
MPLAB® XC16 USER’S GUIDE

FOR EMBEDDED ENGINEERS

MPLAB® XC16 User’s Guide for Embedded Engineers
INTRODUCTION

This document presents five code examples for 16-bit devices and the MPLAB® XC16
C compiler. Some knowledge of microcontrollers and the C programming language is
necessary to use them.

1. Turn LEDs On or Off

2. Flash LEDs Using _delay() Function

3. Count Up on LEDs Using Interrupts as Delay

4. Display Potentiometer Values on LEDs Using an ADC

5. Display EEPROM Data Values on LEDs

A Run Code in MPLAB X IDE

B Get Software and Hardware
 2015-2016 Microchip Technology Inc. DS50002446B-page 1

MPLAB® XC16 User’s Guide for Embedded Engineers
1. TURN LEDS ON OR OFF

This example will light alternate LEDs on the Explorer 16/32 Development Board with
a PIC24FJ128GA010 Plug-In Module (PIM). For more information, see Section B. “Get
Software and Hardware”.

#include <xc.h>

// PIC24FJ128GA010 Configuration Bit Settings

// For more on Configuration Bits,
// consult your device data sheet

// CONFIG2
#pragma config POSCMOD = XT // XT Oscillator mode selected
#pragma config OSCIOFNC = ON // OSC2/CLKO/RC15 as port I/O (RC15)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor disabled
#pragma config FNOSC = PRI // Primary Oscillator (XT, HS, EC)
#pragma config IESO = ON // Int Ext Switch Over Mode enabled

// CONFIG1
#pragma config WDTPS = PS32768 // Watchdog Timer Postscaler (1:32,768)
#pragma config FWPSA = PR128 // WDT Prescaler (1:128)
#pragma config WINDIS = ON // Watchdog Timer Window Mode disabled
#pragma config FWDTEN = OFF // Watchdog Timer disabled
#pragma config ICS = PGx2 // Emulator/debugger uses EMUC2/EMUD2
#pragma config GWRP = OFF // Writes to program memory allowed
#pragma config GCP = OFF // Code protection is disabled
#pragma config JTAGEN = OFF // JTAG port is disabled

#define LEDS_ON_OFF 0x55

int main(void) {

 // Port A access

 AD1PCFG = 0xFFFF; // set to digital I/O (not analog)
 TRISA = 0x0000; // set all port bits to be output
 LATA = LEDS_ON_OFF; // write to port latch

 return 0;
}

1.1 Header File <xc.h>

This header file allows code in the source file to access compiler- or device-specific
features. This and other header files may be found in the MPLAB XC16 installation
directory, in the support subdirectory.

Based on the selected device, the compiler will set macros that allow xc.h to vector to
the correct device-specific header file. Do not include a device-specific header in your
code or your code will not be portable.

see Section 1.1

see Section 1.2

see Section 1.3

see Section 1.4
DS50002446B-page 2  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
1.2 Configuration Bits

Microchip devices have configuration registers with bits that enable and/or set up
device features.

1.2.1 WHICH CONFIGURATION BITS TO SET

In particular, you need to look at:

• Oscillator selection – this must match your hardware’s oscillator circuitry. If this
is not correct, the device clock may not run. Typically, development boards use
high-speed crystal oscillators. From the example code:
#pragma config FNOSC = PRI
#pragma config POSCMOD = XT

• Watchdog timer – it is recommended that you disable this timer until it is
required. This prevents unexpected resets. From the example code:
#pragma config FWDTEN = OFF

• Code protection – turn off code protection until it is required. This ensures that
device memory is fully accessible. From the example code:
#pragma config GCP = OFF

Different configuration bits might need to be set up to use another 16-bit device (rather
than the MCU used in this example). See your device data sheet for the number and
function of corresponding configuration bits. Use the part number to search
http://www.microchip.com for the appropriate data sheet.

For more about configuration bits that are available for each device, see the following
file in the location where MPLAB XC16 was installed:

MPLAB XC16 Installation Directory/docs/config_index.html

Note: If you do not set Configuration bits correctly, your device will not operate at
all, or at least not as expected.
 2015-2016 Microchip Technology Inc. DS50002446B-page 3

http://www.microchip.com

MPLAB® XC16 User’s Guide for Embedded Engineers
1.2.2 HOW TO SET CONFIGURATION BITS

In MPLAB X IDE, you can use the Configuration Bits window to view and set these bits.
Select Window>PIC Memory Views>Configuration Bits to open this window.

FIGURE 1: CONFIGURATION BITS WINDOW

After you have selected your settings, click into your code at the location you want the
pragma directives placed and click the Insert Source Code in Editor icon.

