
MPLAB® Harmony Help - Demo
Apps

MPLAB Harmony Integrated Software Framework v1.11

© 2013-2017 Microchip Technology Inc. All rights reserved.

Applications Help
This section provides information on the various application demonstrations that are included in MPLAB Harmony.

Description

Applications determine how MPLAB Harmony libraries (device drivers, middleware, and system services) are used to do something useful. In a
MPLAB Harmony system, there may be one main application, there may be multiple independent applications or there may be one or more
Operating System (OS) specific applications. Applications interact with MPLAB Harmony libraries through well defined interfaces. Applications may
operate in a strictly polling environment, they may be interrupt driven, they may be executed in OS-specific threads, or they may be written so as to
be flexible and easily configured for any of these environments. Applications generally fit into one of the following categories.

Demonstration Applications

Demonstration applications are provided (with MPLAB Harmony or in separate installations) to demonstrate typical or interesting usage models of
one or more MPLAB Harmony libraries. Demonstration applications can demonstrate realistic solutions to real-life problems.

Sample Applications

Sample applications are extremely simple applications provided with MPLAB Harmony as examples of how to use individual features of a library.
They will not normally accomplish anything useful on their own. They are provided primarily as documentation to show how to use a library.

Applications Help

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 2

Audio Demonstrations

This section provides information on the Audio Demonstrations provided in your installation of MPLAB Harmony.

Introduction

MPLAB Harmony Audio Demonstrations Help.

Description

This help file contains instructions and associated information about MPLAB Harmony Audio demonstration applications, which are contained in
the MPLAB Harmony Library distribution.

Demonstrations

Provides instructions on how to run the demonstration applications.

audio_microphone_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the AK4642 Codec Driver sets up the AK4642 Codec, which is the on-board device on the Audio Codec
Daughter Board AK4642EN, and can receive audio data through the microphone onboard the daughter board and sends this audio data out
through the on-board headphones. The Audio Codec Daughter Board AK4642EN, which is available for purchase from Microchip, can be
connected to the PIC32 Bluetooth Audio Development Kit.

The demonstration application also shows how to configure the I2S client and DMA channels for applications that need two-way data
communication between the Codec and the PIC32 microcontroller.

Refer to the Framework Help > Driver Libraries Help > Decoder Libraries Help > AK4642 Codec Driver Library section for more information on the
driver, including configuration details as well as the available APIs.

The DRV_CODEC_IO_INTENT_READWRITE mode of the AK4642EN Codec Driver is useful when the application can guarantee that the I2S
playback buffers (even if it is zeros) are the same size and same sampling rate as the microphone (record) buffers that are received over I2S.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the audio_microphone_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/audio_microphone_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

audio_microphone_loopback.X <install-dir>/apps/audio/audio_microphone_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 3

Project Configuration Name BSP Used Description

bt_audio_dk_16bit bt_audio_dk This demonstration runs on the PIC32MX470F512L PIM mounted on
the PIC32 Bluetooth Audio Development Kit and the Audio Codec
Daughter Board AK4642EN. The default configuration is for 16-bit
data width, 48000 Hz sampling frequency, and I2S Audio protocol.

In MHC, the Audio protocol can be changed in the I2S driver and the
Codec Driver is automatically configured for the appropriate audio
data format corresponding to I2S protocol set.

The Data width can be changed to be 24-bit as that is supported by
the Codec. The SPI communication width setting and the I2S audio
data format should be selected corresponding to 24-bit width by the
application user. The Codec Driver automatically configures itself to
the correct data format once the I2S format is specified.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk This demonstration runs on the PIC32MX270F512L PIM mounted on
the PIC32 Bluetooth Audio Development Kit and the Audio Codec
Daughter Board AK4642EN. The default configuration is for 16-bit
data width, 48000 Hz sampling frequency, and I2S Audio protocol.

In MHC, the Audio protocol can be changed in the I2S driver and the
Codec Driver is automatically configured for the appropriate audio
data format corresponding to I2S protocol set.

The Data width can be changed to be 24-bit as that is supported by
the Codec. The SPI communication width setting and the I2S audio
data format should be selected corresponding to 24-bit width by the
application user. The Codec Driver automatically configures itself to
the correct data format once the I2S format is specified.

pic32mz_ef_pim_bt_audio_dk pic32mz_ef_pim+bt_audio_dk This demonstration runs on the PIC32MZ2048EFH144 PIM mounted
on the PIC32 Bluetooth Audio Development Kit and the Audio Codec
Daughter Board AK4642EN. The default configuration is for 16-bit
data width, 48000 Hz sampling frequency, and I2S Audio protocol.

In MHC, the Audio protocol can be changed in the I2S driver and the
Codec Driver is automatically configured for the appropriate audio
data format corresponding to I2S protocol set.

The Data width can be changed to be 24-bit as that is supported by
the Codec. The SPI communication width setting and the I2S audio
data format should be selected corresponding to 24-bit width by the
application user. The Codec Driver automatically configures itself to
the correct data format once the I2S format is specified.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with PIC32MX270F512L PIM for Bluetooth Audio Development Kit and the Audio Codec Daughter Board
AK4642EN (see Note)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIM_MCLR.

PIC32 Bluetooth Audio Development Kit with the PIC32MX470F512L and the Audio Codec Daughter Board AK4642EN (see Note)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32 Bluetooth Audio Development Kit with PIC32MZ2048EFH144 Plug-in Module (PIM) and the Audio Codec Daughter Board AK4642EN (see
Note)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIM_MCLR.

 Note: The PIC32 Bluetooth Audio Development Kit includes an Audio DAC Daughter Board; however, the Audio DAC Daughter Board
must be replaced by the Audio Codec Daughter Board AK4642.

Running the Demonstration

This section demonstrates how to run the demonstration.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 4

Description

Important!

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Do the following to run the demonstration:

1. Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. Connect speakers or headphones to the line-out line connector on the Audio Codec Daughter Board AK4642EN.

3. The on-board microphone (MIC3) will begin capturing surrounding audio and start looping it through the Codec to the microprocessor and back
to the Codec headphones where you should be able to audibly observe the microphone input. An easy way to test this is to gently rub the
microphone with your fingertip and listen for the resulting sound in your speaker or headphones.

audio_tone

This section provides instructions and information about the MPLAB Harmony Codec Driver demonstration application, which is included in the
MPLAB Harmony Library distribution.

Description

In this demonstration application, the Codec Driver sets up the Codec, which is present on the development board. The demonstration sends out
generated audio waveforms (sine tone and chirp) with parameters modifiable through a Graphic User Interface (GUI) based on the MPLAB
Harmony Graphics Library graphics and on-board push buttons. Success is indicated by an audible output corresponding to displayed parameters.

The sine tone is of any frequency that is four times less than the sampling rate using a 32-bit fixed point algorithm. The tone can be continuously
modified in frequency so as to also generate a chirp waveform. A timer is used control the duration of the sine tone or chirp, based on displayed
settings modified by the buttons.

To know more about the MPLAB Harmony Codec Drivers, configuring the Codec Drivers, and the APIs provided by the Codec Drivers, refer to
Codec Driver Libraries.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the audio_tone.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/audio_tone.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

audio_tone.X <install-dir>/apps/audio/audio_tone/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk_16bit_48000_RJ bt_audio_dk This demonstration runs on the PIC32MX470F512L device on the PIC32 Bluetooth Audio
Development Kit and the Audio DAC Daughter Board. The configuration is for a sine tone or chirp
signal with 16-bit data width, 48000 Hz sampling frequency, and right-justified audio protocol.

bt_audio_dk_24bit_44100_I2S bt_audio_dk This demonstration runs on the PIC32MX470F512L device on the PIC32 Bluetooth Audio
Development Kit and the Audio DAC Daughter Board. The configuration is for a sine tone or chirp
signal with 24-bit data width, 44100 Hz sampling frequency, and right-justified audio protocol.

Configuring the Hardware

This section describes how to configure the supported hardware.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 5

Description

PIC32 Bluetooth Audio Development Kit and Audio DAC Daughter Board

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

Both continuous sine tones and finite length sine tones and chirps can be generated. Table 1 provides a summary of the button actions that can
used to control the audio output waveform characteristics. Figure 2 shows the location of the display functionality that interacts with the buttons
controls and how it reflects the current state of the audio output.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. Refer to Building the Application for details.

1. Connect speakers or headphones to the line-out line connector of the Audio DAC/Codec Daughter Board (see Figure 1).

2. The tone can be quite loud, especially when using a pair of headphones. Before running the demonstration, turn the volume control, P2, which
is located on the back of the PIC32 Audio DAC Daughter Board, all the way clockwise, and then turn it counterclockwise until the tone can be
heard clearly.

3. Initially, a continuous 440 Hz sine tone can be heard, as indicated on the "f1 Hz" digital meter display.

4. SW4 will turn the audio on or off, as indicated by the audible output and the display of "Sine Tone - OFF" or "Sine Tone - ON"

5. Modifiable parameters are selected by pressing SW1, which cycles through the parameters displayed as "f1 (Hz)", f2 (Hz), and "t (ms)". Initially,
the "f1 (Hz)" parameter is selected. The value of any selected parameter can be changed by using SW5/SW6 to raise or lower the value,
respectively. The "f2 (Hz)" parameter, is the chirp final frequency. The "t (ms)" parameter is the duration of the signal in milliseconds. Note that
as SW1 is pressed, there will be no change on the display; however, the demonstration is advancing to the next parameter, and then wraps
around.

 Note: A long press (5 seconds) of SW 1 will set the selected parameter value to its minimum allowable value. A long press of SW2 will
set the maximum value.

5. The Sine Tone or Chirp modes are selected by pressing SW2. The output automatically turns off when a new mode is selected. Pressing SW4
initiates the audible output based on the current settings of the parameters.

 Notes: 1. When the "t (ms)" parameter is displayed as 99999, a continuous sine tone is generated at the "f1 (Hz)" frequency for either
mode. Incrementing the value by pressing SW3 will initiate finite length chirps or sine tones starting from 0 and increasing by
10 ms steps for each increment/decrement.

2. Long presses of SW5/SW3 will accelerate the incrementing/decrementing of the selected value.

6. The displayed sampling frequency can be verified by probing the point "LRCK Pin Point" of the Audio DAC/Codec Daughter Board (PIC32
Bluetooth Audio Development Kit configurations), as shown in Figure 1.

7. The signal frequency of the continuous Sine Tone output can be verified by probing the "Line Out Point" of the Audio DAC/Codec Daughter
Board, as shown in Figure 1. The frequency should match the "f1 (Hz)" display value. Finite length sine tones and chirp parameters can also
be verified by probing this point with a storage oscilloscope.

Figure 1: Audio DAC Daughter Board on PIC32 Bluetooth Audio Development Kit

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 6

Figure 2: Audio Tone Graphics Display

Control Descriptions

Table 1: Button Controls

Control Description

SW1 f1/f2/t parameter selection (long press - parameter minimum value).

SW2 Chirp/Sine mode selection (long press - parameter maximum value).

SW3/SW5 Parameter increment/decrement (long press - accelerates increment/decrement).

SW4 Audio ON/OFF

Note: Finite length waveforms will play, and then turn OFF.

mac_audio_hi_res

Demonstrates a USB Audio 2.0 Device that emulates a USB speaker.

Description

This demonstration application uses the USB Audio 2.0 Device class to implement a speaker. This demonstration is considered a Beta version and
will be updated in a future release of MPLAB Harmony.

 Note: This demonstration can be used only with an Apple Mac personal computer such as the Apple MacBook Air OS X 10.9.4 with
iTunes 11.2.1 or VLC media player version 2.2.1. Any versions prior to those listed may not work with this demonstration.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 7

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the High-resolution
Audio Demonstration.

Description

To build this project, you must open the mac_audio_hi_res.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/mac_audio_hi_res.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

mac_audio_hi_res.X <install-dir>/apps/audio/mac_audio_hi_res/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_pim_bt_audio_dk pic32mz_ef_pim+bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 Bluetooth Audio Development Kit configured for Interrupt mode and
dynamic operation. This configuration also requires the PIC32MZ2048EFH144
Audio PIM.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit or PIC32MZ2048EFH144 Audio Plug-in Module (PIM)

1. Insert the PIC32MZ Audio PIM onto the PIC32 Bluetooth Audio Development Kit.

2. Switch S1 on the PIC32 Bluetooth Audio Development Kit should set to PIM_MCLR.

3. Connect headphones to the jack on the Audio DAC Daughter Board, which is included with the PIC32 Bluetooth Audio Development Kit.

Running the Demonstration

Provides instructions on how to build and run the High-resolution Audio Demonstration.

Description

This demonstration functions as a speaker when plugged into a computer that supports USB Audio 2.0 devices.

 Notes: 1. At the time of release, only Apple MAC personal computers natively support Audio 2.0 USB devices.

2. The demonstration has been tested with a third-party Audio 2.0 USB device driver on Windows® 7.

Do the following to run the demonstration:

1. Build the demonstration application and program the device.

2. Connect the device to a computer. For example, an Apple Mac book.

3. Use a feature of the computer that outputs sound to a speaker. On the Apple Mac book with OS X 10.9.4, the Audio MIDI Setup application
could be used, as follows:

• Open Audio MIDI Setup

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 8

• Right click Harmony USB Speaker 2.0, which is listed in the left column

• Select Use this device for sound output

4. Open the Audio player (iTunes or VLC) and play the audio of your choice.

5. The feature unit only supports Mute control. Audio being played can also be muted using switch SW4 on the development board.

6. The audio volume can be controlled through the computer media player (iTunes or VLC on Apple Mac book) and also through the switches
SW1 and SW2 on the development board.

7. Note that some applications lock into a sound source when they open or close (such as some Web browsers or plug-ins). Therefore, if the
speaker is plugged in with a Web page or an already playing video, the sound may not be redirected to the USB-based speakers until the
browser is closed and reopened.

8. The audio device created in this demonstration has the following characteristics:

• Supported sampling rates:

• 32000 Hz

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 9

• 44100 Hz

• 48000 Hz

• 88200 Hz

• 96000 Hz

• 176400 Hz

• 192000 Hz

• 2-Channel (Stereo)

• PCM format (24 bits per sample)

Sampling Rate

The demonstration application allows the default sampling rate (set to 192000 Hz) to be changed. This can be done using the following procedure
on an Apple Mac book.

1. If audio is being played, Stop it (PAUSE on iTunes).

2. Open the Audio MIDI Setup application.

3. Select Harmony USB Speaker 2.0 listed in the left column.

4. In the right pane, select the desired sampling rate from the Format drop-down menu, as shown in the following figure.

5. Verify that the sampling rate has changed on the display on the board.

6. Select ‘PLAY’ on the Audio player to play the audio with the changed sampling rate.

sdcard_usb_audio

Demonstrates playback of audio files stored on a SD card and audio data streamed over a USB interface.

Description

This application demonstrates an audio player application by playing audio files stored on a SD card. This demonstration also acts as a USB
speaker with audio data streaming from a personal computer to PIC32 device.

Full-Speed USB is used for communication between the host computer and PIC32 device. The application also provides a Graphical User
Interface with touch screen support to access and randomly select media tracks, and also provides controls to increase or decrease volume and
mute or unmute the audio output. Additionally, the demonstration provides an option to select the media source, either a SD card or USB. The
application supports playing 48 kHz, 16-bit audio.

 Note: The Audio Player application only support playback of WAVE (.wav) files.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 10

Bulding the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the sdcard_usb_audio.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/sdcard_usb_audio.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sdcard_usb_audio.X <install-dir>/apps/audio/sdcard_usb_audio/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II.

The micro SD card is used in SPI mode and is configured for Interrupt mode and dynamic
operation. The USB library is configured for Full-Speed operation in Audio Device mode.

The Codec is interfaced over I2C for command and I2S for data and uses DMA for data transfers.
The Codec is also configured for 16-bit data width and 4 8kHz sampling frequency.

The graphical display is driven by the LCC driver and uses DMA for data transfers. The touch
screen driver is interfaced using I2C configured for Interrupt mode and dynamic operation.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary. However, ensure that the micro SD card with .wav audio files is
inserted into the SD Card slot.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Note: Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

In MPLAB X IDE, compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration for the
demonstration board. These configurations set the target processor and the board, to be used in the output interface.

This demonstration plays .wav audio files stored on SD card as the storage media, when the source of audio is selected as SD card (default audio
source).

When the source of audio is selected as USB, the demonstration plays audio data streamed by PC over a USB interface. The device can then be
used as USB speaker.

Refer to Building the Application for details.

Do the following to run the demonstration:

1. Insert your micro SD card into the SD card slot (J8) on the MEB II board. Ensure that the SD card contains .wav audio files.

2. Connect speakers or headphones to the headphone out (HP OUT) on the MEB II.

3. Connect power to the board.

4. By default, the application has the SD card selected as the audio source. After the board powers up, the GUI should appear like the following
figure. As shown in the figure, the default audio source selected is SD card, with tracks displayed in the tracks list box. You can scroll through
the tracks list using the up/down scroll buttons allowing you to select and play random tracks. The volume slider will allow you to

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 11

increase/decrease the volume and the mute button to mute/unmute audio.

6. Plug in the headphones and you should be able to hear the audio track being played from the SD card.

7. Connect the board using the USB micro-B connector for the MEB II to the Host computer with a standard USB cable.

8. Change the audio source to USB, by selecting the ‘USB’ radio button on the GUI. The GUI should now appear like the following figure. The
track list will be blank and the scroll buttons disabled, as the audio will be streamed by the host computer.

9. Allow the Host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the host
side.

10. If needed, configure the Host computer to use the MPLAB Harmony USB speaker as the selected audio device. This may be done in the
system configuration or Control Panel depending on the operating system.

11. Play audio on the Host computer. This may be done with a standard media player or through a variety of sources including operating system

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 12

generated sounds or video.

12. Listen to the audio output on the speakers or headphones connected to the board. You can adjust the volume and mute/unmute either by the
application running on the host, or from the on board GUI.

13. You can easily switch between the two sources of audio, SD card and USB, through the radio button selection on the GUI.

universal_audio_decoders

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The Universal Audio Decoder application configures the development board to be in USB Host mode. The application supports the FAT32 file
system. When a mass storage device is connected to the development board, the application begins to scan the root directory. Once the scan is
complete, the first track in the list will be opened and played. The fill buffer routine will read a chunk of data as an input to the decoder of the
supported file format. The decoder will decode the packet and send the first frame of audio data to the codec driver through I2S Driver and the
output will be audible through the speakers. The following block diagram depicts a representation of the application.

Button controls provide support to traverse the directory tree and play audio files from other directories or sub-directories. By default, the
application only supports WAVE (.wav) format files.

In addition to WAVE formats, the application also supports MP3, AAC, WMA, ADPCM, and Speex provided the decoder libraries and the
supported source files are added as plug-ins. The MP3, AAC, and WMA are premium packages and must be purchased. Refer to the Microchip
Premium MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for information.

Once purchased, the MP3, AAC, and WMA decoder modules can be added to the application as described in Selecting the Decoders Using MHC.

If support for any decoder is not available or was removed using MHC, the particular file format will not be scanned.

Audio
Format

Package Sampling
Rates
(kHz)

Description

ADPCM Free of
charge

8, 16 Adaptive Delta Pulse Code Modulation (ADPCM) is a sub-class of the Microsoft waveform (.wav) file
format. In this demonstration, it only decodes ADPCM audio, which has a WAV header. The extension name
for this format is pcm or PCM.

Speex Free of
charge

8, 16 Speex is an Open Source/Free Software patent-free audio compression format designed for speech. In this
demonstration, only Speex bit-streams within an Ogg container can be decoded. The extension name for
this format is spx or SPX.

WAVE Free of
charge

8 through
96

The WAVE file format is the native file format used by Microsoft Windows for storing digital audio data.

AAC Premium
(must be
purchased)

8, 11.025,
12, 16,
22.05, 24,
32, 44.1,
48, 64,
88.2, and
96

The AAC format is a lossy digital compression format of audio data with an ADTS header. The AAC decoder
supports MPEG-2 and MPEG-4 AAC. To make sure the AAC audio files work with the AAC decoder, you
can always convert any audio files to MPEG-2, 4 AAC files by a MPEG-2, 4 AAC encoder, one known
working encoder is FAAC (Freeware Advanced Audio Coder).

MP3 Premium
(must be
purchased)

32, 44.1,
and 48

The MPEG1 Layer 3 is a lossy digital compression format for audio data.

WMA Premium
(must be
purchased)

8, 11.025,
16, 22.05,
32, 44.1,
and 48

The Windows Media Application (WMA) format allows storing digital audio using lossy compression
algorithm. The WMA decoder supports the ASF container format. The Windows Media Encoder 9 Series can
be downloaded from the Microsoft website to convert any audio files to WMA v9.2 files to work with this
WMA decoder.

 Note: The AAC and MP3 Decoder Libraries have two versions: PIC32MX (for use with PIC32MX devices) and microAptiv (for use with
PIC32MZ devices with the microAptiv core). When selecting either the AAC or MP3 library in MHC, for PIC32MX devices, the
PIC32MX version of the library will be automatically added in the project. For PIC32MZ devices that have the microAptiv core, the
microAptiv version of the library will be added in the project. Theoretically, MHC will automatically add the correct library; however,
be sure to use the correct libraries on different devices.

The macro DISK_MAX_DIRS and DISK_MAX_FILES in system_config.h under each configuration, determines the maximum number of
directories that should be scanned at each level, and the maximum number of songs in total the demonstration should scan. For each

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 13

configuration, the value could be different. For example, for the PIC32MX270F512L PIM, DISK_MAX_FILES can be approximately 600, while for
the PIC32MZ EF Starter Kit, DISK_MAX_FILES may be as large as 800.

Refer to AAC Decoder Library, MP3 Decoder Library, and WMA Decoder Library in the Framework Help, as well as the Microchip Premium
MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for additional information on the Decoder Libraries.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the universal_audio_decoders.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/universal_audio_decoders.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

universal_audio_decoders.X <install-dir>/apps/audio/universal_audio_decoders/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

ak7755_bt_audio_dk bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with the
AK7755 Codec Daughter Board.

bt_audio_dk bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with the
Audio DAC Daughter Board included with the kit.

270f512lpim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk This configuration runs on the PIC32MX270F512L PIM and the PIC32 Bluetooth
Audio Development Kit with the Audio DAC Daughter Board included with the kit.

pic32mz_da_sk_meb2 pic32mz_da_sk+meb2+wvga This configuration runs on the PIC32MZ DA Starter Kit and the Multimedia
Expansion Board II.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

Attach the desired Codec Daughter Board (AK7755 or PIC32 DAC Audio) to the PIC32 Bluetooth Development Board. Switch S1 should be set to
PIC32_MCLR.

PIC32 Bluetooth Audio Development Kit and PIC32MZ Audio PIM or PIC32MX270F512L Plug-in Module (PIM)

Attach the PIC32 DAC Audio Daughter Board to the PIC32 Bluetooth Development Board. Switch S1 should be set to PIM_MCLR.

PIC32MZ DA Starter Kit and MEB II with the 5" WVGA PCAP Display Board (see Note)

No hardware related configuration or jumper setting changes are necessary.

 Note: Please contact your local Microchip sales office for information on obtaining the 5" WVGA PCAP Display Board.

Selecting the Decoders Using MHC

This topic describes how to select the decoders using the MPLAB Harmony Configurator (MHC).

Description

The application supports the WAVE, Compact MP3, AAC (ADTS header), WMA (v9.2), ADPCM (WAV header), and Speex (Ogg container) audio
formats.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 14

 Note: The MP3, AAC, and WMA Decoder Libraries are premium packages and must be purchased. Refer to the Microchip Premium
MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for information.

The audio format can be chosen as required using MHC as follows:

1. Open the project on MPLAB X IDE and select the project configuration depending upon the hardware.

2. Open the MHC and select the Decoder, as shown in the following figure.

3. Select Use audio decoders libraries? and the list of available decoders will be listed in the drop-down menu.

4. Select the decoders that are required and click Generate to add the supporting decoder files and libraries to the project.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Note: Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface.

Refer to Building the Application for details.

Do the following to run the demonstration:

1. Connect speakers or headphones to the output line connector on the Audio DAC Daughter Board (included with the PIC32 Bluetooth Audio
Development Kit), or the headphone (HP Out) connector on the Audio Codec Daughter Board AK7755, or the Speaker Out/Line Out connectors
on the Multimedia Expansion Board II (MEB II), as appropriate.

2. Connect power to the board. The system will be in a wait state for USB to be connected. The LEDs, D5, D6, and D7 (PIC32 Bluetooth Audio
Development Board only), will be OFF during the wait state. Screen displays are for the PIC32 Bluetooth Audio Development Board
configurations.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 15

3. Connect a USB mass storage device that contains songs of supported audio format. The application by default can stream WAVE (.wav)
format audio files.

4. When the USB device is connected the system will scan for audio files. The LEDs, D5 and D7 (PIC32 Bluetooth Audio Development Board
only), will be ON during scanning.

5. Once the scanning is complete, listen to the audio output on the speakers or headset connected to the board. The LED, D5, will be ON for
WAVE audio, the LED, D6, will be ON for AAC, and the LED, D7, will be ON for MP3 (PIC32 Bluetooth Audio Development Board only).

LED States (PIC32 Bluetooth Audio Development Board only)

State D5 D6 D7

Wait for USB OFF OFF OFF

Scan for files ON OFF ON

WAVE audio stream ON OFF OFF

AAC audio stream OFF ON OFF

MP3 audio stream OFF OFF ON

WMA audio stream OFF ON ON

Demonstration Controls

Component Label PIC32 Bluetooth Audio Development Kit PIC32MZ EF Starter Kit

Switch SW1 N/A Next Track (Toggle)/Fast Forward (Long Hold)

Switch SW2 N/A Play/Pause (Toggle)

Switch SW3 Next Track (Toggle)/Fast Forward (Long Hold) Previous Track (Toggle)/Fast Rewind (Long Hold)

Switch SW4 Play/Pause (Toggle) N/A

Switch SW5 Previous Track (Toggle)/Fast Rewind (Long Hold) N/A

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 16

usb_headset

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the system is configured as a USB headset. The system will interface to a USB Host (such as a personal
computer), which can accommodate a USB device class headset. The embedded system will enumerate with a USB audio device endpoint and
enable the system to send playback audio and receive record audio simultaneously from the USB port. This uses a standard USB Full-Speed
implementation.

The system is capable of multiple configurations that deal with different hardware platforms and Codecs.

The output audio stream is then available in analog format via a hardware connection, typically to headphones or speakers. The input audio
stream is an internal onboard microphone when using the AK4642EN Daughter Board on the PIC32 Bluetooth Audio Development Kit, or from and
external condenser microphone connected to the MEB II.

The AK4642 Codec with I2S audio is used for the PIC32 Bluetooth Audio Development Kit. The AK4953 Codec drivers with I2S audio is utilized for
the PIC32MZ EF Starter Kit. The Codec Driver uses a common API for each Codec type with the application requiring separate read and write
clients to handle record data from the microphone and playback to the speaker.

The embedded system will configure the AK4642 or AK4953 Codec using the I2C port. Bidirectional audio will be streamed over the I2S port to or
from the Codec. The embedded system will take the data from the audio USB interface, and format it for output using a Codec driver. The Codec
Driver sets up the audio output interface, timing, DMA channels and buffer to enable a continuous audio stream to or from the Codec I2S channel.
A I2S data channel can operate at various sampling rates. Stereo (utilizing a left and right audio channel) is used for both audio playback and
recording from the microphone, despite only one channel (mono) audio provided by the microphone. The microphone audio will be on only one of
the channels with the other being zero (0). The stereo I2S data that is received on the record channel of the USB is converted to single channel
audio before being sent over USB. Three sampling rates are provided by the USB connection: 16, 32, and 48 kHz. The I2S sampling rate is
changed to match the USB rate whenever USB rate is changed.

The usb_headset demonstration application uses the MPLAB Harmony USB Library and Codec Driver to demonstrate simultaneous speaker
playback and microphone record functions at a selectable 16, 32, or 48 kHz sampling rate to a windows computer.

When either the record or playback channel sampling rate is changed, it also changes to the same rate for the other. Therefore, the rates on the
Host computer must be consistent for both record and playback.

The demonstration has two working configurations, for the following implementation hardware:

• bt_audio_dk_ak4642 configuration:

• Board - PIC32 Bluetooth Audio Development Kit

• Processor - PIC32MX470F512L

• Codec - AK4642

• Mic - mems internal

• pic32MZ_ef_sk_meb2 configuration:

• Board - PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit (SK) mounted on a Multimedia Expansions Board II (MEB
II)

• Processor - Pic32MZ2048EFM144

• Codec - AK4953 (on the MEB II)

• Mic - external condenser

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the usb_headset.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/usb_headset.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_headset.X <install-dir>/apps/audio/usb_headset/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 17

Project
Configuration Name

BSP Used Description

bt_audio_dk_ak4642 bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with the
Audio Codec Daughter Board AK4642EN.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit with the MEB II.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit and Audio Codec Daughter Board AK4642EN

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32MZ EF Starter Kit and MEB II

LCD_PCLK should be jumpered to the EBIOE pin for the EBI Memory. This jumper is located on the bottom of the starter kit when it is connected.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Important! Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the CODEC to be used in the output interface. Refer to Building the
Application for details.

Do the following to run the demonstration:

1. Connect speakers or headphones to the Line Out or headphone (HP Out) connector on the PIC32 Audio DAC Daughter Board AK4642EN or
the HP Out connector on the MEB II. The MEB II requires than an external condenser microphone be attached to the MIC IN.

2. Connect power to the board.

3. Connect the development hardware (Device) to the Host computer with a standard USB cable (mini-B connector for the PIC32 Audio
Development Board, or micro-B connector for the MEB II).

4. Allow the Host computer to acknowledge, install drivers (if needed) and enumerate the device. No special software is necessary on the host
side.

5. Configure the Host computer to use the "USB Headset Example" as both the playback and recording device at the same sampling rate. This is
done by opening the Sound Window (i.e., right clicking the Loudspeaker icon, located at the lower right of the tool bar), and selecting ether
Record devices or Playback devices. First, find the record and playback devices associated with the demonstration and make them the
default device. The sample rate can be changed for both record and playback devices and must be the same. This is done by right clicking the
device and using the Advanced tab.

 Note: The Skype Echo/Sound Recorder Test is a simple way to demonstrate headset operation, where you will hear audio from a
remote source and it will record voice for playback from this source.

6. Play audio on the host computer. This may be done with a standard media player or through a variety of sources. You should hear this audio
through the headphones connected to the HP Out jack of the board.

7. At the same time as playback, audio can be recorded via the microphone connected to the MIC IN jack of the board using an application such
as Windows Sound Recorder or Audacity.

 Note: The Codec Record/Playback sampling rate may not align with the separate USB playback and record sampling rates until the
"Record and Playback" tabs of the "Sound" window have been selected in sequence.

usb_microphone

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the system is configured as a USB microphone. The system will interface to a USB Host (such as a personal

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 18

computer), which can accommodate a USB device class microphone. The embedded system will enumerate with a USB audio device endpoint
and enable the system to input audio from the USB port. This demonstration uses a standard USB Full-Speed implementation.

The embedded system will take the data from a microphone via the Codec Driver and send it to the audio USB interface. The Codec Driver sets up
the audio output interface, timing, DMA channels and buffer to enable a continuous audio stream. The digital audio is processed through an I2S
data channel at typically 16 kHz. The input audio stream is then available to the host computer. The AK4642 Codec is utilized with the
PIC33MX470F512L microcontroller on the PIC32 Bluetooth Audio Development Kit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the usb_microphone.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/usb_microphone.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_microphone.X <install-dir>/apps/audio/usb_microphone/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

bt_audio_dk_ak4642 bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with the Audio
Codec Daughter Board AK4642EN.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the Audio Codec Daughter Board AK4642EN

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR/

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Important! Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface. Refer to Building the Application
for details.

Do the following to run the demonstration:

1. PIC32 Audio DAC Daughter Board AK4642EN provides an on-board microphone. Place it near the source of audio to be recorded.

2. Connect power to the board.

3. Connect the board using the USB mini-B connector (Device) to the Host computer with a standard USB cable.

4. Allow the Host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the Host
side.

5. If needed, configure the Host computer to use the usb_microphone as the selected audio recording device. For Windows, this is done in the
"Recording Devices" dialog accessed by right clicking the loudspeaker icon in the taskbar.

 Note: The device "Harmony USB Microphone Example" should be available along with a sound level meter indication audio input.

6. Open a recording application and record from the USB microphone source.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 19

7. Playback of the recording should demonstrate that the audio is being received from the microphone and saved on the Host Computer.

usb_speaker

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the system is configured as a USB speaker. The system will interface to a USB Host (such as a personal
computer), which can accommodate a USB device class headset. The embedded system will enumerate with a USB audio device endpoint and
enable the system to output audio from the USB port. This demonstration uses a standard USB Full-Speed implementation.

The embedded system will take the data from the audio USB interface, and format it for output using a Codec driver. The Codec driver sets up the
audio output interface, timing, DMA channels and buffer to enable a continuous audio stream. The digital audio is processed through an I2S data
channel at typically 48 kHz.

The output audio stream is then available in analog format via a hardware connection, typically to headphones or speakers.

The system is capable of multiple configurations that deal with different hardware platforms and Codecs.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the usb_speaker.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/usb_speaker.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_speaker.X <install-dir>/apps/audio/usb_speaker/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
using the Audio DAC Daughter Board included with the kit.

bt_audio_dk_ak4642 bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
with the Audio Codec Daughter Board AK4642EN.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
configured with the PIC32MX270F512L PIM and the Audio DAC
Daughter Board included with the kit.

pic32mz_ef_pim_bt_audio_dk pic32mz_ef_pim+bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
configured with the PIC32MZ2048EFH144 PIM and the Audio DAC
Daughter Board included with the kit.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit with the MEB II.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit and the Audio DAC Daughter Board (included in the kit)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32 Bluetooth Audio Development Kit and the Audio Codec Daughter Board AK4642EN (see Note)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 20

 Note: The PIC32 Bluetooth Audio Development Kit includes an Audio DAC Daughter Board; however, the Audio DAC Daughter Board
must be replaced by the Audio Codec Daughter Board AK4642.

PIC32 Bluetooth Audio Development Kit with PIC32MX270F512L PIM and the Audio Codec Daughter Board AK4384EN

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32MZ EF Starter Kit and the Multimedia Expansion Board II (MEB II)

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Important! Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the CODEC to be used in the output interface. Refer to Building the
Application for details.

Do the following to run the demonstration:

1. Connect speakers or headphones to the headphone (HP) or line-out connector on the Audio DAC Daughter Board or the PIC32 Audio Codec
Daughter Board AK4642EN, or the MEB II, as appropriate.

2. Connect power to the board.

3. Connect the board using the USB mini-B connector (Device) for the PIC32 Bluetooth Audio Development Board, or the USB micro-B connector
for the MEB II to the Host computer with a standard USB cable.

4. Allow the Host computer to acknowledge, install drivers (if needed) and enumerate the device. No special software is necessary on the host
side.

5. If needed, configure the Host computer to use the usb_speaker outputs as the selected audio device. This may be done in the system
configuration or "Control Panel" depending on the operating system. For Windows, this is done in the Playback Devices dialog, which is
accessed by right clicking the loudspeaker icon in the taskbar.

6. Play audio on the Host computer. This may be done with a standard media player or through a variety of sources including operating system
generated sounds or video.

7. Listen to the audio output on the speakers or headphones connected to the board. The volume will typically be adjusted by the host.

Applications Help Audio Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 21

Bluetooth Demonstrations

This section provides descriptions of the PIC32 Bluetooth® Stack Library demonstrations.

Introduction

PIC32 Bluetooth Stack Library Demonstration Applications Help.

Description

The standard installation of MPLAB Harmony contains a variety of Bluetooth-related firmware projects that demonstrate the capabilities of the
MPLAB Harmony PIC32 Bluetooth Stack Library. This library, which is considered the "basic" Bluetooth Stack , includes basic demonstrations that
are referred to as "Data Demonstrations". This section describes the hardware requirement and procedures to run these Basic Bluetooth Stack
firmware projects on Microchip demonstration and development boards.

In addition to the Data Demonstrations provided with the PIC32 Bluetooth Basic Stack Library, additional "Premium Demonstrations", which are
available for purchase, demonstrate the capabilities of the PIC32 Bluetooth Audio Stack Library. Information is provided in the Premium
Demonstrations section on how to obtain, configure, and run these demonstrations.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This section provides information on the standard Data Demonstrations, as well as the purchased Premium Demonstrations.

Demonstration Functionality

Describes the functionality of the demonstrations.

Description

Basic Functionality

Bluetooth Module

The PIC32 Bluetooth Starter Kit and the PIC32 Bluetooth Audio Development Kit provide hardware support for the BlueCore® CSR8811™.

CSR8811

The CSR8811 is a single-chip radio and baseband IC for Bluetooth 2.4 GHz systems including Enhanced Data Rate (EDR) to 3 Mbps and
Bluetooth low energy. The CSR8811 supports Bluetooth Class 1 transmission, and supports multiple device connection. The PIC32 Bluetooth
Starter Kit and the PIC32 Bluetooth Audio Development Kit use a module based on the CSR8811 radio in its default configuration (see Note).

 Note: The Flairmicro BTM805 module using the CSR8811 device is integrated in the PIC32 Bluetooth Starter Kit and is integrated in the
BTM805 Bluetooth Daughter Board that is mounted on the PIC32 Bluetooth Audio Development Kit.

Bluetooth Device IDs

The Bluetooth software remembers and stores in Flash memory the last 10 unique Bluetooth device IDs to which it successfully paired to facilitate
faster automatic reconnection when there is no currently active Bluetooth connection. If Bluetooth is turned OFF on a user smartphone that is
currently connected and re-enabled later, it will automatically reconnect if in range or when it comes back into range.

 Note: Currently, the demonstration does not have support for SPI Flash memory due to limitations in MPLAB Harmony, and therefore,
the pairing information will not be stored or recovered on a power or hardware reset.

Bluetooth Device Address

When the development kit is powered on, it generates a random unique Bluetooth Device Address for any given development kit hardware.
Optionally, at design time, the user can specify a Bluetooth Device Address in the application code of the development kit.

The device address is a six byte hexadecimal value. The macro, BT_DEVICE_ID, defines the first four bytes of the hexadecimal value and
BT_DEVICE_ID_2LSB defines the last two bytes of the hexadecimal value. The last two bytes of the device address can be randomized by
enabling BT_DEVICE_ID_2LSB_RANDOMIZE. These macros are defined in btconfig.h.

Setting a specific hard-coded device address is not recommended during the design and development state, as Bluetooth connection problems
may be experienced if another development board with the same Bluetooth Device Address is within range.

Additional Bluetooth Resources

Provides information on additional Bluetooth demonstration resources.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 22

Description

In addition to the demonstration capabilities described in the Demonstrations section, additional Bluetooth demonstration resources are available.

Other Android Applications

The Bluetooth data smartphone demonstration can also be executed using the Bluetooth SPP-pro application. This app can be downloaded by
visiting:

https://play.google.com/store/apps/details?id=mobi.dzs.android.BLE_SPP_PRO&hl=en

Once installed, the commands can be sent and received in CMD line mode/Keyboard mode of the terminal emulator of the application. The
commands will be sent and received in the format shown in the following table.

Windows Handset Applications

For a Windows mobile handset, the commands can be sent and received via data terminal. The application can be downloaded by visiting:

http://www.windowsphone.com/en-us/store/app/bt-terminal/09d679af-bdd8-40b2-b54e-56d68aeb03e0

Once installed, the commands can be sent and received from the terminal emulator of the application. The commands can be sent and received in
the format shown in the following table.

Bluetooth Data Windows Personal Computer Demonstration Setup

Program the device with the hex file, data_temp_sens_rgb.X.production.hex.

1. On the Windows personal computer, select Start> Control Panel > Hardware and Sounds > Add a device. A list of available Bluetooth devices
appears.

2. From the list, select BTSK.

3. Open a terminal emulator. For this example PuTTY was used. This Windows application can be obtained by visiting:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

4. A connection is required to be established between PuTTY and the PIC32 Bluetooth Starter Kit development board. This can be done by
selecting the "Serial" Connection type and the COM port assigned to the board in the PuTTY configuration window. The assigned COM ports
can be identified from Device Manager > Ports.

5. Once connection is established, the following commands can be sent.

Command Description

R Programs LED for 100% of Red

G Programs LED for 100% of Green

B Programs LED for 100% of Blue

r Programs LED for 50% of Red

g Programs LED for 50% of Green

b Programs LED for 50% of Blue

Data Demonstrations

This topic provides information on how to run the PIC32 Bluetooth Basic Stack Library "Data Demonstration" applications that are included
free-of-charge in this release of MPLAB Harmony.

data_basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration performs full duplex data transfer over the Bluetooth link. The demonstration allows a user to perform terminal emulation and
echo characters from an Android Smartphone over a Bluetooth connection to the development boards, and then back to the Smartphone
emulation application screen.

The data transfer from the smartphone to the development board is demonstrated by the user sending (by keying in characters from the Android
Smartphone application. The reception of data is shown by blinking of two LEDs from OFF to ON and back to the OFF state.

The data transfer from the development board to the smartphone is demonstrated by the user sending (by pressing buttons on top of the board).
The data received by the smartphone is displayed on its screen as ‘Button 1’, ‘Button 2’, etc.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 23

http://www.windowsphone.com/en-us/store/app/bt-terminal/09d679af-bdd8-40b2-b54e-56d68aeb03e0
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bluetooth
Demonstration.

Description

To build this project, you must open the data_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/data_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

data_basic.X <install-dir>/apps/bluetooth/data_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk Select this MPLAB X IDE project configuration to run the
demonstration on the PIC32 Bluetooth Audio Development Kit.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk Select this MPLAB X IDE project configuration to run the
demonstration on the PIC32 Bluetooth Audio Development Kit using
the PIC32MX270F512L PIM.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the
demonstration on the PIC32MZ EF Starter Kit attached to the
Multimedia Expansion Board II (MEB II).

bt_audio_dk_freertos bt_audio_dk Select this MPLAB X IDE project configuration to run the
demonstration on the PIC32 Bluetooth Audio Development Kit.

pic32mz_ef_pim_bt_audio_dk pic32mz_ef_pim+bt_audio_dk Select this MPLAB X IDE project configuration to run the
demonstration on the PIC32 Bluetooth Audio Development Kit using
the PIC32MZ2048EFH144 Audio Plug-in Module (PIM).

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Audio Development Kit and PIC32MX270F512L Plug-in Module (PIM)

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Bluetooth basic data demonstration.

Description

This demonstration performs basic SPP full-duplex data transmission.

Note: Before running the demonstration, it is necessary to install the Bluetooth SPP-pro Android application. See Additional Bluetooth
Resources > Other Android Applications in the Demonstrations section for details.

Running the Demonstration

1. Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 24

demonstration board. Refer to Building the Application for details.

2. The running of Bluetooth device demonstration is indicated when LED1 and LED2 turn ON.

3. Enable Bluetooth on your smartphone.

4. Start the Android application on your smartphone.

5. Scan for the available Bluetooth devices. The target Bluetooth device should also be displayed in the list of available devices on your
smartphone.

6. The name of the target Bluetooth device will be one of the following:

Configuration Device Name

bt_audio_dk BTAD

pic32mx270f512l_pim_bt_audio_dk BTAD

 Note: Occasionally, the name of the Bluetooth device is not resolved and will appear as "null". After some time the name will change
from "null" to the configuration specific name mentioned previously. The visible MAC Address will be fixed for the first eight digits
and the last four will vary (12:34:45:78:XX: XX).

7. Select the device to pair and_connect.

8. If the connection is successful, the message "connected to <Device Name>" appears on top of the screen.

9. Select the "CMD Line Mode" tab, enter characters and press the "Send" button. The reception of characters by the Bluetooth device is
indicated by the LEDs, ‘LED4’ and ‘LED5’, switching from OFF to ON and back to OFF. Every time data is received the Bluetooth device
repeats this sequence.

9. Data can also be sent from the Bluetooth device to the connected smartphone. This can be done by pressing the switches SW1 to SW5 placed
on the development board. When the switch is pressed the two LEDs, 'LED4' and 'LED5', should toggle from OFF to ON and back to OFF. The
smartphone receives the data and displays "Button 1" for the SW1/S1 switch, "Button 2" for the SW2 switch, "Button 3" for the SW3 switch,
"Button 4" for the SW4 switch, and "Button 5" for the SW5 switch.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 25

The following table describes the controls used in the supported configuration of the demonstration.

Control bt_audio_dk

LED1 Red Color LED 'D5' on the PIC32 Bluetooth Audio Development Kit development board.

LED2 Red Color LED 'D6' on the PIC32 Bluetooth Audio Development Kit development board.

LED3 Red Color LED 'D7' on the PIC32 Bluetooth Audio Development Kit development board.

LED4 Red Color LED 'D8' on the of the PIC32 Bluetooth Audio Development Kit development board.

LED5 Red Color LED 'D9' on the PIC32 Bluetooth Audio Development Kit development board.

SW1/S1 SW1 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW2 SW2 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW3 SW3 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW4 SW4 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW5 SW5 switch located on the PIC32 Bluetooth Audio Development Kit development board.

Demonstration Display

The following figure describes the display format when running the demonstration.

Connection Status

The color of the Connection Status icon on the display indicates the Bluetooth status of the demonstration, as described in the following table.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 26

Icon
Color

Display Example Description

Gray Bluetooth is not paired and connected.

White Bluetooth is paired, but is not connected.

Blue Bluetooth is paired and connected.

Demonstration Commands

Commands to control different aspects of the demonstration are listed in the following table. Note that all commands are case-sensitive and
commands that are recognized by the demonstration will not display in the Text Field by default. To see all text that is transmitted, a
"DISPLAY_ALL" or "DAI" command must be sent first.

Commands Sent Over Bluetooth

Command Shortcut Action Example

DISPLAY_ALL DAI Displays all text. DISPLAY_ALL

DISPLAY_ALL_STOP DAS Stop displaying all messages and will only display non-recognized commands
(default).

DISPLAY_ALL_STOP

ledx on ('x' = 1-5) Turns on the specified virtual LED (LED1 = left, LED5 = right). led3on

ledx off ('x' = 1-5) Turns off the specified virtual LED (LED1 = left, LED5 = right). led3off

ledx toggle ('x' = 1-5) Toggles the state of the specified virtual LED (LED1 = left, LED5 = right). led3toggle

Lx ('x' = 1-31) Displays a binary pattern using the virtual LEDs (MSB = left, LSB = right). L21

255,03,R,G,B The color of the virtual RGB LED is modified to the specified RGB value, varying from
0-254, respectively.

255,03,127,127,127

data_temp_sens_rgb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration performs full duplex data transfer over the Bluetooth link. The demonstration allows the user to send and receive SPP data
with an Android OS-based Smartphone using Microchip’s PIC32 Bluetooth Starter Kit application. The PIC32 Bluetooth Starter Kit Android
Application allows users to send and receive SPP data with an Android OS-based smartphone to Microchip’s PIC32 Bluetooth Starter Kit. Please
refer to the "PIC32 Bluetooth Starter Kit User's Guide" (DS70005190) for additional information. The application file, BTSK_Android_App.apk, is
located in the <install-dir>/apps/bluetooth/data_temp_sens_rgb/android_app folder of your MPLAB Harmony installation.

The data transfer from the Android phone to the PIC32 Bluetooth Starter Kit is demonstrated by the user sending the red, green, and blue data by
operating the ‘COLOR’ tab on the intuitive GUI of the Android application to create a color. The resulting color, once received, would be displayed
by the Cree high output multi-color LED on the PIC32 Bluetooth Starter Kit.

The data transfer from the PIC32 Bluetooth Starter Kit to the Android phone is demonstrated by the user requesting the temperature measurement
value by operating the ‘TEMPERATURE’ tab on the intuitive GUI of the Android application. The request, once received by the PIC32 Bluetooth
Starter Kit application, sends the latest values by reading the temperature sensor on the starter kit. The Android application receives the
temperature values and displays them on the dynamically updating ‘TEMPERATURE’ tab.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bluetooth
Demonstration.

Description

To build this project, you must open the data_temp_sens_rgb.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/data_temp_sens_rgb.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 27

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

data_temp_sens_rgb.X <install-dir>/apps/bluetooth/data_temp_sens_rgb/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_bt_sk pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 Bluetooth Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Bluetooth temperature sensor and RGB data demonstration.

Description

This demonstration allows the SPP data transfer/receive of temperature sensor and RGB data.

 Note: Before running the demonstration, it is necessary to install the PIC32 Bluetooth Starter Kit Android application to your Android v4.0
or later smartphone.

Installing the PIC32 Bluetooth Starter Kit Android Application

1. Install the Android application, BTSK_Android_App.apk, to your Android 4.0 or later smartphone. This file is available in the following MPLAB
Harmony installation folder: <install-dir>/apps/bluetooth/data_temp_sens_rgb/android_app.

2. Connect the Android device to a computer using a mini-B USB connector.

3. It is suggested to copy the Android application into the Download folder of the Android device.

4. On the Android device, select My Files>All Files>Download>BTSK_Android_App.apk.

5. After selecting the .apk file, the warning message, "blocking installation", will appear.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 28

6. Select Settings and the security window will appear.

7. Choose the option to install applications from unknown sources.

8. Once the option is selected, a warning will appear, as shown in the following figure.

9. After selecting OK a window will appear requesting confirmation for installing the application.

10. Once the installation is complete, select Open to run the application, as shown in the following figure.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 29

Running the Temperature Sensor and RGB Demonstration

1. Compile and program the target device with the hex file, data_temp_sens_rgb.X.production.hex.

2. Select the PIC32 Bluetooth Starter Kit on the Android device and a window will appear, as shown in the following figure.

3. Select the Bluetooth Starter Kit icon in the application window.

4. If prompted, turn on Bluetooth by selecting Yes.

5. There are three methods for performing the next steps depending on the phone and Android version you are using. [A] Pressing the Microchip
logo and the words "Bluetooth Starter Kit", [B] pressing the on-screen Menu button [B] (if supported), or [C] Pressing the Menu button
(hardware). In general, if you have a hardware button you will not have an on-screen button and vice versa. After opening the menu, select
Connect a device - Insecure.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 30

6. Select the option "Connect a device – Insecure" and a window will appear showing a list of paired device and option to scan for devices, as
shown in the following figure.

7. A list of paired devices will appear. If this is the first time connecting with the PIC32 Bluetooth Starter Kit, select Scan for Devices. It should be
noted that sometimes the name is not resolved and will appear as "null". After some time the name will change from "null" to "BTSK". The MAC
Address will be fixed for the first eight digits and the last four will vary (12:34:45:78: XX: XX) when the device is programmed with code.

8. When selected, the Android application will pair and_connect_with the PIC32 Bluetooth Starter Kit. Accept any pair requests, as follows.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 31

9. Status indicators will confirm that the connection was successful, as shown in the following figure.

 Note: If the application was unable to_connect, verify that the PIC32 Bluetooth Starter Kit is powered on, within range, and is not
connected to another Bluetooth device.

LED Color Control

The application consists of three color sliders for Red (R), Green (G), and Blue (B), respectively. The color of the LED is programmed as the slider
(1) is modified. The color of the LED can also be modified using the increment button or the decrement button (2). Similarly, the color can be
modified by selecting the color based on hue and saturation on the color palette (3). The slider and the increment/decrement buttons send
commands to the PIC32 Bluetooth Starter Kit via SPP to program the LED color. The colors of R, G, and B can vary from 0 to 254, respectively.
The color bar (4) indicates the resulting modified color of the RGB combination. The LED changes in real-time to approximate the color in the color
bar. The LED color will be of an uncalibrated nature of the integrated three color diodes.

This is a demonstration of full-duplex data transmission from and to the Android device to the development board. Each time the color is modified,
a command is sent in a string format via SPP to the development board. The command sent can be viewed in the Text menu.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 32

Temperature Sensor

Select the Temperature menu on the Android application and the window will appear as shown in the next figure. Fahrenheit temperature readings
are shown in a graph, which updates automatically as new readings are received. The graph is zoomable and scrollable in the X direction. The last
received reading is also displayed as large text.

The PIC32 Bluetooth Starter Kit has a temperature sensor and once Start is selected, the temperature will be updated for every second by default
in a periodic mode. The update rate can be modified from 250 milliseconds to 8 seconds by using the increment or the decrement button (1). The
time duration can also be modified by the slider provided in the application (2). Once the time duration is set, select Set Timer to initiate periodic
update for the modified duration. The temperature update can be halted by selecting Stop. Start/Stop and Set Timer sends/receives commands
to/from the PIC32 Bluetooth Starter Kit through SPP full-duplex transmission. The commands sent and received can be viewed in the Text menu.

Text Control

LED Control

The LED color can be modified by sending command via Terminal emulator of the app. Select the Text menu to view the terminal window of the
application. To modify the LED color the following command is sent in the format, 255, 03, R, G, B, where:

• 255 is the command to modify the LED color.

• 03 determines the number of Bytes to be sent, currently it is 3 (R, G, B)

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 33

• R specifies the value for Red color from 0-254

• G specifies the value for Green color from 0-254

• B specifies the value for Blue from 0-254

For example, 255, 03, 127, 60, 128 (R = 127, G = 60, B = 128)

The commands ‘r' or ‘g' or ‘b' set the LED to 50% of Red, Green, or Blue, respectively. Similarly, the commands ‘R' or ‘G' or ‘B' set the LED to
100% of Red, Green, or Blue, respectively. Refer to Table 1: Text Commands for details.

Temperature Control

The command 254 is sent to the PIC32 Bluetooth Starter Kit via SPP data transmission. This command transmits the current temperature to the
Android device terminal emulator once on request. Similarly, command 253 is sent to the PIC32 Bluetooth Starter Kit to receive the current
temperature on a periodic time period for every one second by default. The rate of the update can be modified by the following command 252, with
the time in milliseconds.

252 - Command the update timer rate change. The periodic temperature update can be stopped by sending command 253.

Refer to Table 1: Text Commands for details.

Table 1: Text Commands

Feature Command TX Format RX Format Description Example

LED 255 255,03,R,G,B N/A The led color is modified depending on the value of R, G and B
varying from 0-254 respectively.

255,03,127,127,127

LED R R N/A Programs LED for 100% of Red R

LED G G N/A Programs LED for 100% of Green G

LED B B N/A Programs LED for 100% of Blue B

LED r r N/A Programs LED for 50% of Red r

LED g g N/A Programs LED for 50% of Green g

LED b b N/A Programs LED for 50% of Blue b

Temperature 254 254 Temperature
in Fahrenheit

On transmitting 254 command , the PIC32 Bluetooth Starter Kit
sends the current temperature once per request

254

Temperature 253 253 253,
temperature
in Fahrenheit

On transmitting 253, the PIC32 Bluetooth Starter Kit updates the
temperature for every one second

TX: 253

RX:253,80

Temperature 252 252, rate in
milliseconds

253,
temperature

Programs LED for 100% of Green TX: 253,399

RX: 253,80

Temperature 253 253 N/A The periodic display can be halted by resending 253 N/A

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 34

Premium Demonstrations

This topic provides information on how to obtain, build, configure, and run the purchased "Premium" demonstration.

Description

For information on purchasing the premium demonstration, please refer to the Microchip Premium MPLAB Harmony Audio web page
(www.microchip.com/pic32harmonypremiumaudio).

a2dp_avrcp

 Note: The Premium Demonstrations are not included in the standard release of MPLAB Harmony and must be purchased. Refer to the
Microchip Premium MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for more information.

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration performs streaming of wireless Bluetooth audio from any smartphone (i.e., Apple, Samsung, Google, etc.), personal computer,
or Bluetooth-enabled device. The demonstration supports the following features:

• A2DP

• AVRCP

• SSP

• SBC Decoder

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Premium
Demonstration.

Description

To build this project, you must open the a2dp_avrcp.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/premium/audio/a2dp_avrcp.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

a2dp_avrcp.X <install-dir>/apps/bluetooth/premium/audio/a2dp_avrcp/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

ak7755_bt_audio_dk bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 Bluetooth Audio Development Kit with the AKM AK7755 Codec.

bt_audio_dk bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 Bluetooth Audio Development Kit.

pic32mz_da_sk_meb2 pic32mz_da_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ DA Starter Kit attached to the Multimedia Expansion Board II (MEB II).

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ EF Starter Kit attached to the Multimedia Expansion Board II (MEB II).

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ EC Starter Kit attached to the Multimedia Expansion Board II (MEB II).

pic32mz_ef_sk_meb2_wvga pic32mz_ef_sk+meb2+wvga Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ EF Starter Kit attached to the Multimedia Expansion Board II (MEB II) and
the 5.0" WVGA display.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 35

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Audio Development Kit and AK7755 Codec

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

Move jumper J9 to short pins 1 and 2 (external LCCG mode).

PIC32MZ EC Starter Kit and MEB II and 5.0" WVGA Display

Move jumper J9 to short pins 1 and 2 (external LCCG mode).

Running the Demonstration

Provides instructions on how to build and run the Premium audio demonstration

Description

1. Build and program the target device. While building, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. Refer to Building the Application for details.

2. When LED2 and LED3 turn ON, this indicates that the demonstration is running on the PIC32 Bluetooth Audio Development Kit.

3. Enable Bluetooth on the Bluetooth audio device (for example, Smartphone).

4. Scan for the available Bluetooth devices. The target Bluetooth device should also be displayed in the list of available devices on your Bluetooth
audio device.

5. The name of the target Bluetooth device will be as follows:

Configuration Device Name

bt_audio_dk Microchip A2DP

ak7755_bt_audio_dk Microchip A2DP

pic32mz_da_sk_meb2 BT_DA + MEB-II

pic32mz_ec_sk_meb2 BT_MZ EC + MEB-II

pic32mz_ef_sk_meb2 BT_MZ EF + MEB-II

pic32mz_ef_sk_meb2_wvga BT_MZ EF + MEB-II + WVGA

 Note: Occasionally, the name of the Bluetooth device is not resolved and will appear as "null". After some time the name will change
from "null" to the configuration-specific name previously mentioned. The visible MAC Address will be fixed for the first eight digits
and the last four will vary (12:34:45:78:XX: XX).

6. Select the device to pair and connect.

7. If prompted by your device for a PIN, enter 0000.

8. If the connection is successful, the message "connected to <Device Name>" appears at the top of the screen of your Bluetooth audio device.

9. Connect a speaker or headphones to the line-out/headphone jack of the development board.

10. Select the music track and tap Play.

Demonstration Controls

Bluetooth Mode Control bt_audio_dk and

ak7755_bt_audio_dk

pic32mz_da_sk_meb2

Shuffle (Toggle) / Force Bluetooth
Device to Unpair

SW1 Switch, SW1, located on top of the board. N/A

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 36

Repeat Track (Toggle) / Bluetooth
Device Disconnect

SW2 Switch, SW2, located on top of the board. N/A

Next Track/Fast Forward SW3 Switch, SW3, located on top of the board. N/A

Play/Pause (Toggle) / Soft Mute
(toggle)

SW4 Switch, SW4, located on top of the board. N/A

Previous Track / Rewind SW5/S1 Switch, SW5, located on top of the board. N/A

N/A LED1 Red LED, D5, located on top of the board. Red LED, D3, located on top of
the board.

Bluetooth Device Connection Ready LED2 Red LED, D6, located on top of the board. Red LED, D4, located on top of
the board.

Bluetooth Device Connection Ready LED3 Red LED, D7, located on top of the board. Red LED, D5, located on top of
the board.

Audio Stream Indication LED4 Red LED, D8, located on top of the board. Red LED, D6, located on top of
the board.

N/A LED5 Red LED, D9, located on top of the board. Red LED, D7, located on top of
the board.

CPU Exception Error LED1-LED5 Red LEDs, D5-D9, located on top of the board. Red LEDs, D3-D7, located on
top of the board.

a2dp_avrcp Premium Demonstration Touch Display Controls

The touch screen demonstration controls listed in the following table are available for these configurations:

• pic32mz_ec_sk_meb2

• pic32mz_ef_sk_meb2

• pic32mz_ef_sk_meb2_wvga

Icon Function

Plays music and audio.

Stops music and audio, and in most instances, will also close the device application.

Pauses music and audio.

Plays the previous track.

Plays the next track.

Increases the volume using the AVRCP Volume Up command.

Note: Not all device applications will change volume with this command.

Decreases the volume using the AVRCP Volume Down command.

Note: Not all device applications will change volume with this command.

Mutes (silences) the device using the AVRCP Volume Mute command.

Note: Not all device applications will change volume with this command.

Shuffles tracks.

The following figure illustrates the display.

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 37

Applications Help Bluetooth Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 38

Bootloader Demonstrations

This section provides descriptions of the Bootloader demonstrations.

Introduction

Bootloader Demonstration Applications Help.

Description

This distribution package contains firmware projects that demonstrate the capabilities of the MPLAB Harmony Bootloader. This section describes
the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Bootloader demonstration applications included in this release.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration implements a Bootloader that resides in boot Flash. With the Bootloader operating on the target device, the device can then be
programmed with application code without the need for an external programmer or debugger.

The Bootloader is, operationally, similar to the bootloader described in AN1388 "PIC32 Bootloader", and will work with the personal computer
application provided with the related source archive file. The application note and archive file are available for download from the Microchip web
site (www.microchip.com).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bootloader
Demonstration.

Description

To build this project, you must open the basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bootloader/basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic.X <install-dir>/apps/bootloader/basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

udp_pic32mx_eth_sk pic32mx_eth_sk Demonstrates the UDP Ethernet mode on the PIC32 Ethernet Starter Kit.

udp_pic32mz_ec_sk pic32mz_ec_sk Demonstrates the UDP Ethernet mode on the PIC32MZ EC Starter Kit.

udp_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the UDP Ethernet mode on the PIC32MZ EF Starter Kit

udp_pic32mz_da_sk pic32mz_da_sk Demonstrates the UDP Ethernet mode on the PIC32MZ DA Starter Kit.

usart_pic32mx_eth_sk pic32mx_eth_sk Demonstrates the UART bootloader on the PIC32 Ethernet Starter Kit.

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 39

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en554836

usart_pic32mz_ec_sk pic32mz_ec_sk Demonstrates UART bootloader on the PIC32MZ EC Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

usart_pic32mz_ef_sk pic32mz_ef_sk Demonstrates UART bootloader on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

usart_pic32mz_da_sk pic32mz_da_sk Demonstrates UART bootloader on the PIC32MZ DA Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

usbdevice_pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the USB Device mode on the PIC32 USB Starter Kit II.

usbdevice_pic32mz_ec_sk pic32mz_ec_sk Demonstrates the USB Device mode on the PIC32MZ EC Starter Kit.

usbdevice_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the USB Device mode on the PIC32MZ EF Starter Kit.

usbhost_pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the USB Host bootloader on the PIC32 USB Starter Kit II.

usbhost_pic32mz_ec_sk pic32mz_ec_sk Demonstrates the USB Host bootloader on the PIC32MZ EC Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

usbhost_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the USB Host bootloader on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

The following configuration information is for UART mode.

