color (RGB) Symbol Line Style

 c cyan (0 1 1) − solid line (default)

 m magenta (1 0 1) - - dashed line

 y yellow (1 1 0) : dotted line

 r red (1 0 0) −. dash-dot line

 g green (0 1 0) none no line

 b blue (0 0 1)
2-14

Basic Plot Control
Axis Limits
MATLAB selects axis limits based on the range of the plotted data. However,
you can specify the limits using the axis command. Call axis with the new
limits defined as a four-element vector:

axis([xmin,xmax,ymin,ymax])

Note that the minimum values must be less than the maximum values.

w white (1 1 1) − −

k black (0 0 0) − −

Marker Specifier Description

+ plus sign

o circle

* asterisk

. point

x cross

square square

diamond diamond

^ upward pointing triangle

v downward pointing triangle

> right pointing triangle

< left pointing triangle

pentagram five-pointed star

hexagram six-pointed star

none no marker (default)

Symbol Color (RGB) Symbol Line Style
2-15

2 Building 2-D Graphs
Semiautomatic Limits
If you want MATLAB to autoscale one of the limits, but you want to specify the
other, use the MATLAB variable Inf or −Inf for the autoscaled limit. For
example, the graph on the left uses default scaling. The graph on the right sets
the limits with the command:

axis([−Inf 5 2 2.5])

The −Inf causes MATLAB to autoscale the lower x-axis limit.

Axis Tick Marks
MATLAB selects the tick mark locations based on the data range to produce
equally spaced ticks (for linear graphs). You can specify different tick marks by
setting the Axes XTick and YTick properties. Define tick marks as a vector of
increasing values. The values do not need to be equally spaced.

For example, setting the y-axis tick marks for the graph from the preceding
example,

set(gca,'ytick',[2 2.1 2.2 2.3 2.4 2.5])

produces a graph with only the specified ticks on the y-axis.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
2-16

Basic Plot Control
Note that if you specify tick mark values that are outside the axis limits,
MATLAB does not display them (that is, specifying tick marks cannot cause
axis limits to change).

Axes Aspect Ratio
By default, MATLAB displays graphs in a rectangular axes that has the same
aspect ratio as the Figure window. This makes optimum use of space available
for plotting. MATLAB provides control over the aspect ratio with the axis com-
mand.

For example,

t = 0:pi/20:2*pi;
plot(sin(t),2*cos(t))

produces a graph with the default aspect ratio. The command

axis square

makes the x- and y-axes equal in length.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.1

2.2

2.3

2.4

2.5
2-17

2 Building 2-D Graphs
The square axes requires one data unit in x to equal two data units in y. If you
want the x- and y-data units to be equal, use the command:

axis equal

This produces an axes that is rectangular in shape, but has equal scaling along
each axis.

If you want the axes shape to conform to the plotted data, use the tight option
in conjunction with equal:

axis equal tight

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

axis normal axis square

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

axis equal axis equal
axis tight
2-18

Graph Annotation
Graph Annotation
MATLAB provides commands to label each axis and place text at arbitrary
locations on the graph. These commands include:

• title – adds a title to the graph

• xlabel – adds a label to the x-axis

• ylabel – adds a label to the y-axis

• zlabel – adds a label to the z-axis

• legend – adds a legend to an existing graph

• text – displays a text string at a specified location

• gtext – places text on the graph using the mouse

Labeling the Individual Axes
You can add x-, y-, and z-axis labels using the xlabel, ylabel, and zlabel com-
mands. For example, these statements label the axes and add a title:

xlabel('t = 0 to 2\pi','FontSize',16)
ylabel('sin(t)','FontSize',16)
title('\it{Value of the Sine from Zero to Two Pi}')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t = 0 to 2π

si
n(

t)

Value of the Sine from Zero to Two Pi
2-19

2 Building 2-D Graphs
The labeling commands automatically position the text string appropriately.
MATLAB interprets the characters immediately following the backslash “\” as
TeX commands. These commands draw symbols such as Greek letters and
arrows. See the text function in the online MATLAB Function Reference for a
list of TeX character sequences.

Text Labels in Data Coordinates
You can place a text string at any location on the plot using the text function.
This function positions the text string in the data space of the plot. For
example, to label three data points on the previous graph, create three text
strings:

text(3*pi/4,sin(3*pi/4),'\leftarrowsin(t) = .707')

text(pi,sin(pi),'\leftarrowsin(t) = 0')

text(5*pi/4,sin(5*pi/4),'sin(t) = −.707\rightarrow',...
 'HorizontalAlignment','right')

The HorizontalAlignment of the text string 'sin(t) = −.707 \rightarrow'
is set to right to place it on the left side of the point [5*pi/4,sin(5*pi/4)] on
the graph:

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t = 0 to 2π

si
n(

t)

Value of the Sine from Zero to Two Pi

←sin(t) = .707←sin(t) = .707

←sin(t) = 0

sin(t) = −.707→
2-20

Graph Annotation
Placing Text Interactively
You can place character strings on graphs interactively using the gtext func-
tion. This function accepts a string as an argument and waits while you select
a location on the graph with the mouse. MATLAB then displays the text string
at the indicated location.

gtext is a convenient way to annotate your graph if you do not want precise
positioning of the text. It works only on 2-D graphs.
2-21

2 Building 2-D Graphs
2-22

Building a 3-D Graph 3-2

Elementary 3-D Plotting Functions 3-3

Representing a Matrix as a Surface 3-5

Coloring Mesh and Surface Plots 3-12

Lighting . 3-21

Controlling the Effects of Lighting 3-24

Lighting Example 3-30

Viewpoint Control 3-32

Camera Properties 3-35

View Projection Types 3-43

Aspect Ratio. 3-47

Properties That Affect Aspect Ratio 3-51
3

Building 3-D Graphs

3 Building 3-D Graphs
Building a 3-D Graph
The table below illustrates typical steps involved in producing 3-D scenes con-
taining either data graphs or models of 3-D objects. Example applications
include pseudocolor surfaces illustrating the values of functions over specific
regions and objects drawn with polygons and colored with light sources to pro-
duce realism. Usually, you follow either step 4a or step 4b. Steps in gray indi-
cate material covered in the Building 2-D Graphs chapter.

Step Typical Code

1 Prepare your data Z = peaks(20);

2 Select window and position plot
region within window

figure(1)
subplot(2,1,2)

3 Call 3-D graphing function h = surf(Z);

4 a Set colormap and shading algo-
rithm

colormap hot
shading interp
set(h,'EdgeColor','k')

4 b Add lighting light('Position',[-2,2,20])
lighting phong
material([0.4,0.6,0.5,30])
set(h,'FaceColor',[0.7 0.7 0],...
 'BackFaceLighting','lit')

5 Set viewpoint view([30,25])
set(gca,'CameraViewAngleMode','Manual')

6 Set axis limits and tick marks axis([5 15 5 15 −8 8])
set(gca'ZTickLabel','Negative||Positive')

7 Set aspect ratio set(gca,'PlotBoxAspectRatio',[2.5 2.5 1])

8 Annotate the graph with axis
labels, legend, and text

xlabel('X Axis')
ylabel('Y Axis')
zlabel('Function Value')
title('Peaks')

9 Print graph set(gcf,'PaperPositionMode','auto')
print −dps2
3-2

Elementary 3-D Plotting Functions
Elementary 3-D Plotting Functions
MATLAB provides a variety of functions for displaying 3-D data (i.e., data con-
taining x-, y-, and z-coordinates). You can display the data as line plots (plot3)
or rectangular grids (mesh, surf). See the 3-D Modeling chapter information on
how to display polygons (patch).

This chapter discusses 3-D line and surface plots as well as coloring and
lighting.

Line Plots in 3-D
The 3-D analog of the plot function is plot3. If x, y, and z are three vectors of
the same length,

plot3(x,y,z)

generates a line in 3-D through the points whose coordinates are the elements
of x, y, and z and then produces a 2-D projection of that line on the screen. For
example these statements produce a helix:

t = 0:pi/50:10∗ pi;
plot3(sin(t),cos(t),t)
axis square; grid on

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

25

30
3-3

3 Building 3-D Graphs
If the arguments to plot3 are matrices of the same size, MATLAB plots lines
obtained from the columns of X, Y, and Z. For example,

[X,Y] = meshgrid([−2:.1:2]);
Z = X.*exp(−X.^2−Y.^2);
plot3(X,Y,Z)

Notice how MATLAB cycles through line colors:

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5
3-4

Representing a Matrix as a Surface
Representing a Matrix as a Surface
MATLAB defines a surface by the z-coordinates of points above a rectangular
grid in the x-y plane. The plot is formed by joining adjacent points with straight
lines. Surface plots are useful for visualizing matrices that are too large to dis-
play in numerical form and for graphing functions of two variables.

MATLAB can create different forms of surface plots. Mesh plots are wire-frame
surfaces that color only the lines connecting the defining points. Surface plots
display both the connecting lines and the faces of the surface in color. This table
lists the various forms:

Mesh and Surface Plots
The mesh and surf functions create 3-D surface plots of matrix data. If Z is a
matrix for which the elements Z(i,j) define the height of a surface over an
underlying (i,j) grid, then

mesh(Z)

generates a colored, wire-frame view of the surface and displays it in a 3-D
view. Similarly,

surf(Z)

generates a colored, faceted view of the surface and displays it in a 3-D view.
Ordinarily, the facets are quadrilaterals, each of which is a constant color, out-

Function Used to Create

mesh, surf Surface plot

meshc, surfc Surface plot with contour plot beneath it

meshz Surface plot with curtain plot (reference plane)

pcolor Flat surface plot (value is proportional only to
color)

surfl Surface plot illuminated from specified direction

surface Low-level function (on which high-level functions
are based) for creating Surface graphics objects
3-5

3 Building 3-D Graphs
lined with black mesh lines, but the shading command allows you to eliminate
the mesh lines (shading flat) or to select interpolated shading across the facet
(shading interp).

Surface object properties provide additional control over the visual appearance
of the surface. You can specify edge line styles, vertex markers, face coloring,
lighting characteristics, and so on.

See the description of the surface function in the online MATLAB Function
Reference for a complete list of properties. Also, see the sections on coloring and
lighting later in this chapter for information on how MATLAB applies color to
surfaces.

Visualizing Functions of Two Variables
The first step in displaying a function of two variables, z = f(x,y), is to generate
X and Y matrices consisting of repeated rows and columns, respectively, over
the domain of the function. Then use these matrices to evaluate and graph the
function.

The meshgrid function transforms the domain specified by two vectors, x and
y, into matrices, X and Y. You then use these matrices to evaluate functions of
two variables. The rows of X are copies of the vector x and the columns of Y are
copies of the vector y.

To illustrate the use of meshgrid, consider the sin(r)/r or sinc function. To eval-
uate this function between –8 and 8 in both x and y, you need pass only one
vector argument to meshgrid, which is then used in both directions:

[X,Y] = meshgrid(−8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;

The matrix R contains the distance from the center of the matrix, which is the
origin. Adding eps prevents the divide by zero (in the next step) that produces
NaNs in the data.
3-6

Representing a Matrix as a Surface
Forming the sinc function and plotting Z with mesh results in the 3D surface:

Z = sin(R)./R;
mesh(Z)

See the surf function in the online MATLAB Function Reference for more
information on surface plots.

Surface Plots of Nonuniformly Sampled Data
The previous example uses meshgrid to create a grid of uniformly sampled data
points at which to evaluate and graph the sinc function. MATLAB then con-
structs the surface plot by connecting neighboring matrix elements to form a
mesh of quadrilaterals.

To produce a surface plot from nonuniformly sampled data, first use griddata
to interpolate the values at uniformly spaced points, and then use mesh and
surf in the usual way.

0
10

20
30

40

0

10

20

30

40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3-7

3 Building 3-D Graphs
Example. This example evaluates the sinc function at random points within a
specific range and then generates uniformly sampled data for display as a sur-
face plot. The process involves these steps:

• Use linspace to generate evenly spaced values over the range of your
unevenly sampled data.

• Use meshgrid to generate the plotting grid with the output of linspace.

• Use griddata to interpolate the irregularly sampled data to the regularly
spaced grid returned by meshgrid.

• Use a plotting function to display the data.

First, generate unevenly sampled data within the range [−8, 8] and use it to
evaluate the function.

x = rand(100,1)*16 − 8;
y = rand(100,1)*16 − 8;
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r)./r;

The linspace function provides a convenient way to create uniformly spaced
data with the desired number of elements. The following statements produce
vectors over the range of the random data with the same resolution as that gen-
erated by the −8:.5:8 statement in the previous sinc example:

xlin = linspace(min(x),max(x),33);
ylin = linspace(min(y),max(y),33);

Now use these points to generate a uniformly spaced grid:

[X,Y] = meshgrid(xlin,ylin);

The key to this process is to use griddata to interpolate the values of the func-
tion at the uniformly spaced points, based on the values of the function at the
original (random in this example) data points. This statement uses a tri-
angle-based cubic interpolation to generate the new data:

Z = griddata(x,y,z,X,Y,'cubic');
3-8

Representing a Matrix as a Surface
Plotting the interpolated and the nonuniform data produces:

mesh(X,Y,Z) %interpolated
hold on
plot3(x,y,z,'.','MarkerSize',15) %nonuniform

Parametric Surfaces
The functions that draw surfaces can take two additional vector or matrix
arguments to describe surfaces with specific x and y data (see the previous
mesh example). If Z is an m-by-n matrix, x is an n-vector, and y is an m-vector,
then

mesh(x,y,Z,C)

describes a mesh surface with vertices having color C(i,j) which are located
at the points:

(x(j), y(i), Z(i,j))

where x corresponds to the columns of Z and y to its rows.

More generally, if X, Y, Z, and C are matrices of the same dimensions, then

mesh(X,Y,Z,C)

−10
−5

0
5

10

−10

−5

0

5

10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3-9

3 Building 3-D Graphs
describes a mesh surface with vertices having color C(i,j) which are located
at the points:

(X(i,j), Y(i,j), Z(i,j))

This example uses spherical coordinates to draw a sphere and color it with the
pattern of pluses and minuses in a Hadamard matrix, an orthogonal matrix
used in signal processing coding theory. The vectors theta and phi are in the
range –π ≤ theta ≤ π and –π/2 ≤ phi ≤ π/2. Since theta is a row vector and phi
is a column vector, the multiplications that produce the matrices X, Y, and Z are
vector outer products.

k = 5;
n = 2^k–1;
theta = pi*(–n:2:n)/n;
phi = (pi/2)*(–n:2:n)'/n;
X = cos(phi)*cos(theta);
Y = cos(phi)*sin(theta);
Z = sin(phi)*ones(size(theta));
colormap([0 0 0;1 1 1])
C = hadamard(2^k);
surf(X,Y,Z,C)
axis square

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

3-10

Representing a Matrix as a Surface
Hidden Line Removal
By default, MATLAB removes lines that are hidden from view in mesh plots,
even though the faces of the plot are not colored. You can disable hidden line
removal and allow the faces of a mesh plot to be transparent with the com-
mand:

hidden off

This is the surface plot with hidden set to off:

0
10

20
30

40

0

10

20

30

40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3-11

3 Building 3-D Graphs
Coloring Mesh and Surface Plots
You can enhance the information content of surface plots by controlling the
way MATLAB applies color to these plots. MATLAB can map particular data
values to colors specified explicitly or can map the entire range of data to a pre-
defined range of colors called a colormap.

There are basically two coloring techniques:

• Indexed Color – MATLAB colors the surface plot by assigning each data
point an index into the Figure’s colormap. The way MATLAB applies these
colors depends on the type of shading used (faceted, flat, or interpolated).

• Truecolor – MATLAB colors the surface plot using the explicitly specified
colors (i.e., the RGB triplets). The way MATLAB applies these colors
depends on the type of shading used (faceted, flat, or interpolated). To be
accurately rendered, truecolor requires computers with 24-bit displays; how-
ever, MATLAB simulates truecolor on indexed systems. See the shading
function in the online MATLAB Function Reference for information on the
types of shading.

The type of color data you specify (i.e., single values or RGB triplets) deter-
mines how MATLAB interprets it. When you create a surface plot, you can:

• Provide no explicit color data, in which case MATLAB generates colormap
indices from the z-data.

• Specify an array of color data that is equal in size to the z- data and is used
for indexed colors.

• Specify an m-by-n-by-3 array of color data that defines an RGB triplet for
each element in the m-by-n z-data array and is used for truecolor.

Colormaps and Indexed Colors
Each MATLAB Figure window has a colormap associated with it. A colormap
is simply a three-column matrix whose length is equal to the number of colors
it defines. Each row of the matrix defines a particular color by specifying three
values in the range 0 to 1. These values define the RGB components (i.e., the
intensities of the red, green, and blue video components).

The colormap function, with no arguments, returns the current Figure’s col-
ormap.
3-12

Coloring Mesh and Surface Plots
For example, MATLAB ’s default colormap contains 64 colors and the 57th color
is red:

cm = colormap;
cm(57,:)
ans =
 1 0 0

This table lists some representative RGB color definitions:

You can create colormaps with MATLAB ’s array operations or you can use any
of several functions that generate useful maps, including hsv, hot, cool,
summer, and gray. Each function has an optional parameter that specifies the
number of rows in the resulting map.

For example,

hot(m)

Red Green Blue Color

0 0 0 black

1 1 1 white

1 0 0 red

0 1 0 green

0 0 1 blue

1 1 0 yellow

1 0 1 magenta

0 1 1 cyan

.5 .5 .5 gray

.5 0 0 dark red

1 .62 .40 copper

.49 1 .83 aquamarine
3-13

3 Building 3-D Graphs
creates an m-by-3 matrix whose rows specify the RGB intensities of a map
that varies from black, through shades of red, orange, and yellow, to white.

If you do not specify the colormap length, MATLAB creates a colormap the
same length as the current colormap. The default colormap is jet(64).

If you use long (> 64 colors) colormaps in each of several Figures windows, it
may become necessary for the operating system to swap in different color
lookup tables as the active focus is moved among the windows. See the Figures
chapter for more information on how MATLAB manages color.

Displaying Colormaps
The colorbar function displays the current colormap, either vertically or hor-
izontally, in the Figure window along with your graph. For example, the state-
ments:

[x,y] = meshgrid([−2:.2:2]);
Z = x.*exp(−x.^2−y.^2);
surf(x,y,Z,gradient(Z))
colorbar

produce a surface plot and a vertical strip of color corresponding to the col-
ormap:

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

0

0.5

−0.05

0

0.05

0.1

0.15
3-14

Coloring Mesh and Surface Plots
Direct and Scaled Indexed Colors
MATLAB can use two different methods to map indexed color data to the col-
ormap – direct and scaled.

Direct Mapping. Direct mapping uses the color data directly as indices into the
colormap. For example, a value of 1 points to the first color in the colormap, a
value of 2 points to the second color, and so on. If the color data is not integer,
MATLAB rounds it towards zero. Values greater than the number of colors in
the colormap are set equal to the last color in the colormap (i.e., the number
length(colormap)). Values less than 1 are set to 1.

Scaled Mapping. Scaled mapping uses a two-element vector [cmin cmax] (spec-
ified with the caxis command) to control the mapping of color data to the
Figure colormap. cmin specifies the data value to map to the first color in the
colormap and cmax specifies the data value to map to the last color in the col-
ormap. Data values in between are linearly transformed from the second to the
next to last color, using the expression:

colormap_index = fix(color_data−cmin)/(cmax−cmin)*cm_length)+1

cm_length is the length of the colormap.

By default, MATLAB sets cmin and cmax to span the range of the color data of
all graphics objects within the axes. However, you can set these limits to any
range of values. This enables you to display multiple axes within a single
Figure window and use different portions of the Figure’s colormap for each one.
See the Axes chapter in the section “Calculating Color Limits,” for an example
that uses color limits. Also see the caxis command in the online MATLAB
Function Reference.

By default, MATLAB uses scaled mapping. To use direct mapping, you must
turn off scaling when you create the plot. For example,

surf(Z,C,'CDataMapping','direct')

See the surface function in the online MATLAB Function Reference for more
information on specifying color data.

Specifying Indexed Colors
When creating a surface plot with a single matrix argument, surf(Z) for
example, the argument Z specifies both the height and the color of the surface.
MATLAB transforms Z to obtain indices into the current colormap.
3-15

3 Building 3-D Graphs
With two matrix arguments, the statement

surf(Z,C)

independently specifies the color using the second argument. The next example
illustrates how to use a color array to enhance the information displayed in a
graph.

Example – Mapping Curvature to Color
The Laplacian of a surface plot is related to its curvature; it is positive for func-
tions shaped like i^2 + j^2 and negative for functions shaped like –(i^2 +
j^2). The function del2 computes the discrete Laplacian of any matrix. For
example, use del2 to determine the color for the data returned by peaks:

The peaks command
returns a matrix of data
based on a function of two
variables.

P = peaks(40);
C = del2(P);
surf(P,C)
colormap hot

Creating a color array by applying the Laplacian to the data is useful because
it causes regions with similar curvature to be drawn in the same color. Com-
pare this surface coloring with that produced by the statements:

surf(P)
colormap hot

which use the same colormap, but maps regions with similar height to the
same color:

10

20

30

40

0

10

20

30

40
−10

−5

0

5

10

0

10

20

30

40

0

10

20

30

40
−10

−5

0

5

10

surf(P) surf(P,del2(P))
3-16

Coloring Mesh and Surface Plots
Altering Colormaps
Since colormaps are matrices, you can manipulate them like other arrays. The
brighten function takes advantage of this fact to increase or decrease the
intensity of the colors. Plotting the values of the R, G, and B components of a
colormap using rgbplot illustrates the effects of brighten:

NTSC Color Encoding
The brightness component of television signals uses the NTSC color encoding
scheme:

b = .30*red + .59*green + .11*blue
 = sum(diag([.30 .59 .11])*map')';

Using the nonlinear grayscale map,

colormap([b b b])

effectively converts a color image to its NTSC black-and-white equivalent.

Truecolor
Computer systems with 24-bit displays are capable of displaying over 16 mil-
lion (224) colors, as opposed to the 256 colors available on 8-bit displays. You
can take advantage of this capability by defining color data directly as RGB
values and eliminating the step of mapping numerical values to locations in a
colormap.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

brighten(copper,−0.5) brighten(copper,0.5)copper
3-17

3 Building 3-D Graphs
Specify truecolor using an m-by-n-by-3 array, where the size of Z is m-by-n:

For example, the statements:

Z = peaks(25);
C(:,:,1) = rand(25);
C(:,:,2) = rand(25);
C(:,:,3) = rand(25);
surf(Z,C)

create a plot of the peaks matrix with random coloring:

Red

Green
Blue

m-by-n matrix defining Corresponding m-by-n-by-3 matrix
specifying truecolor for the surface plotsurface plot
3-18

Coloring Mesh and Surface Plots
Rendering Method for Truecolor
MATLAB always uses the z-buffer render method when displaying truecolor.
If the Figure RendererMode property is set to auto, MATLAB automatically
switches the value of the Renderer property to zbuffer whenever you specify
truecolor data.

If you explicitly set Renderer to painters (this sets RendererMode to manual)
and attempt to define an Image, Patch, or Surface object using truecolor,
MATLAB returns a warning and does not render the object.

See the figure function in the online MATLAB Function Reference for more
information on the Renderer property and see the image, patch, and surface
functions for information on defining truecolor for these objects.

Simulating Truecolor – Dithering
You can use truecolor on computers that do not have 24-bit displays. In this
case, MATLAB uses a special colormap designed to produce results that are as
close as possible, given the limited number of colors available. See the “Indexed
Color Displays” section in the Figure chapter for more information.

Texture Mapping
Texture mapping is a technique for mapping a 2-D image onto a 3-D surface by
transforming color data so that it conforms to the surface plot. It allows you to
apply a “texture,” such as bumps or wood grain, to a surface without per-
forming the geometric modeling necessary to create a surface with these fea-
tures. The color data can also be any image, such as a scanned photograph.

Texture mapping allows the dimensions of the color data array to be different
from the data defining the surface plot. You can apply an image of arbitrary
size to any surface. MATLAB interpolates texture color data so that it is
mapped to the entire surface.

Example
This example creates a spherical surface using the sphere function and texture
maps it with an image of the earth taken from space. Since the earth image is
a view of earth from one side, this example maps the image to only one side of
the sphere, padding the image data with 1s. In this case, the image data is a
257-by-250 matrix so it is padded equally on each side with two 257-by-125
matrices of 1s by concatenating the three matrices together.
3-19

3 Building 3-D Graphs
To use texture mapping, set the FaceColor to texturemap and assign the image
to the surface’s CData:

load earth % load image data, X, and colormap, map
sphere; h = findobj('Type','surface');
hemisphere = [ones(257,125),...
 X,...
 ones(257,125)];
set(h,'CData',flipud(hemisphere),'FaceColor','texturemap')
colormap(map)
axis equal
view([90 0])
set(gca,'CameraViewAngleMode','manual')
view([65 30])
3-20

Lighting
Lighting
Lighting is a technique for adding realism to a graphical scene. It does this by
simulating the highlights and dark areas that occur on objects under natural
lighting (e.g., the directional light that comes from the sun). To create lighting
effects, MATLAB defines a graphics object called a Light. See the Handle
Graphics chapter for more information on graphics objects.

Light Objects
You create a Light object using the light function. Three important Light
object properties are:

• Color – the color of the light cast by the Light object

• Style – either infinitely far away (the default) or local

• Position – the direction (for infinite light sources) or the location (for local
light sources)

The Light object’s Color property determines the color of the directional light.
The Style property determines whether the light source is a point source
(Style set to local), which radiates from the specified position in all directions,
or a light source placed at infinity (Style set to infinite), which shines from
the direction of the specified position with parallel rays.

See the light function in the online MATLAB Function Reference for a com-
plete list of properties.

Example – Simple Lighting
This example displays the membrane surface and illuminates it with a light
source emanating from the direction defined by the position vector [0 −2 1].
This vector defines a direction from the axes origin passing through the
point with the coordinates 0, −2, 1. The light shines from this direction
towards the axes origin.

membrane
light('Position',[0 −2 1])

Creating a light activates a number of lighting-related properties controlling
characteristics, such as the ambient light and reflectance properties of objects.
It also switches to Z-buffer renderer if not already in that mode.
3-21

3 Building 3-D Graphs
Properties that Affect Lighting
You cannot see light objects themselves, but you can see their effect on any
patch and surface objects present in the axes containing the light. A number of
functions create these objects, including surf, mesh, pcolor, fill, and fill3
as well as the surface and patch functions. You control lighting effects by set-
ting various Axes, Light, Patch, and Surface object properties:

Property Effect

AmbientLightColor An Axes property that specifies the color of the background light
in the scene, which has no direction and affects all objects uni-
formly. Ambient light effects occur only when there is a visible
Light object in the Axes.

AmbientStrength A Patch and Surface property that determines the intensity of
the ambient component of the light reflected from the object.

DiffuseStrength A Patch and Surface property that determines the intensity of
the diffuse component of the light reflected from the object.

SpecularStrength A Patch and Surface property that determines the intensity of
the specular component of the light reflected from the object.

SpecularExponent A Patch and Surface property that determines the size of the
specular highlight.
3-22

Lighting
For a description of all axes, surface, and patch object properties, see the axes,
surface, and patch functions in the online MATLAB Function Reference.

SpecularColorReflectance A Patch and Surface property that determines the degree to
which the specularly reflected light is colored by the object color
or the light source color.

FaceLighting A Patch and Surface property that determines the method used
to calculate the effect of the light on the faces of the object.
Choices are either no lighting, or flat, Gouraud, or Phong
lighting algorithms.

EdgeLighting A Patch and Surface property that determines the method used
to calculate the effect of the light on the edges of the object.
Choices are either no lighting, or flat, Gouraud, or Phong
lighting algorithms.

BackFaceLighting A Patch and Surface property that determines how faces are lit
when their vertex normals point away from the camera. This
property is useful for discriminating between the internal and
external surfaces of an object.

FaceColor A Patch and Surface property that specifies the color of the object
faces.

EdgeColor A Patch and Surface property that specifies the color of the object
edges.

VertexNormals A Patch and Surface property that contains normal vectors for
each vertex of the object. MATLAB used vertex normal vectors to
perform lighting calculations. While MATLAB automatically
generates this data, you can also specify your own vertex nor-
mals.

NormalMode A Patch and Surface property that determines whether
MATLAB recalculates vertex normals if you change object data
(auto) or uses the current values of the VertexNormals property
(manual). If you specify values for VertexNormals, MATLAB sets
this property to manual.

Property Effect
3-23

3 Building 3-D Graphs
Controlling the Effects of Lighting
This section illustrates the visual effects of the various properties that affect
lighting. All properties have default values that generally produce desirable
results. However, you can achieve the specific effect you want by adjusting the
values of these properties.

Face and Edge Lighting Methods
MATLAB supports three different algorithms for lighting calculations, selected
by setting the FaceLighting and EdgeLighting properties of each Surface and
Patch object in the scene. Each algorithm produces somewhat different results:

• Flat lighting produces uniform color across each of the faces of the object. Se-
lect this method to view faceted objects.

• Gouraud lighting calculates the colors at the vertices and then interpolates
colors across the faces. Select this method to view curved surfaces.

• Phong lighting interpolates the vertex normals across each face and calcu-
lates the reflectance at each pixel. Select this choice to view curved surfaces.
Phong lighting generally produces better results than Gouraud lighting, but
takes longer to render.

This illustration shows how a red sphere looks using each of the lighting
methods with one white light source.

The lighting command (as opposed to the light function) provides a conve-
nient way to set the lighting method. See the online MATLAB Function Refer-
ence for more information on this command.

none flat gouraud phong
3-24

Controlling the Effects of Lighting
Reflectance Characteristics of Graphics Objects
This section illustrates how Surface and Patch properties affect reflection of
light. It is likely you will use these properties in combination to produce partic-
ular results. See the material command for a convenient way to produce cer-
tain effects.

Specular and Diffuse Reflection
You can control the amount of specular and diffuse reflection from the surface
of an object by setting the SpecularStrength and DiffuseStrength properties.
This picture illustrates various settings:

Ambient Light
Ambient light is a directionless light that shines uniformly on all objects in the
scene. Ambient light is visible only when there are Light objects in the Axes.
There are two properties that control ambient light – AmbientLightColor is an
Axes property that sets the color, and AmbientStrength is a property of Surface

0.0 1.0 2.0

0.0

0.5

1.0

SpecularStrength

D
i
f
f
u
s
e
S
t
r
e
n
g
t
h

3-25

3 Building 3-D Graphs
and Patch objects that determines the intensity of the ambient light on the par-
ticular object.

This illustration shows three different ambient light colors at various intensi-
ties. The sphere is red and there is a white Light object present.

Note how the green [0 1 0] ambient light does not affect the scene. This is
because there is no red component in green light. However, the color defined by
the RGB values [.5 0 1] does have a red component so it contributes to the light
on the sphere (but less than the white [1 1 1] ambient light).

Specular Exponent
The size of the specular highlight spot depends on the value of the Surface or
Patch object’s SpecularExponent property. Typical values for this property
range from 1 to 500, with normal objects having values in the range 5 to 20.

[1 1 1]

[.5 0 1]

[0 1 0]

AmbientStrength

0.0 0.7 1.0

A
m
b
i
e
n
t
L
i
g
h
t
C
o
l
o
r
(
R
G
B
)

3-26

Controlling the Effects of Lighting
This illustration shows a red sphere illuminated by a white light with three dif-
ferent values for the SpecularExponent property:

Specular Color Reflectance
The color of the specularly reflected light can range from a combination of the
color of the object and the color of the light source to the color of the light source
only. The Surface or Patch SpecularColorReflectance property controls this
color. This illustration shows a red sphere illuminated by a white light. The
values of the SpecularColorReflectance property range from 0 (object and
light color) to 1 (light color).

BackFaceLighting
Back face lighting is useful for showing the difference between internal and
external faces. These pictures of cut-away cylindrical surfaces illustrate the

SpecularExponent
15 5 1

0 0.5 1.0
SpecularColorReflectance
3-27

3 Building 3-D Graphs
effects of back face lighting:

The default value for BackFaceLighting is reverselit. This setting reverses
the direction of the vertex normals that face away from the camera, causing the
interior surface to reflect light towards the camera. Setting BackFaceLighting
to unlit disables lighting on faces with normals that point away from the
camera.

You can also use BackFaceLighting to remove edge effects for closed objects.
These effects occur when BackFaceLighting is set to reverselit and pixels
along the edge of a closed object are lit as if their vertex normals faced the
camera. This produces an improperly lit pixel because the pixel is visible, but
is really facing away from the camera.

To illustrate this effect, the following picture shows a blowup of the edge of a
lit sphere. Setting BackFaceLighting to lit prevents the improper lighting of
pixels.

BackFaceLighting = reverselit BackFaceLighting = unlit
3-28

Controlling the Effects of Lighting
BackFaceLighting = reverselit

BackFaceLighting = lit
3-29

3 Building 3-D Graphs
Lighting Example
This example creates a sphere and a cube to illustrate the effects of various
properties on lighting. The variables vert and fac define the cube using the
patch function:

sphere(36);
h = findobj('Type','surface');
set(h,'FaceLighting','phong',...
 'FaceColor','interp',...
 'EdgeColor',[.4 .4 .4],...
 'BackFaceLighting','lit')
hold on
patch('faces',fac,'vertices',vert,'FaceColor','y');
light('Position',[1 3 2]);
light('Position',[−3 −1 3]);
material shiny
axis vis3d off
hold off

All faces of the cube have FaceColor set to yellow. The sphere function creates
a spherical surface and the handle of this surface is obtained using findobj to
search for the object whose Type property is surface. The light functions
define two, white (the default color) Light objects located at infinity in the
direction specified by the Position vectors. These vectors are defined in Axes
coordinates [x, y, z].

The Patch uses flat FaceLighting (the default) to enhance the visibility of
each side. The Surface uses phong FaceLighting because it produces the
smoothest interpolation of lighting effects. The material shiny command

vert =

 1 1 1
 1 2 1
 2 2 1
 2 1 1
 1 1 2
 1 2 2
 2 2 2
 2 1 2

fac =

 1 2 3 4
 2 6 7 3
 4 3 7 8
 1 5 8 4
 1 2 6 5
 5 6 7 8
3-30

Lighting Example
affects the reflectance properties of both the cube and sphere (although its
effects are noticeable only on the sphere because of the cube’s flat shading).

Since the sphere is closed, the BackFaceLighting property is changed from its
default setting, which reverses the direction of vertex normals that face away
from the camera, to normal lighting, which removes undesirable edge effects:

Examining the code in the lighting and material M-files can help you under-
stand how various properties affect lighting.
3-31

3 Building 3-D Graphs
Viewpoint Control
MATLAB enables you to control the orientation of the graphics displayed in an
axes. You can specify the viewpoint, view target, orientation, and extent of the
view displayed in a Figure window. These viewing characteristics are con-
trolled by a set of graphics properties. You can specify values for these proper-
ties directly or use the view command to select a view direction and rely on
MATLAB’s automatic property selection to define a reasonable view.

Setting the Viewpoint
The view command specifies the viewpoint by defining azimuth and elevation
with respect to the axis origin. Azimuth is a polar angle in the x-y plane, with
positive angles indicating counter-clockwise rotation of the viewpoint. Eleva-
tion is the angle above (positive angle) or below (negative angle) the x-y plane.

This diagram illustrates the coordinate system. The arrows indicate positive
directions:

MATLAB automatically selects a viewpoint determined by whether the plot is
2-D or 3-D:

• For 2-D plots, the default is azimuth = 0˚ and elevation = 90˚.

• For 3-D plots, the default is azimuth = −37.5˚ and elevation = 30˚.

Center of

Viewpoint

z

x

y

Azimuth

Elevation

-y

Plot Box
3-32

Viewpoint Control
For example, these statements create a 3-D surface plot and display it in the
default 3-D view:

[X,Y] = meshgrid([−2:.25:2]);
Z = X.*exp(−X.^2 −Y.^2);
surf(X,Y,Z)

The statement,

view([180 0])

sets the viewpoint so you are looking in the negative y-direction with your eye
at the z = 0 elevation:

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

x−axis

Azimuth = −37.5° Elevation = 30°

y−axis

z−
ax

is

−2−1012
−0.5

0

0.5

x−axis

Azimuth = 180° Elevation = 0°

z−
ax

is
3-33

3 Building 3-D Graphs
You can move the viewpoint to a location below the axis origin using a negative
elevation:

view([−37.5 −30])

Limitations of Azimuth and Elevation
Specifying the viewpoint in terms of azimuth and elevation is conceptually
simple, but it has limitations. It does not allow you to specify the actual posi-
tion of the viewpoint, just its direction, and the z-axis is always pointing up. It
does not allow you to zoom in and out on the scene or perform arbitrary rota-
tions and translations. The Axes camera properties provide greater control
than the simple adjustments allowed with azimuth and elevation.

The next section discusses how to use camera properties to control the view.

−2
−1

0
1

2

−2
−1

0
1

2

−0.5

0

0.5

y−axis

Azimuth = −37.5° Elevation = −30°

x−axis

z−
ax

is
3-34

Camera Properties
Camera Properties
When you look at the graphics objects displayed in an axes, you are viewing a
scene from a particular location in space having a particular orientation with
regard to the viewpoint. MATLAB provides functionality, analogous to that of
a camera with a zoom lens, that enables you to control many aspects of the
view. This functionality is realized with the Axes camera properties:

Property What It Is

CameraPosition Specifies the location of the viewpoint in axes units.

CameraPositionMode In automatic mode, MATLAB determines the position based on the
scene. In manual mode, you specify the viewpoint location.

CameraTarget Specifies the location in the axes that the camera points to.
Together with the CameraPosition, it defines the viewing axis.

CameraTargetMode In automatic mode, MATLAB specifies the CameraTarget as the
center of the axes plot box. In manual mode, you specify the loca-
tion.

CameraUpVector The rotation of the camera around the viewing axis is defined by a
vector indicating the direction taken as up.

CameraUpVectorMode In automatic mode, MATLAB orients the up vector along the posi-
tive y-axis for 2-D views and along the positive z-axis for 3-D views.
In manual mode, you specify the direction.

CameraViewAngle Specifies the field of view of the “lens.” If you specify a value for
CameraViewAngle, MATLAB overrides stretch-to-fill behavior (see
the “Aspect Ratio” section).

CameraViewAngleMode In automatic mode, MATLAB adjusts the view angle to the
smallest angle that captures the entire scene. In manual mode, you
specify the angle.

Setting CameraViewAngleMode to manual overrides stretch-to-fill
behavior (see the “Aspect Ratio” section).

Projection Selects either an orthographic or perspective projection.
3-35

3 Building 3-D Graphs
This picture illustrates how the camera properties are defined using the
camera metaphor:

See the axes function in the online MATLAB Function Reference for a more
detailed description of each property.

Default Behavior
When all the camera mode properties are set to auto (the default), MATLAB
automatically controls the view, selecting appropriate values based on the
assumption that you want the scene to fill the position rectangle (which is
defined by the width and height components of the Axes Position property).

0

0.5

1

00.20.40.60.81
0

0.2

0.4

0.6

0.8

1

CameraPosition

CameraViewAngle
CameraTarget

Axes plot box

CameraUpVector
projected onto
film plane

Viewing
Axis

Axes position rectangle
3-36

Camera Properties
By default, MATLAB:

• Sets the CameraPosition so the orientation of the scene is the standard
MATLAB 2-D or 3-D view (see the view command)

• Sets the CameraTarget to the center of the plot box

• Sets the CameraUpVector so the y-direction is up for 2-D views and the
z-direction is up for 3-D views

• Sets the CameraViewAngle to the minimum angle that makes the scene fill
the position rectangle (the rectangle defined by the Axes Position property)

• Uses orthographic Projection

This default behavior generally produces desirable results. However, you can
change these properties to produce useful effects.

Moving In and Out on the Scene
You can move the camera anywhere in the 3-D space defined by the axes. The
camera continues to point towards the target regardless of its position. When
the camera moves, MATLAB varies the camera view angle to ensure the scene
fills the position rectangle.

Moving Through a Scene
You can create a fly-by effect by moving the camera through the scene. To do
this, continually change CameraPosition property, moving it towards the
target. Since the camera is moving through space, it turns as it moves past the
camera target. Override MATLAB’s automatic resizing of the scene each time
you move the camera by setting the CameraViewAngleMode to manual.

If you update the CameraPosition and the CameraTarget, the effect is to pass
through the scene while continually facing the direction of movement.

If the Projection is set to perspective, the amount of perspective distortion
increases as the camera gets closer to the target and decreases as it gets farther
away.

Example – Moving Towards or Away from the Target
To move the camera along the viewing axis, you need to calculate new coordi-
nates for the CameraPosition property. This is accomplished by subtracting (to
move closer to the target) or adding (to move away from the target) some frac-
tion of the total distance between the camera position and the camera target.
3-37

3 Building 3-D Graphs
The function movecamera calculates a new CameraPosition that moves in on
the scene if the argument dist is positive and moves out if dist is negative:

function movecamera(dist) %dist in the range [-1 1]
set(gca,'CameraViewAngleMode','manual')
newcp = cpos − dist * (cpos − ctarg);
set(gca,'CameraPosition',newcp)
function out = cpos
out = get(gca,'CameraPosition');
function out = ctarg
out = get(gca,'CameraTarget');

Note that setting the CameraViewAngleMode to manual overrides MATLAB’s
stretch-to-fill behavior and may cause an abrupt change in the aspect ratio. See
the “Aspect Ratio” section for more information on stretch-to-fill.

Making the Scene Larger or Smaller
Adjusting the CameraViewAngle property makes the view of the scene larger or
smaller. Larger angles cause the view to encompass a larger area, thereby
making the objects in the scene appear smaller. Similarly, smaller angles make
the objects appear larger. Changing CameraViewAngle makes the scene larger
or smaller without affecting the position of the camera. This is desirable if you
want to zoom in without moving the viewpoint past objects that will then no

−2
−1

0
1

2

−2

0

2

−0.5

0

0.5

CameraPosition

CameraTarget
3-38

Camera Properties
longer be in the scene (as could happen if you changed the camera position).
Also, changing the CameraViewAngle does not affect the amount of perspective
applied to the scene, as changing CameraPosition does when the Figure
Projection property is set to perspective.

Revolving Around the Scene
You can use the view command to revolve the viewpoint about the z-axis by
varying the azimuth, and about the azimuth by varying the elevation. This has
the effect of moving the camera around the scene along the surface of a sphere
whose radius is the length of the viewing axis. You could create the same effect
by changing the CameraPosition, but doing so requires you to perform calcula-
tions that MATLAB performs for you when you call view.