Alternately you can click Generate Source Code to Output and copy the pragma
directives from the Output window into your code.

1.3 Define Macro for LED Values

The value to be written to the LEDs, as explained in the next section, has been
assigned to a descriptive macro (LEDS_ON_OFF), i.e., LEDs D3, D5, D7, and D9 will
be on, and LEDs D4, D6, D8 and D10 will be off. See Section B. “Get Software and
Hardware” for the demo board schematic location.

1.4 Port Access

Digital I/O device pins may be multiplexed with peripheral I/O pins. To ensure that you
are using digital I/O only, disable the other peripheral(s). Do this by using the pre-
defined C variables that represent the peripheral registers and bits. These variables are
listed in the device-specific header file in the compiler include directory. To determine
which peripherals share which pins, refer to your device data sheet.

For the example in this section, Port A pins are multiplexed with peripherals that are
disabled by default. The only issue is that the pins default to analog; so, you will need
to set them to digital I/O:

AD1PCFG = 0xFFFF; // set to digital I/O (not analog)

A device pin is connected to either a digital I/O port (PORT) or latch (LAT) register in the
device. For the example, LATA is used. The macro LEDS_ON_OFF is assigned to the
latch:

LATA = LEDS_ON_OFF; // write to port latch

In addition, there is a register for specifying the directionality of the pin – either input or
output – called a TRIS register. For the example in this section, TRISD and TRISB are
used. Setting a bit to 0 makes the pin an output, and setting a bit to 1 makes the pin an
input. For this example:

TRISA = 0x0000; // set all port bits to be output
DS50002446B-page 4  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
2. FLASH LEDs USING _delay() FUNCTION

This example is a modification of the previous code. Instead of just turning on LEDs,
this code will flash alternating LEDs.

#include <xc.h>
#include <libpic30.h>

// PIC24FJ128GA010 Configuration Bit Settings
// For more on Configuration Bits, consult your device data sheet

// CONFIG2
#pragma config POSCMOD = XT // XT Oscillator mode selected
#pragma config OSCIOFNC = ON // OSC2/CLKO/RC15 as port I/O (RC15)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor disabled
#pragma config FNOSC = PRI // Primary Oscillator (XT, HS, EC)
#pragma config IESO = ON // Int Ext Switch Over Mode enabled

// CONFIG1
#pragma config WDTPS = PS32768 // Watchdog Timer Postscaler (1:32,768)
#pragma config FWPSA = PR128 // WDT Prescaler (1:128)
#pragma config WINDIS = ON // Watchdog Timer Window Mode disabled
#pragma config FWDTEN = OFF // Watchdog Timer disabled
#pragma config ICS = PGx2 // Emulator/debugger uses EMUC2/EMUD2
#pragma config GWRP = OFF // Writes to program memory allowed
#pragma config GCP = OFF // Code protection is disabled
#pragma config JTAGEN = OFF // JTAG port is disabled

#define LEDS_ON_OFF 0x55
#define LEDS_OFF_ON 0xAA
#define IC_DELAY 1500000

int main(void) {

 // Port A access
 AD1PCFG = 0xFFFF; // set to digital I/O (not analog)
 TRISA = 0x0000; // set all port bits to be output

 while(1) {

 LATA = LEDS_ON_OFF; // write to port latch

 // delay value change

 __delay32(IC_DELAY); // delay in instruction cycles

 LATA = LEDS_OFF_ON; // write to port latch

 __delay32(IC_DELAY); // delay in instruction cycles

 }
 return -1;
}

see Section 2.1

see Section 2.2

see Section 2.3
 2015-2016 Microchip Technology Inc. DS50002446B-page 5

MPLAB® XC16 User’s Guide for Embedded Engineers
2.1 Library Header File

In this example, the delay32 function from the libpic30 compiler library is used. To
access this library, libpic30.h must be included.

2.2 The while() Loop and Variable Values

To make the LEDs on Port A change, the macro LEDS_ON_OFF is assigned in the first
part of the loop and a complementary macro, LEDS_OFF_ON, is assigned in the second
part of the loop. To perform the loop, while(1) { } was used.

If the main function returns, it means there was an error, as the while loop should not
normally end. There, a -1 is returned.

2.3 The _delay() Function

Because the speed of execution will, in most cases, cause the LEDs to flash faster than
the eye can see, execution needs to be slowed. __delay32()is a library function that
can be used by compiler.