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, or PIC332 USB Starter Kit II

UART communication is done through the UART2 module. The U2RX and U2TX pins can be accessed through the Starter Kit I/O Expansion
Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to pin 46 on connector J11. Connect the RX
pin of the module to pin 48 on connector J11. Connect GND pins together to ensure shared grounding.

Figure 1 and Figure 2 show the hardware configuration and close-ups of the jumper wire connections.

Figure 1 - Hardware Configuration

Figure 2 - Jumper Wire Connections

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 40

PIC32MZ EC Starter Kit

UART communication is done through the UART1 module, routed through PPS to RPF0 and RPF1. The U1RX and U1TX pins can be accessed
through the PIC32MZ Starter Kit Adapter Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to
the EBID10 pin of JP3 on the underside of the adapter. Connect the RX pin of the module to the EBID11 pin of JP1 on the underside of the
adapter. Connect grounds between the module and the starter kit to ensure shared grounding.

 Note: When running the UDP bootloader on the PIC32MZ EC Starter Kit, the bootloader may not run due to a connection issue between
the starter kit and the LAN8740 PHY daughter card.

Please refer to the Product Change Notice for the LAN8740 PHY Daughter card for options to correct this issue. This PCN is
available from the PIC32MZ EC Starter Kit web page at:

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=Dm320006

Figure 3 and Figure 4 show the hardware configuration.

Figure 3 - Hardware Configuration (Front)

Figure 4 - Hardware Configuration (Back)

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 41

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=Dm320006

PIC32MZ EF Starter Kit

Connect the host computer to J11 of the PIC32MZ EF Starter Kit.

PIC32MZ Graphics (DA) Starter Kit

Connect the host computer to J5 of the PIC32MZ DA Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the Bootloader demonstration.

Description

Personal Computer-based Host Demonstration

Do the following when using the configurations:

Operation

The bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

3. Hold down SW3 on the starter kit to force bootloader operation.

4. LED1 will start blinking to indicate the bootloader is operating. If a program had previously been programmed, it may be necessary to hold
down SW3 prior to applying power to the board or resetting the board.

5. Open the personal computer Host program from the AN1388 source archive file.

6. Select the appropriate communication path:

• UART - Leave the baud rate at 115,200

• UDP - Keep the IP address at 192.168.1.11 and the UDP port at 6234

• USB Device - Keep the VID at 0x4D8 and the PID at 0x03C

7. Click Connect to_connect_to the bootloader and get the version.

8. If the bootloader connects, the personal computer Host application will indicate the version of the bootloader.

At this point, the bootloader is ready to accept a new application for programming into the program Flash. A demonstration application is provided,
which is configured in a linker script to only operate in program Flash.

Setup

The demonstration application is prepared as follows:

1. Open the dma_led_pattern.X project from <install-dir>/apps/examples/peripheral/dma/firmware.

2. Select the configuration suitable for the target hardware.

3. Compile the program, but do not program the device.

Programming the Device

With the demonstration application compiled, the generated hex file can now be programmed into the device using the bootloader.

To program the application into the device:

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 42

1. On the personal computer Host application described in AN1388, click Load Hex File.

2. Navigate to
<install-dir>/apps/examples/peripheral/dma/firmware/dma_led_pattern.X/dist/<configuration>/production/<con
figuration>.X.production.hex.
Select it and click Open.

3. Click Erase-Program-Verify.

4. The program will then be transferred to the bootloader, which will program the application.

5. When the program has been programmed, click Run Application to start the program.

6. If the application has been programmed correctly, the green and red LEDs will blink in an alternating pattern.

7. Click Disconnect to release the Host Application.

USB Host-based Demonstration

Do the following when using the configurations:

Operation

The bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

3. Hold down SW3 on the starter kit to force bootloader operation.

If a program had previously been programmed, it may be necessary to hold down SW3 prior to applying power to the board or resetting the board.

Setup

The demonstration application is prepared as follows:

1. Open the dma_led_pattern.X project from <install-dir>/apps/examples/peripheral/dma/firmware/.

2. Select the configuration suitable for the target hardware.

3. Compile the program, but do not program the device.

4. Copy the resultant .hex file to the flash drive that will be inserted into the target USB port. The file can be located at
<install-dir>/apps/examples/peripheral/dma/firmware/dma_led_pattern.X/dist/<platform>/production/dma_led_p
attern.X.production.hex.

5. Rename the hex file on the Flash drive to image.hex.

Programming the Device

With the demonstration application compiled, the generated hex file can now be programmed into the device using the bootloader.

To program the application into the device:

1. Insert the Flash drive into the type-A USB port on the starter kit.

2. The program will be loaded from the Flash drive and programmed into the device.

3. Remove the Flash drive when the program starts running.

LiveUpdate

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration implements a live update bootloader that looks for a change during start-up that swaps the Flash panels on the PIC32MZ EC
Starter Kit. The same sample application as the basic bootloader demonstration can be used as the application source for a programming example
with this bootloader demonstration.

The bootloader is, operationally, similar to the bootloader described in AN1388 "PIC32 Bootloader", and will work with the personal computer
application provided with the related source archive file. The application note and archive file are available for download from the Microchip web
site (www.microchip.com).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bootloader
Demonstration.

Description

To build this project, you must open the liveUpdate.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bootloader/LiveUpdate.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 43

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en554836

Project Name Location

liveUpdate.X <install-dir>/apps/bootloader/LiveUpdate/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration Name

BSP(s) Used Description

usart_pic32mz_ec_sk pic32mz_ec_sk Demonstrates the UART bootloader on the PIC32MZ EC Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

usart_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the UART bootloader on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

UART communication is done through the UART1 module, routed through PPS to RPF0 and RPF1. The U1RX and U1TX pins can be accessed
through the PIC32MZ Starter Kit Adapter Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to
the EBID10 pin of JP3 on the underside of the adapter. Connect the RX pin of the module to the EBID11 pin of JP1 on the underside of the
adapter. Connect grounds between the module and the starter kit to ensure shared grounding.

Figure 3 and Figure 4 show the hardware configuration.

Figure 3 - Hardware Configuration (Front)

Figure 4 - Hardware Configuration (Back)

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 44

PIC32MZ EF Starter Kit

Connect the host computer to J11 of the PIC32MZ EF Starter Kit.

PIC32MZ Graphics (DA) Starter Kit

Connect the host computer to J5 of the PIC32MZ DA Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the Bootloader demonstration.

Description

Personal Computer-based Host Demonstration

Do the following when using the configurations:

Operation

The bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

3. LED1 will start blinking to indicate the program is operating.

4. Open the personal computer Host program from the AN1388 source archive file.

5. Select the appropriate communication path:

• UART - Leave the baud rate at 115,200

• UDP - Keep the IP address at 192.168.1.11 and the UDP port at 6234

• USB Device - Keep the VID at 0x4D8 and the PID at 0x03C

6. Click Connect to connect_to the bootloader and obtain the version.

7. If the program connects, the personal computer Host application will indicate the version of the bootloader.

At this point, the bootloader is ready to accept a new application for programming into the program Flash. A demonstration application is provided,
which is configured in a linker script to only operate in program Flash.

Setup

The demonstration application is prepared as follows:

1. Open the dma_led_pattern.X project from <install-dir>/apps/examples/peripheral/dma/firmware.

2. Select the configuration suitable for the target hardware.

3. Compile the program, but do not program the device.

Programming the Device

With the demonstration application compiled, the generated hex file can now be programmed into the device using LiveUpdate.

To program the application into the device:

1. On the personal computer Host application described in AN1388, click Load Hex File.

2. Navigate to
<install-dir>/apps/examples/peripheral/dma/firmware/dma_led_pattern.X/dist/<configuration>/production/<con
figuration>.X.production.hex.

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 45

Select it and click Open.

3. Click Erase-Program-Verify.

4. The program will then be transferred to the device, which will program the application into the second Flash panel.

5. When the program has been programmed, click Run Application to start the program.

6. If the application has been programmed correctly, the green and red LEDs will blink in an alternating pattern.

7. Click Disconnect to release the Host Application.

USB Host-based Demonstration

Do the following when using the configurations:

Operation

The bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

Setup

The demonstration application is prepared as follows:

1. Open the dma_led_pattern.X project from <install-dir>/apps/examples/peripheral/dma/firmware/.

2. Select the configuration suitable for the target hardware.

3. Compile the program, but do not program the device.

4. Copy the resultant .hex file to the flash drive that will be inserted into the target USB port. The file can be located at
<install-dir>/apps/examples/peripheral/dma/firmware/dma_led_pattern.X/dist/<platform>/production/dma_led_p
attern.X.production.hex.

5. Rename the hex file on the Flash drive to image.hex.

Programming the Device

With the demonstration application compiled, the generated hex file can now be programmed into the device using the bootloader.

To program the application into the device:

1. Insert the Flash drive into the type-A USB port on the starter kit.

2. The program will be loaded from the Flash drive and programmed into the device.

3. Remove the Flash drive when the program starts running.

Applications Help Bootloader Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 46

Class B Library Demonstrations

This section provides descriptions of the Class B Library demonstrations.

Introduction

Class B Library Demonstration Applications Help.

Description

This distribution package contains one Class B-related firmware project that demonstrates the capabilities of the MPLAB Harmony Class B Library.
This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Class B Library demonstration applications included in this release.

ClassBDemo

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application invokes each of the Class B Safety software Library interfaces one at a time and collects the responses into a single structure.
This demonstrates the use of the library, as well as some of the prerequisites that must be met to use the library.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Class B Library
demonstration.

Description

To build this project, you must open the ClassBDemo.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/ClassBDemo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ClassBDemo.X <install-dir>/apps/crypto/ClassBDemo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration Name

BSP(s) Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates each of the Class B Safety Library functions on the PIC32 Ethernet
Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates each of the Class B Safety Library functions on the PIC32MZ EF
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Applications Help Class B Library Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 47

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Class B Library demonstration.

Description

This demonstration tests device core components and demonstrates the use of the Class B Software Safety Library API.

1. Select the desired MPLAB X IDE project configuration:

• pic32mz_ef_sk (for PIC32MZ EF devices)

• pic32mx_eth_sk (for PIC32MX devices)

2. Build the selected configuration in the MPLAB X IDE project and program the demonstration board by selecting Debug Main Project from the
Debug Menu. The program should build, download, and run.

3. Either single step into, or step over each test in turn. As each test completes, look at the appropriate bit of the ClassB_Test_Flags structure.
They will be set with either a '1' indicating failure or a '0' indicating success.

Applications Help Class B Library Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 48

Crypto Demonstrations

This section provides descriptions of the Crypto demonstrations.

Introduction

Crypto Library Demonstration Applications Help.

Description

This distribution package contains three Crypto-related firmware projects that demonstrate the capabilities of the MPLAB Harmony Crypto Library.
This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Crypto Library demonstration applications included in this release.

encrypt_decrypt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration exercises several cryptographic functions, including MD5, TDES, DES, AES, RSA, ECC, and Random Number Generation, to
verify that the software or hardware is performing correctly. While the demonstration is running, the yellow LED on the starter kit will light to
indicate processing. If all functions execute successfully, the green LED on the starter kit will illuminate.

When testing hardware encryption, the Starter Kit with Crypto Engine (DM320006-C) must be used. Software encryption can be performed on
either PIC32MX795F512L or any version of PIC32MZ device.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Crypto
Demonstration.

Description

To build this project, you must open the encrypt_decrypt.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/encrypt_decrypt.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

encrypt_decrypt.X <install-dir>/apps/crypto/encrypt_decrypt/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration
Name

BSP(s) Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates encryption, decryption, hashing, and random number generation using Software
Libraries on the PIC32 Ethernet Starter Kit.

pic32mz_ec_sk_hw pic32mz_ec_sk Demonstrates encryption, decryption, hashing, and random number generation using the Hardware
Encryption module on the PIC32MZ Embedded Connectivity (EC) Starter Kit with Crypto.

Applications Help Crypto Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 49

pic32mz_ef_sk_hw pic32mz_ef_sk Demonstrates encryption, decryption, hashing, and random number generation using the Hardware
Encryption module on the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit
with Crypto.

pic32mz_da_sk_hw pic32mz_da_sk Demonstrates encryption, decryption, hashing, and random number generation using the Hardware
Encryption module on the PIC32MZ DA Starter Kit with Crypto.

pic32mz_ec_sk_sw pic32mz_ec_sk Demonstrates encryption, decryption, hashing, and random number generation using Software
Libraries on the PIC32MZ Embedded Connectivity (EC) Starter Kit.

pic32mz_ef_sk_sw pic32mz_ef_sk Demonstrates encryption, decryption, hashing, and random number generation using Software
Libraries on the PIC32MZ Embedded Connectivity with Floating Point Unit (EC) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Crypto demonstration.

Description

This demonstration exercises various encryption, decryption, hashing, and random number functions.

1. First compile and program the target device. While compiling, select the configuration for the hardware in use.

2. Observe the status of LEDs on the starter kit. The yellow LED will be illuminated while the demonstration executes. If all function passes
succeed, the green LED will illuminate. If an error occurred, the red LED is illuminated.

large_hash

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application demonstrates how to execute hashes on large blocks of data. In this case, the demonstration performs MD5, SHA-1, SHA-256,
SHA-384, and SHA-512 hashing on a 512 * 1024 block of the letter 'a'.

On PIC32MZ devices, which have adequate Flash memory, the linker script is configured to create the 512 * 1024 block starting at physical
address 0x9D08_0000.

The application runs the hashes in two ways:

• On PIC32MZ devices, the first way it runs it is by passing the entire 512 * 1024 block in one function call.

• With the second way, which is the only one that runs on PIC32MX devices, it passes a 1024 block of the letter 'a' that is allocated on the stack
to the engine, doing it 512 times.

After the hashing has been performed, the application outputs via the system console the results of the hashing, and the time it took to perform
each form. It then compares the generated hashes with known values for each algorithm. If all tests pass, the green LED is lit, and a message is
presented through the system console. If any tests fail, the red LED is lit, and a corresponding message is presented through the system console.

When testing hardware encryption, the PIC32MZ EC Starter Kit configured with the Crypto Engine (DM320006-C) must be used. Software
encryption can be performed on any version of a PIC32MX or PIC32MZ device.

Applications Help Crypto Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 50

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Crypto
Demonstration.

Description

To build this project, you must open the large_hash.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/large_hash.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

large_hash.X <install-dir>/apps/crypto/large_hash/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration
Name

BSP(s) Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates hashing large blocks of data using Software Libraries on the PIC32 Ethernet
Starter Kit.

pic32mz_ec_sk_hw pic32mz_ec_sk Demonstrates hashing large blocks of data using the Hardware Encryption module on the
PIC32MZ Embedded Connectivity (EC) Starter Kit with Crypto.

pic32mz_ef_sk_hw pic32mz_ef_sk Demonstrates hashing large blocks of data using the Hardware Encryption module on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with Crypto.

pic32mz_da_sk_hw pic32mz_da_sk Demonstrates hashing large blocks of data using the Hardware Encryption module on the
PIC32MZ Graphics (DA) Starter Kit with Crypto.

pic32mz_ec_sk_sw pic32mz_ec_sk Demonstrates hashing large blocks of data using Software Libraries on the PIC32MZ
Embedded Connectivity (EC) Starter Kit.

pic32mz_ef_sk_sw pic32mz_ef_sk Demonstrates hashing large blocks of data using Software Libraries on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

UART communication is done through the UART2 module. The U2RX and U2TX pins can be accessed through the Starter Kit I/O Expansion
Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to pin 46 on connector J11. Connect the RX
pin of the module to pin 48 on connector J11. Connect GND pins together to ensure shared grounding.

Figure 1 and Figure 2 show the hardware configuration and close-ups of the jumper wire connections.

Figure 1 - Hardware Configuration

Applications Help Crypto Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 51

Figure 2 - Jumper Wire Connections

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ Embedded Connectivity (EC) Starter Kit

UART communication is done through the UART1 module, routed through PPS to RPF0 and RPF1. The U1RX and U1TX pins can be accessed
through the PIC32MZ Starter Kit Adapter Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to
the EBID10 pin of JP3 on the underside of the adapter. Connect the RX pin of the module to the EBID11 pin of JP1 on the underside of the
adapter. Connect grounds between the module and the starter kit to ensure shared grounding.

Figure 3 and Figure 4 show the hardware configuration.

Figure 3 - Hardware Configuration (Front)

Applications Help Crypto Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 52

Figure 4 - Hardware Configuration (Back)

Running the Demonstration

Provides instructions on how to build and run the Crypto demonstration.

Description

This demonstration exercises hashing functions on large blocks of data.

1. First, compile and program the target device. While compiling, select the configuration suitable for hardware.

2. Open a serial terminal program, such as PuTTY or TeraTerm, and connect it to the serial port for the MCP2200 Breakout Module. The serial
configuration is 115200 baud, 8 data bits, no parity bit, 1 stop bit.

3. Observe the status of LEDs on the starter kit. The yellow LED will be illuminated while the demonstration executes. If all function passes
succeed, the green LED will illuminate. If an error occurred, the red LED is illuminated.

4. Observe the output of the program in the serial terminal program. It will report the results of the hashes, and the cycles taken to execute. The
actual cycles taken will depend on the hardware used, and the size of the buffers available to the hardware engine. The following example
shows the output using the PIC32MZ EC Starter Kit configured with the Crypto Engine:

Starting the test.

MD5 from Flash: 30C2557E8302A5BEB290C71520D87F42 took 481405 clock cycles

MD5 from feed: 30C2557E8302A5BEB290C71520D87F42 took 804934 clock cycles

SHA from Flash: F7FEC128D7FCD59222BA37368D3B7210D4C7B6EF took 481151 clock cycles

Applications Help Crypto Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 53

SHA from feed: F7FEC128D7FCD59222BA37368D3B7210D4C7B6EF took 804901 clock cycles

SHA256 from Flash: 85A84A75886E8A526DBEC4E16E3375FAA307B4AEAD79C9ED3264C0477A6F6EBA took 702033 clock cycles

SHA256 from feed: 85A84A75886E8A526DBEC4E16E3375FAA307B4AEAD79C9ED3264C0477A6F6EBA took 806480 clock cycles

SHA384 from Flash:
A550561A6330048EFE826A97E5FED843FA1CE646A9BF546CCB433C2FCB0E54821C4C945EED9A592B5BF43157E212F277 took
45452328 clock cycles

SHA384 from feed:
A550561A6330048EFE826A97E5FED843FA1CE646A9BF546CCB433C2FCB0E54821C4C945EED9A592B5BF43157E212F277 took
45391039 clock cycles

SHA512 from Flash:
7F49157FB359B39EA6DA934DC9A10709FEDF8846D139D0E637A3C0FC833B6F42703858DBACEE28F4489B5E95FAB5E5655A25F838B0DC
7BF3C84C7CC0264F6A4F
took 45807606 clock cycles

SHA512 from feed:
7F49157FB359B39EA6DA934DC9A10709FEDF8846D139D0E637A3C0FC833B6F42703858DBACEE28F4489B5E95FAB5E5655A25F838B0DC
7BF3C84C7CC0264F6A4F
took 45775518 clock cycles

All tests passed.

Applications Help Crypto Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 54

Driver Demonstrations

This section provides descriptions of the Driver demonstrations.

I2C Driver Demonstrations

This topic provides descriptions of the I2C Driver demonstrations.

Introduction

This help file contains instructions and associated information about MPLAB Harmony I2C Driver application demonstrations, which are included in
the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony I2C Driver. This section describes the hardware requirements and
procedures to build and run the demonstration project using Microchip development tools.

One demonstration application is provided:

• i2c_rtcc - In this demonstration, one instance of the I2C peripherals acts as a Master and sends and receives data from two an external slave
device. The slave device is the external MCP7049N Real-Time Clock Calendar (RTCC) device.

To know more about the MPLAB Harmony I2C Driver, configuring the driver and APIs provided by the I2C Driver, refer to the I2C Driver Library
Help documentation.

Demonstrations

This topic provides information on how to run the I2C Driver demonstration applications included in this release.

i2c_rtcc

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the I2C RTCC
demonstration.

Description

To build this project, you must open the i2c_rtcc.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/i2c/i2c_rtcc.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

i2c_rtcc.X <install-dir>/apps/driver/i2c/i2c_rtcc/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to demonstrate I2C Master mode transfer setup
in Interrupt mode and dynamic operation. The hardware used is the
PIC32MX795F512L PIM connected to the Explorer 16 Development Board.

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 The purpose of this configuration is to demonstrate I2C Master mode transfer setup
in Interrupt mode and dynamic operation. The hardware used is the PIC32MZ EC
Starter Kit connected to the MEB II.

Applications Help Driver Demonstrations I2C Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 55

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 The purpose of this configuration is to demonstrate I2C Master mode transfer setup
in Interrupt mode and dynamic operation. The hardware used is the PIC32MZ EF
Starter Kit connected to the MEB II.

pic32mz_da_sk_meb2_wvga pic32mz_da_sk+meb2+wvga The purpose of this configuration is to demonstrate I2C Master mode transfer setup
in Interrupt mode and dynamic operation. The hardware used is the PIC32MZ
Graphics (DA) Starter Kit connected to the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

 Note: The i2c_rtcc demonstration was tested on the Microchip MCP7949N RTCC device. The address of this device is 0xDE.

Explorer 16 Development Board with the PIC32MX795F512L PIM

• Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

If a Starter Kit I/O Expansion Board is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) to the corresponding lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground.

If a PICtail™ Plus Daughter Board is used, make the following connections:

• PICtail Plus Daughter Board pins RA2 (SCL2) and RA3 (SDA2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper PICtail Plus Daughter Board pins RA2 (SCL2) and pin RA3 (SDA2) to the corresponding SCL and SDA lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit or PIC32MZ Graphics (DA) Starter Kit connected to the MEB II

The jumper JP2 on PIC32MZ EC/EF Starter Kit should connected according to the debugger/programmer used, as follows:

• If PKOB is used, pins 1 and 3 and pins 2 and 4 should be shorted

• If MPLAB REAL ICE or MPLAB ICD 3 is being used, pins 1 and 3 and pins 2 and 4 should be left open

The connections pertaining to I2C are as follows:

• Connect MEB II J2 pin 3 (SCL2) to the corresponding SCL line of the external I2C device

• Connect MEB II J2 pin 5 (SDA2) to the corresponding SDA line of the external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

Running the Demonstration

Provides instructions on how to build and run the I2C RTCC demonstration.

Description

1. This demonstration shows how to configure and make use of the I2C Driver APIs to support buffered operation of I2C in Interrupt mode. In this
demonstration, the I2C is configured as single instance and single client.

Once the demonstration application is compiled successfully for the selected configuration, the firmware can be programmed into the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The I2C Driver configures the I2C2 instance of the I2C peripheral in Master mode. The SDA and SCL lines are connected to the Microchip
MCP7940N RTCC device as described in Configuring the Hardware. The Master writes to sequential memory locations in SRAM memory of the
RTCC device. The Master then reads back the content from the same page.

The contents of the buffer variable can be checked to determine the result of the operation.

The expected results are shown in the following table.

Applications Help Driver Demonstrations I2C Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 56

Test Case Contents of Buffer

I2C2 (Master) RXbuffer_4[] = "3RTCCSLAVE" (data received from RTCC device)

NVM Driver Demonstration

This topic provides descriptions of the NVM Driver demonstration.

Introduction

This help file contains instructions and associated information about MPLAB Harmony NVM Driver Library application demonstrations, which are
included in the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony NVM Driver Library. This section describes the hardware requirement and
procedures to build and run the demonstration project on Microchip development tools. In this demonstration application, the NVM driver is used to
access the internal Flash memory of PIC32MX and PIC32MZ Devices to perform Write and Read operations and indicates the result by LED.

To know more about MPLAB Harmony NVM driver, configuring the NVM driver and the APIs provided by the NVM driver, refer to the MPLAB
Harmony NVM Driver Library documentation.

Demonstrations

This topic provides information on how to run the NVM Driver demonstration applications included in this release.

nvm_read_write

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM Read/Write
Demonstration.

Description

To build this project, you must open the nvm_read_write.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/nvm/nvm_read_write.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

nvm_read_write.X <install-dir>/apps/driver/nvm/nvm_read_write/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 The purpose of this configuration is to execute the demonstration on a PIC32MX family device
using the PIC32 USB Starter Kit II with the dynamic NVM Driver implementation.

pic32mx_usb_sk2_sta pic32mx_usb_sk2 The purpose of this configuration is to execute the demonstration on a PIC32MX family device
using the PIC32 USB Starter Kit II with the static NVM Driver implementation.

pic32mz_ec_sk pic32mz_ec_sk The purpose of this configuration is to execute the demonstration on a PIC32MZ EC family device
using the PIC32MZ Embedded Connectivity (EC) Starter Kit with the dynamic NVM Driver
implementation.

Applications Help Driver Demonstrations NVM Driver Demonstration

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 57

pic32mz_ec_sk_sta pic32mz_ec_sk The purpose of this configuration is to execute the demonstration on a PIC32MZ EC family device
using the PIC32MZ Embedded Connectivity (EC) Starter Kit with the static NVM Driver
implementation.

pic32mz_ef_sk pic32mz_ef_sk The purpose of this configuration is to execute the demonstration on a PIC32MZ EF family device
using the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the
dynamic NVM Driver implementation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section describes how to run the NVM Driver demonstration.

Description

This is a simple demonstration to show how to configure and make use of NVM Driver APIs to implement and access the on-board Flash memory
of PIC32MX and PIC32MZ devices.

How to Run This Demonstration Application

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The execution status (pass/fail) of the demonstration is indicated by LEDs on the demonstration board, as shown in the following table.

Demonstration Board Success Indication Failure Indication

PIC32 USB Starter Kit II Green LED Red LED

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

The demonstration application makes use of 32 KB of NVM memory area starting at address DRV_NVM_MEDIA_START_ADDRESS.

The application does the following:

• Erases the entire 32 KB of memory and verifies the erase operation by reading back the data

• Performs sequential writes within a page by queuing the write operations. Reads back and verifies the data.

• Repeats step 1 to erase all data of the previous operation

• Performs random writes to addresses spread across the available memory area. This operation demonstrates the queuing of the write
operations at the driver layer. It also demonstrates the usage of the driver event handler to track the completion of the queued operations.
Reads back and verifies the data.

• Repeats step 1 to erase all data from the previous operation

• Performs an EraseWrite operation. This operation demonstrates the usage of the EraseWrite feature

SPI Driver Demonstrations

This topic provides descriptions of the SPI Driver demonstrations.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 58

Introduction

This help file contains instructions and associated information about MPLAB Harmony SPI driver application demonstrations, which are included in
the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony SPI Driver. This section describes the hardware requirements and
procedures to build and run the demonstration project using Microchip development tools.

Three demonstration applications are provided:

• serial_eeprom - In this demonstration application, the SPI Driver is used to access the external EEPROM in the Explorer 16 Development
Board to perform Write and Read operations and indicates the result by LED

• spi_loopback - In this demonstration application, the SPI driver is used to transfer data between the SPI master and slave on the same device
and indicates the result by LED

• spi_multislave - In this demonstration application, the SPI Driver is used to transfer data between a single master and two slaves on the same
device by using the Slave Select (SS) feature and indicates the result by LED

To know more about the MPLAB Harmony SPI driver, configuring the SPI driver and APIs provided by the SPI driver, refer to the SPI Driver
Library documentation.

Demonstrations

This topic provides information on how to run the SPI Driver demonstration applications included in this release.

serial_eeprom

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

In this demonstration application, the SPI Driver is used to access the external EEPROM in the Explorer 16 Development Board to perform Write
and Read operations and indicates the result by LED.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Serial EEPROM
Demonstration.

Description

To build this project, you must open the serial_eeprom.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi/serial_eeprom.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

serial_eeprom.X <install-dir>/apps/driver/spi/serial_eeprom/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx360_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to execute the demonstration using the
PIC32MX360F512L PIM connected to the Explorer 16 Development Board configured for
Interrupt mode and dynamic operation.

pic32mx795_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to execute the demonstration using the
PIC32MX795F512L PIM connected to the Explorer 16 Development Board configured for
Interrupt mode and dynamic operation.

pic32mx795_pim_e16_sta pic32mx795_pim+e16 The purpose of this configuration is to execute the demonstration using the
PIC32MX795F512L PIM connected to the Explorer 16 Development Board configured for
Interrupt mode and static operation.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 59

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board with the PIC32MX795F512L PIM

• Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

Explorer 16 Development Board with the PIC32MX360F512L PIM

• Before attaching the PIC32MX360F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

Running the Demonstration

This section demonstrates how to run the SPI Driver Serial EEPROM Demonstration.

Description

This demonstration shows how to configure and make use of the SPI Driver APIs to implement and access the on-board EEPROM of the Explorer
16 Development Board.

How to run this demonstration application:

Once the demonstration application is successfully compiled, you are ready to program the firmware in the target device.

To run the demonstration in debug mode, perform the following steps:

1. Select your device programmer from Project Properties > Hardware Tools in MPLAB X IDE.

2. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

Once the device is successfully programmed, you can observe that the LED in the Explorer 16 Development Board has been turned ON. This
shows the demonstration project ran successfully. The result of the programming can be read through the other LEDs. If LED "D9" is turned ON, it
indicates the EEPROM W/R functionality has failed. If LED "D10" is turned ON, it indicates the EEPROM W/R functionality has passed.

spi_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

In this demonstration application, the SPI driver is used to transfer data between the SPI Master and Slave on the same device and indicates the
result by LED.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Loopback
Demonstration.

Description

To build this project, you must open the spi_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi/spi_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

spi_loopback.X <install-dir>/apps/driver/spi/spi_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 60

Project Configuration Name BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for Interrupt
mode and dynamic operation.

pic32mx_usb_sk2_int_sta pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for Interrupt
mode and static operation.

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for Polled
mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity (EC) Starter
Kit configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn_dma pic32mz_ec_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity (EC) Starter
Kit configured for Interrupt mode and dynamic operation using DMA.

pic32mz_ec_sk_int_sta pic32mz_ec_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity (EC) Starter
Kit configured for Interrupt mode and static operation.

pic32mz_ec_sk_poll_dyn pic32mz_ec_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity (EC) Starter
Kit configured for Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Polled mode and dynamic operation.

pic32mz_da_sk_int_dyn pic32mz_da_sk Demonstrates SPI loopback on the PIC32MZ Graphics (DA) Starter Kit configured
for Interrupt mode and dynamic operation.

pic32mz_da_sk_poll_dyn pic32mz_da_sk Demonstrates SPI loopback on the PIC32MZ Graphics (DA) Starter Kit configured
for Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn_16b pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic
operation in microMIPS mode.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic
operation with FreeRTOS.

pic32mx_usb_sk2_int_dyn_freertos pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for Interrupt
mode and dynamic operation with FreeRTOS.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Required Hardware

This demonstration requires the following hardware:

• PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit or PIC32MZ DA Starter Kit

• PIC32MZ Starter Kit Adapter Board

• Starter Kit I/O Expansion Board

Depending on the starter kit in use, the SPI1 and SPI2 modules or SPI1 and SPI3 modules are used in this demonstration. PIC32MZ devices
support the Peripheral Pin Select (PPS) feature. The SPI Pins of the SPI modules on this device are required to be configured using the PPS. Any
related pin mapping (PPS) configuration code along with other port initialization can be found in the sys_port_static.c file.

 Note: To know more about the PIC32MZ PPS feature and pin configuration, please refer to Section 12.3 "Peripheral Pin Select
(PPS)" in the "I/O Ports" chapter of the specific device data.

PIC32MZ EC Starter Kit and PIC32MZ EF Starter Kit Configuration

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection
would_connect_the SPI1 lines to the SPI2 lines of the PIC32MZ2048ECH144 device on the PIC32MZ EC Starter Kit or the
PIC32MZ2048EFM144 device on the PIC32MZ EF Starter Kit.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 61

2. Next, attach the desired starter kit, the PIC32MZ Starter Kit Adapter Board, and the Starter Kit I/O Expansion Board, as shown in the following
figure (in this example the PIC32MZ EC Starter Kit is shown).

PIC32MZ EC and PIC32MZ EF Pin Mapping

The following table illustrates how the SPI1 and SPI2 pins for the PIC32MZ EC and PIC32MZ EF devices are mapped and connected to each
other through the Starter Kit I/O Expansion Board.

SPI
Module

SPI Lines PIC32MZ2048ECH144
or
PIC32MZ2048EFM144
Device Pin #

Analog
Pin

PIC32MZ2048ECH144 or
PIC32MZ2048EFM144 Port
Pin Name/Function

Pin # on I/O
Expansion Board
J10 Connector

For this
demonstration, attach
this pin to:

SPI1 SCK1 109 No SCK1 41 SCK2

SPI1 SDI1 69 AN32 RPD14 44 SDO2

SPI1 SDO1 98 No RPD10 43 SDI2

SPI1 /SS Not Used Not Used Not Used Not Used Not Used

SPI2 SCK2 14 AN14 SCK2 23 SCK1

SPI2 SDI2 121 No RPD7 24 SDO1

SPI2 SDO2 25 AN45 RPB5 25 SDI1

SPI2 /SS Not Used Not Used Not Used Not Used Not Used

PIC32MZ DA Starter Kit Configuration

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection would
connect the SPI1 lines to the SPI3 lines of the PIC32MZ2048DAB288 device on the PIC32MZ DA Starter Kit.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 62

2. Jumper JP5, which is located on the back of the PIC32MZ Starter Kit Adapter Board, should have pin 1 and pin 2 shorted.

3. Next, attach the desired starter kit, the PIC32MZ DA Adapter Board, and the Starter Kit I/O Expansion Board, as shown in the following figure.

PIC32MZ DA Pin Mapping

The following table illustrates how the SPI1 and SPI3 pins for the PIC32MZ DA devices are mapped and connected to each other through the
Starter Kit I/O Expansion Board.

SPI
Module

SPI
Lines

PIC32MZ2064DAB288
Device Pin #

Analog
Pin

PIC32MZ2064DAB288
Port Pin
Name/Function

Pin # on I/O
Expansion
Board J10
Connector

Pin # on I/O
Expansion
Board J11
Connector

For this
demonstration,
attach this pin to:

SPI1 SCK1 M04 No SCK1 41 N/A SCK3

SPI1 SDI1 E18 AN22 RPD14 44 N/A SDO3

SPI1 SDO1 J18 AN5 RPB10 N/A 52 SDI3

SPI1 /SS Not Used Not Used Not Used Not Used Not Used Not Used

SPI3 SCK3 J17 AN29 SCK3 N/A 21 SCK1

SPI3 SDI3 A12 AN12 RPC1 N/A 54 SDO1

SPI3 SDO3 A14 AN9 RPB1 37 N/A SDI1

SPI3 /SS Not Used Not Used Not Used Not Used Not Used Not Used

PIC32 USB Starter Kit II

This demonstration requires the following hardware:

• PIC32 USB Starter Kit II

• Starter Kit I/O Expansion Board

In this demonstration application, the SPI1 and SPI2 modules are used.

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection would attach
the SPI1 lines to the SPI2 lines of the PIC32MX795F512L device on the PIC32 USB Starter Kit II through the Starter Kit I/O Expansion Board.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 63

2. Next,_connect_the PIC32 USB Starter Kit II and the Starter Kit I/O Expansion Board, as shown in the following figure.

For the PIC32MX795F512L device, the SPI modules has dedicated I/O pins.

PIC32 USB Starter Kit II Pin Mapping

The following table illustrates how the SPI1 and SPI2 pins are mapped and connected to each other through the Starter Kit I/O Expansion Board.

SPI Module SPI Lines PIC32MX795F512L
Device Pin #

PIC32MX795F512L Port
Pin Name/Function

Pin # on I/O Expansion
Board J10 Connector

For this demonstration,
attach this pin to:

SPI1 SCK1 70 SCK1 41 SCK2

SPI1 SDI1 9 SDI1 44 SDO2

SPI1 SDO1 72 SDO1 43 SDI2

SPI1 /SS Not Used Not Used Not Used Not Used

SPI2 SCK2 10 SCK2 23 SCK1

SPI2 SDI2 11 SDI2 24 SDO1

SPI2 SDO2 12 SDO2 25 SDI1

SPI2 /SS Not Used Not Used Not Used Not Used

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 64

Running the Demonstration

This section demonstrates how to run the SPI Driver SPI Loopback Demonstration.

Description

This demonstration shows how to configure and make use of the SPI Driver APIs to support multiple SPI hardware instances to multiple clients of
the driver in both interrupt mode and polled mode. This demonstration shows the SPI driver's "multi-instance multi-client" feature.

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The SPI Driver configures the SPI1 as Master and SPI2 as Slave on the same PIC32 device (SPI3 is configured as the Slave when using the
PIC32MZ DA Starter Kit). The SPI1 and SPI2 lines are connected to each other as described in Configuring the Hardware. The Master sends a
chunk of data (64 bytes) to the Slave. The data is sent and received back on the same PIC32 device through the SPI. The data is looped back to
the sender.

Upon execution of the program, the SPI Master (SPI1) will transmit a sequence of character string/data through the SPI channel using the settings
defined in the application to SPI1.

After transmitting the data from SPI1, the driver will read SPI2 for any data received. if the data is received, the program will verify the validity of
the received data. Based on the verification result, the program will go either to a success or error state.

If an error occurs, or if the transmitted data is not the same as the received data, LED2 (Yellow) of the starter kit will illuminate, which indicates the
demonstration has failed.

If the transmitted data is exactly the same as the received data, LED3 (Green) of the starter kit will illuminate, which indicates the demonstration
was successful.

spi_multislave

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the SPI driver is used to demonstrate the single Master and multiple Slaves capability of the SPI protocol using
the DRV_SPI_ClientConfigure function of the SPI Driver to switch between slaves.

There are two data transfers in this demonstration, where the Master transfers a chunk of data to each Slave.

The Slaves are selected using the Slave Select (/SSx) pins, which means that when the Slave /SSx pin is active-low, only the Slave can receive
the data. Therefore, while one Slave is receiving the data, the other Slave is kept idle by making the /SSx pin of that Slave high.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Multi-slave
Demonstration.

Description

To build this project, you must open the spi_multislave.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi/spi_multislave.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

spi_multislave.X <install-dir>/apps/driver/spi/spi_multislave/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 65

Project Configuration Name BSP Used Description

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity (EC) Starter Kit
configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_sta pic32mz_ec_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity (EC) Starter Kit
configured for Interrupt mode and static operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_16b pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation in
microMIPS mode.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation with
FreeRTOS.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Required Hardware

This demonstration requires the following hardware:

• PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit

• PIC32MZ Starter Kit Adapter Board

• Starter Kit I/O Expansion Board

SPI1, SPI2 and SPI3 modules are used in this demonstration as Master, Slave 1 and Slave 2 respectively. In addition, two GPIO pins are used to
control the Slave Select (/SSx) pins.

PIC32MZ devices support the Peripheral Pin Select (PPS) feature. The SPI Pins of the SPI modules on this device must be configured using the
PPS.

 Note: To know more about the PIC32MZ PPS feature and pin configuration, please refer to Section 12.3 "Peripheral Pin Select
(PPS)" in the "I/O Ports" chapter of the specific device data.

PIC32MZ EC Starter Kit and PIC32MZ EF Starter Kit Configuration

1. Short the pins on the J10 and J11 headers of the Starter Kit I/O Expansion Board, as follows:

• Pin 41 (J10), pin 23 (J10) and pin 48 (J11): SCK1, SCK2, and SCK3

• Pin 43 (J10), pin 24 (J10) and pin 52 (J11): SDO1, SDI2, and SDI3

• Pin 44 (J10), pin 25 (J10) and pin 37 (J11): SDI1, SDO2, and SDO3

• Pin 34 (J10) and pin 26 (J10): RH10 and SS2

• Pin 33 (J10) and pin 46 (J11): RH15 and SS3

2. Next, attach the desired starter kit, the PIC32MZ EC Adapter Board, and the Starter Kit I/O Expansion Board, as shown in the following figure
(in this example the PIC32MZ EC Starter Kit is shown).

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 66

PIC32MZ EC and PIC32MZ EF Pin Mapping

The following table illustrates how the SPI1, SPI2, and SPI3 pins for the PIC32MZ EC and PIC32MZ EF devices are mapped and connected to
each other through the Starter Kit I/O Expansion Board.

Running the Demonstration

This section demonstrates how to run the SPI Driver SPI Multi-slave Demonstration.

Description

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

Once the device is successfully programmed, you can observe that the LEDs in the starter kit have turned ON. This indicates that the
demonstration project ran successfully. The result of the programming can be read through the LEDs.

The SPI Driver configures SPI1 as the Master and SPI2 and SPI3 as Slaves on the same PIC32 device. The SPI1, SPI2 and SPI3 lines are
connected to each other as described in Configuring the Hardware.

The Master sends a chunk of data (numbers 0 to 63, total 64 bytes) to the Slave 1 in the first transfer and sends one more chunk of data (numbers
64 to 1, total 64 bytes) to the Slave 2 in the second transfer.

The respective Slaves are selected in the each transfer using the /SS2 and /SS3 pins, which are driven by the GPIO pins RH10 and RH15,
respectively.

Applications Help Driver Demonstrations SPI Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 67

The following table explains the states of SPI Slaves in different stages of the application:

After the completion of both transfers, the received data for both of the slaves is verified with the transmitted data:

• If the data received by SPI2 matches with the data transmitted in the first transfer, LED2 (YELLOW) will illuminate

• If the data received by SPI3 matches with the data transmitted in the second transfer, LED3 (GREEN) will illuminate

• If both the transfers were not completed or the data of any Slave does not match, LED1 (RED) will illuminate

SPI Flash Driver Demonstrations

This topic provides descriptions of the SST25VF020B SPI Flash Driver demonstrations.

Introduction

This help file contains instructions and associated information about the MPLAB Harmony SPI Flash Driver application demonstration, which is
included in the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony SPI Flash Driver. This section describes the hardware requirements and
procedures to build and run the demonstration project using Microchip development tools.

Demonstrations

This topic provides information on how to run the SPI Flash Driver demonstration application included in this release.

sst25vf020b

This demonstration uses the SST25VF020B SPI Flash Driver to erase, write, and read from the on-board SST25VF020B Flash through SPI and
verifies whether or not operation occurred correctly.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Flash Driver
Demonstration.

Description

To build this project, you must open the sst25vf020b.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi_flash/sst25vf020b.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sst25vf020b.X <install-dir>/apps/driver/spi_flash/sst25vf020b/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

bt_audio_dk_int_dyn bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit. The SPI Driver and
SST25VF20B SPI Flash Driver are configured for Interrupt mode and dynamic operation.

Applications Help Driver Demonstrations SPI Flash Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 68

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

• Ensure Switch S1 is set to PIC32_MCLR

Running the Demonstration

This section describes how to run the SPI Flash Driver demonstration.

Description

To run this demonstration:

1. First compile and program the target device. While compiling, select the configuration suitable for hardware.

2. Observe the status of LEDs on the development kit. If LED 8 and LED 9 are illuminated, this indicates the demonstration is working correctly. If
either of LED 5 or LED 6 are illuminated, this indicates the demonstration is not working correctly.

USART Driver Demonstrations

This topic provides descriptions of the USART Driver demonstrations.

Introduction

This section provides instructions and information about the MPLAB Harmony USART Driver demonstration applications, which are included in the
MPLAB Harmony Library distribution.

Description

This application demonstrates how to use the MPLAB Harmony USART Driver. This section describes the hardware requirement and procedures
to build and execute the demonstration project on Microchip development tools. Two demonstration are provided:

• usart_echo - In this demonstration application, the USART Driver will initially transmit strings of data, and then accept_any characters received
and transmit the data back. Error or success status is indicated by LED.

• usart_loopback - In this demonstration application, the USART driver "multi-instance multi-client" feature is used. The application uses two
USART hardware instances of the same PIC32 device. Application transmits chunk of data (64 bytes) on USART1, receives it at USART2,
transmits back from USART2 to USART1. USART1 receives back all the data that was transmitted. The data is looped back to USART1.

To know more about the MPLAB Harmony USART driver, configuring the USART Driver and the APIs provided by the USART Driver, refer to
USART Driver Library documentation.

Demonstrations

This topic provides information on how to run the USART Driver demonstration applications included in this release.

usart_echo

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USART Echo
Demonstration.

Description

To build this project, you must open the usart_echo.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/usart/usart_echo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help Driver Demonstrations USART Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 69

Project Name Location

usart_echo.X <install-dir>/apps/driver/usart/usart_echo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_sta pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Interrupt mode and static operation.

pic32mx795_pim_e16_poll_dyn pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Polled mode and dynamic operation.

pic32mx795_pim_e16_poll_sta pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Polled mode and static operation.

pic32mx795_pim_int_dyn_freertos pic32mx795_pim+e16 FreeRTOS version of this demonstration, which runs on the PIC32MX795F512L
PIM and the Explorer 16 Development Board configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

Explorer 16 Development Board

Following are the hardware configuration settings required to execute this demonstration.

1. Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position.

2. Short JP2 on the Explorer 16 Development Board to enable the LEDs.

PIC32MX795F512L PIM

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section demonstrates how to run the USART Driver Demonstration.

Description

Once the demonstration application has been compiled successfully for the intended configuration, program the firmware into the target device.

Upon execution, the application will transmit the following strings through the USART using the settings defined in the application.

Welcome to Microchip USART Driver Demo Application.
Press any character, the character will be echoed back.
Press 'ESC' key to exit the Demo Application.

After transmitting the text, the firmware will read any characters received through the USART and it will transmit back the same data. If the
received character is "ESC" (0x1B), the program will enter into Idle mode. Once in Idle mode, the firmware will neither transmit nor receive any
data. If the application enters Idle mode, LED 5 of the Explorer 16 Development Board will illuminate. If any error occurs, LED 9 of the Explorer 16
Development Board will illuminate.

usart_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USART Loopback

Applications Help Driver Demonstrations USART Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 70

Demonstration.

Description

To build this project, you must open the usart_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/usart/usart_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usart_loopback.X <install-dir>/apps/driver/usart/usart_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Demonstrates USART loopback on the PIC32 USB Starter Kit II configured for Interrupt
mode and dynamic operation.

pic32mx_usb_sk2_int_sta pic32mx_usb_sk2 Demonstrates USART loopback on the PIC32 USB Starter Kit II configured for Interrupt
mode and static operation.

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Demonstrates USART loopback on the PIC32 USB Starter Kit II configured for Polled
mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Demonstrates USART loopback on the PIC32MZ Embedded Connectivity (EC) Starter Kit
configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_sta pic32mz_ec_sk Demonstrates USART loopback on the PIC32MZ Embedded Connectivity (EC) Starter Kit
configured for Interrupt mode and static operation.

pic32mz_ec_sk_poll_dyn pic32mz_ec_sk Demonstrates USART loopback on the PIC32MZ Embedded Connectivity (EC) Starter Kit
configured for Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Demonstrates USART loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Demonstrates USART loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Polled mode and dynamic operation.

pic32mz_da_sk_int_dyn pic32mz_da_sk Demonstrates USART loopback on the PIC32MZ Graphics (DA) Starter Kit configured for
Interrupt mode and dynamic operation.

pic32mz_da_sk_poll_dyn pic32mz_da_sk Demonstrates USART loopback on the PIC32MZ Graphics (DA) Starter Kit configured for
Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates USART loopback on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for
Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit or PIC32MZ DA Starter Kit

 Note: For space consideration, only the PIC32MZ EC Starter Kit is shown. However, the following configuration information applies to
either starter kit.

This demonstration requires the following hardware:

• PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit or PIC32MZ DA Starter Kit

• PIC32MZ Starter Kit Adapter Board

• Starter Kit I/O Expansion Board

PIC32MZ EC and PIC32MZ EF Starter Kit

In this demonstration application, the USART1 and USART2 modules are used. PIC32MZ devices support the Peripheral Pin Select (PPS) feature.
The USART pins of the USART modules on this device are required to be configured using the PPS.

Applications Help Driver Demonstrations USART Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 71

 Note: To learn more about the PIC32MZ PPS feature and pin configuration, please refer to Section 12.3 "Peripheral Pin Select (PPS)"
in the "I/O Ports" chapter of the specific device data sheet. These documents are available for download from the Microchip web
site (www.microchip.com).

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection
would_connect_the USART1 lines to the USART2 lines of the PIC32MZ2048ECH144 device on the PIC32MZ EC Starter Kit or the
PIC32MZ2048EFM144 device on the PIC32MZ EF Starter Kit.

2. Next,_connect either the PIC32MZ EC Starter Kit or the PIC32MZ EF Starter Kit, the PIC32MZ Starter Kit Adapter Board, and the Starter Kit
I/O Expansion Board, as shown in the following figure.

PIC32MZ DA Starter Kit

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection
would_connect_the USART1 lines to the USART2 lines of the PIC32MZ2064DAB288 device on the PIC32MZ DA Starter Kit.

Applications Help Driver Demonstrations USART Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 72

http://www.microchip.com

For this demonstration, the PIC32MZ Port Pins are mapped with USART functionality. The PPS mapping and Port Pin Mode Configuration to
Digital mode (Only for the Analog pins) source code is in the system_init.c file SYS_Initialize function.

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit

The following table illustrates how the USART1 and USART2 pins are mapped and connected to each other through the Starter Kit I/O Expansion
Board.

USART
Module

USART
Lines

PIC32MZ2048ECH144
or PIC32MZ2048EFM
Device Pin #

Analog
Pin

PIC32MZ2048ECH144
or PIC32MZ2048EFM
Port Pin
Name/Function

Pin # on I/O
Expansion
Board J10
Connector

Pin # on I/O
Expansion
Board Pin J11
Connector

For this
Demonstration,
attach this pin to:

USART1 TX 13 AN19 PMRD 13 N/A USART2 RX

USART1 RX 48 AN49 PMA7 53 N/A USART2 TX

USART2 TX 61 AN9 RPB14 N/A 48 USART1 RX

USART2 RX 62 AN10 RPB15 N/A 46 USART1 TX

PIC32MZ DA Starter Kit

The following table illustrates how the USART1 and USART2 pins are mapped and connected to each other through the Starter Kit I/O Expansion
Board.

USART
Module

USART
Lines

PIC32MZ2064DAB288
Device Pin #

Analog
Pin

PIC32MZ2064DAB288
Port Pin
Name/Function

Pin # on I/O
Expansion
Board J10
Connector

Pin # on I/O
Expansion
Board Pin J11
Connector

For this
Demonstration,
attach this pin to:

USART1 TX A14 AN9 RPB1 37 N/A USART2 RX

USART1 RX A12 AN12 RPC1 54 N/A USART2 TX

USART2 TX B09 AN23 RPG9 N/A 58 USART1 RX

USART2 RX B10 AN26 RPE09 N/A 46 USART1 TX

PIC32 USB Starter Kit II

This demonstration requires the following hardware:

• PIC32 USB Starter Kit II

• Starter Kit I/O Expansion Board

In this demonstration application, the USART and USART2 modules are used.

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection
would_connect_the USART1 lines to the USART2 lines of the PIC32MX795F512L device on the PIC32 USB Starter Kit II through the Starter
Kit I/O Expansion Board.

Applications Help Driver Demonstrations USART Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 73

2. Next,_connect_the PIC32 USB Starter Kit II and the Starter Kit I/O Expansion Board, as shown in the following figure.

For the PIC32MX795F512L device, the USART modules has dedicated I/O pins.

The following table illustrates how the USART1 and USART2 pins are mapped and connected to each other through the Starter Kit I/O Expansion
Board.

USART Module USART
Lines

PIC32MX795F512L
Device Pin #

PIC32MX795F512L Port
Pin Name/Function

Pin # on I/O Expansion
Board J11 Connector

For this demonstration,
attach this pin to:

USART1 TX 53 U1TX 43 U2RX

USART1 RX 52 U1RX 41 U2TX

USART2 TX 50 U2TX 48 U1RX

USART2 RX 49 U2RX 46 U1TX

Running the Demonstration

This section demonstrates how to run the USART Driver USART Loopback Demonstration.

Description

This demonstration shows how to configure and make use of the USART Driver APIs to support multiple USART hardware instances to multiple
clients of the driver in both interrupt mode and polled mode. This demonstration shows the USART driver's "multi-instance multi-client" feature.

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The USART Driver configures the USART1 and USART2 modules on the same PIC32 device as defined in the system_config.h file. The

Applications Help Driver Demonstrations USART Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 74

USART1 and USART2 lines are connected to each other as described in Configuring the Hardware. USART1 sends a chunk of data (64 bytes) to
USART2. USART2 sends back the same data to USART1. The data is sent and received back on the same USART module through another
USART. The data is looped back to the sender.

Upon execution of the program, the USART1 will transmit a sequence of character string/data through the USART1 TX channel using the settings
defined in the application for USART1.

After transmitting the data from USART1, the driver will read USART2 for any data received. If the data is received, the same data is sent back to
USART1. The program will verify the received data to the transmitted data and enter into Idle mode.

Once in Idle mode, the firmware will neither transmit nor receive any data. If the application enters Idle mode, LED2 (Yellow) of the starter kit will
illuminate.

If any error occurs, or if the transmitted data is not same to received data, LED1 (Red) of the starter kit will illuminate, which indicates the
demonstration has failed.

If the transmitted data and received data on UART1 is same, LED3 (Green) of the starter kit will illuminate, which indicates the demonstration was
successful.

Applications Help Driver Demonstrations USART Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 75

Examples

Provides information on MPLAB Harmony example applications. The MPLAB Harmony example applications provide simple single-purpose
application projects that illustrate how to use a selected MPLAB Harmony library. These are the working examples of source code that is provided
throughout the MPLAB Harmony documentation.

my_first_app

Describes the my_first_app example.

Description

The MPLAB Harmony my_first_app example application provides the solution described in the Creating Your First Project tutorial.

Peripheral Library Examples

This topic describes the peripheral library examples.

Introduction

The example applications for MPLAB peripheral libraries (PLIBs) provide very simple single-purpose examples of how to use MPLAB Harmony
peripheral libraries.

Description

Peripheral libraries (PLIBs) are the lowest level libraries provided with MPLAB Harmony. They provide a functional abstraction of the peripherals
available on Microchip microcontrollers to hide differences in register details that can exist from device to device. However, they do not maintain
any state data (at least not any that isn't stored in the hardware registers) from call to call and they do not provide any protection of the peripheral's
resources. As such, any code that calls the PLIB for a peripheral must take responsibility for ownership of that peripheral and is responsible for
managing the behavior of that peripheral.

As such, PLIBs are normally only used by MPLAB Harmony device drivers or system services. However, there are some times when it is
necessary and appropriate to interact with a PLIB directly from an application. Therefore, simple examples are provided to show how to use the
interfaces to the peripheral libraries. These examples are available in the MPLAB Harmony installation in the following location:
<install-dir>/apps/examples/peripheral.

PIC32MX device examples are written for the Explorer 16 Development Board with a PIC32MX795F512L PIM. PIC32MZ device examples are
written for the PIC32MZ Embedded Connectivity (EC) Starter Kit. The examples are tested and working on the Explorer 16 Development Board,
the PIC32 USB Starter Kit II, and the PIC32MZ Embedded Connectivity (EC) Starter Kit, and the appropriate board configuration for each project
can be selected in MPLAB X IDE.

ADC Peripheral Library Examples

This topic provides descriptions of the ADC Peripheral Library examples.

Introduction

ADC Peripheral Library Demonstration Applications Help

Description

This distribution package contains one ADC related firmware project that demonstrates the capabilities of the MPLAB Harmony ADC Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the ADC Peripheral Library demonstration applications included in this release.

adc_pot

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 76

Description

This example reads the potentiometer, R6 on the Explorer 16 Development Board using a PIC32MX795F512L PIM. The results of the read are
displayed on the LEDs. As the potentiometer is adjusted, the LEDs displayed will "slide" up or down.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADC Peripheral
Library demonstration.

Description

To build this project, you must open the adc_pot.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adc/adc_pot.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adc_pot.X <install-dir>/apps/examples/peripheral/adc/adc_pot/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the ADC reading potentiometer R6 on the PIC32MX795F512L
PIM and the Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ADC demonstration.

Description

This demonstration reads the setting of the potentiometer through the ADC.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Turn the potentiometer R6 in either direction. Check the state of the LEDs on the Explorer 16 Development Board. As the potentiometer is
turned clockwise, more LEDs will be lit. As the potentiometer is turned counter-clockwise, fewer LEDs are lit.

adc_pot_dma

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example reads the potentiometer, R6 on the Explorer 16 Development Board (PIC32MX795F512L PIM) using the ADC while storing data on
RAM using DMA.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADC Peripheral
Library demonstration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 77

Description

To build this project, you must open the adc_pot_dma.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adc/adc_pot_dma.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adc_pot_dma.X <install-dir>/apps/examples/peripheral/adc/adc_pot_dma/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the ADC using a DMA channel to read the potentiometer R6 on the
PIC32MX795F512L PIM and the Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ADC demonstration.

Description

This demonstration reads the setting of the potentiometer through the ADC.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Turn the potentiometer R6 in either direction. Check the state of the LEDs on the Explorer 16 Development Board. As the potentiometer is
turned clockwise, more LEDs will be lit. As the potentiometer is turned counter-clockwise, fewer LEDs are lit.

12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Examples

This topic provides descriptions of the 12-bit High-Speed SAR ADC (ADCHS) Peripheral Library examples.

Introduction

12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Demonstration Applications Help

Description

This distribution package contains one ADC-related firmware project that demonstrates the capabilities of the MPLAB Harmony ADCHS Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the ADCHS Peripheral Library demonstration applications included in this release.

adchs_3ch_dma

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 78

demonstration.

Description

This example demonstrates the use of system DMA to automatically store conversion data of three ADC channels into three separate buffers.
Each channel is set to sample at a conversion rate of 2 Msps using a single timer trigger to synchronize the conversion of all three channels. An
average converted data displays on a terminal emulator, such as RealTerm.

This application is to be used with PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit using the Starter Kit I/O Expansion
Board with the Adapter Board, or PIC32MZ Graphics (DA) Starter Kit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_3ch_dma.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_3ch_dma.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_3ch_dma.X <install-dir>/apps/examples/peripheral/adchs/adchs_3ch_dma/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates operation of three system DMA channels to store conversion of a Class 1 analog input
(potentiometer) when connected to the PIC32MZ EF Starter Kit using the Starter Kit I/O Expansion Board
and the PIC32MZ EC Starter Kit Adapter Board.

pic32mz_da_sk pic32mz_da_sk Demonstrates operation of three system DMA channels to store conversion of a Class 1 analog input
when connected to the PIC32MZ DA Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

1. Connect the PIC32MZ EF Starter Kit to the PIC32MZ EC Starter Kit Adapter Board.

2. Connect the combination of two boards (as described in Step 1) on the Starter Kit I/O Expansion Board.

3. Three analog signals or three potentiometers of suitable value (4.7K or 10K, with two ends to 3.3V and the GND pin of J11) should be
connected; and wipers of the potentiometers to J11 pin 34 and 33 (AN0 and AN2) and J10 pin 32 (AN2) on the Starter Kit I/O Expansion Board.

4. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

5. Power the Starter Kit I/O Expansion Board with a 9V power supply.

PIC32MZ Graphics (DA) Starter Kit

1. A 3 analog signal or 3 potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and
wiper of potentiometer to J15 pin 16, 36, and 13 (AN2, AN3, and AN4) PIC32MZ EF Starter Kit.

2. Power and download firmware to the Starter Kit by connecting a mini-USB cable from a PC to the mini-USB connector J19 (DEGUG) on the
PIC32MZ EF Starter Kit.

3. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 79

Description

To build this project, you must open the adchs_3ch_dma.X project in MPLAB X IDE, and then select the desired configuration.

Do the following to run the demonstration:

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following message will appear in the console window: Result: 3171.

4. This example demonstrates the use of system DMA to automatically store conversion data of three ADC channels into three separate buffers.
Each channel is set to sample at a conversion rate of 2 Msps using a single timer trigger to synchronize the conversion of all three channels.
An average converted data displays on a terminal emulator, such as RealTerm.

The following figure shows a working terminal emulator window.

adchs_oversample

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstration reads the potentiometer that is connected to the PIC32MZ DA Starter Kit or the PIC32MZ EF Starter Kit using the
Starter Kit I/O Expansion Board with the PIC32MZ EC Starter Kit Adapter Board, and performs oversampling of the converted data and displays
the higher resolution ADC converted readings on a terminal emulator (such as RealTerm).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_oversample.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_oversample.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_oversample.X <install-dir>/apps/examples/peripheral/adchs/adchs_oversample/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 80

Project
Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates operation of a digital filter in Oversampling mode, while converting a Class 1 analog input
(potentiometer) when connected to the PIC32MZ EF Starter Kit using the Starter Kit I/O Expansion Board
and the PIC32MZ EC Starter Kit Adapter Board.

pic32mz_da_sk pic32mz_da_sk Demonstrates operation of a digital filter in Oversampling mode, while converting a Class 1 analog input
(potentiometer) when connected to the PIC32MZ DA Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

1. Connect the PIC32MZ EF Starter Kit to the PIC32MZ EC Starter Kit Adapter Board.

2. Connect the combination of two boards (as described in Step 1) on the Starter Kit I/O Expansion Board.

3. A potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and wiper of potentiometer
to pin 34 of J11 on the Starter Kit I/O Expansion Board.

4. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

5. Power the Starter Kit I/O Expansion Board with a 9V power supply.

PIC32MZ Graphics (DA) Starter Kit

1. A potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and the wiper of the
potentiometer to pin 36 of J15 on the PIC32MZ DA Starter Kit.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ DA Starter Kit.

3. Connect a mini-USB cable from a PC to the DEBUG mini-USB connector J19 to power the starter kit.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This demonstration oversamples the converted data of the potentiometer using digital filters. Do the following to run the demonstration:

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following message will appear in the console window: Result: 3171.