For example, the function orbit moves the camera around the scene:

function orbit(deg)
[az el] = view;
rotvec = 0:deg/10:deg;
for i = 1:length(rotvec)
 view([az+rotvec(i) el])
 drawnow
end

Rotation without Resizing of Graphics Objects
When CameraViewAngleMode is auto, MATLAB calculates the
CameraViewAngle so that the scene is as large as can fit in the axes position
rectangle. This causes an apparent size change during rotation of the scene. To
prevent resizing during rotation, you need to set the CameraViewAngleMode to
manual (which happens automatically when you specify a value for the
CameraViewAngle property). To do this in the orbit function, add the state-
ment:

set(gca,'CameraViewAngleMode','manual')

Rotation About the Viewing Axis
You can change the orientation of the scene by specifying the direction defined
as up. By default, MATLAB defines up as the y-axis in 2-D views
(the CameraUpVector is [0 1 0]) and the z-axis for 3-D views (the
CameraUpVector is [0 0 1]). However, you can specify up as any arbitrary
direction.
3-39

3 Building 3-D Graphs
The vector defined by the CameraUpVector property forms one axis of the
camera’s coordinate system. Internally, MATLAB determines the actual orien-
tation of the camera up vector by projecting the specified vector onto the plane
that is normal to the camera direction (i.e., the viewing axis). This simplifies
the specification of the CameraUpVector property since it need not lie in this
plane.

In many cases, you may find it convenient to visualize the desired up vector in
terms of angles with respect to the Axes x-, y-, and z-axes. You can then use
direction cosines to convert from angles to vector components. For a unit vector,
the expression simplifies to:

where the angles α, β, and γ are specified in degrees:

XComponent = cos(α × (pi∏ ÷ 180));
YComponent = cos(β × (pi ÷ 180));
ZComponent = cos(γ × (pi ÷ 180));

(Consult a mathematics book on vector analysis for a more detailed explana-
tion of direction cosines.)

Example – Calculating a Camera Up Vector. To specify an up vector that makes an
angle of 30˚ with the z-axis and lies in the y-z plane, use the expression:

upvector = [cos(90*(pi/180)) cos(60*(pi/180)) cos(30*(pi/180))];

and then set the CameraUpVector property:

set(gca,'CameraUpVector',upvector)

z

α

β
γ

y

x

3-40

Camera Properties
Drawing a sphere with this orientation produces:

Translating the Viewpoint
To translate the viewpoint, you need to move both the camera position and the
camera target in the same direction. For a 2-D view, this is a fairly simple oper-
ation since the viewing axis lies along the z-axis. In this case, values of the
CameraPosition and the CameraTarget properties differ only in z-coordinates.

Example – 2-D Translation
Suppose you want to zoom in on a 2-D scene and move around to examine par-
ticular details. You can use the ginput function to obtain new locations for the
position and target. This example creates an M-file, pan2D, that calls ginput to
obtain the coordinates of a point in the x-y plane and then updates the
CameraPosition and the CameraTarget properties to the selected location. The
location along the z-axis is held constant.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Z
−

A
xi

s

Y−Axis

X−Axis
3-41

3 Building 3-D Graphs
function pan2D
cp = get(gca,'CameraPosition');
ct = get(gca,'CameraTarget');
cva = get(gca,'CameraViewAngle');
set(gca,'CameraViewAngle',cva/2.5)
while seltype
 [a,b] = ginput;
 set(gca,'CameraPosition',[a,b,cp(3)],...
 'CameraTarget',[a,b,ct(3)])
end

function out = seltype
st = get(gcf,'SelectionType');
if strcmp (st,'normal')
 out = 1;
else
 out = 0;
end

Create a graph to scan, for example:

load penny
surface(P)
axis ij
pan2D

Zoom in on the image
While SelectionType is
normal, get input

Subfunction to monitor
selection type
3-42

View Projection Types
View Projection Types
MATLAB supports both orthographic and perspective projection types for dis-
playing 3-D graphics. The one you select depends on the type of graphics you
are displaying:

• orthographic projects the viewing volume as a rectangular parallelepiped
(i.e., a box whose opposite sides are parallel). Relative distance from the
camera does not affect the size of objects. This projection type is useful when
it is important to maintain the actual size of objects and the angles between
objects.

• perspective projects the viewing volume as the frustrum of a pyramid (a
pyramid whose apex has been cut off parallel to the base). Distance causes
foreshortening; objects further from the camera appear smaller. This projec-
tion type is useful when you want to display realistic views of real objects.

By default, MATLAB displays objects using orthographic projection. These pic-
tures show a drawing of a dump truck (created with patch) and a surface plot
of a mathematical function, both using orthographic projection:

If you measure the width of the front and rear faces of the box enclosing the
dump truck, you’ll see they are the same size. This picture looks unnatural
because it lacks the apparent perspective you see when looking at real objects
with depth. On the other hand, the surface plot accurately indicates the values

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

0

0.5
3-43

3 Building 3-D Graphs
of the function within rectangular space.

Now look at the same graphics objects with perspective added. The dump truck
looks more natural because portions of the truck that are farther from the
viewer appear smaller. This projection mimics the way human vision works.
The surface plot, on the other hand, looks distorted:

Projection Types and Camera Location
By default, MATLAB adjusts the CameraPosition, CameraTarget, and
CameraViewAngle properties to point the camera at the center of the scene and
to include all graphics objects in the axes. If you position the camera so that
there are graphics objects behind the camera, the scene displayed can be
affected by both the Axes Projection property and the Figure Renderer prop-
erty. The following table summarizes the interactions between projection type
and rendering method:

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

0

0.5

Orthographic Perspective

Z-buffer CameraViewAngle determines extent
of scene at CameraTarget

CameraViewAngle determines extent
of scene from CameraPosition to
infinity

Painters All objects display regardless of
CameraPosition

Not recommended if graphics objects
are behind the CameraPosition
3-44

View Projection Types
This diagram illustrates what you see (gray area) when using orthographic
projection and Z-buffer. Anything in front of the camera is visible:

In perspective projection, you see only what is visible in the cone of the camera
view angle:

Painters rendering method is less suited to moving the camera in 3-D space
because MATLAB does not clip along the viewing axis. Orthographic projection
in painters method results in all objects contained in the scene being visible
regardless of the camera position:

CameraCamera To
InfinityPosition

Camera
View
Angle Target

Orthographic projection and Z-buffer renderer

CameraCamera To
InfinityPosition

Camera
View
Angle Target

Perspective projection and Z-buffer renderer
3-45

3 Building 3-D Graphs
Printing 3-D Scenes
The same effects described in the previous section occur in hardcopy output.
However, because of the differences in the process of rendering to the screen
and to a printing format, MATLAB may render in Z-buffer and generate
printed output in painters. You may need to explicitly specify Z-buffer printing
to obtain the results displayed on the screen (use the −zbuffer option with the
print command).

See the Printing chapter for information on printing, the Figures chapter for
information on rendering methods, and the axes, figure, and print function
descriptions in the online MATLAB Function Reference for information on
graphics properties.

CameraCamera To
InfinityPosition

Camera
View
Angle Target

To
Infinity

Orthographic projection and painters renderer
3-46

Aspect Ratio
Aspect Ratio

Axes shape graphics objects by setting the scaling and limits of each axis. When
you create a graph, MATLAB automatically determines axis scaling based on
the values of the plotted data and then draws the axes to fit the space available
for display. The definition of axes characteristics is controlled by Axes graphics
object properties. You can specify values for these properties to optimize each
graph.

This section discusses MATLAB’s default behavior as well as techniques for
customizing graphs.

Stretch-to-fill
By default, the size of the axes MATLAB creates for plotting is normalized to
the size of the Figure window (but is slightly smaller to allow for borders). If
you resize the Figure, the size (and aspect ratio) of the axis changes proportion-
ally. This enables the axes to always fill the available space in the window.
MATLAB also sets the x-, y-, and z-axis limits to provide the greatest resolution
in each direction, again optimizing the use of available space.

This stretch-to-fill behavior is generally desirable; however, you may want to
control this process to produce specific results. For example, images need to be
displayed in correct proportions regardless of the aspect ratio (the ratio of
width to height) of the Figure window, or you may want graphs always to be a
particular size on a printed page.

axis Command Options
The axis command enables you to adjust the scaling and aspect ratio of graphs.
See the axis command in the online MATLAB Function Reference for a com-
plete description of all axis options.

Axis Scaling
By default, MATLAB finds the maxima and minima of the plotted data and
chooses appropriate axes ranges. You can override the defaults by setting axis
limits:

axis([xmin xmax ymin ymax zmin zmax])

You can control how MATLAB scales the axes with predefined axis options:
3-47

3 Building 3-D Graphs
• axis auto returns the axis scaling to its default, automatic mode. v = axis
saves the scaling of the axes of the current plot in vector v. For subsequent
graphics commands to have these same axis limits, follow them with
axis(v).

• axis manual freezes the scaling at the current limits. If you then set hold on,
subsequent plots use the current limits. Specifying values for axis limits also
sets axis scaling to manual.

• axis tight sets the axis limits to the range of the data.

• axis ij places MATLAB into its “matrix” axes mode. The coordinate system
origin is at the upper-left corner. The i-axis is vertical and is numbered from
top to bottom. The j-axis is horizontal and is numbered from left to right.

• axis xy places MATLAB into its default Cartesian axes mode. The coordi-
nate system origin is at the lower-left corner. The x-axis is horizontal and is
numbered from left to right. The y-axis is vertical and is numbered from
bottom to top.

Aspect Ratio
Normally MATLAB stretches the axes to fill the window. In many cases, it is
more useful to specify the aspect ratio of the axes based on a particular charac-
teristic such as the relative length or scaling of each axis. The axis command
provides a number of useful options for adjusting the aspect ratio.

• axis equal changes the current axes scaling so that equal tick mark incre-
ments on the x-, y-, and z-axis are equal in length. This makes the surface
displayed by sphere look like a sphere instead of an ellipsoid. axis equal
overrides stretch-to-fill behavior.

• axis square makes each axis the same length and overrides stretch-to-fill
behavior.

• axis vis3d freezes aspect ratio properties to enable rotation of 3-D objects
and overrides stretch-to-fill. Use this option after other axis options to keep
settings from changing while you rotate the scene.

• axis image makes the aspect ratio of the axes the same as the image.

• axis auto returns the x-, y-, and z-axis limits to automatic selection mode.

• axis normal restores the current axis box to full size and removes any
restrictions on the scaling of the units. It undoes the effects of axis square.
Used in conjunction with axis auto, it undoes the effects of axis equal.
3-48

Aspect Ratio
The axis command works by manipulating Axes graphics object properties.
See the axis function in the online MATLAB Function Reference for a descrip-
tion of these properties. See the axes function for a description of all axes prop-
erties.

Example – axis Options
The following three pictures illustrate the effects of three axis options on
a cylindrical surface created with the statements:

t = 0:pi/6:4*pi;
[x,y,z] = cylinder(4+cos(t),30);
mesh(x,y,z)

axis normal is the default behavior. MATLAB automatically sets the axis
limits to span the data range along each axis and stretches the plot to fit
the Figure window.

axis square creates an axis that is square regardless of the shape of the
Figure window. The cylindrical surface is no longer distorted because it is
not warped to fit the window. However, the size of one data unit is not

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1

axis normal
3-49

3 Building 3-D Graphs
equal along all axes (the z-axis spans only one unit while the x- and y-axes
span 10 units each).

axis equal makes the length of one data unit equal along each axis while
maintaining a nearly square plot box. It also prevents warping of the axis
to fill the window’s shape.

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1

axis square

−5
0

5

−5

0

5

−4

−2

0

2

4

6

axis equal
3-50

Properties That Affect Aspect Ratio
Properties That Affect Aspect Ratio
The axis command works by setting various Axes object properties. You can
set these properties directly to achieve precisely the effect you want. These
properties include:

By default, MATLAB automatically determines values for all of these proper-
ties (i.e., all the modes are auto) and then applies stretch-to-fill. You can over-
ride any property’s automatic operation by specifying a value for the property
or setting its mode to manual. The value you select for a particular property
depends primarily on what type of data you want to display.

Property What It Does

DataAspectRatio Sets the relative scaling of the individual axis data values. Set
DataAspectRatio to [1 1 1] to display real-world objects in correct
proportions. Specifying a value for DataAspectRatio overrides
stretch-to-fill behavior.

DataAspectRatioMode In auto, MATLAB selects axis scales that provide the highest reso-
lution in the space available.

PlotBoxAspectRatio Sets the proportions of the axes plot box (Set box to on to see the
box). Specifying a value for PlotBoxAspectRatio overrides
stretch-to-fill behavior.

PlotBoxAspectRatioMode In auto, MATLAB sets the PlotBoxAspectRatio to [1 1 1] unless
you explicitly set the DataAspectRatio and/or the axis limits.

Position Defines the location and size of the axes with a four-element vector:
[left offset, bottom offset, width, height].

XLim, YLim, ZLim The minimum and maximum limits of the respective axes.

XLimMode, YLimMode,
ZLimMode

In auto, MATLAB selects the axis limits.
3-51

3 Building 3-D Graphs
Much of the data visualized with MATLAB is either:

• Numerical data displayed as line or mesh plots

• Representations of real-world objects (e.g., a dump truck or a section of the
earth’s topography)

In the first case, it is generally desirable to select axis limits that provide good
resolution in each axis direction and to fill the available space. Real-world
objects, on the other hand, need to be represented accurately in proportion,
regardless of the angle of view.

Default Behavior
There are two key elements to MATLAB’s default behavior – normalizing the
axes size to the window size and stretch-to-fill.

See the Axes chapter for a
discussion of the Axes
Position property.

The Axes Position property specifies the location and dimensions of the axes.
The third and fourth elements of the Position vector (width and height)
define a rectangle in which MATLAB draws the axes (indicated by the dotted
line in the following pictures). MATLAB stretches the axes to fill this rectangle.
The default value for the Axes Units property is normalized to the parent
Figure dimensions. This means the shape of the Figure window determines the
shape of the position rectangle. As you change the size of the window, MATLAB
reshapes the position rectangle to fit it:

−1
−0.5

0
0.5

1

−1

0

1
−0.5

0

0.5

1
Axes Position rectangle

Axes plot box
(Display by setting Box
property to on).

The view is the 2-D
projection of the plot box
onto the screen.

−1

0

1

−1

0

1

0

0.5

1

3-52

Properties That Affect Aspect Ratio
As you can see, reshaping the axes to fit into the Figure window can change the
aspect ratio of the graph. MATLAB applies stretch-to-fill so the axes fill the
position rectangle, and in the process may distort the shape. This is generally
desirable for graphs of numeric data, but not for displaying realistic objects.

Example – MATLAB Defaults
MATLAB surface plots are well suited for visualizing mathematical functions
of two variables. For example, to display a mesh plot of the function,

 evaluated over the range −2 ≤ x ≤ 2, –4 ≤ y ≤ 4, use the state-
ments:

[X,Y] = meshgrid([–2:.15:2],[–4:.3:4]);
Z = X.∗ exp(–X.^2 – Y.^2);
mesh(X,Y,Z)

MATLAB ’s default property values are designed to:

• Select axis limits to span the range of the data (XLimMode, YLimMode, and
ZLimMode are set to auto).

• Provide the highest resolution in the available space by setting the scale of
each axis independently (DataAspectRatioMode and the
PlotBoxAspectRatioMode are set to auto).

• Draw axes that fit the position rectangle by adjusting the CameraViewAngle
and then stretch-to-fill the axes if necessary.

z xe x2 y2––()=

−2
−1

0
1

2

−4

−2

0

2

4
−0.5

0

0.5

Position rectangle defined
by the Axes Position
property

Axes plot box
(Display by setting Box
property to on)

Surface plot
3-53

3 Building 3-D Graphs
Overriding Stretch-to-Fill
To maintain a particular shape, you can specify the size of the axes in absolute
units such as inches, which are independent of the Figure window size. How-
ever, this is not a good approach if you are writing an M-file that you want to
work with a Figure window of any size. A better approach is to specify the
aspect ratio of the axes and override automatic stretch-to-fill.

In cases where you want a specific aspect ratio, you can override stretching by
specifying a value for these Axes properties:

• DataAspectRatio or DataAspectRatioMode

• PlotBoxAspectRatio or PlotBoxAspectRatioMode

• CameraViewAngle or CameraViewAngleMode

The first two sets of properties affect the aspect ratio directly. Setting either of
the mode properties to manual simply disables stretch-to-fill while maintaining
all current property values. In this case, MATLAB enlarges the axes until one
dimension of the position rectangle constrains it:

Setting the CameraViewAngle property disables stretch-to-fill, and also pre-
vents MATLAB from readjusting the size of the axes if you change the view.

−1

0

1

−1

0

1
−0.5

0

0.5

1

−1
0

1

−1

0

1
−0.5

0

0.5

1

3-54

Properties That Affect Aspect Ratio
Specifying the Aspect Ratio
It is important to understand how properties interact with each other to obtain
the results you want. The DataAspectRatio, PlotBoxAspectRatio, and the x-,
y-, and z- axis limits (XLim, YLim, and ZLim properties) all place constraints on
the shape of the axes.

DataAspectRatio
The DataAspectRatio property controls the ratio of the axis scales. For the
mesh displayed in the “Example – MATLAB Defaults” section, the values are:

get(gca,'DataAspectRatio')
ans =
 4 8 1

This means that four units in length along the x-axis cover the same data
values as eight units in length along the y-axis and one unit in length along the
z-axis. The axes fill the plot box, which has an aspect ratio of [1 1 1] by default.

If you want to view the mesh plot so that the relative magnitudes along each
axis are equal with respect to each other, you can set the DataAspectRatio to
[1 1 1]:

set(gca,'DataAspectRatio',[1 1 1])

−2
−1

0
1

2

−4

−3

−2

−1

0

1

2

3

4
−0.5

0

0.5
3-55

3 Building 3-D Graphs
Setting the value of the DataAspectRatio property also sets the
DataAspectRatioMode to manual and overrides stretch-to-fill so the specified
aspect ratio is achieved.

PlotBoxAspectRatio
Looking at the value of the PlotBoxAspectRatio for the graph in the previous
section shows that it has now taken on the former value of the
DataAspectRatio:

get(gca,'PlotBoxAspectRatio')
ans =
 4 8 1

MATLAB has rescaled the plot box to accommodate the graph using the speci-
fied DataAspectRatio.

The PlotBoxAspectRatio property controls the shape of the Axes plot box.
MATLAB sets this property to [1 1 1] by default and adjusts the
DataAspectRatio property so that graphs fill the plot box if stretching is on, or
until reaching a constraint if stretch-to-fill has been overridden.

When you set the value of the DataAspectRatio and thereby prevent it from
changing, MATLAB varies the PlotBoxAspectRatio instead. If you specify
both the DataAspectRatio and the PlotBoxAspectRatio, MATLAB is forced to
changed the axis limits to obey the two constraints you have already defined.

Continuing with the mesh example, if you set both properties,

set(gca,'DataAspectRatio',[1 1 1],...
 'PlotBoxAspectRatio',[1 1 1])

MATLAB changes the axis limits to satisfy the two constraints placed on the
axes:
3-56

Properties That Affect Aspect Ratio
Adjusting Axis Limits
MATLAB enables you to set the axis limits to whichever values you want. How-
ever, specifying a value for DataAspectRatio, PlotBoxAspectRatio, and the
axis limits, overconstrains the axes definition. For example, it is not possible
for MATLAB to draw the axes if you set these values:

set(gca,'DataAspectRatio',[1 1 1],...
 'PlotBoxAspectRatio',[1 1 1],...
 'XLim',[−4 4],...
 'YLim',[−4 4],...
 'ZLim',[−1 1])

In this case, MATLAB ignores the setting of the PlotBoxAspectRatio and
automatically determines its value. These particular values cause the
PlotBoxAspectRatio to return to its calculated value:

get(gca,’PlotBoxAspectRatio’)
ans =
 4 8 1

MATLAB can now draw the axes using the specified DataAspectRatio and axis
limits:

−2

0

2

−4

−2

0

2

−2

0

2

3-57

3 Building 3-D Graphs
Example – Displaying Real Objects
If you want to display an object so that it looks realistic, you need to change
MATLAB’s defaults. For example, this data defines a wedge-shaped Patch
object:

patch('Vertices',vertex_list,'Faces',vertex_connection)

−4

−2

0

2

4

−4

−2

0

2

4
−1

0

1

vertex_list =

 0 0 0
 0 1 0
 1 1 0
 1 0 0
 0 0 1
 0 1 1
 1 1 4
 1 0 4

vertex_connection =
 1 2 3 4
 2 6 7 3
 4 3 7 8
 1 5 8 4
 1 2 6 5
 5 6 7 8
3-58

Properties That Affect Aspect Ratio
However, this axes distorts the actual shape of the solid object defined by the
data. To display it in correct proportions, set the DataAspectRatio:

set(gca,'DataAspectRaito',[1 1 1])

The units are now equal in the x-, y-, and z-directions and the axes is not being
stretched to fill the position rectangle, revealing the true shape of the object:

0
0.5

1

0
0.5

1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1
00.51

0

0.5

1

1.5

2

2.5

3

3.5

4

3-59

3 Building 3-D Graphs
3-60

Bar and Area Graphs 4-2

Pie Charts. . 4-13

Histograms . 4-16

Discrete Data Graphs. 4-20

Direction and Velocity Vector Graphs 4-28

Contour Plots 4-34

Interactive Plotting 4-43

Animation. . 4-45
4

Specialized Graphs

4 Specialized Graphs

4-2
Bar and Area Graphs
Bar and area graphs display vector or matrix data. These types of graphs are
useful for viewing results over a period of time, comparing results from
different datasets, and showing how individual elements contribute to an
aggregate amount. Bar graphs are suitable for displaying discrete data,
whereas area graphs are more suitable for displaying continuous data.

Bar Graph
MATLAB has four specialized functions that display bar graphs. These
functions display 2- and 3-D bar graphs, and vertical and horizontal bar
graphs.

Grouped Bar Graph
By default, a bar graph represents each element in a matrix as one bar. Bars
in a 2-D bar graph, created by the bar function, are distributed along the x-axis
with each element in a column drawn at a different location. All elements in a
row are clustered around the same location on the x-axis.

For example, define Y as a simple matrix:

Y = [5 2 1
 8 7 3
 9 8 6
 5 5 5
 4 3 2];

and issue the bar statement in its simplest form:

bar(Y)

Two-Dimensional Three-Dimensional

Vertical bar bar3

Horizontal barh bar3h

Bar and Area Graphs
The bars are clustered together by rows and evenly distributed along the
x-axis.

Detached 3-D Bars
The bar3 function, in its simplest form, draws each element as a separate 3-D
block, with the elements of each column distributed along the y-axis. Bars that
represent elements in the first column of the matrix are centered at 1 along the
x-axis. Bars that represent elements in the last column of the matrix are
centered at size(Y,2) along the x-axis. For example,

bar3(Y)

displays five groups of three bars along the y-axis. Notice that larger bars
obscure Y(1,2) and Y(1,3).

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Y(1,:) = [5 2 1]

The first cluster of
bars represents the
first row in Y.
4-3

4 Specialized Graphs

4-4
By default, bar3 draws detached bars. The statement bar3(Y,'detach') has
the same effect.

Labeling the Graph. To add axes labels and x tick marks to this bar graph, use the
statements:

xlabel('X Axis')
ylabel('Y Axis')
zlabel('Z Axis')
set(gca,'XTick',[1 2 3])

Grouped 3-D Bars
Cluster the bars from each row beside each other by specifying the argument
'group'. For example:

bar3(Y,'group')

groups the bars according to row and distributes the clusters evenly along the
y-axis.

1
2

3

1

2

3

4

5

0

2

4

6

8

10

Z
 A

xi
s

Y Axis

X Axis

Y(5,:) = [4 3 2]

The last cluster of
bars represents
the last row in Y.

Bar and Area Graphs
Stacked Bar graphs to Show Contributing Amounts
Bar graphs can show how elements in the same row of a matrix contribute to
the sum of all elements in the row. These types of bar graphs are referred to as
stacked bar graphs.

Stacked bar graphs display one bar per row of a matrix. The bars are divided
into n segments, where n is the number of columns in the matrix. For vertical
bar graphs, the height of each bar equals the sum of the elements in the row.
Each segment is equal to the value of its respective element. Redefining Y:

Y = [5 1 2
 8 3 7
 9 6 8
 5 5 5
 4 2 3];

Create stacked bar graphs using the optional 'stack' argument. For example,

bar(Y,'stack')
grid on
set(gca,'Layer','top') % display gridlines on top of graph

creates a 2-D stacked bar graph, where all elements in a row correspond to the
same x location.

1
2

3
4

5

0

1

2

3

4

5

6

7

8

9

Z
 A

xi
s

Y Axis

Y(5,:) = [4 3 2]

The last cluster of bars
represents the last row
4-5

4 Specialized Graphs

4-6

For horizontal bar graphs, the length of each bar equals the sum of the
elements in the row. The length of each segment is equal to the value of its
respective element.

barh(Y,'stack')
grid on
set(gca,'Layer','top') % display gridlines on top of graph

1 2 3 4 5
0

5

10

15

20

25

Y(1,:) = [5 1 2]

The first stack of
bars represents the
first row in Y.

0 5 10 15 20 25

1

2

3

4

5

Y(1,:) = [5 1 2]

The lower stack
of bars
represents the
first row in Y.

Bar and Area Graphs
Providing Your Own X Data
Bar graphs automatically generate x-axis values and label the x-axis tick lines.
You can specify a vector of x values (or y values in the case of horizontal bar
graphs) to label the axes.

For example, given temperature data,

temp = [29 23 27 25 20 23 23 27];

obtained from samples taken every five days during a thirty-five day period,

days = 0:5:35;

you can display a bar graph showing temperature measured along the y-axis
and days along the x-axis using:

bar(days,temp)

These statements add labels to the x- and y-axis:

xlabel('Day')
ylabel('Temperature (^{o}C)')

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Day

T
em

pe
ra

tu
re

 (o C
)

4-7

4 Specialized Graphs

4-8
By default, the y-axis range is from 0 to 30. To focus on the temperature range
from 15 to 30, change the y-axis limits:

set(gca,'YLim',[15 30],'Layer','top')

Overlaying Plots on Bar Graphs
You can overlay data on a bar graph by creating another axes in the same
position. This enables you to have an independent y-axis for the overlaid
dataset (in contrast to the hold on statement, which uses the same axes).

For example, consider a bioremediation experiment that breaks down
hazardous waste components into nontoxic materials. The trichloroethylene
(TCE) concentration and temperature data from this experiment are:

TCE = [515 420 370 250 135 120 60 20];
temp = [29 23 27 25 20 23 23 27];

This data was obtained from samples taken every five days during a thirty-five
day period:

days = 0:5:35;

Day

T
em

pe
ra

tu
re

 (o C
)

0 5 10 15 20 25 30 35
15

20

25

30

Bar and Area Graphs
Display a bar graph and label the x- and y-axis using the statements

bar(days,temp)
xlabel('Day')
ylabel('Temperature (^{o}C)')

To overlay the concentration data on the bar graph, position a second axes at
the same location as the first axes, but first save the handle of the first axes:

h1 = gca;

Create the second axes at the same location before plotting the second dataset:

h2 = axes('Position',get(h1,'Position'));
plot(days,TCE,'LineWidth',3)

To ensure that the second axes does not interfere with the first, locate the
y-axis on the right side of the axes, make the background transparent, and set
the second axes’ x-tick marks to the empty matrix:

set(h2,'YAxisLocation','right','Color','none','XTickLabel',[])

Align the x-axis of both axes and display the grid lines on top of the bars.

set(h2,'XLim',get(h1,'XLim'),'Layer','top')

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Day

T
em

pe
ra

tu
re

 (o C
)

T
C

E
 C

on
ce

nt
ra

tio
n

(P
P

M
)

Bioremediation

C
oncentration

0

100

200

300

400

500

600
4-9

4 Specialized Graphs

4-1
Annotating the Graph. These statements annotate the graph:

text(11,380,'Concentration','Rotation',–55,'FontSize',16)
ylabel('TCE Concentration (PPM)')
title('Bioremediation','FontSize',16)

To print the graph, set the current Figure’s PaperPositionMode to auto, which
ensures the printed output matches the display.

set(gcf,'PaperPositionMode','auto')

Area Graphs
The area function displays curves generated from a vector or from separate
columns in a matrix. area plots the values in each column of a matrix as a
separate curve and fills the area between the curve and the x-axis.

Area Graphs Showing Contributing Amounts
Area graphs are useful for showing how elements in a vector or matrix
contribute to the sum of all elements at a particular x location. By default, area
accumulates all values from each row in a matrix and creates a curve from
those values.

Using this matrix,

Y = [5 1 2
 8 3 7
 9 6 8
 5 5 5
 4 2 3];

the statement,

area(Y)

displays a graph containing three area graphs, one per column.
0

Bar and Area Graphs
The height of the area graph is the sum of the elements in each row. Each
successive curve uses the preceding curve as its base.

Displaying the Grid on Top. To display the grid lines in the foreground of the area
graph and display only five grid lines along the x-axis, use the statements:

set(gca,'Layer','top')
set(gca,'XTick',1:5)

Comparing Datasets with Area Graphs
Area graphs are useful for comparing different datasets. For example, given a
vector containing sales figures,

sales = [51.6 82.4 90.8 59.1 47.0];

for the five-year period

x = 90:94;

and a vector containing profits figures for the same five-year period

profits = [19.3 34.2 61.4 50.5 29.4];

display both as two separate area graphs within the same axes. Set the color of
the area interior (FaceColor), its edges (EdgeColor), and the width of the edge

1 2 3 4 5
0

5

10

15

20

25

Y(1,:) = [5 1 2]

The first row in Y
4-11

4 Specialized Graphs

4-1
lines (LineWidth). Seethe patch function in the online MATLAB Function
Reference for a complete list of settable properties:

area(x,sales,'FaceColor',[.5 .9 .6],...
 'EdgeColor','b',...
 'LineWidth',2)
hold on
area(x,profits,'FaceColor',[.9 .85 .7],...
 'EdgeColor','y',...
 'LineWidth',2)
hold off

To annotate the graph, use the statements

set(gca,'XTick',[90:94])
set(gca,'Layer','top')
gtext('\leftarrow Sales')
gtext('Profits')
gtext('Expenses')
xlabel('Years','FontSize',14)
ylabel('Expenses + Profits = Sales in 1,000''s','FontSize',14)

Years

E
xp

en
se

s
+

P
ro

fit
s

=
S

al
es

 in
 1

,0
00

’s

← Sales

Profits

Expenses

90 91 92 93 94
0

10

20

30

40

50

60

70

80

90

100
2

Pie Charts
Pie Charts
Pie charts display the percentage that each element in a vector or matrix
contributes to the sum of all elements. pie and pie3 create 2-D and 3-D pie
charts.

Here is an example using the pie function to visualize the contribution three
products make to total sales. Given a matrix X where each column of X contains
yearly sales figures for a specific product over a five-year period,

X = [19.3 22.1 51.6;
 34.2 70.3 82.4;
 61.4 82.9 90.8;
 50.5 54.9 59.1;
 29.4 36.3 47.0];

sum each row in X to calculate total sales for each product over the five-year
period:

x = sum(X);

You can offset the slice of the pie that makes the greatest contribution using
the explode input argument. This argument is a vector of zero and nonzero
values. Nonzero values offset the respective slice from the chart.

First, create a vector containing zeros:

explode = zeros(size(x));

Then find the slice that contributes the most and set the corresponding
explode element to 1:

[c,offset] = max(x);
explode(offset) = 1;
4-13

4 Specialized Graphs

4-1
The explode vector contains the elements [0 0 1]. To create the exploded pie
chart, use the statement:

h = pie(x,explode); colormap summer

Labeling the Graph. The pie chart’s labels are Text graphics objects. To modify
the text strings and their positions, first get the objects’ strings and extents.
Braces around a property name ensure that get outputs a cell array, which is
important when working with multiple objects.

textObjs = findobj(h,'Type','text');
oldStr = get(textObjs,{'String'});
val = get(textObjs,{‘Extent’});
oldExt = cat(1,val{:});

Create the new strings, then set the Text objects’ String properties to the new
strings:

Names = {'Product X: ';'Product Y: ';'Product Z: '};
newStr = strcat(Names,oldStr);
set(textObjs,{'String'},newStr)

Product X: 25%

Product Y: 34%

Product Z: 42%
4

Pie Charts
Find the difference between the widths of the new and old text strings and
change the values of the Position properties:

val1 = get(textObjs, {‘Extent’});
newExt = cat(1, val1{:});
offset = sign(oldExt(:,1)).*(newExt(:,3)–oldExt(:,3))/2;
pos = get(textObjs, {‘Position’});
textPos = cat(1, pos{:});
textPos(:,1) = textPos(:,1)+offset;
set(textObjs,{'Position'},num2cell(textPos,[3,2]))

Pie Charts Missing a Piece
When the sum of the elements in the first input argument is equal to or greater
than 1, pie and pie3 normalize the values. So, given a vector of elements x,
each slice has an area of xi/sum(xi), where xi is an element of x. The
normalized value specifies the fractional part of each pie slice.

When the sum of the elements in the first input argument is less than 1, pie
and pie3 do not normalize the elements of vector x. They draw a partial pie.
For example,

x = [.19 .22 .41];
pie(x)

19%

22%

41%
4-15

4 Specialized Graphs

4-1
Histograms
MATLAB’s histogram functions show the distribution of data values. The
functions that create histograms are hist and rose. hist displays data in a
Cartesian coordinate system and rose displays data in a polar coordinate
system.

The histogram functions count the number of elements within a range and
display each range as a rectangular bin. The height (or length when using
rose) of the bins represents the number of values that fall within each range.

Histograms in Cartesian Coordinate Systems
The hist function shows the distribution of the elements in Y as a histogram
with equally spaced bins between the minimum and maximum values in Y. If
Y is a vector and is the only argument, hist creates up to 10 bins. For example,

yn = randn(10000,1);
hist(yn)

generates 10,000 random numbers and creates a histogram with 10 bins
distributed along the x-axis between the minimum and maximum values of yn.

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000
6

Histograms
When Y is a matrix, hist creates a set of bins for each column, displaying each
set in a separate color. The statements

Y = randn(10000,3);
hist(Y)

create a histogram showing 10 bins for each column in Y.

Histograms in Polar Coordinate Systems
A rose plot is a histogram created in a polar coordinate system. For example,
consider samples of the wind direction taken over a 12-hour period:

wdir = [45 90 90 45 360 335 360 270 335 270 335 335];

To display this data using the rose function, convert the data to radians; then
use the data as an argument to the rose function:

wdir = wdir * pi/180
rose(wdir)

−4 −3 −2 −1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500
4-17

4 Specialized Graphs

4-1
The plot shows that the wind direction was primarily 335˚during the 12-hour
period.

Number of Bins Created
hist and rose interpret their second argument in one of two ways—as the
locations on the axis or the number of bins. When the second argument is a
vector x, it specifies the locations on the axis and distributes the elements in
length(x) bins. When the second argument is a scalar x, hist and rose
distribute the elements in x bins.

For example, compare the distribution of data created by two MATLAB
functions that generate random numbers. The randn function generates
normally distributed random numbers, whereas, the rand function generates
uniformly distributed random numbers.

yn = randn(10000,1);
yu = rand(10000,1);

The first histogram displays the data distribution resulting from the randn
function. The locations on the x-axis and number of bins depend on the vector x:

x = min(yn):.2:max(yn);
subplot(1,2,1)
hist(yn,x)
title('Normally Distributed Random Numbers','FontSize',16)

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0
8

Histograms
The second histogram displays the data distribution resulting from the rand
function and explicitly creates 25 bins along the x-axis:

subplot(1,2,2)
hist(yu,25)
title('Uniformly Distributed Random Numbers','FontSize',16)

Note: You can change the aspect ratio of the histogram plots using the mouse
to resize the Figure window. However, before creating hardcopy output, set
the Figure’s PaperPositionMode to auto to produce printed output that
matches the display:

 set(gcf,'PaperPositionMode','auto')

−4 −2 0 2 4
0

100

200

300

400

500

600

700

800

900
Normally Distributed Random Numbers

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450
Uniformly Distributed Random Numbers
4-19

4 Specialized Graphs

4-2
Discrete Data Graphs
MATLAB has a number of specialized functions that are appropriate for
displaying discrete data. This section describes how to use stem plots and
stairstep plots to display this type of data. (Bar charts, discussed earlier in this
chapter, are also suitable for displaying discrete data.)

Two– and Three–dimensional Stem Plots
A stem plot displays data as lines (stems) terminated with a marker symbol at
each data value. In a 2-D graph, stems extend from the x-axis. In a 3-D graph,
stems extend from the xy-plane.

Two-dimensional Stem Plots
The stem function displays two-dimensional discrete sequence data. For
example, evaluating the function with the values,

alpha = .02; beta = .5; t = 0:4:200;
y = exp(–alpha*t).*sin(beta*t);

yields a vector of discrete values for y at given values of t. A line plot shows the
data points connected with a straight line:

plot(t,y)

y e α t– βtcos=

0 20 40 60 80 100 120 140 160 180 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

Discrete Data Graphs
A stem plot of the same function plots only discrete points on the curve:

stem(t,y)

Add axes labels to the x- and y-axis:

xlabel('Time in \musecs')
ylabel('Magnitude')

If you specify only one argument, the number of samples is equal to the length
of that argument. In this example, the number of samples is a function of t,
which contains 51 elements and determines the length of y.

Customizing the Graph. You can specify the line style, the type of marker, and the
color used in the stem plot. For example, adding the string ':sr' specifies a
dotted line (:), a square marker (s), and a red color (r). The 'fill' argument
colors the face of the marker.

stem(t,y,'−−sr','fill')

0 20 40 60 80 100 120 140 160 180 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time in µsecs

M
ag

ni
tu

de
4-21

4 Specialized Graphs

4-2
Setting the aspect ratio of the x- and y-axis to 2:1 improves the utility of the
graph.

set(gca,'PlotBoxAspectRatio',[2 1 1])

See axes and LineSpec in the online MATLAB Function Reference for
information on the PlotBoxAspectRatio property and a list of line styles and
marker types.

Combining plots. Sometimes it is useful to display more than one plot
simultaneously with a stem plot to show how you arrived at a result. For
example, create a linearly spaced vector with 60 elements and define two
functions, a and b:

x = linspace(0,2*pi,60);
a = sin(x);
b = cos(x);

Create a stem plot showing the linear combination of the two functions:

stem_handles = stem(x,a+b)

0 20 40 60 80 100 120 140 160 180 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time in µsecs

M
ag

ni
tu

de
2

Discrete Data Graphs
Overlaying a and b as line plots helps visualize the functions. Before plotting
the two curves, set hold to on so MATLAB does not clear the stem plot:

hold on
plot_handles = plot(x,a,'−−r',x,b,'−−g')
hold off

Use legend to annotate the graph. The stem and plot handles passed to legend
identify which lines to label. Stem plots are composed of two lines, one draws
the markers and the other draws the vertical stems. To create the legend, use
the first handle returned by stem, which identifies the marker line:

legend_handles = [stem_handles(1);plot_handles];
legend(legend_handles,'a + b','a = sin(x)','b = cos(x)')

Labeling the axes and creating a title finishes the graph:

xlabel('Time in \musecs')
ylabel('Magnitude')
title('Linear Combination of Two Functions')

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

Time in µsecs

M
ag

ni
tu

de

Linear Combination of Two Functions

a+b
a = sin(x)
b = cos(x)
4-23

4 Specialized Graphs

4-2
Three-dimensional Stem Plots
stem3 displays 3-D stem plots extending from the xy-plane. With only one
vector argument, MATLAB plots the stems in one row at x = 1 or
y = 1, depending on whether the argument is a column or row vector. stem3 is
intended to display data that you cannot visualize in a 2-D view.

For example, fast Fourier transforms are calculated at points around the unit
circle on the complex plane. So, it is interesting to visualize the plot around the
unit circle. Calculating the unit circle,

th = (0:127)/128*2*pi;
x = cos(th);
y = sin(th);

and the magnitude frequency response of a step function,

f = abs(fft(ones(10,1),128));

display the data using a 3-D stem plot, terminating the stems with filled
diamond markers:

stem3(x,y,f','d','fill')
view([−65 30])

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
0

2

4

6

8

10

Real

Magnitude Frequency Response

Imaginary

A
m

pl
itu

de
4

Discrete Data Graphs
Label the graph with the statements:

xlabel('Real')
ylabel('Imaginary')
zlabel('Amplitude')
title('Magnitude Frequency Response')

To change the orientation of the view, turn on mouse-based 3-D rotation:

rotate3d on

Three-dimensional stem plots work well when visualizing discrete functions
that do not output a large number of data points. For example, you can use
stem3 to visualize the Laplace transform basis function, for a
particular constant value of s:

t = 0:.1:10; % Time limits
s = 0.1+i; % Spiral rate
y = exp(–s*t); % Compute decaying exponential

Using t as magnitudes that increase with time, create a spiral with increasing
height and draw a curve through the tops of the stems to improve definition:

stem3(real(y),imag(y),t)
hold on
plot3(real(y),imag(y),t,’k’)
hold off

y e st–
=

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

Real
Imaginary

M
ag

ni
tu

de
4-25

4 Specialized Graphs

4-2
Add axes labels, with the statements:

xlabel('Real')
ylabel('Imaginary')
zlabel('Magnitude')

Stairstep Plots
Stairstep plots display data as the leading edges of a constant interval (i.e.,
zero-order hold state). This type of plot holds the data at a constant y-value for
all values between x(i) and x(i+1), where i is the index into the x data. This type
of plot is useful for drawing time-history plots of digitally sampled data
systems. For example, define a function f that varies over time:

alpha = .01;
beta = .5;
t = 0:10;
f = exp(−alpha*t).*sin(beta*t);

Display the function as a stairstep plot and a linearly interpolated function:

stairs(t,f)
hold on
plot(t,f,'−−*')
hold off

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Stairstep plot of e−(α*t) sinβ*t

t = 0:10
6

Discrete Data Graphs
Annotate the graph and set the axes limits:

label = 'Stairstep plot of e^{–(\alpha*t)} sin\beta*t';
text(.5,–0.2,label,'FontSize',14)
xlabel('t = 0:10','FontSize',14)
axis([0 10 –1.2 1.2])
4-27

4 Specialized Graphs

4-2
Direction and Velocity Vector Graphs
Several MATLAB functions display data consisting of direction vectors and
velocity vectors. This section describes these functions.

You can define the vectors using one or two arguments. The arguments specify
the x and y components of the vectors relative to the origin.

If you specify two arguments, the first specifies the x components of the vectors
and the second the y components of the vectors. If you specify one argument,
the functions treat the elements as complex numbers. The real parts are the x
components and the imaginary parts are the y components.

Compass Plots
The compass function shows vectors emanating from the origin of a graph. The
function takes Cartesian coordinates and plots them on a circular grid.