For more details on the delay function, see the 16-Bit Language Tools Libraries
Reference Manual (DS50001456).
DS50002446B-page 6  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
3. COUNT UP ON LEDs USING INTERRUPTS AS DELAY

This example is a modification of the previous code. Although the delay function in the
previous example was useful in slowing down loop execution, it created dead time in
the program. To avoid this, a timer interrupt can be used.

#include <xc.h>

// PIC24FJ128GA010 Configuration Bit Settings
// For more on Configuration Bits, consult your device data sheet

// CONFIG2
#pragma config POSCMOD = XT // XT Oscillator mode selected
#pragma config OSCIOFNC = ON // OSC2/CLKO/RC15 as port I/O (RC15)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor disabled
#pragma config FNOSC = PRI // Primary Oscillator (XT, HS, EC)
#pragma config IESO = ON // Int Ext Switch Over Mode enabled

// CONFIG1
#pragma config WDTPS = PS32768 // Watchdog Timer Postscaler (1:32,768)
#pragma config FWPSA = PR128 // WDT Prescaler (1:128)
#pragma config WINDIS = ON // Watchdog Timer Window Mode disabled
#pragma config FWDTEN = OFF // Watchdog Timer disabled
#pragma config ICS = PGx2 // Emulator/debugger uses EMUC2/EMUD2
#pragma config GWRP = OFF // Writes to program memory allowed
#pragma config GCP = OFF // Code protection is disabled
#pragma config JTAGEN = OFF // JTAG port is disabled

// Interrupt function

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void){
 // static variable for permanent storage duration
 static unsigned char portValue = 0;
 // write to port latch
 LATA = portValue++;
 // clear this interrupt condition
 _T1IF = 0;
}

int main(void) {

 // Port A access
 AD1PCFG = 0xFFFF; // set to digital I/O (not analog)
 TRISA = 0x0000; // set all port bits to be output

 // Timer1 setup

 T1CON = 0x8010; // timer 1 on, prescaler 1:8, internal clock
 _T1IE = 1; // enable interrupts for timer 1
 _T1IP = 0x001; // set interrupt priority (lowest)

 while(1);

return -1;
}

see Section 3.1

see Section 3.2
 2015-2016 Microchip Technology Inc. DS50002446B-page 7

MPLAB® XC16 User’s Guide for Embedded Engineers
3.1 The Interrupt Function isr()

Functions are made into interrupt functions by using the interrupt attribute. Program
Space Visibility (PSV) should be specified also, and for this simple example no PSV is
used. For more on PSV, see the “MPLAB XC16 C Compiler User’s Guide”
(DS50002071).

The primary interrupt vector specific to Timer 1 is used, _T1Interrupt. Interrupt
Vector Tables for each device are provided in the compiler install docs directory.

Within the interrupt function, the counter portValue is incremented when Timer1
generates an interrupt.

3.2 Timer1 Setup

Code also needs to be added to the main routine to turn on and set up the timer, enable
timer interrupts, and change the latch assignment, now that the variable value changes
are performed in the interrupt service routine.
DS50002446B-page 8  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
4 DISPLAY POTENTIOMETER VALUES ON LEDS USING AN ADC

This example uses the same device and Port A LEDs as the previous example. How-
ever, in this example, values from a potentiometer (slider) on the demo board provide
Analog-to-Digital Converter (ADC) input through Port B that is converted and displayed
on the LEDs.

Instead of generating code by hand, the MPLAB Code Configurator (MCC) is used. The
MCC is a plug-in available for installation under the MPLAB X IDE menu Tools>Plugins,
Available Plugins tab. See MPLAB X IDE Help for more on how to install plugins.

For MCC installation information and the MPLAB® Code Configurator User’s Guide
(DS40001725), go to the MPLAB Code Configurator web page at the following URL:

http://www.microchip.com/mplab/mplab-code-configurator

For this example, the MCC was set up as shown in the following figures.

FIGURE 2: ADC PROJECT RESOURCES - SYSTEM MODULE
 2015-2016 Microchip Technology Inc. DS50002446B-page 9

http://www.microchip.com/mplab/mplab-code-configurator

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 3: ADC PROJECT SYSTEM MODULE CONFIGURATION
DS50002446B-page 10  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 4: ADC PROJECT RESOURCES - ADC MODULE
 2015-2016 Microchip Technology Inc. DS50002446B-page 11

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 5: ADC PROJECT ADC1 CONFIGURATION

FIGURE 6: ADC PROJECT ADC1 PIN RESOURCE

RB5 to AN5 map displays after selection is made in Figure 6.
DS50002446B-page 12  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 7: ADC PROJECT RESOURCES - PIN MODULE

FIGURE 8: ADC PROJECT I/O PIN CONFIGURATION

Pins RA0:7 will appear in the window above when they are selected in Figure 9.