4. As the potentiometer is turned, the "Result:" on the console shows the high resolution ADC converted value.

5. The higher resolution data can be verified by first running the adchs_pot demonstration and observing the 12-bit converted data. Later, keeping
the potentiometer setting same, the adchs_oversample demonstration is run and the higher resolution 15-bit converted data can be observed
and verified. Theoretical calculation is as follows:

• Max count of 12 bit resolution: 4096

• Max count of 15 bit resolution: 32768

• ADC Ref input voltage: 3.3 Volts

Consider an analog input of 0.319 Volts:

• 12-bit resolution ADC reading (obtained by adchs_pot): ((4096/3.3) * 0.319) = 396

• 15-bit resolution ADC reading (oversampled by adchs_oversample): ((32768/3.3) * 0.319) = 3167

The following figure shows a working terminal emulator window.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 81

adchs_pot

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstration reads the potentiometer that is connected to the PIC32MZ DA Starter Kit or the PIC32MZ EF Starter Kit using the
Starter Kit I/O Expansion Board with the PIC32MZ EC Starter Kit Adapter Board.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_pot.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_pot.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_pot.X <install-dir>/apps/examples/peripheral/adchs/adchs_pot/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates a read of the potentiometer by the ADC when connected to the PIC32MZ EF Starter
Kit using the Starter Kit I/O Expansion Board and the PIC32MZ EC Starter Kit Adapter Board.

pic32mz_da_sk pic32mz_da_sk Demonstrates a read of the potentiometer by the ADC when connected to the PIC32MZ DA Starter
Kit.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 82

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

1. Connect the PIC32MZ EF Starter Kit to the PIC32MZ EC Starter Kit Adapter Board.

2. Connect the combination of two boards (as described in Step 1) on the Starter Kit I/O Expansion Board.

3. A potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and wiper of potentiometer
to pin 34 of J11 on the Starter Kit I/O Expansion Board.

4. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

5. Power the Starter Kit I/O Expansion Board with a 9V power supply.

PIC32MZ Graphics (DA) Starter Kit

1. A potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and the wiper of the
potentiometer to pin 36 of J15 on the PIC32MZ DA Starter Kit.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ DA Starter Kit.

3. Connect a mini-USB cable from a PC to the DEBUG mini-USB connector J19 to power the starter kit.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This demonstration reads the setting of the potentiometer through the ADC.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following messages will appear in the console window:

• Comparator 1 has detected the ADC value to be between 0 and 1000

• Result: 960

4. As the potentiometer is turned, the "Result:" on the console shows the ADC converted value. Four digital comparators process the ADC
converted value and generate an event. The conditions for digital comparator events are as follows:

• Digital Comparator 1 generates an event when the ADC converted value is between 0 to 1000. All LEDs on the starter remain OFF.

• Digital Comparator 2 generates an event when the ADC converted value is between 1100 to 2000. Also, LED D1 on the starter kit turns ON.

• Digital Comparator 3 generates an event when the ADC converted value is between 2100 to 3000. Also, LED D1 and D2 on the starter kit
turn ON.

• Digital Comparator 4 generates an event when the ADC converted value is between 3100 to 4000. Also, all LEDs on the starter kit turn ON.

5. The following figure shows a working terminal emulator window.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 83

adchs_sensor

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This peripheral library example demonstrates the conversion of three Class 2 and one Class 3 analog inputs in Channel Scan mode, triggered by a
Timer3 match. On the MEB II board, the chosen three Class 2 analog inputs are connected to the three axes of an accelerometer and the Class 3
analog input is connected to a temperature sensor. The demonstration application code uses the converted value of the three axes of the
accelerometer, converts them into the tilt of the three axes, and displays the results on the serial port terminal (in radians). Also, the converted
data from the temperature sensor is scaled to degrees Celsius and displayed on the serial port terminal.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_sensor.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_sensor.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_sensor.X <install-dir>/apps/examples/peripheral/adchs/adchs_sensor/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates the scan conversion feature with a timer trigger, while converting three Class 2
analog inputs (accelerometer) and one Class 3 analog input (temperature sensor) when
connected to the PIC32MZ EF Starter Kit on the MEB II.

pic32mz_da_sk_meb2 pic32mz_da_sk+meb2 Demonstrates the scan conversion feature with a timer trigger, while converting three Class 2
analog inputs (accelerometer) and one Class 3 analog input (temperature sensor) when
connected to the PIC32MZ DA Starter Kit on the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit connected to the MEB II

1. Mount the PIC32MZ EF Starter Kit on the MEB II.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

3. Power the Starter Kit I/O Expansion Board with a 9V power supply on the MEB II or through the Debug connector (J3) on SK.

 Note: The accelerometer y and z axes are connected to AN7 (RB12) and AN8 (RB13) on the PIC32MZ EF Starter kit. The same pins
are also used for switch inputs, SW1 and SW2. During the application initialization, the ports are configured as analog. While
running this demonstration care should be taken not to press SW1 or SW2. Otherwise, the converted ADC values will be incorrect.

PIC32MZ DA Starter Kit connected to the MEB II

1. Mount the PIC32MZ DA Starter Kit on the MEB II.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ DA Starter Kit.

3. Power the Starter Kit I/O Expansion Board with a 9V power supply on the MEB II or through the Debug connector (J3) on SK.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 84

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This demonstration reads the accelerometer and temperature sensor. Do the following to run the demonstration:

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following messages will appear in the console window:

• Temp: 27 deg C

• x-axis: 0.001 radians

• y-axis: 0.01 radians

• z-axis: 1.52 radians

4. As the MEB II board is tilted, the angles for each axis displayed on the console windows changes.

5. If the temperature sensor "U8" is heated (by touching), the displayed temperature on the console window changes.

The following figure shows a working terminal emulator window.

adchs_touchsense

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This peripheral library example demonstrates the Capacitive Voltage Divider (CVD) feature of the ADCHS Peripheral Library and analog channel
scan features using the PIC32MZ EF Starter Kit and the touch pad (B2) on the Multimedia Expansion Board II (MEB II).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_touchsense.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_touchsense.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 85

Project Name Location

adchs_touchsense.X <install-dir>/apps/examples/peripheral/adchs/adchs_touchsense/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates the CVD feature of ADCHS while converting a Class 3 analog input (AN28), in
Scan mode when connected to the PIC32MZ EF Starter Kit on the MEB II.

pic32mz_da_sk_meb2 pic32mz_da_sk+meb2 Demonstrates the CVD feature of ADCHS while converting a Class 3 analog input (AN28), in
Scan mode when connected to the PIC32MZ DA Starter Kit on the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

1. Mount the PIC32MZ EF Starter Kit on the MEB II.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

3. Power the Starter Kit I/O Expansion Board with a 9V power supply on the MEB II or through the debug connector (J3) on the PIC32MZ EF
Starter Kit.

PIC32MZ DA Starter Kit and MEB II

1. Mount the PIC32MZ DA Starter Kit on the MEB II.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ DA Starter Kit.

3. Power the Starter Kit I/O Expansion Board with a 9V power supply on the MEB II or through the debug connector (J3) on the PIC32MZ DA
Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This example demonstrates the CVD feature of ADCHS and senses the touch event on the B2 touchpad of the MEB II.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration.

4. Touch the B2 touch pad on the MEB II. The B2 touch pad is located on the LCD side of the MEB II and not on the starter kit side of MEB II.
Once touched, the LED D4 on the MEB II illuminates and "Touch Detected!!!" is displayed on the serial terminal program. This display repeats
every 1 second, until B2 is no longer being touched.

5. Once B2 is not longer being touched, the LED D4 turns off and after a brief delay, LED D3 illuminates.

The following figure shows a working terminal emulator window.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 86

Pipelined ADC (ADCP) Peripheral Library Examples

This topic provides descriptions of the Pipelined Analog-to-Digital Converter (ADCP) Peripheral Library examples.

Introduction

Pipelined ADC Peripheral Library Demonstration Applications Help

Description

This distribution package contains one ADC related firmware project that demonstrates the capabilities of the MPLAB Harmony Pipelined ADC
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Pipelined ADC Peripheral Library demonstration applications included in this release.

adcp_cal

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example illustrates how to configure the Pipelined ADC prior to using it for normal operations. It also illustrates the required errata setup of
channel, oversampling, and DMA transfer of data to achieve the best results.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Pipelined ADC
calibration demonstration.

Description

To build this project, you must open the adcp_cal.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adcp/adcp_cal.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 87

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adcp_cal.X <install-dir>/apps/examples/peripheral/adcp/adcp_cal/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ec_pim_e16 pic32mz_ec_pim+e16 Using the PIC32MZ2048ECH100 Plug-in Module (PIM) connected to the Explorer 16
Development Board, this demonstration illustrates a software calibration step that is needed
before using the Pipelined ADC. This calibration calculates the DC offset by sampling the internal
voltage reference (IVREF) attached to the ADC.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ2048ECH100 PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

The software is configured to use an external VREF+ and VREF- attached to pins 33 and 32, respectively, of the PIM. This can be accomplished
through the Starter Kit I/O Expansion board or a PICtail™ Prototyping Daughter Board.

The VREF+ pin voltage needs to be applied either after, or at the same time as the main VDD power is applied. The software is set to accept 3.3V
as the VREF+ voltage. The software is set to accept 0.0V as the VREF- voltage, so that pin may be connected to GND or AVSS.

If another voltage is used for VREF+ or VREF-, the corresponding setting in the software, in adcp.h, needs to be updated to make the
calculations correct.

The potentiometer R6 on the Explorer 16 Development Board can be used to drive one of the inputs in the demonstration. Run a jumper between
RB5 and RG8 on the PICtail prototyping daughter board, inserted into the PICtail slot. This board can also be used to set up the VREF+ and
VREF- connections.

VREF+ can be set up by connecting RB9 on the PICtail prototyping daughter board to +3.3V. VREF- can be set up by connecting RB8 on the
PICtail Prototyping Daughter Board.

Running the Demonstration

Provides instructions on how to build and run the Pipelined ADC demonstration.

Description

This demonstration shows how the Pipelined ADC module operates on PIC32MZ devices in accordance with the Errata and Data Sheet
clarifications.

1. Connect and program the device using your debugger.

2. Set a breakpoint in app.c, near line 234, which reads:
 appData.state = APP_STATE_NORMALIZE_DATA;

3. Set a breakpoint in app.c, near line 241, which reads:
 appData.state = APP_STATE_DISPLAY_DATA;

4. Run the program.

5. When the program reaches the first breakpoint, you can use the debugger variables window to observe the data in appData.ADC_Data1.

6. Continue running the program from the breakpoint.

7. When the program reaches the second breakpoint, you can use the debugger variables window to observe the data in appData.ADC_Data1.
This data has now been normalized, meaning that the values have been converted to 8-bit results. This would be the data an application would
use.

8. Continue running the program to collect a new set of data, repeating Steps 5 through 7, as desired. If you have connected the jumper to allow
potentiometer R6 operation, turn the potentiometer and observe the change in results.

9. The scale of the readings on the channel connected to the potentiometer is also reflected on the LEDs of the Explorer 16 Development Board.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 88

 Note: Timer3 is used to trigger the ADC scan automatically. If the number of channels to be used is changed, the Timer3 period needs
to be adjusted accordingly.

Do the following to make the adjustment:

1. Open the Microchip Harmony Configurator.

2. Load the configuration for the adcp_cal project.

3. Navigate to Harmony Framework Configuration > Drivers > Timer > Use Timer Driver? and select TMR Driver Instance 0.

4. Change the Timer Period value according to this formula:

• Timer Period = 721 * APP_NUM_ANX_PINS (where, APP_NUM_ANX_PINS is defined in adcp_config.h and
represents the number of pins to sample)

5. Generate and run the demonstration again

BMX Peripheral Library Examples

This topic provides descriptions of the BMX Peripheral Library examples.

Introduction

BMX Peripheral Library Demonstration Applications Help

Description

This distribution package contains one BMX related firmware project that demonstrates the capabilities of the MPLAB Harmony BMX Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the BMX Peripheral Library demonstration applications included in this release.

mem_partition

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example sets up a memory partition in the PIC32MX device for Kernel and User segments. If the memory is set correctly, the LEDs on the
Explorer 16 Development Board are lit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the BMX Peripheral
Library BMX Handler demonstration.

Description

To build this project, you must open the mem_partition.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/bmx/mem_partition.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

mem_partition.X <install-dir>/apps/examples/peripheral/bmx/mem_partition/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 89

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the BMX memory partition demonstration on the
PIC32MX795F512L PIM and Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the BMX demonstration.

Description

This demonstration sets up Kernel and User memory partitions through the BMX Peripheral Library.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe the status of the LEDs on the Explorer 16 Development Board. If the memory was correctly partitioned, the LEDs on the Explorer 16
Development Board are lit.

CAN Peripheral Library Examples

This topic provides descriptions of the CAN demonstrations.

Introduction

CAN Library Demonstration Applications Help.

Description

This distribution package contains one CAN-related firmware project that demonstrates the capabilities of the MPLAB Harmony CAN Library. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries, refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the CAN Library demonstration applications included in this release.

echo_send

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration shows how to use the CAN Peripheral Library and CAN peripheral on a device to send out a message over the CAN bus. This
demonstration uses message filtering to echo back user data sent to its specific address. This demonstration does not use a CAN Driver or the
CAN Stack.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the CAN Demonstration.

Description

To build this project, you must open the echo_send.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/can/echo_send.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 90

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

echo_send.X <install-dir>/apps/examples/peripheral/can/echo_send/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration Name BSP(s) Used Description

pic32mx_125_sk pic32mx_125_sk Demonstrates sending a message over the CAN bus on the PIC32MX1/2/5 Starter Kit.

pic32mz_ec_sk_io_ebrd_can_pictail pic32mz_ec_sk Demonstrates sending a message over the CAN bus using the CAN/LIN PICtail Plus
Daughter Board and the PIC32MZ EC Starter Kit connected to the PIC32MZ Starter Kit
Adapter Board and Starter Kit I/O Expansion Board.

pic32mz_ef_sk_io_ebrd_can_pictail pic32mz_ef_sk Demonstrates sending a message over the CAN bus using the CAN/LIN PICtail Plus
Daughter Board and the PIC32MZ EF Starter Kit connected to the PIC32MZ Starter Kit
Adapter Board and Starter Kit I/O Expansion Board.

pic32mz_da_sk_io_ebrd_can_pictail pic32mz_da_sk Demonstrates sending a message over the CAN bus using the CAN/LIN PICtail Plus
Daughter Board and the PIC32MZ DA Starter Kit connected to the PIC32MZ Starter Kit
Adapter Board and Starter Kit I/O Expansion Board.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates sending a message over the CAN bus using the combined CAN/LIN
PICtail Plus Daughter Board and the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX1/2/5 Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit connected to the PIC32MZ Starter Kit Adapter Board

On the PIC32MZ Starter Kit Adapter Board, short pins 1 and 2 of JP1 and short pins 1 and 2 of JP3

PIC32MZ DA Starter Kit connected to the PIC32MZ Starter Kit Adapter Board and Starter Kit I/O Expansion Board

On the PIC32MZ Starter Kit Adapter Board, JP1 and JP3 should be open for this to work.

On the Starter Kit I/O Expansion Board configure the following jumpers:

• Set J11 pin 12 to J11 pin 7

• Set J11pin 9 to J11 pin 8

CAN/LIN PICtail Plus Daughter Board

• For CAN1, set J4 to 1 and J2 to 2-3

• For CAN2, use RE5 and RE4 by setting J15 and J16 to 1-2

Running the Demonstration

Provides instructions on how to build and run the CAN demonstration.

Description

The following are required to run this demonstration:

• MPLAB X IDE

• MPLAB XC32 C/C++ Compiler

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 91

 Note: Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for the specific versions. A
PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

• One of the following:

• PIC32MX1/2/5 Starter Kit

• CAN/LIN PICtail Plus Daughter Board and PIC32 USB Starter Kit II combination

• PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit or PIC32MZ DA Starter Kit

• One Microchip CAN BUS Analyzer (APGDT002) or equivalent

• One DB9 cable

• Two USB A-to-B mini cables

• A personal computer

Hardware Example

The following figure illustrates the hardware setup for the PIC32MX1/2/5 Starter Kit.

Refer to "CAN BUS Analyzer User's Guide" (DS50001848) for further operating instructions regarding the CAN BUS Analyzer.

For more information on the CAN Bus, visit: http://www.can-cia.org/

Do the following to run the demonstration:

1. Connect one end of the DB9 cable to the starter kit and the other end to the CAN BUS Analyzer.

2. Connect the USB cables to J3 on the starter kit and to the CAN BUS Analyzer.

3. Open the CAN BUS Analyzer software.

4. Configure the Analyzer for the Baud Rate Selected inside MHC (1 Mbps Typical), Normal Operation, Termination Resistor: ON.

5. Start MPLAB X IDE and open the project, echo_send.X.

6. Program the starter kit.

7. Open the Rolling Trace window in the CAN BUS Analyzer software.

8. Press the button(s) on the starter kit to see the output in the trace window.

9. Open the Transmit window.

10. To get a response from the starter kit, the following address must be used: ID = 0x201. Following the address, enter the DLC, which is the
Data Length Code (the number of bytes to follow). For example, if 0x201, DLC, Byte1, Byte2, Byte3, Byte4 was entered, the starter kit will

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 92

http://www.can-cia.org

respond with: 0x102, DLC, Byte1, Byte2, Byte3, Byte4.

Demonstration Output

The following figure shows the Rolling Trace send/receive output from the CAN Bus Analyzer.

Button Press Mapping

SW1 Press - 0x12C, 2, 0x0B, 0x16.

The following figure shows the Rolling Trace output message.

Comparator Peripheral Library Examples

This topic provides descriptions of the Comparator Peripheral Library examples.

Introduction

Comparator Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Comparator related firmware project that demonstrates the capabilities of the MPLAB Harmony Comparator
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Comparator Peripheral Library demonstration applications included in this release.

simple_comparator

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example sets up the Comparator in the PIC32MX device to compare the potentiometer input on inverting input to the reference voltage on
non-inverting input. Depending on the comparison, one half of the LEDs on the Explorer 16 Development Board will be lit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Comparator
Peripheral Library demonstration.

Description

To build this project, you must open the simple_comparator.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/cmp/simple_comparator.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 93

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

simple_comparator.X <install-dir>/apps/examples/peripheral/cmp/simple_comparator/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Simple comparator demonstration on the PIC32MX795F512L PIM and
Explorer 16 Development Board.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the simple comparator demonstration on the
PIC32MX795F512L PIM and Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Comparator demonstration.

Description

This demonstration sets up the analog comparator to trigger an interrupt when the inverting and non-inverting inputs change relative value.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe the status of the LEDs on the Explorer 16 Development Board. Depending on the comparison between the inverting and non-inverting
inputs, one half of the LEDs (D3-D6 or D7-D10) will be lit.

CVREF Peripheral Library Examples

This topic provides descriptions of the CVREF Peripheral Library examples.

Introduction

CVREF Peripheral Library Demonstration Applications Help.

Description

This distribution package contains one CVREF related firmware project that demonstrates the capabilities of the MPLAB Harmony CVREF
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the CVREF Peripheral Library demonstration applications included in this release.

triangle_wave

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 94

Description

This example sets up the CVREF voltage divider in the PIC32 devices to create a triangle waveform that can be observed on an oscilloscope.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the CVREF Peripheral
Library demonstration.

Description

To build this project, you must open the triangle_wave.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/cvref/triangle_wave.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

triangle_wave.X <install-dir>/apps/examples/peripheral/cvref/triangle_wave/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 CVREF triangle wave demonstration on the PIC32MX795F512L PIM and
Explorer 16 Development Board.

pic32mz_ec_pim_e16 pic32mz_ec_pim+e16 CVREF triangle wave demonstration on the PIC32MZ2048ECH100 PIM and
Explorer 16 Development Board.

pic32mz_ef_pim_e16 pic32mz_ef_pim+e16 CVREF triangle wave demonstration on the PIC32MZ2048EFH100 PIM and
Explorer 16 Development Board.

pic32mz_da_sk pic32mz_da_sk CVREF triangle wave demonstration on the PIC32MZ DA Starter Kit.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the CVREF triangle wave demonstration on the
PIC32MX795F512L PIM and Explorer 16 Development Board.

pic32mz_ef_pim_e16_freertos pic32mz_ef_pim+e16 FreeRTOS version of the CVREF triangle wave demonstration on the
PIC32MZ2048EFH100 PIM and Explorer 16 Development Board.

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the CVREF triangle wave demonstration on the
PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

Attach an oscilloscope probe to RB10, which is the CVREFOUT pin.

PIC32MZ2048ECH100 PIM and Explorer 16 Development Board

Attach an oscilloscope probe to RB10, which is the CVREFOUT pin.

PIC32MZ2048EFH100 PIM and Explorer 16 Development Board

Attach an oscilloscope probe to RB10, which is the CVREFOUT pin.

PIC32MZ DA Starter Kit and Starter Kit I/O Expansion Board

Attach an oscilloscope probe to RB10, which is the CVREFOUT pin.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 95

Running the Demonstration

Provides instructions on how to build and run the CVREF demonstration.

Description

This demonstration changes the voltage output on the CVREF pin to create a triangle waveform, which can be observed using an oscilloscope.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe the output of the CVREFOUT pin using the oscilloscope. A triangle waveform of different voltage levels should be observed.

DDR Peripheral Library Examples

This topic provides descriptions of the DDR Peripheral Library examples.

Introduction

DDR Peripheral Library Demonstration Applications Help

Description

This distribution package contains one DDR related firmware project that demonstrates the capabilities of the MPLAB Harmony DDR Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the DDR Peripheral Library demonstration applications included in this release.

Description

This release contains one demonstration:

• write_read_ddr2

write_read_ddr2

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstration tests the Micron MT47H64M16 device that is included on the PIC32MZ Graphics (DA) Family Starter Kit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the DDR Peripheral
Library demonstration.

Description

To build this project, you must open the write_read_ddr2.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ddr/write_read_ddr2.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

write_read_ddr2.X <install-dir>/apps/examples/peripheral/ddr/write_read_ddr2/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 96

Project Configuration Name BSP Used Description

pic32mz_da_sk pic32mz_da_sk Demonstrates DDR functionality on the PIC32MZ Graphics (DA)
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the DDR demonstration.

Description

This demonstration tests the functionality of the DDR SDRAM included on the PIC32MZ Graphics (DA) Family Starter Kit.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Run the application. LED1 and LED2 (Red and Yellow) will flash as the DDR is being filled. LED2 and LED3 (Yellow and Green) will flash as
the DDR is read and the pattern verified. LED3 (Green) will flash if all patterns match those written. LED1 (RED) will flash if any pattern does
not match the one written.

3. Pressing Switch 1 at any time will restart the test.

DMA Peripheral Library Examples

This topic provides descriptions of the DMA Peripheral Library examples.

Introduction

DMA Peripheral Library Demonstration Applications Help

Description

This distribution package contains one DMA related firmware project that demonstrates the capabilities of the MPLAB Harmony DMA Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the DMA Peripheral Library demonstration applications included in this release.

dma_led_pattern

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration displays a pattern stored in Flash on LEDs using DMA transfers (by exercising the DMA Peripheral Library), which are
triggered by a Timer1 interrupt.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the DMA Peripheral
Library DMA Handler demonstration.

Description

To build this project, you must open the dma_led_pattern.X project in MPLAB X IDE, and then select the desired configuration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 97

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/dma/dma_led_pattern.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

dma_led_pattern.X <install-dir>/apps/examples/peripheral/dma/dma_led_pattern/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

bootloader_pic32mx_eth_sk pic32mx_eth_sk This configuration is used and programmed by the Bootloader Demonstrations.
Refer to those demonstrations for more information.

bootloader_pic32mz_ec_sk pic32mz_ec_sk This configuration is used and programmed by the Bootloader Demonstrations.
Refer to those demonstrations for more information.

bootloader_pic32mz_da_sk pic32mz_da_sk This configuration is used and programmed by the Bootloader Demonstrations.
Refer to those demonstrations for more information.

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the DMA led pattern on PIC32MX795F512L PIM and Explorer 16
Development Board combination.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the DMA LED pattern on the PIC32MZ Embedded Connectivity (EC)
Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the DMA LED pattern on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the DMA LED pattern on the PIC32MZ Graphics (DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX795F512L PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the DMA demonstration.

Description

This demonstration triggers an interrupt based on the DMA alarm.

1. First compile and program the target device. While compiling, select the configuration for the hardware in use.

2. Observe the pattern on the LEDs upon successful execution. The pattern will repeat and continuously blink the LEDs in succession. If there is a
failure, the LEDs will stop toggling.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 98

EBI Peripheral Library Examples

This topic provides descriptions of the EBI Peripheral Library examples.

Introduction

External Bus Interface (EBI) Peripheral Library Demonstration Applications Help

Description

This distribution package contains an EBI SRAM read/write demonstration project that demonstrates the capabilities of the EBI and its ability to
store data and access data that is attached to it.

This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the EBI Peripheral Library demonstration applications included in this release.

sram_read_write

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

for the EBI Peripheral Library SRAM Read/Write Demonstration.

Description

To build this project, you must open the sram_read_write.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ebi/sram_read_write.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sram_read_write.X <install-dir>/apps/examples/peripheral/ebi/sram_read_write

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 Demonstrates SRAM read/write on the PIC32MZ EC Starter Kit with the
MEB II.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates SRAM read/write on the PIC32MZ EF Starter Kit with the
MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 99

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the EBI basic demonstration.

Description

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the PIC32MZ EC Starter Kit to the MEB II.

3. Connect the USB cable to the mini-B debugger port on the PIC32MZ EC Starter Kit and the other end to the computer.

4. Build, download, and run the demonstration project on the target board.

There are four states to the state machine in this demonstration, APP_STATE_WRITE, APP_STATE_READBACK, APP_STATE_DONE, and
APP_STATE_FAIL.

The demonstration will initialize the EBI hardware module. After the hardware had been configured, the demonstration will write in a walking
address to the entire memory array. After the demonstration has finished writing in data, it reads back the entire memory array and checks it
against the expected data.

If the check PASSES, the demonstration will go to APP_STATE_DONE state where it will remain and indicate the demonstration success by
turning ON LED3 (GREEN LED) of the PIC32MZ EC Starter Kit.

If the check FAILS, the demonstration will go to APP_STATE_FAIL state where it will remain and indicate the failure by turning ON LED1 (RED
LED) of the PIC32MZ EC Starter Kit.

I2C Peripheral Library Examples

This topic provides descriptions of the I2C Peripheral Library examples.

Introduction

I2C Peripheral Library Demonstration Applications Help

Description

This distribution package contains I2C-related firmware projects that demonstrate the capabilities of the MPLAB Harmony I2C Peripheral Library.

This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the I2C Peripheral Library demonstration applications included in this release.

i2c_interrupt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the I2C Peripheral
Library example demonstration.

Description

To build this project, you must open the i2c_interrupt.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/i2c/i2c_interrupt.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

i2c_interrupt.X <install-dir>/apps/examples/peripheral/i2c/i2c_interrupt/firmware

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 100

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to demonstrate I2C Master mode transfer setup
in Interrupt mode and static operation. The hardware used is the
PIC32MX795F512L PIM connected to the Explorer 16 Development Board.

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 The purpose of this configuration is to demonstrate I2C Master mode transfer setup
in Interrupt mode and static operation. The hardware used is the PIC32MZ EC
Starter Kit connected to the MEB II.

pic32mz_da_sk_meb2_wvga pic32mz_da_sk+meb2+wvga The purpose of this configuration is to demonstrate I2C Master mode transfer setup
in Interrupt mode and static operation. The hardware used is the PIC32MZ
Graphics (DA) Starter Kit connected to the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

 Note: The i2c_interrupt demonstration was tested on the Microchip MCP7949N RTCC device. The address of this device is 0xDE.

Explorer 16 Development Board with the PIC32MX795F512L PIM

• Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

If a Starter Kit I/O Expansion Board is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) to the corresponding lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground.

If a PICtail Plus Daughter Board is used, make the following connections:

• PICtail Plus Daughter Board pins RA2 (SCL2) and RA3 (SDA2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper PICtail Plus Daughter Board pins RA2 (SCL2) and pin RA3 (SDA2) to the corresponding SCL and SDA lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

PIC32MZ EC Starter Kit, PIC32MZ EF Starter Kit, PIC32MZ Graphics (DA) Starter Kit connected to MEB II

The jumper JP2 on PIC32MZ EC/EF Starter Kit should be connected according to the debugger/programmer used, as follows:

• If PKOB is used, pins 1 and 3 and pins 2 and 4 should be shorted

• If MPLAB REAL ICE or MPLAB ICD 3 is being used, pins 1 and 3 and pins 2 and 4 should be left open

The connections pertaining to I2C are as follows:

• Connect MEB II J2 pin 3 (SCL2) to the corresponding SCL line of the external I2C device

• Connect MEB II J2 pin 5 (SDA2) to the corresponding SDA line of the external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

Running the Demonstration

Provides instructions on how to build and run the I2C demonstration.

Description

1. This demonstration shows how to configure and make use of the I2C Driver APIs to support buffered operation of I2C in Interrupt mode. In this
demonstration, the I2C is configured as single instance and single client.

Once the demonstration application is compiled successfully for the selected configuration, the firmware can be programmed into the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 101

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The I2C Driver configures the I2C2 instance of the I2C peripheral in Master mode. The SDA and SCL lines are connected to the Microchip
MCP7940N RTCC device as described in Configuring the Hardware. The Master writes to sequential memory locations in SRAM memory of the
RTCC device. The Master then reads back the content from the same page.

The contents of the buffer variable can be checked to determine the result of the operation.

The expected results are shown in the following table.

Test Case Contents of Buffer

I2C2 (Master) RXbuffer_6[] = "3RTCCSLAVE" (data received from RTCC device)

Input Capture Peripheral Library Examples

This topic provides descriptions of the Input Capture Peripheral Library examples.

Introduction

Input Capture Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Input Capture related firmware project that demonstrates the capabilities of the MPLAB Harmony Input
Capture Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Input Capture Peripheral Library demonstration applications included in this release.

ic_basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration exercise the timer capture based on the rising edge of the Input Capture 1 pin (RD8). The timer capture value is stored in
'CaptureTime' variable.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Input Capture
Peripheral Library Input Capture Handler demonstration.

Description

To build this project, you must open the ic_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ic/ic_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ic_basic.X <install-dir>/apps/examples/peripheral/ic/ic_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 102

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Input Capture Peripheral Library on the PIC32 USB Starter Kit II and
the I/O Expansion Board combination.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the IC demonstration.

Description

This demonstration triggers an interrupt.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. LED3 will turn ON once a successful input capture has been made.

NVM Peripheral Library Examples

This topic provides descriptions of the NVM Peripheral Library examples.

Introduction

NVM Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Flash-related firmware project that demonstrates the capabilities of the MPLAB Harmony NVM Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the NVM Peripheral Library demonstration applications included in this release.

flash_modify

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration does the following:

• Erases a page in the program Flash

• Writes a row of data into the program Flash

• Reads and verifies the written data

• Indicates the success or failure of the operation through on-board LEDs

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM Peripheral
Library demonstration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 103

Description

To build this project, you must open the flash_modify.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/flash/flash_modify.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_modify.X <install-dir>/apps/examples/peripheral/flash/flash_modify/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the NVM Peripheral Library on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the NVM Peripheral Library on the PIC32MZ Embedded Connectivity
(EC) Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the NVM Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the NVM Peripheral Library on the PIC32MZ Graphics (DA) Starter
Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the NVM Peripheral Library with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mz795_pim_e16_freertos pic32mx795_pim+e16 Demonstrates the NVM Peripheral Library on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination with FreeRTOS.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the NVM Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit with FreeRTOS.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

• Switch S2 should be set to PIM

• Jumper J2 should be in place

PIC32MZ EC Starter Kit

Remove Jumper JP1.

PIC32MZ EF Starter Kit

Remove Jumper JP1.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the NVM demonstration.

Description

This demonstration exercises internal Flash erase, write, and read operations through the NVM Peripheral Library.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Upon successful execution of the demonstration, the LEDs on the respective hardware turn ON to indicate success or failure. Refer to the

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 104

following table for the LED status for the different configurations.

Project Configuration Success State Failure State

pic32mx795_pim_e16 LED4 ON LED3 ON

pic32mz_ec_sk

pic32mz_ef_sk

pic32mz_da_sk

LED3 ON LED1 ON

Output Compare Peripheral Library Examples

This topic provides descriptions of the Output Compare Peripheral Library examples.

Introduction

Output Compare Peripheral Library Demonstration Applications Help.

Description

This distribution package contains one Output Compare related firmware project that demonstrates the capabilities of the MPLAB Harmony Output
Compare Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Output Compare Peripheral Library demonstration applications included in this release.

oc_pwm

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration generates a 40 kHz PWM with a 25% duty cycle on the Output Compare 1 output pin.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Output Compare
Peripheral Library Output Compare Handler demonstration.

Description

To build this project, you must open the oc_pwm.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/oc/oc_pwm.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

oc_pwm.X <install-dir>/apps/examples/peripheral/oc/oc_pwm

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Output Compare PWM on PIC32 USB Starter Kit II.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 105

pic32mz_ec_sk pic32mz_ec_sk+meb2 Demonstrates the Output Compare PWM on the PIC32MZ EC Starter Kit and
MEB II combination.

pic32mz_ef_sk pic32mz_ef_sk+meb2 Demonstrates the Output Compare PWM on the PIC32MZ EF Starter Kit and
MEB II combination.

pic32mz_da_sk pic32mz_da_sk+meb2 Demonstrates the Output Compare PWM on the PIC32MZ DA Starter Kit and
MEB II combination.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the OC demonstration.

Description

This demonstration exhibits the generated PWM on the Output Compare pin.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. The user should see a 40 kHz signal with 25% duty cycle on the oscilloscope on the following pins for the respective configurations:

• pic32mx_usb_sk2: Output Compare 1 output pin on the I/O Expansion Board

• pic32mz_ec_sk or pic32mz_ef_sk: Output Compare 5 output pin (pin 22) on the PICtail connector of the MEB II

Oscillator Peripheral Library Examples

This topic provides descriptions of the Oscillator Peripheral Library examples.

Introduction

Oscillator Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Oscillator related firmware project that demonstrates the capabilities of the MPLAB Harmony Oscillator
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Oscillator Peripheral Library demonstration applications included in this release.

osc_config

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 106

demonstration.

Description

This example demonstrates how to change the system clock source and PLL values during run-time.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Oscillator Peripheral
Library.

Description

To build this project, you must open the osc_config.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/osc/osc_config.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

osc_config.X <install-dir>/apps/examples/peripheral/osc/osc_config/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Timer3 interrupt on the PIC32 USB Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity (EC)
Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the Timer3 interrupt on the PIC32MZ Graphics (DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Oscillator demonstration.

Description

This demonstration configures the Oscillator for different setups at run-time.

1. First compile and program the target device. While compiling, select the appropriate configuration for the hardware in use.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 107

2. LED3 will turn ON if the clock settings have changed during run-time.

PMP Peripheral Library Examples

This topic provides descriptions of the PMP Peripheral Library examples.

Introduction

PMP Peripheral Library Demonstration Applications Help

Description

This distribution package contains one PMP related firmware project that demonstrates the capabilities of the MPLAB Harmony PMP Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the PMP Peripheral Library demonstration applications included in this release.

pmp_lcd

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example initializes the LCD on the Explorer 16 Development Board and a sends string of information to it using the PMP Peripheral Library.

Building the Application

for the PMP Peripheral Library PMP Alarm Demonstration.

Description

To build this project, you must open the pmp_lcd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/pmp/pmp_lcd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pmp_lcd.X <install-dir>/apps/examples/peripheral/pmp/pmp_lcd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the PMP LCD configuration on the Explorer 16 Development
Board with the PIC32MX795F512L PIM.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 108

Running the Demonstration

Provides instructions on how to build and run the PMP demonstration.

Description

This demonstration shows the PMP/counter capabilities using PMP peripheral library functions.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the LCD of the Explorer 16 Development Board. The message, "Hello! Testing...", should appear on the display at run-time.

Ports Peripheral Library Examples

This topic provides descriptions of the PORTS Peripheral Library examples.

Introduction

Ports Peripheral Library Demonstration Applications Help.

Description

This distribution package contains two Ports related firmware projects that demonstrate the capabilities of the MPLAB Harmony Ports Peripheral
Library.

This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Ports Peripheral Library demonstration applications included in this release.

blinky_leds

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example blinks an LED with the selected frequency.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Ports Peripheral
Library.

Description

To build this project, you must open the blinky_leds.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ports/blinky_leds.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

blinky_leds.X <install-dir>/apps/examples/peripheral/ports/blinky_leds/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 109

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Ports Peripheral Library on the PIC32 Ethernet Starter Kit.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity (EC)
Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Graphics (DA) Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the Ports Peripheral Library with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the PORTS demonstration.

Description

This demonstration exercises the Ports Peripheral Library functionality.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe that LED3 is blinking.

3. Change the value of APP_LED_BLINK_DELAY in app.h, and then compile and run the code. Observe the change in frequency of the blinking
of the LED.

cn_interrupt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example controls LED toggling using change notice interrupts associated with the peripheral libraries and specific hardware.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Ports Peripheral
Library.

Description

To build this project, you must open the cn_interrupt.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ports/cn_interrupt.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 110

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cn_interrupt.X <install-dir>/apps/examples/peripheral/ports/cn_interrupt/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Ports Peripheral Library on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk_freertos pic32mx_eth_sk Demonstrates the Ports Peripheral Library on the PIC32 Ethernet Starter Kit with
FreeRTOS enabled.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity
(EC) Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit with FreeRTOS enabled.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the Ports Peripheral Library with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Graphics (DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides information on how to build and run the Change Notice Interrupt demonstration.

Description

This demonstration controls LED toggling using change notice interrupts. The on-board switch with debouncing logic is used for the change notice
interrupt.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of LED3, which should be blinking.

3. If you press Switch 1 on the starter kit once, LED3 stops blinking.

4. If you press Switch 1 again, LED3 resumes blinking.

5. Steps 3 and 4 can be repeated multiple times.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 111

Power Peripheral Library Examples

This topic provides descriptions of the Power Peripheral Library examples.

Introduction

Power Peripheral Library Demonstration Applications Help.

Description

This distribution package contains two Power related firmware project that demonstrates the capabilities of the MPLAB Harmony Power Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Power Peripheral Library demonstration applications included in this release.

deep_sleep_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration puts the device into Deep Sleep mode and uses the Deep Sleep Watchdog Timer (DSWDT) to wake the device. This example
also demonstrates the use of the Deep Sleep General Purpose Registers (DSGPRs) to save the application-critical content.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Power Peripheral
Library Deep Sleep Mode demonstration.

Description

To build this project, you must open the deep_sleep_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/power/deep_sleep_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

deep_sleep_mode.X <install-dir>/apps/examples/peripheral/power/deep_sleep_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk pic32mz_da_sk Demonstrates Deep Sleep mode on the PIC32MZ Graphics (DA) Family
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 112

Running the Demonstration

Provides instructions on how to build and run the Power demonstration.

Description

This demonstration places the device into Deep Sleep mode and then wakes it up using the Deep Sleep Watchdog Timer (DSWDT).

1. Compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of the LEDs. Treat LED3, LED2, and LED1 as binary BIT2, BIT1, and BIT0, respectively. Observe the binary count from 000 to
111, which repeats.

3. Press Switch 2 at any count value to place the device into Deep Sleep mode. Observe that the counting stops and the device will be in Deep
Sleep mode until the DSWDT times out (approximately 5 seconds).

4. After 5 seconds, the device wakes up from Deep Sleep and resumes counting.

Basic Operation

The application displays the binary count on LEDs. When Switch 2 is pressed, the application stores the count value into the Deep Sleep General
Purpose Register (DSGPR0) and places the device into Deep Sleep mode.

Upon the DSWDT time-out event, the device wakes up and the application checks whether the device was in Deep Sleep mode. If it was, the
count value in DSGPR0 is read and the device resumes the LED count from that value.

sleep_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration uses the Watchdog Timer to wake the device from Sleep mode and then toggle LEDs based on the status.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Power Peripheral
Library Sleep Mode demonstration.

Description

To build this project, you must open the sleep_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/power/sleep_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sleep_mode.X <install-dir>/apps/examples/peripheral/power/sleep_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates Sleep mode on the PIC32 Ethernet Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Sleep mode on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates Sleep mode on the PIC32MZ Graphics (DA) Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Sleep mode with 16-bit configuration on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 113

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Power demonstration.

Description

This demonstration puts the device in Sleep mode and than wakes it using the Watchdog Timer.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of the LEDs. LED1 should glow for a few seconds and then turn off and then LED3 will begin toggling.

Reset Peripheral Library Examples

This topic provides descriptions of the Reset Peripheral Library examples.

Introduction

Reset Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Reset related firmware project that demonstrates the capabilities of the MPLAB Harmony Reset Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Reset Peripheral Library demonstration applications included in this release.

reset_handler

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example performs checks on various reset flags, assigning each one to an I/O port pin. If the flag is set, the corresponding LED is turned ON.
All of the flags can then be cleared by pressing a switch on the board.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Reset Peripheral
Library Reset Handler demonstration.

Description

To build this project, you must open the reset_handler.X project in MPLAB X IDE, and then select the desired configuration.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 114

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/reset/reset_handler.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

reset_handler.X <install-dir>/apps/examples/peripheral/reset/reset_handler/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the Reset Peripheral Library on the PIC32MX795F512L PIM and
the Explorer 16 Development Board.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Reset Peripheral Library on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Reset Peripheral Library on the PIC32MZ EF Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the Reset Peripheral Library on the PIC32MZ DA Starter Kit.

pic32mx795_pim_e16_16b pic32mx795_pim+e16 microMIPS version of the demonstration, which demonstrates the Reset
Peripheral Library on the PIC32MX795F512L PIM and the Explorer 16
Development Board.

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates the Reset
Peripheral Library on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

Jumper JP2 should be connected (shorted) for the LEDs to function.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the RESET demonstration.

Description

This demonstration finds the reason for a Reset and illuminates the LEDs accordingly.

First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

PIC32MX795F512L PIM with Explorer 16 Development Board:

Check the status of the LEDs to observe the different reasons for a Reset, as follows:

1. Press Switch S6 to clear all Reset flags, which turns all LEDs OFF.

2. Press the MCLR switch on the board to cause a Reset. LED D9 should turn ON.

3. Unplug the power and plug it again to cause a Power-on Reset (POR). LED D5 should turn ON.

4. Press the MCLR switch again. LED D5 and D9 should both turn ON.

5. Press Switch S6 again to clear all Resets, which turns all LEDs OFF.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 115

6. Press Switch S4 to enable the Watchdog Timer. After a few seconds, LED 10 should turn ON indicating a WDT reset has occurred.

These steps can be repeated from the beginning.

PIC32MZ EC Starter Kit or PIC32MZ EF Starter or PIC32MZ DA Starter Kit:

1. Press Switch S3 to clear all Reset flags, which turns all LEDs OFF.

2. Press Switch S1 to enable the Watchdog Timer. After a few seconds, LED 1 should turn ON indicating a WDT reset has occurred.

 Note: A POR clears all the other Reset flags, with the exception of a BOR and a POR flags.

RTCC Peripheral Library Examples

This topic provides descriptions of the RTCC Peripheral Library examples.

Introduction

RTCC Peripheral Library Demonstration Applications Help

Description

This distribution package contains one RTCC related firmware project that demonstrates the capabilities of the MPLAB Harmony RTCC Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the RTCC Peripheral Library demonstration applications included in this release.

rtcc_alarm

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration sets up the RTCC module to function as an alarm, which goes off at 6:00 AM every morning. The time is set to 5:59:55, so the
alarm will trigger 5 seconds after running the code.

Building the Application

for the RTCC Peripheral Library RTCC Alarm Demonstration.

Description

To build this project, you must open the rtcc_alarm.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/rtcc/rtcc_alarm.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

rtcc_alarm.X <install-dir>/apps/examples/peripheral/rtcc/rtcc_alarm/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 116

Project
Configuration Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the RTCC alarm on the PIC32MX795F512L PIM and Explorer 16
Development Board combination.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the RTCC alarm on PIC32MZ Embedded Connectivity (EC) Starter
Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the RTCC alarm on PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the RTCC alarm on PIC32MZ Graphics (DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX795F512L PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the RTCC Alarm demonstration.

Description

This demonstration triggers an interrupt based on the RTCC alarm.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of the LEDs (D3 on the Explorer 16 Development Board or LED3 on the starter kit). The LED ON status indicates success and
LED OFF status indicates failure.

SPI Peripheral Library Examples

This topic provides descriptions of the SPI Peripheral Library examples.

Introduction

SPI Peripheral Library Demonstration Applications Help

Description

This distribution package contains two SPI related firmware project that demonstrates the capabilities of the MPLAB Harmony SPI Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the SPI Peripheral Library demonstration applications included in this release.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 117

spi_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration loops back data transfer. This example assumes that the SPI SDO (output) is connected to the SDI (input).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Peripheral
Library Flash Read in PIO Mode Demonstration.

Description

To build this project, you must open the spi_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/spi/spi_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

spi_loopback.X <install-dir>/apps/examples/peripheral/spi/spi_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the SPI loopback on the PIC32 USB Starter Kit II and the Starter Kit I/O
Expansion Board combination.

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the SPI loopback on the PIC32MX795F512L PIM, Explorer 16
Development Board, and the Starter Kit I/O Expansion Board combination.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity (EC) Starter
Kit and the Starter Kit I/O Expansion Board combination.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit and the Starter Kit I/O Expansion Board combination.

pic32mz_da_sk pic32mz_da_sk Demonstrates the SPI loopback on the PIC32MZ Graphics (DA) Starter Kit and the
Starter Kit I/O Expansion Board combination.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit and the Starter Kit I/O Expansion Board combination in
microMIPS mode.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit and the Starter Kit I/O Expansion Board combination with
FreeRTOS.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 Demonstrates the SPI loopback on the PIC32MX795F512L PIM, Explorer 16
Development Board, and the Starter Kit I/O Expansion Board combination with
FreeRTOS.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI1 and SDO1 pins on the Starter Kit I/O expansion board

• Connect the Starter Kit I/O Expansion Board to the Explorer 16 Development Board and mount the PIM on the development board

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 118

PIC32MZ EC Starter Kit and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI2 pin (J11 pin 32) and SDO2 pin (J10 pin 35) on the Starter Kit I/O Expansion Board

• Connect the PIC32MZ EC Starter Kit with the adapter board to the Starter Kit I/O Expansion Board

PIC32MZ EF Starter Kit and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI2 pin (J11 pin 32) and SDO2 pin (J10 pin 35) on the Starter Kit I/O Expansion Board

• Connect the PIC32MZ EF Starter Kit with the adapter board to the Starter Kit I/O Expansion Board

PIC32MZ DA Starter Kit and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI1 pin (J11 pin 52) and SDO1 pin (J10 pin 44) on the Starter Kit I/O Expansion Board

• Connect the PIC32MZ DA Starter Kit with the adapter board to the Starter Kit I/O Expansion Board

PIC32 USB Starter Kit II and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI1 and SDO1 pins on the Starter Kit I/O Expansion Board

• Connect the Starter Kit I/O Expansion Board to the PIC32 USB Starter Kit II

Running the Demonstration

Provides instructions on how to build and run the SPI PIO mode transfer demonstration.

Description

This demonstration loops back data on the SPI module (SPI1 and SPI2 when using the PIC32MZ EC Starter Kit or the PIC32MZ EF Starter Kit,
and SPI1 and SPI3 when using the PIC32MZ DA Starter Kit.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of LEDs:

• LED D4 and D5 on the Explorer 16 Development Board

• LED3 and LED2 on the PIC32 USB Starter Kit II, PIC32MZ EC Starter Kit, PIC32MZ EF Starter Kit, or PIC32MZ DA Starter Kit.

3. If the demonstration was successful, the LED D5 or LED3 illuminates. If the demonstration fails, LED D4 or LED2 illuminates.

SQI Peripheral Library Examples

This topic provides descriptions of the SQI Peripheral Library examples.

Introduction

SQI Peripheral Library Demonstration Applications Help

Description

This distribution package contains two SQI related firmware projects that demonstrate the capabilities of the MPLAB Harmony SQI peripheral
libraries. This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and
development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the SQI Peripheral Library demonstration applications included in this release.

flash_read_dma_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises SQI module in DMA mode, by reading a page in the SQI Flash (SST26VF032/SST26VF032B) device on
the PIC32MZ EC Starter Kit or the PIC32MZ EF Starter Kit. This demonstration uses PIO mode to write the Flash. Following steps describe the
functionality per the calls during run time:

1. Sets up SQI to run at 25 MHz. (system_init.c:: SYS_Initialize, app.c:: APP_Initialize)

2. Once the clock frequency is programmed, the demonstration prepares the connected Serial Flash device for a write read transaction (app.c::
APP_Tasks:: APP_STATE_INIT_FLASH:: SQI_Flash_Setup).

3. Reads the device ID of the attached Flash device (app.c:: APP_Tasks:: APP_STATE_FLASH_ID_READ:: SQI_FlashID_Read).

4. Writes a page in Flash in PIO mode (app.c:: APP_Tasks:: APP_STATE_WRITE_FLASH:: SQI_PIO_PageWrite(FLASH_PAGE_ADDR)).

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 119

5. Reads the contents of the page in Flash using DMA mode and compares it to the data written to make sure the operation is successful
(app.c:: APP_Tasks:: APP_STATE_READ_FLASH_DMA_MODE:: SQI_DMA_Read(FLASH_PAGE_ADDR)).

6. Indicates demonstration success using LED3 (Green LED) on the starter kit (app.c:: APP_Tasks:: APP_STATE_DONE::
BSP_SwitchONLED(LED_GRN)).

7. LED3 OFF, indicates demonstration FAILURE (stuck in one of the states).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SQI Peripheral
Library Flash Read in DMA Mode Demonstration.

Description

To build this project, you must open the flash_read_dma_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/sqi/flash_read_dma_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_read_dma_mode.X <install-dir>/apps/examples/peripheral/sqi/flash_read_dma_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the SQI DMA mode transfer on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SQI DMA mode transfer on the PIC32MZ EF Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the SQI DMA mode transfer on the PIC32MZ DA Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SQI DMA mode transfer demonstration.

Description

This demonstration allows page writes and reads to/from an SQI Flash device.

1. First compile and program the target device. While compiling, select the appropriate configuration for the starter kit in use.

2. Check the state of LED3 on the starter kit in use to determine the status of the demonstration (LED ON indicates success, LED OFF indicates
failure).

flash_read_pio_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 120

demonstration.

Description

This demonstration application exercises the SQI module in PIO mode, by writing and reading a page in the SQI Flash
(SST26VF032/SST26F032B) device on the PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit using the SQI Peripheral Library.

The following steps describe the functionality per the calls during run-time:

1. Sets up SQI to run at 25 MHz. (system_init.c:: SYS_Initialize, app.c:: APP_Initialize).

2. Once the clock frequency is programmed, the demonstration prepares the connected Serial Flash device for a write read transaction (app.c::
APP_Tasks:: APP_STATE_INIT_FLASH:: SQI_Flash_Setup).

3. Reads the device ID of the attached Flash device (app.c:: APP_Tasks:: APP_STATE_FLASH_ID_READ:: SQI_FlashID_Read)

4. Writes a page in Flash in PIO mode (app.c:: APP_Tasks:: APP_STATE_WRITE_FLASH:: SQI_PIO_PageWrite(FLASH_PAGE_ADDR)).

5. Reads the contents of the page in Flash and compares it to the data written to make sure the operation is successful (app.c:: APP_Tasks::
APP_STATE_READ_FLASH_PIO_MODE:: SQI_PIO_Read(FLASH_PAGE_ADDR)).

6. Indicates demonstration success using LED3 (Green LED) on the starter kit (app.c:: APP_Tasks:: APP_STATE_DONE::
BSP_SwitchONLED(LED_GRN)).

7. LED3 OFF, indicates demonstration FAILURE (stuck in one of the states).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SQI Peripheral
Library Flash Read in PIO Mode Demonstration.

Description

To build this project, you must open the flash_read_pio_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/sqi/flash_read_pio_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_read_pio_mode.X <install-dir>/apps/examples/peripheral/sqi/flash_read_pio_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the SQI PIO mode transfer on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SQI PIO mode transfer on the PIC32MZ EF Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the SQI PIO mode transfer on the PIC32MZ DA Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 121

Running the Demonstration

Provides instructions on how to build and run the SQI PIO mode transfer demonstration.

Description

This demonstration allows page writes and reads to/from an SQI Flash device.

1. First compile and program the target device. While compiling, select the appropriate configuration for the starter kit in use.

2. Check the state of LED3 on the starter kit in use to determine the status of the demonstration (LED3 ON indicates success, LED3 OFF
indicates failure).

flash_read_xip_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises the SQI module in XIP mode, by reading a page in the SQI Flash (SST26VF032/SST26VF032B) device
on the PIC32MZ EC Starter Kit or the PIC32MZ EF Starter Kit. This demonstration uses PIO mode to write the Flash.

The following steps describe the functionality per the calls during run-time:

1. Sets up SQI to run at 25 MHz. (system_init.c:: SYS_Initialize, app.c:: APP_Initialize)

2. Once the clock frequency is programmed, the demonstration prepares the connected Serial Flash device for a write read transaction (app.c::
APP_Tasks:: APP_STATE_INIT_FLASH:: SQI_Flash_Setup).

3. Reads the device ID of the attached Flash device (app.c:: APP_Tasks:: APP_STATE_FLASH_ID_READ:: SQI_FlashID_Read).

4. Writes a page in Flash in PIO mode (app.c:: APP_Tasks:: APP_STATE_WRITE_FLASH:: SQI_PIO_PageWrite(FLASH_PAGE_ADDR)).

5. Reads the contents of the page in Flash using DMA mode and compares it to the data written to make sure the operation is successful (app.c::
APP_Tasks:: APP_STATE_READ_FLASH_DMA_MODE:: SQI_XIP_Read(FLASH_PAGE_ADDR)).

6. Indicates demonstration success using LED3 (Green LED) on the starter kit (app.c:: APP_Tasks:: APP_STATE_DONE::
BSP_SwitchONLED(LED_GRN)).

7. LED3 OFF, indicates demonstration FAILURE (stuck in one of the states).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SQI Peripheral
Library Flash Read in XIP Mode Demonstration.

Description

To build this project, you must open the flash_read_xip_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/sqi/flash_read_pio_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_read_xip_mode.X <install-dir>/apps/examples/peripheral/sqi/flash_read_xip_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SQI XIP mode transfer on the PIC32MZ EF Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the SQI XIP mode transfer on the PIC32MZ DA Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 122

Description

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SQI XIP mode transfer demonstration.

Description

This demonstration allows page writes and reads to/from an SQI Flash device.

1. First compile and program the target device. While compiling, select the appropriate configuration for the starter kit in use.

2. Check the state of LED3 on the starter kit to determine the status of the demonstration (LED3 ON indicates success, LED3 OFF indicates
failure).

Timer Peripheral Library Examples

This topic provides descriptions of the TMR Peripheral Library examples.

Introduction

Timer Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Timer related firmware project that demonstrates the capabilities of the MPLAB Harmony Timer Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Timer Peripheral Library demonstration applications included in this release.

timer3_interrupt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration uses Timer3 in 32-bit mode to generate an interrupt based on the time-out (1 second).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TMR Peripheral
Library TMR Alarm Demonstration.

Description

To build this project, you must open the timer3_interrupt.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/tmr/timer3_interrupt.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

timer3_interrupt.X <install-dir>/apps/examples/peripheral/tmr/timer3_interrupt/firmware

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 123

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the Timer3 interrupt on the PIC32MX795F512L PIM and Explorer 16
Development Board combination.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Timer3 interrupt on the PIC32 USB Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity (EC)
Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the Timer3 interrupt on the PIC32MZ Graphics (DA) Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the Timer3 interrupt with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mx_usb_sk2_freertos pic32mx_usb_sk2 Demonstrates the Timer3 interrupt on the PIC32 USB Starter Kit II with FreeRTOS
running on the configuration.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit with FreeRTOS running on the configuration.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

Jumper JP2 should be connected (shorted) for the LEDs to function.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the TMR demonstration.

Description

This demonstration shows the timer/counter capabilities using TMR peripheral library functions.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of the LEDs. LED3 ON status indicates success and LED3 OFF status indicates failure.

USART Peripheral Library Examples

This topic provides descriptions of the USART Peripheral Library examples.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 124

Introduction

USART (USART) Peripheral Library Demonstration Applications Help

Description

This distribution package contains one USART related firmware project that demonstrates the capabilities of the MPLAB Harmony USART
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the USART Peripheral Library demonstration applications included in this release.

uart_basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration uses USART2 in UART mode to transmit characters to the console and echo received characters on the console while turning
on a LED.

Building the Application

for the USART Peripheral Library USART Alarm Demonstration.

Description

To build this project, you must open the uart_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/usart/uart_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

uart_basic.X <install-dir>/apps/examples/peripheral/usart/uart_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the USART time-out function on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the USART peripheral library on PIC32 USB Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the USART peripheral library on PIC32MZ Embedded Connectivity
(EC) Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the USART peripheral library on PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the USART peripheral library on PIC32MZ Graphics (DA) Starter Kit.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration, which demonstrates the USART time-out
function on the PIC32MX795F512L PIM and Explorer 16 Development Board
combination.

pic32mz_ef_sk_freertos pic32mz_ef_sk FreeRTOS version of the demonstration, which demonstrates the USART peripheral
library on PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 125

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates the USART peripheral
library on PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM and Explorer 16 Development Board

Connect a standard serial cable or USB-to-RS-232 adapter cable between the personal computer and the Explorer 16 Development Board P1
(UART) port.

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit

The optional MCP2200 Breakout Module (ADM00393), which is a USB-to-UART serial converter adapter board, may be used to run this
demonstration. If the Breakout Module will be used, an additional interface is required. The acceptable interface is the Starter Kit I/O Expansion
Board with the PIC32MZ Starter Kit Adapter Board (AC320006). Jumper from pins 58 and 23 of J10 header to RX and TX of the Breakout module,
respectively. In addition, connect GND.

PIC32MZ DA Starter Kit

Connect a USB cable to the J5 Mini Type B connector on the PIC32MZ DA Starter Kit. Connect this USB cable to the computer running the
terminal emulation program.

PIC32 USB Starter Kit II

The optional MCP2200 Breakout Module, which is a USB-to-UART serial converter adapter board, may be used to run this demonstration. If the
Breakout Module will be used, an additional interface is required. The acceptable interface is the Starter Kit I/O Expansion Board. Jumper from
pins 48 and 46 of J11 header to RX and TX of the Breakout Module, respectively. In addition, GND must be shorted.

Running the Demonstration

Provides instructions on how to build and run the USART demonstration.

Description

This demonstration shows the USART capabilities using the USART Peripheral Library functions.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Launch a console client (OS native/Tera Term, etc.,) and set the serial port settings to 9600-N-1.

3. Launch the demonstration. The following messages will appear in the console window:

 *** UART Interrupt-driven Application Example ***
 *** Type some characters and observe the LED turn ON ***

4. As indicated in the message, notice the typed characters echoed on the console window and LED.

5. Turn on LED (D3 on Explorer 16 Development Board or LED3 on the PIC32 USB Starter Kit II, PIC32MZ EC Starter Kit, PIC32MZ EF Starter
Kit, and PIC32MZ DA Starter Kit) indicating interrupt processing.

WDT Peripheral Library examples

This topic provides descriptions of the WDT Peripheral Library examples.

Introduction

Watchdog Timer (WDT) Peripheral Library Demonstration Applications Help

Description

This distribution package contains one WDT related firmware project that demonstrates the capabilities of the MPLAB Harmony Watchdog Timer
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 126

Demonstrations

This topic provides information on how to run the WDT Peripheral Library demonstration applications included in this release.

wdt_timeout

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration exercises the watchdog time-out function using the WDT Peripheral Library.

Building the Application

for the WDT Peripheral Library WDT Alarm Demonstration.

Description

To build this project, you must open the wdt_timeout.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/wdt/wdt_timeout.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wdt_timeout.X <install-dir>/apps/examples/peripheral/wdt/wdt_timeout/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the WDT time-out function on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the WDT time-out function on the PIC32 USB Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the WDT time-out function on the PIC32MZ Embedded Connectivity
(EC) Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the WDT time-out function on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates the WDT time-out function on the PIC32MZ Graphics (DA) Starter Kit.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration, which demonstrates the WDT time-out
function on the PIC32MX795F512L PIM and Explorer 16 Development Board
combination.

pic32mz_ef_sk_freertos pic32mz_ef_sk FreeRTOS version of the demonstration, which demonstrates the WDT time-out
function on the PIC32MZ Embedded Connectivity with Floating Point Unit (EF)
Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates the WDT time-out
function on the PIC32MZ Embedded Connectivity with Floating Point Unit (EF)
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Applications Help Examples Peripheral Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 127

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX795F512L PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the WDT time-out demonstration.

Description

This demonstration exercises the WDT time-out function.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. The LEDs (LED1 on the PIC32 USB Starter Kit II, PIC32MZ EC Starter Kit, PIC32MZ EF Starter Kit and PIC32MZ DA Starter Kit, or LED D3 on
the Explorer 16 Development Board) will blink during normal operation.

3. Press Switch 1 (PIC32 USB Starter Kit II, PIC32MZ EC Starter Kit, PIC32MZ EF Starter Kit and PIC32MZ DA Starter Kit) or Switch S3
(Explorer 16 Development Board) for the WDT time-out reset. If the demonstration is successful, LED3 (PIC32 USB Starter Kit II, PIC32MZ EC
Starter Kit, PIC32MZ EF Starter Kit, and PIC32MZ DA Starter Kit) or LED D5 (Explorer 16 Development Board) will illuminate. If they do not,
this indicates demonstration failure.

System Service Library Examples

Introduction

The example applications provide very simple single-purpose examples of how to use MPLAB Harmony system service libraries.

Description

System services have two primary types of implementations:

• System Service Libraries

• Low-Level Support

Most system service libraries follow the same basic model as a device driver (directly using a peripheral library to access hardware) or a
middleware library (using a device driver to access hardware) as the rest of the system.

Command Processor System Service Examples

This topic provides descriptions of the Command Processor System Service examples.

Introduction

Command Processor System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Command Processor System
Service. This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and
development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Command Processor System Service Library demonstration applications included in this release.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 128

command_appio

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises the Command Processor System Service by receiving user keyboard input and displaying the output
string to the PIC AppIO window in MPLAB X IDE.

The demonstration application does the following:

1. Launches the application via MPLAB REAL ICE to a target device.

2. Displays "Ready to accept command input" in the PIC AppIO window in MPLAB X IDE at initialization.

3. Listens for user command input.

4. Supports two simple commands native to this application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Command
Processor System Service Demonstration.

Description

To build this project, you must open the command_appio.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/command_appio

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

command_appio.X <install-dir>/apps/examples/system/command_appio/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates application I/O using the PIC32 USB Starter Kit II, the Starter Kit I/O
Expansion Board and the MPLAB REAL ICE in-circuit emulator.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

This demonstration requires the MPLAB REAL ICE in-circuit emulator and the Starter Kit I/O Expansion Board.

Running the Demonstration

Provides instructions on how to build and run the Command Processor System Service demonstration.

Description

Do the following to run the demonstration:

1. Ensure that the PIC32 USB Starter Kit II, the Starter Kit I/O Expansion Board, and the MPLAB REAL ICE in-circuit emulator are connected and
ready.