This example shows a compass plot indicating the wind direction and strength
during a 12-hour period. Two vectors define the wind direction and strength:

wdir = [45 90 90 45 360 335 360 270 335 270 335 335];
knots = [6 6 8 6 3 9 6 8 9 10 14 12];

Function Description

compass Displays vectors emanating from the origin of a polar plot.

feather Displays vectors extending from equally spaced points along
a horizontal line.

quiver Displays 2-D vectors specified by (u,v) components.

quiver3 Displays 3-D vectors specified by (u,v,w) components.
8

Direction and Velocity Vector Graphs
Convert the wind direction, given as angles, into radians before converting the
wind direction into Cartesian coordinates:

rdir = wdir * pi/180;
[x,y] = pol2cart(rdir,knots);
compass(x,y)

Create text to annotate the graph:

desc = {'Wind Direction and Strength at',
'Logan Airport for ',
'Nov. 3 at 1800 through',
'Nov. 4 at 0600'};

text(–28,15,desc)

Feather Plots
The feather function shows vectors emanating from a straight line parallel to
the x-axis. For example, create a vector of angles from 90˚ to 0˚ and a vector the
same size, with each element equal to 1:

theta = 90:–10:0;
r = ones(size(theta));

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

Wind Direction and Strength at
Logan Airport for
Nov. 3 at 1800 through
Nov. 4 at 0600
4-29

4 Specialized Graphs

4-3
Before creating a feather plot, transform the data into Cartesian coordinates
and increase the magnitude of r to make the arrows more distinctive:

[u,v] = pol2cart(theta*pi/180,r*10);
feather(u,v)
axis equal

If the input argument, Z, is a matrix of complex numbers, feather interprets
the real parts of Z as the x components of the vectors and the imaginary parts
as the y components of the vectors:

t = 0:.5:10; % Time limits
s = .05+i; % Spiral rate
Z = exp(–s*t); % Compute decaying exponential
feather(Z)

−5 0 5 10 15 20 25

−5

0

5

10

15

0 5 10 15 20 25
−1

−0.5

0

0.5

1

0

Direction and Velocity Vector Graphs
This particular graph looks better if you change the Figure’s aspect ratio by
stretching the Figure lengthwise using the mouse. However, to maintain this
shape in the printed output, set the Figure’s PaperPositionMode to auto:

set(gcf,'PaperPositionMode','auto')

In this mode, MATLAB prints the Figure exactly as it appears on screen.

Quiver Plots
The quiver and quiver3 functions show vectors at given points in two- and
three-dimensional space. The vectors are defined by x and y components.

Two-dimensional Quiver Plots
A quiver plot is useful when displayed with another plot. For example, create
10 contours of the peaks function (the next section describes contour plots):

n = –2.0:.2:2.0;
[X,Y,Z] = peaks(n);
contour(X,Y,Z,10)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4-31

4 Specialized Graphs

4-3
Now use the gradient function to create the vector components to use as inputs
to quiver.

[U,V] = gradient(Z,.2);

Set hold to on and add the contour plot:

hold on
quiver(X,Y,U,V)
hold off

Three-dimensional Quiver Plots
Three-dimensional quiver plots display vectors consisting of (u,v,w)
components at (x,y,z) locations. For example, you can show the path of a
projectile as a function of time:

First, assign values to the constants vz and a:

vz = 10; % Velocity
a = –32; % Acceleration

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z t() vzt at2

2
--------+=
2

Direction and Velocity Vector Graphs
Then, calculate the height z, as time varies from 0 to 1 in increments of 0.1:

t = 0:.1:1;
z = vz*t + 1/2*a*t.^2;

Calculate the position in the x and y directions:

vx = 2;
x = vx*t;
vy = 3;
y = vy*t;

Compute the components of the velocity vectors and display the vectors using
the 3-D quiver plot:

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;
quiver3(x,y,z,u,v,w,scale)
axis square

0
0.5

1
1.5

2
2.5 0 0.5 1 1.5 2 2.5 3 3.5

−10

−8

−6

−4

−2

0

2

4-33

4 Specialized Graphs

4-3
Contour Plots
The contour functions create, display, and label isolines determined by one or
more matrices.

Two other functions also create contours. meshc displays a contour in addition
to a mesh, and surfc displays a contour in addition to a surface. The section
“Changing the Offset” briefly discusses these functions.

Creating Simple Contour Plots
contour and contour3 display 2- and 3-D contours, respectively. They require
only one input argument—a matrix interpreted as heights with respect to a
plane. In this case, the contour functions determine the number of contours to
display based on the minimum and maximum data values.

To explicitly set the number of contour levels displayed by the functions, you
specify a second optional argument. For example,

[X,Y,Z] = peaks;
contour(X,Y,Z,20)

Function Description

clabel Generates labels using the contour matrix and displays the
labels in the current Figure.

contour Displays 2-D isolines generated from values given by a
matrix Z.

contour3 Displays 3-D isolines generated from values given by a
matrix Z.

contourf Displays a 2-D contour plot and fills the area between the
isolines with a solid color.

contourc Low-level function to calculate the contour matrix used by
the other contour functions.
4

Contour Plots
displays 20 contours of the peaks function in a 2-D view:

The statements

[X,Y,Z] = peaks;
contour3(X,Y,Z,20)

display 20 contours of the peaks function in a 3-D view:

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Twenty Contours of the peaks Function

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−6

−4

−2

0

2

4

6

8

Twenty Contours of the peaks Function
4-35

4 Specialized Graphs

4-3
Labeling Contours
Each contour level has a value associated with it. clabel uses these values to
display labels for 2-D contour lines. The contour matrix contains the values
clabel uses for the labels. This matrix is returned by contour, contour3, and
contourf. (See the “Contouring Algorithm” section.)

clabel optionally returns the handles of the Text objects used as labels. You
can then use these handles to set the properties of the label string.

For example, display 10 contour levels of the peaks function,

Z = peaks;
[C,h] = contour(Z,10);

then label the contours and display a title.

clabel(C,h)
title({'Contour Labeled Using','clabel(C,h)'})

Note that clabel labels only those contour lines that are large enough to have
an inline label inserted.

The 'manual' option enables you to add labels by selecting the contour you
want to label with the mouse.

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

Contour Labeled Using
clabel(C,h)

−3.888−
2.

55
9

−2
.5

59

−1.23

−1
.2

3

−1.23

0.09964

0.
09

96
4

0.09964

0.09964

0.09964

0.09964

0.09964

1.
42

9

1.429

1.429

1.429

1.
42

9

2.758

2.758

2.758

4.087
5.417

6.746
6

Contour Plots
You can also use this option to label only those contours you select
interactively.

For example,

clabel(C,h,'manual')

displays a crosshair cursor when your cursor is inside the Figure. Pressing any
mouse button labels the contour line closest to the center of the crosshair.

Filled Contours
contourf displays a two-dimensional contour plot and fills the areas between
contour lines. Use the caxis function to control the mapping of contour to color.
For example, this filled contour plot of the peaks data uses caxis to map the
fill colors into the center of the colormap.

Z = peaks;
[C,h] = contourf(Z,10);
caxis([−20 20])
title({'Filled Contour Plot Using','contourf(Z,10)'})

See the caxis description in the online MATLAB Function Reference.

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

Filled Contour Plot Using
contourf(Z,10)
4-37

4 Specialized Graphs

4-3
Drawing a Single Contour Line at a Desired Level
The contouring functions permit you to specify the number of contour levels or
the particular contour levels to draw. In the case of contour, the two forms of
the function are contour(Z,n) and contour(Z,v). Z is the data matrix, n is the
number of contour lines, and v is a vector of specific contour levels.

MATLAB does not differentiate between a scalar and a one-element vector. So,
if v is a one-element vector specifying a single contour at that level, contour
interprets it as the number of contour lines, not the contour level.
Consequently, contour(Z,v) behaves in the same manner as contour(Z,n).

To display a single contour line, define v as a two-element vector with both
elements equal to the desired contour level. For example, create a 3-D contour
of the peaks function:

xrange = –3:.125:3;
yrange = xrange;
[X,Y] = meshgrid(xrange,yrange);
Z = peaks(X,Y);
contour3(X,Y,Z)

To display only one contour level at Z = 1, define v as [1 1]:

v = [1 1]
contour3(X,Y,Z,v)

The Contouring Algorithm
The contourc function calculates the contour matrix for the other contour
functions. It is a low-level function that is not called from the command line.

The contouring algorithm first determines which contour levels to draw. If you
specified the input vector v, the elements of v are the contour level values and
length(v) determines the number of contour levels generated. If you do not
specify v, the algorithm chooses no more than 20 contour levels that are
divisible by 2 or 5.

The contouring algorithm treats the input matrix Z as a regularly spaced grid,
with each element connected to its nearest neighbors. The algorithm scans this
matrix comparing the values of each block of four neighboring elements (i.e., a
cell) in the matrix to the contour level values. If a contour level falls within a
cell, the algorithm performs a linear interpolation to locate the point at which
8

Contour Plots
the contour crosses the edges of the cell. The algorithm connects these points
to produce a segment of a contour line.

contour, contour3, and contourf return a two-row matrix specifying all the
contour lines. The format of the matrix is:

C = [value1 xdata(1) xdata(2)...
numv ydata(1) ydata(2)...]

The first row of the column that begins each definition of a contour line
contains the value of the contour, as specified by v and used by clabel.
Beneath that value is the number of (x,y) vertices in the contour line.
Remaining columns contain the data for the (x,y) pairs. For example, the
contour matrix calculated by C = contour(peaks(3)) is

The circled values begin each definition of a contour line.

Columns 1 through 7
−0.2000 1.8165 2.0000 2.1835 0 1.0003 2.0000
3.0000 1.0000 1.0367 1.0000 3.0000 1.0000 1.1998

Columns 8 through 14
3.0000 0 1.0000 1.0359 1.0000 0.2000 1.6669
1.0002 3.0000 2.9991 2.0000 1.0018 5.0000 3.0000

Columns 15 through 21
1.2324 2.0000 2.8240 2.3331 0.4000 2.0000 2.6130
2.0000 1.3629 2.0000 3.0000 5.0000 2.8530 2.0000

Columns 22 through 28
2.0000 1.4290 2.0000 0.6000 2.0000 2.4020 2.0000
1.5261 2.0000 2.8530 5.0000 2.5594 2.0000 1.6892

Columns 29 through 35
1.6255 2.0000 0.8000 2.0000 2.1910 2.0000 1.8221
2.0000 2.5594 5.0000 2.2657 2.0000 1.8524 2.0000

Column 36
2.0000
2.2657

Three vertices at
v = 0

Three vertices at
v = –.2

Five vertices at
v = .8
4-39

4 Specialized Graphs

4-4
Changing the Offset of a Contour
The surfc and meshc functions display contours beneath a surface or a mesh
plot. These functions draw the contour plot at the axes’ minimum z-axis limit.
To specify your own offset, you must change the ZData values of the contour
lines. First, save the handles of the graphics objects created by meshc or surfc:

h = meshc(peaks(20));

The first handle belongs to the mesh or surface. The remaining handles belong
to the contours you want to change. To raise the contour plane, add 2 to the z
coordinate of each contour line:

for i = 2:length(h);
newz = get(h(i),'Zdata') + 2;
set(h(i),'Zdata',newz)

end

Displaying Contours in Polar Coordinates
You can contour data defined in the polar coordinate system. As an example,
set up a grid in polar coordinates and convert the coordinates to Cartesian
coordinates:

[th,r] = meshgrid((0:5:360)*pi/180,0:.05:1);
[X,Y] = pol2cart(th,r);

Then, generate the complex matrix Z on the interior of the unit circle:

Z = X+i*Y;

X, Y, and Z are points inside the circle.

Create and display a surface of the function :

f = (Z.^4–1).^(1/4);
surf(X,Y,abs(f))

Z4 1–4
0

Contour Plots
Display the unit circle beneath the surface using the statements:

hold on
surf(X,Y,zeros(size(X)))
hold off

Labeling the Graph. These statements add labels to the plot,

xlabel('Real','FontSize',14);
ylabel('Imaginary','FontSize',14);
zlabel('abs(f)','FontSize',14);

and these display a contour of this surface in Cartesian coordinates and label
the x- and y-axis:

contour(X,Y,abs(f),30)
axis equal
xlabel('Real','FontSize',14);
ylabel('Imaginary','FontSize',14);

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

ab
s(

f)

Imaginary Real
4-41

4 Specialized Graphs

4-4
You can also display the contour within a polar axes. Create a polar axes using
the polar function, and then delete the line specified with the polar function:

h = polar([0 2*pi], [0 1]);
delete(h)

With hold on, display the contour on the polar grid:

hold on
contour(X,Y,abs(f),30)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

in
ar

y

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0
2

Interactive Plotting
Interactive Plotting
The ginput function enables you to use the mouse or the arrow keys to select
points to plot. ginput returns the coordinates of the pointer’s position; either
the current position or the position when a mouse button or key is pressed. See
the ginput function in the online MATLAB Function Reference for more
information on this function.

This example illustrates the use of ginput with the spline function to create a
curve by interpolating in two dimensions.

First, select a sequence of points, [x,y], in the plane with ginput. Then pass
two, one-dimensional splines through the points, evaluating them with a
spacing 1/10th of the original spacing.

% start with a clean slate
clf
axis([0 10 0 10])
hold on
% Initially, the list of points is empty.
x = [];
y = [];
n = 0;
% Loop, picking up the points.
disp('Left mouse button picks points.')
disp('Right mouse button picks last point.')
but = 1;
while but == 1

[xi,yi,but] = ginput(1);
plot(xi,yi,'go')
n = n+1;
x(n,1) = xi;
y(n,1) = yi;

end
% Interpolate with two splines and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
4-43

4 Specialized Graphs

4-4
xs = spline(t,x,ts);
ys = spline(t,y,ts);
% Plot the interpolated curve.
plot(xs,ys,'c–');
hold off

This plot shows some typical output.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

o1

o2

o3

o4

o5

o6

o7
o8

o9

o10
o11
4

Animation
Animation
You can create animated sequences with MATLAB in two different ways:

• Save a number of different pictures and then play them back as a movie.

• Continually erase and then redraw the objects on the screen, making
incremental changes with each redraw.

Movies are better suited to situations where each frame is fairly complex and
cannot be redrawn rapidly. You create each movie frame in advance so the
original drawing time is not important during playback, which is just a matter
of blitting the frame to the screen. A movie is not rendered in real-time; it is
simply a playback of previously rendered frames.

The second technique, drawing, erasing, and then redrawing, makes use of
different drawing modes supported by MATLAB. These modes allow faster
redrawing at the expense of some rendering accuracy, so you must consider
which mode to select.

This section provides an example of each technique. To see more sophisticated
demonstrations of these features, type demo at the MATLAB prompt and
explore the animation demonstrations.

Movies
You can save any sequence of plots and then play the sequence back in a short
movie. There are three steps to this process:

• Use moviein to initialize memory for a matrix large enough to hold the
specified number of frames based on the size of the current axis.

• Use getframe to generate each movie frame, which it returns as a column
vector you can then build into a movie matrix.

• Use movie to run the movie the specified number of times at the specified
rate.

Visualizing an FFT
This example illustrates the use of movies to visualize the quantity
fft(eye(n)), which is a complex n-by-n matrix whose elements are various
powers of the nth root of unity, exp(i*2*pi/n).
4-45

4 Specialized Graphs

4-4
Creating the Movie
The first step in creating a movie is to initialize the movie matrix. However,
before calling moviein, you need to create an axes the same size as the one that
will display the movie. Since this example displays data equally spaced around
the unit circle, use the axis equal command to set the aspect ratio of the axes.

Call moviein to create a matrix large enough to hold the 16 frames that
compose this movie. This step is not required, but if you do not initialize M, the
code (but not the movie) runs more slowly because the storage for M is
reallocated each time a new column is appended. Note that the axis equal
statement must precede the M = moviein(16); statement to ensure MATLAB
initializes M to the correct dimensions.

axis equal
M = moviein(16);
set(gca,'NextPlot','replacechildren')
for j = 1:16
 plot(fft(eye(j+16)))
 M(:,j) = getframe;
end

The statement,

set(gca,'NextPlot','replacechildren')

prevents the plot function from resetting the axis shaping to axis normal each
time it is called. See the axes function in the online MATLAB Function
Reference for more information about the NextPlot property.

The getframe function with no arguments returns a pixel snapshot of the
current Axes in the current Figure. Each frame consists of byte-oriented data
packed into a MATLAB column vector. The complexity of the plot does not
affect the length of the column required, but the size of the current window
does. Larger windows require more storage.

Note that getframe returns the contents of the current Axes, exclusive of the
axis labels, title, or tick labels. getframe(gcf) captures the entire interior of
the current Figure window.

If you plan to convert the MATLAB movie to another format (such as Quick-
Time) and you want to include the axis labels in this new format, you should
capture the Figure, not just the Axes. If you are using moviein to pre-allocate
6

Animation
the movie matrix, be sure to specify the same Figure handle that you use with
getframe.

Running the Movie
After generating the movie, you can play it back any number of times. To play
it back 30 times, type

movie(M,30)

You can readily generate and smoothly play back movies with a few dozen
frames on most computers. Longer movies require large amounts of primary
memory or a very effective virtual memory system.

See the movie function in the online MATLAB Function Reference for
information on other options.

Full-Figured Movies
If you want to capture the contents of the entire Figure window (for example,
to include Uicontrols in the movie), specify the Figure’s handle with both the
moviein and getframe commands. For example, supose you want to add a
slider to indicate the value of j in the previous example.

axis equal
M = moviein(16,gcf);
set(gca,’NextPlot’,’replacechildren’)
h = uicontrol(‘style’,’slider’,’position’,...
 [100 10 500 20],’Min’,1,’Max’,16)
for j = 1:16
 plot(fft(eye(j+16)))
 set(h,’Value’,j)
 M(:,j) = getframe(gcf);
end
clf; axes(‘Position’,[0 0 1 1]); movie(M,30)

Erase Modes
You can select the method MATLAB uses to redraw graphics objects. One event
that causes MATLAB to redraw an object is changing the properties of that
object. You can take advantage of this behavior to create animated sequences.
A typical scenario is to draw a graphics object, then change its position by
4-47

4 Specialized Graphs

4-4
respecifying the x-, y,- and z-coordinate data by a small amount with each pass
through a loop.

You can create different effects by selecting different erase modes. This section
illustrates how to use the three modes that are useful for dynamic redrawing:

• none – MATLAB does not erase the objects when it is moved.

• background – MATLAB erases the object by redrawing it in the background
color. This mode erases the object and anything below it (such as grid lines).

• xor – This mode erases only the object and is usually used for animation.

All three modes are faster (albeit less accurate) than the normal mode used by
MATLAB.

Example
It is often interesting and informative to see 3-D trajectories develop in time.
This example involves chaotic motion described by a nonlinear differential
equation known as the Lorenz strange attractor. It can be written

in the form

with a vector valued function y(t) and a matrix A, which depends upon y:

The solution orbits about two different attractive points without settling into a
steady orbit about either. This example approximates the solution with the
simplest possible numerical method – Euler’s method with fixed step size.The

yd
td

------- Ay=

A y()

8
3
---– 0 y 2()

0 10– 10
y 2()– 28 1–

=

8

Animation
result is not very accurate, but it has the same qualitative behavior as other
methods.

A = [−8/3 0 0; 0 −10 10; 0 28 −1];
y = [35 −10 −7]’;
h = .01;
p = plot3(y(1),y(2),y(3),'.', ...

'EraseMode','none','MarkerSize',5);
axis([0 50 -25 25 -25 25])
hold on
for i=1:4000

A(1,3) = y(2);
A(3,1) = −y(2);
ydot = A*y;
y = y + h*ydot;
set(p,'XData',y(1),'YData',y(2),'ZData',y(3))
drawnow
i=i+1;

end

The plot3 statement sets EraseMode to none, indicating that the points already
plotted should not be erased when the plot is redrawn. In addition, the handle
of the plot object is saved. Within the for loop, a set statement references the
plot object and changes its internally stored coordinates for the new location.

This plot statement sets
the EraseMode to
none.

This set statement moves the
object by changing the coordi-
nate data.
4-49

4 Specialized Graphs

4-5
While this manual cannot show the dynamically evolving output, the following
picture shows a static snapshot.

Note that, as far as MATLAB is concerned, the graph created by this example
contains only one dot. What you see on the screen are remnants of previous
plots that MATLAB has been instructed not to erase. The only way to print this
graph from MATLAB is with a screen capture. You can use the capture
command to generate a MATLAB Image of the Figure window contents.

0
10

20
30

40
50

−20

−10

0

10

20

−20

−10

0

10

20
0

Animation
Background Erase Mode. To see the effect of EraseMode background, add these
statements to the previous program:

p = plot3(y(1),y(2),y(3),'square', ...
'EraseMode','background','MarkerSize',10,...
'MarkerEdgeColor',[1 .7 .7],'MarkerFaceColor',[1 .7 .7]);

for i=1:4000
A(1,3) = y(2);
A(3,1) = -y(2);
ydot = A*y;
y = y + h*ydot;
set(p,'XData',y(1),'YData',y(2),'ZData',y(3))
drawnow
i=i+1;

end
hold off

Since hold is still on, this code erases the previously created graph by setting
the EraseMode property to background and changing the marker to a “pink
eraser” (a square marker colored pink).

Xor Erase Mode. If you change the EraseMode of the first plot3 statement from
none to xor, you will see a moving dot (Marker '.') only. Xor mode is used to
create animations where you do not want to leave remnants of previous
graphics on the screen.

Additional Examples
The MATLAB demo, lorenzshow, provides a more accurate numerical
approximation, and a more elaborate display of Lorenz strange attractor
example. Other MATLAB demos illustrate animation techniques.

See the Handle Graphics chapter of this manual for more information on
manipulating object properties.

See the line function in the online MATLAB Function Reference for a
description of its EraseMode property.

This plot statement sets
the EraseMode to
background.
4-51

4 Specialized Graphs

4-5
2

Overview . 5-2

Image Types . 5-3
Indexed Images . 5-3
Intensity Images 5-3
Truecolor Images 5-4
Summary of Image Types and Display Methods 5-5

Working with 8-Bit Images 5-6
8-Bit Indexed Images 5-6
8-Bit Intensity Images 5-7
8-Bit Truecolor Images 5-7
Summary of Image Types and Numeric Class 5-8
Other 8-Bit Array Support 5-9

Controlling Aspect Ratio and Display Size 5-10
Printing Images 5-13

The Image Object and its Properties 5-14
CData. .5-14
CDataMapping5-14
XData and YData5-15
EraseMode. .5-17

Reading and Writing Image Files 5-19
5

Images

5 Images
Overview
MATLAB provides commands for displaying several types of images, including
indexed images, intensity images, and truecolor images. These commands all
create a Handle Graphics Image object, whose properties can be adjusted to
fine-tune the appearance of the image.

MATLAB supports two different numeric classes for image display: double-pre-
cision floating-point (double) and 8-bit unsigned integer (uint8). The image
display commands interpret data values differently depending on the numeric
class.

MATLAB reads and writes image data in several different graphics file for-
mats, including TIFF, JPEG, BMP, PCX, XWD, and HDF.

Functions discussed in this chapter include:

See the online MATLAB Function Reference to view the entries for these func-
tions. See also the Image Processing Toolbox, a separate product option that
includes a comprehensive collection of additional image processing tools.

Function Purpose

image Display image (create image object)

imagesc Scale data and display as image

imread Read image from graphics file

imwrite Write image to graphics file

imfinfo Get image information from graphics file

axis Plot axis scaling and appearance
5-2

Image Types
Image Types
In MATLAB an image consists of a data matrix and possibly a colormap
matrix. There are three basic image types that differ in the way that data
matrix elements are interpreted as pixel colors:

• In an indexed image, data matrix elements are interpreted as indices into
the colormap matrix.

• In an intensity image, data matrix elements contain values that span a given
range of intensities, typically [0, 1] or [0, 255]. Values within the range are
linearly scaled to form colormap indices.

• In a truecolor image, a three-dimensional data array has dimensions
m-by-n-by-3. The third dimension is used to store red, green, and blue color
information for each individual pixel. No colormap is used.

Indexed Images
An indexed image consists of a data matrix, X, and a colormap matrix, map. The
colormap is an m-by-3 array containing floating-point values in the range
[0, 1]. Each row of map specifies the red, green, and blue components of a single
color. The color of each image pixel is determined by using the corresponding
value of X as an index into map. The value 1 points to the first row in map, the
value 2 points to the second row, and so on. You can display an indexed image
with the statements:

image(X); colormap(map)

Intensity Images
An intensity image is a data matrix, I, whose values represent intensities
within some range. For double-precision data the intensity range is typically
[0, 1], where 0 represents black, 1 represents white, and values in between rep-
resent intermediate shades of gray. Use the two-input form of imagesc to dis-
play an intensity image:

imagesc(I,[0 1]); colormap(gray);

The second input argument to imagesc specifies the desired intensity range.
The function imagesc displays I by mapping the first value in the range (usu-
ally 0) to the first colormap entry, and the second value (usually 1) to the last
5-3

5 Images
colormap entry. Values in between are linearly distributed throughout the
remaining colormap colors.

Although it is conventional to display intensity images using a grayscale col-
ormap, it is possible to use other colormaps. For example, the following state-
ments display the intensity image I in shades of blue and green:

imagesc(I,[0 1]); colormap(winter)

To display a matrix A with an arbitrary range of values as an intensity image,
use the single-argument form of imagesc. With one input argument, imagesc
maps the minimum value of the data matrix to the first colormap entry, and
maps the maximum value to the last colormap entry. For example, these two
lines are equivalent:

imagesc(A); colormap(gray)
imagesc(A,[min(A(:)) max(A(:))]); colormap(gray)

Truecolor Images
A truecolor image, sometimes called an RGB image, is an m-by-n-by-3 data
array that defines red, green, and blue color components for each individual
pixel. Each color component is a value between 0 and 1. A pixel whose color
components are (0,0,0) displays as black, and a pixel whose color components
are (1,1,1) displays as white. The three color components for each pixel are
stored along the third dimension of the data array. For example, if RGB is a true-
color image, then the red, green, and blue color components of the pixel (10,5)
are stored in RGB(10,5,1), RGB(10,5,2), and RGB(10,5,3), respectively.

To display the truecolor image RGB, use the image function:

image(RGB)

If MATLAB is running on a computer that does not have hardware support for
truecolor image display, then MATLAB uses color approximation and dith-
ering to display an approximation of the image. See the "Dithering Truecolor
on Indexed Color Systems" section in the Figures chapter for more informa-
tion.
5-4

Image Types
Summary of Image Types and Display Methods
This table summarizes display methods for the three types of images:

Image Type Display Commands Uses Colormap
Colors

Indexed image(X); colormap(map) Yes

Intensity imagesc(I,[0 1]); colormap(gray) Yes

Truecolor image(RGB) No
5-5

5 Images
Working with 8-Bit Images
MATLAB usually works with double-precision (64-bit) floating-point numbers.
However, to reduce memory requirements for working with images, MATLAB
provides limited support for storing images as 8-bit unsigned integers with the
numeric class uint8. An image whose data matrix has class uint8 is called an
8-bit image.

The image function can display 8-bit images directly without converting them
to double precision. However, image interprets matrix values slightly differ-
ently when the image matrix is uint8. The specific interpretation depends on
the image type.

8-Bit Indexed Images
If the class of X is uint8, its values are offset by one before being used as col-
ormap indices. The value 0 points to the first row of the colormap, the value 1
points to the second row, and so on. The image command automatically sup-
plies the proper offset, so the display method is the same whether X is double
or uint8:

image(X); colormap(map)

The colormap index offset for uint8 data is intended to support standard
graphics file formats, which typically store image data in indexed form with a
256-length colormap. The offset allows you to manipulate and display images
of this form in MATLAB using the more memory-efficient uint8 arrays.

Because of the offset, you must add 1 to convert a uint8 indexed image to
double. For example:

X64 = double(X8) + 1;

Conversely, subtract 1 to convert a double indexed image to uint8:

X8 = uint8(X64 – 1);

The order of operations must be as shown, because you cannot perform math-
ematical operations on uint8 arrays.
5-6

Working with 8-Bit Images
8-Bit Intensity Images
The range of 8-bit intensity ranges is usually [0, 255] rather than [0, 1]. Use
this command to display an 8-bit intensity image with a grayscale colormap:

imagesc(I,[0 255]); colormap(map)

To convert an intensity image from double to uint8, first multiply by 255:

I8 = uint8(round(I64*255));

Conversely, divide by 255 after converting a uint8 intensity image to double:

I64 = double(I8)/255;

8-Bit Truecolor Images
The color components of an 8-bit truecolor image are integers in the range
[0, 255] rather than floating-point values in the range [0, 1]. A pixel whose color
components are (255,255,255) displays as white. The image command displays
a truecolor image correctly whether its class is double or uint8:

image(RGB)

To convert a truecolor image from double to uint8, first multiply by 255:

RGB8 = uint8(round(RGB64*255));

Conversely, divide by 255 after converting a uint8 truecolor image to double:

RGB64 = double(RGB8)/255
5-7

5 Images
Summary of Image Types and Numeric Class
This table summarizes the way MATLAB interprets data matrix elements as
pixel colors, depending on the image type and data class:

Image Type double Data uint8 Data

Indexed Image is an m-by-n array of
integers in the range [1, p].

Colormap is a p-by-3 array
of floating-point values in
the range [0, 1].

Image is an m-by-n array of
integers in the range
 [0, p – 1].

Colormap is a p-by-3 array
of floating-point values in
the range [0, 1].

Intensity Image is an m-by-n array of
floating-point values that
are linearly scaled by
MATLAB to produce col-
ormap indices. The typical
range of values is [0, 1].

Colormap is a p-by-3 array
of floating-point values in
the range [0, 1] and is typi-
cally grayscale.

Image is an m-by-n array of
integers that are linearly
scaled by MATLAB to pro-
duce colormap indices. The
typical range of values is
[0, 255].

Colormap is a p-by-3 array
of floating-point values in
the range [0, 1] and is typi-
cally grayscale.

Truecolor Image is an m-by-n-by-3
array of floating-point
values in the range [0, 1].

Image is an m-by-n-by-3
array of integers in the
range [0, 255].
5-8

Working with 8-Bit Images
Other 8-Bit Array Support
In addition to image display, MATLAB supports several other operations on
uint8 arrays, including:

• Reading graphics file data into MATLAB as uint8 arrays using imread

• Indexing into uint8 arrays using standard MATLAB subscripting

• Reshaping, reordering, and concatenating arrays using the functions
reshape, cat, permute, and the [] and ' operators

• Saving and loading uint8 arrays in MAT-files using save and load

• Locating the indices of nonzero elements in uint8 arrays using find

Mathematical operators and functions are not supported on uint8 arrays. To
perform any mathematical computations on a uint8 array, first convert it to
double precision using the double function.
5-9

5 Images
Controlling Aspect Ratio and Display Size
The image function displays the image in a default-sized Figure and Axes.
MATLAB stretches or shrinks the image to fit the display area. Sometimes you
want the aspect ratio of the display to match the aspect ratio of the image data
matrix. The easiest way to do this is with the command axis image.

For example, these commands display the earth image in the demos directory
using the default Figure and Axes positions:

load earth
image(X); colormap(map)

50 100 150 200 25

50

100

150

200

250
5-10

Controlling Aspect Ratio and Display Size
The somewhat elongated globe results from stretching the image display to fit
the axes position. Use the axis image command to force the aspect ratio to be
one-to-one:

axis image

The command axis image works by setting the DataAspectRatio property of
the Axes object to [1 1 1]. See the online MATLAB Function Reference entries
for the axis and axes commands for more information on how to control the
appearance of Axes objects.

Sometimes you may want to display an image so that each element in the data
matrix corresponds to a single screen pixel. To display an image with this
one-to-one matrix-element-to-screen-pixel mapping, you need to resize the

50 100 150 200 250

50

100

150

200

250
5-11

5 Images
Figure and Axes. For example, these commands display the earth image so
that one data element corresponds to one screen pixel:

[m,n] = size(X);
figure('Units','pixels','Position',[100 100 n m])
image(X); colormap(map)
set(gca,'Position',[0 0 1 1])

The Figure’s Position property is a four-element vector that specifies the
Figure's location on the screen as well as its size. The second statement above
positions the Figure so that its lower-left corner is at position (100,100) on the
screen and so that its width and height match the image width and height. Set-
ting the Axes position to [0 0 1 1] in normalized units creates an Axes that fills
the Figure. The resulting picture is:
5-12

Controlling Aspect Ratio and Display Size
Printing Images
When you set the Axes Position to [0 0 1 1] so that it fills the entire figure,
the aspect ratio will not be preserved when you print because MATLAB adjusts
the Figure size when printing according to the Figure’s PaperPosition prop-
erty. To preserve the image aspect ratio when printing, set the Figure’s
PaperPositionMode to 'auto' from the command line:

set(gcf,'PaperPositionMode','auto')
print

When PaperPositionMode is set to 'auto', the width and height of the printed
Figure are determined by the Figure’s dimensions on the screen, and the
Figure position is adjusted to center the Figure on the page. If you want the
default value of PaperPositionMode to be 'auto', enter this line in your
startup.m file:

set(0,'DefaultFigurePaperPositionMode','auto')
5-13

5 Images
The Image Object and its Properties
The commands image and imagesc create Image objects. Image objects are chil-
dren of Axes objects, as are Line, Surface, Patch, and Text objects. Like all
Handle Graphics objects, the Image object has a number of properties you can
set to fine-tune its appearance on the screen. The most important properties of
the Image object with respect to appearance are CData, CDataMapping, XData,
YData, and EraseMode. You can find detailed information about all the proper-
ties of the Image object in the online MATLAB Function Reference in the entry
for the image command.

CData
The CData property of an Image object contains the data array. In the com-
mands below, h is the handle of the Image object created by image, and the
matrices X and Y are the same.

h = image(X); colormap(map)
Y = get(h,'CData');

The dimensionality of the CData array controls whether MATLAB displays the
image using colormap colors or as a truecolor image. If the CData array is
two-dimensional, then the image is either an indexed image or an intensity
image, and in either case the image is displayed using colormap colors. If, on
the other hand, the CData array is m-by-n-by-3, then MATLAB displays it as a
truecolor image, ignoring the colormap colors.

CDataMapping
The CDataMapping property controls whether an image is indexed or intensity.
An indexed image is displayed by setting the CDataMapping property to
'direct', in which case the values of the CData array are used directly as
indices into the Figure's colormap. When the image command is used with a
single input argument, it sets the value of CDataMapping to 'direct':

h = image(X); colormap(map)
get(h,'CDataMapping')
ans =

direct
5-14

The Image Object and its Properties
Intensity images are displayed by setting the CDataMapping property to
'scaled'. In this case the CData values are linearly scaled to form colormap
indices. The scale factors are controlled by the Axes CLim property. The
imagesc function creates an Image object whose CDataMapping property is set
to 'scaled', and it also adjusts the CLim property of the parent Axes. For
example:

h = imagesc(I,[0 1]); colormap(map)
get(h,'CDataMapping')
ans =

scaled

get(gca,'CLim')
ans =

[0 1]

See the "Color Axis Scaling" section in the Three-Dimensional Graphs chapter
or the "Axes Color Limits – The CLim Property" section in the Axes chapter for
more information.

XData and YData
The XData and YData properties control the coordinate system of the image. For
an m-by-n image, the default XData is [1 n] and the default YData is [1 m].
These settings imply the following:

• The left column of the image has an x-coordinate of 1

• The right column of the image has an x-coordinate of n

• The top row of the image has a y-coordinate of 1

• The bottom row of the image has a y-coordinate of m
5-15

5 Images
For example, the statements:

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];
h = image(X); colormap(colorcube(12))
xlabel x; ylabel y

produce the picture:

The XData and YData properties of the resulting Image object have the default
values:

get(h,'XData')
ans =

 1 4

get(h,'YData')
ans =

 1 3

x

y

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5
5-16

The Image Object and its Properties
However, you can override the default settings to specify your own coordinate
system. For example, the statements:

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];
image(X,'XData',[−1 2],'YData',[2 4]); colormap(colorcube(12))
xlabel x; ylabel y

produce the picture:

EraseMode
The EraseMode property controls how MATLAB updates the image on the
screen if the Image object's CData property changes. The default setting of
EraseMode is 'normal'. With this setting, if you change the CData of the Image
object using the set command, MATLAB erases the image on the screen before
redrawing the image using the new CData array. The erase step is a problem if
you want to display a series of images quickly and smoothly.

You can achieve fast and visually smooth updates of displayed images as you
change the image CData by setting the Image object EraseMode property to
'none'. With this setting, MATLAB does not take the time to erase the dis-

x

y

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

1.5

2

2.5

3

3.5

4

4.5
5-17

5 Images
played image; rather, it immediately draws the updated image when the CData
changes.

Suppose, for example, that you have an m-by-n-by-3-by-x array A, containing x
different truecolor images of the same size. You can display them dynamically
with:

h = image(A(:,:,:,1),'EraseMode','none');
for i = 2:x
 set(h,'CData',A(:,:,:,i))
 drawnow
end

Rather than creating a new Image object each time through the loop, this code
simply changes the CData of the Image object created on the first line. The
drawnow command causes MATLAB to update the display with each pass
though the loop. Because the image EraseMode is set to 'none', changes to the
CData do not cause the image on the screen to erase each time through the loop,
resulting in faster and smoother rendering.
5-18

Reading and Writing Image Files
Reading and Writing Image Files
MATLAB provides functions for reading and writing image data from several
graphics file formats, including:

• Microsoft Windows Bitmap (BMP)

• Hierarchical Data Format (HDF)

• Joint Photographic Experts Group (JPEG)

• Paintbrush (PCX)

• Tagged Image File Format (TIFF)

• X Window Dump (XWD)

The function imread reads an image from a file in any of these formats.
Depending on the particular format, imread can read indexed, intensity, or
truecolor images.

• If the file contains an intensity image, imread reads the data into an m-by-n
matrix of class uint8.

• If the file contains an indexed image, imread reads the data into an m-by-n
matrix of class uint8 and converts the associated colormap into a double-pre-
cision matrix with values in the range [0, 1].

• If the file contains a truecolor image, imread reads the data into an
m-by-n-by-3 array of class uint8.
5-19

5 Images
This example shows how to read and display a 24-bit image from a JPEG file*:

RGB = imread('ngc6543a.jpg');
figure('Position',[100 100 size(RGB,2) size(RGB,1)]);
image(RGB); set(gca,'Position',[0 0 1 1])

* This image was created with support to the Space Telescope Science Institute, oper-
ated by the Association of Universities for Research in Astronomy, Inc., from
NASA contract NAS5-26555, and is reproduced with permission from AURA/
STScI. Digital renditions of images produced by AURA/STScI are obtainable roy-
alty-free. Credits: J.P. Harrington and K.J. Borkowski (University of Maryland),
and NASA.
5-20

Reading and Writing Image Files
You can save image data using the imwrite function. The statements

load clown
imwrite(X,map,'clown.bmp')

create a BMP file containing the clown image.

The function imwrite automatically converts double-precision data to 8-bit
data in the appropriate way, depending on whether the image is indexed,
intensity, or truecolor.

See the imread and imwrite entries in the online MATLAB Function Reference
for more information.

Obtaining Information About Graphics Files
The imfinfo function enables you to obtain information about graphics files
that are in any of the standard formats listed above. The information you
obtain depends on the type of file, but it always includes at least the following:

• Name of the file, including the directory path if the file is not in the current
directory

• File format

• Version number of the file format

• File modification date

• File size in bytes

• Image width in pixels

• Image height in pixels

• Number of bits per pixel

• Image type: truecolor, grayscale (intensity), or indexed

See the imfinfo entry in the online MATLAB Function Reference for more
information.
5-21

5 Images
5-22

Introduction to Patches. 6-2
Defining Patches 6-2
Behavior of the patch Function 6-4

Patches with Multiple Faces. 6-6
Example – Multifaceted Patch 6-6

Patch Coloring. 6-11
Face and Edge Coloring 6-12
Interpreting Color Data 6-14
Interpolating in Indexed vs. Truecolor 6-18
6

3-D Modeling

6 3-D Modeling
Introduction to Patches
A Patch graphics object is composed of one or more polygons that may or may
not be connected. Patches are useful for modeling real-world objects such as
airplanes or automobiles, and for drawing 2- or 3-D polygons of arbitrary
shape. In contrast, Surfaces objects are rectangular grids of quadrilaterals and
are better suited for displaying planar topographies such as the values of some
mathematical functions, the contours of data in a rectangular plane, or
parameterized surfaces such as a sphere.

There are three MATLAB functions that create Patch objects – fill, fill3,
and patch. See the online MATLAB Function Reference for a description of
these functions and examples of how to use them. This section concentrates on
use of patch function since it provides capabilities not supported by the fill
and fill3 functions.

Defining Patches
You define a Patch by specifying the coordinates of its vertices and some form
of color data. Patches support a variety of coloring options that are useful for
visualizing data superimposed on geometric shapes.

There are two ways to specify a Patch:

• By specifying the coordinates of the vertices of each polygon, which MATLAB
connects to form the Patch

• By specifying the coordinates of each unique vertex and a matrix that
specifies how to connect these vertices to form the faces

The second technique is preferred for multifaceted Patches since it generally
requires less data to define the Patch. This is because vertices shared by more
than one face need be defined only once. This chapter provides examples of both
techniques.

Single Polygons
A polygon is simply a Patch with one face. To create a polygon, specify the
coordinates of the vertices and color data with a statement of the form:

patch(x-coordinates,y-coordinates,[z-coordinates],colordata)
6-2

Introduction to Patches
For example, these statements display a 10-sided polygon with a yellow face
enclosed by a black edge:

t = 0:pi/5:2*pi;
patch(sin(t),cos(t),'y')

The axis equal com-
mand produces a correctly
proportioned polygon.

axis equal

The first and last vertices need not coincide; MATLAB automatically closes
each polygonal face of the Patch. In fact, it is generally better to define each
vertex only once, particularly if you are using interpolated face coloring.

You can control many aspects of the Patch coloring. For example, instead of
specifying a single color, you can provide a range of numerical values that map
the color at each vertex to a color in the Figure colormap:

a = t(1:length(t)−1)
patch(sin(a),cos(a),1:length(a),’FaceColor’,’interp’)
colormap cool;
axis equal

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

This statement removes the redun-
dant vertex definition.
6-3

6 3-D Modeling
MATLAB now interpolates the colors across the face of the Patch. You can color
the edges of the Patch the same way, by setting the edge colors to be
interpolated. The command is:

patch(sin(t),cos(t),1:length(t),'EdgeColor','interp')

The “Patch Coloring” section provides more information on options for coloring
Patches.

Behavior of the patch Function
There are two forms of the patch function – informal syntax and formal syntax.
The behavior of the patch function differs somewhat depending on which
syntax you use. When you use the informal syntax (as in the previous
examples), MATLAB automatically determines how to color each face based on
the color data you specify. The informal syntax enables you to omit the
property names for the x-, y-, and z-coordinates and the color data, as long as
you specify these arguments in the correct order:

patch(x-coordinates,y-coordinates,z-coordinates,colordata)Informal syntax
6-4

Introduction to Patches
However, you must specify color data so MATLAB can determine what type of
coloring to use. If you do not specify color data, MATLAB returns an error:

patch(sin(t),cos(t))
??? Error using ==> patch
Not enough input arguments.

The formal syntax accepts only property name/property value pairs as
arguments and does not automatically color the faces unless you also change
the value of the FaceColor property. For example, the statement

patch('XData',sin(t),'YData',cos(t))

draws a Patch with white face color because the factory default value for the
FaceColor property is the color white:

get(0,'FactoryPatchFaceColor')
ans =
 1 1 1

See the online MATLAB Function Reference for a description of the patch
function and a list of Patch object properties. Also see the description of the get
function for information on how to obtain the factory and user default values
for properties.

Interpreting the Color Argument
When you use the informal syntax, MATLAB interprets the third (or fourth if
there are z-coordinates) argument as color data. If you intend to define a Patch
with x-, y-, and z-coordinates, but leave off the color, MATLAB interprets the
z-coordinates as color data, and then draws a 2-D Patch. For example,

h = patch(sin(t),cos(t),1:length(t))

draws a Patch with all vertices at z = 0, colored by interpolating the vertex
colors (since there is one color for each vertex), whereas

h = patch(sin(t),cos(t),1:length(t),'y')

draws a Patch with vertices at increasing values of z, colored yellow.