RB5 was previously selected in Figure 6.

RB6 and RB7 are preselected for debug communication.

Once visible in the window, pin configurations may be viewed or selected for each pin.
 2015-2016 Microchip Technology Inc. DS50002446B-page 13

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 9: ADC PROJECT I/O PIN RESOURCES
DS50002446B-page 14  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 10: ADC PROJECT PIN PACKAGE
 2015-2016 Microchip Technology Inc. DS50002446B-page 15

MPLAB® XC16 User’s Guide for Embedded Engineers
When the code is configured as shown in the previous figures, click the Generate but-
ton in the “Project Resources” window (Figure 7). Code generated by the MCC is mod-
ular. Therefore main, system and peripheral code are all in individual files. Also, each
peripheral has its own header file.

Traps files are generated to catch potential errors. Although no interrupts will be used
in this application, interrupt manager files are generated for future use.

Editing of main.c is always required to add functionality to your program. Review the
generated files to find any functions or macros you may need in your code.

FIGURE 11: ADC PROJECT TREE FOR CODE GENERATED BY MCC
DS50002446B-page 16  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
4.1 main.c Modified Code

The main.c template file has been edited as shown below. Some comments have
been removed as described in < >. Code added to main() is in red.

/**
 Generated Main Source File

<See generated main.c file for file information.>
 */

/*
(c) 2016 Microchip Technology Inc. and its subsidiaries. You may use
this software and any derivatives exclusively with Microchip products.

<See generated main.c file for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"

unsigned int value = 0;

/*
 Main application
 */
int main(void) {
 // initialize the device
 SYSTEM_Initialize();

 while (1) {

 // Wait for conversion
 // and then get result
 while(!ADC1_IsConversionComplete());
 value = ADC1_ConversionResultGet();

 // Shift for MSb
 value = value >> 2;

 // Write to Port Latch/LEDs
 LATA = value;

 }
 return -1;
}
/**
 End of File
 */

see Section 4.2

see Section 4.3
 2015-2016 Microchip Technology Inc. DS50002446B-page 17

MPLAB® XC16 User’s Guide for Embedded Engineers
4.2 ADC Conversion and Result

MCC sets AD1CON1 bits to turn on the ADC, use automatic sample acquisition, and
use an internal counter to end sampling and start conversion. Therefore main() code
only needs to wait for the conversion to end and get the result.

From the adc1.c module, use the functions:

bool ADC1_IsConversionComplete(void)
uint16_t ADC1_ConversionResultGet(void)

For information on setting up other ADC features, see the dsPIC33/PIC24 Family
Reference Manual, “Section 17. 10-bit Analog-to-Digital Converter (ADC)” (DS61104).

Since only 8 LEDs are available, and the ADC conversion result is 10-bit, the conver-
sion result in the variable value is shifted to display the most significant bits. Some
resolution will be lost.

4.3 Write to Port Latch and LEDs

The ADC conversion result value is displayed on the Port A LEDs.
DS50002446B-page 18  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
5. DISPLAY EEPROM DATA VALUES ON LEDS

This example uses another Microchip device, the PIC24F32KA304 MCU, with the
Explorer 16/32 board, to demonstrate how to write to and read from EEPROM Data
(EEData). Read values are displayed on LEDs accessed from three ports.

MPLAB Code Configurator (MCC) is used to generate some of the code. To find out
how to install and get the user’s guide for MCC, see: Section 4 “Display Potentiometer
Values on LEDs Using an ADC”.

For this example, the MCC GUI was used to set up the System (oscillator speed, con-
figuration bits, etc.) and the General Purpose I/O (GPIO) for Ports A, B, and C
(Figure 12). However, at this time, there is no EEData device resource available for
16-bit devices.

Code for using the EEData module is found in the device data sheet and the
dsPIC33/PIC24 Family Reference Manual, “Section 5. “Data EEPROM”, both located
on the device web page:

http://www.microchip.com/PIC24F32KA304

FIGURE 12: EEDATA PROJECT RESOURCES - SYSTEM MODULE
 2015-2016 Microchip Technology Inc. DS50002446B-page 19

http://www.microchip.com/PIC24F32KA304

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 13: EEDATA PROJECT SYSTEM MODULE CONFIGURATION
DS50002446B-page 20  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 14: EEDATA PROJECT RESOURCES - PIN MODULE

FIGURE 15: EEDATA PROJECT I/O PIN CONFIGURATION

Pins RA9:11, RB2:3, RB12 and RC8:9 will appear in the window above when they are selected in Figure 16.