2. Open the PIC AppIO window in MPLAB X IDE by selecting Window > Debugging > PIC AppIO.

3. Make sure the Output Format in PIC AppIO is set to "Text" (the default is 8-bit hex).

4. Debug the project.

5. Wait for "Ready to accept command input" to display in the Output Format section.

6. Type keyboard input into the Input Format bar and press <ENTER>.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 129

7. Typing "help" will display the general help sections. Typing "help app" will display the commands unique to the application including a brief
description.

8. Try the commands listed by "help app".

Console System Service Examples

This topic provides descriptions of the Console System Service examples.

Introduction

Console System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Console System Service. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Console System Service Library demonstration applications included in this release.

multi_instance_console

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration illustrates the read and write operation on the Console when multiple Console instances are running simultaneously. The
project has three configurations, the first configuration demonstrates simultaneous operation of the UART Console and the USB CDC Console, the
second configuration shows the UART Console and the AppIO Console and the third configuration shows the USB CDC Console and the AppIO
Console.

The application perform the following tasks:

• Each instance of Console prints a welcome message and prompts the user to enter a string

• The string that is entered by the user is echoed back to the Console

• The read operation completion can be checked through both polling and by indication of a callback

• The application is designed so that the two Console instances can run independently of each other

Libraries Used

The Console System Service resides as the top layer. The UART and USB Drivers are used depending on the choice of Console selected. The
UART and USB Drivers call their respective Peripheral Libraries (PLIBs) to interact with the hardware. If AppIO is selected as the Console choice,
the AppIO service is used, which is provided with the MPLAB X IDE C/C++ XC32 Compiler.

The application interacts directly with the Console System Service Library. The Console System Service Library, depending upon the choice of
console driver, makes calls to the UART, USB, or AppIO.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Command
Processor System Service Demonstration.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 130

Description

To build this project, you must open the multi_instance_console.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/multi_instance_console

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

multi_instance_console.X <install-dir>/apps/examples/system/multi_instance_console/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates USB CDC and AppIO Console instances running simultaneously on the
PIC32 USB Starter Kit II.

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates UART and AppIO Console instances running simultaneously on the the
PIC32MX795F512L PIM with the Explorer 16 Development Board.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates UART and USB CDC Console instances running simultaneously on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

This demonstration requires the MPLAB REAL ICE in-circuit emulator for communication with AppIO and the Starter Kit I/O Expansion Board.

PIC32MX795F512L PIM with the Explorer 16 Development Board

This demonstration requires the MPLAB REAL ICE in-circuit emulator for communication with AppIO.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Console System Service demonstration.

Description

Depending on the hardware in use, use on the of the following three procedures to run the demonstration.

PIC32 USB Starter Kit II

This demonstration writes and reads to/from a terminal program running on a personal computer host and also from the AppIO interface in MPLAB
X IDE.

This demonstration utilizes the PIC32 USB Starter Kit II and requires the starter kit to be paired with the Starter Kit I/O Expansion Board.

Since AppIO uses the Debug interface, it also requires the MPLAB REAL ICE in-circuit emulator.

1. In MPLAB X IDE, select the hardware configuration to be used. Compile and program the target device in Debug mode with the selected
configuration.

2. Open the AppIO window in MPLAB X IDE by selecting Window > Debugging > PIC AppIO.

3. Ensure that the Output Format in PIC AppIO is set to "Text" (the default is 8-bit hex), as shown in the following figure.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 131

4. Before connecting the micro-USB cable to the host computer, the demonstration must be running for the terminal program to recognize the
USB COM device. Once the demonstration is running, start a terminal emulator program (Tera Term shown) with serial port settings (921600
baud, 8 bit data, no parity, 1 bit stop, no flow control), as shown in the following figure.

Demonstration Output

When running the program in debug mode, the AppIO interface will display messages, as shown in the following figure.

It is important to note that the AppIO interface implements a blocking read call expecting data from debug interface until the user enters a
RETURN, so all of the necessary AppIO read operations should be executed first before proceeding with the USB Console.

USB can be executed only after the AppIO demonstration is complete. A display similar to the following figure can be expected after execution of
the USB Console demonstration.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 132

PIC32MX795F512 PIM and Explorer 16 Development Board

This demonstration reads and writes to a terminal program running on a personal computer host and also from the AppIO interface in MPLAB X
IDE.

This demonstration utilizes the PIC32795F512L PIM paired with the Explorer 16 Development Board.

1. In MPLAB X IDE, select the hardware configuration to be used. Compile and program the target device in Debug mode with the selected
configuration.

2. Open the AppIO window in MPLAB X IDE by selecting Window > Debugging > PIC AppIO.

3. Ensure that the Output Format in PIC AppIO is set to "Text" (the default is 8-bit hex), as shown in the following figure.

4. Connect the Explorer 16 Development Board to the host personal computer using a RS-232 UART connection.

5. A terminal program like Tera Term can be used with the settings shown in the following figure.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 133

Demonstration Output

When running the program in debug mode, the AppIO interface will display messages, as shown in the following figure.

It is important to note that the AppIO interface implements a blocking read call, expecting data from debug interface until the user enters a
RETURN, so all of the necessary AppIO read operations should be executed first before proceeding with the UART Console.

Once AppIO operation is complete, the UART Console can be executed. A display similar to the following figure can be expected.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 134

PIC32MZ EF Starter Kit

This demonstration reads and writes and to a terminal program running on a personal computer host that uses the UART and USB CDC 2
Console.

This demonstration utilizes the PIC32MZ EF Starter Kit.

1. In MPLAB X IDE, select the hardware configuration to be used. Compile and program the target device in Debug mode with the selected
configuration.

2. Connect the PIC32MZ EF Starter Kit to the host personal computer using a mini-USB cable for the UART connection and a micro-USB cable
for the USB connection.

3. A terminal program such as Tera Term can be used with the following UART settings.

4. Before connecting the micro-USB cable to the host computer, the demonstration must be running for the terminal program to recognize the
USB COM device. Once the demonstration is running, start a terminal emulator program (e.g., Tera Term) with serial port with the following
USB settings: (921600 baud, 8 bit data, no parity, 1 bit stop, no flow control), as shown in the following figure.

Demonstration Output

Since the UART and USB Console are running independently, the order in which the user interacts with each Console is irrelevant.

The UART Console should show an output similar to the following figure.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 135

The USB Console should show an output similar to the following figure.

Debug System Service Examples

This topic provides descriptions of the Debug System Service examples.

Introduction

Debug System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Debug System Service. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Debug System Service Library demonstration applications included in this release.

debug_uart

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 136

Description

This demonstration application exercises the Debug and Console System Services by routing messages from the Debug System Service through
the Console System Service to a terminal program running on a personal computer via the UART communications protocol.

The demonstration application does the following:

• Demonstrates a direct console write by outputting a string to the terminal

• Demonstrates formatted and unformatted message writes to the terminal

• Demonstrates the use of the global error level

• Demonstrates debug output messaging using both polling and callback notification of completion

• Demonstrates what happens when the write queue overflows

• Demonstrates console flush in reaction to an error condition

• Demonstrates console read using both polling and callback notification

• Demonstrates an echo function in which the characters are written back to the terminal as they are read

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Debug System
Service Demonstration.

Description

To build this project, you must open the debug_uart.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/debug_uart

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

debug_uart.X <install-dir>/apps/examples/system/debug_uart/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstration console communication via UART RS-232 using the Explorer 16
Development Board and the PIC32MX795F512L PIM.

pic32mz_ef_sk pic32mz_ef_sk Demonstration console communication via UART RS-232 using using the PIC32MZ
EF Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstration console communication via UART RS-232 using the PIC32MZ DA
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM combined with the Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 137

Running the Demonstration

Provides instructions on how to build and run the Debug System Service demonstration.

Description

This demonstration writes and reads to/from a terminal program running on a personal computer host.

1. First compile and program the target device. While compiling, select the configuration for the hardware in use.

2. Connect the Explorer 16 Development Board to the host personal computer using a RS-232 UART connection.

3. The demonstration must be running for the terminal program to recognize the COM device. Start a terminal emulator program (Tera Term
shown).

4. Press SW1 to start the demonstration.

5. Follow the instructions on the terminal.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 138

debug_usb_cdc_2

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises the Debug and Console System Services by routing messages from the Debug System Service through
the Console System Service to a terminal program running on a personal computer via the USB-CDC communications protocol.

The demonstration application does the following:

• Demonstrates a direct console write by outputting a string to the terminal

• Demonstrates formatted and unformatted message writes to the terminal

• Demonstrates the use of the global error level

• Demonstrates debug output messaging using both polling and callback notification of completion

• Demonstrates what happens when the write queue overflows

• Demonstrates console flush in reaction to an error condition

• Demonstrates console read using both polling and callback notification

• Demonstrates an echo function in which the characters are written back to the terminal as they are read

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Debug System
Service Demonstration.

Description

To build this project, you must open the debug_usb_cdc_2.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/debug_usb_cdc_2

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

debug_usb_cdc_2.X <install-dir>/apps/examples/system/debug_usb_cdc_2/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates console communication through USB with the PIC32 USB Starter
Kit II.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 139

pic32mz_ec_sk pic32mz_ec_sk Demonstrates console communication through USB with the PIC32MZ EC Starter
Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates console communication through USB with the PIC32MZ EF Starter
Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Debug System Service demonstration.

Description

This demonstration writes and reads to/from a terminal program running on a personal computer host.

1. First compile and program the target device. While compiling, select the pic32mz_ec_sk configuration for the PIC32MZ EC Starter Kit, the
pic32mz_ef_sk configuration for the PIC32MZ EF Starter Kit, or the pic32mx_usb_sk2 configuration for the PIC32MX USB Starter Kit II.

2. Connect the starter kit to the host personal computer using an A to micro-A/B USB cable.

3. The demonstration must be running for the terminal program to recognize the COM device. Start a terminal emulator program (Tera Term
shown) with serial port with the following settings: (921600 baud, 8 bit data, no parity, 1 bit stop, no flow control).

4. The terminal will indicate a successful connection. Press any key on the computer to start the demonstration.

5. Follow the instructions on the terminal.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 140

Device Control System Service Examples

This topic provides descriptions of the Device Control System Service examples.

Introduction

Device Control System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Device Control System Service.
This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Device Control System Service Library demonstration applications included in this release.

devcon_cache_clean

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example application demonstrates how cache coherency issues arise when transferring data out of memory using DMA. The MPLAB
Harmony Device Control System Service contains various cache functions, which are used in this example to resolve the problem.

The application first allocates two buffers, with the intention of copying the data in one buffer to the other using DMA. The source buffer is first
loaded with data and then the DMA transfer is initiated. After the transfer is complete, it is clear that the two buffers contain different values. This is
an issue relating to cache coherency. When data is written by the CPU, it is stored in the cache but it is not written back to RAM unless the line is
evicted or an explicit cache write-back instruction is executed. The cache instructions are accessed through the Device Control System Service
and serve as a wrapper to the underlying MIPS® cache operations.

In this specific example, the data in the source buffer was never written back to RAM before being transferred to the destination buffer using DMA.
Data that is stored in cache but has not yet been written back to RAM is termed "dirty". In the second part of the application, the correct method of
maintaining cache coherency is demonstrated. After writing data to the source buffer, the function SYS_DEVCON_DataCacheClean is executed,
forcing the data to be written back to main memory. When the DMA transfer is initiated, it then pulls the data out of RAM and transfers it to the
destination buffer – this time, the data in both buffers will match.

If the application runs as intended, the red and green LEDs will be lit. The yellow LED will only be lit if an error has occurred.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 141

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Device Control
System Service Cache Clean Demonstration.

Description

To build this project, you must open the devcon_cache_clean.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/devcon.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

devcon_cache_clean.X <install-dir>/apps/examples/system/devcon/devcon_cache_clean/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ec_sk pic32mz_ec_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EC
Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EF
Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates Device Control System Service cache functions using the PIC32MZ DA
Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Device Control System Service cache functions in microMIPS mode using
the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This application demonstrates the necessity and proper use of the SYS_DEVCON_DataCacheClean function.

1. First compile and program the target device. When compiling, select the correct configuration for the device.

2. Observe the LEDs on the starter kit development board. If the red and green LEDs are both lit, the application executed successfully. If the
yellow LED is lit, an error has occurred.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 142

devcon_cache_invalidate

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example application demonstrates how cache coherency issues arise when transferring data into memory using DMA. The MPLAB Harmony
Device Control System Service contains various cache functions, which are used in this example to resolve the problem.

The application first allocates three buffers – two source buffers and one destination buffer. The two source buffers are filled with two different sets
of data. The first buffer is copied to the destination buffer using DMA and the application checks to ensure they both contain the same data (which
they do). The second source buffer is then copied to the destination buffer using DMA and once again the data is compared. This time the data
does not match and once again, it is due to a cache coherency issue.

After the first DMA transfer and read of the destination buffer, the data is pulled into the cache. The second DMA transfer then updates the data
contained in the destination buffer, but only the data contained in RAM. As far as the cache is aware, the stale data in the cache still matches the
fresh data that is now in RAM. The cache simply sees that it is already storing a copy of the destination buffer, so it need not bother to pull the
fresh data into itself when the CPU does the second set of reads. What we need is a way to tell the CPU to get rid of the stale cached data and
pull in fresh data from main memory – this is known as an ‘invalidate'. The example application demonstrates the proper technique for taking care
of this issue. After the second DMA transfer, the destination buffer must be invalidated with the use of the function
SYS_DEVCON_DataCacheInvalidate. This marks the data of interest in the cache as invalid. Now when the CPU performs a read on the
destination buffer, fresh data is pulled out of main memory and into the cache, before being presented to the CPU.

If the application runs as intended, the red and green LEDs will be lit. The yellow LED will only be lit if an error has occurred.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Device Control
System Service Cache Invalidate Demonstration.

Description

To build this project, you must open the devcon_cache_invalidate.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/devcon.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

devcon_cache_invalidate.X <install-dir>/apps/examples/system/devcon/devcon_cache_invalidate/firmw
are

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ec_sk pic32mz_ec_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EC
Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EF
Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates Device Control System Service cache functions using the PIC32MZ DA
Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Device Control System Service cache functions in microMIPS mode using
the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 143

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This application demonstrates the necessity and proper use of the SYS_DEVCON_DataCacheInvalidate API.

1. First compile and program the target device. When compiling, select the correct configuration for the device.

2. Observe the LEDs on the starter kit development board. If the red and green LEDs are both lit, the application executed successfully. If the
yellow LED is lit, an error has occurred.

devcon_sys_config_perf

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration provides an example of how to initialize the service and configure optimum system performance using the
SYS_DEVCON_PerformanceConfig API.

The demonstration application does the following:

• Initializes the Device Control System Service

• Calls the SYS_DEVCON_PerformanceConfig API

• Waits in a busy loop

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Device Control
System Service Demonstration.

Description

To build this project, you must open the devcon_sys_config_perf.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/devcon.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

devcon_sys_config_perf.X <install-dir>/apps/examples/system/devcon/devcon_sys_config_perf/firmwar
e

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates various Device Control System Service cache functions using the PIC32
Ethernet Starter Kit.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EC
Starter Kit.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 144

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EF
Starter Kit.

pic32mz_da_sk pic32mz_da_sk Demonstrates Device Control System Service cache functions using the PIC32MZ DA
Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Device Control System Service cache functions in microMIPS mode using
the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Device Control System Service demonstration.

Description

This demonstration initializes the Device Control System Service and demonstrates the use of the SYS_DEVCON_PerformanceConfig API.

1. Select the desired MPLAB X IDE project configuration:

• pic32mz_ec_sk (for PIC32MZ EC devices)

• pic32mz_ef_sk (for PIC32MZ EF devices)

• pic32mz_da_sk (for PIC32MZ DA devices)

• pic32mx_eth_sk (for PIC32MX devices)

2. Build the selected configuration in the MPLAB X IDE project and program the demonstration board by selecting Debug Main Project from the
Debug Menu. The program should build, download, and run.

3. Select Pause from the Debug menu. The program should pause in one of Tasks routines.

4. To verify that the device was initialized correctly, select Window > PIC Memory Views > Peripherals and check for the following:

• for PIC32MZ, verify in the PRECON register

• PFMWS is set to 2

• PREFEN is set to 3

• PIC32MX, verify in the CHECON register

• PFMWS is set to 2

• PREFEN is set to 3

DMA System Service Examples

This topic provides descriptions of the DMA System Service examples.

Introduction

DMA System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony DMA System Service. This section
describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 145

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the DMA System Service Library demonstration applications included in this release.

dma_crc

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application demonstrates how to use the special function of CRC computation of the PIC32 DMA module by using the MPLAB Harmony DMA
System Service Library. This section describes the hardware requirement and procedures to build and execute the demonstration project on
Microchip development tools.

In this demonstration application, the DMA System Service sets up a memory to memory data transfer. It also enables the CRC engine to compute
the CRC of the data being transferred from source location to destination location.

To know more about the MPLAB Harmony DMA System Service, configuring the DMA System Service and the APIs provided by the DMA System
service, refer to the DMA System Service Library section of the help.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the DMA System
Service Demonstration.

Description

To build this project, you must open the dma_crc.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/dma.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

dma_crc.X <install-dir>/apps/examples/system/devcon/dma_crc/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This demonstration runs on the PIC32MZ2048EFM144 device on-board the PIC32MZ EF starter kit.
The configuration can be used for generating CRC using a 16-bit polynomial in background mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

1. Compile the demonstration application. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 146

board. Refer to Building the Application for details.

2. Run the demonstration application in Debug mode by clicking Debug in MPLAB X IDE

3. The LED2 should illuminate. The illumination of LED2 indicates that the data is being transferred from the source to the destination and the
CRC is computed as the data was transferred.

4. Click Pause in the MPLAB X IDE.

5. In the Variables window, observe the debug variable blockCrc. The blockCrc variable should have a value 0x31C3, which is the CRC value
for 16-bit polynomial with an initial seed value of ‘0’.

Note on CRC Calculation: The CRC computation on the various websites usually uses the table approach method for CRC calculation. The table
approach CRC calculation method generally pads the incoming message with extra 0 bits (16 bits in the case of a 16-bit polynomial, and 32 bits in
the case of 32-bit polynomial). The PIC32 DMA CRC generation does not pad with any extra bits. The PIC32 DMA CRC calculation engine strictly
calculates CRC of the input data buffer.

To obtain comparable results with the websites we have to append extra bits; 16 bits, or two zeros (bytes) for 16-bit polynomial computation. 32
bits or four zeros (bytes) for 32-bit polynomial computation. Therefore, the data transfer call in our DMA System Service CRC computation
application has the size appended with polynomial length as shown in the following example:

RTCC System Service Examples

This topic provides descriptions of the RTCC System Service examples.

Introduction

RTCC System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony RTCC System Service. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the RTCC System Service Library demonstration applications included in this release.

rtcc_timestamps

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application shows how to use the RTCC System Service. A simple callback is registered with the RTCC System Service and
the alarm causes the current time to be stored in an array. The RTCC System Service can be set to be interrupt-driven to increase efficiency in
that it will only be called when the alarm interrupt occurs.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Command
Processor System Service Demonstration.

Description

To build this project, you must open the rtcc_timestamps.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/rtcc/rtcc_timestamps

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

rtcc_timestamps.X <install-dir>/apps/examples/system/rtcc/rtcc_timestamps/firmware

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 147

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk RTCC demonstration using the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_freertos pic32mz_ef_sk FreeRTOS version of the RTCC demonstration using the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the RTCC System Service demonstration.

Description

Do the following to run the demonstration:

1. Compile the demonstration application. While compiling, select the appropriate MPLAB X IDE project configuration based on the hardware in
use. Refer to Building the Application for details.

2. As shown in the following figure, create a breakpoint near line 155 with the following text:

• appData.rtccTimeStateMachine = APP_RTCC_TIMESTAMP_DONE;

3. Run the demonstration application in Debug mode by clicking Debug in MPLAB X IDE.

4. When the debug session reaches the breakpoint (in approximately 10 seconds), the 'timestamps' array can be observed with the timestamps
recorded at each second, as shown in the following figure.

Applications Help Examples System Service Library Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 148

External Memory Programmer Demonstrations

This section provides descriptions of the External Memory Programmer demonstrations.

Introduction

External Memory Programmer Demonstration Applications Help.

Description

This section describes the hardware requirement and procedures to run the External Memory Programmer firmware projects on Microchip
demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Programmer demonstration applications included in this release.

external_flash

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration implements a bootloader that resides in boot Flash. With the bootloader operating on the target device, the device can then
program an external SPI Flash memory device (SST25FV016B or similar). This can be useful in programming external SPI Flash memory on
Graphics PICtail daughter boards.

The bootloader is, operationally, similar to the bootloader described in AN1388 "PIC32 Bootloader", and will work with the personal computer
application provided with the related source archive file. The application note and archive file are available for download from the Microchip web
site (www.microchip.com).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the External Flash
Demonstration.

Description

To build this project, you must open the external_flash.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/programmer/external_flash.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

external_flash.X <install-dir>/apps/programmer/external_flash/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

usbdevice_pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates external SPI Flash programming capabilities on the PIC32 USB Starter Kit
II, connected to a Graphics Controller PICtail Plus Epson S1D13517 board (AC164127).

Configuring the Hardware

Describes how to configure the supported hardware.

Applications Help External Memory Programmer Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 149

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en554836

Description

PIC32 USB Starter Kit II

On the S1D13517 board, the jumpers need to be configured for operations using SPI 2 as the interface to the PIC32 device.

JP3 (SCK), JP4 (MOSI), JP5 (MISO), and JP6 (CS) should all be in the 2-3 (SPI 2) position.

Running the Demonstration

Provides instructions on how to build and run the External Flash demonstration.

Description

Personal Computer-based Host Demonstration

Do the following when using the configurations:

Operation

The bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

3. Hold down SW3 on the starter kit to force bootloader operation.

4. LED1 will start blinking to indicate the bootloader is operating. If a program had previously been programmed, it may be necessary to hold
down SW3 prior to applying power to the board or resetting the board.

5. Open the personal computer Host program from the AN1388 source archive file.

6. Select the appropriate communication path:

• UART - Leave the baud rate at 115,200

• UDP - Keep the IP address at 192.168.1.11 and the UDP port at 6234

• USB Device - Keep the VID at 0x4D8 and the PID at 0x03C

7. Click Connect to_connect_to the bootloader and get the version.

8. If the bootloader connects, the personal computer Host application will indicate the version of the bootloader.

At this point, the bootloader is ready to accept a new application for programming into the program Flash. A demonstration application is provided,
which is configured in a linker script to only operate in program Flash.

Setup

Create a hex file containing external SPI memory data (Graphics Resource Data is an example).

Programming the Device

With the demonstration application compiled, the generated hex file can now be programmed into the device using the bootloader.

To program the application into the device:

1. On the personal computer Host application described in AN1388, click Load Hex File.

2. Navigate to the data file meant to be programmed into external SPI flash (Graphics Resource Data is an example). Select the file and click
Open.

3. Click Erase-Program-Verify.

4. The data will then be transferred to the bootloader, which will program the external SPI Flash.

5. Click Disconnect to release the Host Application.

sqi_flash

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Applications that use large bitmap images or multiple page menu screens, which require several images or large or multiple font packages, etc.,
have a very large memory requirement for their graphics resources. In such applications, storing these graphics resources on-chip may result in
insufficient memory or may be prohibitive to a possible cost benefit. A solution is to store the graphics resources to off-chip memory, such as
non-volatile memory, thereby preserving the on-chip memory for program memory and allowing for more complex functional features. The
pic32mz_ef_sk_meb2_gfx_ext_res configuration in the application can be used to store the external graphics resources onto external SQI Flash
memory.

Another usage for external memory devices is for storing program routines and data. On PIC32MZ devices, the SQI peripheral can be configured
to use the memory in eXecute-In-Place, or XIP, mode. When configured this way, the external memory appears in the memory space of the PIC32
device, and the running program can reference this memory the same as any other memory space, such as Program Flash and RAM. When the
memory space in KSEG2 (cached) or KSEG3 (uncached) is referenced, the SQI peripheral automatically interfaces with the memory device and
transfers the data in the appropriate direction without any further CPU intervention.

The current application, sqi_flash, serves as an external memory programmer to flash the off-chip non-volatile memory with the resources which

Applications Help External Memory Programmer Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 150

can then be accessed by other applications saving on-chip memory for other programs and resources. The pic32mz_ef_sk_mebii_gfx_ext_res
configuration of the sqi_flash application needs the resources to be stored externally in the form of a resource file that would be programmed into
the external memory. An example resource file, gfx_resources_ext.hex, has already been generated and is available to the user within the
<install-dir>\apps\gfx\external_resources\firmware\src\system_config\pic32mz_ef_sk+meb2\ folder.

The MPLAB Harmony Graphics Composer, which is the primary tool used by the MPLAB Harmony application for configuring the graphic design
for the application, has the ability to generate the required resource file containing the binary data for all of the graphics images to be stored on
external memory. As previously mentioned, the default name for the file generated by MHGC is gfx_resources_ext.hex. Refer to the MPLAB
X IDE online help and Volume II: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer User's Guide section for usage
information. For more information on creating the gfx_resources_ext.hex file, please refer to the Applications Help > Graphics
Demonstrations > external_resources demonstration.

The sqi_flash application requires the resource file gfx_resources_ext.hex file to be copied from the computer to a USB Flash drive, which
has a FAT32 file system installed. The USB Flash drive is then plugged into the development board and the application scans the USB Flash drive
for the resource file. The sqi_flash application copies the resource file sector by sector and flashes the binary resource content onto the SQI Flash
external memory.

The pic32_mz_ef_sk configuration needs an image.hex file containing the program and data information to be flashed onto the sqi_flash
application. In addition, ensure that the Flash drive is connected to the development board prior to programming the PIC32 device.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Programmer
Demonstration.

Description

To build this project, you must open the sqi_flash.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/programmer/sqi_flash.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sqi_flash.X <install-dir>/apps/programmer/sqi_flash/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration Name BSP(s) Used Description

pic32mz_ef_sk_mebii_gfx_ext_res pic32mz_ef_sk+meb2 SQI Flash demonstration for the Multimedia Expansion Board II (MEB II) connected
to the PIC32MZ EF Starter Kit and the Graphics Display Powertip 4.3" 480x272
Board. The PIC32MZ EF Starter Kit has a 4 MB SQI Flash memory device, which is
used as the external non-volatile memory for this application. This is the
configuration used for flashing external graphics resources onto external SQI Flash
memory.

pic32mz_ef_sk pic32mz_ef_sk SQI Flash demonstration for the PIC32MZ EF Starter Kit by itself with no other
interface is required. However, the image name for the name of the file on the USB
Flash drive, image.hex, is different.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

The MEB II has two memory options External or Internal; however, this demonstration must be run in Internal mode. Configure the MEB II, as
follows:

• EBIWE and LCD_PCLK (J9) must be closed (the jumper is located on the back of the MEB II board)

• Ensure that any MHC setting is defined to only use internal SRAM

The current internal/external memory setting for the application can be verified in MHC by selecting Harmony Framework Configuration > Drivers >
Graphics Controllers > LCC > Use LCC Driver > Memory Interface Mode.

Applications Help External Memory Programmer Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 151

Configuring MHC

Provides information the MHC settings required for the demonstration application.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with pic32mz_ef_sk_mebii_gfx_ext_res Configuration

When using the PIC32MZ EF Starter Kit, and powering it from the Debug port (J3), please insert a jumper onto JP1 to ensure the USB Flash drive
has the correct power.

Configuring the MHC

The following are MHC settings that were modified from the default values. Refer to Volume II: MPLAB Harmony Configurator (MHC) for
information on using MHC.

Drivers

The Graphics Controllers selection shows LCC was selected using the ‘Use LCC driver’ option. The Memory Interface Mode selected is Internal
Memory. This is due to the fact that we want to load the program on internal memory and we are configuring the hardware with the jumper to
match internal memory.

System Services

Select File System with the following settings:

Applications Help External Memory Programmer Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 152

BSP

The BSP selected for the supported configuration is PIC32MZ EF Starter Kit in combination w\Multimedia Expansion Board II -
pic32mz_ef_sk_meb2.

Clock Diagram

Open the clock configurator section and make sure the following values are selected for the different clock settings as required for the
pic32mz_sk_ef_meb2 configuration

• Primary Oscillator frequency: 24 MHz, EC mode

• USB PLL: 480 MHz

• System Clock: 200 MHz

• PB Clock: 100 MHz

• REFCLKO: The Reference Clock (REFCLK) uses the System Clock (SYSCLK) as the reference and generates the master clock for SPI
modules at 200 MHz

Application-specific Software Setup

SQI external memory support: Since a formal SQI driver is not available in MPLAB Harmony, the external memory programmer uses the SQI
Peripheral Library. Please note that the source and header file for SQI enabling have been manually included in the project.

SourceFiles/drv_nvm_flash_sqi_sst26.c HeaderFiles/drv_nvm_flash_sqi_sst26.h

Also note that, to refer to these files a preprocessor macro has been added to the application properties named SST26VF_B.

This application uses the gfx_resources_ext.hex file loaded on the USB Flash drive mentioned in the description.

PIC32MZ EF Starter Kit with pic32mz_ef_sk Configuration

Configuring the MHC

The following are MHC settings that were modified from the default values. Refer to Volume II: MPLAB Harmony Configurator (MHC) for
information on using MHC.

System Services

Select File System with the following settings:

BSP

The BSP selected for the supported configuration is PIC32MZ EF Starter Kit - pic32mz_ef_sk.

Clock Diagram

Open the clock configurator section and make sure the following values are selected for the different clock settings as required for the
pic32mz_sk_ef configuration:

• Primary Oscillator frequency: 24 MHz, EC mode

• USB PLL: 480 MHz

• System Clock: 200 MHz

• PB Clock: 100 MHz

• REFCLKO: The Reference Clock (REFCLK) uses the System Clock (SYSCLK) as the reference and generates the master clock for SPI

Applications Help External Memory Programmer Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 153

modules at 200 MHz

Application-specific Software Setup

SQI external memory support: Since a formal SQI driver is not available in MPLAB Harmony, the external memory programmer uses the SQI
Peripheral Library. Please note that the source and header file for SQI enabling have been manually included in the project.

SourceFiles/drv_nvm_flash_sqi_sst26.c HeaderFiles/drv_nvm_flash_sqi_sst26.h

Also note that, to refer to these files a preprocessor macro has been added to the application properties named SST26VF_B.

This programmer also uses the same Intex HEX file processing that is used in the bootloader demonstrations, but it does not use the Bootloader
Library, nor a bootloader linker script.

Running the Demonstration

Provides instructions on how to build and run the External Memory Programmer SQI Flash demonstration.

Description

The sqi_flash application loads the required image.hex file or the gfx_resources_ext.hex file to an off-chip external memory to facilitate
large resource requirements, which would not be easily accommodated on on-chip internal memory. The external memory programmer is operated
as follows:

pic32mz_ef_sk_mebii_gfx_ext_res Configuration:

1. The external resources to be flashed onto the external memory are required by the sqi_flash application in the form of a HEX text file with the
default name gfx_resources_ext.hex. If you do not have the resource binary file, you can obtain it from the following MPLAB Harmony
installation folder: <install-dir>\apps\gfx\external_resources\firmware\src\system_config\pic32mz_ef_sk+meb2\.

2. Connect a USB Flash drive to the computer port and copy the gfx_resources_ext.hex file from
<install-dir>\apps\gfx\external_resources\firmware\src\system_config\pic32mz_ef_sk+meb2\ to the USB Flash drive.

3. After the file has finished being copied to the USB Flash drive, remove the USB Flash drive from the computer and insert it into the USB host
connector on the PIC32MZ EF Starter Kit board

4. Program the PIC32MZ device with the external memory programmer application, sqi_flash. This application flashes the
gfx_resources_ext.hex file available on the USB Flash drive to the external SQI memory.

5. The display will convey the beginning of the flashing process to the user and also change the status to ‘Finished Writing’ once the flashing is
complete. Also, the Green LED3 will light to indicate completion of the operation. Please make sure that the USB thumb drive is not unplugged
while the program is actively flashing the memory.

pic32mz_ef_sk Configuration:

1. The program/data image to be programmed onto the external memory are required by sqi_flash in the form of a HEX text file with the default
name image.hex.

2. Connect a USB Flash drive to the computer port and copy the image.hex file from the source directory onto the USB Flash drive.

3. After the file has finished being copied to the USB Flash drive, remove the USB Flash drive from the computer and insert it into the USB host
connector on the PIC32MZ EF Starter Kit board.

4. Program the PIC32MZ device with the external memory programmer application, sqi_flash. This application flashes the image.hex file
available on the USB Flash drive to the external SQI memory.

5. The green LED, LED3, will illuminate to indicate completion of the operation. Please make sure that the USB Flash drive is not disconnected
while the program is actively flashing the memory.

Applications Help External Memory Programmer Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 154

File System Demonstrations

This section provides descriptions of the File System demonstrations.

Introduction

MPLAB Harmony File System Demonstration Help.

Description

This help file contains instructions and associated information about MPLAB Harmony File System demonstration applications, which are
contained in the MPLAB Harmony Library distribution.

Demonstrations

Provides instructions on how to run the demonstration applications.

nvm_fat_single_disk

This demonstration uses a FAT12 image of a file on NVM Flash memory and demonstrates the working of all file system functions.

Description

This demonstration shows an example of implementing a FAT12 disk in device Flash memory. The demonstration contains a FAT12 disk image
consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table, and Root Directory Area.

The demonstration opens an existing file named FILE.TXT and performs all file system related function calls on the file: SYS_FS_FileStat,
SYS_FS_FileSize, SYS_FS_FileSeek, and SYS_FS_FileEOF. Finally, the string "Hello World" is written to this file. The string is then read and
compared with the string that was written to the file. If the string compare is successful, LED indication is provided.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM FAT Single
Disk Demonstration.

Description

To build this project, you must open the nvm_fat_single_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_fat_single_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

nvm_fat_single_disk.X <install-dir>/apps/fs/nvm_fat_single_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_bt_sk_int_dyn pic32mx_bt_sk This configuration runs on PIC32 Bluetooth Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn_freertos pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

pic32mx_usb3_sk_int_dyn pic32mx_usb_sk3 This configuration runs on PIC32 USB Starter Kit III. The media drivers are configured
for Interrupt mode and dynamic operation.

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 155

pic32mz_ec_sk_int_dyn pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the NVM FAT single disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx_usb_sk2_int_dyn (for PIC32MX devices)

• pic32mx_usb_sk_int_dyn_freertos (for PIC32MX devices)

• pic32mx_bt_sk_int_dyn (for PIC32MX devices)

• pic32mx_usb_sk3_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Build the selected configuration in the MPLAB X IDE project and program the demonstration board. The execution status (pass/fail) of the
demonstration is indicated by LEDs on the demonstration board.

Demonstration Board Demonstration Success Demonstration Failure

PIC32 USB Starter Kit II LED3 LED1

PIC32 Bluetooth Starter Kit Green LED Red LED

PIC32 USB Starter Kit III LED3 LED1

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the Demonstration:

This demonstration shows an example of:

• Implementing a FAT12 disk in device Flash memory

• Opening a file for read or write

• Implements file system functions

• Closing a file

The demonstration contains a FAT12 disk image consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table, and
Root Directory Area. This image is implemented in the file nvm_disk_images.c (this is project configuration specific file and is contained in the

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 156

nvm_disk_images logical folder in the MPLAB X IDE project). The image contains a single file named FILE.TXT which contains the string
"Data".

The demonstration opens an existing file named FILE.TXT and performs all file system related function calls on the file: SYS_FS_FileStat,
SYS_FS_FileSize, SYS_FS_FileSeek, and SYS_FS_FileEOF. Finally, the string "Hello World" is written to this file. The string is then read and
compared with the string that was written to the file. If the string compare is successful, LED indication is provided.

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The disk is first mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount an internal Flash
volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive/.

2. If the mount is successful, the application opens a file FILE.TXT for reading and writing (SYS_FS_FILE_OPEN_READ_PLUS) with a
SYS_FS_FileOpen function. The valid file handle is received once a successful opening of the file is performed.

3. If file open is successful, the status of file FILE.TXT is stored in the appData.fileStatus structure, using SYS_FS_FileStat function.

4. If the file status check is successful, the size of the FILE.TXT is checked by passing the file handle to the SYS_FS_FileSize function.

5. If the file size check is successful, the size of file is compared with the size element received earlier as a part of appData.fileStatus structure. If
both values match, the code moves to the next step of file seek.

6. The file pointer is then moved by 4 bytes from the start of the file by calling the function SYS_FS_FileSeek and passing parameter as
SYS_FS_SEEK_SET (seek from the beginning of the file).

7. If the file seek operation is successful, the file pointer should have reached the end of the file. This is because, the content of the FILE.TXT
had only 4 byte string = "Data". The end of file is verified by calling the function SYS_FS_FileEOF. If the function returns "true" (end of file
reached), the next step is performed.

8. In the next step, the file pointer is moved again by [(-1)*size of file], from the end of the file by calling the function SYS_FS_FileSeek and
passing parameter SYS_FS_SEEK_END (seek from the end of the file).

9. If the file seek operation is successful, the file pointer should have reached the beginning of the file. Then, 4 Bytes are read from the file using
SYS_FS_FileRead function (into a buffer).

10. If the read is successful, the content of file (present in the buffer) is compared with the "Data" string. If the comparison passed, the code moves
to the next step.

11. In the next step, the file pointer is moved again by [(-1)*size of file], from the end of the file by calling the function SYS_FS_FileSeek() and
passing parameter SYS_FS_SEEK_END (seek from the end of the file).

12. If the file seek operation is successful, the string "Hello World" is written to the file using SYS_FS_FileWrite function.

13. If the write operation is successful, the file pointer is moved to the beginning of the file.

14. If the file seek is successful, the contents of the file is read using SYS_FS_FileRead function (into a buffer).

15. If the read operation is successful, the content of the file (present in the buffer) is compared with the "Hello World" string using the strcmp
function. A LED indicates the success of the demonstration.

nvm_mpfs_single_disk

This demonstration uses a MPFS image of two files on NVM Flash memory and demonstrates the working of all file system functions.

Description

This demonstration shows an example of implementing a MPFS disk in device Flash memory. The demonstration contains a MPFS disk image in
the internal Flash memory. The disk image contains two files named:

• FILE.txt, Size = 11 Bytes. The content of the file is: "Hello World".

• TEST.txt, Size = 72 Bytes. The content of the file is: "This file contains a test string and it is meant for testing. 1234567890".

The demonstration performs all file system related function calls on the file: SYS_FS_FileRead, SYS_FS_FileStat, SYS_FS_FileSize,
SYS_FS_FileSeek, SYS_FS_FileEOF. If all tests are successful, LED indication is provided.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM MPFS Single
Disk Demonstration.

Description

To build this project, you must open the nvm_mpfs_single_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_mpfs_single_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

nvm_mpfs_single_disk.X <install-dir>/apps/fs/nvm_mpfs_single_disk/firmware

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 157

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_bt_sk_int_dyn pic32mx_bt_sk This configuration runs on PIC32 Bluetooth Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn_freertos pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

pic32mx_usb3_sk_int_dyn pic32mx_usb_sk3 This configuration runs on PIC32 USB Starter Kit III. The media drivers are configured
for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the NVM MPFS single disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx_usb_sk2_int_dyn (for PIC32MX devices)

• pic32mx_usb_sk_int_dyn_freertos (for PIC32MX devices)

• pic32mx_usb_sk3_int_dyn (for PIC32MX devices)

• pic32mx_bt_sk_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Build the selected configuration in the MPLAB X IDE project and program the demonstration board. The execution status (pass/fail) of the
demonstration is indicated by LEDs on the demonstration board.

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 158

Demonstration Board Demonstration Success Demonstration
Failure

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

LED3 LED1

PIC32 Bluetooth Starter Kit Green LED Red LED

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the demonstration:

This demonstration shows an example of:

• Implementing a MPFS disk in device Flash memory

• Opening a file for read

• Implements all the file system functions

• Closing a file

This demonstration shows an example of implementing a MPFS disk in device Flash memory. The demonstration contains a MPFS disk image in
the internal Flash memory. The disk image contains two files named:

• FILE.txt, Size = 11 bytes. The content of the file is: "Hello World".

• TEST.txt, Size = 72 bytes. The content of the file is: "This file contains a test string and it is meant for testing. 1234567890".

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The disk is first mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount an internal Flash
volume. The volume is mounted against a MPFS2 type file system and mounted at /mnt/myDrive/.

2. If the mount is successful, the application opens a file FILE.txt for reading with a SYS_FS_FileOpen function.

3. If the open is successful, the application opens another file TEST.txt for reading with SYS_FS_FileOpen function.

4. If the open is successful, the application checks for size of file FILE.txt, by passing the handle obtained during file open, to the function
SYS_FS_FileSize.

5. If the file size matches the known value of 11 bytes, the application moves the file pointer for the file TEST.txt 10 bytes from the end of file,
using the function SYS_FS_FileSeek.

6. If file seek is successful, 10 bytes of content of the file TEST.txt is read into the application buffer, using the function SYS_FS_FileRead.

7. If read is successful, the application buffer content is compared with the known string of 1234567890 using the strncmp function.

8. If the comparison is successful, the application checks if the file pointer for file "TEST.txt" has reached the end of file using the
SYS_FS_FileEOF function.

9. If end of file is reached, a LED indicates the success of the demonstration.

nvm_sdcard_fat_mpfs_multi_disk

This demonstration uses NVM and a Secure Digital (SD) Card with MPFS and FAT image of file and performs a read/write/verify operation from
file of one media to another media.

Description

This demonstration shows an example of using the MPLAB Harmony File System to access files across multiple disks and multiple file system.
The demonstration contains a MPFS disk image in the internal Flash memory. The disk image contains a file named abc.txt with content "Hello
World". Another disk is a SD card, which is formatted to FAT (FAT16 or FAT32). The demonstration reads the contents of abc.txt from the disk
implemented on internal Flash memory and writes the contents to FILE.TXT on the SD card. A successful write is indicated by an illuminated
LED.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM SD Card FAT
MPFS Multi-disk Demonstration

Description

To build this project, you must open the nvm_sdcard_fat_mpfs_multi_disk.X project in MPLAB X IDE, and then select the desired
configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_sdcard_fat_mpfs_multi_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 159

Project Name Location

nvm_sdcard_fat_mpfs_multi_disk.X <install-dir>/apps/fs/nvm_sdcard_fat_mpfs_multi_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_dyn_freertos pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC and
makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx470_pim_e16_int_dyn pic32mx470_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX470F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit connected to the MEB
II. The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II.
The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II
and makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board, PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L Plug-in Module (PIM), and PICtail
Daughter Board for SD and MMC

Use the following instructions for all Explorer 16 Development Board-based demonstration boards.

Since some peripheral functions are multiplexed through the Peripheral Pin Select (PPS) feature, the hardware on the following PIM must be
modified by connecting the PIM pins, as follows:

PIC32MX470F512L PIM (MA320002-2) - PIM pin 99 to PIM pin 24 for CS

Refer to PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L Plug-in Module (PIM) for PIM pin locations.

Use the following general test setup for either PIM:

1. Insert the PIM into the Explorer 16 Development Board PIM connector.

2. Jumpers JP1, JP2 and JP3 on the PICtail Daughter Board for SD and MMC should_connect_to points 1 and 2 on their respective connectors
(see PICtail Daughter Board for SD and MMC).

3. Insert the Daughter Board into the PICtail Plus connector on the Explorer 16 Development Board.

4. Insert a SD card into the SD card connector on the Daughter Board.

5. Power up the board.

PIC32MZ EC Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ EF Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

Running the Demonstration

Provides instructions on how to build and run the NVM SD card FAT MPFS multi disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx795_pim_e16_int_dyn (for PIC32MX devices)

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 160

• pic32mx795_pim_e16_int_dyn_freertos (for PIC32MX devices)

• pic32mx470_pim_e16_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Insert the SD card, which contains the file FILE.TXT (the file contains some arbitrary existing content).

Compile the selected configuration in the MPLAB X IDE project and run the code. After a few seconds, once the LED illuminates, remove the SD
card from the SD Card PICtail Daughter Board and insert it into the SD card reader on a personal computer. Examine the contents of the file
named FILE.TXT. The file should contain the string "Hello World".

Demonstration Board Demonstration Success Demonstration Failure

Explorer 16 Development Board LED5 (D5) LED6 (D6)

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the Demonstration:

This demonstration shows an example of:

• Implementing a multi-disk demonstration with MPFS on internal Flash memory (NVM) and FAT File system (FAT16/ FAT32) on SD card

• Opening two files from two different disks and read the contents of the file from the first disk and write into the file of the second disk

• Closing the files

The demonstration contains a MPFS disk image in the internal Flash memory. The disk image contains a file named abc.txt with content "Hello
World". Another disk is a SD card, which is formatted to FAT (FAT16 or FAT32). The demonstration reads the contents of abc.txt from the disk
implemented on internal Flash memory and writes the contents to FILE.TXT on the SD card. A successful write is indicated by illumination of an
LED.

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The first disk is mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount a internal Flash
volume. The volume is mounted against a MPFS2 type file system and mounted at /mnt/myDrive1/.

2. If the mount is successful, the second disk is mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount
command to mount a SD card volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive2/.

3. If the mount is successful, the application opens the file abc.txt from /mnt/myDrive1/ for reading and FILE.TXT from /mnt/myDrive2/
for writing with the SYS_FS_FileOpen function.

4. If the file open is successful, the application reads 13 bytes from abc.txt of the internal Flash volume using SYS_FS_FileRead.

5. If the read is successful, the application closes abc.txt from the internal Flash volume, and then writes the 13 bytes into FILE.TXT of the SD
card volume using the SYS_FS_FileWrite function. If the file write is successful, the application closes FILE.TXT from the SD card volume.

6. If file close is successful, a LED indicates the success of the operation.

nvm_sdcard_fat_multi_disk

This demonstration uses NVM and a Secure Digital (SD) card as media, searches a file from the NVM media, opens and reads the file, and then
writes the data into another file in the SD card media.

Description

This demonstration shows an example of using the MPLAB Harmony File System to access files across multiple media. The demonstration
contains a FAT12 disk image consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table, and Root Directory
Area, placed in the internal Flash memory (NVM). Also, a SD card is used as another disk, which might have FAT16 or FAT32 implemented on it
(dependent on the formatting of SD card). The demonstration searches the NVM media for a named FILE.TXT, opens and reads the contents of
the file in NVM and copies the contents to the file, FILE.TXT, in the SD card. Once the copy is successful, an addition string "Test is successful"
is added to the file. If the write operation is successful, LED indication is provided.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM SD Card FAT
Multi-disk Demonstration.

Description

To build this project, you must open the nvm_sdcard_fat_multi_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_sdcard_fat_multi_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 161

Project Name Location

nvm_sdcard_fat_multi_disk.X <install-dir>/apps/fs/nvm_sdcard_fat_multi_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_dyn_freertos pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC and
makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx470_pim_e16_int_dyn pic32mx470_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX470F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit connected to the MEB
II. The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II.
The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II
and makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board, PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L Plug-in Module (PIM), and PICtail
Daughter Board for SD and MMC

Use the following instructions for all Explorer 16 Development Board-based demonstration boards.

Since some peripheral functions are multiplexed through the Peripheral Pin Select (PPS) feature, the hardware on the following PIM must be
modified by connecting the PIM pins, as follows:

PIC32MX470F512L PIM (MA320002-2) - PIM pin 99 to PIM pin 24 for CS

Refer to PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L Plug-in Module (PIM) for PIM pin locations.

Use the following general test setup for either PIM:

1. Insert the PIM into the Explorer 16 Development Board PIM connector.

2. Jumpers JP1, JP2 and JP3 on the PICtail Daughter Board for SD and MMC should_connect_to points 1 and 2 on their respective connectors
(see PICtail Daughter Board for SD and MMC).

3. Insert the Daughter Board into the PICtail Plus connector on the Explorer 16 Development Board.

4. Insert a SD card into the SD card connector on the Daughter Board.

5. Power up the board.

PIC32MZ EC Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ EF Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

Running the Demonstration

Provides instructions on how to build and run the NVM SD card FAT multi-disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx795_pim_e16_int_dyn (for PIC32MX devices)

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 162

• pic32mx795_pim_e16_int_dyn_freertos (for PIC32MX devices)

• pic32mx470_pim_e16_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Insert the SD card, which contains the file FILE.TXT and the file contains "abc" (some arbitrary existing content).

Compile the selected configuration in the MPLAB X IDE project and run the code. After a few seconds, once the LED is illuminated, remove the
SD card from the Board and insert it into the SD card reader on a personal computer. Examine the contents of the file named FILE.TXT. The file
should contain the string "This data from NVM Disk Test is successful".

Demonstration Board Demonstration Success Demonstration Failure

Explorer 16 Development Board LED5 (D5) LED6 (D6)

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the demonstration:

This demonstration shows an example of:

• Implementing a multi-disk demonstration with FAT12 on internal Flash memory (NVM) and FAT File system (FAT16/FAT32) on a SD card

• Opening two files from two different disks, read content of file from first disk and write into the file of second disk

• Closing the files

The demonstration contains a FAT12 disk image consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table,
Root Directory Area, placed in the internal Flash memory (NVM). Also, a SD card is used as another disk, which might have FAT16 or FAT32
implemented on it (depends on the formatting of SD card).The demonstration searches the NVM media for a file named FILE.TXT, opens and
reads the contents of the file in NVM and copies the contents to FILE.TXT to the SD Card. Once the copy is successful, an additional string "Test
is successful" is added to the file. If the write operation is successful, LED indication is provided.

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The first disk is mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount a internal Flash
volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive1/.

2. If the mount is successful, the second disk is mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount
command to mount a SD card volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive2/.

3. If the mount is successful, the application opens the root directory of /mnt/myDrive1/ with the function SYS_FS_DirOpen.

4. If the directory open is successful, the application searches for the file, FILE.TXT, using the wildcard character FIL*.*. The function used for
directory search is SYS_FS_DirSearch.

5. If the directory search returns a file found, the directory is closed with the function SYS_FS_DirClose. Also, the searched file name is compared
with the FILE.TXT name.

6. If the file name matches successfully, the application opens the file, FILE.TXT, from /mnt/myDrive1/ for reading and FILE.TXT from
/mnt/myDrive2/ for writing with a SYS_FS_FileOpen function.

7. If the file open is successful, the application reads 27 Bytes from FILE.TXT of internal Flash volume using SYS_FS_FileRead.

8. If the read is successful, the application closes FILE.TXT from internal Flash volume and then writes the 27 bytes into FILE.TXT of SD card
volume using SYS_FS_FileWrite.

9. If the write is successful, a character and string are written to the file using SYS_FS_FileCharacterPut and SYS_FS_FileStringPut.

10. If the write is successful, the application closes FILE.TXT from the SD card volume.

11. If file close is successful, a LED indicates the success of the operation.

sdcard_fat_single_disk

This demonstration uses a Secure Digital (SD) card with a FAT file system as media, performs a read/write/verify operation on the files using long
file names (LFN), and performs directory creation.

Description

This demonstration shows an example of using the MPLAB Harmony File System to access and modify the contents of a SD card. The
demonstration opens a file named FILE_TOO_LONG_NAME_EXAMPLE_123.JPG on the SD card, reads the content of the file, creates a directory
named Dir1 and inside the directory, writes the content into another file FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG (creates a copy of one
file into another file, inside a directory).

The input file FILE_TOO_LONG_NAME_EXAMPLE_123.JPG is not provided along with the release package. It could be any arbitrary JPEG (image)
file chosen by the user and then renamed to FILE_TOO_LONG_NAME_EXAMPLE_123.JPG. The reason for choosing a JPEG file for test purposes
is that the duplicate file, FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG, created by the FS demonstration could be easily verified for correctness
by inserting the SD card into a computer and opening the FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG file. If the file opens for viewing on the
computer, the test is deemed to have passed. Otherwise, if the file does not open (i.e., is corrupted), the test will be considered to have failed.
Since the demonstration creates a directory named Dir1, it is important that the a folder with the same name does not exist on the SD card. If a
directory named Dir1 is already present on the SD card, the demonstration will fail.

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 163

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SD Card FAT Single
Disk Demonstration.

Description

To build this project, you must open the sdcard_fat_single_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/sdcard_fat_single_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sdcard_fat_single_disk.X <install-dir>/apps/fs/sdcard_fat_single_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_dyn_freertos pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC and
makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx470_pim_e16_int_dyn pic32mx470_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX470F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit connected to the MEB
II. The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II.
The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II
and makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_da_sk_adma pic32mz_da_sk This configuration runs on the PIC32MZ DA Starter Kit. The media driver is
configured to use SD Host Controller ADMA2 Transfer mode operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board, PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L Plug-in Module (PIM), and PICtail
Daughter Board for SD and MMC

Use the following instructions for all Explorer 16 Development Board-based demonstration boards.

Since some peripheral functions are multiplexed through the Peripheral Pin Select (PPS) feature, the hardware on the following PIM must be
modified by connecting the PIM pins, as follows:

PIC32MX470F512L PIM (MA320002-2) - PIM pin 99 to PIM pin 24 for CS

Refer to PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L Plug-in Module (PIM) for PIM pin locations.

Use the following general test setup for either PIM:

1. Insert the PIM into the Explorer 16 Development Board PIM connector.

2. Jumpers JP1, JP2 and JP3 on the PICtail Daughter Board for SD and MMC should_connect_to points 1 and 2 on their respective connectors
(see PICtail Daughter Board for SD and MMC).

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 164

3. Insert the Daughter Board into the PICtail Plus connector on the Explorer 16 Development Board.

4. Insert a SD card into the SD card connector on the Daughter Board.

5. Power up the board.

PIC32MZ EC Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ EF Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ DA Starter Kit and MEB II

No hardware setting change is required.

Running the Demonstration

Provides instructions on how to build and run the SD card FAT single disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx795_pim_e16_int_dyn (for PIC32MX devices)

• pic32mx795_pim_e16_int_dyn_freertos (for PIC32MX devices)

• pic32mx470_pim_e16_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

• pic32mz_da_sk_adma (for PIC32MZ DA devices)

Insert the SD card, which contains the file named FILE_TOO_LONG_NAME_EXAMPLE_123.JPG. The file can be of any size.

Compile the selected configuration in the MPLAB X IDE project and run the code. After a few seconds, once the LED illuminates, remove the SD
card from the SD Card PICtail Daughter Board (for PIC32MX) or MEB II (for PIC32MZ) and insert it into the SD card reader on a personal
computer. Upon examining the contents of the SD card, a directory Dir1 will have been created. Inside the Dir1 folder, a file named
FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG will be present. The file, FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG, will be a copy of
FILE_TOO_LONG_NAME_EXAMPLE_123.JPG. Verify that both files open for viewing on a personal computer.

Demonstration Board Demonstration Success Demonstration Failure

Explorer 16 Development Board LED5 (D5) LED6 (D6)

PIC32MZ Embedded Connectivity (EC) Starter Kit Green LED Red LED

About the Demonstration:

This demonstration shows an example of:

• Implementing a FAT File system (FAT16/ FAT32) on a SD card

• Implementing long file name (LFN)

• Opening a file for read or write

• Closing a file

The demonstration opens a file named FILE_TOO_LONG_NAME_EXAMPLE_123.JPG on the SD Card, reads the content of the file, creates a
directory named Dir1 and inside the directory, writes the content into another file FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG (creates a
copy of one file into another file, inside a directory).

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The disk is first mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount command to mount a SD card
volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive/.

2. If the mount is successful, the volume is unmounted by passing the mount name /mnt/myDrive to SYS_FS_Unmount function. This
unmounting is done for demonstration purposes only. Real applications do not need to unmount unless it is required for the application.

3. If the unmount is successful, the mounting process is repeated.

4. If the mount is successful, the application opens the file FILE_TOO_LONG_NAME_EXAMPLE_123.JPG for reading with the SYS_FS_FileOpen
function.

5. If the file open is successful,the application creates a directory named Dir1, with the SYS_FS_DirectoryMake function.

6. If the directory creation is successful, the application opens the file, FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG, inside the directory Dir1
for writing with the SYS_FS_FileOpen function. The attributes for file write is selected as "SYS_FS_FILE_OPEN_WRITE". Therefore, if the file
does not exist, the file is created.

7. If the file open is successful, 512 bytes from the file FILE_TOO_LONG_NAME_EXAMPLE_123.JPG is read into application buffer using the
SYS_FS_FileRead function.

8. If the file read successful, the 512 bytes is written from the application buffer to the FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG file using
the SYS_FS_FileWrite function.

9. If the write operation is successful, the end of file for FILE_TOO_LONG_NAME_EXAMPLE_123.JPG is checked. If the end of file is not reached,

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 165

the process of reading and writing continues (step 7 and step 8).

10. Once the end of the file is reached, both files are closed with the SYS_FS_FileClose function.

11. Finally, a LED indicates the success of the demonstration.

sdcard_msd_fat_multi_disk

This demonstration uses a USB Flash drive and a Secure Digital (SD) card as media. The application searches for a file on the USB Flash drive,
opens and reads the file, and then writes the data into another file in the SD card media.

Description

This demonstration searches for a file using wildcard characters "mch*.*", reads the content of the file, and then writes the contents of the file to
the SD card.

The demonstration application logic is implemented as a state machine in the APP_USB_MSDTasks and APP_SDCardTasks functions in the file
app.c.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SD Card MSD FAT
Multi-disk Demonstration.

Description

To build this project, you must open the sdcard_msd_fat_multi_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/sdcard_msd_fat_multi_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sdcard_msd_fat_multi_disk.X <install-dir>/apps/fs/sdcard_msd_fat_multi_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 This configuration runs on PIC32MZ EC Starter Kit with the MEB II. The media drivers
are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on PIC32MZ EF Starter Kit with the MEB II. The media drivers
are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_meb2_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II and
makes use of FreeRTOS as the underlying RTOS. The media drivers are configured
for Interrupt mode and dynamic operation.

pic32mz_da_sk_meb2 pic32mz_da_sk+meb2 This configuration runs on PIC32MZ DA Starter Kit with the MEB II. The media drivers
are configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 166

Running the Demonstration

Provides instructions on how to build and run the SD card MSD FAT multi-disk demonstration.

Description

This demonstration shows an example of:

• Implementing a FAT File System on a SD card and a USB Flash drive

• Opening a file for read or write

• Searching for a file

• Checking for end of the file

• Closing a file

Do the following to run the demonstration:

1. Select the desired MPLAB X IDE project configuration for the hardware in use.

2. Copy the mchpLogo.bmp file from <install-dir>/apps/fs/sdcard_msd_fat_multi_disk/firmware/src to the USB Flash drive.

3. Insert the SD card into the MEB II.

4. Inset the USB Flash drive card into the starter kit.

5. Compile the selected configuration in the MPLAB X IDE project and run the code.

6. The demonstration searches for the mchpLogo.bmp on the USB Flash drive and copies it from the USB Flash drive to the SD card. The Green
LED indicates the file has been successfully copied from the USB Flash drive to SD card.

7. Remove the SD card from the MEB II board and_connect_it to a personal computer to verify that the mchpLogo.bmp file is available on SD
card.

Demonstration Board Demonstration Success Demonstration Failure

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

PIC32MZ DA Starter Kit

Green LED ON Red LED ON

This demonstration searches for a file using wildcard characters "mch*.*", reads the content of the file, and then writes the contents of the file to
the SD card.

The demonstration application logic is implemented as a state machine in the APP_USB_MSDTasks and APP_SDCardTasks functions in the file
app.c.

The demonstration process is as follows:

1. The SD card is mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount function to mount a SD card
volume. The volume is mounted with a FAT file system and mounted as /mnt/sdDrive/.

2. If the mount is successful, the SD card state machine waits until the USB Flash drive is connected and mounted.

3. The USB MSD task function opens an instance of the USB Host stack and enables the USB Host operations before mounting the USB Flash
drive.

4. The USB Flash drive is mounted once it is connected using the SYS_FS_Mount function. The /dev/sda1 path instructs the mount function to
mount a SD USB Flash drive volume. The volume is mounted with the FAT file system as /mnt/msdDrive/.

5. If the USB Flash drive is mounted successfully, the application opens the root directory on the USB Flash drive and searches for the file using
the wildcard characters "mch*.*" using SYS_FS_DirSearch.

6. If the search operation is successful, the application opens the file in read mode using SYS_FS_FileOpen.

7. If the file open is successful, the application sets the current working directory as sdDrive using SYS_FS_CurrentDriveSet and creates a new
file on the SD card in write mode. The name of the new file is the same as was returned from SYS_FS_DirSearch.

8. If the file is created successfully, the application reads the data from the file on the USB Flash drive using SYS_FS_FileRead and writes it to
the file on the SD card using SYS_FS_FileWrite until the end of file is reached.

9. Once the end of the file is reached, both files are closed with the SYS_FS_FileClose function.

10. Green LED indicates successful operation.

sst25_fat

This application demonstrates the use of the MPLAB Harmony File System with SST25 Flash media.

Description

This application demonstrates the use of the MPLAB Harmony File System with SST25 Flash media. The application formats the SST25 Flash
media, opens a file named “newFile.txt”, and writes the string “Hello World” to the file. The string is then read and compared with the string that
was written to the file. If the string comparison is successful, LED indication is provided.

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 167

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SST25 Flash
Demonstration.

Description

To build this project, you must open sst25_fat.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/sst25_fat.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sst25_fat.X <install-dir>/apps/fs/sst25_fat/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk_int_dyn bt_audio_dk This configuration runs on PIC32 Bluetooth Audio Development Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

Ensure that switch S1 is set to PIC32_MCLR.

Running the Demonstration

Provides instructions on how to build and run the SST25 Flash demonstration.

Description

This demonstration illustrates the how the MPLAB Harmony File System works with the SST25VF SPI Flash media. The application does the
following:

• Formats the SPI Flash media

• Opens a file named “newFile.txt”

• Writes the string “Hello World” to the file and then flushes the data onto the disk using the Sync operation

• Performs a file size check using the Stat operation, does a seek to the end of the file. The end of file is verified by using the EOF check
operation.

• Another seek to the beginning of the file is done. The file data is read and compared. If the comparison is successful, the file is closed.

• The application then enters an Idle state and LED D9 is turned ON to indicate the demonstration was successful

• If an error occurs at any stage of the demonstration, LED D8 is turned ON to indicate the demonstration failed

Applications Help File System Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 168

Graphics Demonstrations

This section provides descriptions of the Graphics demonstrations.

Introduction

Graphics Library demonstrations applications Help.

Description

This distribution package contains a variety of Graphics-related firmware projects that demonstrate the capabilities of the MPLAB Harmony
Graphics library. This help file describes the hardware requirement and procedures to run these firmware projects on Microchip graphics boards.