The “Patch Coloring” section of this chapter provides more information on
Patch coloring options.

Formal syntax
6-5

6 3-D Modeling
Patches with Multiple Faces
If you specify the x-, y-, and z-coordinate arguments as vectors, MATLAB draws
a single polygon by connecting the points. If the arguments are matrices,
MATLAB draws one polygon per column, producing a single Patch with
multiple faces. These faces need not be connected and can be self intersecting.

Alternatively, you can specify the coordinates of each unique vertex and the
order in which to connect them to form the faces. The following example
illustrates both techniques.

Example – Multifaceted Patch
A cube is defined by eight vertices that form six sides. This illustration shows
the coordinates of the vertices defining a cube in which the sides are one unit
in length:

Each of the six faces has four vertices. Since you do not need to close each
polygon (i.e., the first and last vertices do not need to be the same), you can
define this cube using a 4-by-6 matrix for each of the x-, y-, and z-coordinates.

0, 0, 0

1, 0, 0

0, 1, 0

0, 0, 1

0, 1, 1

1, 0, 1

1, 1, 1

y

x

z

1, 1, 0

Face 1
6-6

Patches with Multiple Faces
Each column of the matrices specifies a different face. Note that while there are
only eight vertices, you must specify 24 vertices to define all six faces. Since
each face shares vertices with four other faces, you can define the Patch more
efficiently by defining each vertex only once and then specifying the order in
which to connect these vertices to form each face. The Patch Vertices and
Faces properties define Patches in just this way.

Specifying Faces and Vertices
These matrices specify the cube using Vertices and Faces:

Using the vertices/faces technique can save a considerable amount of computer
memory when Patches contain a large number of faces. This technique requires

x-coordinates

0 1 1 0 0 0

1 1 0 0 1 1

1 1 0 0 1 1

0 1 1 0 0 0

y-coordinates

0 0 1 1 0 0

0 1 1 0 0 0

0 1 1 0 1 1

0 0 1 1 1 1

z-coordinates

0 0 0 0 0 1

0 0 0 0 0 1

1 1 1 1 0 1

1 1 1 1 0 1

Face 1

Vertices

x y z

0 0 0

1 0 0

1 1 0

0 1 0

0 0 1

1 0 1

1 1 1

0 1 1

Faces

1 2 6 5

2 3 7 6

3 4 8 7

4 1 5 8

1 2 3 4

5 6 7 8

This data draws the first face by
connecting vertices 1, 2 ,6, and 5
in that order.

1st vertex

2nd vertex

5th vertex

6th vertex

.

.

.

6-7

6 3-D Modeling
the formal patch function syntax, which entails assigning values to the
Vertices and Faces properties explicitly. For example,

patch('Vertices',vertex_matrix,'Faces',faces_matrix)

Since the formal syntax does not automatically assign face or edge colors, you
must set the appropriate properties to produce Patches with colors other than
the default white face color and black edge color.

Flat Face Color
Flat face color is the result of specifying one color per face. For example, using
the vertices/faces technique and the FaceVertexCData property to define color,
this statement specifies one color per face and sets the FaceColor property to
flat:

patch('Vertices',vertex_matrix,'Faces',faces_matrix,...
 'FaceVertexCData',hsv(6),'FaceColor','flat')

Since true color specified with the FaceVertexCData property has the same
format as a MATLAB colormap (i.e., an n-by-3 array of RGB values), this
example uses the hsv colormap to generate the six colors required for flat
shading.
6-8

Patches with Multiple Faces
Interpolated Face Color
Interpolated face color means the vertex colors of each face define a transition
of color from one vertex to the next. To interpolate the colors between vertices,
you must specify a color for each vertex and set the FaceColor property to
interp:

patch('Vertices',vertex_matrix,'Faces',faces_matrix,...
 'FaceVertexCData',hsv(8),'FaceColor','interp')

Changing to the standard 3-D view and making the axis square,

view(3); axis square

produces a cube with each face colored by interpolating the vertex colors.

To specify the same coloring using the x, y, z, c technique, c must be an
m-by-n-by-3 array, where the dimensions of x, y, and z are m-by-n.
6-9

6 3-D Modeling
This diagram shows the correspondence between the FaceVertexCData and
CData properties.

The next section discusses Patch coloring in more detail.

FaceVertexCData =

1.00 0.00 0.00

1.00 0.75 0.00

0.50 1.00 0.00

0.00 1.00 0.25

0.00 1.00 1.00

0.00 0.25 1.00

0.50 0.00 1.00

1.00 0.00 0.75

Red Green Blue

CData(:,:,1) =

1.00 1.00 0.50 0.00 1.00 0.00

1.00 0.50 0.00 1.00 1.00 0.00

0.00 0.50 1.00 0.00 0.50 0.50

0.00 0.00 0.50 1.00 0.00 1.00

CData(:,:,2) =

0.00 0.75 1.00 1.00 0.00 1.00

0.75 1.00 1.00 0.00 0.75 0.25

0.25 0.00 0.00 1.00 1.00 0.00

1.00 0.25 0.00 0.00 1.00 0.00

CData(:,:,3) =

0.00 0.00 0.00 0.25 0.00 1.00

0.00 0.00 0.25 0.00 0.00 1.00

1.00 1.00 0.75 1.00 0.00 1.00

1.00 1.00 1.00 0.75 0.25 0.75

Red page

Green page

Blue page
6-10

Patch Coloring
Patch Coloring
Patch objects employ a coloring scheme that is basically different from that
used by Surface objects in that Patches do not automatically generate color
data based on the value of the z-coordinate at each vertex. You must explicitly
specify Patch coloring, or MATLAB uses the default white face color and black
edge color.

Patch coloring methods provide a means to display pictures of real-world
objects with information superimposed on them through the use of color. An
example of this is an airplane wing colored so as to indicate the air pressure
across its surface.

The following table summarizes the Patch properties that control color
(exclusive of those used when light sources are present). See patch in the
online MATLAB Function Reference for a more detailed discussion of Patch
properties.

Property Purpose

CData Specify single, per face, or per vertex colors in
conjunction with x, y, and z data.

CDataMapping Specifies whether color data is scaled or used
directly as indices into the Figure colormap.

FaceVertexCData Specify single, per face, or per vertex colors in
conjunction with faces and vertices data.

EdgeColor Edges can be invisible, a single color, a flat
color determined by vertex colors, or interpo-
lated colors determined by vertex colors.

FaceColor Faces can be invisible, a single color, a flat
color determined by vertex colors, or interpo-
lated colors determined by vertex colors.

MarkerEdgeColor The color of the marker, or the edge color for
filled markers.

MarkerFaceColor The fill color for markers that are closed
shapes.
6-11

6 3-D Modeling
See “Coloring Mesh and Surface Plots” in the Building 3-D Graphs chapter for
information on surface coloring.

Face and Edge Coloring
You can specify Patch face coloring by defining:

• A single color for all faces

• One color for each face, which is used for flat coloring

• One color for each vertex, which is used for interpolated coloring

Specify the face color using either the CData property, if you are using x-, y-,
and z-coordinates or the FaceVertexCData property, if you are specifying
vertices and faces.

Each Patch face has a bounding edge, which you can color as:

• A single color for all edges

• A flat color defined by the color of the vertex that precedes the edge

• Interpolated colors determined by the two vertices that bound the edge

Note that Patch edge colors can be flat or interpolated only when you specify a
color for each vertex. For flat edge coloring, MATLAB uses the color of the
vertex preceding the edge to determine the color of the edge. The order in which
you specify the vertices establishes which vertex colors a particular edge.

For example, these statements create a square Patch:

v = [0 0 0;1 0 0;1 1 0;0 1 0];
f = [1 2 3 4];
fvc = [1 0 0;0 1 0;1 0 1;1 1 0];
patch('Vertices',v,'Faces',f,'FaceVertexCData',fvc,...
 'FaceColor','flat','EdgeColor','flat',...
 'Marker','o','MarkerFaceColor','flat')
6-12

Patch Coloring
The Faces property value, [1 2 3 4], determines the order in which MATLAB
connects the vertices. In this case, the order is red, green, magenta, and yellow.
If you change this order, the results can be quite different. For example,
specifying the Faces property as:

f = [4 3 2 1];

changes the order to yellow, magenta, green, and red. Note that changing the
order not only changes the color of the edges, but also the color of the face,
which is the color of the first vertex specified:

Shared Edges
Each Patch face is bound by edges, which are line segments that connect the
vertices. When Patches have multiple faces that share vertices, some of the
edges may overlap. In such cases, the edges of the most recently drawn face
overlay previously drawn edges.

Red Green

MagentaYellow

Red Green

MagentaYellow
6-13

6 3-D Modeling
For example, this illustration shows a Patch with four faces and flat colored
edges (FaceColor set to none, EdgeColor set to flat):

The arrows indicate the order each edge is drawn in the first, second, third, and
fourth face. The color at each vertex determines the color of the edge that
follows it. Notice how the second edge in the first face would be green except
that the second face drew its fourth edge from the magenta vertex. You can see
similar effects in all shared edges.

For EdgeColor set to interp, MATLAB interpolates colors between adjacent
vertices. In this case the order you specify the vertices does not affect the edge
color.

Interpreting Color Data
MATLAB interprets the color data in one of two ways:

• Indexed color data – numerical values that are mapped to colors defined in
the Figure colormap

• Truecolor data – RGB triples that define colors explicitly and do not make
use of the Figure colormap

The dimensions of the color data (CData or FaceVertexCData) determine how
MATLAB interprets it. If you specify only one numeric value per Patch, per
face, or per vertex, then MATLAB interprets the data as indexed. If there are
three numeric values per Patch, face, or vertex, then MATLAB interprets the
data as RGB values. See the description of the CData and FaceVertexCData
properties under the patch function in the online MATLAB Function Reference
for more information.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Magenta

1st 2nd

4th3rd

Green
[0 1 0]

[1 0 1]

Blue
[0 0 1]

Red
[1 0 0]

Green
[0 1 0]

Blue
[0 0 1]

Red
[1 0 0]

Cyan
[0 1 1]

Yellow
[1 1 0]
6-14

Patch Coloring
Indexed Color Data
MATLAB interprets indexed color data as either values to scale before
mapping to the colormap, or directly as indices into the colormap. You control
the interpretation by setting the CDataMapping Patch property. The default is
to scale the data.

Scaled Color. By default, MATLAB scales the color data so that the minimum
value maps to the first color in the colormap, the maximum value maps to the
last color in the colormap, and values in between are linearly transformed to
span the colormap. This enables you to use colormaps of different sizes without
changing your data and to use data in any range of values without changing
the colormap.

For example, the following Patch has eight triangular faces with a total of 24
(nonunique) vertices. The color data are integers that range from one to 24, but
could be any values.

The variable c contains the color data. It is a 3-by-8 matrix, with each column
specifying the colors for the three vertices of each face.

c =
 1 4 7 10 13 16 19 22
 2 5 8 11 14 17 20 23
 3 6 9 12 15 18 21 24

The color bar on the right side of the Patch illustrates the colormap used and
indicates with the vertical axis which color is mapped to the respective data
value:
6-15

6 3-D Modeling
See the caxis command
in the online MATLAB Func-
tion Reference for more
information.

You can alter the mapping of color data to colormap entry using the caxis
command. This command uses a two-element vector [cmin cmax] to specify
what data values map to the beginning and end of the colormap, thereby
shifting the color mapping.

By default, MATLAB sets cmin to the minimum value and cmax to the
maximum value of the color data of all graphics objects within the Axes.
However, you can set these limits to span any range of values and thereby shift
the color mapping. See the “Calculating Color Limits” section in the Axes
chapter for more information.

The color data does not need to be a sequential list of integers; it can be any
matrix with dimensions matching the coordinate data. For example,

patch(x,y,z,rand(size(z)))

Direct Color. If you set the Patch CDataMapping property to off,

set(patch_handle,'CDataMapping','off')

MATLAB interprets each color data value as a direct index into the colormap.
That is, a value of 1 maps to the first color, a value of 2 maps to the second color,
and so on.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
CDataScaling = on

2

4

6

8

10

12

14

16

18

20

22

24

The Colorbar function d
plays the colormap to the rig
the Patch.

CDataMapping = on
6-16

Patch Coloring
The Patch from the previous example would then use only the first 24 colors in
the colormap.

This example uses integer color data. However, if the values are not integers,
MATLAB converts them according to these rules:

• If value is < 1, it maps to the first color in the colormap.

• If value is not an integer, it is rounded to the nearest integer towards zero.

• If value > length(colormap), it maps to the last color in the colormap.

Unscaled color data is more commonly used for images where there is typically
a colormap associated with a particular image.

Truecolor Patches
Truecolor is a means to specify a color explicitly with RGB values rather than
pointing to an entry in the Figure colormap. Truecolor generally provides a
greater range of colors than can be defined in a colormap.

Using truecolor eliminates the mapping of data to colormap entries. On the
other hand, you cannot change the coloring of the Patch without redefining the
color data (as opposed to just changing the colormap).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
CDataScaling = off

10

20

30

40

50

60

CDataMapping = off
6-17

6 3-D Modeling
You can use truecolor on computers that do not have true color (24-bit)
displays. In this case, MATLAB uses a special colormap designed to produce
results that are as close as possible with the limited number of colors available.
See the “Properties That Control Colors on Pseudocolor Displays” section in the
Figure chapter for more information.

Interpolating in Indexed vs. Truecolor
When you specify interpolated face coloring, MATLAB determines the color of
each face by interpolating the vertex colors. The method of interpolation
depends on whether you specified truecolor data or indexed color data.

With truecolor data, MATLAB interpolates the numeric RGB values defined
for the vertices. This generally produces a smooth variation of color across the
face. In contrast, indexed color interpolation uses only colors that are defined
in the colormap. With certain colormaps, the results can be quite different.

To illustrate this difference, these two Patches are defined with the same
vertex colors. Circular markers indicate the yellow, red, and blue vertex colors.

The Patch on the left uses indexed colors obtained from the six-element
colormap shown next to it. The color data maps the vertex colors to the
colormap elements indicated in the picture. With this colormap, interpolating

True Color Data Indexed Color Data 0 0 1 1 0 0

1 1 0
6-18

Patch Coloring
from the cyan vertex to the blue vertex can include only the colors green, red,
yellow, and magenta, hence the banding.

Interpolation in RGB space makes no use of the colormap. It is simply the
gradual transition from one numeric value to another. For example,
interpolating from the cyan vertex to the blue vertex follows a progression
similar to these values:

0 1 1, 0 0.9 1, 0 0.8 1, ... 0 0.2 1, 0 0.1 1, 0 0 1

In reality each pixel would be a different color so the incremental change would
be much smaller.
6-19

6 3-D Modeling
6-20

Introduction. 7-2

Printing from the Menu. 7-3

Printing from the Command Line 7-6

Selecting a Device Driver 7-17

Printing Tips and Troubleshooting 7-25

Using MATLAB Graphics in Other Applications 7-37
7

Printing MATLAB
Graphics

7

Introduction
MATLAB provides a number of different methods for producing graph-
ical output from Figures. These methods include ways to:

• Print from the menu or print from the command line

• Use MATLAB’s built-in print engine or use system-specific printing
services

• Print directly to hardcopy or create graphics-format files to incorporate
in documents for other applications

• Create M-files to reproduce Figures in MATLAB

The method you use depends on what you want to accomplish. For
example, the simplest way to produce output is to choose the Print option
from the File menu, but if you want to print from an M-file, you need to
use the print command. If you want to produce graphics to use in other
applications, there are many options, depending on your platform and
the file format you want to use. This chapter discusses all of these
methods and provides guidelines for choosing among them.
7-2

Printing from the Menu
Printing from the Menu
This section discusses how to print a Figure by selecting options from the File
menu of the Figure window. This is the simplest way to print in MATLAB and
is the preferred method in many cases. More detailed information about var-
ious aspects of printing is available in other sections of this chapter.

Printing differs depending on the platform you are running MATLAB on. Read
the section corresponding to the platform you are using. Also see page 7-5 for
information about adjusting the size and location of the graphic on the page.

PC
To print a Figure, choose the Print option from the Figure window’s File menu.
MATLAB brings up the Windows print dialog box:

Fill in the dialog box, and then click the OK button to print the Figure.
7-3

7 Printing MATLAB Graphics
Macintosh
To print a Figure, make it the current window, and then choose the Print
option from the Macintosh File menu. MATLAB brings up the Macintosh print
dialog box:

Fill in the dialog box, and then click the Print button to print the Figure.

UNIX
To print a Figure, choose the Print option from the Figure window’s File menu.
MATLAB brings up the print dialog box:

Fill in the dialog box, and then click the button in the lower right corner of the
box. This button is labeled Print (if you are sending the output to a printer) or
Save (if you are sending the output to a file). If you are saving to a file,
MATLAB displays another dialog box where you specify the filename.

This field specifies the name of the printer and the
device type. (See the discussion of printing from the
command line for more information.)

Use this popup to choose whether to direct the output
to a printer or a file.
7-4

Printing from the Menu
Adjusting the Size and Location of the Graphic
To adjust the size and location of the printed graphic, choose the Page Position
option from the Figure window’s File menu. MATLAB displays this dialog box:

When you are satisfied with the position of the Figure, click the Print... button.
MATLAB brings up the print dialog box, as shown above.

This dashed box represents the posi-
tion of the Figure on the printed
page. The white box represents the
page. Position the Figure on the
page by dragging the dashed box
around with the mouse. To resize
the Figure, click on one of the cor-
ners and drag.

As you resize or position the dashed
box, the Paper Position field updates
automatically. You can also edit this
field directly, and the box will move
automatically.

Click the Fill button to resize the box to fill the page, or click the
Fill (Fixed Aspect Ratio) button to fill as much of the page as is
possible without changing the aspect ratio.
7-5

7 Printing MATLAB Graphics
Printing from the Command Line
This section discusses how to print a graphic using MATLAB’s print com-
mand. This section discusses:

• The print command

• Options for modifying the behavior of print

When you print from the command line, the output is controlled by options to
the print command and the values of Handle Graphics properties. For infor-
mation about ways to control the printed output, see page 7-25.

The print Command
To print from the MATLAB command line, you use the print command and
specify the appropriate device type. The syntax of the print command is:

print –devicetype –options

If you do not specify a device type, MATLAB uses the default device for your
system. For example, these commands plot a sine function and print the
resulting Figure on your default printer:

x = –pi:0.1:pi;
plot(x,sin(x))
print

To send the output to a file rather than to a printer, the syntax is:

print –devicetype –options filename

For example, the following command creates an Encapulated PostScript file
from the current Figure:

print –deps fig1.eps

Changing Default Settings
The print command obtains default settings by calling the printopt function.
You or your system manager can change these default values by editing the file
printopt.m, which is found in the toolbox/local directory. If you are working
on a multiuser system, you can make a copy of printopt.m and place it on your
search path ahead of the MATLAB version.
7-6

Printing from the Command Line
The syntax for printopt is:

[pcmd,dev] = printopt

pcmd and dev are strings representing the operating-system command for
printing and the default device type for your platform. The printing command
is the actual operating-system command that MATLAB invokes after it creates
the temporary file. The device type is the MATLAB command-line switch used
to specify the type of device to format the output for. (If you specify a device in
the print command, dev is ignored.)

This table shows the default values for pcmd and dev on each platform:

As the table shows, the default value for dev on most platforms is –dps2, which
means MATLAB produces black and white Level 2 PostScript. On Windows
systems, the default value for dev is –dwin, which specifies printing through
the Windows Print Manager.

Editing printopt.m. If you want to edit printopt.m to change the value of pcmd or
dev, enter the command:

edit printopt

This command opens your text editor with the printopt.m file. Scroll down
about 40 lines until you come to this comment line:

%---> Put your own changes to the defaults here (if needed)

On the line below this, enter the values you want to use. For example, this line
sets the default device type to Level 2 color PostScript:

dev = '–dpsc2';

Platform pcmd dev

MS-Windows COPY /B %s LPT1: –dwin

Macintosh (not applicable) –dps2

UNIX (except Silicon
Graphics)

lpr –r –s –dps2

Silicon Graphics lp –dps2
7-7

7 Printing MATLAB Graphics
Built-in Device Drivers
When you enter a print command, MATLAB uses the device type returned by
printopt. You can override the default by specifying a different device with a
command-line switch.

The set of devices you can specify varies depending on your system. All systems
support a core set of built-in device drivers. For information about additional
devices for PC or Macintosh systems, see page 7-21 or page 7-24.

MATLAB has built-in drivers for these device types:

• PostScript

• Hewlett-Packard Graphics Language (HPGL)

• Adobe Illustrator 88

In addition, MATLAB has a built-in driver for saving a Figure to an M-file so
it can be reloaded later.

This table summarizes the command-line switches for MATLAB’s built-in
device drivers:

Device Description

–dps Level 1 black and white PostScript

–dpsc Level 1 color PostScript

–dps2 Level 2 black and white PostScript

–dpsc2 Level 2 color PostScript

–deps Level 1 black and white Encapsulated PostScript (EPS)
7-8

Printing from the Command Line
Ghostscript Device Drivers
On Windows and UNIX systems, The MathWorks distributes with MATLAB a
program called Ghostscript. Ghostscript is optionally used by MATLAB’s print
command to provide support for a variety of output devices that are not sup-
ported by MATLAB’s built-in drivers. When you use a Ghostscript device,
MATLAB generates a Level 1 PostScript file (either color or black and white,
depending on the Ghostscript device), and then calls the appropriate Ghost-
script driver, which converts the output to the specified format. This output is
then saved to the filename you specify in the print command, or sent to the
printer (if you do not specify a filename).

Ghostscript is copyrighted by Aladdin Enterprises and is provided under the
terms of the Free Software Foundation’s GNU General Public License. This
license allows you to make and distribute copies of the Ghostscript files pro-
vided with MATLAB, namely the executable file gs and all other files found in
the ghostscript directory, provided that you comply with the terms of the
GNU General Public License. You will find a copy of this license in the file
gsrights, which is part of the MATLAB distribution. This file, and the rights
described therein, do not apply to the whole of, or any other part of, the
MATLAB, Simulink, or toolbox programs.

The MathWorks will provide you with source code for Ghostscript if you so
request. Ghostscript (including source code) is also available directly from the
Free Software Foundation and from many sources on the Internet.

–depsc Level 1 color Encapsulated PostScript (EPS)

–deps2 Level 2 black and white Encapsulated PostScript (EPS)

–depsc2 Level 2 color Encapsulated PostScript (EPS)

–dhpgl HPGL compatible with HP 7475A plotter

–dill Adobe Illustrator 88 compatible illustration file

–dmfile M-file, and MAT-file when appropriate, containing Handle
Graphics commands to recreate the Figure

Device Description
7-9

7 Printing MATLAB Graphics
This table summarizes the Ghostscript device drivers provided with MATLAB:

Device Description

–dlaserjet HP LaserJet

–dljetplus HP LaserJet+

–dljet2p HP LaserJet IIP

–dljet3 HP LaserJet III

–dljet4 HP LaserJet 4 (defaults to 600 dpi)

–ddeskjet HP DeskJet and DeskJet Plus

–ddjet500 HP Deskjet 500

–dcdeskjet HP DeskJet 500C with 1 bit/pixel color

–dcdjmono HP DeskJet 500C printing black only

–dcdjcolor HP DeskJet 500C with 24 bit/pixel color and
high-quality color (Floyd-Steinberg) dithering

–dcdj500 HP DeskJet 500C

–dcdj550 HP Deskjet 550C

–dpaintjet HP PaintJet color printer

–dpjxl HP PaintJet XL color printer

–dpjetxl HP PaintJet XL color printer

–dpjxl300 HP PaintJet XL300 color printer

–ddnj650c HP DesignJet 650C

–dbj10e Canon BubbleJet BJ10e

–dbj200 Canon BubbleJet BJ200

–dbjc600 Canon Color BubbleJet BJC-600 and BJC-4000

–dln03 DEC LN03 printer
7-10

Printing from the Command Line
Options
The print command accepts a number of different options that control various
aspects of the output. Some of these options are valid only with certain drivers
or on certain platforms.

–depson Epson-compatible dot matrix printers (9- or 24-pin)

–depsonc Epson LQ-2550 and Fujitsu 3400/2400/1200

–deps9high Epson-compatible 9-pin, interleaved lines (triple reso-
lution)

–dibmpro IBM 9-pin Proprinter

–dbmp256 8-bit (256-color) BMP file format

–dbmp16m 24-bit BMP file format

–dpcxmono Monochrome PCX file format

–dpcx16 Older color PCX file format (EGA/VGA, 16-color)

–dpcx256 Newer color PCX file format (256-color)

–dpcx24b 24-bit color PCX file format, three 8-bit planes

–dpbm Portable Bitmap (plain format)

–dpbmraw Portable Bitmap (raw format)

–dpgm Portable Graymap (plain format)

–dpgmraw Portable Graymap (raw format)

–dppm Portable Pixmap (plain format)

–dppmraw Portable Pixmap (raw format)

Device Description
7-11

7 Printing MATLAB Graphics
This table summarizes the available printing options. They are discussed in
detail below.

Specifying the Figure to Print (–f, –s)
By default, MATLAB takes the current Figure (i.e., the value returned by gcf)
as the window to print. To print a Figure other than the current Figure, use the
–f option. Note that you must use this option if the Figure’s handle is hidden
(i.e., the HandleVisibility property is set to off).

The syntax is:

print –fhandle

For example, this command prints the Figure whose handle is 2, regardless of
which Figure is the current Figure:

print –f2

Option Description

–epsi Add 1-bit deep EPSI preview to Encapsulated PostScript

–loose Use loose bounding box for Encapsulated PostScript

–cmyk Use CMYK colors in PostScript instead of RGB

–append Append to existing PostScript file without overwriting

–rnumber Specify resolution in dots per inch

–adobecset Use PostScript default character set encoding

–Pprinter Specify printer to use

–fhandle Specify handle of Figure to print

–swindowtitle Specify name of Simulink system window to print

–painters Render using painter’s algorithm

–zbuffer Render using Z-buffer

–noui Suppress printing of user interface controls
7-12

Printing from the Command Line
The handle of a Figure corresponds to the title of the window, so in the example
above, MATLAB prints the Figure in the window titled “Figure No. 2.”

You can also pass the handle as a variable to the function form of print. For
example:

h = figure; plot(1:4,5:8)
print(h)

To print the block diagram displayed in a Simulink window, use the –s option.
The syntax is:

print –swindowtitle

For example, this command prints the Simulink window titled “f14”:

print –sf14

If the window title includes any spaces, you can call the function form rather
than the command form of print. For example, this command prints a
Simulink window title “Thruster Control” to a file named thrstcon.ps, using
the MATLAB Level 1 black and white PostScript driver:

print('–sThruster Control','–dps','thrstcon.ps')

You can omit the window title if you want to print the current system. Just use:

print –s

For information about issues specific to printing Simulink windows, see the
Simulink documentation.

Specifying the Printer to Use (–P)
In general, MATLAB sends the output from a print command to the default
printer on your system. If you want to send the output to a different printer,
you can use the –P option. The syntax is:

print –Pprintername

For example, this command sends the output to a printer named “homer”:

print –Phomer

This option does not work on MS-Windows or Macintosh systems. On these sys-
tems, MATLAB prints to whatever printer you have set as your default.
7-13

7 Printing MATLAB Graphics
Print Preview Images for EPS (–epsi, –loose)
When you create an Encapsulated PostScript (EPS) file on a Macintosh system,
MATLAB automatically creates a print preview image for the file. This preview
image is Macintosh-specific and does not display on other platforms.

On platforms other than the Macintosh, MATLAB does not automatically
include a preview image with EPS files. When you import an EPS file without
a preview image into a file from another application, the image prints properly
but appears on screen as a gray box.

If you want to include a preview image with the EPS file, use the –epsi option.
When you use this option, MATLAB creates a preview image in Encapsulated
PostScript Interchange (EPSI) format.

For example, this command creates an EPS file named figure1.eps that
includes a preview image:

print –deps –epsi figure1

When you enter this command, MATLAB redraws the Figure on screen in
order to capture the preview image.

Note that the EPSI preview image is a black and white bitmap, regardless of
whether the actual PostScript image is color, grayscale, or black and white.
Also note that this image will be visible only within an application that recog-
nizes EPSI previews.

Placement of Preview Image. The size and placement of the bitmap on the page of
the printed document may not exactly match its appearance on screen, because
the bitmap includes some white space around the Figure but the EPS itself
does not. If you need the screen placement to match the printed document, use
the –loose option. This option instructs MATLAB to create the EPS with a
loose bounding box (that is, including white space around the Figure) to match
the preview.

CMYK Color Separations (–cmyk)
By default, MATLAB produces color output based upon red, green, blue (RGB)
color values. If you plan to publish MATLAB Figures using four-color separa-
tions, you may want to use cyan, magenta, yellow, black (CMYK) color values
rather than RGB.
7-14

Printing from the Command Line
The –cmyk option automatically converts RGB values to CMYK values. This
option applies only to the PostScript and Encapsulated PostScript drivers.
When you print the Figure, the PostScript interpreter that renders the file
must include the CMYK Extension Set. This set is available on all color Level
1 PostScript printers, most newer black and white Level 1 PostScript printers,
and all Level 2 PostScript printers.

Appending to an Existing File (–append)
To include more than one Figure in a single output file, print the first Figure
to a file, and then for subsequent files use the –append option and specify the
same file. For example, these commands create a file named figs.ps, which
contains two different Figures:

print –dps –f1 figs
print –dps –f2 –append figs

When you print the resulting file, each Figure will appear on a separate page.

The –append option is not valid for Encapsulated PostScript files.

Specifying Resolution (–r)
When you print a Figure rendered using Z-buffer, you can specify the resolu-
tion of the output. The default resolution is 72 dpi on the Macintosh, and 150
dpi on other platforms. To specify a different resolution, use the –r option. The
syntax for this option is:

print –rnumber

For example, this command prints the current Figure at 300 dpi:

print –r300

If number is 0, MATLAB prints the Figure at screen resolution. (On most sys-
tems, screen resolution is between 72 and 100 dpi.)

For more information about resolution and its relationship to the rendering
method used, see page 7-32.

Default Character-Set Encoding (–adobecset)
Some early PostScript Level 1 printers do not support the PostScript operator
ISOLatin1Encoding that is used in MATLAB PostScript files generated on
UNIX and Windows. If your printer does not support this operator, you may
7-15

7 Printing MATLAB Graphics
notice problems in the text of MATLAB printouts. If this happens, use the
–adobecset option to specify default character-set encoding. This encoding is
supported by all PostScript printers.

On the Macintosh, MATLAB uses the Macintosh Standard Roman character
set for both screen display and printing. It does not use the ISOLatin1Encoding
operator, and therefore does not have these problems.
7-16

Selecting a Device Driver
Selecting a Device Driver
This section provides information to help you select the device driver to use.
This section discusses using MATLAB’s built in drivers for PostScript, HPGL,
and Adobe Illustrator, as well as system-specific drivers on the PC and the
Macintosh.

PostScript
MATLAB has several built-in drivers for generating PostScript output. When
you select a PostScript driver, you can choose among these options:

• PostScript Level 1 or Level 2

• Black and white or color

• PostScript or Encapsulated PostScript

For example, if you want to create a Level 2 color Encapsulated Postscript file,
use the –depsc2 switch.

Level 1 or Level 2
Level 2 PostScript files generally are smaller and render more quickly than
Level 1 files, so if your printer supports Level 2 PostScript, you should use one
of the Level 2 drivers. If your printer does not support Level 2, or if you’re not
sure, use a Level 1 driver. Level 1 PostScript will produce good results on a
Level 2 printer, but Level 2 PostScript will not print properly on a Level 1
printer.

Black and White or Color
If you are using a color printer, you should select a color driver. If you are using
a black and white printer, you can use either a color driver or a black and white
driver; however, a black and white driver will produce smaller output files and
will render lines and text better. (Note that black and white drivers produce
grayscale output. You do not need to use a color driver to produce different
shades of gray.)

See page 7-35 for more information about color and grayscale printing.
7-17

7 Printing MATLAB Graphics
PostScript or Encapsulated PostScript
The type of PostScript device you select depends on whether you want to print
the file directly or import it into another application (such as a word processing
program). If you want to send the output directly to a printer, or save it to a file
and then send that file to the printer, use a regular PostScript driver. If you
want to import the output into another application, use an Encapsulated Post-
Script (EPS) driver.

If you select a regular PostScript driver, you can provide a filename (in which
case MATLAB creates an output file but does not send it to the printer) or you
can omit the filename (in which case MATLAB sends the output to the printer
and deletes the temporary file it creates).

If you select an EPS driver, MATLAB always creates a file; MATLAB does not
print EPS directly. If you do not specify a filename, MATLAB creates a file
named after the Figure window used to create the file. For example, if the cur-
rent Figure window is titled “Figure 2,” and you enter this command:

print –deps

MATLAB displays this message:

Encapsulated PostScript files cannot be sent to the printer.
File saved to disk under name 'figure2.eps'

HPGL Compatible Plotters (–dhpgl)
MATLAB provides HPGL support for the HP 7475A plotter and other plotters
that are fully compatible with the HP 7475A. To specify the HPGL format, use
the –dhpgl option.

If you specify this option and do not provide a filename, MATLAB sends the
output directly to the plotter. If you provide a filename, the print command
creates a file called filename.hgl for later output to a plotter. HPGL files can
also be imported into documents of other applications, such as Microsoft Word.

When plotting a Figure, it is especially important that the background color be
white, because this driver does not do background fills. If the background color
is black, make sure the value of the InvertHardCopy property is on. When this
property is on, MATLAB inverts the colors of the Figure for printing, so that
black backgrounds print as white.
7-18

Selecting a Device Driver
Color Selection
The HP 7475A plotter supports six pens, none of which can be white. If
MATLAB tries to draw in white while rendering in HPGL mode, the driver
ignores all drawing commands until a different color is chosen.

Pen 1 is assumed to be black, and is used for drawing axes. The remaining
colors are the first five colors in the ColorOrder property of the current Axes
object. If ColorOrder specifies fewer than five colors, the unspecified pens are
not used.

For Simlunk systems, which ordinarily use a maximum of eight colors, the six
pens available on the plotter are assumed to be:

• Pen 1: black

• Pen 2: red

• Pen 3: green

• Pen 4: blue

• Pen 5: cyan

• Pen 6: magenta

If you attempt to draw a MATLAB object containing a color that is not a known
pen color, the driver chooses the nearest approximation to the unlisted color.

Limitations
The HPGL driver has these limitations:

• Display colors and plotted colors sometimes differ.

• Areas (faces on mesh and surface plots, patches, blocks, and arrowheads) are
not filled.

• There is no hidden line or surface removal.

• Text is printed in the plotter’s default font.

• Line width is determined by pen width.

• Images and Uicontrols cannot be plotted.

• Interpolated edge lines between two vertices are drawn with the pen whose
color best matches the average color of the two vertices.

• Figures cannot be rendered using Z-buffer; this driver always uses painter’s
algorithm. (See page 7-32 for more information.)
7-19

7 Printing MATLAB Graphics
Adobe Illustrator 88 (–dill)
MATLAB provides the capability to generate illustrations that can be viewed
and modified by Adobe Illustrator 88 or any other application that supports a
compatible file format. Regardless of where an illustration was initially cre-
ated, the MATLAB output file can be further processed with Illustrator run-
ning on any platform.

By default these illustrations are always in color and appear in portrait orien-
tation. The Illustrator group command is used to give the illustrations a hier-
archy similar to that of the Handle Graphics or Simulink graphic represented.

Creating Adobe Illustrator 88 files
The syntax of the command is:

print –dill filename

If you do not provide a filename, MATLAB gives the file a default name based
on the Figure window used to create the file.

To view the output, open the saved file within Illustrator. It will have no tem-
plate.

Limitations
The Illustrator driver has these limitations:

• Interpolated patches and surfaces cannot be created. The color of each
polygon will be determined by the average of the CData values for all of the
polygon’s vertices.

• Images cannot be rendered.

• No fonts are downloaded to the Illustrator file. Any fonts used must be avail-
able to Illustrator when the file is viewed.

• The file must be opened in Illustrator before it can be printed.

Saving and Reloading Figures (–dmfile)
You can use the –dmfile option to save a Figure for future display. MATLAB
creates an M-file that contains the necessary object creation and set commands
to reproduce the Figure. If necessary, MATLAB also creates a MAT-file that
contains data needed to create the Figure.
7-20

Selecting a Device Driver
For example, this command creates a file named mygraph.m, and, if needed, a
file named mygraph.mat.

print –dmfile mygraph

Do not include an extension in the filename. MATLAB will create the files with
the appropriate extensions.

To display a Figure that you have saved, execute the M-file. MATLAB loads the
corresponding MAT-file and displays the Figure.

PC-Specific Options
On the PC, MATLAB uses two different printing mechanisms, depending on
whether you print through Windows print drivers or with MATLAB’s own
built-in print drivers. By default, MATLAB uses Windows print drivers. To
print using one of MATLAB’s built-in drivers, you must either edit printopt
(as described on page 7-6) to change the default device or else use the print
command with the appropriate command-line switch.

The command-line switches for MATLAB’s built-in drivers are listed on page
7-8. The command-line switches for printing through Windows drivers are
listed on page 7-22.

Choosing Between Windows Drivers and MATLAB Drivers
When you use Windows drivers, printing is managed through the Windows
Print Manager, which enables you to monitor printer queues and control var-
ious aspects of the printing process. When you print through MATLAB’s
drivers, MATLAB generates the output and copies it to a port, bypassing the
Print Manager.

By default, MATLAB prints using Windows drivers. However, you may find the
MATLAB drivers preferable in certain situations:

• If you are creating a file to import into a document, MATLAB has several
Encapsulated PostScript drivers that create high-quality graphics for
importing into word processing and page layout files.

• If you need to print to a printer for which you do not have the right Windows
driver, you may be able to use one of the MATLAB drivers as a substitute.

• If you are having problems with a Windows driver, you can use a MATLAB
driver instead.
7-21

7 Printing MATLAB Graphics
This table summarizes the command-line switches that call Windows device
drivers:

If you use the print command and do not specify any device-type option,
MATLAB uses a default value. This default is usually –dwin, unless you have
modified the printopt function. This means that if you do not specify a device
type, MATLAB will use a Windows driver and create black and white output.
Note that if you are using a color printer, you must use the –dwinc switch (or
modify printopt to make –dwinc the default). If you use –dwin, your output
will be black and white, even if you use a color printer.

Note that when you print using the –dwin or –dwinc device type, the output is
always directed to a printer. Therefore, you should not specify a filename. If
you do specify a filename, MATLAB will create the file using one of its built-in
PostScript drivers rather than a Windows driver.

When you print with one of MATLAB’s built-in drivers, MATLAB generates
output in the appropriate format and then either saves the output to a file (if
you provided a filename) or else sends the output to the printer (if you did not
give a filename).

If the output is directed to a printer, MATLAB creates a temporary file and
then executes the MS-DOS command stored in the pcmd string returned by
printopt. The default value for pcmd is:

COPY /B %s LPT1:

This command copies the output file to the LPT1 port. The file is then deleted.

Device Description

–dwin Use Windows printing services (black and white)

–dwinc Use Windows printing services (color)

–dmeta Windows Enhanced Metafile format

–dbitmap Windows Bitmap (BMP) format

–dsetup Display the Print Setup dialog box, but do not print

–v Verbose mode to display the Print dialog box (suppressed
by default)
7-22

Selecting a Device Driver
Ghostscript Drivers. Using Ghostscript drivers is similar to using the built-in
MATLAB drivers. When you specify a Ghostscript driver, MATLAB generates
PostScript, which Ghostscript then converts to the selected format. MATLAB
then executes the command stored in pcmd to print the file, or else saves the
output to the specified filename.

Troubleshooting. Occasionally, you may run into problems when printing with a
Windows driver, because of a bug in the driver or an incompatibility between
the driver and MATLAB. If you do have a problem printing with a Windows
driver, try one of these options:

• Use a different Windows driver. There may be a newer version of the driver
available from the manufacturer, or there may be a driver available from a
different vendor. You may also be able to use a driver for a different printer,
such as an earlier model from the same manufacturer.

• Use a built-in MATLAB driver or a Ghostscript driver. For example, if you
are having trouble printing to an HP LaserJet printer using a Windows
driver, you can use one of the Ghostscript LaserJet drivers instead. If your
printer supports PostScript, use one of MATLAB’s built-in PostScript
drivers.

Network Printing. If your PC is on a Microsoft or Novell network, you can print
to a network printer using a Windows driver. If you want to use one of
MATLAB’s built-in drivers (or a Ghostscript driver), you must first map the
LPT1 port to the printer you want to use.

To map LPT1 on Microsoft networks, issue this command at the system’s com-
mand prompt:

net use LPT1: \\server\printer /persistent:yes

where server is the name of the server sharing the printer and printer is the
name of the printer.

On Novell NetWare networks, use this command:

capture l=1 q=printer

where printer is the name of the print queue.
7-23

7 Printing MATLAB Graphics
If you are using a Microsoft network, you can map LPT1, or you can instead
edit printopt to change the definition of pcmd to:

COPY /B %s \\server\printer:

where server is the name of the server sharing the printer and printer is the
name of the printer.

Macintosh-Specific Options
MATLAB uses a feature of the PICT format that ensures that Figures can be
printed by either QuickDraw or PostScript printers. When you print your
Figure, MATLAB instructs the operating system to generate a PICT image
containing QuickDraw commands. In addition, MATLAB generates PostScript
commands (via its internal printer driver) and embeds the PostScript into the
PICT as picture comments. If your printer is a PostScript printer, it uses the
PostScript commands rather than the QuickDraw.

If your printer does not support QuickDraw or PostScript (for example, certain
Hewlett-Packard printers don’t), then you must have an appropriate driver for
that printer installed on your Macintosh, and select that driver in the Chooser.
This driver will interpret the QuickDraw commands, translating them into the
appropriate language for the printer.

If you want to generate PICT output only, you can use the –dpict command-
line switch. The resulting output can be directed to a QuickDraw printer or to
a file. If you create a file, it can be read into any application that supports
MacDraw-compatible PICT graphics.
7-24

Printing Tips and Troubleshooting
Printing Tips and Troubleshooting
MATLAB’s printed output does not always match the image you see on your
screen. Certain display elements are changed for printing, to better match the
characteristics of the output device.

This section discusses how to control the appearance of Figures to ensure that
MATLAB’s printed output is what you expect. This section addresses several
common questions about printing:

• How do I control the size and aspect ratio of the graphic?

• How do I specify fonts and character sets?

• How do I make different lines print in different line styles?

• How do I specify the rendering method?

• How do I change the background colors?

• How do I set printing preferences on my Macintosh?

Controlling Output Size and Aspect Ratio
The Handle Graphics Figure object has several properties that control the size
and aspect ratio of the printed graphic. These properties all begin with Paper.
See the entry for figure in the online MATLAB Function Reference for infor-
mation about these properties.

The most important of these properties is the PaperPosition property. This
property is a four-element row vector that specifies the dimensions and posi-
tion of the printed output. The form of the vector is:

[left right width height]

where left specifies the distance from the left edge of the paper to the left edge
of the graphic, right specifies the distance from the bottom of the paper to the
bottom of the graphic, and width and height specify the graphic’s width and
height.