RB6 and RB7 are preselected for debug communication.

Once visible in the window, pin configurations may be viewed or selected for each pin.
 2015-2016 Microchip Technology Inc. DS50002446B-page 21

MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 16: EEDATA PROJECT I/O PIN RESOURCES

FIGURE 17: EEDATA PROJECT PIN PACKAGE
DS50002446B-page 22  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
After your code is configured (as shown in the previous figures), click the Generate but-
ton on the “Project Resources” window. Code generated by the MCC is modular.
Therefore main, system, and peripheral code are all in individual files. Also, each
peripheral has its own header file.

Traps files are generated to catch potential errors. Although no interrupts will be used
in this application, interrupt manager files are generated for future use.

FIGURE 18: EEDATA PROJECT TREE FOR CODE GENERATED BY MCC
 2015-2016 Microchip Technology Inc. DS50002446B-page 23

MPLAB® XC16 User’s Guide for Embedded Engineers
The GPIO-generated files default to analog input, so they must be changed to digital
input in the pin_manager.c file (Section 5.1).

In addition, because LED connections are not to one port but spread across three, an
additional type definition and code to assign the port pins to the correct LED values are
needed. A header file, LEDs.h (Section 5.2), and a C file, LEDs.c (Section 5.3), have
been added to the project.

As previously mentioned, there is no EEData device resource currently available in
MCC for 16-bit devices, so code needs to be added by hand. A header file eedata.h
(Section 5.4) and a C file, eedata.c (Section 5.5), have been added to the project.

The final project tree will appear as shown in Figure 19.

FIGURE 19: EEDATA PROJECT TREE - FINAL

Editing of main.c is always required to add functionality to your program (Section 5.6).
Review the generated files and additional files to find any functions or macros you may
need in your code.
DS50002446B-page 24  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
5.1 pin_manager.c Modified Code

The main.c template file has been edited as shown below. Some comments and
generated content have been removed as described in < >. Code that is changed is
shown in red.

/**
 System Interrupts Generated Driver File

<See generated pin_manager.c for file information.>

Copyright (c) 2013 - 2015 released Microchip Technology Inc. All
rights reserved.

<See generated pin_manager.c for additional copyright information.>
 */

/**
 Section: Includes
 */
#include <xc.h>
#include "pin_manager.h"

/**
 void PIN_MANAGER_Initialize(void)
 */
void PIN_MANAGER_Initialize(void) {

<See generated pin_manager.c for port setup information.>

/**
 * Setting the Analog/Digital Configuration SFR(s)
 **/
 ANSA = 0x0;
 ANSB = 0x0;
 ANSC = 0x0;

}

 2015-2016 Microchip Technology Inc. DS50002446B-page 25

MPLAB® XC16 User’s Guide for Embedded Engineers
5.2 LEDs.h Code

Some comments have been removed as described in < >.

/*---
 * PICF32KA304 LEDs header
 *
 * (c) Copyright 1999-2015 Microchip Technology, All rights reserved
 *
<See generated header files for additional copyright information.>
 */

/**
 * Union of structures to hold value for display on LEDs
 * LAT_LEDx - bit fields of value
 * w - entire value
 ***/
typedef union {
 struct {
 unsigned LAT_LED0:1;
 unsigned LAT_LED1:1;
 unsigned LAT_LED2:1;
 unsigned LAT_LED3:1;
 unsigned LAT_LED4:1;
 unsigned LAT_LED5:1;
 unsigned LAT_LED6:1;
 unsigned LAT_LED7:1;
 };
 struct {
 unsigned w:16;
 };
} LAT_LEDSBITS;
extern volatile LAT_LEDSBITS LAT_LEDSbits;

/* LAT_LEDSBITS */
#define _LED0 LAT_LEDSbits.LAT_LED0
#define _LED1 LAT_LEDSbits.LAT_LED1
#define _LED2 LAT_LEDSbits.LAT_LED2
#define _LED3 LAT_LEDSbits.LAT_LED3
#define _LED4 LAT_LEDSbits.LAT_LED4
#define _LED5 LAT_LEDSbits.LAT_LED5
#define _LED6 LAT_LEDSbits.LAT_LED6
#define _LED7 LAT_LEDSbits.LAT_LED7
#define _LEDS LAT_LEDSbits.w

/**
 * Function: DisplayValueOnLEDs
 * Precondition: None.
 * Overview: Display input value on Explorer 16 LEDs
 * Input: Value to display
 * Output: None.
 ***/
void DisplayValueOnLEDs(unsigned int value);
/**
 End of File
 */
DS50002446B-page 26  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
5.3 LEDs.c Code

Some comments have been removed as described in < >.