This help file contains instructions and associated information about MPLAB Harmony Graphics Demonstration applications, which are contained
in the MPLAB Harmony Library distribution.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

To know more about MPLAB Harmony Graphics, configuring the library and the APIs provided; refer to the Graphics Library documentation.

Graphic Demonstration Description

basic_image_motion Demonstrates the ability of the Graphics Library to depict motion by rapid display of a sequence of
static images that differ from each other.

emwin_quickstart Demonstrates integration of SEGGER emWin GUI application code with MPLAB Harmony.

external_resources Demonstrates access of graphics resources stored on external memory.

graphics_showcase Demonstrates advanced graphics features offered by MPLAB Harmony.

lcc Demonstrates alpha blending, performance, images, and animation when using the on-board
software-based graphics controller.

media_image_viewer Demonstrates real-time image decoding via FAT32 File System stored on external media.

object Demonstrates various user-interface widgets supported by the Graphics Library. The demonstration is
constructed using the MPLAB Harmony Graphics Composer.

primitive Demonstrates the types of primitive lines, rectangles, circles, and shapes as well as images on multiple
screens as constructed using the MPLAB Harmony Graphics Composer. The user observes each
screen through cyclical iteration.

resistive_touch_calibrate Demonstrates a steady-state solution for calibrating through on-screen calibration prompts.

s1d13517 Demonstrates a slideshow, speed test, gradients, and alpha blending.

ssd1926 Demonstrates decoding and displaying of JPEG images utilizing the Solomon Systech SSD1926
graphics controller.

wvga_glcd Demonstrates using Graphics LCD (GLCD) controller with the WVGA display.

Demonstrations

This topic provides information on how to run the Graphics Library demonstration applications included in this release.

basic_image_motion

The Basic Image Motion demonstration shows the ability of the Graphics Library to depict motion by rapid display of a sequence of static images
that differ from each other.

Description

This application demonstrates how the Graphics Library and tools can be used to depict simple motion on the screen with displaying slightly
different static images in quick succession. The ‘double buffering’ feature allows the application to use two framebuffers stored on Flash memory to
enhance the display quality and demonstrate smooth motion. The double buffering feature is turned on as a part of the settings in MPLAB
Harmony Configurator (MHC), which is picked up by the Graphics Library and the framebuffer is accordingly updated. The double buffering rate
sets an upper limit on how fast the images can be changed to depict motion. This fastest achievable speed also varies with the size of the images
to be redrawn, bigger the images, slower the fastest achievable motion.

The image formats used are JPEG and BMP. All image resources are stored on the Flash memory.

The demonstration provides the following features:

• The application loads with a PIC32 logo flash screen that brings the logo into focus and fades away

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 169

• The home screen loads with two selection options: one for a thermostat screen and another for a 3D icon spin demonstration

• The thermostat menu shows a rotating fan that changes speed with the temperature setting, which can be increased or decreased in
predetermined finite jumps

• The 3D icon spin menu shows a spinning Microchip logo. A slider offers five spinning speeds and the rotations per minute (rpm) is displayed for
each selected speed

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Basic Image Motion
Demonstration.

Description

To build this project, you must open the basic_image_motion.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/basic_image_motion.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_image_motion.X <install-dir>/apps/gfx/basic_image_motion/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

basic_image_motion pic32mz_ef_sk+meb2 Demonstration for the Multimedia Expansion Board II (MEB II) connected to
the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

EBIOE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side of the MEB II board.

Configuring the MHC

Provides information on MPLAB Harmony Configurator settings required for the demonstration.

Description

Drivers

Graphics Controller

The Graphics Controller selection shows the LCC Driver being selected using ‘Use LCC driver’. The Memory Interface mode selected is External
Memory. This loads the program with all the resources on the 2 MB Flash memory available on the starter kit as opposed to the 512 KB RAM.
External memory with its larger memory capacity is required for the application for the use of the double buffering feature, which uses two
framebuffers. The hardware is accordingly configured with the jumper to match external memory setting of EBIOE and LCD_PCLK (J9) closed.
Refer to the Graphics Driver Library for additional information.

I2C

The I2C Driver is selected automatically with the selection of LCC. For I2C, the software implementation of I2C is selected, which uses the
bit-banged approach, as opposed to the hardware I2C. This is specific to the PIC32MZ EF Starter Kit. Refer to the I2C Driver Library for additional
information.

Display

The Display Driver setting is selected to be the NewHaven 4.3"’ PCAP WQVGA display. Refer to the MPLAB Harmony Display Manager User's
Guide for additional information.

Touch Sensitivity Issue and Related Setting

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 170

With the current I2C, Touch, and Display Drivers, there is increased touch sensitivity being observed with the default settings of these drivers. This
sensitivity could result in multiple interrupts being registered for a single touch and different touch location being fired non-deterministically. To
work around this issue, it is necessary to change some of the I2C and Display Driver settings.

• The I2C Driver clock frequency was changed from 50 kHz to 10 kHz

• The display driver Master clock timing prescaler was changed from 8 to 16. This changes the pixel clock and the H-Sync timing, slowing the
refresh rate

These settings can be observed in the following three images:

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 171

Interrupts

The option ‘Use External Interrupts’ is selected to accept touch input as the external interrupt for button actions and slideshow transitions in the
application.

BSP

The BSP selected for the supported configuration is PIC32MZ EF Starter Kit in combination with the MEB II: pic32mz_ef_sk_meb2. Refer to the
Configuring the Oscillator Module Using the MHC Clock Configurator for additional information.

Clock Diagram

Open the clock configurator section and make sure the following values are selected for the different clock settings as required for the
pic32mz_sk_ef_meb2 configuration:

• Primary Oscillator Frequency: 24 MHz

• USB PLL: 48 MHz

• System Clock: 200 MHz

• Peripheral Bus Clock: 100 MHz

• REFCLKO: The Reference Clock (REFCLK) uses the System Clock (SYSCLK) as the reference and generates the master clock for SPI
modules at 200 MHz. Refer to the Configuring the Oscillator Module Using the MHC Clock Configurator for additional information.

Pin Table

The clock, debug, and power pins will be selected as per the BSP. Pin selection specific to the application to be noted is for touch:port/pin RE8
must be selected as INT1. Refer to the MPLAB Harmony Graphical Pin Manager for additional information.

Running the Demonstration

Provides instructions on how to build and run the Basic Image Motion demonstration.

Description

Perform the following steps to run the demonstration:

1. The application boots with a flash screen displaying a PIC32 logo coming into focus and then fading out.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 172

2. The flash screen clears to display the main menu. The main menu shows two selection options: one for a thermostat menu and one for the 3D
icon spin menu.

3. The thermostat menu displays a rotating fan and a thermometer with four settings of speed available. The speed of the fan increases as
temperature decreases and vice versa, which are both being changed in finite and predetermined increments or decrements by the up and
down arrow buttons. The value displayed on screen as a dummy temperature value, is in fact the timer value in milliseconds for the delay used
to move through the static images to depict motion. Note that the upper and lower limits on speed and temperature setting are indicated by the
buttons being grayed out.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 173

4. The 3D icon spin menu shows the Microchip logo spinning around a slightly moving vertical axis. A slider at the bottom of the screen allows the
user to change the spinning speed. There are five predetermined speed settings and the rotations per minute (rpm) for each of the speed
settings are displayed on the side.

5. The transitions from the thermostat or the 3D icon spin menu to the Main menu using the Home button are accompanied with the flash screen
briefly displaying the PIC32 logo coming into focus and fading out.

emwin_quickstart

Demonstrates integration of SEGGER emWin GUI application code with MPLAB Harmony.

Description

Demonstration Screens

The demonstration consists of three screens created using the SEGGER emWin GUIBuilder utility:

• Home

• Number Churning

• Text Alignment

Each screen uses different widgets from the SEGGER emWin Graphics Library. The Home screen uses the following widgets:

• Framewin : Home Screen

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 174

• Image : MPLAB Harmony Logo and SEGGER logo

• Text: Powered by and emWin

• Button: Next

Demonstration Screens

Press the Next button to navigate from the Home screen to the Number Churning screen. The Number Churning screen uses the following
widgets:

• Framewin : Number Churning

• Slider : Single Slider with 10 divisions. The Slider position is updated by both touch input and spinbox.

• Spinbox : Three-digit spinbox with value updated by both arrow buttons and slider

• Button: Previous and Next

• Text: Move the slider or press up/down arrow button to change the number

Press the Next button to navigate from Number Churning Screen to Text Alignment screen. Similarly, press the Previous button to navigate from
Number Churning Screen back to the Home screen. The Text Alignment screen consists of the following widgets:

• Framewin: Text Alignment

• Radio: Six radio buttons with each radio button affecting the alignment of the Alignment text

• Text: Horizontal Alignment, Vertical Alignment, center, left, top, right, bottom, and Change text alignment by pressing the radio button

Press the Previous button to navigate from Text Alignment screen back to the Number Churning screen.

SEGGER emWin and MPLAB Harmony Integration

C File Integration

The SEGGER emWin GUIBuilder utility has generated three C files with one file per screen. All files are added to the project within the logical
folder app\emwin_gui. To integrate the generated files with MPLAB Harmony, the application uses the emWin GUI Wrapper. On selection of the
emWin GUI Wrapper within MHC, the MHC code generation tool will generate the required wrapper library. Similarly, for Touch integration, an
emWin Touch Wrapper Library is also available. The appropriate emWin GUI Wrapper and emWin Touch Wrapper APIs need to be called under
the application code. Refer to GUI and Touch Wrapper Library for SEGGER emWIN for more information.

Display Controller Integration

Another important part is the integration of the display controller. This demonstration uses the PIC32MZ EF Starter Kit and the Multimedia
Expansion Board II (MEB II). The display controller driver selected is LCC with internal memory configuration. The appropriate display controller
driver APIs are called by the LCDConf.c file. This file will be generated by the emWin GUI Wrapper and will be added within the project logical
folder system_config\third_party\gfx\emwin\config.

Please note that to run the demonstration using the LCC driver with the internal memory configuration, a jumper setting is required. If the jumper
setting is not properly configured, the demonstration may fail to run with the display. See Configuring the Hardware for more details on the
appropriate jumper settings.

Include Files

There are few include files referenced by the emWin application code. These files, which must be added manually to the project include path are
located in the following folders of your installation of MPLAB Harmony:

• <install-dir>\bin\framework\gfx\segger_emwin\inc

•
<install-dir>\apps\gfx\emwin_quickstart\firmware\src\system_config\pic32mz_ef_sk_meb2\third_party\gfx\emwi
n\config

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the emWin Quick Start
Demonstration.

Description

To build this project, you must open the emwin_quickstart.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/emwin_quickstart.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

emwin_quickstart.X <install-dir>/apps/gfx/emwin_quickstart/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 175

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 SEGGER emWin GUI demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

The MEB II uses LCC as the display controller driver. LCC can be configured to use internal or external RAM for the frame buffer. This
demonstration uses the LCC driver with internal RAM as frame buffer. To configure the MEB II to use internal RAM, EBIWE and LCD_PCLK (J9)
must be closed.

Running the Demonstration

Provides instructions on how to build and run the emWin Quick Start demonstration.

Description

Perform the following steps to run the demonstration:

1. Open the emwin_quickstart project in MPLAB X IDE. The project file, emwin_quickstart.X, is located in the
<install-dir>\apps\gfx\emwin_quickstart\firmware of your installation.

2. From the Project tab of MPLAB X IDE, right click the project and select Set as Main Project. This will ensure that the correct project is built and
run in case multiple projects are open at the same time. By default. the pic32mz_ef_sk_meb2 configuration will be selected as current project
configuration.

3. To clean and build the project, right click the project and select Clean and Build.

4. To run the application, connect the demonstration platform to the host computer and select the Make and Program Device tab in MPLAB X IDE.
This will program the device with the newly build project hex file and run the demonstration.

external_resources

Demonstrates access of graphics resources stored on external memory.

Description

This demonstration provides information on how to access graphics resources that are stored on external memory.

This capability is useful for applications that have large graphics resource requirements, such as storing large bitmap files or multiple page menu
screens that require several images or large or multiple font packages, etc. In these instances, storing these graphics resources on-chip may result
in insufficient memory or may be prohibitive to a possible cost benefit. A solution is to store the graphics resources to off-chip memory, such as
non-volatile memory, thereby preserving the on-chip memory for program memory and allowing for more complex functional features.

To demonstrate how to access graphics resources stored on an external memory device, three components are needed:

• File Packaging

• Bootloader Application

• Fetch Application

Figure 1: External Resources Process Diagram

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 176

File Packaging

The resources to be stored externally need to be packaged into a resource file that would be flashed into the external memory. The MPLAB
Harmony Graphics Composer, which is the primary tool used by the MPLAB Harmony application for configuring the graphic design for the
application, has the ability to generate the required resource file containing the binary data for all of the graphics images to be stored on external
memory.

Refer to the MPLAB X IDE online help and Volume II: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer User's Guide
for usage information.

The graphics composer has the capability to manage the application assets by importing different resources including images, fonts, etc., into an
application. The Graphics Composer Management window in Figure 2 shows the selection of the storage location for each graphics resource, as
either external or internal memory. Generating the graphics composer configuration creates the gfx_resources_ext.hex file. In future versions
of the MPLAB Harmony Graphics Composer it is planned to include the ability to store different resources on different external memories and
specify which external memory (e.g., SQI, SPI, etc.) is targeted for each individual resource. At present, the specific external memory chosen to
store the resources is indicated with the starting address for the external memory. The Settings tab in the Asset window as shown in Figure 2 has
a field for entering the External memory address. In this project as we are using SQI flash, the starting address of 0x30000000 has been specified.
This information is incorporated into the gfx_resources_ext.hex file.

Figure 2: Graphics Composer Management Window

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 177

Memory Writer Application

A memory writer application is required to flash the gfx_resources_ext.hex file containing the binary data of the external graphics resources
into the desired external non-volatile memory. The memory writer application, sqi_flash, uses a USB Flash drive, which has a FAT32 file system
installed, in the Host mode as the source for the gfx_resources_ext.hex file. The USB Flash drive in the Host mode is scanned by the
memory writer for this file and it is flashed onto the SQI Flash external memory. Refer to External Memory Programmer Demonstrations> sqi_flash
for usage information.

Fetch Application

The third component is the application that actually fetches the stored external graphics resources and uses or processes these resources.

The external_resources application will demonstrate the fetching of the externally stored graphics images and using the MPLAB Harmony
framework drivers, display controllers, etc., and display those resources on the screen. This application has been created to have a large memory
requirement for its graphics resources that are larger than the available on-chip memory space. The graphics resources used are large bitmap
images displayed as a slideshow with touch input to transition between the slides. Using the MPLAB Harmony Graphics Composer, the
external_resources application generates the graphic design and configuration of the bitmap images on the screen and this also generates the
gfx_resources_ext.hex file that the external memory programmer application uses to flash the external memory.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the External Resources
Demonstration.

Description

To build this project, you must open the external_resources.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/external_resources.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

external_resources.X <install-dir>/apps/gfx/external_resources/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 External Resource demonstration for the Multimedia Expansion Board II (MEB II) connected to
the PIC32MZ EF Starter Kit and the Graphics Display Powertip 4.3" 480x272 Board.

The daughter board in the PIC32MZ EF Starter Kit has a 4 MB SQI Flash memory device, which
is used as the external non-volatile memory for this application.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II with Graphics Display Powertip 4.3" 480x272 Board

The MEB II has two memory options External or Internal; however, this demonstration must be run in Internal mode. Configure the

MEB II, as follows:

• EBIWE and LCD_PCLK (J9) must be closed (the jumper is located on the back of the MEB II board)

• Ensure that any MHC setting is defined to only use internal SRAM

The current internal/external memory setting for the application can be verified in MHC by selecting Harmony Framework

Configuration > Drivers > Graphics Controllers > LCC > Use LCC Driver > Memory Interface Mode.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 178

Configuring the MHC

Provides information on MPLAB Harmony Configurator settings required for the demonstration.

Description

The following are some of the MHC settings that were modified from the default values.

Drivers

The Graphics Controller selection shows the LCC Driver being selected using ‘Use LCC driver’. The Memory Interface Mode selected is Internal
Memory. This is due to the fact that we want to load the program on internal memory and we are configuring the hardware with the jumper to
match internal memory.

I2C is selected in addition to LCC. For I2C we are selecting the software implementation of I2C which uses the bit-banged approach as opposed to
the hardware I2C. This is specific to the PIC32MZ EF Starter Kit. Also important to note is that the bit-banged I2C implementation requires that the
interrupt priority be changed.

The interrupt priorities for the modules in use must be arranged from high to low in the following order (see the following figure for details):

• I2C interrupt has the highest priority (e.g., priority 6)

• MTCH6301 interrupt (external interrupt) lower than I2C, but higher than LCC DMA (e.g., priority 5)

• LCC DMA interrupt lower than the MTCH6301 interrupt (e.g., priority 4)

Graphics Library

This selection enables all of the Graphics Object Library (GOL) features required by the application. It also enables the graphics design features
through the MPLAB Harmony Graphics Composer. Designing in the graphics composer automatically selects the different GOL components such
as buttons, widgets, images, screens, etc., as used on the graphics composer design windows.

Specifically selected options are:

• Use Input devices > Enable Touch Support

• Use Images > Enable JPEG Support

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 179

Interrupts

The option ‘Use External Interrupts’ is selected to accept touch input as the external interrupt for button actions and slideshow transitions in the
application.

BSP

The BSP selected for the supported configuration is PIC32MZ EF Starter Kit in combination with the MEB II: pic32mz_ef_sk_meb2.

Clock Diagram

Open the clock configurator section and make sure the following values are selected for the different clock settings as required for the
pic32mz_sk_ef_meb2 configuration:

• Primary Oscillator frequency: 24 MHz

• USB PLL: 48 MHz

• System Clock: 200 MHz

• Peripheral Bus Clock: 100 MHz

• REFCLKO: The Reference Clock (REFCLK) uses the System Clock (SYSCLK) as the reference and generates the master clock for SPI
modules at 200 MHz

Pin Table

The clock, debug, and power pins will be selected as per the BSP. Pin selection specific to the application to be noted is for touch:port/pin RE8
must be selected as INT1.

Application-specific Software Setup

SQI external memory support: A formal SQI driver is not available in MPLAB Harmony. Therefore, the SQI Peripheral Library in MPLAB Harmony
is used. Please note that the source and header files for SQI enabling have been manually included in the project:

• SourceFiles/framework/sqi_flash/drv_nvm_flash_sqi_sst26.c

• HeaderFiles/framework/drv_nvm_flash_sqi_sst26.h

Also note that to refer to these files, a preprocessor macro has been added to the application properties named SST26VF_B.

Running the Demonstration

Provides instructions on how to build and run the External Resources demonstration.

Description

1. In this step we are using the MPLAB Harmony Graphics Composer portion of the external_resources application to create the
gfx_resources_ext.hex file. Open the <install-dir>\apps\gfx\external_resourcesexternal_resources folder on the
computer. The external resources to be stored on the external non-volatile memory are available in the gfx_resources_ext.hex file. In this
demonstration, the file has already been generated and is available in the
<install-dir>\apps\gfx\external_resources\firmware\src\system_config\pic32mz_ef_sk+meb2\ folder. This file will be

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 180

required by the external memory programmer application to flash the SQI memory. If the user chooses to change the graphics design or
external resources, the project external_resources should be opened using MPLAB X IDE and the graphics should be changed using the
graphics composer. Any change to the graphics would require regenerating the configuration and regenerating the gfx_resources_ext.hex
file before being used by the external memory programmer application. This process requires both MPLAB X IDe and MPLAB Harmony. Refer
to the MPLAB X IDE online help and Volume II: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer User's Guide for
usage information.

2. Connect a USB Flash drive, which is mounted with a FAT32 file system, into the computer port and copy the gfx_resources_ext.hex file
from apps\gfx\external_resources\firmware\src\system_config\pic32mz_ef_sk+meb2\ onto the Flash drive.

3. Next, connect the USB Flash drive to the Host connector on the PIC32MZ EF Starter Kit daughter board.

4. Program the board with the programmer/sqi_flash application using the pic32mz_ef_sk_meb2_gfx_ext_res configuration. This application
flashes the gfx_resources_ext.hex file available on the USB Flash drive into the external SQI memory. Refer to External Memory
Programmer Demonstrations> sqi_flash for usage information.

5. The external_resources application is the third component that actually fetches and displays the external resources stored in external SQI
memory. Program the external_resources application onto the device. The application demonstrates both internal and external resources being
used together by distributing the images between internal and external memory. The first menu screen has two buttons, one for external and
one for internal resources. Selecting one starts a slideshow, which accepts touch input to transition between slides and displays either the
prestored external images or the internal images on screen. The internal images consist of bitmaps, as well as JPEG images, to demonstrate
JPEG support and run-time JPEG decode for internal resources. The menu also has a third button that briefly describes the demonstration.

6. Please note that once the external resources have been flashed into the SQI memory, it is not required to re-flash the resources every time
while using the external_resources application. However if the user changes the graphics design in the external_resources demonstration, the
configuration needs to be regenerated and the new gfx_resources_ext.hex file needs to be reflashed to external memory using Step 2.
This is to ensure that the external graphics resources being flashed on external memory are in sync with the new graphics composer design
utilizing the resources. Failure to do so will result in externally stored graphics images not being displayed correctly on screen.

 Note: Currently, JPEG decode support has been enabled for internal storage. During the demonstration it can be observed that latency
fetching the images from external off-chip memory causes slow population of the display while rendering the images on screen
memory. A similar latency is also seen while displaying JPEG images on screen due to the delay caused by JPEG run-time
decoding.

graphics_showcase

Provides information on the demonstration.

Description

Demonstrates a sub-set of capabilities offered by the Graphics Library utilizing Low-Cost Controllerless features and the MTCH6303 PCAP Touch
Controller with the 5" WVGA PCAP Display Board (see Note). Additional configurations supporting the 4.3" WQVGA PCAP Display Board that
comes standard with the MEB II are also included as reference.

 Note: Please contact your local Microchip sales office for information on obtaining the 5" WVGA PCAP Display Board.

The demonstration includes the following features:

• WVGA display

• Integrated MTCH6303 PCAP touch input

• Low-Cost Controllerless (LCC) Graphics driver

• 16-bit color depth support (65535 unique colors)

• JPEG and BMP images stored on internal Flash

• Real-time JPEG decode and rendering

• 16-bit Unicode character font support

• Multi-lingual localized menu (Chinese Traditional and Chinese Simplified)

• Console output debugging

Building the Application

This topic identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Showcase
Demonstration.

Description

To build this project, you must open the graphics_showcase.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/graphics_showcase.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 181

Project Name Location

graphics_showcase.X <install-dir>/apps/gfx/graphics_showcase/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk+meb2 Demonstration for the Multimedia Expansion Board II (MEB II) connected to the
PIC32MZ EF Starter Kit.

pic32mz_ef_sk_meb2_wvga pic32mz_ef_sk+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II) connected to the
PIC32MZ EF Starter Kit utilizing the 5" WVGA PCAP Display Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

EBIOE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side of the MEB II board.

This demonstration also has a Debug Console enabled via UART over USB. You will need a USB Type-A to USB Type-B cable. Connect the cable
to the port as shown in the following figure. Also configure the terminal emulator software with the serial port settings of: 8-bit, Non-parity, 1 Stop
bit, and No Flow Control.

Configuring the MHC

Provides information on MPLAB Harmony Configurator settings required for the demonstration.

Description

The following figure shows the MHC Driver settings that were modified from the default values:

• Horizontal Front Porch: 42

• Vertical Back Porch: 36

• Vertical Front Porch: 13

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 182

Running the Demonstration

Provides instructions on how to build and run the Graphics Showcase demonstration.

Description

On successful power-on, the demonstration will display a similar menu to that shown in the following figure:

The demonstration is separated into four parts:

1. The Slideshow mode consists of a series of JPEG images rendered at 16-bpp color depth. The demonstration will cycle to the next slide upon
time-out via a timer, which can be configured through the Settings sub-menu. Tapping the image will skip to the next slide without the need to

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 183

wait for the timer. Press and hold to keep the image from cycling.

2. The Touch Test mode brings up a simple screen that tracks and records the touch location. The X and Y coordinates are displayed through the
digital meter widgets on the right. The X/Y coordinates are also displayed through the debug console.

3. Under the Settings menu you may change the timing of the slides using a slider. The other feature is the multi-lingual support of this
demonstration. Touching any of radio buttons will allow you to change the language displayed for the entire demonstration between English
and either Traditional or Simplified Chinese.

4. The demonstrated Features can be displayed through the last selection on the main menu.

Application Functions and Prototypes

Functions

Name Description

APP_ChangeMode Changes the current application mode

APP_GenerateSysMsgGet Generate Sys Msg Touch Data

APP_HandleLanguageSetting Changes the current application language settings

APP_HandleTouchTest Sends current x/y touch values to the digital meter in the Touch Test screen

APP_ProcessModeState Changes the currnet application state base on the current selected mode

APP_RedrawRectangle Set the redraw the rectangle in the touch test screen

APP_TouchMessageCallback Touch event callback routine.

APP_UpdateFeatureList Updates the Feature List to be displayed, base on the language setting

APP_UpdateLanguageTexts Updates the Settings text to be displayed, base on the language setting

APP_UpdateMainMenu Updates the Main Menu text to be displayed, base on the language setting

APP_UpdateSlideShowTips Updates the Slideshow instructrion text to be displayed, base on the language setting

Description

Lists the functions and prototypes available for the demonstration, which are provided in the app.h header file.

Functions

APP_ChangeMode Function

Changes the current application mode

File

graphics_showcase_app.h

C
void APP_ChangeMode(APP_MODES mode);

Description

This is function is setup to be called on a release event by a screen button to help navigate between modes. When called, this function sets up any
necessary steps to switch to the requested mode.

Function

void APP_ChangeMode(APP_MODES mode);

APP_GenerateSysMsgGet Function

Generate Sys Msg Touch Data

File

graphics_showcase_app.h

C
bool APP_GenerateSysMsgGet();

Returns

true if touch event is processed.

Remark: This function is here because the MTCH6303 driver has not been integrated to SYS Touch. This function is doing normally what SYS

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 184

Touch should be doing

Description

This function is called in APP_Tasks() every cycle to determine press/still press/release situations and then send out the result via SYS MSG, the
recipient of the message should be the GOL library where it uses the data to handle widget behavior.

Function

bool APP_GenerateSysMsgGet(void)

APP_HandleLanguageSetting Function

Changes the current application language settings

File

graphics_showcase_app.h

C
void APP_HandleLanguageSetting(APP_LANGUAGES language);

Description

This is function is setup to be called on a select event by a radio button to select the language. When called, this function sets up any necessary
steps to switch to the requested language.

Function

void APP_HandleLanguageSetting(APP_LANGUAGES language);

APP_HandleTouchTest Function

Sends current x/y touch values to the digital meter in the Touch Test screen

File

graphics_showcase_app.h

C
void APP_HandleTouchTest();

Description

Handles the reporting of the euclidean coordinate values to the digital meter in the Touch Test screen

Function

void APP_HandleTouchTest(void);

APP_ProcessModeState Function

Changes the currnet application state base on the current selected mode

File

graphics_showcase_app.h

C
void APP_ProcessModeState();

Description

This is function is called to handle transitioning to a new state if a mode change has been requested by the user.

Function

void APP_ProcessModeState(void);

APP_RedrawRectangle Function

Set the redraw the rectangle in the touch test screen

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 185

File

graphics_showcase_app.h

C
void APP_RedrawRectangle();

Description

When called, this function clears the touch screen test area by repainting a rectangle in the test area.

Function

void APP_RedrawRectangle(void);

APP_TouchMessageCallback Function

Touch event callback routine.

File

graphics_showcase_app.h

C
void APP_TouchMessageCallback(SYS_MSG_OBJECT * pMsg);

Description

This is the callback from the GFX_HGC layer to inform the application of a touch event. pMsg includes the current touch behavior and the touch
position is reported via the Touch System Service

Remarks

This function is registered via GFX_HGC_RegisterAppTouchCallback in APP_Initialize(). This function is only included in the build when not using
MTCH6303 touch driver. This is because the Touch System Service is not supported by MTCH6303 touch driver for MPLAB Harmony v1.07.

Function

void APP_TouchMessageCallback (SYS_MSG_OBJECT *pMsg);

APP_UpdateFeatureList Function

Updates the Feature List to be displayed, base on the language setting

File

graphics_showcase_app.h

C
void APP_UpdateFeatureList();

Description

This is called in APP_Tasks() during the Feature List mode to draw the correct set of feature list to display, base on the language setting (English,
Chinese Traditional, and Chinese Simplified)

Function

void APP_UpdateFeatureList(void);

APP_UpdateLanguageTexts Function

Updates the Settings text to be displayed, base on the language setting

File

graphics_showcase_app.h

C
void APP_UpdateLanguageTexts();

Description

This is called in APP_Tasks() during the Settings mode to draw the correct set of settings text to display, base on the language setting (English,

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 186

Chinese Traditional, and Chinese Simplified)

Function

void APP_UpdateLanguageTexts(void);

APP_UpdateMainMenu Function

Updates the Main Menu text to be displayed, base on the language setting

File

graphics_showcase_app.h

C
void APP_UpdateMainMenu();

Description

This is called in APP_Tasks() during the Main Menu mode to draw the correct set of text to display, base on the language setting (English,
Chinese Traditional, and Chinese Simplified)

Function

void APP_UpdateMainMenu(void);

APP_UpdateSlideShowTips Function

Updates the Slideshow instructrion text to be displayed, base on the language setting

File

graphics_showcase_app.h

C
void APP_UpdateSlideShowTips();

Description

This is called in APP_Tasks() during the Slideshow mode to draw the correct set of text to display, base on the language setting (English, Chinese
Traditional, and Chinese Simplified)

Function

void APP_UpdateSlideShowTips(void);

Data Types and Constants

lcc

Demonstrates the advanced capabilities of the Graphics Library utilizing the software graphics controller.

Description

This demonstration provides the ability to display alpha blend and gradient colors through the software graphics controller. The demonstration
renders four folders for alpha blend, gradient, picture-in-picture (PIP), and performance for all PIC32 devices.

For PIC32MX devices, the demonstration runs on the PICtail Plus Low-Cost Controllerless (LCC) Daughter Board, and on PIC32MZ devices, it
runs on the Multimedia Expansion Board II (MEB II).

This demonstration requires the use of memory external to the microcontroller. The memory is provided on the board, but must be configured with
a hardware jumper.

Important!

To set up the external memory, a jumper setting on the board is required. Failure to configure this jumper setting will prevent the
display from working, although the software may still run. See Configuring the Hardware for details on the appropriate jumper
settings.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Low-Cost

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 187

Controllerless (LCC) Demonstration.

Description

To build this project, you must open the lcc.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/lcc.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

lcc.X <install-dir>/apps/gfx/lcc/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_pcap_db pic32mx_pcap_db LCC demonstration for the Low-Cost Controllerless (LCC) Graphics
using the PIC32 GUI Development Board with Projected Capacitive
Touch.

pic32mx_usb_sk2_lcc_pictail_wqvga pic32mx_usb_sk2+lcc_pictail+wqvga LCC demonstration for the Low-Cost Controllerless (LCC) Graphics
PICtail Plus Daughter Board with the Graphics Display Powertip
4.3" 480x272 Board connected to the PIC32 USB Starter Kit II.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 LCC demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II and Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board

Make the following changes to the daughter board:

• Set J4 to 2-3 for external SRAM use. The jumper must be set to enable display operation. Ensure that any MHC setting defines external SRAM
use only.

• Set jumpers J6-J19 to (2-3) for 16-bit (565) color mode

PIC32MZ EF Starter Kit and MEB II

The MEB II has two memory options External or Internal; however, this demonstration must be run in External mode; therefore, EBIOE and
LCD_PCLK (J9) must be closed. The jumper is located on the bottom side of the MEB II board. Ensure that any MHC setting is defined to only use
external SRAM.

The current internal/external memory setting for the application can be verified in MHC by selecting Harmony Framework Configuration > Drivers >
Graphics Controllers > LCC > Use LCC Driver > Memory Interface Mode.

Running the Demonstration

Provides instructions on how to build and run the LCC demonstration.

Description

This demonstration shows the Graphics Library interfacing with the Low-Cost Controllerless (LCC) software display controller. It shows alpha
blending, gradient, panning, and double buffering capabilities through the Graphics Library.

1. Load the demonstration project into MPLAB X IDE.

2. Build, Download, and Run the demonstration project on the target board.

3. Use the graphics buttons to navigate between screens.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 188

Demonstration Output

The demonstration renders four folders for alpha blend, gradient, picture-in-picture (PIP), and performance. Touch one of the folders to activate the
demonstration. Touching arrow buttons will move the screen in the arrow direction

• PIP: Demonstrates the moving cursor represented by different images and a bevel shape with gradient applied

• Speed: Draws random bars of random size at random locations demonstrating the speed of drawing bars

• Alpha blend: Demonstrates alpha blending feature applied to three buttons, which blends them with the background. The background is an
image of MPLAB Harmony's "Integrate" and "Harmonize" logo

• Paging: Demonstrates background color changing effects using multiple surfaces. In this demonstration, the background color changes with
the weather. The demonstration also draws a cloud image and includes text showing the date, time, and temperature.

 Troubleshooting TIP!
When executing the application, if the display is static and is either all bright or all dark, it is likely that the
memory setting is incorrect. See Configuring the Hardware for additional information.

media_image_viewer

Demonstrates real-time image decoding via FAT32 File System stored on external media.

Description

This demonstration provides the ability to load and render image files via a FAT32 File System stored on external SD card media.

The image formats supported in this demonstration includes JPEG, BMP, static GIF, transparent GIF and animated GIF. The application also
demonstrates the ability of the MPLAB Harmony Graphics Library to automatically perform best-fit to the screen by down-sizing images with a
higher pixel resolution than the screen.

The auto-mount feature from the File System Service is utilized by the application such that the SD card media can be ejected and swapped at
run-time.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Media Image Viewer
Demonstration.

Description

To build this project, you must open the media_image_viewer.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/media_image_viewer.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 189

Project Name Location

media_image_viewer.X <install-dir>/apps/gfx/media_image_viewer/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the Multimedia Expansion Board II (MEB II) connected to the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mz_ef_sk_meb2_wvga pic32mz_ef_sk+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II) connected to the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the
WVGA display.

Application Header File

This table lists and describes the application header file used by the demonstration, which is located within ./firmware/src.

Project
Configuration
Name

Description

app.h This header file provides function prototypes and data type definitions for the application. Some of these are required by the
system (such as the APP_Initialize and APP_Tasks prototypes) and some of them are only used internally by the application
(such as the APP_STATES definition). Both are defined in this file for convenience.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

The MEB II has two memory options External or Internal; however, this demonstration must be run in External mode; therefore, EBIOE and
LCD_PCLK (J9) must be closed. The jumper is located on the bottom side of the MEB II board. Ensure that any MHC setting is defined to only use
external SRAM.

The current internal/external memory setting for the application can be verified in MHC by selecting Harmony Framework Configuration > Drivers >
Graphics Controllers > LCC > Use LCC Driver > Memory Interface Mode.

Configuring the MHC

Provides information on MPLAB Harmony Configurator settings required for the demonstration.

Description

The following figure shows the MHC Driver settings that were modified from the default values:

• Horizontal Front Porch: 42

• Vertical Back Porch: 36

• Vertical Front Porch: 13

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 190

Running the Demonstration

Provides instructions on how to build and run the Media Image Viewer demonstration.

Description

Perform the following steps to run the demonstration.

1. Load the demonstration project into MPLAB X IDE.

2. Build, Download, and Run the demonstration project on the target board.

3. Insert a SD card (formatted for FAT or FAT32) with JPEG, BMP, and/or GIF images to the SD card socket, which is located on the back of the
MEB II. The application is designed to allow the SD card to be ejected and swapped at run-time. However, there is a limitation to this feature.
The application will not be able to recover if the SD card is ejected when an image is partially loaded on screen.

4. If a SD card is not present, or the application had problems reading the SD card, a screen will appear with the message "Please insert SD card".

5. When the application is able to detect the SD card, it will automatically proceed to search the card and discover all the images on the card. If
the application detects a large number of images, a screen will appear with the message "Searching for images".

6. Once the SD card has been read by the application, the following menu is displayed.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 191

7. Pressing the Slideshow virtual button on the screen will open a set of brief instructions on how to navigate between images during Slideshow
mode. Tap anywhere on the screen and the application will proceed to render every image detected on the SD card. The image formats
supported are JPEG, BMP and GIF (see Note). A limited amount of animated GIF and semi-transparent GIFs are also supported. Image
rendering time may vary, depending on image resolution, file size (larger for BMP) and decoding time (JPEG and GIF). The application will
perform a best-fit to the screen, automatically down-sizing for images with a resolution that is larger than the screen resolution.

 Note: Progressive scan JPEG images are not supported.

8. The Settings button will direct you to the settings menu. The pause time between slides can be adjusted here. Also available for turning on/off
is the image meta data that is displayed in the upper left corner. For the PIC32MZ EF Starter Kit plus MEB II configuration, the settings menu
also includes the ability to enable and disable double buffering at run-time as an option to enhance display quality.

9. The Feature List button provides a list of the hardware and software features demonstrated in this application.

Application Functions and Prototypes

Functions

Name Description

APP_DoubleBufferingEnable API from the UI to application to enable/disable double buffering.

APP_GoToNextSlide Set the slideshow to the next slide.

APP_IsSupportedFile Callback handler to check if the file is supported.

APP_MetaDataEnable API from the UI to application to enable/disable meta data display.

APP_ReadNextImageHeader Read and prepare the next image header.

APP_SetSlidePauseTime Sets Slide Pause Interval Time.

Data Types and Constants

Name Description

APP_DISK_FILE_NODE This is type APP_DISK_FILE_NODE.

APP_DISK_FILE_PATH This is type APP_DISK_FILE_PATH.

APP_DISK_MAX_DIRS

APP_DISK_MAX_FILES This is macro APP_DISK_MAX_FILES.

APP_LANGUAGES Enumeration of the languages supported in this application

Description

Lists the functions and prototypes available for the demonstration, which are provided in the app.h header file.

Functions

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 192

APP_DoubleBufferingEnable Function

API from the UI to application to enable/disable double buffering.

File

media_image_viewer_app.h

C
void APP_DoubleBufferingEnable(bool enable);

Description

When called, this function updates the double buffering flag in the application.

Function

void APP_DoubleBufferingEnable(bool enable)

APP_GoToNextSlide Function

Set the slideshow to the next slide.

File

media_image_viewer_app.h

C
void APP_GoToNextSlide();

Description

When called, this function sets up any necessary steps to switch to the next slide.

Function

void APP_GoToNextSlide(void);

APP_IsSupportedFile Function

Callback handler to check if the file is supported.

File

media_image_viewer_app.h

C
bool APP_IsSupportedFile(char * name);

Description

This function confirms if the files are supported by the application.

Function

void APP_IsSupportedFile(char *name)

APP_MetaDataEnable Function

API from the UI to application to enable/disable meta data display.

File

media_image_viewer_app.h

C
void APP_MetaDataEnable(bool enable);

Description

When called, this function updates the meta data display flag in the application.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 193

Function

void APP_MetaDataEnable(bool enable)

APP_ReadNextImageHeader Function

Read and prepare the next image header.

File

media_image_viewer_app.h

C
bool APP_ReadNextImageHeader();

Description

This function is set up to the next image resource header.

Function

bool APP_ReadNextImageHeader(void)

APP_SetSlidePauseTime Function

Sets Slide Pause Interval Time.

File

media_image_viewer_app.h

C
void APP_SetSlidePauseTime(int timeInSec);

Description

This function is set up to be called on a touch event by the slider bar in the Settings menu.

Function

void APP_SetSlidePauseTime(int timeInSec);

Data Types and Constants

APP_DISK_FILE_NODE Structure

File

media_image_viewer_app.h

C
typedef struct {
 SYS_FS_FSTAT fstat;
 char path[255];
} APP_DISK_FILE_NODE;

Description

This is type APP_DISK_FILE_NODE.

APP_DISK_FILE_PATH Structure

File

media_image_viewer_app.h

C
typedef struct {
 char path[255];
} APP_DISK_FILE_PATH;

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 194

Description

This is type APP_DISK_FILE_PATH.

APP_DISK_MAX_DIRS Macro

File

media_image_viewer_app.h

C
#define APP_DISK_MAX_DIRS 100

Section

Type Definitions

APP_DISK_MAX_FILES Macro

File

media_image_viewer_app.h

C
#define APP_DISK_MAX_FILES 1000

Description

This is macro APP_DISK_MAX_FILES.

APP_LANGUAGES Enumeration

Enumeration of the languages supported in this application

File

graphics_showcase_app.h

C
typedef enum {
 APP_LANG_ENGLISH,
 APP_LANG_CHINESE_TRAD,
 APP_LANG_CHINESE_SIMP
} APP_LANGUAGES;

Description

APP_LANGUAGES

This enum is to help track the three languages supported in this application: English, Chinese Traditional, and Chinese Simplified.

object

An example of standard user-interface widgets of the Graphics Library.

Description

The object demonstration enables screen design using the MPLAB Harmony Graphics Composer through the standard types of objects/widgets
that exist in the Graphics Object Layer (GOL) of the Graphics Library. The demonstration is composed of several pages of examples.

Important!

This demonstration must be run in Internal Memory mode. See Configuring the Hardware for additional details on the setup of the
available memory.

Viewing the Screen Designs

The screen designs can be viewed by activating the MPLAB Harmony Graphics Composer from within the MPLAB Harmony Configurator, by
selecting Graphics Composer using the Launch Utility icon in the MPLAB Harmony Configurator toolbar. Refer to the MPLAB Harmony Graphics
Composer User's Guide for more information.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 195

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Object
Library Demonstration.

Description

To build this project, you must open the object.X project in MPLAB X IDE, and then select the desired configuration.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 196

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/object.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

object.X <install-dir>/apps/gfx/object/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_usb_sk2_s1d_pictail_vga pic32mx_usb_sk2+s1d_pictail+vga Object demonstration for the Graphics LCD Controller PICtail Plus
S1D13517 Daughter Board with Graphics Display Truly 5.7"
640x480 Board connected to the PIC32 USB Starter Kit II.

pic32mx_usb_sk2_s1d_pictail_wvga pic32mx_usb_sk2+s1d_pictail+wvga Object demonstration for the Graphics LCD Controller PICtail Plus
S1D13517 Daughter Board with Graphics Display Truly 7" 800x480
Board connected to the PIC32 USB Starter Kit II.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Object demonstration for the Multimedia Expansion Board II (MEB
II) connected to the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Graphics LCD Controller PICtail Plus Epson S1D13517 Daughter Board

No hardware related configuration or jumper setting changes are necessary.

MEB II

The MEB II has two memory options External or Internal; however, this demonstration must be run in Internal mode. Configure the MEB II, as
follows:

• EBIWE and LCD_PCLK (J9) must be closed (the jumper is located on the back of the MEB II board)

• Ensure that any MHC setting is defined to only use internal SRAM

The current internal/external memory setting for the application can be verified in MHC by selecting Harmony Framework Configuration > Drivers >
Graphics Controllers > LCC > Use LCC Driver > Memory Interface Mode.

Running the Demonstration

Provides instructions on how to build and run the object demonstration.

Description

This demonstration shows screen designing using the MPLAB Harmony Graphics Composer by using pre-canned graphics object (widget)
capabilities of the Object Layer (GOL) of the Graphics Library. Objects such as Button, Check Box, Edit Box, Group Box, Progress Bar, Radio
Button, and Text Entry are rendered on several display screens.

1. Load the demonstration project into MPLAB X IDE.

2. Build, Download, and Run the demonstration project on the target board.

3. The initial screen should be similar to the following:

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 197

4. Sample the demonstration by touching various widgets on the screen.

5. Use the Next and Previous buttons to cycle through the demonstration.

Demonstration Output

The demonstration renders each object demonstration onto a window. To navigate from one window to another, arrow buttons are provided on the
left and right of each rendered window. The available demonstrations are as follows:

• Buttons: A window with the title "Buttons" is rendered and multiple buttons with rectangle, bevel, and circular shapes are drawn. Each button
demonstrates different states supported by the MPLAB Harmony Graphics Library.

• Check box: Demonstrates the change in text alignment of a button after a alignment is selected using a check box. In addition, different states
supported by the check box widget are demonstrated.

• Radio buttons: Demonstrates the radio button feature and states supported by the feature

• Group box: Demonstrates the group box feature of the MPLAB Harmony Graphics library. The alignment of the text under group box is
modified as per the selection of the state for the group box. In addition, a change in the window title string is demonstrated.

• Progress bar: Demonstrates the progress bar feature of the MPLAB Harmony Graphics Library by drawing a progress bar with its value
updating run time and also demonstrates how fast the platform can update the value of progress bar

• List box: Demonstrates the list box feature of the MPLAB Harmony Graphics Library by selecting entries in the list box. The entries can be
aligned to center by selecting the center alignment check box.

• Digital Meter: Demonstrates the digital meter widget of the MPLAB Harmony Graphics Library. The value displayed changes continuously by
pressing the Accelerate/Deaccelerate button.

• Meter: Demonstrates the meter widget of the MPLAB Harmony Graphics Library. It is displayed as full round and quarter round dials and
demonstrates the configurable display properties of the meter. The value displayed changes continuously by pressing the
Accelerate/Deaccelerate button.

 Troubleshooting TIP!
When executing the application, if the display is static and is either all bright or all dark, it is likely that the
memory setting is incorrect. See Configuring the Hardware for additional information.

primitive

An example of primitive drawing capabilities of the Graphics Library using the MPLAB Harmony Graphics Composer.

Description

The Primitive example demonstrates primitive rendering of geometry, images, and fonts. The demonstration displays various circles, lines,
rectangles, images depths, alias and non-aliased fonts.

This demonstration may run in either internal memory or external memory mode. The external memory is provided on the MEB II board. See
Configuring the Hardware for additional details on setup of the available memory.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 198

Viewing the Screen Designs

The screen designs can be viewed by activating the MPLAB Harmony Graphics Composer from within the MPLAB Harmony Configurator, by
clicking Execute within Graphics Library > Create a Design With MPLAB Harmony Graphics Composer.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 199

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Primitive
Library Demonstration.

Description

To build this project, you must open the primitive.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/primitive.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

primitive.X <install-dir>/apps/gfx/primitive/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP used Description

bt_audio_dk bt_audio_dk Primitive demonstration for the PIC32 Bluetooth Audio
Development Kit.

pic32mx_125_sk_lcc_pictail_qvga pic32mx_125_sk+lcc_pictail+qvga Primitive demonstration for the Low-Cost Controllerless (LCC)
Graphics PICtail Plus Daughter Board with the Graphics Display
Truly 3.2" 320x240 Board connected to the PIC32MX1/2/5 Starter
Kit.

pic32mx_usb_sk2_lcc_pictail_wqvga pic32mx_usb_sk2+lcc_pictail+wqvga Primitive demonstration for the Low-Cost Controllerless (LCC)
Graphics PICtail Plus Daughter Board with the Graphics Display
Powertip 4.3" 480x272 Board connected to the PIC32 USB
Starter Kit II.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb Primitive demonstration for the Multimedia Expansion Board
(MEB) connected to the PIC32 USB Starter Kit II.

pic32mx_usb_sk2_s1d_pictail_wqvga pic32mx_usb_sk2+s1d_pictail+wqvga Primitive demonstration for the Graphics Controller PICtail Plus
Epson S1D13517 Daughter Board with the Graphics Display
Powertip 4.3" 480x272 Board connected to the PIC32 USB
Starter Kit II.

pic32mx_usb_sk2_ssd_pictail_qvga pic32mx_usb_sk2+ssd_pictail+qvga Primitive demonstration for the Graphics LCD Controller PICtail
Plus SSD1926 Daughter Board with Graphics Display Truly 3.2"
320x240 Board connected to the PIC32 USB Starter Kit II.

pic32mz_ef_sk_meb2 pic32mz_ef_sk_meb2 Primitive demonstration for the Multimedia Expansion Board II
(MEB II) connected to the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_ef_sk_s1d_pictail_wqvga pic32mz_ef_sk+s1d_pictail+wqvga Primitive demonstration for the Graphics Controller PICtail Plus
Epson S1D13517 Daughter Board with the Graphics Display
Powertip 4.3" 480x272 Board connected to the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II and MEB

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

The MEB II has two memory options: External or Internal:

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 200

• When running a demonstration in External mode, EBIOE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side
of the MEB II board.

• When running a demonstration in Internal mode EBIWE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side
of the MEB II board.

The current internal/external memory setting for the application can be verified in MHC by selecting Harmony Framework Configuration > Drivers >
Graphics Controllers > LCC > Use LCC Driver > Memory Interface Mode.

Graphics LCD Controller PICtail Plus SSD1926 Daughter Board

General set up:

The PIC32MZ Starter Kit Adapter Board is required to use a starter kit with the daughter board.

Set up the PMP interface:

The demonstration can only be run in 8-bit PMP mode; therefore, set JP2 to PARALLEL-8 bit. The setting for the PMP mode in MHC can be
verified by selecting Harmony Framework Configuration >Drivers > PMP > Transfer Size. Ensure that this setting is PMP_DATA_SIZE_8_BITS.

Graphics LCD Controller PICtail Plus Epson S1D13517 Daughter Board

General set up:

PIC32MZ EF Starter Kit:

The PIC32MZ EF Starter Kit has a PKOB mode (JP2):

• When programming using PKOB, JP2 must be closed

• When programming using MPLAB REAL ICE, JP2 must be open

The PIC32MZ Starter Kit Adapter Board is required to use a starter kit with the daughter board.

• Set jumpers JP1 (CAN_RX) and JP2 (RC3) for display output, as shown in the following figures:

Bottom Side of Adapter Board

PIC32MZ EF Starter Kit connected to the Adapter Board

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 201

PIC32MZ EF Starter Kit and Adapter Board connected to the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board

PIC32MZ EF Starter Kit and Adapter Board connected to the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board and the
Graphics Display Truly 7" 800x480 Board

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 202

 Note: To ensure correct demonstration display operation, this board configuration should remain flat and be kept away from obstructions
that would cause a bend of the PICtail display connector that exists between the Graphics Controller PICtail Plus Epson
S1D13517 Daughter Board and the Graphics Display Truly 5.7” and 7” boards.

Set up the PMP interface:

The demonstration can only be run in 8-bit PMP mode; therefore, open JP2. The setting for the PMP mode in MHC can be verified by selecting
Harmony Framework Configuration >Drivers > PMP > Transfer Size. Ensure that this setting is PMP_DATA_SIZE_8_BITS.

• When running the demonstration in the 8-bit PMP interface mode, open JP2

• When running the demonstration in the 16-bit PMP interface mode, close JP2

Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board

• Set J4 to 2-3 for external SRAM use. Ensure the MHC settings are set to only use external SRAM.

• Set jumpers J6-J19 to (2-3) for 16-bit (565) color mode

The current internal/external memory setting for the application can be verified in MHC by selecting Harmony Framework Configuration > Drivers >
Graphics Controllers > LCC > Use LCC Driver > Memory Interface Mode.

Running the Demonstration

Provides instructions on how to build and run the Primitive demonstration.

Description

This demonstration shows basic primitive capabilities of the Primitive Layer of Graphics Library by rendering 2D geometry, fonts, and images.

1. Load the demonstration project into MPLAB X IDE.

2. Build, Download, and Run the demonstration project on the target board.

3. The first screen should be similar to the following:

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 203

Demonstration Output

The output of this demonstration is as follows:

• Drawing rectangles

• Drawing color filled rectangles

• Drawing one 16 BPP image

 Troubleshooting TIP!
When executing the application, if the display is static and is either all bright or all dark, it is likely that the
memory setting is incorrect. See Configuring the Hardware for additional information.

resistive_touch_calibrate

Demonstrates user-level application code to calibrate an AR1021 Resistive Touch Screen Controller.

Description

This application demonstrates a steady-state solution for calibrating through on-screen calibration prompts. Essentially, this demonstration
presents displayed calibration targets as required by the AR1021 specification.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Resistive
Touch Calibration Demonstration.

Description

To build this project, you must open the resistive_touch_calibrate.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/resistive_touch_calibrate.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

resistive_touch_calibrate.X <install-dir>/apps/gfx/resistive_touch_calibrate/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 204

Project Configuration Name BSP used Description

resistive_touch_calibrate pic32mx_usb_sk2_s1d_pictail_vga Graphics resistive touch calibration demonstration.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Graphics Display Truly 5.7" 640 x 480 Board

• Set the AR1020 touch controller by setting the four AR1020 jumpers, J1, J2, J3, and J4, as shown in the following figure

• Leave the MCU row of pins open

Configuring the MHC

Provides information on MPLAB Harmony Configurator settings required for the demonstration.

Description

The following are some of the MHC settings that were modified from the default values.

 Note: For additional value range information refer to the "AR1000 Series Resistive Touch Screen Controller Data Sheet" (DS41393),
which is available for download from the Microchip web site (www.microchip.com).

Drivers

The AR1021 Touch Driver is automatically selected when the BSP is selected.

The SPI Driver is automatically selected when the AR1021 Driver is selected.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 205

http://www.microchip.com

Graphics Library

The Graphics Library is automatically selected when the BSP is selected.

System Services

The Touch System Service is automatically selected with the BSP is selected.

BSP

The BSP selected for the configuration is pic32mx_usb_sk2_s1d_pictail_vga.

Pin Table

The AR1021 requires remapping. This is done through the Pin Table.

Running the Demonstration

Provides instructions on how to build and run the Resistive Touch Calibration demonstration.

Description

Perform the following steps to run the demonstration:

1. Power the development board using a USB-mini-B power connector.

2. Program the application onto the board using MPLAB X IDE or IPE.

3. The demonstration will display a main screen with Graphics Button widgets.

4. Touch the display to determine if calibration is required.

5. To calibrate, press Switch 1, to start the calibration routine.

6. The calibration routine will display four calibration targets (i.e., a red circle) in sequence. Touch each target as it appears on the display. The
target will go from color “red” to color “green” on acceptance. After the last target is prompted, the user interface will redisplay the main screen
to allow the user to test calibration.

7. To change calibration parameters, rerun the MHC configuration for the AR1021 Touch Driver.

s1d13517

Graphics Controller PICtail™ Plus Epson S1D13517 Board demonstration.

Description

This demonstration shows how gradients, scrolling, background drawing, speed testing, alpha-blending, and application capabilities using the
Epson (S1D13517) graphics controller that resides on the Graphics Controller PICtail™ Plus Epson S1D13517 Board.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the S1D13517
Demonstration

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 206

Description

To build this project, you must open the s1d13517.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/s1d13517.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

s1d13517.X <install-dir>/apps/gfx/s1d13517/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_usb_sk2_s1d_pictail_vga pic32mx_usb_sk2+s1d_pictail+vga S1D13517 demonstration for the Graphics Controller PICtail Plus
Epson S1D13517 Daughter Board with the Graphics Display Truly
5.7" 640x480 Board connected to the PIC32 USB Starter Kit II.

pic32mx_usb_sk2_s1d_pictail_wvga pic32mx_usb_sk2+s1d_pictail+wvga S1D13517 demonstration for the Graphics Controller PICtail Plus
Epson S1D13517 Daughter Board with Graphics Display Truly 7"
800x400 Board connected to the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Graphics LCD Controller PICtail Plus Epson S1D13517 Daughter Board

General set up:

• Set the SPI Channel used by setting the four SPI1 or SPI2 jumpers

• Leave JP1 open

Set up the PMP interface:

• When running the demonstration in the 8-bit PMP interface mode, open JP2

• When running the demonstration in the 16-bit PMP interface mode, close JP2

Running the Demonstration

Provides instructions on how to build and run the S1D13517 demonstration.

Description

This demonstration shows the Graphics Library interfacing with the Solomon Systech S1D13517 external display controller. It shows
alpha-blending, gradient, panning, and double buffering capabilities through the Graphics Library.

1. Load the demonstration project into MPLAB X IDE.

2. Build, Download, and Run the demonstration project on the target board.

3. Use the touch buttons to navigate to various screens.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 207

Demonstration Output

Demonstrates gradients, scrolling, background drawing, speed testing, alpha-blending, and application

capabilities using the Epson (S1D13517) graphics controller. Touch demonstration buttons on the left side of the display are used to run each
demonstration.

• Comfort: Demonstrates the Air Conditioner control menu

• Speed: Demonstrates the speed at which the random shape and size of filled rectangles are drawn

• Gradients: Demonstrates the different modes of the gradient feature with start (red) and end (black) color

• AlphaBlending: Demonstrates how the background is blended with a color-shaded foreground with alpha of foreground changing run-time
from maximum to minimum

• Info: Displays information about each demonstration

ssd1926

Shows how to display JPEG images using the Solomon Systech (SSD1926) graphics controller that resides on the PICtail™ Plus SSD1926
Daughter Board.

Description

The SSD1926 demonstration shows how to decode of JPEG images from an SD card utilizing the JPEG decoder capabilities of the Solomon
Systech SSD1926 graphics controller.

This demonstration showcases hardware features that are unique to the LCD Controller Solomon Systech SSD1926. The two unique features are
the hardware JPEG decoder and the hardware 4-bit SD card interface on the SSD1926.

This demonstration only runs with QVGA (320x240) displays and not the WQVGA (480x272). The reason begin there is only 256 Kbytes of RAM
available on the SSD1926. If configured for a WQVGA display at 16 bpp color depth, 255 Kbytes of frame buffer space is required, and not enough
RAM is left for the JPEG decoding. Therefore, this demonstration only runs on a QVGA setup.

The demonstration uses the Microchip Memory Disk Drive File System (MDDFS) Interface Library with the Microchip Graphics Library working on
the Graphics LCD Controller PICtail™ Plus SSD1926 Board (AC164127-5) mounted with the SD Card receptacle.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SSD1926
Demonstration.

Description

 Note: By default, the project is configured to run in 8-bit PMP interface mode. 16-bit PMP mode is not supported at this time.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 208

To build this project, you must open the ssd1926.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/ssd1926.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ssd1926.X <install-dir>/apps/gfx/ssd1926/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_usb_sk2_ssd_pictail_qvga pic32mx_usb_sk2+ssd_pictail+qvga SSD1926 demonstration for the Graphics LCD Controller PICtail Plus
SSD1926 Daughter Board with Graphics Display Truly 3.2" 320x240
Board connected to the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Graphics LCD Controller PICtail Plus SSD1926 Daughter Board

General set up:

• Set the SPI Flash Chip Select signal to use RD1 by setting JP3 to RD1-FLASH CS

• Leave JP1 open

Set up the PMP interface:

• This demonstration is only supported in 8-bit PMP interface mode. To run the demonstration, set JP2 to PARALLEL-8 bit

Running the Demonstration

Provides instructions on how to build and run the SSD1926 demonstration.

Description

This demonstration shows GFX Library interfacing with the Epson SSD1926 external display controller. It shows photo frames read from an SD
Card interfaced to the display controller.

1. Insert a SD card and load the images from the demonstration resources folder.

2. Load the demonstration project into MPLAB X IDE.

3. Build, Download, and Run the demonstration project on the target board.

4. Observe a sequence of photo frames stored on the SD card.

Demonstration Output

With the SD card loaded with the images from the demonstration resources folder; the following is demonstrated:

• Microchip Logo

• Sample Video

• Scene 1

• Scene 2

• Scene 3

• Scene 4

• Scene 5

wvga_glcd

Provides information on the demonstration.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 209

Description

Demonstrates the advanced capabilities of the Graphics Library utilizing the Graphics LCD (GLCD) controller and the MTCH6303 PCAP Touch
Controller with the 5" WVGA PCAP Display Board (see Note).

 Note: This demonstration is intended for PIC32MZ DA Early Adopters and is distributed separately from the official MPLAB Harmony
1.07 release. For information on obtaining the installer and/or the 5" WVGA PCAP Display Board, please contact your local
Microchip sales office.

The goal of this application is to demonstrate the capability of the GLCD Controller to render four layers simultaneously (one base layer plus three
layers with individual alpha and color modes), as well as to demonstrate basic functionality of the MTCH6303.

The demonstration also has Debug Console capability built-in to show the single-touch accuracy of the MTCH6303, as well as to demonstrate
using the Console System Service as a screen calibration tool.

This demonstration was developed for PIC32MZ DA Early Adopters has only a subset of its graphics functionality supported by MPLAB Harmony
Graphics Composer and the Graphics Object Library. It does not utilize the GPU peripheral. Since the Touch System Service does not support the
MTCH6303 driver currently, the application accesses the driver directly.

The demonstration includes the following features:

• 24-bit true color (16.7M)

• Three simultaneous rendered graphical layers

• Per-pixel dynamic alpha blending

• Global-layer dynamic alpha blending

• Touch interactive circle at Layer 1 over image at Layer 0

• Persistent menu at Layer 2 hardware blended over Layers 1 and 0

• JPEG-compressed image stored on internal Flash

• Real-time JPEG decode and rendering

• DDR2 SDRAM memory utilization

• Non-synchronized double-buffered rendering

• WVGA display at 40+ Hz refresh rate

• Integrated MTCH6303 PCAP touch interface (non-gestured single-touch)

Building the Application

This topic identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics LCD (GLCD)
Controller WVGA Demonstration.

Description

To build this project, you must open the wvga_glcd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/wvga_glcd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wvga_glcd.X <install-dir>/apps/gfx/wvga_glcd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_da_sk_meb2_wvga pic32mz_da_sk+meb2+wvga GLCD demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Graphics (DA) Starter Kit.

Application Header File

This table lists and describes the application header file used by the demonstration, which is located within ./firmware/src.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 210

Project
Configuration
Name

Description

app.h This header file provides function prototypes and data type definitions for the application. Some of these are required by the
system (such as the APP_Initialize and APP_Tasks prototypes) and some of them are only used internally by the application
(such as the APP_STATES definition). Both are defined in this file for convenience.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit and MEB II

EBIOE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side of the MEB II board.

This demonstration also has a Debug Console enabled via UART over USB. You will need a USB Type-A to USB Type-B cable. Connect the cable
to the port as shown in the following figure. Also configure the terminal emulator software with the serial port settings of: 8-bit, Non-parity, 1 Stop
bit, and No Flow Control.

Running the Demonstration

Provides instructions on how to build and run the GLCD WVGA demonstration.

Description

The demonstration has three modes:

• Home mode

• Full Screen Slide Show mode

• Touch Responsive Bubble mode

The side menu is rendered on the top layer, which is real-time alpha blending over two layers.

Home Mode

This mode contains a list of features that is demonstrated by the application, while demonstrating global-layer alpha blending at the same time.