By default, the value of PaperPosition does not change when you resize or
reshape a Figure. This means that the size of the printed output may not match
7-25

7 Printing MATLAB Graphics
the screen display. If you want the printed Figure to match its size and shape
on the screen, you can do one of the following:

• Choose Page Position from the File menu. In the dialog box, click the button
labeled Match Paper Area to Figure Area.

• From the command line, enter:
set(gcf,'PaperPositionMode','auto')

When PaperPositionMode is set to auto, the width and height of the printed
Figure are determined by the Figure’s dimensions on the screen, and the
Figure position is adjusted to center the Figure on the page. Note that
when PaperPositionMode is auto, MATLAB actually sets the value of the
PaperPosition property when you resize the Figure. Therefore, if you change
PaperPositionMode back to manual and then print the Figure, the output
will still be the same size as the Figure is on screen, unless you also set
PaperPosition to default.

If you want the default value of PaperPositionMode to be auto, enter this line
in your startup.m file:

set(0,'DefaultFigurePaperPositionMode','auto')

Setting PaperPositionMode to auto is especially important if you want to print
out Figures that include Uicontrols or Images. If PaperPositionMode is
manual, these objects are likely to be distorted when you print them.

Paper Size
You can use the Handle Graphics PaperType property to set the size of
the paper you are printing on. The values for PaperType are standard paper
sizes such as usletter and a4. When you set PaperType, MATLAB also sets
PaperSize, which is a read-only property that indicates the actual dimensions
for the current PaperType.

If you are printing on a paper size that MATLAB does not recognize, set the
PaperPosition property to position the output appropriately. MATLAB will
use the values you set, even if the size specified by PaperPosition is larger
than the current value of PaperSize.

For example, suppose you want to print on paper that is 30 inches by 40 inches.
You could set PaperPosition to [.5 .5 29 39], either at the command line or
in the Page Position dialog box.
7-26

Printing Tips and Troubleshooting
Orientation
By default, Figures print in portrait mode. If you want to print in landscape
mode, set the PaperOrientation property to landscape. You can do this in the
Page Position dialog box, or by entering this command at the command line:

set(gcf,'PaperOrientation','landscape')

You may also need to set the PaperPosition property so that the Figure fits on
the page.

MATLAB provides a command, orient, that can simplify this process. orient
sets the orientation of the printed output, by setting the PaperOrientation
and PaperPosition properties of the Figure. For more information about this
command, see the online MATLAB Function Reference.

Specifying Fonts and Character Sets
MATLAB Figures support several kinds of text objects, such as titles, axis
labels, and tick labels. This section discusses how to control the font and char-
acter set for text objects in Figures so that the printed output uses the fonts you
want.

Font characteristics are properties of Axes, Uicontrols, and Text objects. For
each of these objects, you can set these properties:

• FontName

• FontSize

• FontUnits

• FontWeight

• FontAngle

For example, to specify 10-point Helvetica-BoldOblique for the current Axes:

set(gca,'FontName','Helvetica','FontSize',10,'FontUnits', ...
'points','FontWeight','bold','FontAngle','oblique')

Note that when MATLAB generates hardcopy output, it does not attempt to
determine what fonts are available on the hardcopy device before it sends
output to the device. If you specify a font that is not available on your printer,
the printer will substitute another font. A PostScript printer will substitute
Courier for any unavailable font.
7-27

7 Printing MATLAB Graphics
MATLAB can generate PostScript output using the fonts listed below. These
are the actual names you should use when you specify the FontName property
for a text object:

• AvantGarde

• Bookman

• Courier

• Helvetica

• Helvetica-Narrow

• NewCenturySchlbk

• Palatino

• Symbol

• Times-Roman

• ZapfChancery

• ZapfDingbats

If you use a font not on this list, MATLAB’s PostScript driver substitutes Cou-
rier. This substitution affects the Ghostscript drivers as well, because they
work by converting MATLAB’s PostScript output.

Font properties for the Axes object itself affect the x-, y-, and z-tick labels. Axis
labels (XLabel, YLabel, and ZLabel) and Titles also use the Axes font charac-
teristics; however, you can set the font characteristics for these Text objects
explicitly to override the Axes font values. For example, to change the font size
of the Title, you could enter:

h = get(gca,'Title');
set(h,'FontSize',18);

The character set used for a Text object is determined by its font. On most plat-
forms, most fonts use the primary character set encoding for the platform. For
PostScript output, you can also specify default PostScript character-set
encoding by using the –adobecset option, as described on page 7-15.

PC
On the PC, the valid fonts and character sets depend on whether you print
using Windows drivers or MATLAB’s built-in drivers.

The built-in MATLAB drivers support only fonts that are compatible with the
Windows Latin-1 character set. If you use a built-in MATLAB driver, you
7-28

Printing Tips and Troubleshooting
should choose fonts that match the standard set of supported PostScript fonts
(such as Times or Helvetica). TrueType fonts are acceptable as long as they
meet this requirement. For example, the TrueType Symbol font works.
MATLAB also accepts the TrueType fonts Arial, New Times Roman, and New
Courier, and maps them to their PostScript equivalents (Helvetica, Times
Roman, and Courier, respectively).

The native Windows drivers support Windows Latin-1 as well as a wide variety
of other Windows character sets. If you print using the Windows drivers, Win-
dows requires that you use TrueType fonts for text to be printed correctly. (You
can tell if a font is TrueType by looking at the Fonts Control Panel. The icon for
a TrueType font has “TT” on it, and the filename extension is “TTF”.)

UNIX
On UNIX systems, MATLAB supports the ISO Latin-1 primary character set.
For example, suppose a text object is created with these commands:

 h = text(0.1,0.1,'some text');
 set(h,'FontName','Times');

There might be several X Window System fonts with the name “Times.”
MATLAB tries to find a font that supports the primary ISO Latin-1 character
set. For backward compatibility, this preference is ranked below any other
specifications you provide, such as the font size, style, and so forth. ISO Latin-1
fonts have an X font specification that ends in iso8859-1, which is the formal
name of the ISO Latin-1 character set. Here is an example of such a font spec-
ification:

-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

You can use xlsfonts at the UNIX prompt to list the set of fonts available on
your system.

Specifying Line Styles
When displaying on a color screen or printing to a color printer, MATLAB usu-
ally distinguishes different lines in a Figure by their colors. For example, these
7-29

7 Printing MATLAB Graphics
commands plot the sine and cosine functions; MATLAB sets the colors of the
lines according to the value of the ColorOrder property:

x = –pi:pi/30:pi;
plot(x,sin(x),x,cos(x))

In addition to color, you can distinguish lines by line style or marker symbol. If
you want to print the Figure on a black and white printer, keep in mind that
all lines will print as black (or white, if the background is black and
InvertHardCopy is off). If you want MATLAB to dither the lines to attempt to
render them as different shades of gray, you can use a color driver; however,
lines are generally too thin to be dithered effectively. A better approach is to
vary the line style or marker symbol. Many of the plotting functions provide a
mechanism for setting the line style and marker symbol for each line being
plotted.

You can also control the line styles by setting the Axes LineStyleOrder and
ColorOrder properties. To distinguish lines, MATLAB cycles first through the
ColorOrder values and then the LineStyleOrder values. The factory default
for ColorOrder is a set of six colors, while the factory default for
LineStyleOrder is a single style (a solid line). This means that MATLAB will
use different colors but the same line style for all lines, unless you specify oth-
erwise.

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

7-30

Printing Tips and Troubleshooting
If you print to a black and white printer, you may want to change ColorOrder
to a single color, and LineStyleOrder to multiple styles. This will cause
MATLAB to use the same color for each line, but different styles. These values
must be set before the Axes object is created. For example, this code creates a
new Figure, sets the appropriate Axes properties, and then creates the plot:

x = –pi:pi/30:pi;
figure('DefaultAxesColorOrder',[0 0 0], ...
'DefaultAxesLineStyleOrder','-|:|--|-.')
plot(x,sin(x),x,cos(x))

Windows 95 Limitation
Microsoft Windows 95 does not support broken line styles for lines whose width
is greater than 1 pixel. Unfortunately, most printers produce lines more than
1 pixel thick, so in most cases, Windows 95 drivers produce solid lines, regard-
less of the setting of LineStyleOrder.

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

7-31

7 Printing MATLAB Graphics
There are various ways you can work around this problem:

• Set up MATLAB to use lines 1 pixel wide, by adding this line to the [MATLAB
Settings] section of your MATLAB.INI file:

ThinLineStyles=1

This will result in very thin lines, but the lines will print with the specified
styles.

• Set the Figure’s Renderer property to zbuffer:

set(gcf,'Renderer','zbuffer')

This will result in the printed output matching the screen display. See
“Selecting the Rendering Method” for more information about Z-buffer.

• Use a Ghostscript driver. These drivers bypass the Windows Print Manager.
See page 7-9 for a list of the Ghostscript drivers.

Selecting the Rendering Method
MATLAB uses two different methods to render Figures, painter’s algorithm
and Z-buffer. Painter’s algorithm draws Figures using vector graphics, while
Z-buffer uses raster (bitmap) graphics.

In general, painter’s algorithm produces higher-resolution results than
Z-buffer. However, Z-buffer works in situations where painter’s algorithm
either produces inaccurate results or does not work at all. By default, MATLAB
automatically selects the best method, based on the complexity of the Figure
and the settings of various Handle Graphics properties.

You can specify the rendering method by setting the Figure Renderer and
RendererMode properties. When the RendererMode property is set to auto (the
factory default), MATLAB selects the rendering method for displaying and for
printing. The rendering method used for printing the Figure is not always the
same method used to display the Figure.

When RendererMode is set to manual, MATLAB uses the method specified by
the Renderer property for both displaying and printing.

In some cases, you may want to override MATLAB’s renderer selection when
you print, without changing the Renderer property. You can specify the ren-
dering method to use for printing by using the –zbuffer or –painters option
with the print command.
7-32

Printing Tips and Troubleshooting
For example, these commands create a Figure, display it using painter’s algo-
rithm, and print it using Z-buffer:

surf(peaks(32));set(gcf,'Renderer','painters')
print –zbuffer

Limitations of Each Method
For many Figures, it is possible to use either rendering method. There are cer-
tain situations, however, where painter’s algorithm does not work or produces
unacceptable results. For example:

• If the Figure uses truecolor for Patch or Surface objects, it cannot be ren-
dered with painter’s algorithm. If you set Renderer to painters, MATLAB
issues a warning and the graphics objects do not display or print.

• If the Figure includes any lights, the lighting cannot be rendered with
painter’s algorithm. If you set Renderer to painters, the lighting disappears.

Note that in each case the Figure retains all the appropriate data, so if you set
Renderer back to zbuffer or set RendererMode to auto, the missing objects
reappear.

In general, if you find that your printed output does not match what you see on
screen, you should set Renderer to zbuffer, or use the –zbuffer switch when
you print.

However, you cannot use Z-buffer rendering if your device type is HPGL or
Adobe Illustrator. If you attempt to print to one of these formats and Renderer
is set to zbuffer (or if you use the –zbuffer option), MATLAB uses painter’s
algorithm instead.

Size of Output Files
When you print a Figure rendered with painter’s algorithm, the resolution has
little effect on the size of the output file or the amount of memory needed for
printing. Therefore, the default resolution is quite high (864 dpi for MATLAB’s
built-in PostScript drivers).
7-33

7 Printing MATLAB Graphics
When you print a Figure rendered using Z-buffer, certain factors directly influ-
ence the size of the output file or amount of memory needed for printing:

• Resolution of the output

• Size of the printed graphic

• Use of a color or black and white (grayscale) driver

These relationships exist because Z-buffer Figures are rendered as bitmaps,
and the number of pixels in a bitmap is a function of the resolution and of the
size of the graphic. For example, if a Figure is 2 inches by 3 inches, it will con-
sist of 60,000 pixels at 100 dpi. Increasing either the resolution or the size
increases the number of pixels proportionately. For example:

• If you keep the Figure the same size but increase resolution to 200 dpi, the
number of pixels is 240,000.

• If you keep the resolution at 100 dpi but enlarge the Figure to 4 inches by 6
inches, the number of pixels is also 240,000.

Note that the size of the actual output is what matters, not the size on the
screen (although, if PaperPositionMode is set to auto, the size on screen and
on paper are the same).

For Figures rendered using Z-buffer, the default resolution is 72 dpi on the
Macintosh, and 150 dpi on other platforms. To set the resolution to a different
value, use the −r option. The syntax is:

print –rnumber

number is the number of dots per inch. For example, to specify a resolution of
100 dpi:

print –r100

To specify printing at screen resolution, set number to 0 (zero):

print –r0

In addition to the Figure size and resolution, the choice of color or black and
white also affects the size of the file, because the amount of information stored
for each pixel is larger for color than for black and white. Color files are three
times as large as black and white files, so be sure to use a black and white
driver unless you want to print to a color device.
7-34

Printing Tips and Troubleshooting
Because of these issues, you must make trade-offs between resolution, size,
color, and printing resources, when printing a Figure rendered using Z-buffer.
For example, you can specify any resolution, but you may find at higher reso-
lutions the resulting files are too big and require too much memory to print.
However, you are likely to find that much lower resolutions produce acceptable
results.

Changing Background Colors
By default, MATLAB Figures display on screen as colored lines and surfaces
on a white background. When you print a Figure on a color device, the colors
remain unchanged. If you print to a black and white device, surface colors are
dithered to render them as shades of gray, except for lines and text, which are
changed to black because these objects are too thin to be dithered effectively.

If you want MATLAB to dither lines, use a color driver rather than a black and
white driver. For example, if you are printing on a black and white PostScript
printer, you could use the –dpsc option. Note, however, that you may not be
able to distinguish between different colored lines on the basis of the dithering.

If you prefer, you can display Figures on screen as colored lines and surfaces
on a black background, by typing:

colordef black

When you print a Figure with a black background, MATLAB inverts the colors
for printing: anything black (including the background) is changed to white,
and anything white (such as lines, surfaces, or text) is changed to black. These
changes are made so the printer will use less toner and produce better looking
output.

If you do not want MATLAB to invert the colors when you print the Figure, set
the Figure’s InvertHardCopy property to off. For example:

set(gcf,'InvertHardCopy','off')

Note that MATLAB does not invert Image or Uicontrol objects when you print
them, regardless of the value of InvertHardCopy.
7-35

7 Printing MATLAB Graphics
Setting Printing Preferences (Macintosh)
On all platforms, you can control the printed output by setting Handle
Graphics properties. On Macintosh systems, however, you can set preferences
that override some of these properties.

You can use the Preferences item on the File menu to customize various
aspects of printing Figures, saving them to a file, and copying them to the clip-
board. For example, you can select the type of PostScript to produce, and the
type of preview image for EPS files. Preferences you set through this option
persist from one MATLAB session to the next, and change only when you
explicitly change them.

The preferences you set apply only to printing, saving, and copying done by
selecting items from the Macintosh menu bar. Preferences do not affect the
MATLAB print command.

Troubleshooting MS-Windows Printing
If you encounter problems such as segmentation violations , general protection
faults, application errors, or the output does not appear as you expect when
using MS-Windows printer drivers, try the following:

• If your printer is PostScript compatible, print with one of MATLAB’s built-in
PostScript drivers. There are four PostScript device options that you can use
with the print command: −dps, −dpsc, −dps2, and −dpsc2. See the print doc-
umentation in the online MATLAB function reference for more information
(type doc print on the MATLAB command line).

• The behavior you are experiencing may occur only with certain versions of
the print driver. Contact the print driver vendor for information on how to
obtain and install a different driver. If you are using Windows 95, try
installing the drivers that ship with the Windows 95 CD-ROM.

• Try printing with one of MATLAB’s built-in GhostScript devices. These
devices use GhostScript to convert PostScript files into other formats, such
as HP LaserJet, PCX, Canon BubbleJet, and so on.

• Copy the Figure as a Windows Metafile using the Edit-->CopyFigure menu
item on the Figure window menu or the print −dmeta option at the command
line. You can then import the file into another application for printing.
7-36

Using MATLAB Graphics in Other Applications
Using MATLAB Graphics in Other Applications
In addition to options for printing directly to hardcopy devices, MATLAB pro-
vides the ability to produce files in various graphics formats for importing into
other applications.

Creating Graphics Files
There are several ways to create graphics files in MATLAB. MATLAB supports
these methods on all platforms:

• Use the print command with an appropriate driver; for example, one of the
Encapsulated PostScript drivers.

• Use the capture command to create an image of the Figure, and then use
imwrite to write the file.

On the PC and Macintosh, there are additional methods, such as copying the
Figure to the clipboard. This section describes how to use print and capture,
as well as system-specific methods.

Using the print Command
When you use the print command and specify a filename, MATLAB creates
the file but does not send it to the printer. Depending on the device driver you
use, the file may be in a format that you can import into other applications.

On all platforms, you can use MATLAB’s built-in drivers to produce graphics
files in Encapsulated PostScript, Adobe Illustrator 88, and HPGL formats. To
produce a file in one of these formats, specify the appropriate driver, and pro-
vide a name for the file. For example, this command produces an HPGL file
named surfplot.hgl:

print –dhpgl surfplot

Additional formats are available only on certain platforms. On PC and UNIX
systems, you can use Ghostscript drivers to produce standard graphics file
formats such as PCX. On the PC, you can create files in Windows Bitmap
and Windows Enhanced Metafile format by using the –dbitmap option or the
–dmeta option and specifying a filename. (If you omit the filename, the Metafile
or Bitmap is placed in the clipboard.)
7-37

7 Printing MATLAB Graphics
For example, this command creates a Windows Bitmap file named
surfplot.bmp:

print –dbitmap surfplot

On Macintosh systems, you can use the –dpict switch to produce PICT files.

Using the capture Command
Another way to produce a graphics file is by using the capture command to
create a bitmapped image of the Figure, and then writing the image to a file by
using the imwrite function. For example, to create a TIFF file from the Figure
whose handle is 2:

[X,map] = capture(2);
imwrite(X,map,'fig2.tif')

capture works by creating a screen capture of the Figure. The image matrix is
a pixel-for-pixel map of the Figure as it is displayed on screen, so the captured
image is identical in size, shape, and appearance to the displayed Figure.

After you use capture, use imwrite to write the image to a file. imwrite sup-
ports several common formats:

• BMP

• HDF

• JPEG

• PCX

• TIFF

• XWD

For more information about imwrite, see the online MATLAB Function Refer-
ence.

PC-Specific Options
On the PC, you can import a MATLAB graphic into another application by
copying the Figure to the clipboard in Windows Bitmap or Windows Enhanced
Metafile format, and then pasting the graphic into the other application.
7-38

Using MATLAB Graphics in Other Applications
There are two ways to copy a Figure to the clipboard:

• Select the Copy Figure command from the Edit menu of the Figure window.
The format of the output is determined by preferences you can set.

• At the command line, use the print command with the –dbitmap or –dmeta
option. Do not provide a filename. The Figure will be copied to the clipboard
as a Windows Bitmap or Metafile, depending on which switch you use.

You then import the graphic into another application by using the Paste com-
mand.

Choosing the Format. The Windows Bitmap and Enhanced Metafile formats are
fundamentally different in the way they represent the Figure. The Bitmap
format creates a bitmapped copy of the Figure window, while the Metafile
format uses a vectorized approach. In general, the bitmap format is of lower
resolution than the Metafile format.

The Windows Enhanced Metafile format is a device-independent format for
sharing graphics between Windows applications. This format is capable of pro-
ducing high-quality graphics, and is the preferred graphics format to use on
Windows systems. See page 7-43 for more information about using this format.

Macintosh-Specific Options
On the Macintosh, you can use the Save As option to create a graphics file. You
can also copy and paste.
7-39

7 Printing MATLAB Graphics
Saving to a File. When a Figure window is active, select Save As from the File
menu. MATLAB displays this dialog box:

Copy and Paste. To copy a Figure to the clipboard, make the Figure the current
window and select the Copy command from the Edit menu. You then import
the graphic into another application by using the Paste command.

You can copy a Figure to the clipboard as either PICT drawing or a bitmap. The
format used is determined by preferences you can set (see page 7-36). If you
copy the image as a PICT drawing, the drawing may be editable in certain
applications, such as Canvas.

Importing MATLAB Graphics into Other Applications
The graphics files that MATLAB creates can be imported into a wide variety of
applications for word processing, desktop publishing, presentations, and
graphics. To import MATLAB graphics into a specific application, you need to
keep in mind certain considerations. This section discusses:

• Choosing the graphics format

• Copying graphics files to another platform

• Application-specific issues

Choose the format of the output file from this
popup.

For Encapsulated PostScript output, you can use this
popup to choose the format of the preview image.

For color PostScript output, check this box if you
want to use CMYK color values to create color sepa-
rations.
7-40

Using MATLAB Graphics in Other Applications
Choosing the Format
As described above, MATLAB provides many different options and formats for
graphical output. The best format to use depends on your platform and which
applications you want to import graphics into.

This section offers some guidelines for selecting a format. Note that these are
only guidelines, and are not meant to be definitive.

When deciding which format to use, you should consider these questions:

• What formats does the target application support?

• Do you need to be able to edit the graphic in the target application?

• What level of quality do you need?

• Do you need to be able to use the graphic on two or more platforms?

• What is the most convenient format to use?

Obviously, the most important criterion is what format your application can
import. However, most applications can import several formats, so there is
often a choice available.

Another issue is whether you need to be able to edit the graphic once it is
imported into the new application. If you do not need to edit the graphic, you
can use any format that the application will import. If you need to be able to
edit the graphic, there are a few options:

• If the target application is Adobe Illustrator, create the file using the
print –dill command. The resulting file will be editable in Illustrator.

• On the PC, the Enhanced Metafile format can be edited in many applica-
tions, such as Powerpoint.

• On the Macintosh, PICT drawings are editable in certain drawing programs,
such as Canvas.

• Some painting programs can edit bitmaps in certain formats. For example,
the Paintbrush application that comes with Windows can edit PCX files.

• For image processing applications, use one of the formats produced by
imwrite, such as TIFF.

In terms of quality, the main issue is whether to use a vector format or a raster
format. Vector formats store graphics as geometric objects, while raster for-
mats store graphics as matrices of pixels (bitmaps). Vector formats generally
produce higher quality line and surface plots than raster formats, while raster
7-41

7 Printing MATLAB Graphics
formats are better for images. You can resize a vector graphic without losing
quality, while a raster graphic will have lines with jagged edges. The vector for-
mats that MATLAB supports are Encapsulated PostScript, Adobe Illustrator
88, HPGL, Windows Metafile, and PICT. The other graphics formats that
MATLAB supports are all raster formats.

For many applications, the best format to use is Encapsulated PostScript. This
format provides very high quality output, because it is a vector format. EPS is
also very portable, as it is supported on every platform that MATLAB runs on.
The main drawback of EPS is that when you print the document that the
graphic is embedded in, you must use a PostScript printer, or the graphic will
not print. Also, a MATLAB EPS graphic may not contain a preview, or the pre-
view may be in a format that the target application does not support. If you
import an EPS graphic that does not have a valid preview, the graphic will
appear as a gray box on screen, but will appear appropriately on paper when
you print the document.

Portability is an issue if you use more than one computer platform. If you use
the target application on more than one platform, you need to use a format that
is not platform-specific. For example, if you use FrameMaker on both Macin-
tosh and UNIX systems, you should not use PICT format graphics, because
these graphics may not display or print properly on UNIX systems. TIFF and
EPS formats are better choices, because they are supported on all platforms
that MATLAB runs on.

Finally, in terms of convenience, copying to the clipboard and pasting into the
target application is generally the simplest method. The disadvantages of this
approach are that you are limited to working on a single platform, and no file
is created.

Note that if you need output in a graphics format that MATLAB does not pro-
duce, you may be able to use a format conversion application to convert a
MATLAB-produced graphic to another format. For example, MATLAB does not
produce GIF files (due to patent restrictions), but there are many applications
that can convert TIFF files to GIF.

Copying Output Files to Another Platform
When you create a graphics file from a MATLAB Figure, you can import the
file into another application on the same platform that you are running
MATLAB on, or you can import the file into an application running on another
platform. For example, if you are running MATLAB on a UNIX system you
7-42

Using MATLAB Graphics in Other Applications
may want to import the file into a Windows or Macintosh word-processing
application.

Keep in mind that not all applications import the same graphics formats, and
the formats commonly supported vary from platform to platform. If you want
to transfer graphics files between platforms, the best formats to use are gener-
ally Encapsulated PostScript and TIFF. These formats are supported by most
applications on all of the platforms that MATLAB runs on.

Application-Specific Issues
This section discusses issues related to importing MATLAB graphics into sev-
eral commonly used applications. These applications are:

• Microsoft Word

• Corel Draw

• Scientific Word

• LaTeX

Microsoft Word. When you import a graphic into a Microsoft Word document,
first create a frame in the document and import the graphic into it. Importing
into a frame will enable you to reposition the graphic by dragging it.

Corel Draw. You can import Windows Enhanced Metafiles and PCX files into
Corel Draw. Note that the graphic appears to be black and white until you
make the picture full screen.

Scientific Word. You can import a MATLAB Figure into Scientific Word by cre-
ating an Encapsulated PostScript file. Note that you cannot control the size of
the graphic in Scientific Word, so be sure to make the image the size you want
when you create it in MATLAB. You can do this by setting the PaperPosition
parameter, as described on page 7-25.

LaTeX. You can import a MATLAB Figure into LaTeX by creating an Encapsu-
lated PostScript file. The general syntax for including a PostScript figure in
LaTeX is:

\begin{figure}[h]
\centerline{\psfig{figure=file.ps,height=height,angle=angle}
\caption{caption}
\end{figure}
7-43

7 Printing MATLAB Graphics
(The items in italics are placeholders for the actual values you specify.)

You can specify the height in any LaTeX compatible dimension. To set the
height to 3.5 inches, use the command:

height=3.5in

You can use the angle command to rotate the graph. For instance, to rotate the
graph 90 degrees, use the command:

angle=90
7-44

Handle Graphics Organization 8-2
Graphics Objects 8-2
Object Properties 8-7

Graphics Object Creation Functions 8-10
Example – Creating Graphics Objects 8-11
Parenting . 8-12
High-Level Versus Low-Level 8-13
Simplified Calling Syntax 8-13

Using set and get 8-15
Setting Property Values 8-15
Getting Property Values 8-17
Factory-Defined Property Values 8-19

Default Property Values 8-20
Specifying Default Values 8-22
Examples – Setting Defaults 8-23

Accessing Object Handles 8-27
The Current Figure, Axes, and Object 8-27
Searching for Objects by Property Values — findobj 8-29
Copying and Deleting Objects 8-30

Controlling Graphics Output 8-33
Specifying the Target for Graphics Output. 8-33
Preparing Figures and Axes for Graphics 8-33
Testing for Hold State 8-38
Protecting Figures and Axes 8-39

Efficient Programming 8-44
Save Information First 8-44

Properties Changed by Built-in Functions 8-45
8

Handle Graphics

8 Handle Graphics
Handle Graphics Organization
Handle Graphics is an object-oriented graphics system that provides the com-
ponents necessary to create computer graphics. It supports drawing commands
to create lines, text, meshes and polygons as well as interactive devices such as
menus, pushbuttons, and dialog boxes.

With Handle Graphics, you can directly manipulate the lines, surfaces, and
other graphics elements that MATLAB’s high-level routines use to produce
various types of graphs. You can use Handle Graphics from the MATLAB com-
mand line to modify the display or in M-files to create customized graphics
functions.

Graphics Objects
Handle Graphics objects are the basic drawing elements used by MATLAB to
display data and to create graphical user interfaces (GUIs). Each instance of
an object is associated with a unique identifier called a handle. Using this
handle, you can manipulate the characteristics (called object properties) of an
existing graphics object. You can also specify values for properties when you
create a graphics object.

These objects are organized into a tree-structured hierarchy:

The hierarchical nature of Handle Graphics is based on the interdependencies
of the various graphics objects. For example, to draw a Line object, MATLAB
needs an Axes object to orient and provide a frame of reference to the Line. The
Axes, in turn, needs a Figure window to display the Line.

Figure

TextLine

Uicontrol Uimenu

Image SurfacePatch

Root

Axes

Light
8-2

Handle Graphics Organization
Because graphics objects are interdependent, the graphics display typically
contains a variety of objects that, in conjunction, produce a meaningful graph
or picture. The following picture of a Figure window contains a number of
graphics objects.

Each type of graphics object has a corresponding creation function that you use
to create an instance of that class of object. Object creation functions have the
same names as the objects they create (e.g., the text function creates Text
objects, the figure function creates Figure objects, and so on).

Patch

Figure

Axes
(2D)

−2
−1

0
1

2

−2

0

2
−0.5

0

0.5

Surface

Axes
(3D)

Image

100 200 300

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t = 0 to 2pi

si
n(

t)

Value of the Sine from Zero to Two Pi

<−sin(t) = .707

<−sin(t) = 0

sin(t) = −.707 −>

−25 −20 −15 −10 −5 0 5 10
−5

0

5

10

Line Text
8-3

8 Handle Graphics
The Root
At the top of the hierarchy is the Root object. It corresponds to the computer
screen. There is only one Root object and all other objects are its descendants.
You do not create the Root object; it exists when you start MATLAB. You can,
however, set the values of Root properties and thereby affect the graphics dis-
play.

Figure
Figure objects are the individual windows on the Root screen where MATLAB
displays graphics. MATLAB places no limits on the number of Figure windows
you can create (your computer may, however). All Figures are children of the
Root and all other graphics objects are descendants of Figures.

All functions that draw graphics (e.g., plot and surf) automatically create a
Figure if one does not exist. If there are multiple Figures within the Root, one
Figure is always designated as the “current” Figure, and is the target for
graphics output. See chapter entitled Figures for information on using Figures.

Uicontrol
Uicontrol objects are user interface controls that execute callback routines
when users activate the object. There are a number of styles of controls such as
pushbuttons, listboxes, and sliders. Each device is designed to accept a certain
type of information from users. For example, listboxes are typically used to pro-
vide a list of filenames from which you select one or more items for action car-
ried out by the control’s callback routine.

The uicontrol entry in the online MATLAB Function Reference describes the
available types of controls.

You can use Uicontrols in combinations to construct control panels and dialog
boxes. Pop-up menus, editable text boxes, check boxes, pushbuttons, static
text, and frames compose this particular example:
8-4

Handle Graphics Organization
Uicontrol objects are children of Figures and are therefore independent of
Axes.

Uimenu
Uimenu objects are pull-down menus that execute callback routines when
users select an individual menu item. MATLAB places Uimenus on the Figure
window menu bar, to the right of existing menus defined by the system. This
picture shows the top of an MS-Windows Figure that has three top-level
Uimenus defined (titled Workspace, Figure, and Axes). Two levels of submenus
are visible under Workspace top-level Uimenu.

Uimenus are children of Figures and are therefore independent of Axes.

Users type numerical values into

Check boxes indicate the choice made by the user

Pushbuttons indicate an action

Pop-up menus provide a choice between

Frames provide logical groupings

Static text labels other Uicontrols

these editable text boxes

 predefined items

for other controls
8-5

8 Handle Graphics
Axes
Axes objects define a region in a Figure window and orient their children
within this region. Axes are children of Figures and are parents of Image,
Light, Line, Patch, Surface, and Text objects.

All functions that draw graphics (e.g., plot, surf, mesh, and bar) create an
Axes object if one does not exist. If there are multiple Axes within the Figure,
one Axes is always designated as the “current” Axes, and is the target for dis-
play of the above mentioned graphics objects (Uicontrols and Uimenus are not
children of Axes). The chapter entitled Axes provides information on using
Axes.

Image
A MATLAB Image consists of a data matrix and possibly a colormap. There are
three basic Image types that differ in the way that data matrix elements are
interpreted as pixel colors – indexed, intensity, and truecolor. Since Images are
strictly 2-D, you can view them only at the default 2-D view.

Light
Light objects define light sources that affect all objects within the Axes. You
cannot see Lights, but you can set properties that control the style of light
source, color, location, and other properties common to all graphics objects.

Line
Line objects are the basic graphics primitives used to create most 2-D and some
3-D plots. High-level functions plot, plot3, and contour (and others) create
Line objects. The coordinate system of the parent Axes positions and orients
the Line.

Patch
Patch objects are filled polygons with edges. A single Patch can contain mul-
tiple faces, each colored independently with solid or interpolated colors. fill,
fill3, and contour3 create patch objects. The coordinate system of the parent
Axes positions and orients the Patch.

Surface
Surface objects are 3-D representations of matrix data created by plotting the
value of each matrix element as a height above the x-y plane. Surface plots are
8-6

Handle Graphics Organization
composed of quadrilaterals whose vertices are specified by the matrix data.
MATLAB can draw Surfaces with solid or interpolated colors or with only a
mesh of lines connecting the points. The coordinate system of the parent Axes
positions and orients the Surface.

The high-level function pcolor and the surf and mesh group of functions create
Surface objects.

Text
Text objects are character strings. The coordinate system of the parent Axes
positions the Text. The high-level functions title, xlabel, ylabel, zlabel,
and gtext create Text objects.

Object Properties
A graphics object’s properties control many aspects of its appearance and
behavior. Properties include general information such as the object’s type, its
parent and children, whether it is visible, as well as information unique to the
particular class of object.

For example, from any given Figure object you can obtain the identity of the
last key pressed in the window, the location of the pointer, or the handle of the
most recently selected menu.

MATLAB organizes graphics information into a hierarchy and stores this infor-
mation in properties. For example, Root properties contain the handle of the
current Figure and the current location of the pointer (cursor), Figure proper-
ties maintain lists of their descendants and keep track of certain events that
occur within the window, and Axes properties contain information about how
each of its child objects uses the Figure colormap and the color order used by
the plot function.

You can query the current value of any property and specify most property
values (although some are set by MATLAB and are read only). Property values
apply uniquely to a particular instance of an object; setting a value for one
object does not change this value for other objects of the same type.

You can set default values that affect all subsequently created objects. When-
ever you do not define a value for a property, either as a default or when you
create the object, MATLAB uses “factory-defined” values.
8-7

8 Handle Graphics
The reference entry for each object creation function provides a complete list of
the properties associated with that class of graphics object.

Properties Common to All Objects
Some properties are common to all graphics objects. These include:

Property Information Contained

BusyAction Controls the way MATLAB handles callback rou-
tine interruption defined for the particular object

ButtonDownFcn Callback routine that executes when button press
occurs

ChangeFcn Callback routine that executes when a property
belonging to this object changes

Children Handles of all this object’s children objects.

Clipping Mode that enables or disables clipping (meaningful
only for Axes children)

CreateFcn Callback routine that executes when this type of
object is created

DeleteFcn Callback routine that executes when you issue a
command that destroys the object

HandleVisibility Allows you to control the availability of the object’s
handle from the command line and from within
callback routines

Interruptible Determines whether a callback routine can be
interrupted by a subsequently invoked callback
routine

Parent The object’s parent
8-8

Handle Graphics Organization
Selected Indicates whether object is selected

SelectionHighlight Specifies whether object visually indicates the
selection state

Tag User-specified object label

Type The type of object (Figure, Line, Text, etc.)

UserData Any data you want to associate with the object

Visible Determines whether or not the object is visible

Property Information Contained
8-9

8 Handle Graphics
Graphics Object Creation Functions
Each graphics object (except the Root object) has a corresponding creation func-
tion, named for the object it creates. This table lists the creation functions:

Function Object Description

axes Rectangular coordinate system that scales and ori-
ents Axes children Image, Light, Line, Patch, Sur-
face, and Text objects.

figure Window for displaying graphics.

image 2-D picture defined by either colormap indices or
RGB values. The data can be 8-bit or double preci-
sion data.

light Directional light source located within the Axes
and affecting Surfaces and Patches.

line Line formed by connecting the coordinate data
with straight line segments, in the sequence speci-
fied.

patch Polygonal shell created by interpreting each
column in the coordinate matrices as a separate
polygon.

surface Surface created with rectangular faces defined by
interpreting matrix elements as heights above a
plane.

text Character string located in the Axes coordinate
system.

uicontrol Programmable user-interface device, such as push-
button, slider, or listbox.

uimenus Programmable menu appearing at the top of a
Figure window.
8-10

Graphics Object Creation Functions
All object creation functions have a similar format:

handle = function('propertyname',propertyvalue,...)

You can specify a value for any object property (except those that are read only)
by passing property name/property value pairs as arguments. The function
returns the handle of the object it creates, which you can use to query and
modify properties after creating the object.

Example – Creating Graphics Objects
The statements,

[x,y] = meshgrid([−2:.4:2]);
Z = x.*exp(−x.^2−y.^2);
fh = figure('Position',[350 275 400 300],'Color','w');
ah = axes('Color',[.8 .8 .8],'XTick',[−2 −1 0 1 2],...
 'YTick',[−2 −1 0 1 2]);
sh = surface('XData',x,'YData',y,'ZData',Z,...
 'FaceColor',get(ah,'Color')+.1,...
 'EdgeColor','k','Marker','o',...
 'MarkerFaceColor',[.5 1 .85]);

evaluate a function and create three graphics objects using the property values
specified as arguments and default values of all other properties:

−2 −1 0 1 2
−2

−1

0

1

2

8-11

8 Handle Graphics
Note that the surface function does not use a 3-D view like the high-level surf
functions. Object creation functions simply add new objects to the current Axes
without changing Axes properties, except the Children property, which now
includes the new object and the axis limits (XLim, YLim, and ZLim), if necessary.

You can change the view using the Axes camera properties (see the
Three-Dimensional Graphs chapter) or use the view command:

view(3)

Parenting
By default, all statements that create graphics objects do so in the current
Figure and the current Axes (if the object is an Axes child). However, you can
specify the parent of an object when you create it. For example, the statement:

axes('Parent',figure_handle,...)

creates an Axes in the Figure identified by figure_handle. You can also move
an object from one parent to another by redefining its Parent property:

set(gca,'Parent',figure_handle)

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5
8-12

Graphics Object Creation Functions
High-Level Versus Low-Level
MATLAB’s high-level graphics routines (e.g., plot or surf) call the appropriate
object creation function to draw graphics objects. However, high-level routines
also clear the Axes or create a new Figure, depending on the settings of the
Axes and Figure NextPlot properties.

In contrast, object creation functions simply create their respective graphics
objects and place them in the current parent object. They do not respect the set-
ting of the Figure and Axes NextPlot properties.

For example, if you call the line function,

line('XData',x,'YData',y,'ZData',z,'Color','r')

MATLAB draws a red line in the current Axes using the specified data values.
If there is no Axes, MATLAB creates one. If there is no Figure window in which
to create the Axes, MATLAB creates it as well.

If you call the line function a second time, MATLAB draws the second line in
the current Axes without erasing the first line. This behavior is different from
high-level functions like plot that delete graphics objects and reset all Axes
properties (except Position and units). You can change the behavior of
high-level functions using the hold command or changing the setting of the
Axes NextPlot property.

See the “Controlling Graphics Output” section in this chapter for more infor-
mation on this behavior and on using the NextPlot property.

Simplified Calling Syntax
Object creation functions have convenience forms that allow you to use a sim-
pler syntax. For example,

text(.5,.5,.5,'Hello')

is equivalent to,

text('Position',[.5 .5 .5],'String','Hello')

Note that using the convenience form of an object creation function can cause
subtle differences in behavior when compared to formal property name/prop-
erty value syntax. See the reference manual for specific information on the
calling syntax of object creation routines.
8-13

8 Handle Graphics
A Note About Property Names
By convention, MATLAB documentation capitalizes the first letter of each
word that makes up a property name, such as LineStyle or XMinorTickMode.
While this makes property names easier to read, MATLAB does not check for
uppercase letters. In addition, you need use only enough letters to identify the
name uniquely, so you can abbreviate most property names.

In M-files, however, using the full property name can prevent problems with
futures releases of MATLAB if a shortened name is no longer unique because
of the addition of new properties.
8-14

Using set and get
Using set and get
The set and get functions specify and retrieve the value of existing graphics
object properties. They also allow you to list possible values for properties that
have a fixed set of values.

Setting Property Values
See the “Accessing Object
Handles” section for infor-
mation on finding the handle
of an existing object.

You can change the properties of an existing object using the set function and
the handle returned by the creating function. For example, this statement
moves the y-axis to the right side of the plot on the current Axes:

set(gca,'YAxisLocation','right')

If the handle argument is a vector, MATLAB sets the specified value on all
identified objects.

You can specify property names and property values using structure arrays or
cell arrays. This can be useful if you want to set the same properties on a
number of objects. For example, you can define a structure to set Axes proper-
ties appropriately to display a particular graph:

view1.CameraViewAngleMode = 'manual';
view1.DataAspectRatio = [1 1 1];
view1.ProjectionType = 'Perspective';

To set these values on the current Axes, type:

set(gca,view1)

See the set function in the online MATLAB Function Reference.

Listing Possible Values
You can use set to display the possible values for many properties without
actually assigning a new value. For example, this statement obtains the values
you can specify for Line object markers:

set(obj_handle,'Marker')

MATLAB returns a list of values for the Marker property for the type of object
specified by obj_handle. Braces indicate the default value:

[+ | o | * | . | x | square | diamond | v | ^ | > | < | pentagram
| hexagram | {none}]
8-15

8 Handle Graphics
To see a list of all settable properties along with possible values of properties
that accept string values, use set with just an object handle:

set(object_handle)

For example, for a Surface object, MATLAB returns:

CData
CDataScaling: [{on} | off]
EdgeColor: [none | {flat} | interp] ColorSpec.
EraseMode: [{normal} | background | xor | none]
FaceColor: [none | {flat} | interp | texturemap] ColorSpec.
LineStyle: [{−} | −− | : | −. | none]
 .
 .
 .
Visible: [{on} | off]

If you assign the output of the set function to a variable, MATLAB returns the
output as a structure array. For example,

a = set(gca);

The field names in a are the object’s property names and the field values are
the possible values for the associated property. For example,

a.GridLineStyle
ans =

 '-'
 '--'
 ':'
 '-.'
 'none'

returns the possible value for the Axes grid line styles. Note that while prop-
erty names are not case sensitive, MATLAB structure field names are. For
example,

a.gridlinestyle
??? Reference to non-existent field 'gridlinestyle'.

returns an error.
8-16

Using set and get
Getting Property Values
Use get to query the current value of a property or of all the object’s properties.
For example, check the value of the current Axes PlotBoxAspectRatio prop-
erty:

get(gca,'PlotBoxAspectRatio')

ans =
 1 1 1

MATLAB lists the values of all properties, where practical. However, for prop-
erties containing data, MATLAB lists the dimensions only (for example,
CurrentPoint and ColorOrder):

AmbientLightColor = [1 1 1]
Box = off
CameraPosition = [0.5 0.5 2.23205]
CameraPositionMode = auto
CameraTarget = [0.5 0.5 0.5]
CameraTargetMode = auto
CameraUpVector = [0 1 0]
CameraUpVectorMode = auto
CameraViewAngle = [32.2042]
CameraViewAngleMode = auto
CLim: [0 1]
CLimMode: auto
Color: [0 0 0]
CurrentPoint: [2x3 double]
ColorOrder: [7x3 double]
 .
 .
 .
Visible = on
8-17

8 Handle Graphics
You can obtain the data from the property by getting that property individu-
ally:

get(gca,'ColorOrder')
ans =
 0 0 1.0000
 0 0.5000 0
 1.0000 0 0
 0 0.7500 0.7500
 0.7500 0 0.7500
 0.7500 0.7500 0
 0.2500 0.2500 0.2500

If you assign the output of get to a variable, MATLAB creates a structure array
whose field names are the object property names, and field values are the cur-
rent values of the named property.