/**
 Display on LEDs Source File

<See LEDs.c for file description information.>

 */
/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All
rights reserved.

<See generated header files for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"
#include "LEDs.h"

volatile LAT_LEDSBITS LAT_LEDSbits;

/**
 * Function: DisplayValueOnLEDs
 * Precondition: None.
 * Overview: Display input value on Explorer 16 LEDs
 * Input: Value to display
 * Output: None.
 ***/
void DisplayValueOnLEDs(unsigned int value) {

 _LEDS = value;

 _LATA9 = _LED0;
 _LATA10 = _LED1;
 _LATA11 = _LED2;
 _LATC8 = _LED3;
 _LATC9 = _LED4;
 _LATB12 = _LED5;
 _LATB2 = _LED6;
 _LATB3 = _LED7;

}

/**
 End of File
 */
 2015-2016 Microchip Technology Inc. DS50002446B-page 27

MPLAB® XC16 User’s Guide for Embedded Engineers
5.4 eedata.h Code

Some comments have been removed as described in < >.

/*---
 * PICF32KA304 Data EEPROM header
 *
 * (c) Copyright 1999-2015 Microchip Technology, All rights reserved
 *
<See generated header files for additional copyright information.>
 */

/**
 * Function: EEData_WTL
 * Precondition: None.
 * Overview: Write one word of EEData
 * Input: Action to take: Erase or Write, Data to write
 * Output: None.
 ***/
void EEData_WTL(unsigned int action, unsigned int data);

/**
 * Function: EEData_Erase
 * Precondition: None.
 * Overview: Set up erase of one word of EEData
 * Input: None.
 * Output: None.
 ***/
void EEData_Erase(void);

/**
 * Function: EEData_Write
 * Precondition: None.
 * Overview: Set up write of one word of EEData
 * Input: Data to write
 * Output: None.
 ***/
void EEData_Write(unsigned int data);

/**
 * Function: EEData_Read
 * Precondition: None.
 * Overview: Read one word of EEData
 * Input: None.
 * Output: Value read from EEData
 ***/
unsigned int EEData_Read(void);

/**
 End of File
 */
DS50002446B-page 28  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
5.5 eedata.c Code

Some comments have been removed as described in < >.

/**
 Data EEPROM Write and Read

<See eedata.c for file description information.>

 */
/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All
rights reserved.

<See generated header files for additional copyright information.>
 */

#include <xc.h>
#include "eedata.h"

#define ERASE_EEWORD 0x4058
#define WRITE_EEWORD 0x4004

int __attribute__ ((space(eedata))) eeData = 0x0;
unsigned int offset = 0x0;

/**
 * Function: EEData_WTL
 * Precondition: None.
 * Overview: Write one word of EEData
 * Input: Action to take: Erase or Write, Data to write
 * Output: None.
 ***/
void EEData_WTL(unsigned int action, unsigned int data) {

 // Set up NVMCON to write one word of data EEPROM
 NVMCON = action;

 // Set up a pointer to the EEPROM location to be written
 TBLPAG = __builtin_tblpage(&eeData);
 offset = __builtin_tbloffset(&eeData);
 __builtin_tblwtl(offset, data);

 // Issue Unlock Sequence & Start Write Cycle
 __builtin_write_NVM();

 // Wait for completion
 while(NVMCONbits.WR);
}

/**
 * Function: EEData_Erase
 * Precondition: None.
 * Overview: Set up erase of one word of EEData
 * Input: None.
 * Output: None.
 ***/
void EEData_Erase(void) {

 EEData_WTL(ERASE_EEWORD, 0);
}

 2015-2016 Microchip Technology Inc. DS50002446B-page 29

MPLAB® XC16 User’s Guide for Embedded Engineers
/**
 * Function: EEData_Write
 * Precondition: None.
 * Overview: Set up write of one word of EEData
 * Input: Data to write
 * Output: None.
 ***/
void EEData_Write(unsigned int data) {

 EEData_WTL(WRITE_EEWORD, data);
}

/**
 * Function: EEData_Read
 * Precondition: None.
 * Overview: Read one word of EEData
 * Input: None.
 * Output: Value read from EEData
 ***/
unsigned int EEData_Read(void) {

 // Set up a pointer to the EEPROM location to be read
 TBLPAG = __builtin_tblpage(&eeData);
 offset = __builtin_tbloffset(&eeData);

 // Read the EEPROM data
 return __builtin_tblrdl(offset);
}

/**
 End of File
 */
DS50002446B-page 30  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
5.6 main.c Modified Code

The main.c template file has been edited as shown below. Some comments have
been removed as described in < >. Code that has been added is shown in red.