Home Mode Example

Application Functions and Prototypes

a) Functions

Name Description

APP_DrawBubble Draws the bubble during Touch Responsive Bubble mode

APP_DrawMenu Draws the menu on Layer2 base on current state of the application

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 211

APP_FillMenuBackBuffer Pre-cache Menu Image Assets in a back buffer

APP_Initialize MPLAB Harmony application initialization routine.

APP_IsCircle Checks if a point (x,y) is part of the bubble or not

APP_MoveBubble Performs the bubble movement in Touch Responsive Bubble mode

APP_ProcessMenu Process touch events to the menu and handles mode transitions

APP_SelectNewSlide Selects a new slide

APP_Tasks MPLAB Harmony Demo application tasks function

APP_TouchEventHandler Touch event callback routine.

APP_HandleHomeSlide Changes transparency and images during Home Mode

APP_PrepareHomeMode Prepares buffers and layers in the application for Home Mode

APP_ReceiveMenuTouch Receives and records the touch menu event

b) Data Types and Constants

Name Description

APP_DATA Holds application data

APP_MODES Application modes enumeration

APP_STATES Application states enumeration

APP_GLCD_LAYER0_BUFFER_ADDR Defines the base memory address for the secondary buffer for
GLCD Layer 0

APP_GLCD_LAYER1_BUFFER_ADDR Defines the base memory address for the secondary buffer for
GLCD Layer 1

APP_GLCD_LAYER2_BUFFER_ADDR Defines the base memory address for the secondary buffer for
GLCD Layer 2

APP_GLCD_LAYER2_HOR_RES The horizontal resolution of GLCD Layer 2

APP_GLCD_LAYER1_ALPHA_RESOLUTION Determines the smoothness of the fading and showing of the
Microchip and Harmony logos

APP_HOME_MODE_SEMI_TRANSPARENT_ALPHA_VALUE Home mode uses this value to keep the Microchip and Harmony
logos at semi-transparent levels

APP_TRANSPARENT_ALPHA_VALUE Value the GLCD driver accepts as 100% transparent

APP_MENU_STATES Application menu states enumeration

Description

Lists the functions and prototypes available for the demonstration, which are provided in the app.h header file.

a) Functions

APP_DrawBubble Function

Draws the bubble during Touch Responsive Bubble mode

File

wvga_glcd_app.h

C
void APP_DrawBubble();

Returns

None.

Description

This function is called every SYS_TASK cycle to render the bubble on Layer 1. Location to draw the bubble is based on the most recent touch
location as reported by the MTCH6303 touch driver.

The function manages a double buffering scheme locally to improve visual quality. This function is responsible for rendering the entire Layer 1.
This means it "brute force" color and alpha value to every single pixel of the entire 800x480 surface. Various optimization schemes were tried,
none provided visual satisfactory results.

Function

void APP_DrawBubble (void)

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 212

APP_DrawMenu Function

Draws the menu on Layer2 base on current state of the application

File

wvga_glcd_app.h

C
void APP_DrawMenu();

Returns

None.

Description

This function is called constructs the menu at runtime based on appData.mode and appData.menuMode. It handles drawing the transition
movement of the menu.

It performs all these by references to the pre-cached menu assets in the back buffer (see APP_FillMenuBackBuffer).

Function

void APP_DrawMenu (void)

APP_FillMenuBackBuffer Function

Pre-cache Menu Image Assets in a back buffer

File

wvga_glcd_app.h

C
void APP_FillMenuBackBuffer();

Returns

None.

Description

This function is called to pre-cache JPEG image assets to a memory location. The starting address for the location of where each image is cached
is stored in appData, to be used later for drawing the menu.

The function also applies full transparent alpha value by using a ranged mask (RGB 000000 to D0D0D0) to create the smooth curved front part of
the menu.

Lastly, semi-transparent alpha values is applied to every pixel of the image assets such the when the resulting menu is semi-transparent on render.

Function

void APP_FillMenuBackBuffer (void)

APP_Initialize Function

MPLAB Harmony application initialization routine.

File

wvga_glcd_app.h

C
void APP_Initialize();

Returns

None.

Description

This function initializes the Harmony application. It places the application in its initial state and prepares it to run so that its APP_Tasks function
can be called.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 213

Remarks

This routine must be called from the SYS_Initialize function.

Preconditions

All other system initialization routines should be called before calling this routine (in "SYS_Initialize").

Function

void APP_Initialize (void)

APP_IsCircle Function

Checks if a point (x,y) is part of the bubble or not

File

wvga_glcd_app.h

C
bool APP_IsCircle(uint32_t centerX, uint32_t centerY, uint32_t x, uint32_t y);

Returns

true if in the circle

Description

Uses a radius checking scheme to determine whether the point is part of the circle or not

Parameters

Parameters Description

uint32_t centerX, uint32_t centerY cartesian coordinates of the center of the circle

uint32_t x, uint32_t y cartesian coordinates of the point to check

Function

bool APP_IsCircle(uint32_t centerX, uint32_t centerY, uint32_t x, uint32_t y)

APP_MoveBubble Function

Performs the bubble movement in Touch Responsive Bubble mode

File

wvga_glcd_app.h

C
void APP_MoveBubble();

Returns

None.

Description

This function is called every APP_TASK cycle to reposition the bubble's current position based on the most recent touch position. Instead of
rendering the bubble exactly at the touch point, this function performs linear interpolation between the most recent touch position with the current
bubble position. This creates a pleasant movement/follow effect.

Function

void APP_MoveBubble (void)

APP_ProcessMenu Function

Process touch events to the menu and handles mode transitions

File

wvga_glcd_app.h

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 214

C
void APP_ProcessMenu();

Returns

None.

Description

This function is called every APP_TASK cycle to detect if a touch menu event has occurred. It handles all the initial setup required when it detects
a user request to transition between modes.

Function

void APP_ProcessMenu (void)

APP_SelectNewSlide Function

Selects a new slide

File

wvga_glcd_app.h

C
void APP_SelectNewSlide();

Returns

None.

Description

This function is called during Slide Mode to initiate a GFX_HGC_ChangeScreen call. This triggers the code generated by Harmony Composer to
change screen. The JPEG image selected for the slide is decoded in runtime in a double buffering scheme. Where the decode occurs to a draw
buffer, that is swapped with the render buffer at completion of the decode. Wihtout this scheme, the image would be rendered with a curtain effect,
due to the block-by-block decoding algorithm of the JPEG decoder.

Double buffering is handled automatically by the GFX_Primitive layer.

Function

void APP_SelectNewSlide (void)

APP_Tasks Function

MPLAB Harmony Demo application tasks function

File

wvga_glcd_app.h

C
void APP_Tasks();

Returns

None.

Description

This routine is the Harmony Demo application's tasks function. It defines the application's state machine and core logic.

Remarks

This routine must be called from SYS_Tasks() routine.

Preconditions

The system and application initialization ("SYS_Initialize") should be called before calling this.

Function

void APP_Tasks (void)

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 215

APP_TouchEventHandler Function

Touch event callback routine.

File

wvga_glcd_app.h

C
void APP_TouchEventHandler(DRV_MTCH6303_BUFFER_EVENT event, DRV_MTCH6303_BUFFER_HANDLE bufferHandle,
uintptr_t context);

Returns

None.

Description

This function is a callback function for the MTCH6303 driver to call when a touch event has occured. The data of the touch event is cached in
appData.touchData. If the application is in Touch Responsive Bubble mode, the application converts the raw value from the touch driver to
cartesian coordinates calibrated to 800x480 WVGA resolution. It then stores the coordinates in appData.targetX and targetY as the most recent
touch data.

If the touch event is in the region of the menu, it will call APP_ReceiveMenuTouch to forward the menu procession portion.

Function

void APP_TouchEventHandler(

DRV_MTCH6303_BUFFER_EVENT event,

DRV_MTCH6303_BUFFER_HANDLE bufferHandle,

uintptr_t context);

APP_HandleHomeSlide Function

Changes transparency and images during Home Mode

File

wvga_glcd_app.h

C
void APP_HandleHomeSlide();

Returns

None.

Description

This function fluctuates the global-layer alpha value of Layer 1. It changes the Layer 1 image between the Harmony and Microchip Logo by
pointing the GLCD to render seperate buffers where the JPEG images are pre-cached.

Function

void APP_HandleHomeSlide (void)

APP_PrepareHomeMode Function

Prepares buffers and layers in the application for Home Mode

File

wvga_glcd_app.h

C
void APP_PrepareHomeMode();

Returns

None.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 216

Description

This function pre-caches two JPEG images (Harmony & Microchip Logos) on seperate buffers to be rendered on Layer 1. It sets Layer 1's blend
function to be controlled by the global-layer alpha value. It sets Layer 1's global-layer global value to 0 (full opacity).

It then points the GLCD to render the Feature list on Layer 0 and the Harmony logo on Layer 1.

Function

void APP_PrepareHomeMode (void)

APP_ReceiveMenuTouch Function

Receives and records the touch menu event

File

wvga_glcd_app.h

C
void APP_ReceiveMenuTouch();

Returns

None.

Description

This function handles incoming touch event and records it as for processing by the application later in APP_ProcessMenu

Function

void APP_ReceiveMenuTouch (void)

b) Data Types and Constants

APP_DATA Structure

Holds application data

File

wvga_glcd_app.h

C
typedef struct {
 uint8_t bufferIndex1;
 APP_STATES state;
 APP_MENU_STATES menuMode;
 APP_MODES mode;
 APP_MODES menuButtonMode;
 GFX_COLOR* pixelBuffer0A;
 GFX_COLOR* pixelBuffer0B;
 GFX_COLOR* pixelBuffer1A;
 GFX_COLOR* pixelBuffer1B;
 GFX_COLOR* pixelBuffer2A;
 GFX_COLOR* pixelBuffer2B;
 uint16_t targetX;
 uint16_t targetY;
 uint16_t currentX;
 uint16_t currentY;
 uint16_t menuCollapsedX;
 uint16_t menuExpandedX;
 uint32_t menuTipFrontX;
 int16_t menuTouchX;
 int16_t menuTouchY;
 bool touchContact;
 SYS_TMR_HANDLE sysTmrHandle;
 DRV_HANDLE hDrvMTCH6303;
 DRV_MTCH6303_BUFFER_HANDLE hTouchDataBuff;
 DRV_MTCH6303_TOUCH_DATA touchData;
 GFX_COLOR* backBufferMenuTip;

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 217

 GFX_COLOR* backBufferMenuTipPressed;
 GFX_COLOR* backBufferMenuTipExpanded;
 GFX_COLOR* backBufferMenuButtonHome;
 GFX_COLOR* backBufferMenuButtonSlides;
 GFX_COLOR* backBufferMenuButtonBubble;
 GFX_COLOR* backBufferMenuButtonSetting;
 int backBufferWidth;
 bool fadeLayer1;
 int32_t layerAlpha;
 GFX_RESOURCE_HDR* currentLayer1Image;
} APP_DATA;

Members

Members Description

uint8_t bufferIndex1; Index to keep track of layer1 buffers, this is use exclusively for the Touch Responsive Bubble
mode

APP_STATES state; The application's current state

APP_MENU_STATES menuMode; The menu's current state

APP_MODES mode; The application's current mode

APP_MODES menuButtonMode; This is used to help track button behavior on the semi-transparent sliding menu

GFX_COLOR* pixelBuffer0A; layer 0

GFX_COLOR* pixelBuffer0B; Pointer to base memory address of one of the double buffers for Layer 0

GFX_COLOR* pixelBuffer1A; Pointer to base memory address of one of the double buffers for Layer 1

GFX_COLOR* pixelBuffer1B; Pointer to base memory address of one of the double buffers for Layer 1

GFX_COLOR* pixelBuffer2A; Pointer to base memory address of the rendering buffer for Layer 2

GFX_COLOR* pixelBuffer2B; Pointer to base memory address of the asset pre-cache buffer for Layer 2

uint16_t targetX; X-coordinate for a valid touch event

uint16_t targetY; Y-coordinate for a valid touch event

uint16_t currentX; X-coordinate for the current location of the Touch Responsive Bubble

uint16_t currentY; Y-coordinate for the current location of the Touch Responsive Bubble

uint16_t menuCollapsedX; Used to store the X-coordinate location for the menu when collapsed. This value is calculated
at start-up, using the resolution of Layer 2 and the width of the menu art asset.

uint16_t menuExpandedX; Used to store the X-coordinate location for the menu when expanded. This value is calculated
at start-up, using the resolution of Layer 2 and the width of the menu art assets.

uint32_t menuTipFrontX; Used to store the X-coordinate location for the menu while the menu is in one of the transition
states. This value is calculated at runtime, using the resolution of Layer 2 and the width of the
menu art assets.

int16_t menuTouchX; X-coordinate for a valid menu touch event

int16_t menuTouchY; Y-coordinate for a valid menu touch event

bool touchContact; Used to track if the user has stopped touching the screen Normally, this behavior can be
tracked by the Touch System Service

SYS_TMR_HANDLE sysTmrHandle; Timer System Service handle, used to track the delay between slides while the application is
in the Fullscreen Slideshow mode

DRV_HANDLE hDrvMTCH6303; MTCH6303 Driver Handle

DRV_MTCH6303_BUFFER_HANDLE
hTouchDataBuff;

MTCH6303 Buffer handle

DRV_MTCH6303_TOUCH_DATA touchData; MTCH6303 Touch Data, we are using single touch only

GFX_COLOR* backBufferMenuTip; Pointer used to keep track of pre-cached art asset of the menu tip with the arrow un-lit

GFX_COLOR* backBufferMenuTipPressed; Pointer used to keep track of pre-cached art asset of the menu tip with the arrow lit

GFX_COLOR* backBufferMenuTipExpanded; Pointer used to keep track of pre-cached art asset of the menu tip with the arrow lit and
pointing to the right

GFX_COLOR* backBufferMenuButtonHome; Pointer used to keep track of pre-cached art asset of the menu buttons with the Home mode
button lit

GFX_COLOR* backBufferMenuButtonSlides; Pointer used to keep track of pre-cached art asset of the menu buttons with the Fullscreen
Slideshow mode button lit

GFX_COLOR* backBufferMenuButtonBubble; Pointer used to keep track of pre-cached art asset of the menu buttons with the Touch
Responsive Bubble mode button lit

GFX_COLOR* backBufferMenuButtonSetting; Pointer used to keep track of pre-cached art asset of the menu buttons with the Settings
button lit

int backBufferWidth; Keeps track of the total width of the back buffer

bool fadeLayer1; If true, fades layer 1, if false, reveals layer 1

int32_t layerAlpha; Keeps track of global alpha of layer 1

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 218

GFX_RESOURCE_HDR* currentLayer1Image; Keeps track of the current layer 1 image

Description

Application Data

This structure holds the application's data.

Remarks

See inline comments for specifics.

APP_MODES Enumeration

Application modes enumeration

File

wvga_glcd_app.h

C
typedef enum {
 APP_MODE_HOME,
 APP_MODE_BUBBLE,
 APP_MODE_SLIDES
} APP_MODES;

Members

Members Description

APP_MODE_HOME Home mode: Microchip/ MPLAB Harmony image rendered at Layer 0 Layer 1 is disabled
Layer 2 renders the semi-transparent sliding menu

APP_MODE_BUBBLE Touch Responsive Bubble mode: Last image from previous mode rendered at Layer 0 Layer
1 renders the touch responsive dynamic alpha-blended bubble Layer 2 renders the
semi-transparent sliding menu

APP_MODE_SLIDES Full Screen Slideshow mode: Slideshow images rendered at Layer 0, cycles every 2000
msecs Layer 1 is disabled Layer 2 renders the semi-transparent sliding menu

Description

APP_MODES

This enumeration defines the valid application modes enumerations. There are three modes supported: Home, Touch Responsive Bubble and Full
Screen Slideshow

Remarks

See inline comments for specifics.

APP_STATES Enumeration

Application states enumeration

File

wvga_glcd_app.h

C
typedef enum {
 APP_STATE_INIT = 0,
 APP_STATE_TOUCH_INIT,
 APP_STATE_TOUCH_EVENT_REGISTER,
 APP_STATE_IDLE,
 APP_STATE_MANAGE_SLIDES,
 APP_STATE_MANAGE_BUBBLE,
 APP_STATE_MANAGE_HOME
} APP_STATES;

Members

Members Description

APP_STATE_INIT = 0 Application's state machine's initial state.

APP_STATE_TOUCH_INIT MTCH6303 driver client initialize

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 219

APP_STATE_TOUCH_EVENT_REGISTER MTCH6303 event handler set

APP_STATE_IDLE Processes touches to the menu, handles mode switches, redraws menu if needed

APP_STATE_MANAGE_SLIDES Manages the Full Screen Slideshow mode

APP_STATE_MANAGE_BUBBLE Manages the Touch Responsive Bubble mode

APP_STATE_MANAGE_HOME Manages the Home mode

Description

APP_STATES

This enumeration defines the valid application states. These states determine the behavior of the application at various times.

APP_GLCD_LAYER0_BUFFER_ADDR Macro

Defines the base memory address for the secondary buffer for GLCD Layer 0

File

wvga_glcd_app.h

C
#define APP_GLCD_LAYER0_BUFFER_ADDR GFX_GLCD_LAYER0_DBL_BASEADDR

Description

APP_GLCD_LAYER0_BUFFER_ADDR

This memory address location is defined to support a double buffer rendering scheme for layer 0.

Remarks

The address space chosen is in the DDR2 address space (0xA8000000 - 0xA9FFFFFF) unique to the PIC32MZ2048DAB288 device.

APP_GLCD_LAYER1_BUFFER_ADDR Macro

Defines the base memory address for the secondary buffer for GLCD Layer 1

File

wvga_glcd_app.h

C
#define APP_GLCD_LAYER1_BUFFER_ADDR GFX_GLCD_LAYER1_DBL_BASEADDR

Description

APP_GLCD_LAYER1_BUFFER_ADDR

This memory address location is defined to support a double buffer rendering scheme for layer 1.

Remarks

The address space chosen is in the DDR2 address space (0xA8000000 - 0xA9FFFFFF) unique to the PIC32MZ2048DAB288 device.

APP_GLCD_LAYER2_BUFFER_ADDR Macro

Defines the base memory address for the secondary buffer for GLCD Layer 2

File

wvga_glcd_app.h

C
#define APP_GLCD_LAYER2_BUFFER_ADDR GFX_GLCD_LAYER2_DBL_BASEADDR

Description

APP_GLCD_LAYER2_BUFFER_ADDR

This memory address location is defined to support a asset pre-load back buffer rendering scheme for layer 2.

Remarks

The address space chosen is in the DDR2 address space (0xA8000000 - 0xA9FFFFFF) unique to the PIC32MZ2048DAB288 device.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 220

APP_GLCD_LAYER2_HOR_RES Macro

The horizontal resolution of GLCD Layer 2

File

wvga_glcd_app.h

C
#define APP_GLCD_LAYER2_HOR_RES GFX_GLCD_LAYER2_RES_X

Description

APP_GLCD_LAYER2_HOR_RES

This is needed for various positional cross-mapping of line buffer with screen pixel.

Remarks

The address space chosen is in the DDR2 address space (0xA8000000 - 0xA9FFFFFF) unique to the PIC32MZ2048DAB288 device.

APP_GLCD_LAYER1_ALPHA_RESOLUTION Macro

Determines the smoothness of the fading and showing of the Microchip and Harmony logos

File

wvga_glcd_app.h

C
#define APP_GLCD_LAYER1_ALPHA_RESOLUTION 7500

Description

APP_GLCD_LAYER1_ALPHA_RESOLUTION

Increases the resolution of 0 to 255 alpha value range

Remarks

Tuned to for build optimization O3 and Os

APP_HOME_MODE_SEMI_TRANSPARENT_ALPHA_VALUE Macro

Home mode uses this value to keep the Microchip and Harmony logos at semi-transparent levels

File

wvga_glcd_app.h

C
#define APP_HOME_MODE_SEMI_TRANSPARENT_ALPHA_VALUE 180

Description

APP_HOME_MODE_SEMI_TRANSPARENT_ALPHA_VALUE

This value represents watermark-like semi-transparent in RGBA8888 color scheme

APP_TRANSPARENT_ALPHA_VALUE Macro

Value the GLCD driver accepts as 100% transparent

File

wvga_glcd_app.h

C
#define APP_TRANSPARENT_ALPHA_VALUE 255

Description

APP_TRANSPARENT_ALPHA_VALUE

This value represents 100% transparent in RGBA8888 color scheme

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 221

APP_MENU_STATES Enumeration

Application menu states enumeration

File

wvga_glcd_app.h

C
typedef enum {
 APP_MENU_STATE_INIT,
 APP_MENU_STATE_COLLAPSED,
 APP_MENU_STATE_COLLAPSED_PRESSED,
 APP_MENU_STATE_EXPANDED,
 APP_MENU_STATE_EXPAND_TRANSITION,
 APP_MENU_STATE_COLLAPSE_TRANSITION
} APP_MENU_STATES;

Members

Members Description

APP_MENU_STATE_INIT Initial state, the menu will only be in this mode at launch

APP_MENU_STATE_COLLAPSED State when the menu is collapsed, renders the asset showing the arrow button un-lit

APP_MENU_STATE_COLLAPSED_PRESSED State when the menu is collapsed, renders the asset showing the arrow button lit

APP_MENU_STATE_EXPANDED State when the menu is expanded, composes two assets to form the menu, the tip and the
bar with the buttons

APP_MENU_STATE_EXPAND_TRANSITION Transition state from collapsed to expanded

APP_MENU_STATE_COLLAPSE_TRANSITION Transition state from expanded to collasped

Description

APP_MENU_MODES

This enumeration defines the valid application menu states enumerations. These states determine the behavior of the sliding menu at various
times.

Remarks

See inline comments for specifics.

Applications Help Graphics Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 222

MEB II Demonstrations

This section provides descriptions of the MEB II demonstrations.

Introduction

MEB II Demonstration Applications Help

Description

This help file describes the hardware requirements and procedures to run the MEB II-related firmware projects.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the MEB II demonstration applications included in this release.

gfx_camera

Provides information on the gfx_camera demonstration and application requirements.

Description

The gfx_camera demo (apps/meb_ii/gfx_camera/firmware/gfx_camera.X) exercises the Omnivision camera sensor running on the MEB
II. It utilizes LCC graphics with the DMA of the PIC32 to bring graphics from a camera sensor to an LCD without the need of a graphics controller.

Application Process

Prior to running the demonstration, an application needs to perform the following steps:

1. The system should have completed necessary setup initializations.

2. The I2C driver object should have been initialized by calling DRV_I2C_Initialize.

3. The Timer driver object should have been initialized by calling DRV_Timer_Initialize.

4. The Output Control driver object should have been initialized by calling DRV_OC_Initialize.

5. The Camera OVM7690 driver object should have been initialized by calling DRV_CAMERA_OVM7690_Initialize.

6. Open the Camera OVM7690 driver client by calling DRV_CAMERA_OVM7690_Open.

7. Pass the Graphics Frame buffer address to Camera OVM7690 Driver by calling DRV_CAMERA_OVM7690_FrameBufferAddressSet.

8. Set the Frame Rectangle area by calling DRV_CAMERA_OVM7690_FrameRectSet.

9. Set Other Camera settings such as: soft reset, enabling pclk, enabling href, enabling vsync, output color format, reversing HREF polarity,
gating clock to the HREF, pixel clock frequency, sub-sampling mode by calling DRV_CAMERA_OVM7690_RegisterSet.

10. Start the Camera OVM7690 by calling DRV_CAMERA_OVM7690_Start.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Library
Demonstration.

Description

To build this project, you must open the gfx_camera.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/meb_ii/gfx_camera.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_camera.X <install-dir>/apps/meb_ii/gfx_camera/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 223

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

Jumper J9 on the MEB II should be set to (EBIWE – LCD_PCLK).

Running the Demonstration

Provides instructions on how to build and run demonstration.

Description

Use the following procedure to run the demonstration:

1. Load demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board the starter kit to a USB port on the Development computer using the USB cable provided in the kit.

3. Build, Download, and Run demonstration project on the target board.

4. An image should appear on the WQVGA LCD displaying the information from the camera sensor.

gfx_cdc_com_port_single

This demonstration application creates a GFX USB CDC Device that enumerates as a single COM port on the host personal computer. The
application demonstrates two-way communication between the USB device and the personal computer host. The application allows the user to
enter keypad digits and a backspace from a PC host USB/Serial program to the GFX UI keypad edit box display.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Library
Demonstration.

Description

To build this project, you must open the gfx_cdc_com_port_single.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/meb_ii/gfx_cdc_com_port_single.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_cdc_com_port_single.X <install-dir>/apps/meb_ii/gfx_cdc_com_port_single/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 224

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This demonstration allows the device to appear like a serial (COM) port to the host.

1. To run this demonstration first compile and program the target device. While compiling, select the pic32mz_ef_sk_meb2 configuration. Attach
the device to the host. If the host is a personal computer and this is the first time you have connected this device to the computer, you may be
asked for an .inf file.

2. Select the Install from a list or specific location (Advanced) option. Point to the <install_dir>/apps/usb/cdc_com_port_single/inf
directory.

3. Once the device is successfully installed, open up a terminal program, such as HyperTerminal. Select the appropriate COM port. On most
machines this will be COM4 or higher.

4. Once connected to the device, there are two ways to run this example project. Typing a numerical key in the terminal window will result in the
device echoing the key pressed onto the terminal and in the text box displayed onto the MEB II board display.

 Note: Some terminal programs, such as HyperTerminal, require users to click the disconnect button before removing the device from the
computer. Failing to do so may result in having to close and open the program again to reconnect to the device.

gfx_photo_frame

This demonstration application shows the capabilities of GFX, USB middleware, and the SQI. In this demonstration, off-chip SQI Flash memory
(SST26VF032) is used as a medium to store images through the USB-CDC, XMODEM protocol, and then render those images on the MEB II
display through the GFX Stack.

The demonstration includes four example WQVGA-aligned images, which are downloaded onto the SQI Flash at different locations, and then
displayed on the screen through COM port commands and also rendered as slides through push button.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Photo
Frame Demonstration.

Description

To build this project, you must open the gfx_photo_frame.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/meb_ii/gfx_photo_frame.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_photo_frame.X <install-dir>/apps/meb_ii/gfx_photo_frame/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 225

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

The MEB II has two memory options: External or Internal. This demonstration is supported in Internal mode only. Before running the
demonstration, ensure that the EBIWE and LCD_PCLK (J9) pins on the MEB II are closed.

Running the Demonstration

Provides instructions on how to build and run demonstration.

Description

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the MEB II to the PIC32MZ EF Starter Kit.

3. Connect the mini-B debugger port on-board the starter kit to a USB port on the development computer using the USB cable provided in the kit.
In addition, connect the micro-B USB connector on the bottom of the starter kit. This will create a USB CDC device on the USB bus. To
communicate with the software, connect to this device though a standard terminal program and set the baud rate to 921,600 baud.

 Note: In case the USB driver is not automatically recognized by the development computer, please use the driver support files provided
in <install-dir>/apps/meb_ii/gfx_photo_frame/inf to update the driver.

4. Build, Download, and Run the demonstration project on the target board.

5. Once the MEB II display goes blank, launch a console client (OS native/Tera Term, etc.), select the serial port, and set the serial port settings
to 115200-N-1

 Note: Focusing in console client and pressing the Enter key should show the 'Application started' string in the console indicating proper
start of application.

6. Press Enter again in the console client to see the '>' prompt, indicating the demonstration is ready to take commands.

7. Send a 'help' command to see the list of commands supported by the demonstration.

8. Send an ‘erase' command to erase the entire SQI Flash. The console will return ‘Erasing FLASH’ followed by ‘Erase complete' to indicate
completion of erase operation.

9. Send a ‘display 0x00000000’ command (which will display a frame at address ‘0’ of SQI Flash) and notice that the MEB II display turns white,
as in the erased state, the SQI Flash has all 'F' characters, which will be loaded into the frame buffer.

10. Send a ‘ptest 0x00000000 0xf800 0x20' command to load a test pattern into the SQI Flash, which writes the first 32 pages in Flash with 0x20
(RED) pattern. The console will return ‘Programming test pattern complete', once the test pattern is loaded into the SQI Flash.

11. Send a ‘display 0x00000000' command and notice the first couple of lines on the display turn RED.

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 226

12. Send an ‘erase' command to erase the entire SQI Flash.

13. To download the images provided with the demonstration into the Flash, repeat the following steps:

• Send a download [ignore bytes] command

 Note: The argument, ignore bytes, is not required. By default, the demonstration will use the value: 108. Well known values to ignore are
108, 124, and 188. The first, third, and fourth images in this demonstration use = 188. The second image will use the default and
will not require an ignore. Each image in the demonstration takes 0x3FC00 of Flash.

• Send a download [ignore bytes] command. Console will return ‘Start XMODEM download' indicating XMODEM ready

• Select File >Transfer > XMODEM-Send and use a traditional checksum XMODEM transfer and select the image to send by browsing to
<install-dir>/apps/meb_ii/gfx_photo_frame and press send. This will load the image directly into the GFX frame buffer and show the
image on display.

 Note: XMODEM sometimes is erratic, in which case this step would have to be repeated.

• Send a ‘pcopy <ADDRESS>' command to copy the image into SQI Flash at the <ADDRESS> location. The console returns the following to
indicate the status:

‘...

...

...

...

...

...

Copy complete'

 Note: ADDRESS = 0x00000000 for first image, 0x0003FC00 for second image, 0x0007F800 for third image, and 0x000BF400 for fourth
image.

14. Once all of the images are copied into the SQI Flash, send a ‘display <ADDRESS>' command to load the stored images onto the display.

15. The ‘S1' switch on the MEB II can be pressed to view the images in a slide show.

16. Refer to the following console window capture for a summary of commands described in the previous steps:

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 227

gfx_web_server_nvm_mpfs

The GFX TCP/IP NVM MPFS web server demonstration
(apps\meb_ii\gfx_web_server_nvm_mpfs\firmware\pic32_eth_web_server.X) exercises the HTTP web server running on PIC32
devices. The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) web server demonstration has the web pages stored in
internal Flash and accessed through the MPFS API. The IP Address of the IP address of the Web server is displayed on the Graphical UI.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Graphics Web
Server NVM MPFS Demonstration.

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 228

Description

To build this project, you must open the pic32_eth_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/meb_ii/gfx_web_server_nvm_mpfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/meb_ii/gfx_web_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e), and then pressing Enter.

 Note: The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the
hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if IPv6
is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board the starter kit to a USB port on the development computer using the USB cable provided in the kit.

3. Connect the RJ-45 Ethernet port on the starter kit to a network hub or an Ethernet port on the development computer using the Ethernet patch
cord provided in the kit.

4. Build, Download, and Run the demonstration project on the target board.

5. A HTTP server is hosted by the demonstration application. Open_a web browser and type http://<ip address>. The IP address is
displayed on the graphical user interface.

• Real-time hardware control and Dynamic Variables - On the Overview page the LEDs can be clicked to toggle LEDs on the starter kit. The
buttons on the board can be pressed to see the buttons on the web page toggle. The dynamic variables can be updated in real time on the
HTTP server.

 Note: LED functionality part of the demonstration is somewhat limited due to errata items related to the functional multiplexing on GPIO
and Ethernet pins.

• Form Processing - Input can be handled from the client by using GET and POST methods.

• Authentication - Shows an example to restricted access feature commonly used.

• Cookies - Shows the example of storing small text stings on the client side.

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 229

• File Uploads - Shows an example of file upload using POST method. The HTTP server can_accept_a user defined MPFS/MPFS2 image file for
web pages.

• Send E-mail - Shows a simple SMTP POST methods.

• Dynamic DNS - Exercise Dynamic DNS capabilities.

• Network Configuration - MAC address, host name and IP address of the PIC32 EF Starter Kit board can be viewed in the Network
Configuration page and some configuration can be updated.

segger_emwin

This demonstration shows basic and advanced capabilities of the SEGGER emWin Graphics Library utilizing the software graphics controller on a
LCD display.

Description

The segger_emwin demonstration provides the ability to display some of the many features supported by the SEGGER emWin Graphics Library
as a simple Graphical User Interface (GUI) demonstration.

SEGGER emWin is designed to provide an efficient, processor and LCD controller-independent GUI for any application that operates with a
graphical LCD. Some of the features demonstrated in the application include GUIs showing alpha blending, sprites, radial menu operations, listing
and tree widget features, multiple layer and drawing on the layers, use of different image formats, coloring features provided by the library, etc.

Currently, the demonstration includes the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit on a Multimedia Expansion
Board II (MEB II), which has controllerless graphics on a WQVGA LCD display.

This demonstration requires the use of internal memory (SRAM). The memory setting must be configured with a hardware jumper and
corresponding MHC setting needs to be selected.

Important! To set up the internal memory, a jumper setting on the board is required. Failure to configure this jumper setting will
prevent the display from working, although the software may still run. See Configuring the Hardware for details on
the appropriate jumper settings.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER emWin
MEB II Demonstration.

Description

To build this project, you must open the segger_emwin.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/meb_ii/segger_emwin.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

segger_emwin.X <install-dir>/apps/meb_ii/segger_emwin/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

The MEB II has two memory options, External or Internal; however, this demonstration must be run in Internal mode by implementing the following
settings:

• EBIWE and LCD_PCLK (J9) must be closed. This jumper is located on the bottom of the MEB II

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 230

• Ensure that any MHC setting is defined to only use internal SRAM. The current internal/external memory setting for the application can be
verified in MHC by selecting Harmony Framework Configuration > Drivers > Graphics Controllers > LCC > Use LCC Driver > Memory Interface
Mode

Running the Demonstration

Provides instructions on how to build and run demonstration.

Description

This demonstration shows the Graphics Library interfacing with the Low-Cost Controllerless (LCC) software display controller. The demonstration
displays some of the many features supported by the SEGGER emWin graphics library as a simple GUI demonstration.

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Build, Download, and Run the demonstration project on the target board (see Note).

3. This is a GUI only demonstration; there is no touch input being processed.

 Note: Upon building, the pic32mz_ef_sk_meb2 configuration warnings related to the Floating Point Unit. This is due to the fact that
emWin does not support floating point even though the PIC32MZ EF Starter Kit has a floating point unit.

Demonstration Screens

The following are the different screens that demonstrate the various graphics features:

• Radial menu - Select an icon from a radial menu. Changing the selection is done using emWin motion support.

• Bargraph demo - Shows a bar graph using alpha blending

• Antialiased text - Shows anti-aliased text with different anti-aliasing qualities. Outputs anti-aliased text on different backgrounds (2 bpp, 4 bpp)

• Transparent dialog – Uses alpha blending for transparency effect on moving background

• Washing machine - Shows a washing machine demonstration with blue dolphin sprites moving on top of the application

• Iconview demo - Uses the ICONVIEW widget for showing an icon-based menu, which is often required in hand held devices. Shows the
change of selection and change of icon text alignment.

• Treeview widget - Shows a customized TREEVIEW widget. Demonstrates hierarchical view of items in a directory and some sprites,
show/hide lines, moving cursor, open/close nodes, change selection modes, setting images, show/hide lines.

• Listview widget - Shows the use of a LISTVIEW widget. Demonstrates changing order, enable sorting, using reverse/normal sorting order,
moving rows, coloring row/column individual elements in the list.

• Drawing a graph - Uses the GRAPH widget to visualize a function graph (e.g., heartbeat, sine waves)

• High speed – Demonstrates multi-layer clipping and highly optimized drivers

• Pixels speed – Demonstrates pixel speed as pixels per seconds

• Bitmaps - Demonstrates *.BMP files by displaying all bitmaps of the Windows directory. Palette-based bitmaps, changing the pallete, bmp, gif,
jpeg, 12, 16, 24 bpp formats, alpha bitmaps, changing color, grayscale bitmaps.

• Color bar - Shows a color bar with gradient bars (Black > Color, White > Color). Integrated color management, which finds the optimized color
for any logical color.

Applications Help MEB II Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 231

RTOS Demonstrations

This section provides descriptions of the RTOS demonstrations.

Introduction

RTOS Demonstration Applications Help

Description

This distribution package contains a variety of RTOS-based firmware projects that demonstrate the capabilities of the MPLAB Harmony services
and stacks integrated with RTOS running on PIC32 devices. This section describes the hardware requirement and procedures to run these
firmware projects on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume IV: MPLAB Harmony Framework
Reference.

Source Code Disclaimers

OPENRTOS

The OPENRTOS demonstrations provided in MPLAB Harmony use the OPENRTOS evaluation license, which is meant for demonstration
purposes only. Customers desiring development and production on OPENRTOS must procure a suitable license. Please refer to one of the
following documents, which are located in the third-party folder of the MPLAB Harmony installation, for information on obtaining an evaluation
license for your device:

• OpenRTOS Click Thru Eval License PIC32MXxx.pdf

• OpenRTOS Click Thru Eval License PIC32MZxx.pdf

Micriµm

All µC/OS-III demonstrations have added the crt0.S "C" run-time library start-up file to the project. The demonstration sets the linker option "do
not link startup code". This is necessary for µC/OS-III to work correctly with PIC32 devices as the general exception vector is located in crt0.S.
µC/OS-III overrides this interrupt source (general exception handler) to perform OS-specific functionality.

If the user wants to implement their own application using µC/OS-III and a PIC32 device, they must add the crt0.S file to their project and
override the general exception interrupt vector. See the current RTOS examples for this implementation.

A crt0.S template file can be found in the MPLAB XC32 C/C++ Compiler installation directory:
..\Microchip\xc32\<version>\pic32-libs\libpic32.

 Important! The Micriµm µC/OS-II and µC/OS-III source code that is distributed with MPLAB Harmony is for FREE short-term
evaluation, for educational use, or peaceful research. If you plan or intend to use µC/OS-II and µC/OS-III in a commercial
application/product, you need to contact Micriµm to properly license µC/OS-II and µC/OS-III for its use in your
application/product. The source code is provided for your convenience and to help you experience µC/OS-II and µC/OS-III.
The fact the source is provided does NOT mean that you can use it commercially without paying a licensing fee.
Knowledge of the source code may NOT be used to develop a similar product. If you are unsure about whether you need
to obtain a license for your application, please contact Micriµm and discuss the intended use with a sales representative
(www.micrium.com).

Express Logic ThreadX

The source code for the ThreadX RTOS is not freely distributed. To obtain source code and the proper licensing agreement go to the Express
Logic ThreadX website: http://rtos.com/products/threadx/.

SEGGER embOS

The source code for the SEGGER embOS RTOS is not freely distributed. To obtain source code and the proper licensing agreement go to the
SEGGER embOS website: https://www.segger.com/license-models.html.

Express Logic ThreadX Demonstrations

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Source Code Disclaimer

The source code for this ThreadX RTOS demonstration is not freely distributed. To obtain source code and the proper licensing agreement go to

Applications Help RTOS Demonstrations Express Logic ThreadX Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 232

http://www.micrium.com
http://rtos.com/products/threadx

the Express Logic ThreadX website: http://rtos.com/products/threadx/. So that ThreadX can work with the applicable MPLAB Harmony
demonstrations, install the source in the following location: <install-dir>/third_party/rtos/ThreadX/.

The demonstrations will not compile unless the source code is provided and installed in the correct location.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ThreadX Basic
Demonstration.

Description

To build this project, you must open the basic_threadx.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/threadx/basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_threadx.X <install-dir>/apps/rtos/threadx/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in
microMIPS™ mode.

pic32mx_sk pic32mx_usb_sk2, pic32mx_usb_sk3,
pic32mx_eth_sk, and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits: PIC32
Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB
Starter Kit II, PIC32 USB Starter Kit III.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB Starter Kit II, and PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ThreadX basic demonstration.

Description

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

gfx

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Applications Help RTOS Demonstrations Express Logic ThreadX Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 233

http://rtos.com/products/threadx

Description

Source Code Disclaimer

The source code for this ThreadX RTOS demonstration is not freely distributed. To obtain source code and the proper licensing agreement go to
the Express Logic ThreadX website: http://rtos.com/products/threadx/. So that ThreadX can work with the applicable MPLAB Harmony
demonstrations, install the source in the following location: <install-dir>/third_party/rtos/ThreadX/.

The demonstrations will not compile unless the source code is provided and installed in the correct location.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ThreadX and
MPLAB Harmony Graphics Library Demonstration.

Description

To build this project, you must open the gfx_threadx.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/threadx/gfx.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_threadx.X <install-dir>/apps/rtos/threadx/gfx

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the MEB
II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit with MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with MEB

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ThreadX and MPLAB Harmony Graphics Library Demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. The LCD screen color will change every
500 ms, and user LEDs will toggle every 500 ms.

There are two tasks in the application, and three interrupts in this application/system.

The lowest priority task, LEDblinkTask, controls toggling of the LEDs. The highest priority task, DisplayTask, changes the color of the LCD screen
by calling the appropriate MPLAB Harmony Graphics Library function.

The CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. DMA channel 1 interrupt is used to call the appropriate
MPLAB Harmony graphics driver function, which takes all graphics work queued up by the application and physically writes it out to the LCD
display. SYSCALL general exception is invoked by the RTOS and is used to process the task context switch routine

Applications Help RTOS Demonstrations Express Logic ThreadX Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 234

http://rtos.com/products/threadx

gfx_usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Source Code Disclaimer

The source code for this ThreadX RTOS demonstration is not freely distributed. To obtain source code and the proper licensing agreement go to
the Express Logic ThreadX website: http://rtos.com/products/threadx/. So that ThreadX can work with the applicable MPLAB Harmony
demonstrations, install the source in the following location: <install-dir>/third_party/rtos/ThreadX/.

The demonstrations will not compile unless the source code is provided and installed in the correct location.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ThreadX and
MPLAB Harmony Graphics and USB Library Demonstration.

Description

To build this project, you must open the gfx_usb_threadx.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/threadx.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_usb_threadx.X <install-dir>/apps/rtos/threadx/gfx_usb

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the MEB
II.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit with MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with MEB

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ThreadX and MPLAB Harmony Graphics plus USB Library.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged into J4 on the PIC32MZ EC Starter Kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed.
The LCD screen color will change every 500 ms, and the user LED, D3, will toggle every 500 ms.

There are four tasks and five interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.

Applications Help RTOS Demonstrations Express Logic ThreadX Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 235

http://rtos.com/products/threadx

ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationDisplayTask changes the color of the entire LCD screen by calling the appropriate MPLAB Harmony Graphics Library function.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED, D3, every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. This is a hardware requirement of the MPLAB Harmony USB stack. A DMA channel 1 interrupt is used to call the
appropriate MPLAB Harmony graphics driver function, which takes all graphics work queued up the application and physically writes it out to the
LCD display. A USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all USB data queued
up by the application and physically writes it out to the USB hardware. A SYSCALL general exception, is invoked by the RTOS and is used to
process the task context switch routine.

usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Source Code Disclaimer

The source code for this ThreadX RTOS demonstration is not freely distributed. To obtain source code and the proper licensing agreement go to
the Express Logic ThreadX website: http://rtos.com/products/threadx/. So that ThreadX can work with the applicable MPLAB Harmony
demonstrations, install the source in the following location: <install-dir>/third_party/rtos/ThreadX/.

The demonstrations will not compile unless the source code is provided and installed in the correct location.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ThreadX and
MPLAB Harmony Graphics plus USB Library Demonstration.

Description

To build this project, you must open the usb_threadx.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/threadx/usb.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_threadx.X <install-dir>/apps/rtos/threadx/usb

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ThreadX and MPLAB Harmony USB Library demonstration.

Applications Help RTOS Demonstrations Express Logic ThreadX Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 236

http://rtos.com/products/threadx

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged into J4 on the PIC32MZ EC Starter Kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed.
The user LED, D3, will toggle every 500 ms.

There are three tasks and four interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED, D3, every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all
USB data queued up by the application and physically writes it out to the USB hardware. The SYSCALL general exception is invoked by the RTOS
and is used to process the task context switch routine.

FreeRTOS Demonstrations

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks the three user LEDs on a starter kit to show the RTOS threads that are running and to indicate status.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the FreeRTOS Basic
Demonstration.

Description

To build this project, you must open the basic_freertos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_freertos.X <install-dir>/apps/rtos/freertos/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32mx_sk pic32mx_usb_sk2, pic32mx_usb_sk3,
pic32mx_eth_sk, and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits: PIC32
Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB
Starter Kit II, PIC32 USB Starter Kit III.

pic32mx_sk_mips16 pic32mx_usb_sk2, pic32mx_usb_sk3,
pic32mx_eth_sk, and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits in
MIPS16 mode: PIC32 Ethernet Starter Kit, PIC32 Ethernet
Starter Kit II, PIC32 USB Starter Kit II, PIC32 USB Starter Kit
III.

pic32mz_sk pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in
microMIPS™ mode

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 237

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB Starter Kit II, and PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the FreeRTOS basic demonstration.

Description

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board either the PIC32MX or PIC32MZ target board to a USB port on the development computer using
the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the target board.

The demonstration application features the following:

• Application creates one queue and four tasks. One task that sends the data using the FreeRTOS queue to the two tasks that wait for the data
in the queue. (QueueReceiveTask2 priority is higher than the QueueReceiveTask1 priority.)

• QueueReceiveTask2 receives the data first, toggles the LED, and then sleeps for the specified time

• QueueReceiveTask1 receives the next data since QueueReceiveTask2 is not in running state

• QueueReceiveTask1 receives the data, toggles the LED and waits for the data arrival

cdc_com_port_dual

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

This RTOS based demonstration application creates a USB CDC Device that enumerates as two serial ports on the USB Host personal computer.
This application demonstrates the ability of the MPLAB Harmony USB Stack to operate in an Real-Time Operating System (this example uses
FreeRTOS) and to support multiple instances of the same device class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Description

To build this project, you must open the cdc_com_port_dual.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos/cdc_com_port_dual.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_dual.X <install-dir>/apps/rtos/freertos/cdc_com_port_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 238

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
in Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity (EC) Starter Kit in Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit in Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

Remove jumper JP1.

Running the Demonstration

Provides instructions on how to build and run the cdc_com_port_dual demonstration.

Description

Refer to the Running the Demonstration topic for the bare-metal (non RTOS) version of the cdc_com_port_dual demonstration applications for
running the demonstration.

The demonstration application contains six tasks. A description of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Device Layer Tasks function (USB_DEVICE_Tasks).
The priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks
are either in blocked state or not ready to run.

• The APP_USB_DEVICE_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed
for the application. It creates 4 tasks which implement the application logic. It attempts to open the Device Layer and then blocks on the
xSemaphoreBlockUsbConfigure semaphore. The xSemaphoreBlockUsbConfigure is given in the USB Device Layer Event Handler when the
device is configured by the Host. The tasks then resumes the 4 application logic tasks and suspends itself.

• The APP_CDC1Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC1 instance and then blocks on the
CDC1 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC2Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC2 instance and then blocks on the
CDC2 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC1Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 2 message queue. When APP_CDC2Read
Task posts a message to this queue, the APP_CDC1Write gets ready to run and the writes the data (received on the queue) to the CDC 1. This
data is then transferred to the Host.

• The APP_CDC2Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 1 message queue. When APP_CDC1Read
Task posts a message to this queue, the APP_CDC2Write gets ready to run and the writes the data (received on the queue) to the CDC 2. This
data is then transferred to the Host.

cdc_msd_basic

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 239

Description

To build this project, you must open the cdc_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos/cdc_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_msd_basic.X <install-dir>/apps/rtos/freertos/cdc_msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
in Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place if the attached USB device is bus-powered. It should be removed if the attached USB device is self-powered.

PIC32MZ Embedded Connectivity (EC) Starter Kit

Remove jumper JP1.

Running the Demonstration

Provides instructions on how to build and run the cdc_msd_basic demonstration.

Description

This USB Host demonstration application exercises the CDC and MSD interfaces on the attached composite USB device.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Follow the directions for setting up and running the cdc_serial_emulator_msd USB device demonstration.

4. Connect the UART (P1) port on the Explorer 16 Development Board (running the cdc_serial_emulator_msd demonstration) to a USB Host
personal computer via a commercially available Serial-to-USB Dongle.

5. Start a terminal program on the USB Host personal computer and select the Serial-to-USB Dongle as the communication port. Select the baud
rate as 9600, no parity, 1 Stop bit and no flow control.

6. Connect the mini – B connector on the USB PICtail Plus Daughter Board, of the cdc_serial_emulator_msd demonstration setup, to the Type-A
USB host connector on the starter kit.

7. A prompt (DATA :) will be displayed immediately on the terminal emulation program.

8. Type a string less than 12 characters and press the <Enter> key. The string entered here will be stored in the MSD device in a file named
file.txt.

9. Step 8 can be repeated. Data entered in the prompt will be appended to the file.

10. Unplug the USB Device from the Host and_connect_it a personal computer host to examine the contents of the Mass Storage Device. This
should contain a file named file.txt and this should contain the data that was entered at the terminal program prompt.

Tasks

This USB Host demonstration application contains four tasks. Descriptions of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Host Layer Tasks function (USB_HOST_Tasks). The
priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks are
either in blocked state or not ready to run.

• The APP_USB_HOST_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed for
the application. It creates two tasks that implement the application logic. It attempts to open the Host Layer and then enable USB Host

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 240

Operation. The task then resumes the two application logic tasks and suspends itself.

• The APP_USBHostCDCTask Task is created in the APP_USB_HOST_Open task. It blocks on xSemaphoreUSBCDCAttach semaphore. This
semaphore is given in the Application CDC Class Driver event handler when a CDC device is enumerated. The task then prints a prompt and
schedules a read from the CDC interface of the attached USB device. When data is available, it posts the xSemaphoreCDCReadComplete
semaphore.

• The APP_USBHostMSDTask Task is created in the APP_USB_HOST_Open task. It blocks on the xSemaphoreUSBMSDAttach semaphore.
This semaphore is given in the Application MSD event Handler when a MSD device is enumerated. The task then mounts the attached storage
media and then blocks on the xSemaphoreCDCReadComplete semaphore. The xSemaphoreCDCReadComplete semaphore is given by the
APP_USBHostCDCTask task when the CDC Host has received data. The APP_USBHostMSDTask Task will then open a file on the mounted
drive and will append the data (received from CDC) in the file. It closes the file, and then appends on xSemaphoreCDCReadComplete
semaphore again.

gfx

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the FreeRTOS and
MPLAB Harmony Graphics Demonstration.

Description

To build this project, you must open the gfx_freertos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_freertos.X <install-dir>/apps/rtos/freertos/gfx

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit and the MEB II.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the MEB II.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit with the MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit with the MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the MEB

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the FreeRTOS RTOS with Graphics demonstration.

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 241

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. The LCD screen color will change every
500 ms, and user LEDs will toggle every 500 ms.

There are two tasks in the application, and three interrupts in this application/system.

The lowest priority task, LEDblinkTask, controls toggling of the LEDs. The highest priority task, DisplayTask, changes the color of the LCD screen,
by calling the appropriate MPLAB Harmony Graphics Library function.

The Timer1 hardware interrupt is used by the RTOS to source the RTOS Tick. DMA channel 1 interrupt is used to call the appropriate MPLAB
Harmony graphics driver function, which takes all graphics work queued up the application and physically write it out to the LCD display. Software
interrupt 0, is invoked by the RTOS and is used to process the task context switch routine.

tcpip_client_server

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The TCP/IP Client Server application, tcpip_client_server, demonstrates how to run multiple TCP and UDP servers and clients using the TCP/IP
Stack in an RTOS environment. The demonstration also has the HTTP Web server running using the Non-Volatile Memory (NVM) Microchip
Proprietary File System (MPFS) to store the web pages in the internal PIC32 Flash.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the FreeRTOS and
MPLAB Harmony TCP/IP Demonstration.

Description

To build this project, you must open the tcpip_client_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_client_server.X <install-dir>/apps/rtos/freertos/tcpip_client_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ec_sk pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit and the Starter Kit I/O
Expansion Board.

pic32mx_eth_sk pic32mx_eth_sk This configuration runs on the PIC32 Ethernet Starter Kit and the Starter Kit I/O
Expansion Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit connected to the Starter Kit I/O Expansion Board

No jumper settings are required for this configuration.

The demonstration makes extensive use of the UART. To use the UART output, you will need to connect an RS-232 level-shifter to UART2 on the
Starter Kit I/O Expansion Board. From J11, connect U2TX (48) to the level-shifter TX and connect U2RX (46) to the level-shifter RX. Use any +5V
and GND to complete the wiring of the RS-232 level-shifter. The baud rate is 115.2 kBaud, N81.

PIC32 Ethernet Starter Kit connected to the Starter Kit I/O Expansion Board

No jumper settings are required for this configuration.

The demonstration makes extensive use of the UART. To use the UART output, you will need to connect an RS-232 level-shifter to UART2 on the

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 242

Starter Kit I/O Expansion Board. From J11, connect U2TX (48) to the level-shifter TX and connect U2RX (46) to the level-shifter RX. Use any +5V
and GND to complete the wiring of the RS-232 level-shifter. The baud rate is 115.2 kBaud, N81.

Running the Demonstration

Provides instructions on how to build and run the FreeRTOS RTOS with TCP/IP demonstration.

Description

The run the demonstration application, apply power to the board, open the demonstration with MPLAB X IDE, and then build and load the
demonstration.

This demonstration runs IPv4 only on the Ethernet interface. To view the Web page hosted by the demonstration application, open a Web browser
and direct it to the board running the HTTP server by typing the URL in the address bar (for example, http://mchpboard_e), and then pressing
Enter.

 Notes: 1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the
hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries (the NetBIOS service is enabled by default for this
demo). Alternatively, you can use the IPv4 of the board directly, for example, http://192.168.1.131.

2. The IPv4 address can be obtained from running the TCP/IP Discovery application on the PC side. It requires that the TCP/IP
Announce module is enabled when building the stack (the Announce module is enabled by default in this application).

Advanced Features

To use the advanced features of this demonstration, a system console must be enabled for the application. A serial console is preferred and is
enabled by default for the demonstration. Alternatively, the application can be reconfigured using MHC to use the USB console.

The PIC32MZ configuration has Telnet enabled by default. A Telnet connection could be also used for delivering the commands needed by the
application. On the PIC32MX configuration, the Telnet module is not enabled due to limited memory resources.

The PIC32MZ configuration is preferred for running this demonstration as the PIC32MX version may run out of memory at run-time.

TCP/IP Tasks

There are four TCP/IP tasks in the application that demonstrate the use of IPv4 TCP and UDP sockets in a multi-threaded system. Each of these
tasks implements (and registers with the system command processor) specific commands. The commands allow the corresponding sockets to be
opened and to start the communication with the remote hosts. On all hosts, the server sockets must first be opened, and then have the client
sockets connect to them. There are also commands for configuring each socket/communication channel.

Following the model in this application, extra commands could be added for any of the tasks to achieve desired operation.

Each of these communication channels can be exercised simultaneously or in turn. For the purposes of the demonstration, at least two different
communication channels should be opened simultaneously to put in evidence the multi-threaded behavior.

A common scenario listing the console commands and steps needed for running this demonstration would be:

1. Start app1 – TCP server:

• Start the PIC32 TCP server socket that listens on port 9760 by issuing the console command: topen_s1<CR>

• On the client side (PC, etc.) open a client that connects over TCP to the PIC32 server using port 9760. Use any network tools (netcat, etc.)
or special applications, scripts (TCL, Python, etc.) to transmit and receive data files.

2. Start app2 – TCP client:

• On the remote host side (PC, etc.) open a TCP server that listens for incoming connections on port 9761. Use any network tools (netcat,
etc.) or special applications, scripts (TCL, Python, etc.) to receive (and transmit) data files.

• Set the PIC32 client side address and port for the server to connect to, for example: tsrv4_c1 192.168.100.101 9761<CR>

• Start the PIC32 TCP client socket by issuing the console command: topen_c1<CR>

3. Start app3 – UDP server:

• Start the PIC32 UDP server socket that listens on port 32323 by issuing the console command: uopen_s1<CR>

• On the client side (PC, etc.) open a client that connects over UDP to the PIC32 server using port 32323. Use any network tools (netcat, etc.)
or special applications, scripts (TCL, Python, etc.) to transmit and receive data files.

4. Start app4 – UDP client:

• On the remote host side (PC, etc.) open a UDP server that listens for incoming connections on port 32324. Use any network tools (netcat,
etc.) or special applications, scripts (TCL, Python, etc.) to receive (and transmit) data files.

• Set the PIC32 client side address and port for the server to connect to, for example: usrv4_c1 192.168.100.101 32324<CR>

• Start the PIC32 UDP client socket by issuing the console command: uopen_c1<CR>

5. Now that you have the TCP/IP tasks running you can check the progress at run time. These commands give the RX and TX statistics showing
the amount of data transferred by each task:

• tstat_s1<CR>

• tstat_c1<CR>

• ustat_s1<CR>

• ustat_c1<CR>

6. Once the data transfer is completed, close the TCP/IP sockets (if not already closed by the remote party):

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 243

• tclose_s1<CR>

• tclose_c1<CR>

• uclose_s1<CR>

• uclose_c1<CR>

TCP/IP Task Descriptions and Commands

app1.c::TCP server

This task uses a TCP server socket that listens by default on port 9760 to implement a simple relay server. Any message that is received on that
TCP port will be relayed back to the originating socket. The following table lists and describes the available commands

Command Description

topen_s1 Opens the listening TCP server socket.

tmsg_s1 Sends a short message using this socket to the remote client.

tabort_s1 Sends an abort/RST to the remote client and stops the communication.

tclose_s1 Closes the socket and stops the communication.

ttxsize_s1 Sets the TX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 2048 bytes.

trxsize_s1 Sets the RX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 2048 bytes.

tdisplay_s1 Enables displaying of the received messages locally to the system console.

tstat_s1 Displays/clears the current TX and RX statistics for the current connection.

app2.c::TCP client

This task uses a TCP client socket to connect to a remote server that listens by default on port 9761. Any message that is received by the socket
can be optionally displayed locally. The client has the possibility of sending messages to the server. The following table lists and describes the
available commands.

Command Description

topen_c1 Opens the TCP client socket.

tmsg_c1 Sends a message to the remote server.

tabort_c1 Sends an abort/RST to the server and stops the communication.

tclose_c1 Closes the socket and stops the communication.

tsrv4_c1 Sets the server IPv4 address and port. The default values are 192.168.100.101 and 9761.

tasync_c1 Enables the continuous transmission of messages to the server.

tdisplay_c1 Enables displaying of the received messages locally to the system console.

tstat_c1 Displays/clears the current TX and RX statistics for the current connection.

app3.c::UDP server

This task uses a UDP server socket that listens by default on port 32323 to implement a simple relay server. Any message that is received on that
UDP port will be relayed back to the originating socket. The following table lists and describes the available commands.

Command Description

uopen_s1 Opens the listening UDP server socket.

uclose_s1 Closes the socket and stops the communication.

ustnet_s1 Selects the strict network option for the UDP socket (incoming connections from any network are allowed or only
from the network that initiated the first connection).

ustport_s1 Selects the strict port option for the UDP socket (incoming connections from any host port are allowed or only from
the port that was used when the connection was first initiated).

ustadd_s1 Selects the strict address option for the UDP socket (incoming connections from any host address are allowed or
only from the address that was used when the connection was first initiated).

udisplay_s1 Enables displaying of the received messages locally to the system console.

ustat_s1 Displays/clears the current TX and RX statistics for the current connection.

utxsize_s1 Sets the TX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 1024 bytes. Note that this value should not be made larger than 1460
for an Ethernet network (to avoid packets larger than the link MTU).

Applications Help RTOS Demonstrations FreeRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 244

app4.c::UDP client

This task uses a UDP client socket to connect to a remote server that listens by default on port 32324. Any message that is received by the socket
can be optionally displayed locally. The client has the possibility of sending messages to the server. The following table lists and describes the
available commands.

Command Description

uopen_c1 Opens the UDP client socket.

umsg_c1 Sends a message to the remote server.

uclose_c Closes the socket and stops the communication.

usrv4_c1 Sets the server IPv4 address and port. The default values are 192.168.100.101 and 32324.

uasync_c1 Enables the continuous transmission of messages to the server.

udisplay_c1 Enables displaying of the received messages locally to the system console.

ustat_c1 Displays/clears the current TX and RX statistics for the current connection.

utxsize_c1 Sets the TX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 1024 bytes. Note that this value should not be made larger than 1460
for an Ethernet network (to avoid packets larger than the link MTU).

Micrium uC_OS_II Demonstrations

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks a user LED on a starter kit to show the RTOS threads that are running and to indicate status.

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-II source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-II
Basic Demonstration.

Description

To build this project, you must open the basic_ucos_II.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_II.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_ucos_II.X <install-dir>/apps/rtos/uC_OS_II/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

Applications Help RTOS Demonstrations Micrium uC_OS_II Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 245

http://www.micrium.com

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in microMIPS
mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-II basic demonstration.

Description

In this demonstration, there is one user task and one hardware interrupt. The one user task, LEDBlinkTask, is responsible for toggling the user
LED to show that the RTOS and the application are up and running. The hardware interrupt is used by the RTOS to run the RTOS Tick. The
internal core timer is used as the source for the hardware interrupt.

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

Micrium uC/OS-III Demonstrations

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks a user LED on a starter kit to show the RTOS threads that are running and to indicate status.

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-III source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSIII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-III
Basic Demonstration.

Description

To build this project, you must open the basic_ucos_III.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_III.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_ucos_III.X <install-dir>/apps/rtos/uC_OS_III/basic

Applications Help RTOS Demonstrations Micrium uC/OS-III Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 246

http://www.micrium.com

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in microMIPS
mode

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-III basic demonstration.

Description

In this demonstration, there is one user task and one hardware interrupt. The one user task, LEDBlinkTask, is responsible for toggling the user
LED to show that the RTOS and the application are up and running. The hardware interrupt is used by the RTOS to run the RTOS Tick. The
internal core timer is used as the source for the hardware interrupt.

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

gfx

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-III source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSIII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-III
and MPLAB Harmony Graphics Library Demonstration.

Description

To build this project, you must open the gfx_ucosIII.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_III/gfx.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_ucosIII.X <install-dir>/apps/rtos/uC_OS_III/gfx

Applications Help RTOS Demonstrations Micrium uC/OS-III Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 247

http://www.micrium.com

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the MEB
II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit with MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with MEB

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-III and MPLAB Harmony Graphics Library Demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. The LCD screen color will change every
500 ms, and user LEDs will toggle every 500 ms.

There are two tasks in the application, and three interrupts in this application/system.

The lowest priority task, LEDblinkTask, controls toggling of the LEDs. The highest priority task, DisplayTask, changes the color of the LCD screen
by calling the appropriate MPLAB Harmony Graphics Library function.

The CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. DMA channel 1 interrupt is used to call the appropriate
MPLAB Harmony graphics driver function, which takes all graphics work queued up by the application and physically writes it out to the LCD
display. SYSCALL general exception is invoked by the RTOS and is used to process the task context switch routine

gfx_usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-III source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSIII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-III
and MPLAB Harmony Graphics and USB Library Demonstration.