For example, if you plot some data, x and y:

h = plot(x,y);

and get the properties of the Line object created by plot:

a = get(h);

You can now access the values of the Line properties using the field name. This
call to the text function places the string 'x and y data' at the first data point
and colors the text to match the line color:

text(x(1),y(1),'x and y data','Color',a.Color)

If x and y are matrices, plot draws one line per column. To label the plot of the
second column of data, reference that Line:

text(x(1,2),y(1,2),'Second set of data','Color',a(2).Color)
8-18

Using set and get
Querying Groups of Properties
You can define a cell array of property names and conveniently use it to obtain
the values for those properties. For example, suppose you want to query the
values of the Axes “camera mode” properties. First define the cell array:

camera_props(1) = {'CameraPositionMode'};
camera_props(2) = {'CameraTargetMode'};
camera_props(3) = {'CameraUpVectorMode'};
camera_props(4) = {'CameraViewAngleMode'};

Use this cell array as an argument to obtain the current values of these prop-
erties:

get(gca,camera_props)
ans =
 'auto' 'auto' 'auto' 'auto'

Factory-Defined Property Values
MATLAB defines values for all properties, which are used if you do not specify
values as arguments or as defaults. You can obtain a list of all factory-defined
values with the statement:

a = get(0,'Factory');

get returns a structure array whose field names are the object type and prop-
erty name concatenated together, and field values are the factory value for the
indicated object and property. For example, this field:

UimenuSelectionHighlight: 'on'

indicates that the factory value for the SelectionHighlight property on
Uimenu objects is on.

You can get the factory value of an individual property with:

get(0,'FactoryObjectTypePropertyName')

For example

get(0,'FactoryTextFontName')

See the set and get functions in the online MATLAB Function Reference for
more information.
8-19

8 Handle Graphics
Default Property Values
All object properties have “default” values built into MATLAB (i.e., fac-
tory-defined values). You can also define your own default values at any point
in the object hierarchy.

MATLAB’s search for a default value begins with the current object and con-
tinues through the object’s ancestors until it finds a user-defined default value
or until it reaches the factory-defined value. Therefore, a search for property
values is always satisfied.

The closer to the Root of the hierarchy you define the default, the broader is its
scope. If you specify a default value for Line objects on the Root level, MATLAB
uses that value for all Lines (since the Root is at the top of the hierarchy). If
you specify a default value for Line objects on the Axes level, then MATLAB
uses that value for Line objects drawn only in that Axes.

If you define default values on more than one level, the value defined on the
closest ancestor takes precedence since MATLAB terminates the search as
soon as it finds a value.

Note that setting default values affects only those objects created after you set
the default. Existing graphics objects are not affected.
8-20

Default Property Values
This diagram shows the steps MATLAB follows in determining the value of a
graphics object property:

YES Use property
value specified
as argument

Use Axes-level
default value

Use Figure-level
default value

Use Root-level
default value

Use factory
defined default
property value

NO

YES

YES

NO

NO

NO

YES

Is property
value defined
as argument

Is default
defined on
Axes level?

Is default
defined on
Figure level?

Is default
defined on
Root level?

For all properties
8-21

8 Handle Graphics
Specifying Default Values
To specify default values, create a string beginning with the word Default fol-
lowed by the object type and finally the object property. For example, to specify
a default value of 1.5 points for the Line LineWidth property at the level of the
current Figure, use the statement:

set(gcf,'DefaultLineLineWidth',1.5)

The string, DefaultLineLineWidth identifies the property as a Line property.
To specify the Figure color, use DefaultFigureColor. Note that it is mean-
ingful to specify a default Figure color only on the Root level:

set(0,'DefaultFigureColor','b')

Use get to determine what default values are currently set on any given object
level, for example:

get(gcf,'default')

returns all default values set on the current Figure.

Setting Properties to the Default
Specifying a property value of 'default' sets the property to the first encoun-
tered default value defined for that property. For example, these statements
result in a green Surface EdgeColor:

set(0,'DefaultSurfaceEdgeColor','k')
h = surface(peaks);
set(gcf,'DefaultSurfaceEdgeColor','g')
set(h,'EdgeColor','default')

Since a default value for Surface EdgeColor exists on the Figure level,
MATLAB encounters this value first and uses it instead of the default
EdgeColor defined on the Root.

Removing Default Values
Specifying a property value of 'remove' gets rid of user-defined default values.
The statement,

set(0,'DefaultSurfaceEdgeColor','remove')

removes the definition of the default Surface EdgeColor from the Root.
8-22

Default Property Values
Setting Properties to Factory-Defined Values
Specifying a property value of 'factory' sets the property to its fac-
tory-defined value. (The descriptions of the object creation functions in the
online MATLAB Function Reference indicate the factory settings for properties
having predefined sets of values.)

For example, these statements set the EdgeColor of Surface h to black (its fac-
tory setting) regardless of what default values you have defined.

set(gcf,'DefaultSurfaceEdgeColor','g')
h = surface(peaks);
set(h,'EdgeColor','factory')

Reserved Words
Setting a property value to default, remove, or factory produces the effect
described in the previous sections. In order to set a property to one of these
words (e.g., a Text or Uicontrol String property set to the word “Default”) you
must precede the word with the backslash character. For example,

h = uicontrol('Style','edit','String','\Default');

Examples – Setting Defaults
The plot function cycles through the colors defined by the Axes ColorOrder
property when displaying multiline plots. If you define more than one value for
the Axes LineStyleOrder property, MATLAB increments the linestyle after
each cycle through the colors.

You can set default property values that cause the plot function to produce
graphs using varying linestyles, but not varying colors. This is useful when
working on a monochrome display or printing on a black and white printer.

First Example. This example creates a Figure with a white plot (Axes) back-
ground color, then sets default values for Axes objects on the Root level:

Create a Figure and use a
white color scheme

whitebg('w')
set(0,'DefaultAxesColorOrder',[0 0 0],...
 'DefaultAxesLineStyleOrder','−|−−|:|−.')

Whenever you call plot,

Z = peaks; plot(1:49,Z(4:7,:))
8-23

8 Handle Graphics
it uses one color for all data plotted because the Axes ColorOrder contains only
one color, but cycles through the linestyles defined for LineStyleOrder.

0 10 20 30 40 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
8-24

Default Property Values
Second Example. This example sets default values on more than one level in the
hierarchy. These statements create two Axes in one Figure window, setting
default values on the Figure level and the Axes level.

t = 0:pi/20:2*pi;
s = sin(t);
c = cos(t);
figh = figure('Position',[30 100 800 350],...

 'DefaultAxesColor',[.8 .8 .8])

axh1 = subplot(1,2,1); grid on
set(axh1,'DefaultLineLineStyle','–.')
line('XData',t,'YData',s)
line('XData',t,'YData',c)
text('Position',[3 .4],'String','Sine')
text('Position',[2 –.3],'String','Cosine',...
 'HorizontalAlignment','right')

axh2 = subplot(1,2,2); grid on
set(axh2,'DefaultTextRotation',90)
line('XData',t,'YData',s)
line('XData',t,'YData',c)
text('Position',[3 .4],'String','Sine')
text('Position',[2 –.3],'String','Cosine',...

 'HorizontalAlignment','right')

Issuing the same line and text statements to each subplot region results in a
different display, reflecting different default settings:

Set default value for Axes
Color property

Set default value for Line
LineStyle property
used in the first Axes.

Set default value for Text
Rotation property used
in the second Axes.
8-25

8 Handle Graphics
Since the default Axes Color property is set on the Figure level of the hier-
archy, MATLAB creates both Axes with the specified gray background color.

The Axes on the left (subplot region 121) defines a dash–dot line style (−.) as
the default, so each call to the line function uses dash–dot lines. The Axes on
the right does not define a default linestyle so MATLAB uses solid lines (the
factory setting for Lines).

The Axes on the right defines a default Text Rotation of 90 degrees, which
rotates all Text by this amount. MATLAB obtains all other property values
from their factory settings, which results in nonrotated text on the left.

To install default values whenever you run MATLAB, specify them in your
startup.m file. Note that MATLAB may install default values for some appear-
ance properties when started by calling the colordef command. See the online
MATLAB Function Reference for more information.

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

Sine

Cosine

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

S
in

e

C
os

in
e

8-26

Accessing Object Handles
Accessing Object Handles
MATLAB assigns a handle to every graphics object it creates. All object cre-
ation functions optionally return the handle of the created object. If you want
to access the object’s properties (e.g., from an M-file) you should assign its
handle to a variable at creation time to avoid searching for it later. However,
you can always obtain the handle of an existing object with the findobj func-
tion or by listing its parent’s Children property. See the “Protecting Figures
and Axes” section for more information.

The Root object’s handle is always zero. The handle of a Figure is either:

• An integer that, by default, displays in the window title bar

• A floating point number requiring full MATLAB internal precision

The Figure IntegerHandle property controls which type of handle the Figure
receives.

All other graphics object handles are floating-point numbers. You must main-
tain the full precision of these numbers when you reference handles. Rather
than attempting to read handles off the screen and retype them, it is necessary
to store the value in a variable and pass that variable whenever a handle is
required.

The Current Figure, Axes, and Object
An important concept in Handle Graphics is that of being current. The current
Figure is the window designated to receive graphics output. Likewise, the cur-
rent Axes is the target for commands that create Axes children. The current
object is the last graphics object created or clicked on by the mouse.

MATLAB stores the three handles corresponding to these objects in the
ancestor’s property list:

Root
CurrentFigure

Current Figure

CurrentObject
CurrentAxes

Current Axes

Current Object
8-27

8 Handle Graphics
These properties enable you to obtain the handles of these key objects:

get(0,'CurrentFigure');
get(gcf,'CurrentAxes');
get(gcf,'CurrentObject');

The following commands are shorthand notation for the get statements:

• gcf – returns the value of the Root CurrentFigure property

• gca – returns the value of the current Figure’s CurrentAxes property

• gco – returns the value of the current Figure’s CurrentObject property

You can use these commands as input arguments to functions that require
object handles. For example, you can click on a Line object and then use gco to
specify the handle to the set command:

set(gco,'Marker','square')

or list the values of all current Axes properties with,

get(gca)

You can get the handles of all the graphic objects in the current Axes (except
those with hidden handles),

h = get(gca,'Children');

and then determine the types of the objects:

get(h,'type')
ans =
 'text'
 'patch'
 'surface'
 'line'

While gcf and gca provide a simple means of obtaining the current Figure and
Axes handles, they are less useful in M-files. This is particularly true if your
M-file is part of an application layered on MATLAB where you do not neces-
sarily have knowledge of user actions that can change these values.

See the “Controlling Graphics Output” section for information how to prevent
users from accessing the handles of graphics objects that you want to protect.
8-28

Accessing Object Handles
Searching for Objects by Property Values — findobj
The findobj function provides a means to traverse the object hierarchy quickly
and obtain the handles of objects having specific property values. If you do not
specify a starting object, findobj searches from the Root object, finding all
occurrences of the property name/property value combination you specify.

See also the findobj function description in the online MATLAB Function Ref-
erence for more information.

Example
This plot of the sine function contains Text objects labeling particular values of
function:

Suppose you want to move the text string labeling the value sin(t) = .707 from
its current location at [pi/4,sin(pi/4)] to the point [3*pi/4,sin(3*pi/4)]
where the function has the same value (shown grayed out in the picture). To do
this, you need to determine the handle of the Text object labeling that point and
change its Position property.

To use findobj, pick a property value that uniquely identifies the object. In
this case, the Text String property:

text_handle = findobj('String','\leftarrowsin(t) = .707');

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t = 0 to 2pi

si
n(

t)

Value of the Sine from Zero to Two Pi

←sin(t) = .707

←sin(t) = 0

sin(t) = −.707 →

←sin(t) = .707
8-29

8 Handle Graphics
Next move the object to the new position, defining the Text Position in Axes
units:

set(text_handle,'Position',[3*pi/4,sin(3*pi/4),0])

findobj also lets you restrict the search by specifying a starting point in the
hierarchy, instead of beginning with the Root object. This results in faster
searches if there are many objects to search. In the previous example, you know
the Text object of interest is in the current Axes so you can type:

text_handle = findobj(gca,'String','\leftarrowsin(t) = .707');

Copying and Deleting Objects
You can copy objects from one parent to another using the copyobj function.
The new object differs from the original object only in the value of its Parent
property and its handle; it is otherwise a clone of the original. You can copy a
number of objects to a new parent, or one object to a number of new parents as
long as the result maintains the correct parent/child relationship.

When you copy an object having children objects, MATLAB copies all children
as well.

Example – Copying Objects
Suppose you are plotting a variety of data and want to label the point having
the x- and y-coordinates determined by in each plot. The
text function allows you to specify the location of the label in the coordinates
defined by the x- and y-axis limits, simplifying the process of locating the Text:

text('String','\{5\pi\div4, sin(5\pi\div4)\}\rightarrow',...
 'Position',[5*pi/4,sin(5*pi/4),0],...
 'HorizontalAlignment','right')

In this statement, the text function:

• Labels the data point with the string , using TeX com-
mands to draw a right-facing arrow and mathematical symbols.

• Specifies the Position in terms of the data being plotted.

• Places the data point to the right of the Text string by changing the
HorizontalAlignment to right (the default is left).

5π 4÷ 5π 4÷〈 〉sin,

5π 4÷ 5π 4÷〈 〉sin,{ }
8-30

Accessing Object Handles
To label the same point with the same string in another plot, copy the Text
using copyobj. Since the last statement did not save the handle to the Text
object, you can find it using findobj and the 'String' property:

text_handle = findobj('String',...
 '\{5\pi\div4,sin(5\pi\div4)\}\rightarrow');

After creating the next plot, add the label by copying it from the first plot.

copyobj(text_handle,gca).

0 1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

{5π÷4, sin(5π÷4)}→

0 1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

{5π÷4, sin(5π÷4)}→
8-31

8 Handle Graphics
This particular example takes advantage of the fact that Text objects define
their location in the Axes’ data space. Therefore the Text Position property did
not need to change from one plot to another.

See the copyobj reference page for a complete discussion of the various ways
you can use copyobj.

Deleting Objects
You can remove a graphics object with the delete command, using the object’s
handle as an argument. For example, you can delete the current Axes (and all
of its descendants) with the statement:

delete(gca)

You can use findobj to get the handle of a particular object you want to delete.
For example, to find the handle of the dotted Line in this multiline plot,

use findobj to locate the object whose LineStyle property is ':'

line_handle = findobj('LineStyle',':');

then use this handle with the delete command:

delete(line_handle)

You can combine these two statements, substituting the findobj statement for
the handle:

delete(findobj('LineStyle',':'))

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

8-32

Controlling Graphics Output
Controlling Graphics Output
MATLAB allows many Figure windows to be open simultaneously during a ses-
sion. A MATLAB application may create Figures to display graphical user
interfaces as well as plotted data. It is necessary then to protect some Figures
from becoming the target for graphics display and to prepare (e.g., reset prop-
erties and clear existing objects from) others before receiving new graphics.

This section discusses how to control where and how MATLAB displays
graphics output. Topics include:

• Specifying the target for graphics output

• Preparing the Figure and Axes to accept new objects

• Protecting Figures and Axes from becoming targets

• Accessing the handles of protected Figure and Axes

Specifying the Target for Graphics Output
By default, MATLAB functions that create graphics objects display them in the
current Figure and current Axes (if an Axes child). You can direct the output
to another parent by explicitly specifying the Parent property with the creating
function. For example,

plot(1:10,'Parent',axes_handle)

where axes_handle is the handle of the target Axes. The uicontrol and
uimenu functions have a convenient syntax that enables you to specify the
parent as the first argument,

uicontrol(Figure_handle,...)
uimenu(parent_menu_handle,...)

or you can set the Parent property. See the online MATLAB Function Refer-
ence for more information.

Preparing Figures and Axes for Graphics
By default, commands that generate graphics output display the graphics
objects in the current Figure without clearing or resetting Figure properties.
However, if the graphics objects are Axes children, MATLAB clears the Axes
and resets most Axes properties to their default values before displaying the
objects.
8-33

8 Handle Graphics
You can change this behavior by setting the Figure and Axes NextPlot prop-
erty.

The NextPlot Property
MATLAB high-level graphics functions check the value of the NextPlot prop-
erties to determine whether to add, clear, or clear and reset the Figure and
Axes before drawing. Low-level object creation functions do not check the
NextPlot properties. They simply add the new graphics objects to the current
Figure and Axes.

Low-level functions are designed primarily for use in M-files where you can
implement whatever drawing behavior you want. However, when developing a
MATLAB-based application, controlling MATLAB’s drawing behavior is essen-
tial to creating a program that behaves predictably.

This table summarizes the possible values for the NextPlot property:

Note that a reset returns all properties, except Position and Units, to their
default values.

The hold command provides convenient access to the NextPlot properties. The
statement

hold on

sets both Figure and Axes NextPlot to add.

NextPlot Figure Axes

add Add new graphics objects without
clearing or resetting the current
Figure. (Default setting)

Add new graphics objects without
clearing or resetting the current
Axes.

replacechildren Remove all child objects, but do not
reset Figure properties. Equivalent
to clf.

Remove all child objects, but do not
reset Axes properties. Equivalent to
cla.

replace Remove all child objects and reset
Figure properties to their defaults.
Equivalent to clf reset.

Remove all child objects and reset
Axes properties to their defaults.
Equivalent to cla reset. (Default
setting)
8-34

Controlling Graphics Output
The statement

hold off

sets the Axes NextPlot property to replace.

Controlling Graphics Output with the newplot Function
MATLAB provides the newplot function to simplify the process of writing
graphics M-files that conform to the settings of the NextPlot properties.

newplot checks the values of the NextPlot properties and takes the appro-
priate action based on these values. You should place newplot at the beginning
of any M-file that calls object creation functions.

When your M-file calls newplot, these possible actions occur:

1 newplot checks the current Figure’s NextPlot property:

- If there are no Figures in existence, newplot creates one and makes it the
current Figure.

- If the value of NextPlot is add, newplot makes the Figure the current
Figure.

- If the value of NextPlot is replacechildren, newplot deletes the Figure’s
children (Axes objects and their descendents) and makes this Figure the
current Figure.

- If the value of NextPlot is replace, newplot deletes the Figure’s children,
resets the Figure’s properties to the defaults, and makes this Figure the
current Figure.

2 newplot checks the current Axes’ NextPlot property:

- If there are no Axes in existence, newplot creates one and makes it the cur-
rent Axes.

- If the value of NextPlot is add, newplot makes the Axes the current Axes.

- If the value of NextPlot is replacechildren, newplot deletes the Axes’
children and makes this Axes the current Axes.

- If the value of NextPlot is replace, newplot deletes the Axes’ children,
resets the Axes’ properties to the defaults, and makes this Axes the cur-
rent Axes.
8-35

8 Handle Graphics
MATLAB’s Default Behavior. Consider the default situation where the Figure
NextPlot property is add and the Axes NextPlot property is replace. When
you call newplot, it:

1 Checks the value of the current Figure’s NextPlot property (which is add)
and determines MATLAB can draw into the current Figure with no further
action (if there is no current Figure, newplot creates one, but does not
recheck its NextPlot property).

2 Checks the value of the current Axes’ NextPlot property (which is replace),
deletes all graphics objects from the Axes, reset all Axes properties (except
Position and Units) to their defaults, and returns the handle of the current
Axes.

Example – Using newplot
To illustrate the use of newplot, this example creates a function that is similar
to the built-in plot function, except it automatically cycles through different
linestyles instead of using different colors for multiline plots:

function my_plot(x,y)
cax = newplot;
LSO = ['− ';'−−';': ';'−.'];
set(cax,'FontName','Times','FontAngle','italic')
set(get(cax,'Parent'),'MenuBar','none')
line_handles = line(x,y,'Color','b');
style = 1;
for i = 1:length(line_handles)
 if style > length(LSO), style = 1;end
 set(line_handles(i),'LineStyle',LSO(style,:))
 style = style + 1;
end
grid on

See the line function in
the online MATLAB Function
Reference for a description
of its various forms.

The function my_plot uses the informal line function syntax to plot the data.
This provides the same flexibility in input argument dimension that the
built-in plot function supports. The line function does not check the value of
the Figure or Axes NextPlot property. However, because my_plot calls
newplot, it behaves the same way the high-level plot function does – with
default values in place, my_plot clears and reset the Axes each time you call it.

newplot returns the
handle of the current Axes.

Use Axes handle to set Axes
properties and to identify
Figure handle.
8-36

Controlling Graphics Output
my_plot uses the handle returned by newplot to access the target Figure and
Axes. This example sets Axes font properties and disables the Figure’s menu
bar. Note how the Figure handle is obtained via the Axes Parent property.

Typical output for this function is:

my_plot(1:10,peaks(10))

This example illustrates the basic structure of graphics M-files:

• Call newplot early to conform to the NextPlot properties and to obtain the
handle of the target Axes.

• Reference the Axes handle returned by newplot to set any Axes properties or
to obtain the Figure’s handle.

• Call object creation functions to draw graphics objects with the desired char-
acteristics.

MATLAB’s default settings for the NextPlot properties facilitate writing
M-files that adhere to MATLAB’s standard behavior: reuse the Figure window,
but clear and reset the Axes with each new graph. Other values for these prop-
erties allow you to implement different behaviors.

1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

8-37

8 Handle Graphics
Replacing Only the Children Objects —replacechildren
The replacechildren value for NextPlot causes newplot to remove child
objects from the Figure or Axes, but does not reset any property values (except
the list of handles contained in the Children property).

This can be useful after setting properties you want to use for subsequent
graphs without having to reset properties. For example, if you type on the com-
mand line

set(gca,'ColorOrder',[0 0 1],'LineStyleOrder','−|−−|:|−.',...
 'NextPlot','replacechildren')
plot(x,y)

plot produces the same output as the M-file my_plot in the previous section,
but only within the current Axes. Calling plot still erases the existing graph
(i.e., deletes the Axes children), but it does not reset Axes properties. The
values specified for the ColorOrder and LineStyleOrder properties remain in
effect.

Testing for Hold State
There are situations in which your M-file should change the visual appearance
of the Axes to accommodate new graphics objects. For example, if you want the
M-file my_plot from the previous example to accept 3-D data, it makes sense to
set the view to 3-D when the input data has z-coordinates.

However, to be consistent with the behavior of MATLAB’s high-level routines,
it is a good practice to test if hold is on before changing parent Axes or Figure
properties. When hold is on, the Axes and Figure NextPlot properties are both
set to add.
8-38

Controlling Graphics Output
The M-file, my_plot3, accepts 3-D data and also checks the hold state, using
ishold, to determine if it should change the view:

function my_plot3(x,y,z)
cax = newplot;
hold_state = ishold;
LSO = ['− ';'−−';': ';'−.'];
if nargin == 2

hlines = line(x,y,'Color','k');
if ∼ hold_state

view(2)
end

elseif nargin == 3
hlines = line(x,y,z,'Color','k');
if ∼ hold_state

view(3)
end

end
ls = 1;
for hindex = 1:length(hlines)
 if ls > length(LSO),ls = 1;end
 set(hlines(hindex),'LineStyle',LSO(ls,:))
 ls = ls + 1;
end

If hold is on when you call my_plot3, it does not change the view. If hold is off,
my_plot3 sets the view to 2-D or 3-D, depending on whether there are two or
three input arguments.

Protecting Figures and Axes
There are situations in which it is important to prevent particular Figures or
Axes from becoming the target for graphics output (i.e., preventing them from
becoming the gcf or gca). An example of this is a Figure containing the Uicon-
trols that implement a user interface.

You can prevent MATLAB from drawing into a particular Figure or Axes by
removing its handle from the list of handles that are visible to the newplot
function, as well as any other functions that either return or implicitly refer-
ence handles (i.e., gca, gcf, gco, cla, clf, close, and findobj). Two properties
control handle hiding: HandleVisibility and ShowHiddenHandles.

ishold tests the current
hold state.

Change the view only if hold
is off.
8-39

8 Handle Graphics
HandleVisibility Property
HandleVisibility is a property of all objects. It controls the scope of handle
visibility within three different ranges. Property values can be:

• on – The object’s handle is available to any function executed on the
MATLAB command line or from an M-file. This is the default setting.

• callback – The object’s handle is hidden from all functions executing on the
command line, even if it is on the top of the screen stacking order. However,
during callback routine execution (MATLAB statements or functions that
execute in response to user action), the handle is visible to all functions, such
as gca, gcf, gco, findobj, and newplot. This setting enables callback rou-
tines to take advantage of MATLAB’s handle access functions, while
ensuring that users typing at the command line do not inadvertently disturb
a protected object.

• off – The object’s handle is hidden from all functions executing on the com-
mand line and in callback routines. This setting is useful when you want to
protect objects from possibly damaging user commands.

For example, if a GUI accepts user input in the form of text strings, which are
then evaluated (using the eval function) from within the callback routine, a
string such as 'close all' could destroy the GUI. To protect against this sit-
uation, you can temporarily set HandleVisibility to off on key objects:

user_input = get(editbox_handle,'String');
set(gui_handles,'HandleVisibility','off')
eval(user_input)
set(gui_handles,'HandleVisibility','commandline')

Values Returned by gca and gcf. When a protected Figure is topmost on the screen,
but has nonprotected Figures stacked beneath it, gcf returns the topmost
unprotected Figure in the stack. The same is true for gca. If no unprotected
Figures or Axes exist, calling gcf or gca causes MATLAB to create one in order
to return its handle.

Accessing Protected Objects
The Root ShowHiddenHandles property enables and disables handle visibility
control. By default, ShowHiddenHandles is off, which means MATLAB obeys
the setting of the HandleVisibility property. When set to on, all handles are
visible from the command line and within callback routines. This can be useful
8-40

Controlling Graphics Output
when you want access to all graphics objects that exist at a given time,
including the handles of Axes text labels, which are normally hidden.

The close function also allows access to nonvisible Figures using the hidden
option. For example,

close('hidden')

closes the topmost Figure on the screen, even if it is protected. Combining all
and hidden options,

close('all','hidden')

closes all Figures.

The Close Request Function
MATLAB executes a callback routine defined by the Figure’s CloseRequestFcn
whenever you:

• Issue a close command on a Figure.

• Quit MATLAB while there are visible Figures. (If a Figure's Visible prop-
erty is set to off, MATLAB does not execute its close request function when
you quit MATLAB; the Figure is just deleted).

• Close a Figure from the windowing system using a close box or a close menu
item.

The close request function enables you to prevent or delay the closing of a
Figure or the termination of a MATLAB session. This is useful to perform such
actions as:

• Displaying a dialog box requiring the user to confirm the action

• Saving data before closing

• Preventing unintentional command-line deletion of a graphical user inter-
face built with MATLAB

The default callback routine for the CloseRequestFcn is an M-file called
closereq. It contains the statements:

shh=get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','on');
delete(get(0,'CurrentFigure'));
set(0,'ShowHiddenHandles',shh);
8-41

8 Handle Graphics
This callback disables HandleVisibility control by setting the Root
ShowHiddenHandles property to on, which makes all Figure handles visible.

Quitting MATLAB. When you quit MATLAB, the current Figure’s
CloseRequestFcn is called, and if the Figure is deleted, the next Figure in the
Root's list of children (i.e., the Root's Children property) becomes the current
Figure, and its CloseRequestFcn is in turn executed, and so on.

If you change a Figure's CloseRequestFcn so that it does not delete the Figure
(e.g., defining this property as an empty string), then issuing the close com-
mand on that Figure does not cause it to be deleted. Furthermore, if you
attempt to quit MATLAB, the quit is aborted because MATLAB does not delete
the Figure.

Errors in the Close Request Function. If the CloseRequestFcn generates an error
when executed, MATLAB aborts the close operation. However, errors in the
CloseRequestFcn do not abort attempts to quit MATLAB. If an error occurs in
a Figure's CloseRequestFcn, MATLAB closes the Figure unconditionally fol-
lowing a quit or exit command.

Overriding the Close Request Function. The delete command always deletes the
specified Figure, regardless of the value of its CloseRequestFcn. For example,
the statement:

delete(get(0,'Children'))

deletes all Figures whose handles are not hidden (i.e., the HandleVisibility
property is set to off). If you want to delete all Figures regardless of whether
their handles are hidden, you can set the Root ShowHiddenHandles property to
on. The Root Children property then contains the handles of all Figures. For
example, statements:

set(0,'ShowHiddenHandles','yes')
delete(get(0,'Children'))

unconditionally delete all Figures.

Validity versus Visibility
All handles remain valid regardless of whether they are visible or not. If you
know an object’s handle, you can set and get its properties. By default, Figure
handles are integers which are displayed at the top of the window. You can pro-
vide further protection to Figures by setting the IntegerHandle property to
8-42

Controlling Graphics Output
off. MATLAB then uses a floating-point number for Figure handles. See the
figure function in the online MATLAB Function Reference for a list of all
Figure properties.
8-43

8 Handle Graphics
Efficient Programming
Graphics M-files frequently use handles to access property values and to direct
graphics output to a particular target. MATLAB provides utility routines that
return the handles to key objects (such as the current Figure and Axes). In
M-files, however, these utilities may not be the best way to obtain handles
because:

• Querying MATLAB for the handle of an object or other information is less
efficient than storing the handle in a variable and referencing that variable.

• The current Figure, Axes, or object may change during M-file execution due
to user interaction.

Save Information First
It is a good practice to save relevant information about MATLAB’s state in the
beginning of your M-file. For example, you can begin an M-file with

cax = newplot;
cfig = get(cax,'Parent');
hold_state = ishold;

rather than querying this information each time you need it. Remember that
utility commands like ishold obtain the values they return whenever called.
(The ishold command issues a number of get commands and string compares
(strcmp) to determine the hold state.)

If you are temporarily going to alter the hold state within the M-file, you should
save the current values of the NextPlot properties so you can reset them later:

ax_nextplot = lower(get(cax,'NextPlot'));
fig_nextplot = lower(get(cfig,'NextPlot'));
.
.
.
set(cax,'NextPlot',ax_nextplot)
set(cfig,'NextPlot',fig_nextplot)
8-44

Properties Changed by Built-In Functions
Properties Changed by Built-In Functions
To achieve their intended effect, many built-in functions change Axes proper-
ties, which can then affect the workings of your M-file. This table lists
MATLAB’s built-in graphics functions and the properties they change. Note
that these properties change only if hold is off.

Function Axes Property: Set To

fill Box: on

CameraPosition: 2-D view
CameraTarget: 2-D view
CameraUpVector: 2-D view
CameraViewAngle: 2-D view

fill3 CameraPosition: 3-D view
CameraTarget: 3-D view
CameraUpVector: 3-D view
CameraViewAngle: 3-D view
XScale: linear
YScale: linear
ZScale: linear

image (high-level) Box: on

Layer: top

CameraPosition: 2-D view
CameraTarget: 2-D view
CameraUpVector: 2-D view
CameraViewAngle: 2-D view
XDir: normal

XLim: [0 size(CData,1)]+0.5

XLimMode: manual

YDir: reverse

YLim: [0 size(CData,2)]+0.5

YLimMode: manual
8-45

8 Handle Graphics
loglog Box: on

CameraPosition: 2-D view
CameraTarget: 2-D view
CameraUpVector: 2-D view
CameraViewAngle: 2-D view
XScale: log

YScale: log

plot Box: on

CameraPosition: 2-D view
CameraTarget: 2-D view
CameraUpVector: 2-D view
CameraViewAngle: 2-D view

plot3 CameraPosition: 3-D view
CameraTarget: 3-D view
CameraUpVector: 3-D view
CameraViewAngle: 3-D view
XScale: linear

YScale: linear

ZScale: linear

semilogx Box: on

CameraPosition: 2-D view
CameraTarget: 2-D view
CameraUpVector: 2-D view
CameraViewAngle: 2-D view
XScale: log

YScale: linear

Function Axes Property: Set To
8-46

Properties Changed by Built-In Functions
The Figures and Axes chapters discuss some important features that are under
the control of Figure and Axes properties.

semilogy Box: on

CameraPosition: 2-D view
CameraTarget: 2-D view
CameraUpVector: 2-D view
CameraViewAngle: 2-D view
XScale: linear

YScale: log

Function Axes Property: Set To
8-47

8 Handle Graphics
8-48

Introduction 9-2

Figure Properties 9-3

Positioning Figures 9-5
The Position Vector 9-5
Example — Specifying Figure Position 9-7

Controlling Color 9-8
Indexed Color Displays 9-8
Colormap Colors and Fixed Colors 9-9
Using a Large Number of Colors 9-10
Nonactive Figures and Shared Colors. 9-12
Dithering Truecolor on Indexed Color Systems 9-13

Rendering Options 9-15
Backing Store . 9-15
Z-Buffer . . 9-15

Figure Pointers 9-17
Custom Pointers 9-18

Printing Figures 9-21
Positioning the Figure on the Printed Page 9-21
Examples — Readjusting PaperPosition. 9-23
Reversing Figure Colors 9-24

Interactive Graphics 9-27
9

Figures

9 Figures
Introduction
Figure graphics objects are the windows in which MATLAB displays graphical
output. Figure properties allow you to control many aspects of these windows,
such as their size and position on the screen, the coloring of graphics objects
displayed within them, and the scaling of printed pictures.

This chapter discusses some of the features that are implemented through
Figure properties and provides examples of how to use these features. The fol-
lowing table lists all Figure properties arranged by function. It provides an
overview of the characteristics affected by Figure properties.
9-2

Figure Properties
Figure Properties
This table lists Figure properties arranged in nine functional categories. See
the figure function in the online MATLAB Function Reference for the most
current list and descriptions of each individual property.

Category Properties

Style and appearance MenuBar Name NumberTitle

Resize Visible WindowStyle

Color

General information Children Parent Position

Tag Type Units

UserData

Colormap Colormap DitherMap DitherMapMode

FixedColors MinColorMap ShareColors

Rendering graphics objects BackingStore Renderer RendererMode

Current selections CurrentAxes CurrentCharacter CurrentMenu

CurrentObject CurrentPoint SelectionType

Callback routine execution ButtonDownFcn CloseRequestFcn

DeleteFcn KeyPressFcn ResizeFcn

BusyAction Interruptible WindowButtonUpFcn

WindowButtonDownFcn WindowButtonMotionFcn

Pointer definition Pointer PointerShapeCData PointerShapeHotSpot

Figure handles IntegerHandle HandleVisibility NextPlot

Printing InvertHardcopy PaperOrientation PaperPosition
9-3

9 Figures
PaperPositionMode PaperSize PaperType

PaperUnits

Category Properties
9-4

Positioning Figures
Positioning Figures
The Figure Position property controls the size and location of the Figure
window on the Root screen. At startup, MATLAB determines the size of your
computer screen and defines a default value for Position. This default creates
Figures about one-quarter of the screen’s size and places them centered left to
right and in the top half of the screen.

The Position Vector
MATLAB defines the Figure Position property as a vector:

[left bottom width height]

left and bottom define the position of the first addressable pixel in the
lower-left corner of the window, specified with respect to the lower-left corner
of the screen. width and height define the size of the interior of the window
(i.e., exclusive of the window border):

width

height

left

bottom

Figure No. 1
9-5

9 Figures
MATLAB does not measure the window border when placing the Figure; the
Position property defines only the internal active area of the Figure window.

Since Figures are windows under the control of your computer’s windowing
system, you can move and resize Figures as you would any other windows.
MATLAB automatically updates the Position property to the new values.

Units
The Figure’s Units property determines the units of the values used to specify
the position on the screen. Possible values for the Units property are:

set(gcf,'Units')
[inches | centimeters | normalized | points | {pixels}]

with pixels being the default. These choices allow you to specify the Figure
size and location in absolute units (such as inches) if you want the window to
always be a certain size, or in units relative to the screen size (such as pixels).

Determining Screen Extent
Whatever units you use, it is important to know the extent of the screen in
those units. You can obtain this information from the Root ScreenSize prop-
erty. For example:

get(0,'ScreenSize')
ans =

1 1 1152 900

In this case, the screen is 1152 by 900 pixels. MATLAB returns the ScreenSize
in the units determined by the Root Units property. For example,

set(0,'Units','normalized')

normalizes the values returned by ScreenSize:

get(0,’ScreenSize’)
ans =

0 0 1 1

Defining the Figure Position in terms of the ScreenSize in normalized units
makes the specification independent of variations in screen size. This is useful
if you are writing an M-file that is to be used on different computer systems.
9-6

Positioning Figures
Example — Specifying Figure Position
Suppose you want to define two Figure windows that occupy the upper third of
the computer screen (e.g., one for Uicontrols and the other to display data). To
position the windows precisely, you must consider the window borders when
calculating the size and offsets to specify for the Position properties.

The Figure Position property does not include the window borders, so this
example uses a width of 5 pixels on the sides and bottom and 30 pixels on the
top.

bdwidth = 5;
topbdwidth = 30;
set(0,'Units','pixels')
scnsize = get(0,'ScreenSize');
pos1 = [bdwidth,...
2/3*scnsize(4) + bdwidth,...
scnsize(3)/2 − 2*bdwidth,...
scnsize(4)/3 − (topbdwidth + bdwidth)];
pos2 = [pos1(1) + scnsize(3)/2,...
pos1(2),...
pos1(3),...
pos1(4)];
figure('Position',pos1)
figure('Position',pos2)

The two Figures now occupy the top third of the screen:

Ensure Root units are pixels
and get the size of the screen
Define the size and location
of the Figures

Create the Figures
9-7

9 Figures
Controlling Color
Figure properties control the way MATLAB uses your computer’s color
resources. These properties influence both the speed of drawing and the accu-
racy of the colors used to display graphics. The properties discussed in this sec-
tion include:

Indexed Color Displays
MATLAB defines a unique colormap as well as fixed colors (which are not part
of the colormap) for each Figure object. Your computer system stores these
color definitions in a color lookup table along with colors used for window bor-
ders, backgrounds, etc.

Indexed color systems associate a color slot (as opposed to a specific color) in
the system color table with each screen pixel. When you activate an application
program, for example, by moving the focus to a MATLAB Figure window, the
system loads the colors associated with that program into the color table.

Property Purpose

Colormap The Figure colormap. An n-by-3 array of RGB
values.

FixedColors Specific colors used by the Figure that are not
in the colormap.

MinColormap The minimum number of system color table
slots MATLAB uses for the Figure colormap.

ShareColors Determines whether MATLAB shares colors
with other Figure colormaps in the system
color table.

Dithermap A predefined colormap for displaying truecolor
graphics objects on a pseudocolor system.

DithermapMode Determines whether MATLAB uses the cur-
rent dither colormap or creates one based on
the colors specified for existing graphics
objects.
9-8

Controlling Color
You can create a number of Figures on the screen at once, but only one has
focus at any given time. When you change the focus to a particular Figure, the
computer’s operating system loads that Figure’s colormap and all its fixed
colors into the system color table.

For example, the color table might be allocated like this:

Colormap Colors and Fixed Colors
MATLAB maintains two categories of colors for each Figure – colors that are
defined in the colormap and colors that are fixed, which do not change when
you change the colormap. These two categories are used in different ways.

Only Surface, Patch, and Image objects use the colormap. MATLAB colors
these objects based on the order the colors appear in the colormap.

Fixed colors are simply definitions of specific colors that MATLAB uses to color
axis lines and labels and values you specify for object colors (i.e., the Color,
ColorOrder, FaceColor, EdgeColor, MarkerFaceColor, and MarkerEdgeColor
properties).

Defining Fixed Colors
When MATLAB creates a Figure, it defines three fixed colors:

figure
get(gcf,'FixedColors')
ans =

0.8000 0.8000 0.8000
0 0 0

1.0000 1.0000 1.0000

Color slots used by system for window borders,

Color slots allocated as MATLAB fixed colors

Color slots available for the Figure colormap

menu colors, background, etc.
System
Color
Table
9-9

9 Figures
Creating an Axes includes the colors defined by the Axes ColorOrder property
in the fixed color list, since it is more efficient to predefine these colors:

axes
get(gcf,'FixedColors')
ans =
 0.8000 0.8000 0.8000
 0 0 0
 1.0000 1.0000 1.0000
 0 0 1.0000
 0 0.5000 0
 1.0000 0 0
 0 0.7500 0.7500
 0.7500 0 0.7500
 0.7500 0.7500 0
 0.2500 0.2500 0.2500

Any colors you define, for example,

set(surf_handle,'EdgeColor',[.2 .8 .7])

also become part of the fixed color list. You can define as many fixed colors as
you want without affecting the colors in the Figure colormap. However, fixed
colors occupy color table slots that MATLAB cannot use for the colormap.

Using a Large Number of Colors

Overview. Set MinColormap to a number equal to the size of your colormap
when you do not want MATLAB to approximate colors. However, this may
cause nonactive windows to display with incorrect colors.

Problems can arise when you define a large colormap and/or a large number of
fixed colors. If the number of color slots required exceeds the number available
in the system color table, MATLAB specifies all fixed colors first, then linearly
subsamples the colormap to fill the remaining slots.

For example, if the original colormap contains 128 colors and there are only 64
slots available, then MATLAB adds every other color to the color table.
MATLAB maps each color in the original colormap to the color in the subsam-
pled colormap that most closely matches the original color.
9-10

Controlling Color
Specifying the Minimum Colormap Size – MinColormap
The Figure MinColormap property specifies the minimum number of slots in the
system color table that MATLAB uses for the Figure colormap. This enables
you to use colormaps of any size up to the value of MinColormap and ensure
MATLAB does not subsample the colors.

If you specify a value that is greater than the number of available slots,
MATLAB takes over slots used to define system colors (on computers that
allow overwriting of these colors). When this happens, nonactive windows can
display with incorrect colors because MATLAB changed the color of the slot
assigned to their pixels.

MATLAB does not take over color slots allocated to fixed colors. Therefore, lim-
iting the number of fixed colors maximizes the number of colors allocated to the
colormap. You can limit the number of fixed colors by specifying all noncol-
ormap object colors (e.g., Text, Line, and Figure colors) as the same color, and
setting the Axes ColorOrder property to just one color (the default is seven
colors).

System Color Slots

Fixed colors

Figure colormap

System
Color
Table
9-11

9 Figures
Nonactive Figures and Shared Colors

Overview. Set ShareColors to on to conserve resources and to off to allow
rapid colormap change.

Since nonactive Figures are still visible, it is generally desirable for them to
display correctly colored. However, if a number of Figures with different color-
maps exist simultaneously, or have large colormaps, the computer’s color
resources may not be able to display all Figures correctly colored. When
ShareColors is on, the Figure does not redefine a color in the system color table
if that color already exists.

While sharing colors is a more efficient use of resources, it prevents MATLAB
from rapidly changing the colormap (for example, as the spinmap function
does). This is because MATLAB cannot change the value of a color slot in the
system color table if other pixels also point to that slot for their color definition.
It must find another slot for the new color. Changing color slot pixel assign-
ments requires rerendering (i.e., recomputing color values and reassigning
pixels to these colors) of the Figure whose colormap you are altering.