/**
 Generated Main Source File

<See generated main.c for file information.>
 */

/*
(c) 2016 Microchip Technology Inc. and its subsidiaries. You may use
this software and any derivatives exclusively with Microchip products.

<See generated main.c for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"
#include "eedata.h"
#include "LEDs.h"
#include "libpic30.h"

#define IC_DELAY 1000000

unsigned int data_write = 0x0;
unsigned int data_read = 0x0;

/*
 Main application
 */
int main(void) {
 // initialize the device
 SYSTEM_Initialize();

 while (1) {

 data_write++;

 // Erase one word of data EEPROM
 EEData_Erase();

 // Write one word of data EEPROM
 EEData_Write(data_write);

 // Read one word of data EEPROM
 data_read = EEData_Read();

 // Display result on LEDs
 DisplayValueOnLEDs(data_read);

 // Delay change on LEDs so visible
 __delay32(IC_DELAY); // delay in instruction cycles

 }

 return -1;
}
/**
 End of File
 */

see Section 5.7

see Section 5.8

see Section 5.9
 2015-2016 Microchip Technology Inc. DS50002446B-page 31

MPLAB® XC16 User’s Guide for Embedded Engineers
5.7 Erase and Write to EEData

To write a single word in the EEData, the following sequence must be followed:

1. Erase one data EEPROM word.

2. Write the data word into the data EEPROM latch.

3. Program the data word into the EEPROM.

The code to erase and write one word to EEData is found in eedata.c (Section 5.5).

For a PIC24F32KA304 device, a key sequence needs to be written to NVMKEY (in
NVMCON) before EEData can be erased or written.

Built-in functions are used to simplify coding:

• unsigned int __builtin_tblpage(const void *p);
• unsigned int __builtin_tbloffset(const void *p);
• void __builtin_tblwtl(unsigned int offset, unsigned int data);
• void __builtin_write_NVM(void);

Details on these functions may be found in the MPLAB XC16 C Compiler User’s Guide
(DS50002071), Appendix G. “Built-in Functions”.

5.8 Read from EEData

For this example, after EEData is written, the word of EEData is read.

The code to read one word to EEData is found in eedata.c (Section 5.5).

Again, built-in functions are used to simplify coding:

• unsigned int __builtin_tblpage(const void *p);
• unsigned int __builtin_tbloffset(const void *p);
• unsigned int __builtin_tblrdl(unsigned int offset);

Details on these functions may be found in the MPLAB XC16 C Compiler User’s Guide
(DS50002071), Appendix G. “Built-in Functions”.

5.9 Display Data on LEDs and Delay

Displaying the data on the demo board LEDs is more involved for this device, as three
ports provide connections to the LEDs. Therefore, union and structure data types are
used so that the whole data value can be assigned (LAT_LEDSbits.w), and then indi-
vidual bits may be accessed so they can be assigned to the correct port pins for display
(e.g., LATAbits.LATA9 = LAT_LEDSbits.LAT_LED0).

The code creating the union and structures is found in LEDs.h (Section 5.2).

The code assigning the port pins to LED values is found in LEDs.c (Section 5.5).

Because the speed of execution will, in most cases, cause the LEDs to flash faster than
the eye can see, the _delay() function is used again (as in Section 2.) to slow
execution.
DS50002446B-page 32  2015-2016 Microchip Technology Inc.

MPLAB® XC16 User’s Guide for Embedded Engineers
A. RUN CODE IN MPLAB X IDE

First, create a project:

1. Launch MPLAB X IDE.

2. From the IDE, launch the New Project Wizard (File>New Project).

3. Follow the screens to create a new project:

a) Choose Project: Select “Microchip Embedded”, and then select
“Standalone Project”.

b) Select Device: Select the example device.

c) Select Header: None.

d) Select Tool: Select your hardware debug tool by serial number (SN),
SNxxxxxx. If you do not see an SN under your debug tool name, ensure that
your debug tool is correctly installed. See your debug tool documentation for
details.

e) Select Plugin Board: None.

f) Select Compiler: Select XC16 (latest version number) [bin location]. If you
do not see a compiler under XC16, ensure the compiler is correctly installed
and that MPLAB X IDE can find the executable. Select Tools>Options, click
the Embedded button on the Build Tools tab, and look for your compiler.
See MPLAB XC16 and MPLAB X IDE documentation for details

g) Select Project Name and Folder: Name the project.