Description

To build this project, you must open the gfx_usb_ucos_III.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_III.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_usb_ucos_III.X <install-dir>/apps/rtos/uC_OS_III/gfx_usb

Applications Help RTOS Demonstrations Micrium uC/OS-III Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 248

http://www.micrium.com

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the MEB
II.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit with MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with MEB

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-III and MPLAB Harmony Graphics plus USB Library.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged in to the starter kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed. The LCD screen
color will change every 500 ms, and the user LED, D3, will toggle every 500 ms.

There are four tasks and five interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationDisplayTask changes the color of the entire LCD screen by calling the appropriate MPLAB Harmony Graphics Library function.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED, D3, every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. This is a hardware requirement of the MPLAB Harmony USB stack. A DMA channel 1 interrupt is used to call the
appropriate MPLAB Harmony graphics driver function, which takes all graphics work queued up the application and physically writes it out to the
LCD display. A USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all USB data queued
up by the application and physically writes it out to the USB hardware. A SYSCALL general exception, is invoked by the RTOS and is used to
process the task context switch routine.

usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-III source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSIII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-III
and MPLAB Harmony Graphics plus USB Library Demonstration.

Description

To build this project, you must open the usb_ucos_III.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_III/usb.

Applications Help RTOS Demonstrations Micrium uC/OS-III Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 249

http://www.micrium.com

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_ucos_III.X <install-dir>/apps/rtos/uC_OS_III/usb

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-III and MPLAB Harmony USB Library demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged in to the starter kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed. The user LED, D3,
will toggle every 500 ms.

There are three tasks and four interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED, D3, every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all
USB data queued up by the application and physically writes it out to the USB hardware. The SYSCALL general exception is invoked by the RTOS
and is used to process the task context switch routine.

OPENRTOS Demonstrations

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks the three user LEDs on a starter kit to show the RTOS threads that are running and to indicate status.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the OPENRTOS Basic
Demonstration.

Applications Help RTOS Demonstrations OPENRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 250

Description

To build this project, you must open the basic_openrtos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/openrtos/basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_openrtos.X <install-dir>/apps/rtos/openrtos/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_sk pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit.

pic32mx_sk pic32mx_usb_sk2, pic32mx_usb_sk3, pic32mx_eth_sk,
and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits: PIC32
Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB
Starter Kit II, and PIC32 USB Starter Kit III.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB Starter Kit II, and PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the OPENRTOS basic demonstration.

Description

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware. The demonstration blinks the three user LEDs on a starter kit to show the RTOS threads that are running and to indicate status.

cdc_com_port_dual

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

This RTOS based demonstration application creates a USB CDC Device that enumerates as two serial ports on the USB Host personal computer.
This application demonstrates the ability of the MPLAB Harmony USB Stack to operate in an Real-Time Operating System (this example uses
OPENRTOS) and to support multiple instances of the same device class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Description

To build this project, you must open the cdc_com_port_dual.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/openrtos/cdc_com_port_dual.

MPLAB X IDE Project

Applications Help RTOS Demonstrations OPENRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 251

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_dual.X <install-dir>/apps/rtos/openrtos/cdc_com_port_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
in Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity (EC) Starter Kit in Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit in Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

Remove jumper JP1.

Running the Demonstration

Provides instructions on how to build and run the cdc_com_port_dual demonstration.

Description

Refer to the Running the Demonstration topic for the bare-metal (non RTOS) version of the cdc_com_port_dual demonstration applications for
running the demonstration.

The demonstration application contains six tasks. A description of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Device Layer Tasks function (USB_DEVICE_Tasks).
The priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks
are either in blocked state or not ready to run.

• The APP_USB_DEVICE_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed
for the application. It creates 4 tasks which implement the application logic. It attempts to open the Device Layer and then blocks on the
xSemaphoreBlockUsbConfigure semaphore. The xSemaphoreBlockUsbConfigure is given in the USB Device Layer Event Handler when the
device is configured by the Host. The tasks then resumes the 4 application logic tasks and suspends itself.

• The APP_CDC1Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC1 instance and then blocks on the
CDC1 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC2Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC2 instance and then blocks on the
CDC2 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC1Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 2 message queue. When APP_CDC2Read
Task posts a message to this queue, the APP_CDC1Write gets ready to run and the writes the data (received on the queue) to the CDC 1. This
data is then transferred to the Host.

• The APP_CDC2Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 1 message queue. When APP_CDC1Read
Task posts a message to this queue, the APP_CDC2Write gets ready to run and the writes the data (received on the queue) to the CDC 2. This
data is then transferred to the Host.

cdc_msd_basic

Demonstrates host support for a composite USB Device in a RTOS application.

Applications Help RTOS Demonstrations OPENRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 252

Description

This demonstration application creates a USB Host application that demonstrates operation of composite USB Device. The Host application
enumerates the CDC and MSD interfaces on the attached composite devices and then operates these in one application. The demonstration
application uses a RTOS to create thread that manage the CDC and MSD aspects of the Host application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Description

To build this project, you must open the cdc_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/openrtos/cdc_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_msd_basic.X <install-dir>/apps/rtos/openrtos/cdc_msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB
Starter Kit II in Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place if the attached USB device is bus-powered. It should be removed if the attached USB device is self-powered.

Running the Demonstration

Provides instructions on how to build and run the cdc_msd_basic demonstration.

Description

This USB Host demonstration application exercises the CDC and MSD interfaces on the attached composite USB device.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Follow the directions for setting up and running the cdc_serial_emulator_msd USB device demonstration.

4. Connect the UART (P1) port on the Explorer 16 Development Board (running the cdc_serial_emulator_msd demonstration) to a USB Host
personal computer via a commercially available Serial-to-USB Dongle.

5. Start a terminal program on the USB Host personal computer and select the Serial-to-USB Dongle as the communication port. Select the baud
rate as 9600, no parity, 1 Stop bit and no flow control.

6. Connect the mini – B connector on the USB PICtail Plus Daughter Board, of the cdc_serial_emulator_msd demonstration setup, to the Type-A
USB host connector on the starter kit.

7. A prompt (DATA :) will be displayed immediately on the terminal emulation program.

8. Type a string less than 12 characters and press the <Enter> key. The string entered here will be stored in the MSD device in a file named
file.txt.

9. Step 8 can be repeated. Data entered in the prompt will be appended to the file.

10. Unplug the USB Device from the Host and_connect_it a personal computer host to examine the contents of the Mass Storage Device. This
should contain a file named file.txt and this should contain the data that was entered at the terminal program prompt.

Applications Help RTOS Demonstrations OPENRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 253

Tasks

This USB Host demonstration application contains four tasks. Descriptions of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Host Layer Tasks function (USB_HOST_Tasks). The
priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks are
either in blocked state or not ready to run.

• The APP_USB_HOST_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed for
the application. It creates two tasks that implement the application logic. It attempts to open the Host Layer and then enable USB Host
Operation. The task then resumes the two application logic tasks and suspends itself.

• The APP_USBHostCDCTask Task is created in the APP_USB_HOST_Open task. It blocks on xSemaphoreUSBCDCAttach semaphore. This
semaphore is given in the Application CDC Class Driver event handler when a CDC device is enumerated. The task then prints a prompt and
schedules a read from the CDC interface of the attached USB device. When data is available, it posts the xSemaphoreCDCReadComplete
semaphore.

• The APP_USBHostMSDTask Task is created in the APP_USB_HOST_Open task. It blocks on the xSemaphoreUSBMSDAttach semaphore.
This semaphore is given in the Application MSD event Handler when a MSD device is enumerated. The task then mounts the attached storage
media and then blocks on the xSemaphoreCDCReadComplete semaphore. The xSemaphoreCDCReadComplete semaphore is given by the
APP_USBHostCDCTask task when the CDC Host has received data. The APP_USBHostMSDTask Task will then open a file on the mounted
drive and will append the data (received from CDC) in the file. It closes the file, and then appends on xSemaphoreCDCReadComplete
semaphore again.

gfx

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the OPENRTOS and
MPLAB Harmony Graphics Library Demonstration.

Description

To build this project, you must open the gfx_openrtos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/openrtos.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_openrtos.X <install-dir>/apps/rtos/openrtos/gfx

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit and the MEB
II.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit connected to the MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II connected to the MEB

No hardware related configuration or jumper setting changes are necessary.

Applications Help RTOS Demonstrations OPENRTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 254

Running the Demonstration

Provides instructions on how to build and run the OPENRTOS and MPLAB Harmony Graphics Library demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. The LCD screen color will change every
500 ms, and user LEDs will toggle every 500 ms.

There are two tasks in the application, and three interrupts in this application/system.

The lowest priority task, LEDblinkTask, controls toggling of the LEDs. The highest priority task, DisplayTask, changes the color of the LCD screen,
by calling the appropriate MPLAB Harmony Graphics Library function.

The Timer1 hardware interrupt is used by the RTOS to source the RTOS Tick. DMA channel 1 interrupt is used to call the appropriate MPLAB
Harmony graphics driver function, which takes all graphics work queued up the application and physically write it out to the LCD display. Software
interrupt 0, is invoked by the RTOS and is used to process the task context switch routine.

SEGGER embOS Demonstrations

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks the three user LEDs on a starter kit to show the RTOS threads that are running and to indicate status.

Legal Disclaimer

The source code for this SEGGER embOS RTOS demonstration is not freely distributed. To obtain source code and the proper licensing
agreement go to the SEGGER embOS website: https://www.segger.com/license-models.html. The SEGGER embOS source must be installed in
the following location: <install-dir>/third_party/rtos/embOS so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER embOS
Basic Demonstration.

Description

To build this project, you must open the basic_embos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/embos/basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_embos.X <install-dir>/apps/rtos/embos/basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in microMIPS™
mode

Applications Help RTOS Demonstrations SEGGER embOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 255

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SEGGER embOS basic demonstration.

Description

In this demonstration, there is one user task and one hardware interrupt. A user task is responsible for toggling the user LEDs to show that the
RTOS and the application are up and running. The hardware interrupt is used by the RTOS to run the RTOS Tick. The internal core timer is used
as the source for the hardware interrupt.

Once the demonstration is up and running a LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

gfx

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this SEGGER embOS RTOS demonstration is not freely distributed. To obtain source code and the proper licensing
agreement go to the SEGGER embOS website: https://www.segger.com/license-models.html. The SEGGER embOS source must be installed in
the following location: <install-dir>/third_party/rtos/embOS so that the applicable MPLAB Harmony demonstrations can work

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER embOS
and MPLAB Harmony Graphics Library Demonstration.

Description

To build this project, you must open the gfx_embos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/embos/gfx.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_embos.X <install-dir>/apps/rtos/embos/gfx/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the MEB
II.

Applications Help RTOS Demonstrations SEGGER embOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 256

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit with MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with MEB

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SEGGER embOS and MPLAB Harmony Graphics Library Demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. The LCD screen color will change every
500 ms, and user LEDs will toggle every 500 ms.

There is one task in the application and three interrupts in this application/system.

The user task controls toggling of a user LED and changes the LCD screen color by calling the appropriate MPLAB Harmony Graphics Library
function.

The CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. DMA channel 1 interrupt is used to call the appropriate
MPLAB Harmony graphics driver function, which takes all graphics work queued up by the application and physically writes it out to the LCD
display. SYSCALL general exception is invoked by the RTOS and is used to process the task context switch routine

gfx_usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this SEGGER embOS RTOS demonstration is not freely distributed. To obtain source code and the proper licensing
agreement go to the SEGGER embOS website: https://www.segger.com/license-models.html. The SEGGER embOS source must be installed in
the following location: <install-dir>/third_party/rtos/embOS so that the applicable MPLAB Harmony demonstrations can work

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER embOS
and MPLAB Harmony Graphics and USB Library Demonstration.

Description

To build this project, you must open the gfx_usb_embos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/embos/gfx_usb.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

gfx_usb_embos.X <install-dir>/apps/rtos/embos/gfx_usb/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the MEB
II.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb This configuration runs on the PIC32 USB Starter Kit II and the MEB.

Applications Help RTOS Demonstrations SEGGER embOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 257

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit with MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with MEB

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SEGGER embOS and MPLAB Harmony Graphics plus USB Library.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged in to the starter kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed. The LCD screen
color will change every 500 ms, and the user LED (D3 on the MEB II), will toggle every 500 ms.

There are four tasks and five interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationDisplayTask changes the color of the entire LCD screen by calling the appropriate MPLAB Harmony Graphics Library function.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED (D3 on the MEB II) every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. This is a hardware requirement of the MPLAB Harmony USB stack. A DMA channel 1 interrupt is used to call the
appropriate MPLAB Harmony graphics driver function, which takes all graphics work queued up the application and physically writes it out to the
LCD display. A USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all USB data queued
up by the application and physically writes it out to the USB hardware. A SYSCALL general exception, is invoked by the RTOS and is used to
process the task context switch routine.

usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this SEGGER embOS RTOS demonstration is not freely distributed. To obtain source code and the proper licensing
agreement go to the SEGGER embOS website: https://www.segger.com/license-models.html. The SEGGER embOS source must be installed in
the following location: <install-dir>/third_party/rtos/embOS so that the applicable MPLAB Harmony demonstrations can work

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER embOS
and MPLAB Harmony Graphics plus USB Library Demonstration.

Description

To build this project, you must open the usb_embos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/embos/usb.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_embos.X <install-dir>/apps/rtos/embos/usb/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Applications Help RTOS Demonstrations SEGGER embOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 258

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SEGGER embOS and MPLAB Harmony USB Library demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged in to the starter kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed. A user LED will
toggle every 500 ms.

There are three tasks and four interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all
USB data queued up by the application and physically writes it out to the USB hardware. The SYSCALL general exception is invoked by the RTOS
and is used to process the task context switch routine.

Applications Help RTOS Demonstrations SEGGER embOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 259

TCP/IP Demonstrations

This section provides descriptions of the TCP/IP demonstrations.

Introduction

TCP/IP and Wi-Fi® Demonstration Applications Help

Description

TCP/IP Demonstrations

This section describes Microchip's TCP/IP Demonstration projects, including information about demonstration-hardware compatibility and also
provides the information about how to configure and run the demonstrations.

Wi-Fi Demonstrations

This distribution package contains a variety of Wi-Fi-based firmware projects that demonstrate the capabilities of the MPLAB Harmony Wi-Fi
services and TCP/IP Stack running on PIC32 devices. This section describes the hardware requirements and procedures to run these firmware
projects on Microchip demonstration and development boards.

Refer to the Wi-Fi Demonstration Configuration Matrix for demonstration support information.

Wi-Fi Demonstration Configuration Matrix

Provides Wi-Fi demonstration support information.

Description

The following matrix provides information for the Wi-Fi demonstrations.

Applications Help TCP/IP Demonstrations Wi-Fi Demonstration Configuration Matrix

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 260

Wi-Fi Console Commands

This section describes the demonstration support commands available for the Wi-Fi Web Server and EasyConfig demonstrations.

Description

 Note: Refer to the following documentation, which is available for download from the Microchip website:

• Microchip MRF24W Getting Started Guide for MRF24WB0MA/A, MRF24WG0MA/B for MLA v5 (DS52108)

• Microchip Wi-Fi® G Demo Board User's Guide (DS50002147)

Please be sure to consult the website for the latest version of the documentation.

Both the Web Server and the EasyConfig demonstrations support Wi-FI Console commands, which enable control over the Wi-Fi settings. All of
the following commands, with the exception of rftest, are available for both the MRF24WG and MRF24WN Wi-Fi Drivers. The rftest
command is only available for use with the MRF24WN Wi-Fi Driver.

Applications Help TCP/IP Demonstrations Wi-Fi Console Commands

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 261

http://ww1.microchip.com/downloads/en/DeviceDoc/52108A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002147A.pdf

Command: eraseconf

Parameters Description

None. Wi-Fi console command to erase saved Wi-Fi configuration in memory.

Command: iwconfig

Parameters Description

[ssid <name>] name: Specifies the name of the SSID (1-32 ASCII characters).

[mode <idle |
managed>]

idle: Disconnected from the current configuration.

managed: Connects in infrastructure mode to the currently set SSID.

[power <enable |
disable>]

enable: Enables all Power-Saving features (PS_POLL). Will wake up to check for all types of traffic (unicast, multicast, and
broadcast).

disable: Disables any Power-Saving features. Will always be in an active power state.

[security <mode>] mode: open/wep40/wep104/wpa/wpa2/pin/pbc. For example:
iwconfig security open

iwconfig security wep40 <key>

iwconfig security wep104 <key>

iwconfig security wpa <key>

iwconfig security wpa2 <key>

iwconfig security pin <pin>

iwconfig security pbc

[scan] Starts a Wi-Fi scan.

[scanget
<scan_index>]

scan_index: Retrieves the scan result after the scan completes (1 - n).

Command: mac

Parameters Description

None. Wi-Fi console command to retrieve the MAC address of the MRF24WN module.

Command: readconf

Parameters Description

None. Wi-Fi console command to read saved Wi-Fi configuration in memory.

Command: rftest (for use with the MRF24WN Wi-Fi Driver only)

Applications Help TCP/IP Demonstrations Wi-Fi Console Commands

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 262

Parameters Description

[rate <
packet_count |
packet_size |
channel
header_type >]

Wi-Fi console command to perform regulatory test.

rate (in Mbps):

• 0 = 1

• 1 = 2

• 2 = 5.5

• 3 = 11

• 4 = 6

• 5 = 9

• 6 = 12

• 7 = 18

• 8 = 24

• 9 = 36

• 10 = 48

• 11 = 54

• 12 = 6.5

• 13 = 13

• 14 = 19.5

• 15 = 26

• 16 = 39

• 17 = 52

• 18 = 58.5

packet_count: Number of transmits (1 through 14).

packet_size: Payload size (0 to 1400).

channel: 1 through 14.

header_type: 0 - Beacon frame; 1 - QoS data frame; 2 through 4 Address data frame.

Command: saveconf

Parameters Description

None. Wi-Fi console command to save Wi-Fi configuration to memory.

Demonstrations

Description of TCP/IP Stack Library Demonstration Application.

Description

PHY Driver Support

All of the PIC32MX and PIC32MZ projects that are part of the distribution and use the Microchip reference development boards are preconfigured
with specific PHY Drivers. Where the board supports different PHY daughter boards, the default PHY could be changed. To use a different PHY
for a specific board the following must be done:

1. Use the MHC to configure your project to use the correct PHY and make sure that both the correct PHY address and configuration flags are
used for the particular PHY daughter board. The MII/RMII and I/O configuration flags for the PHY board should match the project configuration
fuses.

2. Regenerate the project and make sure that the new PHY driver is selected for the configuration that you're using.

Alternatively, you can manually set up your project, as follows:

• The project should select the PHY driver that corresponds to the PHY Daughter Board (i.e, LAN8720, LAN8740, LAN9303, etc.) in use for the
selected configuration

• Modify for the TCPIP_EMAC_PHY_ADDRESS and TCPIP_EMAC_PHY_CONFIG_FLAGS to have the correct PHY address (the PHY address
for both the SMSC PHY Daughter Boards is usually zero, for example) and the configuration flags (MII/RMII, I/O pin configuration, etc.)

• Or update directly the tcpip_stack_init.c:: tcpipMACPIC32INTInitData structure to have the correct PHY address and the configuration flags

• Make sure that the configuration fuses are properly selected to match your hardware and PHY board

• Rebuild the project

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 263

berkeley_tcp_client

This configuration demonstrates creating an Internet client that uses the Berkeley API to create a TCP/IP connection to a web server.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley TCP Client
Demonstration.

Description

To build this project, you must open the berkeley_tcp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_tcp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_tcp_client.X <install-dir>/apps/tcpip/berkeley_tcp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley TCP Client on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley TCP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley TCP Client on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley TCP Client on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 264

Establish a connection between the router or switch with the PIC32 Ethernet Starter Kit using the RJ45 connector. Ensure the router or switch is
connected to the Internet.

There is only one command available in the demonstration from the serial port:

openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

After that one command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port.

berkeley_tcp_server

This configuration demonstrates creating an Internet server that uses the Berkeley API to create a TCP/IP echo server on port 9764.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley TCP
Server Demonstration.

Description

To build this project, you must open the berkeley_tcp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_tcp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_tcp_server.X <install-dir>/apps/tcpip/berkeley_tcp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley TCP Server on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley TCP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley TCP Server on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley TCP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 265

http://www.microchip.com

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a TCP/IP connection on 9760. The demonstration will echo back
everything it receives along the connection.

A USB cable can be connected to the micro-B USB connector on the bottom of the starter kit in use. This will create a USB CDC device on the
USB bus. To communicate with the software, connect to this device though a standard terminal program and set the baud rate to 921,600 baud.

berkeley_udp_client

This configuration demonstrates creating an Internet client that uses the Berkeley API to create a UDP/IP connection to a specified port.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley UDP Client
Demonstration.

Description

To build this project, you must open the berkeley_udp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_udp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_udp_client.X <install-dir>/apps/tcpip/berkeley_udp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley UDP Client on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley UDP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley UDP Client on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley UDP Client on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 266

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There are three sequential commands that can be used from the console:

• setudppacketoptions <hostname> <port> <message> - This command specifies where to send the UDP packet and what to have in
the message

• getudppacketoptions - This command displays the current options

• sendudppacket - This command sends a UDP packet

After the sendudppacket command is input, the demonstration will make a DNS query to look up the host name and send a UDP packet to that
host.

The output message will be received by the UDP server and by the UDP port that is configured by the command setudppacketoptions.

berkeley_udp_relay

This application demonstrates the use of multiple sockets for both sending and receiving. There are three different sub-functions of this application:

• UDP Relay, which accepts UDP packets on one socket, and sends the packets out on a different socket

• UDP Relay Client, which generates UDP traffic that is compatible with the UDP Relay Server

• UDP Relay Server, which receives and checks traffic for a packet count and reports is any packets are dropped

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley UDP Relay
Demonstration.

Description

To build this project, you must open the berkeley_udp_relay.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_udp_relay.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_udp_relay.X <install-dir>/apps/tcpip/berkeley_udp_relay/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley UDP Relay on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley UDP Relay on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley UDP Relay on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley UDP Relay on the PIC32MZ EF Starter Kit.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 267

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use.

When the demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to
this device though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

Also, establish a connection between the router or switch with the PIC32 Ethernet Starter Kit using the RJ45 connector. Ensure the router or
switch is connected to the Internet.

This application demonstrates a simple UDP packet relay. Functionality has also been put in place to generate packets and to receive packets on
the same device. IPv6 has not been tested.

Demonstration Commands

There is are several different commands available in the demonstration from the console port:

General Application Commands:

• current - Displays the current configuration

• start - Starts the packet relay service

• stop - Stops the packet relay service

• reportinterval <seconds> - Sets the interval between reports to the console

Relay Service Configuration:

• relayhost <host name> - Sets the host to which packets are to be relayed

• relayport <port number> - Sets the port to which packets are to be relayed

• ipv4port <port number> - Sets the IPv4 port that the relay server will listen to for packets to relay

• ipv6port <port number> - Sets the IPv6 port that the relay server will listen to for packets to relay

Relay Client Configuration and Commands:

• relayclienthost <host name> - Sets the host to which packets are to be sent

• relayclientport <port number> - Sets the port to which packets are to be sent

• relayclientiter <number> - The number of packets to generate

• relayclientstart - Starts the relay client. This command must be used after the general application start. After a start is called, and the first
packet is received by either the relay or the relay server, periodic updates will be sent to the console with information about the number of
packets and bytes received.

berkeley_udp_server

This configuration demonstrates creating an Internet server that uses the Berkeley API to create a UDP/IP echo server on port 9764.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley UDP
Server Demonstration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 268

Description

To build this project, you must open the berkeley_udp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_udp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_udp_server.X <install-dir>/apps/tcpip/berkeley_udp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley UDP Server on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley UDP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley UDP Server on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley UDP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a UDP/IP connection on 9760. The demonstration will echo back
everything it receives along the connection.

A USB cable can be connected to the micro-B USB connector on the bottom of the starter kit in use. This will create a USB CDC device on the
USB bus. To communicate with the software, connect to this device though a standard terminal program and set the baud rate to 921,600 baud.

snmpv3_nvm_mpfs

SNMPv3 NVM MPFS demonstration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 269

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SNMPv3 NVM
MPFS Demonstration.

Description

To build this project, you must open the snmpv2_nvm_mpfs.X project in MPLAB X IDE, and then select the desired configuration.

The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) has the snmp.bib file along with other web page files stored in
internal Flash and are accessed through the MPFS API.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/snmpv3_nvm_mpfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

snmpv3_nvm_mpfs.X <install-dir>/apps/tcpip/snmpv3_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32_eth_sk pic32mx_eth_sk Demonstrates the SNMPv3 NVM MPFS on the PIC32 Ethernet Starter Kit in Interrupt
mode and dynamic operation.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SNMPv3 NVM MPFS on the PIC32MZ EF Starter Kit in Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board the starter kit in use to a USB port on the development computer using the USB cable provided in
the kit.

3. Connect the RJ-45 Ethernet port on the starter kit board to a network hub or an Ethernet port on the development computer using the Ethernet
patch cord provided in the kit.

4. Build, download, and run the demonstration project on the target board.

5. A SNMP and SNMPv3 server is hosted by the demonstration application.

6. Run tcpip_discoverer to get the IPv4 and IPv6 address for the board.

7. Open a SNMP manager (iREASONING SNMP manager is recommended) and configure the IPv4 or IPv6 address.

 Note: Refer to the iREASONING Networks MIB Browser section in the Third-Party help for complete details on using and configuring the
application using the iREASONING SNMP Manager.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 270

8. Connect a USB cable to the micro-B USB connector on the bottom of the PIC32 Ethernet Starter Kit. When the demonstration runs, it will
create a USB CDC device on the USB bus. Connect to this device though a standard terminal program, and set the baud rate to 921,600 baud.
You can observe the IP address details and query the stack using the console interface.

SNMP MIB Browser

Several SNMP MIB browsers are available. Users can also install a customized MIB browser specific to their application.

SNMP Get, GetNext, GetBulk, Set request and response are working as expected for SNMP v1/v2/v3 versions.

• For SNMP v2c , the Agent is configured with three Read communities ("public", "read", " ") and three Write communities
("private","write","public").

• For SNMP v3, the Agent is configured as per the following table:

Type USER 1 USER 2 USER 3

USM User microchip SnmpAdmin root

Security Level auth, priv auth, no priv no auth, no priv

Auth Algorithm MD5 SHA1 N/A

Auth Password auth12345 ChandlerUS N/A

Privacy Algorithm AES N/A N/A

Privacy Password priv12345 N/A N/A

The Microchip SNMP Stack supports both TRAP version 1 and TRAP version 2. This demonstration trap output is a multi-varbind SNMPv3 TRAP
version 2. Users may be required to configure the Trap receiver as per the SNMP browser selection.

HTTP Configuration for SNMPv2c Community

It is possible to dynamically configure the Read and Write community names through the SNMP Configuration web page. Access the web page
using http://mchpboard_e/mpfsupload or http://<Board IP address>(for IPv6 it should be http://<Ipv6 address>:80/index.html), and then access the
SNMP Configuration web page through the navigation bar. Use "admin" for the username and "microchip" for the password.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

snmpv3_sdcard_fatfs

SNMPv3 SD Card FAT File System demonstration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 271

http://mchpboard_e/mpfsupload

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SNMPv3 SD Card
FAT FS Demonstration.

Description

To build this project, you must open the snmpv3_sdcard_fatfs.X project in MPLAB X IDE, and then select the desired configuration.

The SD Card FAT FS has the snmp.bib file with other web pages stored in an external SD card and is accessed through a FAT FS API.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/snmpv3_sdcard_fatfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

snmpv3_sdcard_fatfs.X <install-dir>/apps/tcpip/snmpv3_sdcard_fatfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32_eth_sk pic32mx_eth_sk Demonstrates the access of a SNMP file on a microSD card through the FAT file system on the PIC32
Ethernet Starter Kit using the Starter Kit I/O Expansion Board with the PICtail daughter board for SD and
MMC cards. The demonstration runs in Interrupt mode and dynamic operation.

pic32mz_ef_sk pic32mz_ef_sk+meb2 Demonstrates the access of a SNMP file on a microSD card through the FAT file system on the
PIC32MZ EF Starter Kit and the MEB II board combination. The demonstration runs in Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit with the MEB II

1. Connect the starter kit to the application board connector on the MEB II.

2. Make sure a microSD card is formatted and loaded with the snmp.bib file along with the web pages provided in the
<install-dir>/apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages folder.

3. Insert the microSD card with the web pages into the microSD card slot (J8) on the MEB II.

PIC32 Ethernet Starter Kit with the Starter Kit Expansion Board

1. Connect the PIC32 Ethernet Starter Kit to the I/O expansion board.

2. Make sure a SD card is formatted and loaded with the snmp.bib file along with the web pages provided within the
<install-dir>apps/tcpip/snmpv3_sdcard_fatfs/firmware/src/web_pages folder.

3. Insert the SD card into the PICtail Daughter Board for SD and MMC cards with the snmp.bib file along with web pages into the SPI1 slot (J4 -
starts slot count from 1) of the PIC32 I/O Expansion Board.

 Note: The SD card on the PICtail daughter board should face the PIC32 Ethernet Starter Kit.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

Please refer to the Running the Demonstration section for the snmpv3_nvm_mpfs configuration, as the process is the same for this configuration.

 Note: Ensure that the SD card with the snmp.bib file and the Web pages is inserted as detailed in Configuring the Hardware.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 272

tcpip_tcp_client

This configuration demonstrates creating an Internet client that uses the MPLAB Harmony TCP API to create a TCP/IP connection to a web server.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP TCP Client
Demonstration.

Description

To build this project, you must open the tcpip_tcp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_tcp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_tcp_client.X <install-dir>/apps/tcpip/tcpip_tcp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP TCP Client on the PIC32MZ EF Starter Kit.

pic32mx_eth_sk2_enc28j60 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client on the PIC32 Ethernet Starter Kit II connected to
the 10 Mbps Ethernet PICtail Plus Daughter Board and Starter Kit I/O Expansion Board
using the ENC28J60 Driver Library.

pic32mx_eth_sk2_encx24j600 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client on the PIC32 Ethernet Starter Kit II connected to
the Fast 100Mbps Ethernet PICtail Plus Daughter Board and Starter Kit I/O Expansion
Board using the ENCx24J600 Driver Library.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II, Fast 100Mbps Ethernet PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

The Fast 100Mbps Ethernet PICtail Plus Daughter Board is connected to J4 on the Starter Kit I/O Expansion Board board by sliding the J2 PICtail
Plus (SPI) card edge into the top of the connector so that the white arrows on the two boards line up. The PICtail daughter board is inserted so that
it uses SPI1. Pins 26 and 47 on J11 need to be jumpered to allow the CS line to be controlled by the PIC32. ThePIC32 Ethernet Starter Kit II is
connected to J1 on the Starter Kit I/O Expansion board. Please refer to the following figure for more detail.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 273

PIC32 Ethernet Starter Kit II, Ethernet PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

The 10 Mbps Ethernet PICtail Plus Daughter Board is connected to J4 on the Starter Kit I/O Expansion Board board by sliding the J2 PICtail Plus
(SPI) card edge into the top of the connector. The PICtail daughter board is inserted so that it uses SPI1. Pins 26 and 47 on J11 need to be
jumpered to allow the CS line to be controlled by the PIC32. The PIC32 Ethernet Starter kit II is connected to J1 on the Starter Kit I/O Expansion
board.

Using the previous figures as a reference, replace the Fast 100 Mbps Ethernet PICtail Plus Daughter Board with the Ethernet PICtail Plus
Daughter Board for this configuration. The RJ45 of the PICtail should be towards the edge connectors of the Starter Kit I/O Expansion Board.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There is only one command available in the demonstration from the serial port:

openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

After that one command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port.

tcpip_tcp_client_server

This configuration demonstrates creating an Internet client and an Internet server that uses the MPLAB Harmony TCP API. This demonstration
shows how the TCP/IP loopback works, and is a combination of the TCP/IP Client and TCP/IP Server application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP TCP Client
Server Demonstration.

Description

To build this project, you must open the tcpip_tcp_client_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_tcp_client_server.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 274

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_tcp_client_server.X <install-dir>/apps/tcpip/tcpip_tcp_client_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client Server on the PIC32 Ethernet Starter Kit
II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP TCP Client Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There is only one command available in the demonstration from the serial port:

openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

After that one command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port.

tcpip_tcp_server

This configuration demonstrates creating an Internet server that uses the MPLAB Harmony TCP API to create a TCP/IP echo server on port 9764.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP TCP Server
Demonstration.

Description

To build this project, you must open the tcpip_tcp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_tcp_server.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 275

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_tcp_server.X <install-dir>/apps/tcpip/tcpip_tcp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP TCP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a TCP/IP connection on 9764. The demonstration will echo back
everything it receives along the connection.

A USB cable can be connected to the micro-B USB connector on the bottom of the starter kit in use. This will create a USB CDC device on the
USB bus. To communicate with the software, connect to this device though a standard terminal program and set the baud rate to 921,600 baud.

tcpip_udp_client

This configuration demonstrates creating an Internet client that uses the MPLAB Harmony UDP API to create a UDP/IP connection to a specified
port.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP UDP Client
Demonstration.

Description

To build this project, you must open the tcpip_udp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_udp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 276

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_udp_client.X <install-dir>/apps/tcpip/tcpip_udp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP UDP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP UDP Client on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There are three commands that can be used from the console:

• setudppacketoptions <hostname> <port> <message> - This command specifies where to send the UDP packet and what to have in
the message

• getudppacketoptions - This command displays the current options

• sendudppacket - This command sends a UDP packet

After the sendudppacket command is input, the demonstration will make a DNS query to look up the host name and send a UDP packet to that
host.

tcpip_udp_client_server

This configuration demonstrates creating an Internet client and an Internet server that uses the MPLAB Harmony UDP API. This demonstration
shows how the UDP/IP loopback works, and is a combination of the TCP/IP UDP Client and TCP/IP UDP Server application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP UDP Client
Server Demonstration.

Description

To build this project, you must open the tcpip_udp_client_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_udp_client_server.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 277

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_udp_client_server.X <install-dir>/apps/tcpip/tcpip_udp_client_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP UDP Client Server on the PIC32 Ethernet Starter Kit
II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP UDP Client Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There are three commands that can be used from the console:

• setudppacketoptions <hostname> <port> <message> - This command specifies where to send the UDP packet and what to have in
the message

• getudppacketoptions - This command displays the current options

• sendudppacket - This command sends a UDP packet

After the sendudppacket command is input, the demonstration will make a DNS query to look up the host name and send a UDP packet to that
host.

The UDP Client can be configured to send UDP data to the host, configured using the commands previously described.

The UDP server in this demonstration waits for the client connection and data at port 9760.

As the server receives the data from the external UDP client, the data is shared to the UDP Client to transmit back to the external UDP Server.

The data received over UDP by the server is looped backed using the UDP Client.

tcpip_udp_server

This configuration demonstrates creating an Internet server that uses the MPLAB Harmony UDP API to create a UDP/IP echo server on port 9760.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP UDP Server
Demonstration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 278

Description

To build this project, you must open the tcpip_udp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_udp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_udp_server.X <install-dir>/apps/tcpip/tcpip_udp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP UDP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP UDP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a UDP/IP connection on 9760. The demonstration will echo back
everything it receives along the connection.

A USB cable can be connected to the micro-B USB connector on the bottom of the starter kit in use. This will create a USB CDC device on the
USB bus. To communicate with the software, connect to this device though a standard terminal program and set the baud rate to 921,600 baud.

web_net_server_nvm_mpfs

Web Net Server Non-volatile Memory (NVM) MPFS TCP/IP demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP Web Net
Server Demonstration.

Description

To build this project, you must open the pic32_eth_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_net_server_nvm_mpfs.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 279

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/tcpip/web_net_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Configuring the MHC

Provides information on the MHC configuration for the demonstration.

Description

MHC Configuration:

1. From Harmony Framework Configuration > TCPIP Stack select HTTP NET Server.

2. Leave the default settings. The HTTP server listening port should be already set to 443 for encrypted connections, as shown in the following
figure; however, change this value to 80 if unencrypted connection is required:

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 280

3. Enable the MPLAB Harmony Networking Presentation Layer, as follows:

• Ensure that the TCP/IP stack is used as transport layer

• Select Support Stream Connections? (for TCP support)

• Select Support Server Connections? (for HTTPS support)

• Select Support Client Connections? (for encrypted SMTP support)

• Select Support Client Certificate? and Support Server Certificate? (as appropriate)

4. Enable Third Party Libraries > TCPIP > wolfSSL > Use wolfSSL. Ensure that the wolfSSL client and wolfSSL server are enabled depending on
your HTTP and SMTP selection, as shown in the following figure:

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 281

5. As shown in the following figure, select HTTP Net Server from Harmony Framework Configuration >TCPIP Stack. Ensure that the “Enable the
Processing SSI Commands” is enabled. Leave the default settings or expand the item and adjust to your application needs.

6. This version of the HTTP Net MHC configuration allows for the explicit selection of the dynamic variables processing. Ensure that this option is
also selected.

 Note: For demonstrations that use SSI, the file inclusion is now done in a standard way using .htm files.

For example, <!--#include virtual="header.htm">. These files may contain dynamic variables, other SSI commands, or
include other files. As shown in the following figure, ensure that when using the mpfs2.jar image generation tool that *.htm is
added using Advanced Settings > Do Not Compress.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 282

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Ethernet Web Net Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e), and then pressing Enter.

 Notes: 1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the
hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Demonstration Process

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board the starter kit in use to a USB port on the Development computer using the USB cable provided in
the kit.

3. Connect the RJ-45 Ethernet port on the starter kit board to a network hub or an Ethernet port on the development computer using the Ethernet
patch cord provided in the kit.

4. Build, download, and run the demonstration project on the target board.

5. A HTTP server is hosted by the demonstration application. Open_a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e), and then pressing Enter.

The demonstration application features following:

• Real-time Hardware Control and Dynamic Variables - On the Overview page the LEDs can be clicked to toggle the LEDs on the PIC32
Ethernet Starter Kit board. The buttons on the PIC32 Ethernet Starter Kit board can be pressed to toggle the Buttons on the web page. The
dynamic variables can be updated in real-time on the HTTP server.

 Note: The LED functionality portion of the demonstration is somewhat limited due to issue related to the functional multiplexing on GPIO
and Ethernet pins on different supported hardware.

• Form Processing - Input can be handled from the client by using GET and POST methods (this functionality controls the on-board LEDs and
will be operational only on Explorer 16 Development Board)

• Authentication - Shows an example of the commonly used restricted access feature

• Cookies - Shows an example of storing small text stings on the client side

• File Uploads - Shows an example of file upload using the POST method. The HTTP server can_accept_a user-defined MPFS/MPFS2 image
file for web pages.

• Send E-mail - Shows simple SMTP POST methods

• Dynamic DNS - Exercises Dynamic DNS capabilities

• Network Configuration - The MAC address, host name, and IP address of the PIC32 Ethernet Starter Kit board can be viewed in the Network

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 283

Configuration page and some configurations can be updated

• MPFS Upload - A new set of web pages can be uploaded to the web server using this feature, which is accessed through
http://mchpboard_e/mpfsupload.

 Notes: 1. The location of the MPFS image is fixed at the beginning of the Flash page (aligned to the page boundary). The size of the
MPFS upload is limited to 64K in the demonstration, which it can be expanded by changing NVM_MEDIA_SIZE to the
desired size (restricted based on the available size) and overriding the EBASE address using the following linker command:

• --defsym=_ebase_address=0x9D0xxxx (where, xxxx = 9D000000+NVM_MEDIA_SIZE)

2. The MPFS UPLOAD functionality has to be enabled when the project is built.

web_server_nvm_mpfs

This topic contains the Web Server Non-volatile Memory (NVM) MPFS TCP/IP demonstrations.

pic32_eth_web_server

This section describes the steps necessary to begin using the PIC32 Ethernet Web Server Demonstration Application.

Description

This demonstration exercises the HTTP web server running on PIC32 devices. The Non-Volatile Memory (NVM) Microchip Proprietary File System
(MPFS) web server demonstration has the web pages stored in internal Flash and are accessed through the MPFS API.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 284

http://mchpboard_e/mpfsupload

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP Web Server
Demonstration.

Description

To build this project, you must open the pic32_eth_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_nvm_mpfs.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/tcpip/web_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the web server hosted on internal Flash through Microchip proprietary file system
on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Ethernet Web Server demonstration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 285

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e), and then pressing Enter.

 Notes: 1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the
hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Demonstration Process

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board the starter kit in use to a USB port on the Development computer using the USB cable provided in
the kit.

3. Connect the RJ-45 Ethernet port on the starter kit board to a network hub or an Ethernet port on the development computer using the Ethernet
patch cord provided in the kit.

4. Build, download, and run the demonstration project on the target board.

5. A HTTP server is hosted by the demonstration application. Open_a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e), and then pressing Enter.

The demonstration application features following:

• Real-time Hardware Control and Dynamic Variables - On the Overview page the LEDs can be clicked to toggle the LEDs on the PIC32
Ethernet Starter Kit board. The buttons on the PIC32 Ethernet Starter Kit board can be pressed to toggle the Buttons on the web page. The
dynamic variables can be updated in real-time on the HTTP server.

 Note: The LED functionality portion of the demonstration is somewhat limited due to issue related to the functional multiplexing on GPIO
and Ethernet pins on different supported hardware.

• Form Processing - Input can be handled from the client by using GET and POST methods (this functionality controls the on-board LEDs and
will be operational only on Explorer 16 Development Board)

• Authentication - Shows an example of the commonly used restricted access feature

• Cookies - Shows an example of storing small text stings on the client side

• File Uploads - Shows an example of file upload using the POST method. The HTTP server can_accept_a user-defined MPFS/MPFS2 image
file for web pages.

• Send E-mail - Shows simple SMTP POST methods

• Dynamic DNS - Exercises Dynamic DNS capabilities

• Network Configuration - The MAC address, host name, and IP address of the PIC32 Ethernet Starter Kit board can be viewed in the Network
Configuration page and some configurations can be updated

• MPFS Upload - A new set of web pages can be uploaded to the web server using this feature, which is accessed through
http://mchpboard_e/mpfsupload.

 Notes: 1. The location of the MPFS image is fixed at the beginning of the Flash page (aligned to the page boundary). The size of the
MPFS upload is limited to 64K in the demonstration, which it can be expanded by changing NVM_MEDIA_SIZE to the
desired size (restricted based on the available size) and overriding the EBASE address using the following linker command:

• --defsym=_ebase_address=0x9D0xxxx (where, xxxx = 9D000000+NVM_MEDIA_SIZE)

2. The MPFS UPLOAD functionality has to be enabled when the project is built.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 286

http://mchpboard_e/mpfsupload

pic32_eth_wifi_web_server

This section describes the steps necessary to begin using the PIC32 Ethernet Wi-Fi Web Server Demonstration Application.

Description

The Wi-Fi Web Server demonstration (apps\tcpip\web_server_nvm_mpfs\firmware) exercises the HTTP web server running on PIC32
devices. The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) web server demonstration has the web pages stored in
internal Flash and are accessed through the MPFS API.

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

 Notes: 1. Due to a hardware limitation, the pic32mz_ec_sk+meb2 and pic32mz_ef_sk+meb2 configurations in the Ethernet and Wi-Fi
Web server demonstration (pic32_eth_wifi_web_server), exercises a Web server through Wi-Fi only. The work around is
explained in the Configuring the Hardware topic.

2. For the pic32mz_ec_sk+meb2 or pic32mz_ef_sk+meb2 configuration, either or both the MRF24WG Wi-Fi module and
MRF24WN Wi-Fi PICtail may be installed, but only one Wi-Fi module will be active depending on the MHC selection of the
MRF24W. If the MRF24WG Wi-Fi module is selected, it will not work if the MRF24WN Wi-Fi PICtail is installed.

3. For the Wi-Fi demonstration to function properly on the MEB II development board, the board should be powered with a
9V-15V DC power supply. Also on the PIC32MZ EC or PIC32MZ EF Starter Kit board, JP1 jumper should be Open (no
jumper).

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 287

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Ethernet
Wi-Fi Web Server Demonstration.

Description

To build this project, you must open the pic32_eth_wifi_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_nvm_mpfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_wifi_web_server.X <install-dir>/apps/tcpip/web_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk+ioexp pic32mx_eth_sk Demonstration running on the PIC32 Ethernet Starter Kit connected to the Starter
Kit I/O Expansion Board with the MRF24WG PICtail Daughter Board.

pic32mz_ec_sk+ioexp pic32mz_ec_sk Demonstration running on the PIC32MZ EC Starter Kit connected to the Starter
Kit I/O Expansion Board with the MRF24WG PICtail Daughter Board.

pic32mz_ec_sk+meb2 pic32mz_ec_sk+meb2 Demonstration running on the PIC32MZ EC Starter Kit connected to the
Multimedia Expansion Board II (MEB II) with the MRF24WG PICtail Daughter
Board.

pic32mx_eth_sk+ioexp+freertos pic32mx_eth_sk FreeRTOS version of the demonstration running on the PIC32 Ethernet Starter Kit
connected to the Starter Kit I/O Expansion Board with the MRF24WG PICtail
Daughter Board.

pic32mx_eth_sk+ioexp+11n+freertos pic32mx_eth_sk FreeRTOS version of the demonstration running on the PIC32 Ethernet Starter Kit
connected to the Starter Kit I/O Expansion Board with the MRF24WN PICtail
Daughter Board.

pic32mz_ec_sk+ioexp+freertos pic32mz_ec_sk FreeRTOS version of the demonstration running on the PIC32MZ EC Starter Kit
connected to the Starter Kit I/O Expansion Board with the MRF24WG PICtail
Daughter Board.

pic32mz_ec_sk+ioexp+11n+freertos pic32mz_ec_sk FreeRTOS version of the demonstration running on the PIC32MZ EC Starter Kit
connected to the Starter Kit I/O Expansion Board with the MRF24WN PICtail
Daughter Board.

pic32mz_ec_sk+meb2+freertos pic32mz_ec_sk+meb2 FreeRTOS version of the demonstration running on the PIC32MZ EC Starter Kit
connected to the Multimedia Expansion Board II (MEB II) with the MRF24WG
PICtail Daughter Board.

pic32mz_ec_sk+meb2+11n+freertos pic32mz_ec_sk+meb2 FreeRTOS version of the demonstration running on the PIC32MZ EC Starter Kit
connected to the Multimedia Expansion Board II (MEB II) with the MRF24WN
PICtail Daughter Board.

pic32mz_ef_sk+ioexp pic32mz_ef_sk Demonstration running on the PIC32MZ EF Starter Kit connected to the I/O
Expansion board with the MRF24WG PICtail Daughter Board.

pic32mz_ef_sk+ioexp+freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the I/O Expansion board with the MRF24WG PICtail Daughter Board

pic32mz_ef_sk+meb2 pic32mz_ef_sk+meb2 Demonstration running on the PIC32MZ EF Starter Kit connected to the MEB II
with the MRF24WG PICtail Daughter Board.

pic32mz_ef_sk+meb2+freertos pic32mz_ef_sk+meb2 FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the I/O Expansion board with the MRF24WG PICtail Daughter Board.

pic32mz_ef_sk+ioexp+11n+freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the I/O Expansion board with the MRF24WN PICtail Daughter Board.

pic32mz_ef_sk+meb2+11n+freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the MEB II with the MRF24WN PICtail Daughter Board.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 288

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit with PIC32MX795F512L, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

Configure the Starter Kit I/O Expansion Board jumper modifications, as described in the following figure:

On-board Jumper: J10/pin 56 to J10/pin 37 (white jumper cable)

PIC32 Ethernet Starter Kit with PIC32MX795F512L, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

Configure the Starter Kit I/O Expansion Board jumper modifications, as described in the following figure:

On-board Jumpers: J10/pin 12 to J11/pin 8 (red jumper cable0, and J10/pin 56 to J10/pin 37 (orange jumper cable).

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 289

MRF24WG0MA Wi-Fi module, 4.3" WQVGA PCAP Display Board, and Multimedia Expansion Board II (MEB II)

Configure the hardware, as shown in the following figures:

Front Configuration

Back Configuration

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 290

MRF24WG0MA Wi-Fi module, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, 4.3" WQVGA PCAP Display Board, and Multimedia
Expansion Board II (MEB II)

Configure the hardware, as shown in the following figures:

Front Configuration

Back Configuration

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 291

PIC32MZ EC Starter Kit with PIC32MZ2048ECH144, MRF24WG0MA Wi-Fi G module, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board,
4.3" WQVGA PCAP Display Board, and Multimedia Expansion Board II (MEB II)

 Note: The PIC32MZ EC Starter Kit, shown in the following figure, can also be interchanged with the PIC32MZ EF Starter Kit with
PIC32MZ2048EFM144.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 292

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit and Multimedia Expansion Board II (MEB II)

Due to a hardware limitation, the pic32mz_ec_sk+meb2 configuration in the Ethernet and Wi-Fi Web server demonstration, exercises a Web
server through Wi-Fi only. To enable Ethernet, use the following hardware work around and add the Ethernet interface in the project to run the
Web server using both Ethernet and Wi-Fi connections. Refer to the following figure for details:

1. Remove R16, which is located near the Wi-Fi module of the MEB II,

2. Add a jumper wire from pin 7 of U3 to the lower pad of C37 (VCC).

 Note: The MEB II development board should be powered with a 9V-15V DC power supply. The PIC32MZ EC or PIC32MZ EF Starter Kit
board JP1 should be Open (no jumper).

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 293

PIC32MZ EC Starter Kit with PIC32MX2048ECH144, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

Configure the hardware, as shown in the following figure:

PIC32MZ EC Starter Kit, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

 Note: The PIC32MZ EC Starter Kit, shown in the following figure, can also be interchanged with the PIC32MZ EF Starter Kit with
PIC32MZ2048EFM144.

Configure the hardware, as shown in the following figure:

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 294

On-board Jumper: J10/pin 12 to J11/pin 8 (white jumper cable)

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Ethernet Wi-Fi Web Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_w), and then pressing Enter.

This demonstration runs on two interfaces, Ethernet and Wi-Fi. A second web browser tab could be opened pointing to the other interface
(http://mchpboard_e) to have both interfaces running simultaneously.

 Notes: 1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the
hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

3. For the Wi-Fi demonstration to function properly on MEB2 development board, the board should be powered with a 9V-15V
DC power supply. Also on the PIC32MZ EC or PIC32MZ EF Starter Kit board, JP1 jumper should be Open (no jumper).

Please refer to the Demonstration Process in the Running the Demonstration section for the pic32_eth_web_server configuration, as the process
is the same for this configuration.

 Note: Refer to Wi-Fi Console Commands for information on the commands that enable control over the Wi-Fi settings.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 295

pic32_wifi_web_server

This section describes the steps necessary to begin using the PIC32 Wi-Fi Web Server Demonstration Application.

Description

The Wi-Fi Web Server demonstration (<install-dir>\apps\tcpip\web_server_nvm_mpfs\firmware) exercises the HTTP Web Server
running on PIC32 devices. The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) Web Server demonstration has the Web
pages stored in internal Flash and are accessed through the MPFS API.

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Wi-Fi Web
Server Demonstration.

Description

To build this project, you must open the pic32_wifi_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_nvm_mpfs.

MPLAB X IDE Project

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 296

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_wifi_web_server.X <install-dir>/apps/tcpip/web_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

chipkit_wf32 chipkit_wf32 Demonstration running on the chipKIT™ WF32™ Wi-Fi Development Board with
the PIC32MX695F512L and the MRF24WG PICtail module.

pic32mx795_pim+e16 pic32mx795_pim+e16 Demonstration running on the PIC32MX795F512L PIM and the Explorer 16
Development Board with the MRF24WG PICtail Daughter Board.

pic32mx795_pim+e16+freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the PIC32MX795F512L PIM
and the Explorer 16 Development Board with the MRF24WG PICtail Daughter
Board.

pic32mx795_pim+e16+11n+freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the PIC32MX795F512L PIM
on the Explorer 16 Development Board with the MRF24WN PICtail Daughter
Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

chipKIT™ WF32™ Wi-Fi Development Board with on-board MRF24WG PICtail and PIC32MX695F512L MCU

The console output uses the USB/Serial connector on the board at 115,200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow control.

The following figure shows the hardware configuration.

PIC32MX795F512L PIM with the Explorer 16 Development Board and MRF24WG PICtail Daughter Board

• Connect the MRF24WG PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 297

PIC32MX795F512L PIM with the Explorer 16 Development Board and MRF24WN PICtail Daughter Board

• Connect the MRF24WN PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Wi-Fi Web Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_w), and then pressing Enter.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 298

 Notes: 1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the
hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Please refer to the Demonstration Process in the Running the Demonstration section for the pic32_eth_web_server configuration, as the process
is the same for this configuration.

 Note: Refer to Wi-Fi Console Commands for information on the commands that enable control over the Wi-Fi settings.

web_server_sdcard_fatfs

Web Server SD Card FAT File System TCP/IP demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Web Server SD
Card FAT FS Demonstration.

Description

To build this project, you must open the pic32_eth_web_server.X project in MPLAB X IDE, and then select the desired configuration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 299

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_sdcard_fatfs.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/tcpip/web_server_sdcard_fatfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk2_sd_mmc_pictail pic32mx_eth_sk2 Demonstrates the Web Server hosted on a microSD card through the FAT file
system on the PIC32 Ethernet Starter Kit II and the PICtail Daughter Board for SD
and MMC.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates the Web Server hosted on a microSD card through the FAT file
system on the PIC32MZ EF Starter Kit and the MEB II combination.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit with the Starter Kit I/O Expansion Board and PICtail Daughter Board for SD and MMC

• Plug the PIC32 Ethernet Starter Kit into application board connector (J1) on the Starter Kit I/O Expansion Board

• Plug the PICtail Daughter Board for SD and MMC into the PICtail connector (J4) on the Starter Kit I/O Expansion Board

• Make sure a SD card is formatted and loaded with the web pages provided within the
apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages2_sdcard folder

• Insert the SD card with the web pages into the SD card slot (J1) on the PICtail Daughter Board for SD and MMC into the PICtail connector

• Connect a USB cable to the micro-B USB connector on the bottom of the PIC32 Ethernet Starter Kit. When the demonstration runs, it will
create a USB CDC device on the USB bus. Connect to this device though a standard terminal program, and set the baud rate to 921,600 baud.
You can observe the IP address details and query the stack using the console interface.

PIC32 Ethernet Starter Kit II with the Starter Kit I/O Expansion Board and PICtail Daughter Board for SD and MMC

• Plug the PIC32 Ethernet Starter Kit II into application board connector (J1) on the Starter Kit I/O Expansion Board

• Plug the PICtail Daughter Board for SD and MMC into the PICtail connector (J4) on the Starter Kit I/O Expansion Board

• Make sure a SD card is formatted and loaded with the web pages provided within the
apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages2_sdcard folder

• Insert the SD card with the web pages into the SD card slot (J1) on the PICtail Daughter Board for SD and MMC into the PICtail connector

• Connect a USB cable to the micro-B USB connector on the bottom of the PIC32 Ethernet Starter Kit II. When the demonstration runs, it will
create a USB CDC device on the USB bus. Connect to this device though a standard terminal program, and set the baud rate to 921,600 baud.
You can observe the IP address details and query the stack using the console interface.

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit with the MEB II

• Plug the desired starter kit into the application board connector on the MEB II

• Ensure a microSD card is formatted and loaded with the web pages provided within the
apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages2_sdcard directory.

• Insert the microSD card with the web pages into the microSD card slot (J8) on the MEB II

• Connect a USB cable to the micro-B USB connector on the bottom of the PIC32MZ EC Starter Kit

• When the demonstration runs, it will create a USB CDC device on the USB bus. Connect to this device though a standard terminal program,
and set the baud rate to 921,600 baud. You can observe the IP address details and query the stack using the console interface.

Running the Demonstration

This section provides instructions on how to build and run the TCP/IP SD Card FAT FS Web Server demonstration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 300

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e), and then pressing Enter.

 Notes: 1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the
hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Please refer to the Demonstration Process in the Running the Demonstration section for the pic32_eth_web_server configuration of the
web_server_nvm_mpfs demonstration, as the process is the same for this configuration.

wifi_easy_configuration

This topic contains the Wi-Fi Easy Configuration TCP/IP demonstration.

Description

This demonstration shows how to connect a MRF24WG or MRF24WN Wi-Fi device with no keyboard or display to a wireless network.

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

 Notes: 1. For the pic32mz_ec_sk+meb2 or pic32mz_ef_sk+meb2 configuration, either or both the MRF24WG Wi-Fi module and
MRF24WN Wi-Fi PICtail may be installed, but only one Wi-Fi module will be active depending on the MHC selection of the
MRF24W. If the MRF24WG Wi-Fi module is selected, it will not work if the MRF24WN Wi-Fi PICtail is installed.

2. For the Wi-Fi demonstration to function properly on the MEB II development board, the board should be powered with a
9V-15V DC power supply. Also on the PIC32MZ EC or PIC32MZ EF Starter Kit board, JP1 jumper should be Open (no
jumper).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Wi-Fi Easy
Configuration Demonstration.

Description

To build this project, you must open the wifi_easy_configuration.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wifi_easy_configuration.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_easy_configuration.X <install-dir>/apps/tcpip/wifi_easy_configuration/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk_ioexp pic32mx_eth_sk Demonstration running on the PIC32MZ EC Starter Kit using the I/O Expansion
Board with the MRF24WG PICtail Daughter Board.

pic32mx_eth_sk_ioexp+freertos pic32mx_eth_sk FreeRTOS version of the demonstration running on the PIC32MZ EC Starter Kit
connected to the I/O Expansion Board with the MRF24WG PICtail Daughter
Board.

pic32mx795_pim+e16 pic32mx795_pim+e16 Demonstration running on the PIC32MX795F512L PIM on the Explorer 16
Development Board with the MRF24WG PICtail Daughter Board.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 301

pic32mx795_pim+e16+freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the PIC32MX795F512L PIM
on the Explorer 16 Development Board with the MRF24WG PICtail Daughter
Board.

pic32mz_ec_sk_ioexp pic32mz_ec_sk Demonstration running on the PIC32MZ EC Starter Kit connected to the I/O
Expansion board with the MRF24WG PICtail Daughter Board.

pic32mz_ec_sk_ioexp+freertos pic32mz_ec_sk FreeRTOS version of the demonstration running on the PIC32MZ EC Starter Kit
connected to the I/O Expansion board with the MRF24WG PICtail Daughter
Board.

pic32mz_ec_sk+meb2 pic32mz_ec_sk+meb2 Demonstration running on the PIC32MZ EC Starter Kit connected to the MEB II
with the MRF24WG PICtail Daughter Board.

pic32mz_ec_sk+meb2+freertos pic32mz_ec_sk+meb2 FreeRTOS version of the demonstration running on the PIC32MZ EC Starter Kit
connected to the MEB II with the MRF24WG PICtail Daughter Board.

pic32mx795_pim+e16+11n+freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the PIC32MX795F512L PIM
on the Explorer 16 Development Board with the MRF24WN PICtail Daughter
Board.

pic32mx_eth_sk_ioexp+11n+freertos pic32mx_eth_sk Demonstration running FreeRTOS on the PIC32 Ethernet Starter Kit connected to
the Starter Kit I/O Expansion Board with the MRF24WN PICtail Daughter Board.

pic32mz_ec_sk_ioexp+11n+freertos pic32mz_ec_sk Demonstration running FreeRTOS on the PIC32MZ EC Starter Kit connected to
the Starter Kit I/O Expansion Board with the MRF24WN PICtail Daughter Board.

pic32mz_ec_sk_meb2+11n+freertos pic32mz_ec_sk+meb2 Demonstration running FreeRTOS on the PIC32MZ EC Starter Kit and the MEB II.

pic32mz_ef_sk+ioexp pic32mz_ef_sk Demonstration running on the PIC32MZ EF Starter Kit connected to the I/O
Expansion board with the MRF24WG PICtail Daughter Board

pic32mz_ef_sk+ioexp+freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the I/O Expansion board with the MRF24WG PICtail Daughter
Board.

pic32mz_ef_sk+meb2 pic32mz_ef_sk+meb2 Demonstration running on the PIC32MZ EF Starter Kit connected to the MEB II
with the MRF24WG PICtail Daughter Board.

pic32mz_ef_sk+meb2+freertos pic32mz_ef_sk+meb2 FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the I/O Expansion board with the MRF24WG PICtail Daughter
Board.

pic32mz_ef_sk+ioexp+11n+freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the I/O Expansion board with the MRF24WN PICtail Daughter
Board.

pic32mz_ef_sk+meb2+11n+freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF Starter Kit
connected to the MEB II with the MRF24WN PICtail Daughter Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM with the Explorer 16 Development Board and MRF24WG PICtail Daughter Board

• Connect the MRF24WG PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 302

PIC32MX795F512L PIM with the Explorer 16 Development Board and MRF24WN PICtail Daughter Board

• Connect the MRF24WN PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

PIC32 Ethernet Starter Kit, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

Configure the Starter Kit I/O Expansion Board jumper modifications, as described in the following figure:

On-board Jumper: J10/pin 56 to J10/pin 37 (white jumper cable)

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 303

PIC32 Ethernet Starter Kit, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

Configure the Starter Kit I/O Expansion Board jumper modifications, as described in the following figure:

On-board Jumpers: J10/pin 12 to J11/pin 8 (red jumper cable), and J10/pin 56 to J10/pin 37 (orange jumper cable).

MRF24WG0MA Wi-Fi G module, 4.3" WQVGA PCAP Display Board, and Multimedia Expansion Board II (MEB II)

Configure the hardware, as shown in the following figures:

Front Configuration

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 304

Back Configuration

MRF24WF0MA Wi-Fi module, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, 4.3" PCAP Display Board, and Multimedia Expansion
Board II (MEB II)

Configure the hardware, as shown in the following figures:

Front Configuration

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 305

Back Configuration

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 306

PIC32MZ EC Starter Kit with PIC32MZ2048ECH144, MRF24WG0MA Wi-Fi module, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board,
4.3" WQVGA PCAP Display Board, and Multimedia Expansion Board II (MEB II)

 Note: The PIC32MZ EC Starter Kit, shown in the following figure, can also be interchanged with the PIC32MZ EF Starter Kit with
PIC32MZ2048EFM144.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 307

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit and MEB II

Due to a hardware limitation, the pic32mz_ec_sk+meb2 configuration in the Ethernet and Wi-Fi Web server demonstration, exercises a Web
server through Wi-Fi only. To enable Ethernet, use the following hardware work around and add the Ethernet interface in the project to run the
Web server using both Ethernet and Wi-Fi connections. Refer to the following figure for details:

1. Remove R16, which is located near the Wi-Fi module of the MEB II.

2. Add a jumper wire from pin 7 of U3 to the lower pad of C37 (VCC).

 Note: The MEB II development board should be powered with a 9V-15V DC power supply. The PIC32MZ EC or PIC32MZ EF Starter Kit
board JP1 should be Open (no jumper).