0

5

10

15

20

25

0

5

10

15

20

25
−0.5

0

0.5

0 5 10 15 20 25 30 35 40

0

10

20

30

40

−2

−1

0

1

2

System
Color
Table

Two pixels pointing
to the same slot
in the color table
9-12

Controlling Color
If you want to change a Figure’s colormap rapidly, you should disable color
sharing:

set(fig_handle,'ShareColors','off')

Note that the new colormap must be the same size as the original one to avoid
rerendering the Figure. Look at the spinmap M-file for an example of this tech-
nique.

Dithering Truecolor on Indexed Color Systems

Overview. Set DithermapMode to manual to use the current Dithermap or auto

to force MATLAB to create a new Dithermap based on the colors displayed in
the Figure.

MATLAB enables you to take advantage of truecolor systems (24-bit displays)
by specifying CData as RGB triples, instead of values that index into the Figure
colormap. Index color systems interpret truecolor specifications by mapping
each color to the closest color in the dithermap, which is assigned to the
Dithermap property. MATLAB uses the Floyd-Steinberg algorithm to perform
the mapping.

R
G

B

Direct Color
Specification

Dither
Map

MATLAB maps each direct color to the closest
color in the current dithermap. The algorithm
looks at the colors selected in a six-pixel
region so that, on the average, the color of
that region closely approximates the real
colors.
9-13

9 Figures
The dithermap is a colormap that replaces the Figure colormap (which is not
used in this case). The default dithermap contains a sampling of colors from the
entire spectrum. This produces reasonably good quality with any object col-
oring. However, if the Figure contains objects of primarily one color, a dith-
ermap concentrated in the same color produces better color resolution.

Auto Dither Mode
When you set DithermapMode to auto, MATLAB automatically creates a dith-
ermap based on the colors in the Figure. MATLAB produces an appropriate
dithermap using the minimum variance quantization algorithm; however, the
process is time consuming. Also, MATLAB regenerates the dithermap each
time it re-renders the Figure.

To avoid excessive rendering time, you should reset DithermapMode to manual
after MATLAB generates the dithermap. MATLAB then uses this dithermap
without regenerating it until you once again set DithermapMode to auto. You
do not need to regenerate the dithermap unless you change the colors used in
the Figure.

You can save a dithermap by assigning the Dithermap property to a variable
and saving it as a MAT-file:

set(gcf,'DithermapMode','auto')

MATLAB creates a dithermap, which you can then save:

dmap = get(gcf,'Dithermap');
save DitherMaps dmap

Dithermap Size
To obtain the highest color resolution, the default dithermap is as large as the
system allows. This is usually less than 256 colors because a certain number of
slots are reserved for system colors. Also, MATLAB fixed colors are not over-
written by the dithermap.

Effects of Dithering
Dithering reduces the resolution of the displayed graphics because the colors
are mapped in groups of six pixels. For example, suppose the color of one pixel
is defined as orange, but the dithermap does not have this color. MATLAB
selects combinations of colors from the dithermap that, taken together as a
six-pixel group, approximate the color orange.
9-14

Rendering Options
Rendering Options
Two Figure properties affect the rendering speed of graphics. The Backing-
Store property allows faster redrawing when obscured Figure windows are
exposed and the Renderer property provides faster rendering of graphics
objects.

Backing Store

Overview. Enable BackingStore to produce fast redraws of previously
obscured windows. Disable BackingStore to use less system memory.

The term “backing store” refers to an off-screen pixel buffer used to store a copy
of the Figure window’s contents. When you move or delete windows on your
display, previously obscured windows can become exposed (even partially),
requiring the computer system to redraw these windows. With backing store
enabled, MATLAB simply copies an exposed Figure window’s contents from the
buffer to the screen.

The BackingStore property is on by default as this provides the most desirable
behavior. However, the off-screen pixel buffers required for each Figure
window do consume system memory. If memory is limited on your system, set
BackingStore to off to release the memory used by these buffers.

Z-Buffer
Z-buffering is the process of determining how to render each pixel by drawing
only the front-most object, as opposed to drawing all objects back to front,
redrawing objects that obscure those behind. The pixel data is buffered and
then blitted to the screen all at once.

Z-buffering is generally faster for more complex graphics, but may be slower for
very simple graphics. You can set the Renderer property to whatever produces
the fastest drawing (either zbuffer or painters), or let MATLAB decide which
method to use by setting the RendererMode property to auto (the default).

Printing and Z-Buffer
You can select the resolution of the PostScript file produced by the print com-
mand using the −r option. By default, MATLAB prints Z-buffered Figures at a
9-15

9 Figures
medium resolution of 150 dpi (the default with Renderer set to painters is 864
dpi).

The size of the file generated from a Z-buffer Figure is not dependent on its con-
tents, just the size of the Figure. To decrease the file size, make the
PaperPosition property smaller before printing (or set PaperPositionMode to
auto and resize the Figure window). See the Printing chapter for more infor-
mation.
9-16

Figure Pointers
Figure Pointers
MATLAB indicates the position of the pointer within the Figure window using
a graphical symbol. You can select a pointer from 15 predefined symbols (see
table) or you can define your own symbol. By convention, each of the predefined
symbols has a purpose associated with it (although MATLAB enforces no rules
for the use of any symbols).

You specify the pointer symbol by setting the value of the Figure Pointer prop-
erty. This table shows the predefined symbols, the associated specifier, and
describes the typical use:

Purpose Specifier Typical Symbol

Locate a point on a graphics
object

crosshair

Select a point anywhere in the
Figure

arrow

Indicate the system is busy watch

Resize an object from the top-left
corner

topl

Resize an object from the
top-right corner

topr

Resize an object from the
bottom-left corner

botl

Resize an object from the
bottom-right corner

botr

View the actual hot spot circle

Locate a point cross

Popular symbol fleur
9-17

9 Figures
Custom Pointers
When you set the Pointer property to custom, MATLAB displays the pointer
you define using the PointerShapeCData and the PointerShapeHotSpot prop-
erties. Custom pointers are 16-by-16 pixels, where each pixel can be either
black, white, or transparent.

Specify the pointer by creating a 16-by-16 matrix containing elements that are:

• 1s where you want the pixel black

• 2s where you want the pixel white

• Nans where you want the pixel transparent

Assign the matrix to the Figure PointerShapeCData property. MATLAB dis-
plays the defined pointer whenever the pointer is in the Figure window.

The PointerShapeHotSpot property specifies the pixel that indicates the
pointer location. MATLAB then stores this location in the Root PointerLoca-
tion property. Set the PointerShapeHotSpot property to a two-element vector
specifying the row and column indices in the PointerShapeCData matrix that
corresponds to the pixel specifying the location. The default value for this prop-
erty is [1 1], which corresponds to the upper-left corner of the pointer.

Resize an object from the left side left

Resize an object from the right
side

right

Resize an object from the top top

Resize an object from the bottom bottom

Align a point with other objects
on the display

fullcross

See the next section custom

Purpose Specifier Typical Symbol
9-18

Figure Pointers
Examples — Custom Pointers
One way to create a custom pointer is to assign values to a 16-by-16 matrix by
hand. For example

Initialize the matrix, setting
all values to 2. Create a
black border 1 pixel wide.
Add alignment marks.

P = ones(16)+1;
P(1,:) = 1; P(16,:) = 1;
P(:,1) = 1; P(:,16) =1;
P(1:4,8:9) = 1; P(13:16,8:9) = 1;
P(8:9,1:4) = 1; P(8:9,13:16) = 1;

Create a transparent region
in the center.

P(5:12,5:12) = NaN;
set(gcf,'Pointer','custom','PointerShapeCData',P,...
 'PointerShapeHotSpot',[9 9])

The last statement sets the Pointer property to custom, assigns the matrix to
the PointerShapeCData property, and selects the “hot spot” as element (9,9).

MATLAB now uses the custom pointer within the Figure window:

Creating Pointers from Functions. You can use a mathematical function to define
the PointerShapeCData matrix. For example, evaluating the function,

,

g = 0:.2:20;
[X,Y] = meshgrid(g);
Z = 2*sin(sqrt(X.^2 + Y.^2));
mesh(Z);

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 x2 y2
+()sin()
9-19

9 Figures
produces an interesting Surface:

Use the values of Z to create a pointer sampling fewer points so that Z is a
16-by-16 matrix:

g = linspace(0,20,16);
[X,Y] = meshgrid(g);
Z = 2*sin(sqrt(X.^2 + Y.^2));
set(gcf,'Pointer','custom',...
 'PointerShapeCData',flipud((Z>0) + 1))

The statement, flipud((Z>0) + 1) sets all values in Z that are greater than
zero to two (in MATLAB , true + 1 = 2), less than zero to one (false + 1 = 1) and
then flips the data around so that element (1,1) is the upper-left corner.

0

10

20

0

5

10

15

20
−2

0
2

5 10 15

5

10

15
9-20

Printing Figures
Printing Figures
This section discusses Figure properties that control the process of printing
Figures. MATLAB produces PostScript and other file formats supported by
printing and plotting devices. See the print command in the online MATLAB
Function Reference for more information.

Positioning the Figure on the Printed Page
You can control the orientation and position of a Figure on a printed page using
the Figure properties:

MATLAB defines the Figure PaperPosition property as a vector:

[left bottom width height]

left and bottom define the location on the paper of the lower-left corner of the
Figure rectangle. width and height define the size of this rectangle. Note that
the window border is not included in the printed Figure.

Factory Default PaperPosition
The factory default PaperPosition,

[0.25 2.5 8.0 6.0]

is designed to print the Figure on 8.5-by-11 inch paper in portrait orientation.
It results in a printed Figure that is about as large as can fit on the paper (with
a one-quarter inch border on the left and right sides) and is centered on the

Property Purpose

PaperOrientation Horizontal or vertical paper orientation

PaperPosition Location and size of Figure on printed page

PaperPositionMode PaperPosition or actual size printed Figure

PaperSize Size of PaperType

PaperType Standard paper sizes

PaperUnits Units used by PaperPosition and PaperSize
9-21

9 Figures
paper. The width of eight inches and the height of six inches give an aspect
ratio (ratio of width to height) that is the same as the default Figure aspect
ratio on the screen.

MATLAB does not change the PaperPosition property automatically as you
change the size of the Figure window. If you print a Figure having an aspect
ratio different from that defined by the default PaperPosition (i.e., width
divided by height equal to something other than 4/3), the printed Figure is dis-
torted. See “Examples - Readjusting PaperPosition” for information on how to
compensate for changes in Figure size.

While the default values for PaperPosition result in a centered Figure when
using portrait orientation, the same values do not center the Figure in land-
scape orientation. However, the orient command prepositions the Figure loca-
tion on the printed page for either orientation. You should use this command
rather than setting the PaperOrientation property directly to avoid having to
recalculate the offsets from the paper edge. See the orient command descrip-
tion in the online MATLAB Function Reference.

0

5

10

15

20

25

0

5

10

15

20

25
−0.5

0

0.5

left = 0.25

bottom = 2.5

Figure rectangle

8.5-by-11 inch paper

height = 6 inches

width = 8 inches

Default PaperPosition
settings used with portrait
PaperOrientation
9-22

Printing Figures
Automatic PaperPosition – WYSIWYG Printing
Setting the PaperPositionMode to auto causes MATLAB to calculate the
PaperPosition values required to print the Figure the same size as it is on the
screen, centered on the page. The aspect ratio is maintained.

This mode prevents MATLAB from scaling (and potentially changing the
aspect ratio of) the printed Figure, as can happen in manual mode using a fixed
PaperPosition. In auto mode, MATLAB adjusts the PaperPosition as you
change the Figure size and location.

Examples — Readjusting PaperPosition

Problem. You are working with Figure windows of varying sizes and shapes and
you want to determine the values to use for the PaperPosition property to
print each one:

• As large as possible

• With the same aspect ratio as the Figure on the screen

• With a minimum of a one-quarter inch border

• Centered on the page

Solution. To solve this problem in the general case, you need to know the values
of the Figure’s Position and PaperSize properties, being careful to use the
same units for all dimensions. With this information you can decide how to
orient the paper and/or scale the Figure size to fit properly.

Suppose a particular Figure is five inches wide and three and one-half inches
high and you want to print it on the default size paper at your site. You need
to calculate a new value for PaperPosition based on these sizes.

Obtain the size of the Figure and the paper, in inches:

set(gcf,'Units','inches','PaperUnits','inches')
figpos = get(gcf,'Position');
psize = get(gcf,'PaperSize');

Since the Figure is wider than it is high, the width limits the maximum size
that fits on the page. Furthermore, since the Figure is smaller than the paper,
9-23

9 Figures
you can set the PaperPosition width to the paper width minus a one-quarter
inch border on both sides:

newpp(3) = min(psize)−.5;

Calculate the PaperPosition height in terms of the width, maintaining the
correct aspect ratio:

newpp(4) = newpp(3)*figpos(4)/figpos(3);

To determine the offset from the bottom of the paper, subtract the new
PaperPosition height (i.e., the printed height of the Figure) from the paper
height, taking one-half this value to center the Figure on the page from top to
bottom:

newpp(2) = (max(psize)−newpp(4))/2;

The offset from the left is simply the border width:

newpp(1) = .25;

You have now fully specified the PaperPosition for this particular Figure,

newpp =

 0.2500 2.7000 8.0000 5.6000

and can set the property for printing:

set(gcf,'PaperPosition',newpp)

Reversing Figure Colors
With the colordef command, it is possible to configure the default Figure
background color to black and the axis lines and labels to white. This color
scheme provides good contrast on the computer screen, but is less desirable
when printed on white paper by a black and white device such as a laser
printer.

The Figure InvertHardCopy property provides a simple way to convert the
printed output to a white background. When InvertHardCopy is on (the
default), MATLAB automatically inverts the color scheme to black-on-white
output.
9-24

Printing Figures
This mesh plot of a Surface has a white EdgeColor. The white-on-black coloring
produces a large black area on the printed page that results in poor discrimi-
nation between the mesh and background, particularly on low resolution
printers.

With InvertHardCopy enabled, MATLAB automatically produces output more
suited to printing in black and white. Here is the same mesh plot after
reversing the color scheme:

What Happens to Colors
MATLAB changes the Figure background color to white (and also changes the
Axes color unless it is set to none). Colors print in shades of gray on devices

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5
9-25

9 Figures
capable of printing grays. However, it is not easy to anticipate how colors are
mapped to grays.

For example, this Surface uses the jet colormap and is printed with
InvertHardCopy enabled:

In cases where you want to print colored objects in grayscale, you should use a
colormap that varies continuously from dark to light, such as gray, copper, or
bone. The same Surface using the gray colormap prints in predicable shading:

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5
9-26

Interactive Graphics
Interactive Graphics
Figure objects contain a number of properties designed to facilitate user inter-
action with the Figure. These properties fall into two categories.

Properties related to callback routine execution:

• BusyAction

• ButtonDownFcn

• DestroyFcn

• KeyPressFcn

• Interruptible

• ResizeFcn

• WindowButtonDownFcn, WindowButtonMotionFcn, and WindowButtonUpFcn

Properties that contain information about MATLAB’s state:

• CurrentAxes

• CurrentCharacter

• CurrentMenu

• CurrentObject

• CurrentPoint

• CurrentProperty

• SelectionType

See the figure function in the online MATLAB Function Reference for a
description of each property. The manual, Building GUIs with MATLAB, pro-
vides information on creating programs that incorporate interactive graphics.
9-27

9 Figures
9-28

Axes Properties 10-2

Labeling and Appearance Properties. 10-4
TeX Characters10-6

Adding Text to Axes 10-8
Text Alignment10-9
Using Variables in Text Strings 10-10
Example – Text Annotation 10-10
Example – Multiline Text. 10-12

Positioning Axes 10-13
The Position Vector 10-13
Units . 10-14
Multiple Axes 10-15

Individual Axis Control 10-18
Changing Axis Limits 10-18
Setting Tick Mark Locations 10-20
Changing Axis Direction 10-21

Automatic-Mode Properties 10-23

Multiaxis Axes 10-26
Example – Double Axis Graphs 10-26

Colors Controlled By Axes 10-29
Axes Colors . 10-29
Axes Color Limits – The CLim Property 10-31
Color of Lines Used for Plotting 10-37
10

Axes

10 Axes

10-
Axes Properties
Axes are the parents of Image, Line, Patch, Surface, and Text graphics objects.
These objects are the entities used to draw graphs of numerical data and
pictures of real-world objects, such as airplanes or automobiles. Axes orient
and scale their child objects to produce a particular effect, such as scaling a plot
to accentuate certain information or rotating objects through various views.

Axes properties control many aspects of how MATLAB displays graphical
information. This chapter discusses some of the features that are implemented
through Axes properties and provides examples of how to uses these features.
The following table lists all Axes properties arranged by function See the axes
description in the online MATLAB Function Reference for information on each
property.

Category Properties

Style and appearance Box Clipping GridLineStyle

Layer LineStyleOrder LineWidth

SelectionHighlight TickDir TickDirMode

TickLength Visible

General information Children CurrentPoint Parent

Position Selected Tag

Type Units UserData

Annotation FontAngle FontName FontSize

FontUnits FontWeight Title

XLabel YLabel ZLabel

XTickLabel
XTickLabelMode

YTickLabel
YTickLabelMode

ZTickLabel
ZTickLabelMode

Axis control XDir
YDir
ZDir

XGrid
YGrid
ZGrid

XLim, XLimMode
YLim, YLimMode
ZLim, ZLimMode
2

Axes Properties
XScale
YScale
ZScale

XTick, XTickMode
YTick, YTickMode
ZTick, ZTickMode

XAxisLocation
YAxisLocation

Viewpoint CameraPosition
CameraPositionMode

CameraTarget
CameraTargetMode

CameraUpVector
CameraUpVectorMode

CameraViewAngle
CameraViewAngleMode

Scaling and aspect ratio DataAspectRatio
DataAspectRatioMode

PlotBoxAspectRatio
PlotBoxAspectRatioMode

Projection

Callback execution BusyAction ButtonDownFcn CreateFcn

DeleteFcn Interruptible

Rendering Method DrawMode

Targeting Axes HandleVisibility NextPlot

Color AmbientLightColor CLim CLimMode

Color ColorOrder XColor

YColor ZColor

Category Properties
10-3

10 Axes

10-
Labeling and Appearance Properties
MATLAB provides a number of properties for labeling and controlling the
appearance of Axes. For example, this Surface plot shows some of the labeling
possibilities and indicates the controlling property.

To create this Axes, specify values for the indicated properties:

h = axes('Color',[.9 .9 .9],...
 'GridLineStyle','--',...
 'ZTickLabels','-1|Z = 0 Plane|+1',...
 'FontName','times',...
 'FontAngle','italic',...
 'FontSize',14,...
 'XColor',[0 0 .7],...
 'YColor',[0 0 .7],...
 'ZColor',[0 0 .7]);

The individual axis labels are Text objects whose handles are normally hidden
from the command line (their HandleVisibility property is set to callback).
You can use the xlabel, ylabel, zlabel, and title functions to create axis
labels. However, these functions affect only the current Axes. If you are

−2
−1

0
1

2

−2

−1

0

1

2
 −1

Z = 0 Plane

 +1

Values of XValues of Y

Z = f(x,y)

YLabel

ZTickLabels

Title

GridLineStyle

Color

XLabel

FontAngle
YColor
4

Labeling and Appearance Properties
labeling axes other than the current axes by referencing the Axes handle, then
you must obtain the Text object handle from the corresponding Axes property.
For example,

get(h,'XLabel')

returns the handle of the Text object used as the x-axis label. Obtaining the
Text handle from the Axes is useful in M-files and MATLAB-based applications
where you cannot be sure the intended target is the current Axes.

The following statements define the x- and y-axis labels and title for the axes
on the previous page:

set(get(h,'XLabel'),'String','Values of X')
set(get(h,'YLabel'),'String','Values of Y')
set(get(h,'Title'),'String','\fontname{times}\itZ = f(x,y)')

Since the labels are Text, you must specify a value for the String property,
which is initially set to the empty string (i.e., there are no labels).

MATLAB overrides many of the other Text properties to control positioning
and orientation of these labels. However, you can set the Color, FontAngle,
FontName, FontSize, FontWeight, and String properties.

Note that both Axes objects and Text objects have font specification properties.
The call to the axes function on the previous page set values for the FontName,
FontAngle, and FontSize properties. If you want to use the same font for the
labels and title, specify these same property values when defining their String
property. For example, the x-axis label statement would be:

set(get(h,'XLabel'),'String','Values of X',...
 'FontName','times',...
 'FontAngle','italic',...
 'FontSize',14)
10-5

10 Axes

10-
TeX Characters
Text objects support a subset of TeX characters that enable you to use symbols
in the title and axis labels. For example:

set(get(h,'Title'),'String',...
'{\itAe}^{−\alpha\itt}sin\beta{\itt} \alpha<<\beta')
set(get(h,'Xlabel'),'String','Time \musec.')
set(get(h,'YLabel'),'String','Amplitude'))

The backslash character “\” precedes all TeX character sequences. Looking at
the string defining the title illustrates how to use these characters:

0 200 400 600 800 1000
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Ae−αtsinβt α<< β

Time µsec.

A
m

pl
itu

de

Ae−αtsinβt α<<β

{\itAe}^{−\alpha\itt}sin\beta{\itt} \alpha<<\beta

Make the A
and e italics

Superscript using α
symbol and italic t

β symbol
and italic t

β and α symbol
following a space
6

Labeling and Appearance Properties
The Text interpreter property controls the interpretation of TeX characters.
If you set this property to off, MATLAB interprets the special characters
literally.

You can also use the title, xlabel, ylabel, and zlabel functions to add the
labels. In most cases, these functions are easier to use, but only affect the
current Axes. Obtaining the Text handle from the Axes is useful in M-files and
MATLAB-based applications where you cannot be sure the intended target is
the current Axes.

See the text function in the online MATLAB Function Reference for a list of
available TeX characters.
10-7

10 Axes

10-
Adding Text to Axes
You can use Text objects to annotate Axes at arbitrary locations. MATLAB
locates Text in the data units of the Axes. For example, suppose you plot the
function with A = 0.25, α = 0.005, and t = 0 to 900:

t = 0:900;
plot(t,0.25*exp(−0.005*t))

To annotate the point where the value of t = 300, calculate the text coordinates
using the function you are plotting:

text(300,.25*exp(−0.005*300),...
 '\bullet\leftarrow\fontname{times}0.25{\ite}^{−0.005{\itt}} at {\itt} = 300');

This statement defines the Text Position property as x = 300,

. The default Text alignment places this point to the left of
the string and centered vertically with the rectangle defined by the Text
Extent property. The “Text Alignment” section describes other alignment
options.

y Ae α t–
=

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

•←0.25e−0.005t at t = 300

Ae−αt

A
m

pl
itu

de

Time µsec.

y 0.25e 0.005– 300×
=

8

Adding Text to Axes
Text Alignment
The HorizontalAlignment and the VerticalAlignment properties control the
placement of the Text characters with respect to the specified x-, y-, and
z-coordinates. The following diagram illustrates the options for each property
and the corresponding placement of the text:

The default alignment is HorizontalAlignment = left, and
VerticalAlignment = middle. MATLAB does not place the Text String
exactly on the specified Position. For example, the previous section showed a
plot with a point annotated with Text. Zooming in on the plot allows you to see
the actual positioning of the Text:

Middle Top Cap

Baseline Bottom

Left Center Right

Text HorizontalAlignment property viewed with the VerticalAlignment
property set to middle (the default).

Text VerticalAlignment property viewed with the HorizontalAlignment
property set to left (the default).

•←0.25e−0.005t at t = 300Point Defined by
Text Position
10-9

10 Axes

10-
The small dot is the point specified by the Text Position property. The larger
dot is the bullet defined as the first character in the Text String property.

Using Variables in Text Strings
Any string variable is a valid specification for the Text String property. For
example, each row of the matrix PersonalData contains specific information
about a person (note that all but the longest row is padded with a space so that
each has the same number of columns).

PersonalData = ['Jack Straw ';'489 Main St.';'Wichita KN '];

To display the data, index into the desired row:

text(x1,y1,['Name: ',PersonalData(1,:)])
text(x2,y2,['Address: ',PersonalData(2,:)])
text(x3,y3,['City and State: ',PersonalData(3,:)])

You can specify numeric variables in Text strings using the num2str (number
to string) function. For example, if you type on the command line:

x = 21;
['Today is the ',num2str(x),'st day.']

MATLAB concatenates the three separate strings into one:

Today is the 21st day.

Since the result is a valid string, you can specify it for a Text object’s String
property:

text(xcoord,ycoord,['Today is the ',num2str(x),'st day.'])

Example – Text Annotation
Suppose you want to label the minimum and maximum values in a mesh plot
with text that is anchored to the points and indicates what the values are. You
can use the Surface object’s data to determine the Text Position and the data
values. The first step is to get the x-, y-, and z-data and compute the minimum
and maximum.
10

Adding Text to Axes
x = get(mesh_handle, 'XData');
y = get(mesh_handle, 'YData');
z = get(mesh_handle, 'ZData');
minz = min(min(z));
maxz = max(max(z));

Next, find the indices of the minimum and maximum values to determine the
coordinates needed to position the text at the points. Create the string by
concatenating the values with a description of what the values mean:

[i,j] = find(minz == z);
text(x(j),y(i),z(i,j),['The Minimum Value Is: ',num2str(minz)],...
 'VerticalAlignment','top',...
 'HorizontalAlignment','right')

[i,j] = find(maxz == z);
text(x(j),y(i),z(i,j),['The Maximum Value Is: ',num2str(maxz)],...
 'VerticalAlignment','bottom')

The Text alignment properties position the string correctly with respect to the
mesh plot. The text function places the point specified by the coordinates
above and to the right for the minimum value and below and to the left for the
maximum value.

The text always remains in the plane of the computer screen, regardless of the
view.

0
10

20
30

40
50

0
10

20
30

40
50

−0.5

0

0.5
The Maximum Value Is: 0.4288

The Minimum Value Is: −0.4288
10-11

10 Axes

10-
Example – Multiline Text
MATLAB supports multiline text strings using cell arrays. Simply define a
string variable as a cell array with one line per cell. This example defines two
cell arrays, one used for a Uicontrol and the other as a Text object.

str1(1) = {'Center each line in the Uicontrol'};
str1(2) = {'Also check out the textwrap function'};

str2(1) = {'Each cell is a quoted string'};
str2(2) = {'You can specify how the string is aligned'};
str2(3) = {'You can use LaTeX symbols like \pi \chi \Xi'};
str2(4) = {'\bfOr use bold \rm\itor italic font\rm'};
str2(5) = {'\fontname{courier}Or even change fonts'};
plot(0:6,sin(0:6))
uicontrol('Style','text','Position',[80 80 250 65],...
 'String',str1);
text(5.75,sin(2.5),str2,'HorizontalAlignment','right')

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Each cell is a quoted string
You can specify how the string is aligned

You can use LaTeX symbols like π χ Ξ
Or use bold or italic font

Or even change fonts
12

Positioning Axes
Positioning Axes
The Axes Position property controls the size and location of an Axes within a
Figure. The default Axes has the same aspect ratio (ratio of width to height) as
the default Figure and fills most of the Figure, leaving a border around the
edges. However, you can define the Axes position as any rectangle and place it
wherever you want within a Figure.

The Position Vector
MATLAB defines the Axes Position property as a vector:

[left bottom width height]

left and bottom define a point in the Figure that locates the lower-left corner
of the Axes rectangle. width and height specify the dimensions the Axes
rectangle. Viewing the Axes in 2-D (azimuth = 0˚, elevation = 90˚) orients the
x-axis horizontally and the y-axis vertically. From this angle, the plot box (the
area used for plotting, exclusive of the axis labels) coincides with the Axes
rectangle:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
width

left

bottom

height
10-13

10 Axes

10-
The default 3-D view is azimuth = -37.5˚, elevation = 30˚:

By default, MATLAB draws the plot box to fill the Axes rectangle, regardless
of its shape. However, Axes properties enable control over the shape and
scaling of the plot box.

Units
The Axes Units property determines the units of measurement for the
Position property. Possible values for this property are:

set(gca,'Units')
[inches | centimeters | {normalized} | points | pixels]

with normalized being the default. Normalized units map the lower-left corner
of the Figure to the point (0,0) and the upper-right corner to (1.0,1.0),
regardless of the size of the Figure. Normalized units cause Axes to resize
automatically whenever you resize the Figure. All other units are absolute
measurements that remained fixed as you resize the Figure.

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

width

left

bottom

height
14

Positioning Axes
Multiple Axes
The subplot function (described in the online MATLAB Function Reference)
creates multiple Axes in one Figure by computing values for Position that
produce the specified number of Axes. See the 3-D Graphs chapter for more
information on using subplot.

The subplot function is useful for laying out a number of graphs equally
spaced in the Figure. However, overlapping Axes can create some other useful
effects.

Placing Text Outside the Axes
MATLAB always displays Text objects within an Axes. If you want to create a
graph and provide a description of the information alongside the graph, you
must create another Axes to position the text. If you create an Axes that is the
same size as the Figure and then create a smaller Axes to draw the graph, you
can then display text anywhere independently of the graph.

For example, define two Axes:

h = axes('Position',[0 0 1 1],'Visible','off');
axes('Position',[.25 .1 .7 .8])

Since the Axes units are normalized to the Figure, specifying the Position as
[0 0 1 1] creates an Axes that encompasses the entire window.

Now plot some data in the current Axes. The last Axes created is the current
Axes so MATLAB directs graphics output there.

t = 0:900;
plot(t,0.25*exp(-0.005*t))

Define the text and display it in the full-window axes.

str(1) = {'Plot of the function:'};
str(2) = {' y = A{\ite}^{-\alpha{\itt}}'};
str(3) = {'With the values:'};
str(3) = {' A = 0.25'};
str(4) = {' \alpha = .005'};
str(5) = {' t = 0:900'};
set(gcf,'currentaxes',h)
text(.025,.6,str,'FontSize',12)
10-15

10 Axes

10-
Multiple Axes for Different Scaling
You can create multiple Axes to display graphics objects with different scaling
without changing the data that defines these objects (which would be required
to display them in a single Axes).

h(1) = axes('Position',[0 0 1 1]);
sphere
h(2) = axes('Position',[0 0 .4 .6]);
sphere
h(3) = axes('Position',[0 .5 .5 .5]);
sphere
h(4) = axes('Position',[.5 0 .4 .4]);
sphere
h(5) = axes('Position',[.5 .5 .5 .3]);
sphere
set(h,'Visible','off')
set(gcf,’Renderer’,’painters’)

Plot of the function:
 y = Ae−αt

With the values:
 A = 0.25
 α = .005
 t = 0:900

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25
16

Positioning Axes
Each sphere is defined by the same data. However, since the parent Axes
occupy regions of different size and location, the spheres appear to be different
sizes and shapes.
10-17

10 Axes

10-
Individual Axis Control
MATLAB automatically determines axis limits, tick mark placement, and tick
mark labels whenever you create a graph. However, you can specify these
values manually by setting the appropriate property.

When you specify a value for a property controlled by a mode (e.g., the XLim
property has an associated XLimMode property), MATLAB sets the mode to
manual enabling you to override automatic specification. Since the default
values for these mode properties are automatic, calling high-level functions
such as plot or surf resets these modes to auto.

The properties discussed in this section include:

Changing Axis Limits
MATLAB determines the limits automatically for each axis based on the range
of the data. You can override the selected limits by specifying the XLim, YLim,

Property Purpose

XLim, YLim, ZLim Sets the axis range.

XLimMode, YLimMode,
ZLimMode

Specifies whether axis limits are determined
automatically by MATLAB or specified
manually by the user.

XTick, YTick, ZTick Sets the location of the tick marks along the
axis.

XTickMode, YTickMode,
ZTickMode

Specifies whether tick mark locations are
determined automatically by MATLAB or
specified manually by the user.

XTickLabel,YTickLabel,
ZTickLabel

Specifies the labels for the axis tick marks.

XTickLabelMode,
YTickLabelMode,
ZTickLabelMode

Specifies whether tick mark labels are
determined automatically by MATLAB or
specified manually by the user.

XDir, YDir, ZDir Sets the direction of increasing axis values.
18

Individual Axis Control
or ZLim property. For example, consider a plot of the function evaluated
with A = 0.25, α = 0.05, and t = 0 to 900:

t = 0:900;
plot(t,0.25*exp(−0.05*t))

The plot on the left shows the results. MATLAB selects axis limits that
encompass the range of data in both x and y. However, since the plot contains
little information beyond t = 100, changing the x-axis limits improves the
usefulness of the plot:

set(axhandle,'XLim',[0 100])

The plot on the right shows the result:

See the axis command for a simplified way to set limits on the current axis
only.

Semiautomatic Limits
You can specify either the minimum or maximum value for an axis limit and
allow the other limit to autorange. Do this by setting an explicit value for the
manual limit and Inf for the automatic limit. For example, the statement:

set(axhandle,'XLim',[0 Inf])

Ae α t–

0 200 400 600 800
0

0.05

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time µsec.
0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time µsec.
10-19

10 Axes

10-
sets the XLimMode property to auto and allows MATLAB to determine the
maximum value for XLim. Similarly, the statement:

set(axhanlde,'XLim',[−Inf 800])

sets the XLimMode property to auto and allows MATLAB to determine the
minimum value for XLim.

Setting Tick Mark Locations
MATLAB selects the tick mark location based on the data range to produce
equally spaced ticks (for linear graphs). You can specify alternative locations
for the tick marks by setting the XTick, YTick, and ZTick properties.

For example, if the value 0.075 is of interest for the amplitude of the function
, specify tick marks to include that value.

set(gca,'YTick',[0 0.05 0.075 0.1 0.15 0.2 0.25])

You can change tick labeling from numbers to strings using the XTickLabel,
YTickLabel, and ZTickLabel properties.

For example, to label the y-axis value of 0.075 with the string Cutoff, you can
specify all y-axis labels as a string, separating each label with the “|”
character:

set(gca,'YTickLabel','0|0.05|Cutoff|0.1|0.15|0.2|0.25')

Ae α t–

0 20 40 60 80 100
0

0.05

0.075

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time µsec.
20

Individual Axis Control
Changing Axis Direction
The XDir, YDir, and ZDir properties control the direction of increasing values
on the respective axis. In the default 2-D view, the x-axis values increase from
left to right and the y-axis values increase from bottom to top. The z-axis points
out of the screen.

You can change the direction of increasing values by setting the associated
property to reverse. For example, setting XDir to reverse,

set(gca,'XDir','reverse')

produces a plot whose x-axis decreases from left to right.

0 20 40 60 80 100
0

0.05

Cutoff

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time µsec.

050100150200
0

10

20

30

40

50

60

70

80

90

100

Years Ago

P
er

ce
nt

 o
f T

od
ay

’s
 R

at
e

Frog Road Kills
10-21

10 Axes

10-
In the 3-D view, the y-axis increases from front to back and the z-axis increases
from bottom to top:

Setting the x-, y-, and z-directions to reverse,

set(gca,'XDir','rev','YDir','rev','ZDir','rev')

yields:

0

0.5

1

0

0.5

1
0

0.5

1

Increasing Values →

Normal Axis Direction

← Increasing Values

In
cr

ea
si

ng
 V

al
ue

s
→

0

0.5

1

0

0.5

1

0

0.5

1

← Increasing Values

Reverse Axis Direction

Increasing Values →

←
 In

cr
ea

si
ng

 V
al

ue
s

22

Automatic-Mode Properties
Automatic-Mode Properties
While object creation routines that create Axes children do not explicitly
change Axes properties, some Axes properties are under automatic control
when their associated mode property is set to auto (which is the default).

For example, if all property values are set to their defaults and you enter these
statements:

line(1:10,1:10)
line(1:10,[1:10].^2)

the second line statement causes the YLim property to change from
[0 10] to [0 100]:

This is because YLimMode is auto, which always causes MATLAB to recompute
the axis limits.

If you set the value controlled by an automatic-mode property, MATLAB sets
the mode to manual and does not automatically recompute the value.

For example, in the statements:

line(1:10,1:10)
set(gca,'XLim',[1 10],'YLim',[1 20])
line(1:10,[1:10].^2)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
10-23

10 Axes

10-
the set statement sets the x- and y-axis limits and changes the XLimMode and
YLimMode properties to manual. The second line statement now draws a Line
that is clipped to the axis limits [1 12] instead of causing the Axes to
recompute its limits.

The automatic-mode properties include:

Mode Properties What It Controls

CameraPositionMode Positioning of the viewpoint

CameraTargetMode Positioning of the camera target in the Axes

CameraUpVectorMode The direction of “up” in 2-D and 3-D views

CameraViewAngleMode The size of the projected scene and
stretch-to-fit behavior

CLimMode Mapping of data values to colors

DataAspectRatioMode Relative scaling of data units along x, y, and z
axes and stretch-to-fit behavior

PlotBoxAspectRatioMode Relative scaling of plot box along x, y, and z
axes and stretch-to-fit behavior

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20
24

Automatic-Mode Properties
The axes function description in the online MATLAB Function Reference
provides more detail on Axes properties.

TickDirMode Direction of axis tick marks (in for 2-D, out
for 3-D)

XLimMode
YLimMode
ZLimMode

Limits of the respective x, y, and z axes

XTickMode
YTickMode
ZTickMode

Tick mark spacing along the respective x, y,
and z axes

XTickLabelMode
YTickLabelMode
ZTickLabelMode

Tick mark labels along the respective x, y,
and z axes

Mode Properties What It Controls
10-25

10 Axes

10-
Multiaxis Axes
The XAxisLocation and YAxisLocation properties specify on which side of the
graph to place the x- and y-axes. You can create graphs with two different
x-axes and y-axes by superimposing two Axes objects and using XAxisLocation
and YAxisLocation to position each axis on a different side of the graph. This
technique is useful to plot different sets of data with different scaling in the
same graph.

Example – Double Axis Graphs
This example creates a graph to display two separate sets of data using the
bottom and left sides as the x- and y-axis for one, and the top and right sides as
the x- and y-axis for the other.

Using low-level line and axes routines allows you to superimpose objects
easily. Plot the first data, making the color of the Line and the corresponding
x- and y-axis the same to more easily associate them:

hl1 = line(x1,y1,'Color','r');
ax1 = gca;
set(ax1,'XColor','r','YColor','r')

Next, create another Axes at the same location as the first, placing the x-axis
on top and the y-axis on the right. Set the Axes Color to none to allow the first
Axes to be visible and color code the x- and y-axis to match the data:

ax2 = axes('Position',get(ax1,'Position'),...
 'XAxisLocation','top',...
 'YAxisLocation','right',...
 'Color','none',...
 'XColor','k','YColor','k');

Draw the second set of data in the same color as the x- and y-axis:

hl2 = line(x2,y2,'Color','k','Parent',ax2);
26

Multiaxis Axes
Coincident Grids
Since the two Axes are completely independent, MATLAB determines tick
mark locations according to the data plotted in each. It is unlikely the gridlines
will coincide. This produces a somewhat confusing looking graph, even though
the two grids are drawn in different colors. However, if you manually specify
tick mark locations, you can make the grids coincide.

The key is to specify the same number of tick marks along corresponding axis
lines (it is also necessary for both Axes to be the same size). The following graph
of the same data uses six tick marks per axis, equally spaced within the
original limits. To calculate the tick mark location, obtain the limits of each
axis and calculate an increment:

xlimits = get(ax1,'XLim');
ylimits = get(ax1,'YLim');
xinc = (xlimits(2)−xlimits(1))/5;
yinc = (ylimits(2)−ylimits(1))/5;

0 5 10 15 20 25 30 35 40
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time msec

A
m

pl
itu

de

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

Time sec

A
m

pl
itu

de
10-27

10 Axes

10-
Now set the tick mark locations:

set(ax1,'XTick',[xlimits(1):xinc:xlimits(2)],...
 'YTick',[ylimits(1):yinc:ylimits(2)])

The resulting graph is visually simpler, even though the y-axis on the left has
rather odd tick mark values:

0 8 16 24 32 40
−0.35

−0.27

−0.19

−0.11

−0.03

Time msec

A
m

pl
itu

de

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

Time sec

A
m

pl
itu

de
28

Colors Controlled By Axes
Colors Controlled By Axes
Axes properties specify the color of the axis lines, tick marks, labels, and the
background. Properties also control the color the Lines drawn by plotting
routines and how Image, Patch, and Surface objects obtain colors from the
Figure colormap.

Axes properties discussed in this section include:

Axes Colors
The default Axes background color is set up by the colordef command, which
is called in your startup file. However, you can easily define your own color
scheme.

See the Printing chapter for information on how MATLAB automatically
changes the color scheme for printing hardcopy.

Property Characteristic it Controls

Color Axes background color

XColor, YColor, ZColor Color of the axis lines, tick marks, gridlines
and labels

Title, XLabel, YLabel,
Zlabel

Title and axis label Text object handles.

CLim Controls mapping of graphic object CData to
the Figure colormap

CLimMode Automatic or manual control of CLim property

ColorOrder Line color autocycle order

LineStyleOrder Line styles autocycle order (not a color, but
related to ColorOrder)
10-29

10 Axes

10-
Changing the Color Scheme
Suppose you want an Axes to use a “black-on-white” color scheme. First,
change the background to white and the axis lines, grid, tick marks, and tick
mark labels to black:

set(gca,'Color','w',...
 'XColor','k',...
 'YColor','k',...
 'ZColor','k')

Next, change the color of the Text objects used for the title and axis labels:

set(get(gca,'Title'),'Color','k')
set(get(gca,'XLabel'),'Color','k')
set(get(gca,'YLabel'),'Color','k')
set(get(gca,'ZLabel'),'Color','k')

Changing the Figure background color to white completes the new color
scheme:

set(gcf,'Color','w')

When you are done, a Figure containing a mesh plot looks like this:

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

Z = Ae−x2−y2

Range In XRange In Y

V
a

lu
e

s
o

f Z
30

Colors Controlled By Axes
You can define default values for the appropriate properties and put these
definitions in your startup.m file. Titles and axis labels are Text objects, so you
must set a default color for all Text objects, which is a good idea anyway since
the default Text color of white is not visible on the white background. Lines
created with the low-level line function (but not the plotting routines) also
have a default color of white, so you should change the default Line color as
well.

To set default values on the Root level, use:

set(0,'DefaultFigureColor','w'
 'DefaultAxesColor','w',...
 'DefaultAxesXColor','k',...
 'DefaultAxesYColor','k',...
 'DefaultAxesZColor','k',...
 'DefaultTextColor','k',...
 'DefaultLineColor','k')

MATLAB colors other Axes children (i.e., Image, Patch, and Surface objects)
according to the values of their CData properties and the Figure colormap. The
next section discusses how Axes properties affect this coloring.

Axes Color Limits – The CLim Property
Many of the 3-D graphics functions produce graphs that use color as another
data dimension. For example, surface plots map surface height to color. The
color limits control the limits of the color dimension in a way analogous to
setting axis limits.

The Axes CLim property controls the mapping of Image, Patch, and Surface
CData to the Figure colormap. CLim is a two-element vector [cmin cmax]
specifying the CData value to map to the first color in the colormap (cmin) and
the CData value to map the last color in the colormap (cmax). Data values in
between are linearly transformed from the second to the next to last color,
using the expression:

colormap_index = fix((CData−cmin)/(cmax−cmin)*cm_length))+1

See the caxis reference
page for more information
on color limits.

cm_length is the length of the colormap. When CLimMode is auto, MATLAB sets
CLim to the range of the CData of all graphics objects within the Axes. However,
you can set CLim to span any range of values. This allows individual Axes
10-31

10 Axes

10-
within a single Figure to use different portions of the Figure’s colormap. You
can create colormaps with different regions, each used by a different Axes.