Now, create a file to hold the example code (unless you have used MCC):

1. Right click on the project name in the Projects window. Select New>Empty File.
The New Empty File dialog will open.

2. Under “File name”, enter a name.

3. Click Finish.

4. Cut and paste the example code from this user’s guide into the empty editor
window and select File>Save.

Build, download to a device, and execute the code by selecting to Debug Run your
code. You will see every other LED lit on the demo board. Click Halt to end execution.

FIGURE 20: TOOLBAR ICONS

DEBUG RUN HALT
 2015-2016 Microchip Technology Inc. DS50002446B-page 33

MPLAB® XC16 User’s Guide for Embedded Engineers
B. GET SOFTWARE AND HARDWARE

For the MPLAB XC16 projects in this document, the Explorer 16/32 board with a
PIC24F PIM is powered from a 9V external power supply and uses standard (ICSP™)
communications. MPLAB X IDE was used for development.

B.1 Get MPLAB X IDE and MPLAB XC16 C Compiler

MPLAB X IDE v3.45 and later can be found at:

http://www.microchip.com/mplab/mplab-x-ide

The MPLAB XC16 C Compiler v1.26 and later can be found at:

http://www.microchip.com/mplab/compilers

B.2 Get the MPLAB Code Configurator (MCC)

The MCC v3.25 and later can be found at:

http://www.microchip.com/mplab/mplab-code-configurator

B.3 Get PIC® MCU Plug-in Module (PIM)

The PIC MCU PIMs used in the examples are available at the following locations on
the Microchip Technology web site:

PIC24FJ128GA010: http://www.microchip.com/MA240011

PIC24F32KA304: http://www.microchip.com/MA240022

B.4 Get and Set Up the Explorer 16/32 Board

The Explorer 16/32 development board, schematic and documentation are available on
the web site:

http://www.microchip.com/dm240001-2

Jumpers and switches were set up as shown in the following table.

B.5 Get Microchip Debug Tools

Emulators and debuggers may be found on the Development Tools web page:

http://www.microchip.com/development-tools

TABLE 1-1: JUMPER/SWITCH SELECTS FOR PROJECTS

Jumper/Switch Selection Jumper/Switch Selection

JP2 Closed J37 Open

J19 Open J38 Open

J22 Open J39 Default

J23 Default J41 Open

J25 Closed J42 Open

J26 Closed J43 Default

J27 Open J44 Default

J28 Open J45 Default

J29 Open J50 Closed

J33 Open
DS50002446B-page 34  2015-2016 Microchip Technology Inc.

http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/mplab/compilers
http://www.microchip.com/mplab/mplab-code-configurator
http://www.microchip.com/MA240011
http://www.microchip.com/MA240022
http://www.microchip.com/dm240001-3
http://www.microchip.com/development-tools

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2015-2016 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY	MANAGEMENT		SYSTEM	
CERTIFIED	BY	DNV	

== ISO/TS	16949	==	
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2015-2016, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-1152-9
DS50002446B-page 35

DS50002446B-page 36  2015-2016 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud
Tel: 33-1-30-60-70-00

Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

11/07/16

http://support.microchip.com
http://www.microchip.com

	MPLAB XC16 User’s Guide for Embedded Engineers
	Introduction
	1. Turn LEDs On or Off
	1.1 Header File <xc.h>
	1.2 Configuration Bits
	1.3 Define Macro for LED Values
	1.4 Port Access

	2. Flash LEDs Using _delay() Function
	2.1 Library Header File
	2.2 The while() Loop and Variable Values
	2.3 The _delay() Function

	3. Count Up on LEDs Using Interrupts as Delay
	3.1 The Interrupt Function isr()
	3.2 Timer1 Setup

	4 Display Potentiometer Values on LEDs Using an ADC
	4.1 main.c Modified Code
	4.2 ADC Conversion and Result
	4.3 Write to Port Latch and LEDs

	5. Display EEPROM Data Values on LEDs
	5.1 pin_manager.c Modified Code
	5.2 LEDs.h Code
	5.3 LEDs.c Code
	5.4 eedata.h Code
	5.5 eedata.c Code
	5.6 main.c Modified Code
	5.7 Erase and Write to EEData
	5.8 Read from EEData
	5.9 Display Data on LEDs and Delay

	A. Run Code in MPLAB X IDE
	B. Get Software and Hardware
	B.1 Get MPLAB X IDE and MPLAB XC16 C Compiler
	B.2 Get the MPLAB Code Configurator (MCC)
	B.3 Get PIC MCU Plug-in Module (PIM)
	B.4 Get and Set Up the Explorer 16/32 Board
	B.5 Get Microchip Debug Tools

	Worldwide Sales and Service