Example – Simulating Multiple Colormaps In a Figure
Suppose you want to display two different Surfaces in the same Figure and
color each Surface with a different colormap. You can produce the effect of two
different colormaps by concatenating two colormaps together and then setting
the CLim property of each Axes to map into a different portion of the colormap.

This example creates two Surfaces from the same topographic data. One uses
the color scheme of a typical atlas – shades of blue for the ocean and greens for
the land. The other Surface is illuminated with a light source to create the
32

Colors Controlled By Axes
illusion of a three-dimensional picture. Such illumination requires a colormap
that changes monotonically from dark to light.

Calculating Color Limits
The key to this example is calculating values for CLim that cause each Surface
to use the section of the colormap containing the appropriate colors.
10-33

10 Axes

10-
To calculate the new values for CLim, you need know:

• The total length of the colormap (CmLength).

• The beginning colormap slot to use for each Axes (BeginSlot).

• The ending colormap slot to use for each Axes (EndSlot).

• The minimum and maximum CData values of the graphic objects contained
in the Axes. That is, the values of the Axes CLim property determined by
MATLAB when CLimMode is auto (CDmin and CDmax).

First, define subplots regions, and plot the Surfaces:

ax1 = subplot(2,1,1);
view([0 80])
surf(topodata)
shading interp
ax2 = subplot(2,1,2),;
view([0 80]);
surfl(topodata,[60 0])
shading interp

Concatenate two colormaps together and install the new colormap:

colormap([Lightingmap;Atlasmap]);

Obtain the data you need to calculate new values for CLim:

Colormap length CmLength = size(get(gcf,'Colormap'),1);
Begining and ending slots BeginSlot1 = 1;

EndSlot1 = size(Lightingmap,1);
BeginSlot2 = EndSlot1+1;
EndSlot2 = CmLength;

CLim values for each axis CLim1 = get(ax1,'CLim');
CLim2 = get(ax2,'CLim');

Computing new values for CLim involves determining the portion of the
colormap you want each Axes to use relative to the total colormap size and
34

Colors Controlled By Axes
scaling its Clim range accordingly. You can define a MATLAB function to do
this:

function CLim = newclim(BeginSlot,EndSlot,CDmin,CDmax,CmLength)
PBeginSlot = (BeginSlot − 1) / (CmLength − 1);
PEndSlot = (EndSlot − 1) / (CmLength − 1);
PCmRange = PEndSlot − PBeginSlot;
DataRange = CDmax − CDmin;
ClimRange = DataRange / PCmRange;
NewCmin = CDmin − (PBeginSlot * ClimRange);
NewCmax = CDmax + (1 − PEndSlot) * ClimRange;
CLim = [NewCmin,NewCmax];

The input arguments are identified in the bulleted list on the preceding page.
The M-file first computes the percentage of the total colormap you want to use
for a particular Axes (PCmRange) and then computes the CLim range required to
use that portion of the colormap given the CData range in the Axes. Finally, it
determine the minimum and maximum values required for the calculated CLim
range and return these values. These values are the color limits for the given
Axes.

Using the M-File
Use the newclim M-file to set the CLim values of each Axes. The statement,

set(ax1,'CLim',newclim(65,120,clim1(1),clim1(2)))

sets the CLim values for the first Axes so the Surface uses color slots 65 to 120.
The lit Surface uses the lower 64 slots. You need to reset its CLim values as well:

set(ax2,'CLim',newclim(1,64,clim1(1),clim1(2)))

How the M-File Works
MATLAB enables you to specify any values for the Axes CLim property, even if
these values do not correspond to the CData of the graphics objects displayed in
the Axes. MATLAB always maps the minimum CLim value to the first color in
the colormap and the maximum CLim value to the last color in the colormap,
whether or not there are really any CData values corresponding to these colors.
Therefore, if you specify values for CLim that extend beyond the object’s actual
CData minimum and maximum, MATLAB colors the object with only a subset
of the colormap.

Convert slot numbers and range
percent of colormap.

Determine range and min and m
of new CLim values.
10-35

10 Axes

10-
The newclim M-file computes values for CLim that map the graphics object’s
actual CData values to the beginning and ending colormap slots you specify. It
does this by defining a “virtual” graphics object having the computed CLim
values. The following picture illustrates this concept. It shows a side view of
two Surfaces to make it easier to visualize the mapping of color to Surface
topography. The virtual Surface is on the left and the actual Surface on the
right. In the center is the Figure’s colormap.

The real Surface has CLim values of [0.4 −0.4]. To color this Surface with slots
65 to 120, newclim computed new CLim values of [0.4 −1.4269]. The virtual
Surface on the left represents these values.

Virtual Surface
mapped to entire
120 slot colormap

Figure Colormap Real Surface using
only color slots 65
to 120
36

Colors Controlled By Axes
Color of Lines Used for Plotting
The Axes ColorOrder property determines the color of the individual Lines
drawn by the plot and plot3 functions. For multiline graphs, these functions
cycle through the colors defined by ColorOrder, repeating the cycle when
reaching the end of the list.

The colordef function defines various color order schemes for different
background colors. colordef is typically called in the matlabrc file, which is
executed during MATLAB’s startup.

Defining Your Own ColorOrder
You can redefine ColorOrder to be any m-by-3 matrix of RGB values, where m
is the number of colors. However, high-level functions like plot and plot3
reset most Axes properties (including ColorOrder) to their defaults each time
you call them. To use your own ColorOrder definition you must,

• Define a default ColorOrder on the Figure or Root level, or

• Change the Axes NextPlot property to add or replacechildren, or

• Use the informal form of the line function, which obeys the ColorOrder but
does not clear the Axes or reset properties

Changing the Default ColorOrder. You can define a new ColorOrder that MATLAB
uses within a particular Figure, for all Axes within any Figures created during
the MATLAB session, or as a user-defined default that MATLAB always uses.

To change the ColorOrder for all plots in the current Figure, set a default in
that Figure. For example, to set ColorOrder to the colors red, green, and blue,
use the statement:

set(gcf,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1])

To define a new ColorOrder that MATLAB uses for all plotting during your
entire MATLAB session, set a default on the Root level so Axes created in any
Figure use your defaults:

set(0,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1])

To define a new ColorOrder that MATLAB always uses, place the previous
statement in your startup.m file.
10-37

10 Axes

10-
Setting the NextPlot Property. The Axes NextPlot property determines how
high-level graphics functions draw into an existing Axes. You can use this
property to prevent plot and plot3 from resetting the ColorOrder property
each time you call them, but still clear the Axes of any exiting plots.

By default, NextPlot is set to replace, which is equivalent to a cla reset
command (i.e., delete all Axes children and reset all properties, except
Position, to their defaults). If you set NextPlot to replacechildren,

set(gca,'NextPlot','replacechildren')

MATLAB deletes the Axes children, but does not reset Axes properties. This is
equivalent to a cla command without the reset.

After setting NextPlot to replacechildren, you can redefine the ColorOrder
property and call plot and plot3 without affecting the ColorOrder.

Setting NextPlot to add is the equivalent of issuing the hold on command. This
setting prevents MATLAB from resetting the ColorOrder property, but it does
not clear the Axes children with each call to a plotting function (See “Using the
line Function”).

Using the line Function. The behavior of the line function depends on its calling
syntax. When you use the informal form (which does not include any explicit
property definitions):

line(x,y,z)

line obeys the ColorOrder property, but does not clear the Axes with each
invocation or change the view to 3-D (as plot3 does). However, line can be
useful for creating your own plotting functions where you do not want the
automatic behavior of plot or plot3, but you do want multiline graphs to use
a particular ColorOrder.

Line styles Used for Plotting – LineStyleOrder
The Axes LineStyleOrder property is analogous to the ColorOrder property.
It specifies the line styles to use for multiline plots created with the plot and
plot3 functions. MATLAB increments the line style only after using all of the
colors in the ColorOrder property. It then uses all the colors again with the
second line style, and so on.
38

Colors Controlled By Axes
For example, define a default ColorOrder of red, green, and blue and a default
LineStyleOrder of solid, dashed, and dotted lines:

set(0,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1],...
 'DefaultAxesLineStyleOrder','−|−−|:')

Then plot some multiline data:

t = 0:pi/20:2*pi;
a = ones(length(t),9);
for i = 1:9
 a(:,i) = sin(t−i/5)';
end
plot(t,a)

MATLAB cycles through all colors for each line style.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

10-39

10 Axes

10-
40

Index
A
Adobe Illustrator 88 7-20
alignment of text 10-9
ambient light 3-25
AmbientLightColor property 3-22

illustration 3-25
AmbientStrength property 3-22

illustration 3-25
animation 4-45

erase modes for 4-47
movies 4-45

annotating graphs 2-19, 10-8
example 10-10

area 4-10
area graphs 4-2, 4-10
aspect ratio 3-47-3-59

for realistic objects 3-58
properties that affect 3-51
specifying 3-55

Axes
adding text 10-8
annotation properties 10-2
aspect ratio 3-47, 3-51

2-D 2-17
properties that affect 3-51
specifying 3-55

automatic modes 10-23
axis control 10-18

properties 10-2
axis direction 10-21
callback execution properties 10-3
camera properties 3-35
CLim property 10-31
color limits 10-31
color properties 10-3
ColorOrder property 10-37
colors 10-29
controlling the shape of 3-55
default aspect ratio 3-52
general information properties 10-2
graphics objects 10-2
individual axis control 10-18
labeling 2-19
labels

font properties 10-5
using TeX characters 10-6

limits 3-47
example 3-57

making grids coincident 10-27
multi-axis 10-26
multiple 2-3, 10-15
NextPlot property 8-34
obtaining handles 8-36
overlapping 10-15

printing 10-17
plot box 3-36
position rectangle 3-36
positioning 10-13-10-17
preparing to accept graphics 8-33
properties

for labeling 10-4
list 10-2

protecting from output 8-39
rendering method properties 10-3
scaling 3-47

and aspect ratio properties 10-3
independent 10-16

setting
limits 10-18
line styles used for plotting 10-38

setting limits 2-15
standard plotting behavior 8-37
stretch-to-fill 3-47
I-1

Index

I-2
style and appearance properties 10-2
target

for graphics 2-5
properties controlling 10-3

tick marks 2-16
locating 10-20

units 10-14
viewpoint properties 10-3

axes 10-2
axis 3-47

auto 3-48
equal 2-18, 3-48
ij 3-48
illustrated examples, 2-D 2-18
illustrated examples, 3-D 3-49
image 3-48, 5-11
manual 3-48
normal 3-48
square 2-17, 3-48
tight 2-18, 3-48
vis3d 3-48
xy 3-48

azimuth of viewpoint 3-32
default 2-D 3-32
default 3-D 3-32
limitations 3-34

B
BackFaceLighting property 3-23

illustration 3-27
BackingStore property 9-15
bar 4-2
bar graphs 4-2-4-10

3-D 4-3
grouped
2-D 4-2
3-D 4-4

horizontal 4-6
labeling 4-4, 4-7
overlaid with plots 4-8
stacked 4-5

bar3 4-3
bins, specifying for histogram 4-18
BMP 5-2
brighten 3-17

C
camera position, moving 3-37
camera properties 3-35

illustration showing 3-36
CameraPosition property 3-35

and perspective 3-37
fly-by 3-37

CameraPositionMode property 3-35
CameraTarget property 3-35
CameraTargetMode property 3-35
CameraUpVector property 3-35, 3-39

example 3-40
CameraUpVectorMode property 3-35
CameraViewAngle property 3-35

and perspective 3-39
zooming with 3-38

CameraViewAngleMode property 3-35, 3-39
CData property

images 5-14
patches 6-11

CDataMapping property 3-15
images 5-14
patches 6-11

character sets

Index
encoding 7-15
printing 7-15, 7-27

cla 8-34
clabel 4-34, 4-36
clf 8-34
close 8-41
close request function

default 8-41
closereq.m 8-41
CloseRequestFcn property 8-41

default value 8-41
errors in 8-42
overriding 8-42

closing Figures 8-41
closing MATLAB, errors occurring when 8-42
color limits, calculating 10-33
color property of lights 3-21
color separations 7-14
colorbar 3-14, 6-16
colordef 2-6
colormap 3-13
colormaps

altering 3-17
brightening 3-17
brightness component of TV signal 3-17
continuous tone for printing 9-26
displaying 3-14
for surfaces 3-12
functions that create 3-13
large 9-10
minimum size 9-11
range of RGB values in 3-12
simulating multiple 10-32
size of dithermap 9-14

ColorOrder 10-37
colors

changing color scheme 10-30

colormaps 3-12, 9-9
controlled by Axes 10-29
controlled by Figure properties 9-8
dithering 3-19, 9-13
effects of dithering 9-14
fixed 9-9
indexed 3-12

direct 3-15
scaled 3-15

indexed and dithering 9-13
interpreted by surfaces 3-12
mapping to data 10-31
NTSC encoding of 3-17
of patches 6-11
of surface plots 3-12
reversing for printing 9-24
scaling algorithm 3-15
shared 9-12
size of dithermap 9-14
specifying Figure colors 2-5
specifying for surface plot, example 3-15
truecolor 3-12

on indexed color systems 3-19
specifying 3-17

typical RGB values 3-13
used for plotting 2-14, 10-37
using a large number 9-10

command-line switches for printing 7-11
compass 4-28
compass plots 4-28
complex numbers, plotting 2-12

with feather 4-30
contour 4-34
contour plots 4-34

algorithm 4-38
filled 4-37
in polar coordinates 4-40
I-3

Index

I-4
labeling 4-36
specifying contour levels 4-38, 4-40

contour3 4-34
contourc 4-34, 4-38
contourf 4-34, 4-37
coordinate system and viewpoint 3-32
copying graphics objects 8-30
current

Axes 8-27
Figure 8-27
object 8-27

cursors, see pointers
CYMK color separations 7-14

D
DataAspectRatio property 3-51

example 3-55
images 5-11

DataAspectRatioMode property 3-51
default

aspect ratio 3-52
azimuth

2-D 3-32
3-D 3-32

CameraPosition 3-37
CameraTarget 3-37
CameraUpVector 3-37
CameraViewAngle 3-37
CloseRequestFcn 8-41
elevation

2-D 3-32
3-D 3-32

factory 8-19
Figure color scheme 2-5
Projection 3-37
property values 8-20-8-26
removing 8-22
search path, diagram 8-21
setting to factory defaults 8-23

view 3-36
del2 3-16
deleting graphics objects 8-30
device drivers 7-8, 7-17
diffuse reflection 3-25
DiffuseStrength property 3-22

illustration 3-25
direct color mapping 3-15
direction cosines 3-40
discrete data graphs 4-20-4-27

stairstep plots 4-26
stem plots 4-20

dithering 9-13
algorithm 9-13
effects of 9-14

Dithermap property 9-13
DithermapMode property 9-13, 9-14

E
edge effects and lighting 3-28
EdgeColor property 3-23
EdgeLighting property 3-23
edges of patches 6-13
efficient programming 8-44, 8-45
elevation of viewpoint 3-32

default 2-D 3-32
default 3-D 3-32
limitations 3-34

Encapsulated PostScript 7-17
preview images 7-14

Enhanced Metafiles 7-39
erase modes 4-47

Index
and printing 4-50
background 4-51
images 5-17
none 4-48
xor 4-51

errors closing MATLAB 8-42
examples

2-D graphs 2-2
3-D graph 3-2
animation 4-47
area graphs 4-10
axis 3-49
bar graphs 4-2
changing CameraPosition 3-37
contour plots 4-34
copying graphics objects 8-30
custom pointers 9-19
DataAspectRatio property 3-55
del2 3-16
direction and velocity graphs 4-28
direction cosines 3-40
discrete data graphs 4-20
displaying real objects 3-58
double axis graphs 10-26
finding objects handles 8-29
histograms 4-16
hold 8-39
lighting 3-30
line 8-36
linspace 3-8
meshgrid 3-4, 3-8
movies 4-46
multiline text 10-12
newplot 8-36
object creation functions 8-11
overlapping axes 10-15
PaperPosition property 9-23

parametric surfaces 3-10
pie charts 4-13
plot 2-7

complex data 2-12
plot3 3-3
PlotBoxAspectRatio property 3-56
plotting linestyles 10-38
ScreenSize property 9-7
setting default property values 8-23
simulating multiple colormaps 10-32
specifying Figure position 9-7
specifying truecolor

surfaces 3-17
stretch-to-fill 3-55
subplot 2-3
text 2-20
text annotation 10-10
texture mapping 3-19
translation 2-D 3-41
unevenly sampled data 3-8
view 3-39

extent of computer screen 9-6

F
FaceColor property 3-23
FaceLighting property 3-23
Faces property 6-7
FaceVertexCData property 6-10, 6-11
factory defaults 8-19
feather 4-28, 4-29
feather plots 4-29
Figures

callback routine execution properties 9-3
CloseRequestFcn 8-41
closing 8-41
colormap properties 9-3
I-5

Index

I-6
current selections properties 9-3
defining custom pointers 9-18
defining pointers 9-17
defining the color of 2-5
fixed colors 9-9
for plotting 2-3
general information properties 9-3
handle properties 9-3
index color properties 9-8
introduction to 9-2
NextPlot property 8-34
nonactive 9-12
pointer definition properties 9-3
positioning 9-5
positioning example 9-7
positioning on the printed page 9-21
preparing to accept graphics 8-33
printing 7-1, 9-21
printing properties 9-3
properties, list of 9-3
protecting from output 8-39
rendering graphics properties 9-3
rendering properties 9-15
reversing for printing 9-24
saving as M-files 7-20
specifying

for printing 7-12
pointers 9-17

standard plotting behavior 8-37
style and appearance properties 9-3
units 9-6
visible property 8-41
with multiple axes 2-3

fill, properties changed by 8-45
fill3, properties changed by 8-45
findobj 8-29
fixed colors 9-9
FixedColors property 9-9
Floyd-Steinberg dithering algorithm 9-13
fly-by effect 3-37
fonts

axis labels 10-5
printing 7-27
UNIX systems 7-29
Windows systems 7-28

functions
convenience forms 8-13
high-level vs. low-level 8-13
to create graphics objects 8-10

G
gca 8-28

handle visibility 8-40
gcf 8-28

handle visibility 8-40
gco 8-28
get 8-15
getframe 4-45
Ghostscript print drivers 7-9
ginput 3-41, 4-43
Gouraud lighting algorithm 3-24
gradient 4-32
graphical input 4-43
graphics

elementary plotting functions 2-7
M-files, structure of 8-37

graphics objects 8-2
accessing handles 8-27
accessing hidden handles 8-40
Axes 8-6, 10-2

See also Axes chapter
controlling where they draw 8-33
copying 8-30

Index
deleting 8-30
Figures 8-4

See also Figure chapter
functions that create 8-10

convenience forms 8-13
handle validity versus visibility 8-42
HandleVisibility property 8-40
hierarchy 8-2
images 8-6

See also Image chapter
invisible handles 8-40
Lights 8-6

See also Building 3-D Graphs chapter
Line 8-6
Patches 8-6

See also 3-D Modeling chapter
properties 8-7

changed by functions 8-45
changed when created 8-12
common to all objects 8-8
factory defined 8-19
getting current values 8-17
listing possible values 8-15
querying in groups 8-19
search path for default values 8-20
searching for 8-29
setting values 8-15

property names 8-14
Root 8-4
setting parent of 8-12
Surface 8-6

See also Building 3-D Graphs chapter
Text 8-7
Uicontrol 8-4
Uimenu 8-5

graphs
2-D 2-2

annotating 2-19
area 4-10-4-12
bar 4-2-4-10

horizontal 4-6
compass plots 4-28
contour plots 4-34-4-42
direction and velocity 4-28-4-33
discrete data 4-20-4-27
feather plots 4-29
histograms 4-16-4-19
pie charts 4-13-4-15
quiver plots 4-31
stairstep plots 4-26
steps to create 3-D 3-2
with double axes 10-26

Greek characters
see text function
using to annotate 2-20

griddata 3-8
grids, coincident 10-27
gtext 2-19

H
Hadamard matrix 3-10
Handle Graphics

graphics objects 8-2
hierarchy of graphics objects 8-2
organization of 8-2

handles to graphics objects 8-27
finding 8-29

HandleVisibility property 8-40
HDF 5-2
hidden 3-11
hidden line removal 3-11
high-level functions 8-13
hist 4-16
I-7

Index

I-8
histograms 4-16
in polar coordinates 4-17
labeling the bins 4-18
rose plot 4-17
specifying number of bins 4-18

hold 2-10
and NextPlot 8-35
testing state of 8-38

hold state, testing for 8-39
HorizontalAlignment property 10-9
HPGL 7-18

I
image 5-10

properties changed by 8-45
images

8-bit 5-6
indexed 5-6
intensity 5-7
truecolor 5-7

erase modes 5-17
file formats supported 5-19
indexed 5-3
information about files 5-21
intensity 5-3
numeric classes 5-2
printing 5-13
properties 5-14

CData 5-14
CDataMapping 5-14
XData and YData 5-15

reading from file 5-19
size and aspect ratio 5-10
truecolor 5-4
type read by MATLAB 5-2
types 5-3
writing to file 5-19
imagesc 5-3
imfinfo 5-21
imread 5-19
imwrite 5-21
indexed color

displays 9-8
dithering truecolor 9-13
surfaces 3-12

interpolated colors
patches 6-9

indexed vs. truecolor 6-18
See also shading

interpreter property 10-7
InvertHardCopy property 9-24
ishold 8-39

J
JPEG 5-2

L
labeling axes 2-19
Lapacian of a matrix 3-16
LaTeX, see TeX 10-6
legend 2-19, 4-23
light 3-21
lighting 3-21-3-31

algorithms
flat 3-24
Gouraud 3-24
Phong 3-24

ambient light 3-25
backface 3-27
diffuse reflection 3-25
example 3-30

Index
important properties 3-21
properties that affect 3-22
reflectance characteristics 3-25-3-27
specular

color 3-27
exponent 3-26
reflection 3-25

lighting command 3-24
limits

axes 2-15, 10-18
line styles

printing 7-29
used for plotting 2-14

redefining 10-38
line, example 8-36
lines

adding to existing graph 2-10
marker types 2-14
removing hidden 3-11
styles 2-14

LineStyleOrder property 10-38
linspace 3-8
loglog, properties changed by 8-46
low-level functions 8-13

M
Macintosh

printing 7-4, 7-24
mapping data to color 10-31
markers used for plotting 2-14
material command 3-25
mathematical functions

visualizing with surface plot 3-6
MATLAB

history ii
MATLAB 4 color scheme 2-6

MATLAB, quitting 8-42
matrix

displaying contours 4-35
Hadamard 3-10
initializing for movie 4-46
plotting 2-10
representing as

area graph 4-10
bar graph 4-3
histogram 4-17
surface 3-5

mesh 3-5
meshc 4-40
meshgrid 3-6
Metafiles 7-39

enhanced 7-39
M-files

basic structure of graphics 8-37
closereq 8-41
saving Figures as 7-20
to set color mapping 10-35
using newplot 8-35
writing efficient 8-44

Microsoft Windows
printing 7-3

MinColormap property 9-10
movie 4-45, 4-47
moviein 4-45
movies 4-45

example 4-45
multiaxis axes 10-26
multiline text 10-12

N
NaNs, avoiding in data 3-6
newplot 8-35
I-9

Index

I-10
example using 8-36
NextPlot property 8-34

add 8-34
replace 8-34
replacechildren 8-34, 8-38
setting plotting color order 10-38

nonuniform data, plotting 3-7
NormalMode property 3-23
NTSC color encoding 3-17

O
organization of Handle Graphics 8-2
orientation of printed Figures 7-27
orthographic projection 3-43

and Z-buffer 3-45

P
painters algorithm

printing 7-32
paper size 7-26
PaperOrientation property 9-21
PaperPosition property 9-21

example 9-23
PaperPositionMode property 9-21, 9-23
PaperSize property 9-21
PaperType property 9-21
PaperUnits property 9-21
parametric surfaces 3-9
parent, of graphics object 8-12
patch

behavior of function 6-4
interpreting color 6-5

patches
coloring 6-11

faces and edges 6-12
face coloring
flat 6-8
interpolated 6-9

indexed color 6-15
direct 6-16
scaled 6-15

interpreting color data 6-14
multifaceted 6-6
single polygons 6-2
specifying faces and vertices 6-7
truecolor 6-17
ways to specify 6-2

PCX 5-2
perspective projection 3-43

and Z-buffer 3-45
Phong lighting algorithm 3-24
pie charts 4-13

labeling 4-14
offsetting a slice 4-13
removing a piece 4-15

plot 2-7
properties changed by 8-46

plot box 3-36
plot3 3-3

properties changed by 8-46
PlotBoxAspectRatio property 3-51

example 3-56
PlotBoxAspectRatioMode property 3-51
plotting

3-D
matrices 3-4
vectors 3-3

adding to existing graph 2-10
annotating graphs 2-19
area graphs 4-10
bar graphs 4-2
compass plots 4-28

Index
complex data 2-12
contour plots 4-34
contours, labeling 4-36
creating a plot 2-7
data-point markers 2-14
elementary functions for 2-7
feather plots 4-29
interactive 4-43
line colors 10-37
line styles 2-14
matrices 2-10
multiple graphs 2-8
nonuniform data 3-7
overlaying bar graphs 4-8
quiver plots 4-31
specifying line styles 2-9, 10-38
stairstep plots 4-26
stem plots 4-20
surfaces 3-5
to subaxis 2-3
vector data 2-7
windows for 2-3

Pointer property 9-18
pointers

custom 9-18
example defining 9-19

specifying 9-17
PointerShapeCData property 9-18
PointerShapeHotSpot property 9-18
polar 4-42
polar coordinates

contour plots 4-40
rose plot 4-17

polygons, creating with patch 6-2
position of Figure 9-5
Position property

Axes 10-13

Figure 9-5
position rectangle 3-36
positioning of Axes 10-13
PostScript 7-17

character-set encoding 7-15
CMYK color separations 7-14

preview images for EPS 7-14
print 7-6
printer, specifying 7-13
printing

3-D scenes 3-46
Adobe Illustrator 88 7-20
appending to an existing file 7-15
aspect ratio 7-25
changing colors 7-35
character sets 7-27
command line 7-6
controlling output 7-25
device drivers 7-8, 7-17
Figure size 7-5, 7-25
Figures 7-1, 9-21
fonts 7-27
Ghostscript drivers 7-9
HPGL 7-18
images 5-13
introduction 7-2
inverting background color 7-35
line styles 7-29
Macintosh 7-4, 7-24
menu 7-3
Microsoft Windows 7-3, 7-21
network 7-23
options 7-11
orientation of Figure 7-27
painters algorithm 7-32
paper size 7-26
positioning the Figure on the page 9-21
I-11

Index

I-12
PostScript 7-17
resolution 7-15

with painters renderer 9-16
with Z-buffer renderer 9-16

reversing colors 9-24
saving Figures as M-files 7-20
specifying Figures 7-12
specifying printer 7-13
UNIX 7-4
Windows metafiles 7-39
WYSIWYG 9-23
Z-buffer 7-32, 9-15

printopt 7-6
programming, efficiently 8-44
Projection property 3-35
projection types 3-43-3-46

camera position 3-44
orthographic 3-43
perspective 3-43
rendering method 3-44

properties
automatic Axes 10-23
Axes 10-2
changed by built-in functions 8-45
changed by object creation functions 8-12
defining in startup.m 8-26
for labeling Axes 10-4
naming convention 8-14
of Axes 10-2
See also graphics objects
specifying default values 8-22

property values
defaults 8-20
defined by MATLAB 8-19
getting 8-15
resetting to default 8-22
setting 8-15
specifying defaults 8-22
user defined 8-20

pseudocolor displays, see indexed color

Q
quiver 4-28, 4-31
quiver plots 4-31

2-D 4-31
3-D 4-32
combined with contour plot 4-32
displaying velocity vectors 4-33

quiver3 4-28

R
realism, adding with lighting 3-21
realistic display 3-58
reflection, specular and diffuse 3-25
Renderer property 3-19

and printing 9-16
RendererMode property 3-19
rendering

options 9-15
Z-buffer 9-15

reset 8-34
resolution for printing 7-15
reversing colors for printing 9-24
RGB color values 3-13
rgbplot 3-17
rose 4-17
rotation

about viewing axis 3-39
without resizing 3-39

Index
S
scaled color mapping 3-15
screen extent, determining 9-6
ScreenSize property 9-6

example 9-7
SelectionType property, example 3-42
semilogx, properties changed by 8-46
semilogy, properties changed by 8-47
set 8-15
setting property values 8-15
ShareColors property 9-12
ShowHiddenHandles property 8-40
specular

color 3-27
exponent 3-26
highlight 3-26
reflection 3-25

SpecularColorReflectance property 3-23
illustration 3-27

SpecularExponent property 3-22
illustration 3-27

SpecularStrength property 3-22
illustration 3-25

sphere 3-19
spline 4-43
stairs 4-26
stairstep plot 4-26
stem 4-20
stem plots 4-20

3-D 4-24
overlaid with line plot 4-22

stem3 4-24
stretch-to-fill 3-47

overriding 3-54
string variable, in text 10-10
style property of lights 3-21
subplot 2-3

surf 3-5
Surfaces

CData 3-20
coloring 3-12
curvature mapped to color 3-16
FaceColor, texturemap 3-20
parametric 3-9
plotting 3-5

nonuniformly sampled data 3-7
surfc 4-40
symbols, TeX characters 10-6

T
TeX

available characters 10-7
creating mathematical symbols 10-6
symbols in text 2-20, 10-6

text
adding to Axes 10-8
alignment 10-9
for labeling plots 2-20
horizontal and vertical alignment 10-9
multiline 10-12
placing interactively 2-21
placing outside of axes 10-15
positioning 10-8
TeX characters 10-6
using variables in 10-10

text 2-19
texture mapping 3-19
thin line styles 7-31
three-dimensional objects, creating with patch

6-2
tick marks, on axes 2-16, 10-20
TIFF 5-2
title 2-19
I-13

Index

I-14
translating the viewpoint 3-41
truecolor

dithering on indexed systems 9-13
patches 6-17
rendering method used for 3-19
simulating 3-19
surface plots 3-12, 3-17

TrueType fonts 7-29

U
Uicontrol graphics objects 8-4
Uimenu graphics objects 8-5
uint8 arrays 5-6

operations supported on 5-9
units

Axes 10-14
used by Figures 9-6

UNIX
printing 7-4

V
vectors

determined by direction cosines 3-40
velocity vectors displayed with quiver 4-33
vertex normals and back face lighting 3-28
VertexNormals property 3-23
VerticalAlignment property 10-9
Vertices property 6-7
view

azimuth of viewpoint 3-32
camera properties 3-35
coordinate system defining 3-32
elevation of viewpoint 3-32
limitation of azimuth and elevation 3-34
MATLAB’s default behavior 3-36
projection types 3-43
specifying 3-35
specifying with azimuth and elevation 3-32
translation of 3-41

view 3-32
example of rotation 3-39
limitations using 3-34

viewing axis 3-36
moving camera along 3-37

viewpoint, controlling 3-32-3-34
visibility of graphics objects 8-42
visualizing mathematical functions 3-6

W
Windows

metafiles 7-39
printing 7-3, 7-21

X
xlabel 2-19
XWD 5-2

Y
ylabel 2-19

Z
Z-buffer 9-15

orthographic projection 3-45
perspective projection 3-45
printing 7-32, 9-15
rendering truecolor 3-19

zlabel 2-19
zooming by setting camera angle 3-38

	Preface
	What Is MATLAB?
	MATLAB Documentation
	How to Use the Documentation Set

	Typographical and Alphabetic Conventions

	Introduction
	Overview
	High-Level Graphics
	Handle Graphics
	Building Interactive GUIs
	How It All Fits Together
	Where to Begin

	Building 2-D Graphs
	Building a 2-D Graph
	Figure Windows
	Multiple Axis Regions (subplot)
	Specifying the Target Axes

	Default Color Scheme

	Elementary Plotting Functions
	Creating a Plot
	Adding Plots to an Existing Graph (hold)
	Matrix Data Plots
	Imaginary and Complex Data

	Basic Plot Control
	Colors, Line Styles, and Markers
	Available Line Styles and Markers

	Axis Limits
	Semiautomatic Limits

	Axis Tick Marks
	Axes Aspect Ratio

	Graph Annotation
	Labeling the Individual Axes
	Text Labels in Data Coordinates
	Placing Text Interactively

	Building 3-D Graphs
	Building a 3-D Graph
	Elementary 3-D Plotting Functions
	Line Plots in 3-D

	Representing a Matrix as a Surface
	Mesh and Surface Plots
	Visualizing Functions of Two Variables
	Surface Plots of Nonuniformly Sampled Data
	Example

	Parametric Surfaces
	Hidden Line Removal

	Coloring Mesh and Surface Plots
	Colormaps and Indexed Colors
	Displaying Colormaps
	Direct and Scaled Indexed Colors
	Direct Mapping
	Scaled Mapping

	Specifying Indexed Colors
	Example – Mapping Curvature to Color
	Altering Colormaps
	NTSC Color Encoding

	Truecolor
	Rendering Method for Truecolor
	Simulating Truecolor – Dithering

	Texture Mapping
	Example

	Lighting
	Light Objects
	Example – Simple Lighting

	Properties that Affect Lighting

	Controlling the Effects of Lighting
	Face and Edge Lighting Methods
	Reflectance Characteristics of Graphics Objects
	Specular and Diffuse Reflection
	Ambient Light
	Specular Exponent
	Specular Color Reflectance
	BackFaceLighting

	Lighting Example
	Viewpoint Control
	Setting the Viewpoint
	Limitations of Azimuth and Elevation

	Camera Properties
	Default Behavior
	Moving In and Out on the Scene
	Moving Through a Scene
	Example – Moving Towards or Away from the Target
	Making the Scene Larger or Smaller

	Revolving Around the Scene
	Rotation without Resizing of Graphics Objects
	Rotation About the Viewing Axis
	Example – Calculating a Camera Up Vector

	Translating the Viewpoint
	Example – 2-D Translation

	View Projection Types
	Projection Types and Camera Location
	Printing 3-D Scenes

	Aspect Ratio
	Stretch-to-fill
	axis Command Options
	Axis Scaling
	Aspect Ratio
	Example – axis Options

	Properties That Affect Aspect Ratio
	Default Behavior
	Example – MATLAB Defaults

	Overriding Stretch-to-Fill
	Specifying the Aspect Ratio
	DataAspectRatio
	PlotBoxAspectRatio
	Adjusting Axis Limits
	Example – Displaying Real Objects

	Specialized Graphs
	Bar and Area Graphs
	Bar Graph
	Grouped Bar Graph
	Detached 3-D Bars
	Labeling the Graph

	Grouped 3-D Bars
	Stacked Bar graphs to Show Contributing Amounts
	Providing Your Own X Data

	Overlaying Plots on Bar Graphs
	Annotating the Graph

	Area Graphs
	Area Graphs Showing Contributing Amounts
	Displaying the Grid on Top

	Comparing Datasets with Area Graphs

	Pie Charts
	Labeling the Graph
	Pie Charts Missing a Piece

	Histograms
	Histograms in Cartesian Coordinate Systems
	Histograms in Polar Coordinate Systems
	Number of Bins Created

	Discrete Data Graphs
	Two– and Three–dimensional Stem Plots
	Two-dimensional Stem Plots
	Customizing the Graph
	Combining plots

	Three-dimensional Stem Plots

	Stairstep Plots

	Direction and Velocity Vector Graphs
	Compass Plots
	Feather Plots
	Quiver Plots
	Two-dimensional Quiver Plots
	Three-dimensional Quiver Plots

	Contour Plots
	Creating Simple Contour Plots
	Labeling Contours
	Filled Contours
	Drawing a Single Contour Line at a Desired Level
	The Contouring Algorithm
	Changing the Offset of a Contour
	Displaying Contours in Polar Coordinates
	Labeling the Graph

	Interactive Plotting
	Animation
	Movies
	Visualizing an FFT
	Creating the Movie
	Running the Movie
	Full-Figured Movies

	Erase Modes
	Example
	Background Erase Mode
	Xor Erase Mode

	Additional Examples

	Images
	Overview
	Image Types
	Indexed Images
	Intensity Images
	Truecolor Images
	Summary of Image Types and Display Methods

	Working with 8-Bit Images
	8-Bit Indexed Images
	8-Bit Intensity Images
	8-Bit Truecolor Images
	Summary of Image Types and Numeric Class
	Other 8-Bit Array Support

	Controlling Aspect Ratio and Display Size
	Printing Images

	The Image Object and its Properties
	CData
	CDataMapping
	XData and YData
	EraseMode

	Reading and Writing Image Files
	Obtaining Information About Graphics Files

	3-D Modeling
	Introduction to Patches
	Defining Patches
	Single Polygons

	Behavior of the patch Function
	Interpreting the Color Argument

	Patches with Multiple Faces
	Example – Multifaceted Patch
	Specifying Faces and Vertices
	Flat Face Color
	Interpolated Face Color

	Patch Coloring
	Face and Edge Coloring
	Shared Edges

	Interpreting Color Data
	Indexed Color Data
	Scaled Color
	Direct Color

	Truecolor Patches

	Interpolating in Indexed vs. Truecolor

	Printing MATLAB Graphics
	Introduction
	Printing from the Menu
	PC
	Macintosh
	UNIX
	Adjusting the Size and Location of the Graphic

	Printing from the Command Line
	The print Command
	Changing Default Settings
	Editing printopt.m

	Built-in Device Drivers
	Ghostscript Device Drivers

	Options
	Specifying the Figure to Print (–f, –s)
	Specifying the Printer to Use (–P)
	Print Preview Images for EPS (–epsi, –loose)
	Placement of Preview Image

	CMYK Color Separations (–cmyk)
	Appending to an Existing File (–append)
	Specifying Resolution (–r)
	Default Character-Set Encoding (–adobecset)

	Selecting a Device Driver
	PostScript
	Level 1 or Level 2
	Black and White or Color
	PostScript or Encapsulated PostScript

	HPGL Compatible Plotters (–dhpgl)
	Color Selection
	Limitations

	Adobe Illustrator 88 (–dill)
	Creating Adobe Illustrator 88 files
	Limitations

	Saving and Reloading Figures (–dmfile)
	PC-Specific Options
	Choosing Between Windows Drivers and MATLAB Driver...
	Ghostscript Drivers.
	Troubleshooting
	Network Printing

	Macintosh-Specific Options

	Printing Tips and Troubleshooting
	Controlling Output Size and Aspect Ratio
	Paper Size
	Orientation

	Specifying Fonts and Character Sets
	PC
	UNIX

	Specifying Line Styles
	Windows 95 Limitation

	Selecting the Rendering Method
	Limitations of Each Method
	Size of Output Files

	Changing Background Colors
	Setting Printing Preferences (Macintosh)
	Troubleshooting MS-Windows Printing

	Using MATLAB Graphics in Other Applications
	Creating Graphics Files
	Using the print Command
	Using the capture Command
	PC-Specific Options
	Choosing the Format

	Macintosh-Specific Options
	Saving to a File
	Copy and Paste

	Importing MATLAB Graphics into Other Applications
	Choosing the Format
	Copying Output Files to Another Platform
	Application-Specific Issues
	Microsoft Word
	Corel Draw
	Scientific Word
	LaTeX

	Handle Graphics
	Handle Graphics Organization
	Graphics Objects
	The Root
	Figure
	Uicontrol
	Uimenu
	Axes
	Image
	Light
	Line
	Patch
	Surface
	Text

	Object Properties
	Properties Common to All Objects

	Graphics Object Creation Functions
	Example – Creating Graphics Objects
	Parenting
	High-Level Versus Low-Level
	Simplified Calling Syntax
	A Note About Property Names

	Using set and get
	Setting Property Values
	Listing Possible Values

	Getting Property Values
	Querying Groups of Properties

	Factory-Defined Property Values

	Default Property Values
	Specifying Default Values
	Setting Properties to the Default
	Removing Default Values
	Setting Properties to Factory-Defined Values
	Reserved Words

	Examples – Setting Defaults
	First Example
	Second Example

	Accessing Object Handles
	The Current Figure, Axes, and Object
	Searching for Objects by Property Values — findobj...
	Example

	Copying and Deleting Objects
	Example – Copying Objects
	Deleting Objects

	Controlling Graphics Output
	Specifying the Target for Graphics Output
	Preparing Figures and Axes for Graphics
	The NextPlot Property
	Controlling Graphics Output with the newplot Funct...
	MATLAB’s Default Behavior

	Example – Using newplot
	Replacing Only the Children Objects —replacechildr...

	Testing for Hold State
	Protecting Figures and Axes
	HandleVisibility Property
	Values Returned by gca and gcf

	Accessing Protected Objects
	The Close Request Function
	Quitting MATLAB
	Errors in the Close Request Function
	Overriding the Close Request Function

	Validity versus Visibility

	Efficient Programming
	Save Information First

	Properties Changed by Built-In Functions

	Figures
	Introduction
	Figure Properties
	Positioning Figures
	The Position Vector
	Units
	Determining Screen Extent

	Example — Specifying Figure Position

	Controlling Color
	Indexed Color Displays
	Colormap Colors and Fixed Colors
	Defining Fixed Colors

	Using a Large Number of Colors
	Specifying the Minimum Colormap Size – MinColormap...

	Nonactive Figures and Shared Colors
	Dithering Truecolor on Indexed Color Systems
	Auto Dither Mode
	Dithermap Size
	Effects of Dithering

	Rendering Options
	Backing Store
	Z-Buffer
	Printing and Z-Buffer

	Figure Pointers
	Custom Pointers
	Examples — Custom Pointers
	Creating Pointers from Functions

	Printing Figures
	Positioning the Figure on the Printed Page
	Factory Default PaperPosition
	Automatic PaperPosition – WYSIWYG Printing

	Examples — Readjusting PaperPosition
	Problem
	Solution

	Reversing Figure Colors
	What Happens to Colors

	Interactive Graphics

	Axes
	Axes Properties
	Labeling and Appearance Properties
	TeX Characters

	Adding Text to Axes
	Text Alignment
	Using Variables in Text Strings
	Example – Text Annotation
	Example – Multiline Text

	Positioning Axes
	The Position Vector
	Units
	Multiple Axes
	Placing Text Outside the Axes
	Multiple Axes for Different Scaling

	Individual Axis Control
	Changing Axis Limits
	Semiautomatic Limits

	Setting Tick Mark Locations
	Changing Axis Direction

	Automatic-Mode Properties
	Multiaxis Axes
	Example – Double Axis Graphs
	Coincident Grids

	Colors Controlled By Axes
	Axes Colors
	Changing the Color Scheme

	Axes Color Limits – The CLim Property
	Example – Simulating Multiple Colormaps In a Figur...
	Calculating Color Limits
	Using the M-File
	How the M-File Works

	Color of Lines Used for Plotting
	Defining Your Own ColorOrder
	Changing the Default ColorOrder
	Setting the NextPlot Property
	Using the line Function

	Line styles Used for Plotting – LineStyleOrder