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 308

PIC32MZ EC Starter Kit with PIC32MZ2048ECH144, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

 Note: The PIC32MZ EC Starter Kit, shown in the following figure, can also be interchanged with the PIC32MZ EF Starter Kit with
PIC32MZ2048EFM144.

Configure the hardware, as shown in the following figure:

PIC32MZ EC Starter Kit with PIC32MZ2048ECH144, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

 Note: The PIC32MZ EC Starter Kit, shown in the following figure, can also be interchanged with the PIC32MZ EF Starter Kit with
PIC32MZ2048EFM144.

Configure the hardware, as shown in the following figure:

On-board Jumper: J10/pin 12 to J11/pin 8 (white jumper cable)

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 309

Running the Demonstration

This section provides instructions on how to build and run the Wi-Fi Easy Configuration demonstration with the MRF24WG or MRF24WN Wi-Fi
module.

Description

 Notes: 1. Refer to Wi-Fi Console Commands for information on the commands that enable control over the Wi-Fi settings.

2. For the Wi-Fi demonstration to function properly on MEB2 development board, the board should be powered with a 9V-15V
DC power supply. Also on the PIC32MZ EC or PIC32MZ EF Starter Kit board, JP1 jumper should be Open (no jumper).

The demonstration does the following:

• Scans the area and stores the list of Access Points in memory

• Switches to SoftAP mode allowing another device to_connect_to it (smartphone or personal computer)

• After a smartphone or personal computer wirelessly connects to the MRF24WG or MRF24WN, a web page is served to it

• That web page will display the Access Point (AP) list (from step 1)

• From the smartphone you can select the desired AP and command the MRF24WG or MRF24WN to_connect_to that AP

• MRF24WG or MRF24WN will_connect_to the selected AP and store the configuration information in non-volatile memory

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board the starter kit to a USB port on the development computer using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

4. When the demonstration runs, it scans for local Access Points and outputs the results to the serial console. After the scan results, the
MRF24WG or MRF24WN goes into SoftAP mode (where it behaves like an Access Point) and outputs the following to the serial console
(MRF24WG output is shown):
==========================
*** Wi-Fi EZConfig Demo ***
==========================
Device: MRF24WG (0x3108)
Domain: FCC
MAC: 00 1E C0 10 20 32
SSID: MCHPSoftAP
Network Type: SoftAP
Scan Type: Passive Scan
Channel List: 6
Beacon Timeout: 40
Retry Count: 3
Security: Open
Security Key:
Tx Mode: 802.11bg mixed
Power Save: disabled
IP Config: dynamic

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 310

Start Wi-Fi Connect . . .
MRF24W IP Address: 0.0.0.0
MRF24W IP Address: 192.168.1.25
MRF24W Event: Connection Successful
 Connected BSSID : 00:00:00:00:00:00
 Channel: 0

5. From a smartphone or personal computer,_connect_to the ’MCHPSoftAP’ network, which is the SoftAP network started by the demonstration.
Then, bring up a web page by entering the IP address of the SoftAP network into the smartphone browser. This is the IP address displayed in step
4 (e.g., 192.168.1.25). When the web page is displayed:

a. Select Network Configuration, and then Scan for Wireless Networks. The MRF24WG or MRF24WN will display the list of wireless networks
on the web page.

b. Select the desired AP to which the MRF24WG or MRF24WN should_connect_by clicking the name of the AP.

c. The MRF24WG or MRF24WN will then_connect_to that Access Point and write the configuration information to non-volatile memory.

d. The console output will show the new connection taking place

6. If you rerun the demonstration, it will automatically_connect_the selected AP as the configuration data stored in non-volatile memory will be
used to reconnect to the desired AP.

7. To reset and run the demonstration from the beginning, erase the stored configuration by bringing up the demonstration, and at the command
line type iw_eraseconf.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 311

wifi_g_demo

Wi-Fi G Demo Board TCP/IP demonstration.

Description

This demonstration showcases a browser-based device configuration application to configure and program an embedded Wi-Fi device that does
not have a natural keyboard and screen. By using the internal Web server that accompanies the Microchip TCP/IP Stack, end-users can use their
browser as a conduit for programming the device with the correct network parameters.

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Wi-Fi G
Demonstration.

Description

To build this project, you must open the wifi_g_demo.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wifi_g_demo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_g_demo.X <install-dir>/apps/tcpip/wifi_g_demo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

wifi_g_demo wifi_g_db Demonstration running on the Wi-Fi G Demo Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Wi-Fi G Demo Board with the PICkit™ 3 In-Circuit Debugger

No hardware related configuration or jumper setting changes are necessary.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 312

Running the Demonstration

This section provides instructions on how to build and run the Wi-Fi G demonstration.

Description

This demonstration showcases a browser-based device configuration application to configure and program an embedded Wi-Fi device that does
not have a natural keyboard and screen. By using the internal Web server that accompanies the Microchip TCP/IP Stack, end-users can use their
browser as a conduit for programming the device with the correct network parameters.

For a wireless network, an end-user would need to have knowledge of at least the following information:

• SSID

• Security Type (None, WEP, WPA-PSK, WPA2-PSK, WPA-PSK AUTO)

• Security PSK Key or Passphrase

The application also has the ability to scan for all networks in the vicinity of the device, and display them to the user. The user will also be given
additional information about the network, such as whether security is enabled, or how far away the other network is. Users are also given the
opportunity to enter all the network information manually, which is required when trying to connect to a network with a hidden SSID.

Running the Demonstration

This demonstration can be loaded and run on the Wi-Fi G Demo Board. In addition, a PICkit 3 In-Circuit Debugger is required for use with MPLAB
X IDE to program the Wi-Fi G Demo Board.

Use the following procedure to run the demonstration:

1. Load the wifi_g_demo demonstration project into MPLAB X IDE.

2. Select Run to build and program the Wi-Fi G Demo Board with the demo Hex image.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 313

 Note: Refer to the "Wi-Fi G Demo Board User's Guide" (DS50002147) for additional information on using and programming the Wi-Fi
Demo Board.

wifi_wolfssl_tcp_client

This configuration provides a Wi-Fi wolfSSL TCP/IP Client demonstration.

Description

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 314

http://ww1.microchip.com/downloads/en/DeviceDoc/50002147A.pdf

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP Ethernet
Wi-Fi wolfSSL TCP Client Demonstration.

Description

To build this project, you must open the wifi_wolfssl_tcp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wifi_wolfssl_tcp_client.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_wolfssl_tcp_client.X <install-dir>/apps/tcpip/wifi_wolfssl_tcp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_eth_sk+ioexp pic32mx_eth_sk Wi-Fi wolfSSL TCP Client demonstration on the PIC32 Ethernet Starter Kit connected to the
Starter Kit I/O Expansion Board with the MRF24WG PICtail Daughter Board.

pic32mz_ec_sk+ioexp pic32mz_ec_sk Wi-Fi wolfSSL TCP Client demonstration on the PIC32MZ EC Starter Kit connected to the
Starter Kit I/O Expansion Board with the MRF24WG PICtail Daughter Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

Configure the Starter Kit I/O Expansion Board jumper modifications, as described in the following figure:

On-board Jumper: J10/pin 56 to J10/pin 37 (white jumper cable)

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 315

PIC32MZ Embedded Connectivity (EC) Starter Kit, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

For the PIC32MZ EC Starter Kit, the on-board jumper, J10/pin 56 to J10/pin 37 (white jumper cable) is not required. Configure the hardware as
shown in the following figure:

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

This demonstration can be executed via Ethernet or Wi-Fi.

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There are three commands available in the demonstration from the serial port:

• openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

• ipmode <mode> - The <mode> argument selects the IP version. 0 - Any IP version, 4 - IPv4 only, 6 - IPv6 only

• stats - Output the statistics of the previous openurl run. Statistics such as how long each phase of the connection took, and how many bytes
were transferred.

After the openurl command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port. If a https URL is specified, the connection will first undergo SSL negotiation
before sending the HTTP PUT command.

If ipmode is set to '0' (Any), the demonstration will favor IPv6 over IPv4, which means it will look for the IPv6 address before the IPv4 address.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 316

wifi_wolfssl_tcp_server

This configuration provides a Wi-Fi wolfSSL TCP/IP Server demonstration.

Description

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP Ethernet
Wi-Fi wolfSSL TCP Server Demonstration.

Description

To build this project, you must open the wifi_wolfssl_tcp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wifi_wolfssl_tcp_server.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_wolfssl_tcp_server.X <install-dir>/apps/tcpip/wifi_wolfssl_tcp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 317

Project
Configuration Name

BSP Used Description

pic32mx_eth_sk+ioexp pic32mx_eth_sk Wi-Fi wolfSSL TCP Server demonstration on the PIC32 Ethernet Starter Kit connected to the
Starter Kit I/O Expansion Boardwith the MRF24WG PICtail Daughter Board.

pic32mz_ec_sk+ioexp pic32mz_ec_sk Wi-Fi wolfSSL TCP Server demonstration on the PIC32MZ EC Starter Kit connected to the
Starter Kit I/O Expansion Board with the MRF24WG PICtail Daughter Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit with PIC32MX795F512L, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

Configure the Starter Kit I/O Expansion Board jumper modifications, as described in the following figure:

On-board Jumper: J10/pin 56 to J10/pin 37 (white jumper cable)

PIC32MZ EC Starter Kit with PIC32MZ2048ECH144, MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

For the PIC32MZ EC Starter Kit, the on-board jumper, J10/pin 56 to J10/pin 37 (white jumper cable) is not required. Configure the hardware as
shown in the following figure:

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 318

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

This demonstration can be executed via Ethernet or Wi-Fi.

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There are three commands available in the demonstration from the serial port:

• openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

• ipmode <mode> - The <mode> argument selects the IP version. 0 - Any IP version, 4 - IPv4 only, 6 - IPv6 only

• stats - Output the statistics of the previous openurl run. Statistics such as how long each phase of the connection took, and how many bytes
were transferred.

After the openurl command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port. If a https URL is specified, the connection will first undergo SSL negotiation
before sending the HTTP PUT command.

If ipmode is set to '0' (Any), the demonstration will favor IPv6 over IPv4, which means it will look for the IPv6 address before the IPv4 address.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 319

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 320

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 321

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 322

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 323

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 324

wolfssl_tcp_client

wolfSSL TCP Client demonstration.

Description

This configuration demonstrates creating an Internet client that uses the MPLAB Harmony TCP API to create a TCP/IP connection to a Web
server. The connection can either be clear text, or it can use SSL to encrypt the connection with wolfSSL. The demonstration can use either IPv4
or IPv6.

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 325

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the wolfSSL TCP Client
Demonstration.

Description

To build this project, you must open the wolfssl_tcp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wolfssl_tcp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wolfssl_tcp_client.X <install-dir>/apps/tcpip/wolfssl_tcp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the wolfSSL TCP Client on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the wolfSSL TCP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the wolfSSL TCP Client on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the wolfSSL TCP Client on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

To use this demonstration, a USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the
demonstration runs, it will create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device
though a standard terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

There are three commands available in the demonstration from the serial port:

• openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

• ipmode <mode> - The <mode> argument selects the IP version. 0 - Any IP version, 4 - IPv4 only, 6 - IPv6 only

• stats - Output the statistics of the previous openurl run. Statistics such as how long each phase of the connection took, and how many
bytes were transferred.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 326

After the openurl command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port. If a https URL is specified, the connection will first undergo SSL negotiation
before sending the HTTP PUT command.

If ipmode is set to '0' (Any), the demonstration will favor IPv6 over IPv4, which means it will look for the IPv6 address before the IPv4 address.

wolfssl_tcp_server

wolfSSL TCP Server demonstration.

Description

This configuration demonstrates creating a simple Internet Web server, that operates with clear text (TCP Port 80), and with encrypted text (TCP
Port 443). If IPv6 is enabled than the demonstration also serves both types of connections on IPv6. The Web server only serves one page with the
text 'Nothing Here' to all Web clients.

Wi-Fi Demonstration Matrix

Refer to Wi-Fi Demonstration Configuration Matrix for additional information.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the wolfSSL TCP Client
Demonstration.

Description

To build this project, you must open the wolfssl_tcp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wolfssl_tcp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wolfssl_tcp_server.X <install-dir>/apps/tcpip/wolfssl_tcp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the wolfSSL TCP Server on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the wolfSSL TCP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the wolfSSL TCP Server on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the wolfSSL TCP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 327

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is ready to serve Web pages. Use any Web browser (i.e., Chrome, Internet Explorer,
Firefox, etc.) to connect to the Web server with either http:// or https://.

A USB cable can be connected to the micro-B USB connector on the bottom of the starter kit in use. This will create a USB CDC device on the
USB bus. To communicate with the software, connect to this device though a standard terminal program and set the baud rate to 921,600 baud.

Applications Help TCP/IP Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 328

Test Applications

Test applications demonstrate the use of the MPLAB Harmony Test Harness and predefined test libraries.

Introduction

Test Applications Help

Description

This help file contains instructions and associated information about MPLAB Harmony Test applications, which are contained in the MPLAB
Harmony distribution.

Applications

Provides instructions on how to run the Test applications.

test_sample

The MPLAB Harmony Test Sample demonstrates the use of the Test Harness to validate a sample library module.

Description

The Test Harness controls initialization and execution of each test, as well as the library it tests. The Test Harness accumulates results given to it
by the test and determines an over-all pass or fail result. If debug system output is supported and configured, which, in this demonstration is not,
these results will be displayed textually on the terminal display in use. Otherwise, as demonstrated in this application, a debugger must be used to
determine the results.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Test Sample
application.

Description

To build this project, you must open the test_sample.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tests/test_sample.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

test_sample.X <install-dir>/apps/tests/test_sample/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP
Used

Description

e16mx795f512_freertos_interrupt None. This configuration runs on the Explorer 16 Development Board with the PIC32MX795F512L PIM. It
executes the included test in a FreeRTOS thread and runs the associated library in interrupt-driven
mode.

e16mx795f512_freertos_polled None. This configuration runs on the Explorer 16 Development Board with the PIC32MX795F512L PIM. It
executes the included test in a FreeRTOS thread and runs the associated library in a polled mode in
a different thread.

e16mx795f512_interrupt None. This configuration runs on the Explorer 16 Development Board with the PIC32MX795F512L PIM. It
executes the included test in a bare-metal (no-RTOS) "super" loop environment and runs the
associated library in an interrupt-driven mode.

e16mx795f512_polled None. This configuration runs on the Explorer 16 Development Board with the PIC32MX795F512L PIM. It
executes the included test and the library under test in a bare-metal (no-RTOS) "super" loop
environment.

Applications Help Test Applications Applications

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 329

pic32mz_ec_sk_freertos_polled None. This configuration runs on the PIC32MZ EC Starter Kit. It executes the included test in a FreeRTOS
thread and runs the associated library in a polled mode in a different thread.

pic32mz_ec_sk_freertos_interrupt None. This configuration runs on the PIC32MZ EC Starter Kit. It executes the included test in a bare-metal
(no-RTOS) "super" loop environment and runs the associated library in an interrupt-driven mode.

pic32mz_ec_sk_interrupt None. This configuration runs on the PIC32MZ EC Starter Kit. It executes the included test in a bare-metal
(no-RTOS) "super" loop environment and runs the associated library in an interrupt-driven mode.

pic32mz_ec_sk_polled None. This configuration runs on the PIC32MZ EC Starter Kit. It executes the included test and the library
under test in a bare-metal (no-RTOS) "super" loop environment.

pic32mz_ef_sk_freertos_polled None. This configuration runs on the PIC32MZ EF Starter Kit. It executes the included test in a FreeRTOS
thread and runs the associated library in a polled mode in a different thread.

pic32mz_ef_sk_freertos_interrupt None. This configuration runs on the PIC32MZ EF Starter Kit. It executes the included test in a bare-metal
(no-RTOS) "super" loop environment and runs the associated library in an interrupt-driven mode.

pic32mz_ef_sk_interrupt None. This configuration runs on the PIC32MZ EF Starter Kit. It executes the included test and the library
under test in a bare-metal (no-RTOS) "super" loop environment.

pic32mz_ef_sk_polled None. This configuration runs on the PIC32MZ EF Starter Kit. It executes the included test and the library
under test in a bare-metal (no-RTOS) "super" loop environment.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board with the PIC32MX795F512L PIM

Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position.

No hardware related configuration or jumper setting changes are necessary for the PIM itself.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Application

Provides instructions on how to build and run the Test Sample application.

Description

To run the Test Sample application, select the desired configuration, build the application in Debug mode, program it to the associated hardware,
and execute it under control of a debugger.

As the demonstration runs, the Test Harness Library accumulates results provided to it by the test. If System Debug output were supported and
configured, the results would be displayed textually on the debug terminal display in use. However, depending upon the testing needs or the
hardware used, it may not be possible to support a debug output method and none is supported in any of the configurations included in this
demonstration. Therefore, it is necessary to utilize the debugger to analyze the TEST_HARNESS_DATA structure to determine the results of the
test. When all tests are complete (or when a failure occurs), the Test Harness will execute a hard-coded breakpoint and stop. At that time, you may
use the debugger to obtain the results.

The following members of this structure give the overall results once the test harness enters its Idle state:

• testsCount - This is the total number of tests executed

• testsPassed - This is the number of tests that reported no sub-test failures, resulting in an overall passing result

• result - This is the final result, which is true (1) if all sub-tests in all tests passed; otherwise, it is false (0).

Applications Help Test Applications Applications

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 330

USB Demonstrations

This section provides descriptions of the USB demonstrations.

Introduction

USB Library Demonstration Applications Help

Description

This distribution package contains a variety of USB-related firmware projects that demonstrate the capabilities of the MPLAB Harmony USB stack.
This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To know more about the MPLAB Harmony USB stack and configuring the USB stack and the APIs provided by the USB stack, refer to the USB
Library documentation.

Program, Data Memory, and Stack Component Memory

Refer to USB Device Stack Demonstration Application Program and Data Memory Requirements and USB Device Stack Component Memory
Requirements for important memory information.

Pen Drive Tests

Refer to USB MSD Host USB Pen Drive Tests for information on the tests conducted on USB Flash devices.

USB Device Stack Demonstration Application Program and Data Memory Requirements

Provides information on program and data memory requirements, as well as pen drive test specifications.

Description

Program Memory and Data Memory Requirements with -O1 Optimization

The following table shows the program memory and data memory requirements of the USB Device Stack demonstration applications. All size
figures are in bytes. Demonstration applications were compiled with the MPLAB XC32 C/C++ Compiler, v1.40, with –O1 optimization.

Applications Help USB Demonstrations USB Device Stack Demonstration Application

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 331

 Note: The msd_basic, cdc_msd_basic, and the hid_msd_basic demonstrations use the PIC32 program Flash memory as the MSD
storage media. The difference in Data Memory requirements between the PIC32MX and PIC32MZ microcontrollers for these
demonstration examples, is due to an application demonstration buffer whose size is equal to the erase page size of the PIC32
microcontroller. On the PIC32MX795F512L, this size is 4096 bytes. On the PIC32MZ2048ECH144, the erase page size is 16 KB.

Program Memory and Data Memory Requirements with -Os Optimization

The following table shows the program memory and data memory requirements of the USB Device Stack demonstration applications. All size
figures are in bytes. Demonstration applications were compiled with the MPLAB XC32 C/C++ Compiler, v1.40, with –Os optimization.

USB Device Stack Component Memory Requirements

Provides memory requirements.

Description

The following table shows the Program and Data Memory requirements for individual components in the MPLAB Harmony USB Device Stack.

Device Stack Component Program
Memory

Data Memory

Device Layer 5688 184

CDC Function Driver 2420 64 + (36 * Queue Size)

MSD Function Driver 5352 217

HID Function Driver 2376 40 + (36 * Queue Size)

Vendor 912 8 + (36 * Queue Size)

PIC32MX USB Driver 5636 144 + (32 * Number of Endpoints)

PIC32MZ USB Driver 10244 192 + (32 * Number of Endpoints)

 Notes: 1. Memory requirements (in bytes) for a single instance.

2. Size measured for USB Device Stack Components in MPLAB Harmony.

3. Data Memory does not include function call stack memory size.

Applications Help USB Demonstrations USB MSD Host USB Pen Drive Tests

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 332

USB MSD Host USB Pen Drive Tests

Provides pen drive test specifications.

Description

USB MSD Host USB Pen Drive Tests

The following table lists the commercially available USB pen drives, which have been tested to successfully enumerate with the MSD Host Driver
in the MPLAB Harmony USB Host. Note that if the USB pen drive you are using in not included in the table, this indicates that this USB pen drive
has not been tested with the MSD Host Driver. However, the USB pen drive could still potentially work with MSD Host Driver. Some USB pen
drives in this table did not have their manufacturer or model data available. The USB Pen drives were tested with the msd_basic USB Host
demonstration in the latest version of the MPLAB Harmony USB Host Stack.

VID PID Manufacturer Model/Drive Capacity

0x1B1C 0x1A0F Corsair Components Flash Voyager Go 8 GB

0x03F0 0x0AB7 Hewlett-Packard 64 GB

0xABCD 0x1234 Microchip Technology Inc. 4 GB

0x125F 0xCB10 Adata Dashdrive UV100 8 GB

0x8644 0x8003 Verico T Series 16 GB

0x8564 0x1000 Transcend USB 3.0 32 GB

0x0951 0x16A7 Dell Kingston Technology 16 GB

0x0718 0x0704 Imation 16 GB Pen Drive

0x048D 0x1168 iBall Jaldi 16 GB Pen Drive

0x058F 0x6366 Alcor Micro AXL 32 GB

0x154B 0x005B PNY Cube 16 GB

0x0930 0x6544 Toshiba Hatabusa Pen Drive 8 GB

0x058F 0x6387 Alcor ZipMem 16 GB

0x090C 0x1000 Silicon Motion Inc. Axl 8GB

0x18A5 0x0245 Verbatim Store N Go Audio USB 8 GB

0x05DC 0xC75C Lexar USB Pen Drive 8 GB

0x1005 0xb113 Apacer 8 GB (AH233)

0x054C 0x06B0 Sony 8 GB

0x054C 0x0862 Sony Micro Vault USM-V 8 GB

0x0781 0x557c SanDisk 8 GB

0x1E4E 0x3257 Etron iBall 16 GB

0x1EC9 0x0101 Moserbaer Swivel 16 GB Pen Drive

0x0BDA 0x0109 SanDisk Standard A and Mini-B connector 16 GB

0x1908 0x1320 ZBEL Wrist Band Flash Drive 4 GB

0x0951 0x1665 Kingston Data Traveler SE9 16 GB

USB HID Host Keyboard and Mouse Tests

Description

The following table lists the commercially available USB keyboards and mouse, which have been tested to successfully enumerate with the HID
Host Driver in the MPLAB Harmony USB Host. Note that if the USB HID device you are using in not included in the table, this indicates that this
USB HID device has not been tested, but could still potentially work with the HID Host Driver.

Applications Help USB Demonstrations USB HID Host Keyboard and Mouse Tests

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 333

Demonstration Application Configurations

This topic provides information on the available USB demonstration project configurations.

Description

The available USB Demonstration application MPLAB X IDE projects feature support for multiple configurations. Selecting these configurations
allow for the demonstration projects to run across different PIC32 microcontrollers and development boards. The following project configurations
are available:

Configuration name Description

pic32mx_usb_sk2_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 USB Starter Kit II
development board, with the PIC32MX795F512L microcontroller. The USB Stack will be configured for Interrupt
mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mx_usb_sk2_poll_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 USB Starter Kit II
development board, with the PIC32MX795F512L microcontroller. The USB Stack will be configured for Polled
mode operation and the USB driver will be configured for Dynamic operation mode.

pic32mx_usb_sk3_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 USB Starter Kit III
development board, with the PIC32MX470F512L microcontroller. The USB Stack will be configured for Interrupt
mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mx_usb_sk2_int_sta Selecting this configuration will set up the demonstration application to run on the PIC32 USB Starter Kit II
development board, with the PIC32MX795F512L microcontroller. The USB Stack will be configured for interrupt
mode operation and the USB Driver will be configured for Static operation mode.

pic32mz_bt_audio_int_dyn Selecting this configuration will setup the demonstration application to run on the PIC32 Bluetooth Audio
Development Kit along with the a PIC32MZ20148ECH144 microcontroller. The USB Device stack will be
configured for Interrupt mode of operation and the USB Driver will be configured for dynamic operation mode.

pic32mx_bt_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 Bluetooth Starter Kit
development board, with the PIC32MX270F256D microcontroller. The USB Stack will be configured for Interrupt
mode operation and the USB Driver will be configured for dynamic operation mode.

pic32mz_da_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ DA Starter Kit
development board, with the PIC32MZ2064DAB288 microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ec_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EC Starter Kit
development board, with the PIC32MZ2048ECH144 microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ec_sk_poll_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EC Starter Kit
development board, with the PIC32MC2048ECH144 microcontroller. The USB Stack will be configured for
Polled mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ec_sk_meb2_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EC Starter Kit, with
the PIC32MZ2048ECH144 microcontroller board attached to the MEB II. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

Applications Help USB Demonstrations Demonstration Application Configurations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 334

pic32mz_ef_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EF Starter Kit, with
the PIC32MZ2048EFM144 microcontroller. The USB Stack will be configured for Interrupt mode operation and
the USB Driver will be configured for Dynamic operation mode.

pic32mz_ef_sk_poll_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EF Starter Kit
development board, with the PIC32MZ2048EFM144 microcontroller. The USB Stack will be configured for
Polled mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mx795_pim_e16_int_dyn Selecting this configuration will set up the demonstration application to run on the Explorer 16 Development
Board along with the PIC32MX795F512L microcontroller Plug In Module and USB PICtail Plus Daughter Board.
The USB Stack will be configured for Interrupt mode operation and the USB Driver will be configured for
Dynamic operation mode.

pic32mx460_pim_e16_int_dyn Selecting this configuration will set up the demonstration application to run on the Explorer 16 Development
Board along with the PIC32MX460F512L microcontroller Plug In Module and USB PICtail Plus Daughter Board.
The USB Stack will be configured for Interrupt mode operation and the USB Driver will be configured for
Dynamic operation mode.

pic32mx470_curiosity Selecting this configuration will set up the demonstration application to run on the PIC32MX470 Curiosity
Development Board, with the PIC32MX470F512H microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ef_curiosity Selecting this configuration will set up the demonstration application to run on the PIC32MZ EF Curiosity
Development Board, with the PIC32MZ2048EFM100 microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

The following figure shows how a configuration can be selected in MPLAB X IDE.

Alternatively, the active configuration can be selected in the Project Properties.

USB Device Demonstrations Matrix

The following table shows the availability of a configuration across available USB Device demonstration applications. Green indicates support.
Red indicates no support.

USB Host Demonstration Matrix

The following table shows the availability of a configuration across available USB Host demonstration applications. Green indicates support. Red
indicates no support.

Applications Help USB Demonstrations Demonstration Application Configurations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 335

Demonstrations

The USB Demonstrations are grouped into USB Device Stack and USB Host Stack Demonstrations.

Device

This section describes the USB Device demonstrations.

Description

The MPLAB Harmony USB Device Stack demonstration applications uses LEDs on the development board to indicate the USB state of the device.
The following table provides details on the development board specific LEDs and the USB Device State these indicate when active. This indication
scheme is implemented by all USB Device Stack Demonstration applications.

USB Device State and LED Indication

Demonstration Board Reset State Configured
State

Suspended State

Explorer 16 Development Board and PIM D3, D4 D5 D4, D5

PIC32 USB Starter Kit II LED1, LED2 LED3 LED2, LED3

PIC32MZ Embedded Connectivity (EC) Starter Kit LED1, LED2 LED3 LED2, LED3

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit LED1, LED2 LED3 LED2, LED3

PIC32 USB Starter Kit III LED1, LED2 LED3 LED2, LED3

PIC32 Bluetooth Starter Kit Red LED, Green LED Blue LED Green LED, Blue LED

PIC32MX470 Curiosity Development Board LED1, LED2 LED3 LED2, LED3

PIC32MZ EF Curiosity Development Board LED1, LED2 LED3 LED2, LED3

cdc_com_port_dual

Demonstrates a USB CDC device, emulating dual serial COM ports - one looping back into the other.

Description

This demonstration application creates a USB CDC Device that enumerates as two serial ports on the USB Host personal computer. This
application demonstrates the ability of the MPLAB Harmony USB Device Stack to support multiple instances of the same Device class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Device

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 336

Dual COM Port Demonstration.

Description

To build this project, you must open the cdc_com_port_dual.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_com_port_dual.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_dual.X <install-dir>/apps/usb/device/cdc_com_port_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_bt_sk_int_dyn pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Starter Kit configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_sta pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II with the USB Driver configured for a static build configured for Interrupt
mode and static operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic
operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

pic32mx470_curiosity pic32mx470_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to
run on the PIC32MX470 Curiosity Development Board, with the PIC32MX470F512H
microcontroller. The USB Stack will be configured for Interrupt mode operation and the
USB Driver will be configured for Dynamic operation mode.

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to
run on the PIC32MZ EF Curiosity Development Board, with the PIC32MZ2048EFM100
microcontroller. The USB Stack will be configured for Interrupt mode operation and the
USB Driver will be configured for Dynamic operation mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 337

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32 Bluetooth Starter Kit

Jumper J8 should either be shorted between pins 2 and 3 or should be completely open.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

PIC32MX470 Curiosity Development Board

Ensure that a jumper is placed at 4-3 on J8.

PIC32MZ EF Curiosity Development Board

Ensure that a jumper is placed at 4-3 on J8.

Running the Demonstration

Provides instructions on how to build and run the CDC Dual COM Port demonstration.

Description

This demonstration allows the device to appear like dual serial (COM) ports to the host. Do the following to run this demonstration:

1. First compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. Attach the device to the host. If the host is a personal computer and this is the first time you have plugged this device into the computer you
may be prompted for a .inf file.

3. Select the "Install from a list or specific location (Advanced)" option. Specify the
<install-dir>/apps/usb/device/cdc_com_port_dual/inf directory.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 338

4. Once the device is successfully installed, open up two instances of a terminal program, such as HyperTerminal. Select the appropriate COM
port for each of these terminal instance.

5. The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication
Table in the Device section.

6. To run the demonstration, type a character or string in one terminal window. The same character or string appears on the second terminal
window. Similarly, any character typed in the second window appears in the first window.

 Note: Some terminal programs, like HyperTerminal, require users to click the disconnect button before removing the device from the
computer. Failing to do so may result in having to close and open the program again to reconnect to the device.

cdc_com_port_single

Demonstrates a USB CDC device, emulating a serial COM port.

Description

This demonstration application creates a USB CDC Device that enumerates as a single COM port on the host personal computer. The application
demonstrates two-way communication between the USB device and the personal computer host.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Device
Single COM Port Demonstration.

Description

To build this project, you must open the cdc_com_port_single.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_com_port_single.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_single.X <install-dir>/apps/usb/device/cdc_com_port_single/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 339

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the
Explorer 16 Development Board configured for Interrupt mode and dynamic
operation. This configuration also requires PIC32MX460F512L Plug-In Module
(PIM) and the USB PICtail Plus Daughter Board.

pic32mx_usb_sk2_poll_dyn pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit II with the USB Device Stack configured for Polled mode and
dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_sta pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit II with the USB Driver configured for Interrupt mode and
static operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_da_sk_int_dyn pic32mz_da_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Graphics (DA) Starter Kit configured for Interrupt mode and dynamic
operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and
dynamic operation.

pic32mz_ec_sk_poll_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity (EC) Starter Kit with the USB Device Stack
configured for Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn_micromips pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit
configured in microMIPS mode for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the
USB Device Stack configured for Polled mode and dynamic operation.

pic32mx_125_sk_int_dyn pic32mx_125_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MX1/2/5 Starter Kit with the USB Device Stack configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 340

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the CDC Single COM Port demonstration.

Description

This demonstration allows the device to appear like a serial (COM) port to the host. Do the following to run this demonstration:

1. First compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. Attach the device to the host. If the host is a personal computer and this is the first time you have plugged this device into the computer, you
may be prompted for a .inf file.

3. Select the "Install from a list or specific location (Advanced)" option. Specify the
<install-dir>/apps/usb/device/cdc_com_port_single/inf directory.

4. Once the device is successfully installed, open up a terminal program, such as HyperTerminal and select the appropriate COM port. On most
machines this will be COM5 or higher. Set the communication properties to 9600 baud, 1 Stop bit and No parity, with Flow Control set to None.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 341

5. The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication
Table in the Device section.

6. Once connected to the device, there are two ways to run this example project:

• a) Typing a key in the terminal window will result in the attached device echoing the next letter. Therefore, if the letter 'b' is pressed, the
device will echo 'c'.

• b) If the push button is pressed, the device will echo "PUSH BUTTON PRESSED" to the terminal window.

The following table shows the switch buttons to be pressed for different demonstration boards.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Graphics (DA) Starter Kit

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

 Note: Some terminal programs, like HyperTerminal, require users to click the disconnect button before removing the device from the
computer. Failing to do so may result in having to close and open the program again to reconnect to the device.

cdc_msd_basic

Demonstrates a composite USB device emulating a COM port and Flash drive.

Description

This demonstration application creates a composite USB Device that enumerates as a COM port and as Flash drive simultaneously.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC MSD
Composite Device Demonstration.

Description

To build this project, you must open the cdc_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_msd_basic.X <install-dir>/apps/usb/device/cdc_msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 342

Configuring the Hardware

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB CDC MSD Composite Device demonstration.

Description

This demonstration application creates a composite USB Device that works simultaneously as a CDC and as a MSD device. This application
combines the functionality of the cdc_com_port_single and msd_basic demonstration applications into one device.

Refer to Running the Demonstration section of the cdc_com_port_single demonstration and the Running the Demonstration section of the
msd_basic demonstration for details on exercising the CDC and MSD device features, respectively.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

cdc_serial_emulator

This application demonstrates the use of the CDC device class in implementing a USB-to-Serial Dongle.

Description

This application demonstrates the use of the CDC device class in implementing a USB-to-Serial Dongle. The application enumerates a COM port
on the personal computer. Data received through the CDC USB interface is forwarded to a UART. Data received on the UART is forwarded to the
CDC USB interface. This emulates a USB-to-Serial Dongle.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Device
USB-to-Serial Demonstration.

Description

To build this project, you must open the cdc_serial_emulator.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_serial_emulator.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_serial_emulator.X <install-dir>/apps/usb/device/cdc_serial_emulator/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX795F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 343

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
EF Starter Kit configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX795F512L PIM)

Jumper J10 should be removed. Jumper J1 and J2 should_connect_to positions 1 and 2. This PIM should be used along with the Explorer 16
Development Board and the USB PICtail Plus daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The
USB PICtail Plus daughter board should be connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX795F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

• Jumper J1 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM
(MA320003), and not the PIC32MX795F512L USB PIM (MA320002).

• Jumper J2 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM
(MA320003) and not the PIC32MX795F512L USB PIM (MA320002).

Running the Demonstration

Provides instructions on how to build and run the CDC Serial Emulator Demonstration.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

Description

This application demonstrates the use of the CDC Device class in implementing a USB-to-Serial Dongle. The application enumerates a COM port
on the personal computer. Data received through the CDC USB interface is forwarded to a UART. Data received on the UART is forwarded to the
CDC USB interface. This emulates a USB-to-Serial Dongle.

1. Open_the project in MPLAB X IDE and select the desired configuration.

2. Build the code and program the device.

3. Depending on the hardware in use, do one of the following:

• If you are using the Explorer 16 board, connect the mini-B device connector on the USB PICtail Plus Daughter Board to the personal computer

• If you a are using the PIC32MZ EF starter kit, connect the micro-USB device connector to the personal computer

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 344

7. Select the "Install from a list or specific location (Advanced)" option. Specify the
<install-dir>/apps/usb/device/cdc_serial_emulator/inf directory.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

8. Open_a terminal emulation program of your choice and select the enumerated USB COM port.

9. Connect the USB-to-Serial Dongle to the same personal computer.

10. Open_another instance of the terminal emulation program and select the USB-to-Serial Dongle.

11. Connect the serial connector of the USB-to-Serial Dongle to the UART connector (P1) on the Explorer 16 Development Board.

12. Choose a baud rate of 9600, 1 Stop bit and no parity while opening both of the terminal emulation programs.

The setup should be similar to the following diagram.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 345

Any text entered into the terminal 1 program will be echoed on terminal 2 and vice versa.

cdc_serial_emulator_msd

Demonstrates a USB to Serial Dongle combined with a MSD class.

Description

This demonstration application creates a USB Device that combines the functionality of the cdc_serial_emulator and msd_basic demonstration
applications.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the this demonstration
application.

Description

To build this project, you must open the cdc_serial_emulator_msd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/cdc_serial_emulator_msd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_serial_emulator_msd.X <install-dir>/apps/usb/device/cdc_serial_emulator_msd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX795F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM

Jumper J10 should be removed. Jumper J1 and J2 should_connect_to positions 1 and 2. This PIM should be used along with the Explorer 16
Development Board and the USB PICtail Plus daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The
USB PICtail Plus daughter board should be connected to the edge connector J9.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 346

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX795F512L PIM:

• Keep jumper J10 open.

• Keep all jumpers in J9 open

• Jumper J1 should be shorted between positions 1 and 2

• Jumper J2 should be shorted between positions 1 and 2

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This demonstration functions as a composite USB Device that combines the features of the devices created by the cdc_serial_emulator and the
msd_basic demonstration applications. Refer to Running the Demonstration section of the cdc_serial_emulator demonstration and Running the
Demonstration section of the msd_basic demonstration for details on exercising the CDC and MSD functions, respectively.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

hid_basic

This demonstration application creates a custom HID device that can be controlled by a personal computer-based utility.

Description

This application creates a custom HID device that can be controlled by a personal computer-based utility. The device allows the USB Host utility to
control the LEDs on the board and query the status of a switch.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Basic
Demonstration.

Description

To build this project, you must open the hid_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_basic.X <install-dir>/apps/usb/device/hid_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 347

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic
operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the HID Basic demonstration.

Description

This demonstration uses the selected hardware platform as a HID class USB device, but uses the HID class for general purpose I/O operations.
While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration board. Refer to Building the Application for
details.

Typically, the HID class is used to implement human interface products, such as mice and keyboards. The HID protocol, is however, quite flexible,
and can be adapted and used to send/receive general purpose data to/from a USB device. Using the HID class for general purpose I/O operations
is quite advantageous, in that it does not require any kind of custom driver installation process. HID class drivers are already provided by and are
distributed with common operating systems. Therefore, upon plugging in a HID class device into a typical computer system, no user installation of
drivers is required, the installation is fully automatic.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

HID devices primarily communicate through one interrupt IN endpoint and one interrupt OUT endpoint. In most applications, this effectively limits
the maximum achievable bandwidth for full speed HID devices to 64 kBytes/s of IN traffic, and 64 kBytes/s of OUT traffic (64 kB/s, but effectively
"full duplex").

The GenericHIDSimpleDemo.exe program, and the associated firmware demonstrate how to use the HID protocol for basic general purpose
USB data transfer.

Before you can run the GenericHIDSimpleDemo.exe executable, you will need to have the Microsoft® .NET Framework Version 2.0
Redistributable Package (later versions are probably acceptable, but have not been tested) installed on your computer. Programs that were built in

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 348

the Visual Studio® .NET languages require the .NET redistributable package. The redistributable package can be freely downloaded from
Microsoft’s website. Users of Windows Vista® operating systems will not need to install the .NET framework, as it comes preinstalled as part of the
operating system.

Launching the Application

To launch the application, simply double click the executable GenericHIDSimpleDemo.exe in the
<install-dir>\apps\usb\device\hid_basic\bin directory. A property sheet similar to the following should appear:

 Note: If instead of this window, an error message appears while trying to launch the application, it is likely the Microsoft .NET Framework
Version 2.0 Redistributable Package has not yet been installed. Please install it and try again.

Send/Receive Packets

To begin sending/receiving packets to the device, you must first find and_connect_ to the device. As configured by default, the application is
looking for HID class USB devices with VID = 0x04D8 and PID = 0x003F. The device descriptor in the firmware project meant to be used with this
demonstration uses the same VID/PID. If you plug in a USB device programmed with the correct precompiled .hex file, and click Connect, the
other push buttons should become enabled. If clicking Connect has no effect, it is likely the USB device is either not connected, or has not been
programmed with the correct firmware.

Clicking Toggle LED(s) should send a single packet of general purpose generic data to the HID class USB peripheral device. The data will arrive
on the interrupt OUT endpoint. The firmware has been configured to receive this generic data packet, parse the packet looking for the Toggle
LED(s) command, and should respond appropriately by controlling the LED(s) on the demonstration board.

The Get Pushbutton State option will send one packet of data over the USB to the peripheral device (to the interrupt OUT endpoint) requesting the
current push button state. The firmware will process the received Get Pushbutton State command, and will prepare an appropriate response
packet depending upon the pushbutton state.

The following table shows the button that has to be pressed on the demonstration board to see the change in the push button state.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

hid_joystick

Demonstrates a USB HID device emulating a joystick.

Description

This demonstration application creates a custom HID joystick. This application is only intended to demonstrate creation of Joystick HID Report
descriptors and may not be a definite end solution. The end application requirements may need the report descriptor to be modified.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Joystick
Demonstration.

Description

To build this project, you must open the hid_joystick.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_joystick.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 349

Project Name Location

hid_joystick.X <install-dir>/apps/usb/device/hid_joystick/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic
operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the USB HID Joystick demonstration.

Description

This demonstration uses the selected hardware platform as a USB Joystick. Select the appropriate MPLAB X IDE project configuration based on

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 350

the demonstration board. Refer to Building the Application for details.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

To test the joystick feature, navigate to the <install-dir>/apps/usb/device/hid_joystick/bin directory and open
JoystickTester.exe:

Pressing the button will cause the device to:

• Indicate that the "x" button is pressed, but no others

• Move the hat switch to the "east" position

• Move the X and Y coordinates to their extreme values

The Following table shows the button that has to be pressed on the demonstration board to emulate the joystick.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 351

Explorer 16 Development Board S3

hid_keyboard

Demonstrates a USB HID device, emulating a keyboard.

Description

This demonstration application creates a Generic HID keyboard. Pressing a key on the board emulates a keyboard key press.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Keyboard
Demonstration.

Description

To build this project, you must open the hid_keyboard.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_keyboard.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_keyboard.X <install-dir>/apps/usb/device/hid_keyboard/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic
operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 352

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the USB HID Keyboard demonstration.

Description

This demonstration uses the selected hardware platform as a USB keyboard. While compiling, select the appropriate MPLAB X IDE project
configuration based on the demonstration board. Refer to Building the Application for details.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

Before pressing the button, select a window in which it is safe to type text freely. Pressing the button on the demonstration board will cause the
device to print a character on the screen.

The following table shows the button that has to be pressed on the demonstration board to print a character.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

hid_mouse

Demonstrates a USB HID device, emulating a mouse pointing device.

Description

This demonstration application creates a USB HID based two-button mouse device. When connected, the device emulates mouse operation by
moving the cursor in a circular pattern.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Mouse
Demonstration.

Description

To build this project, you must open the hid_mouse.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_mouse.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 353

Project Name Location

hid_mouse.X <install-dir>/apps/usb/device/hid_mouse/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_da_sk_int_dyn pic32mz_da_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Graphics (DA) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic
operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 354

Running the Demonstration

Provides instructions on how to build and run the HID Mouse Demonstration.

Description

This demonstration uses the selected hardware platform as a USB mouse. While compiling, select the appropriate MPLAB X IDE project
configuration based on the demonstration board. Refer to Building the Application for details.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

Before connecting the board to the computer through the USB cable please be aware that the device will begin moving the mouse cursor on the
computer. There are two ways to stop the device from allowing the cursor to continue to move. The first way is to disconnect the device from the
computer. The second is to press the correct button on the hardware platform. Pressing the button again will cause the mouse cursor to start
moving in a circle again.

The following table shows the button that has to be pressed on the demonstration board to stop the circular motion:

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Graphics (DA) Starter Kit

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

hid_msd_basic

Demonstrates a HID Device Class and MSD class composite USB Device.

Description

This demonstration application creates a USB Device that combines the functionality of the hid_basic and msd_basic demonstration applications.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the this demonstration
application.

Description

To build this project, you must open the hid_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_msd_basic.X <install-dir>/apps/usb/device/hid_msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 355

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic
operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This demonstration functions as composite USB Device that combines the features of the devices created by the hid_basic and the msd_basic
demonstration applications. Refer to Running the Demonstration section of the hid_basic demonstration and Running the Demonstration section of
the msd_basic demonstration for details on exercising the HID and MSD functions, respectively.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

msd_basic

Demonstrates a USB MSD Device emulating a Flash Drive.

Description

This demonstration application creates a Flash drive using the Mass Storage Device Class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB MSD Basic
Demonstration.

Description

To build this project, you must open the msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_basic.X <install-dir>/apps/usb/device/msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_bt_sk_int_dyn pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Starter Kit configured for Interrupt mode and dynamic operation.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 356

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II with the USB Device Stack configured for Polled mode and dynamic operation..

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_poll_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC)Starter Kit with the USB Device Stack configured for Polled mode
and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Polled mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper settings required.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

Running the Demonstration

Provides instructions on how to build and run the USB MSD Basic demonstration.

Description

This demonstration uses the selected hardware platform as a logical drive on the computer using the internal Flash of the device as the drive
storage media. Connect the hardware platform to a computer through a USB cable. The device should appear as a new drive on the computer
named "Drive Name". The drive can used to store files.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

 Note: Reprogramming the development board will cause any stored files to be erased.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 357

msd_fs_spiflash

This application demonstrates accessing the SPI Flash connected to the PIC32 device as a media by multiple clients.

Description

This application demonstrates accessing the SPI Flash connected to the PIC32 device as a media by multiple clients. When connected via USB to
the Host Computer, the SPI Flash is shown as the storage media. The Host writes files to the media, which is later accessed by the application
running on the PIC32 device using the File System.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB MSD File
System SPI Flash Demonstration.

Description

To build this project, you must open the msd_fs_spiflash.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/msd_fs_spiflash.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_fs_spiflash.X <install-dir>/apps/usb/device/msd_fs_spiflash/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

bt_audio_dk_int_dyn bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Audio Development Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Develoment Kit

Ensure that switch S1 is set to PIC32_MCLR.

Running the Demonstration

Provides instructions on how to build and run the USB MSD File System SPI Flash demonstration.

Description

This demonstration shows an example of:

• Accessing the media attached to PIC32 by multiple clients

• Application running on the PIC32 firmware accesses the media using the MPLAB Harmony File System

When connected to the USB Host the very first time, the user is expected to format the media and create a file named FILE.TXT in the root
directory of the media. The user can update the file to provide input for the application to glow the LEDs present on the development kit. The
application running on the PIC32 reads and interprets the data present in the file and accordingly turns ON or OFF the LEDs LED8 and LED9 of
the development kit. The format of input in the file FILE.TXT should be as follows:

• For turning ON an LED:

• LED8:1

• LED9:1

• For turning OFF an LED:

• LED8:0

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 358

• LED9:0

After having set the appropriate values in the file, the user can then press and release the wwitch SW1 located on the development kit for the
MPLAB Harmony File System running on the PIC32 to act upon the contents of the file.

The FS state machine of the demonstration is only triggered by the switch SW1. When the user presses and releases SW1 the following occurs:

• LED5 is turned ON to indicate that the FS state machine is running

• The USB is detached

• The file system on the SPI Flash is mounted

• The contents of FILE.TXT is read and acted upon. Depending on the values set in the file, the LEDs are either turned ON or OFF.

• Next, the file system is unmounted and the USB is reattached

• LED5 is turned OFF to indicate that FS state machine is no longer running

• If LED6 is turned ON during any part of the demonstration, this indicates the demonstration has failed

msd_sdcard

Demonstrates data transfer from a SD card and a computer through USB MSD.

Description

This application demonstrates the usage of a SD card reader through the USB Mass Storage Device (MSD) class to transfer data between a
computer and SD card. High-Speed USB is used for communication between the Host computer and the PIC32 device, while a SD card is used as
the storage medium.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB MSD SD Card
Demonstration.

Description

To build this project, you must open the msd_sdcard.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/msd_sdcard.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_sdcard.X <install-dir>/apps/usb/device/msd_sdcard/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ EC
Starter Kit connected to the MEB II. The media drivers are configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity (EC) Starter Kit and Multimedia Expansion Board II (MEB II)

No hardware related configuration or jumper settings required.

Running the Demonstration

Provides instructions on how to build and run the USB MSD SD Card demonstration.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 359

Description

This demonstration uses the selected hardware platform as a logical drive on the computer using the SD card as the drive storage media. Connect
the hardware platform to a computer through a USB cable. The device should appear as a new drive on the computer named "Drive Name". The
drive can then be used to store files.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

vendor

Demonstrates a custom USB Device created by using the USB Device Layer Endpoint functions.

Description

This demonstration application creates a custom USB device using the USB Device Layer Endpoint functions.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Vendor USB Device
Demonstration.

Description

To build this project, you must open the vendor.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/vendor.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

vendor.X <install-dir>/apps/usb/device/vendor/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic
operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 360

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the Vendor USB Device demonstration.

Description

The Vendor device can be exercised by using the WinUSB PnP Demonstration application, which is provided in your installation of MPLAB
Harmony.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

This application allows the state of the LEDs on the board to be toggled and indicates the state of a switch (pressed/released) on the board.

To launch the application, double click WinUSB PnP Demo.exe located in <install dir>/apps/usb/device/vendor/bin. A dialog box
similar to the following should appear:

Pressing the Toggle LED button will cause the LED on the board to toggle. The Pushbutton State field in the application indicates the state of a
button on connected USB Device. Pressing the switch on the development board will update the Pressed/Not Pressed status of the Pushbutton
State field.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

Host

This section describes the USB Host demonstrations.

audio_speaker

This application demonstrates the use of the Audio v1.0 Host Class Driver to enumerate and operate an audio speaker device.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 361

Description

This application demonstrates the use of the Audio v1.0Host Class Driver to enumerate and an audio speaker device. The application uses the
USB Host Layer and Audio 1.0 class driver to enumerate an Audio v1.0 USB device. The demonstration host application then operates and uses
the functionality of the attached audio speaker device.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Device Audio
Speaker Demonstration.

Description

To build this project, you must open the audio_speaker.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/audio_speaker.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

audio_speaker.X <install-dir>/apps/usb/host/audio_speaker/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EC Starter Kit

JP1 should be in place and the Ethernet plug-in board should be removed.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host Audio v1.0 Basic Demo.

Description

This application demonstrates the use of the Audio v1.0 Host Class Driver to enumerate and operate an Audio v1.0 Device. The application uses
the USB Host layer and Audio v1.0 class driver to enumerate a Audio v1.0 USB device. The demonstration host application then operates and
uses the functionality of the attached Audio v1.0 Device.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

1. Open the project in MPLAB X IDE and select the desired project configuration.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 362

2. Build the code and program the device.

3. Attach a commercially available USB speaker to the board.

4. LED1 is turned ON if the attached device is accepted by the Audio 1.0 class driver.

5. The speaker should produce a 1 kHz sine wave.

6. LED2 will continue blinking if the demonstration application cannot accept the device.

7. Press switch SW1 to mute the audio.

8. Press switch SW2 to unmute the audio

cdc_basic

This application demonstrates the use of the CDC Host Class Driver to enumerate and operate a CDC Device.

Description

This application demonstrates the use of the CDC Host Class Driver to enumerate and operate a CDC Device. The application uses the USB
Host_layer and CDC class driver to enumerate a CDC USB device. The demonstration host application then operates and uses the functionality of
the attached CDC Device.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Host
Basic Demonstration.

Description

To build this project, you must open the cdc_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/cdc_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_basic.X <install-dir>/apps/usb/host/cdc_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Polled mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_poll_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EC Starter Kit

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 363

JP1 should be in place and the Ethernet plug-in board should be removed.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host CDC Basic Demo.

Description

This application demonstrates the use of the CDC Host Class Driver to enumerate and operate a CDC Device. The application uses the USB
Host_layer and CDC class driver to enumerate a CDC USB device. The demonstration host application then operates and uses the functionality of
the attached CDC Device.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

1. Open_the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Follow the directions for setting up and running the cdc_serial_emulator USB device demonstration.

4. Connect the UART (P1) port on the Explorer 16 Development Board (running the cdc_serial_emulator demonstration) to a USB Host personal
computer via a commercially available Serial-to-USB Dongle.

5. Start a terminal program on the USB Host personal computer and select the Serial-to-USB Dongle as the communication port. Select the baud
rate as 9600, no parity, 1 Stop bit and no flow control.

6. Connect the mini – B connector on the USB PICtail Plus Daughter Board, of the cdc_serial_emulator demonstration setup, to the Type-A USB
host connector on the starter kit.

7. A prompt (LED :) will be displayed immediately on the terminal emulation program.

8. Pressing either the 1, 2, or 3 key on the USB Host keyboard will cause LED 1, 2, or 3 on the PIC32 Starter kit (running the USB CDC Host
application) to switch on, respectively.

9. The prompt will again be displayed on terminal emulation program, and step 8 can be repeated.

The setup should be similar to the following diagram.

The cdc_serial_emulator demonstration emulates a USB-to-Serial Dongle. The CDC Host (running the cdc_basic demonstration application)
sends the prompt message to the CDC device. The CDC device forwards the prompt to the UART port from where it is transmitted to the personal
computer USB Host through the USB-to-Serial Dongle. A key press on the personal computer USB Host is transmitted to the CDC device, which in
turn presents the key press data to the CDC host. The cdc_basic demonstration then analyzes the key press data and switches on the respective
LED.

cdc_msd

Demonstrates host support for multiple device classes.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 364

Description

This demonstration application creates a USB Host that can support different device classes in one application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this USB CDC MSD
Host Demonstration.

Description

To build this project, you must open the cdc_msd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/cdc_msd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_msd.X <install-dir>/apps/usb/host/cdc_msd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EC Starter Kit

JP1 should be in place and the Ethernet plug-in board should be removed.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB CDC MSD demonstration.

Description

This demonstration application creates a USB Host application that enumerates a CDC and a MSD device. This application combines the
functionality of the Host cdc_basic and msd_basic demonstration applications into one application. If a CDC device is connected, the
demonstration application behaves like the cdc_basic host application. If a MSD device is connected, the demonstration application behaves like
the msd_basic host application.

Refer to Running the Demonstration section of the host cdc_basic demonstration and the Running the Demonstrationsection of the host
msd_basic demonstration for details on exercising the CDC and MSD host aspects of the demonstration.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 365

hid_basic_keyboard

Demonstrates using the USB HID Host Client driver with the Keyboard Usage driver to facilitate the use of a USB HID Keyboard with a PIC32 USB
Host.

Description

This application demonstrates the use of the USB HID Host Client Driver to enumerate and operate a HID keyboard device. The application uses
the USB Host layer, HID Client driver and HID Keyboard Usage driver to enumerates a USB keyboard and understand keyboard press release
events.

The keyboard events are displayed using a terminal emulator on a personal computer.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Basic
Keyboard Demonstration.

Description

To build this project, you must open the hid_basic_keyboard.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hid_basic_keyboard.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_basic_keyboard.X <install-dir>/apps/usb/host/hid_basic_keyboard/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration configured for
Interrupt mode and dynamic operation on the PIC32MX795F512L PIM connected to the
Explorer 16 Development Board with the USB PICtail Plus Daughter Board attached.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Development Board:

• Switch S2 should be set to PIM

USB PICtail Plus Daughter Board:

• Jumper the Host Enable pins

• Device Enable and OTG Enable should be open

PIC32MX795F512L Plug-in Module (PIM):

• Keep jumper J10 open

• Keep all jumpers in J9 open

• Jumper J1 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM
(MA320003), and not the PIC32MX795F512L USB PIM (MA320002).

• Jumper J2 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 366

(MA320003) and not the PIC32MX795F512L USB PIM (MA320002).

For the pic32mx795_pim_e16_int_dyn configuration:

1. Ensure that the PIC32MX795F512L PIM is connected properly to the PIM socket on the Explorer 16 Development Board.

2. Connect the Serial Port connector on the Explorer 16 Development Board to a PC using a Serial-to-USB converter cable.

3. Connect the USB PICtail Plus Daughter Board to the horizontal edge connector (J9) of the Explorer 16 Development Board.

For the pic32mz_ef_sk_int_dyn configuration:

Connect the USB to the UART connector (J11) on the PIC32MZ EF Starter Kit to a PC using a USB micro cable.

Running the Demonstration

Provides instructions on how to build and run the USB HID Basic Keyboard demonstration.

Description

1. Open the project in MPLAB X IDE and select the project configuration.

2. Build the code and program the device.

3. Launch a terminal emulator, such as Tera Term, and select the appropriate COM port and set the serial port settings to 115200-N-1.

4. If a USB keyboard is not connected to the Host connector using J4 on the USB PICtail Plus Daughter Board, the terminal emulator window will
show the Connect Keyboard prompt.

5. Attach a USB keyboard to the Host connector of the target hardware. The message, Keyboard Connected, will appear in the terminal emulator
window.

6. Begin typing on the keyboard and the appropriate keys should be displayed on the serial terminal. Subsequent press and release of modifier
keys (i.e., CAPS LOCK, NUM LOCK, etc.) will result in the appropriate keyboard LEDs to turning ON and OFF.

7. Disconnecting the keyboard will result in the message, Connect Keyboard.

hid_basic_mouse

Demonstrates USB Host application support for a USB HID mouse.

Description

This application demonstrates the use of the USB HID Host Client Driver to enumerate and operate a HID mouse device. The application uses the
USB Host layer, HID Client driver and HID Mouse Usage driver to enumerates USB mouse and understand mouse generated data.

Mouse-specific events are demonstrated by cursor movements on the MEB II display screen. Mouse button clicks are indicated by LEDs.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Host HID Basic
Mouse Demonstration.

Description

To build this project, you must open the hid_basic_mouse.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hid_basic_mouse.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_basic_mouse.X <install-dir>/apps/usb/host/hid_basic_mouse/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 367

Project
Configuration Name

BSP Used Description

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ EC Starter Kit and the MEB II.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ EF Starter Kit and the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit and MEB II

1. Ensure that the PIC32MZ EC Starter Kit is securely fastened into the MEB II expansion board.

2. JP1 on the PIC32MZ EC Starter Kit should be in place.

3. The Ethernet plug-in module on the PIC32MZ EC Starter Kit should be removed.

PIC32MZ EF Starter Kit and MEB II

Ensure that the PIC32MZ EC Starter Kit is securely fastened into the MEB II expansion board.

Running the Demonstration

Provides instructions on how to build and run the USB Host HID Basic Mouse demonstration.

Description

This application demonstrates the use of the HID Host Client Driver to enumerate USB HID mouse and establish communication with the mouse.
The application uses the USB Host layer, HID client driver and the MPLAB Harmony Graphics Library to enumerate a USB HID mouse and
capture mouse-specific events on the USB Host side.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. If a USB mouse is not connected to the USB Host connector on the PIC32MZ EC/EF Starter Kit, the display on the MEB II will show a “Connect
Mouse” prompt on a red background.

4. Attach a USB mouse to the Host connector on the PIC32MZ EC/EF Starter Kit. The “Connect Mouse” prompt will disappear and the cursor (a
small white dot) will appear on the screen.

5. Moving the mouse will move the cursor. Mouse button clicks will toggle LEDs on the MEB II.

Refer to the following table for LED indication details.

Mouse Click MEB II

Left D3

Right D4

Middle D5

Lower Left D6

Lower Right D7

6. Disconnecting the mouse will cause the "Connect Mouse" prompt to reappear.

hub_cdc_hid

Demonstrates the enumeration of a HID mouse and CDC emulator device via an external hub.

Description

This application demonstrates the capability of the USB Host Stack to access and manage multiple USB Devices through a Hub. The
demonstration application enumerates a HID mouse and CDC emulator device via an external hub. The host will demonstrate the communication
from the CDC emulator device and the HID mouse.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 368

Building the Application

This topic identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Host HUB CDC
HID Demonstration.

Description

To build this project, you must open the hub_cdc_hid.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hub_cdc_hid.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hub_cdc_hid.X <install-dir>/apps/usb/host/hub_cdc_hid/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ EC
Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ EF
Starter Kit configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EC Starter Kit

JP1 should be in place and the Ethernet plug-in board should be removed.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host HUB CDC HID demonstration.

Description

This application demonstrates the capability of the USB Host Stack to access and manage multiple USB Devices through a Hub. The
demonstration application enumerates a HID mouse and CDC emulator device via an external hub. The host will demonstrate the communication
from the CDC emulator device and the HID mouse.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Connect a hub to the Type A Host connector on the desired board.

4. Connect a mouse to a spare port on the hub.

5. Connect the CDC emulator device to another spare port on the hub.

6. Click the mouse to toggle LEDs on the starter kit.

7. On the personal computer, open a terminal emulator. At the prompt, (LED:), enter 1, 2, or 3 to toggle the LEDs on the starter kit.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 369

hub_msd

This application demonstrates the capability of the USB Host stack to support multiple MSD device through a hub.

Description

This application demonstrates the use of the Hub Driver and the MSD Host Client Driver, with File System, to support multiple MSD devices and
Hub. The demonstration application copies a file from one pen driver into another pen drive.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Host Hub MSD
Demonstration.

Description

To build this project, you must open the hub_msd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hub_msd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hub_msd.X <install-dir>/apps/usb/host/hub_msd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EC Starter Kit

JP1 should be in place and the Ethernet plug-in board should be removed.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host Hub MSD demonstration.

Description

This application demonstrates the capability of the USB Host Stack to access and manage multiple USB Devices through a Hub. The
demonstration application copies a file from one USB pen drive (i.e., a USB Flash storage device) to another USB pen drive, where these pen
drives are attached to a hub.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 370

 Note: The demonstration will search for a file named file.txt on any of the connected pen drives. Such a file should be created on
one of the pen drives through any suitable method.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Connect a hub to the Type A Host connector on the desired board.

4. Connect a USB Pen drive containing an arbitrary file named file.txt to a spare port on the hub.

5. Connect another USB pen drive to another spare port on the hub.

6. The application will copy the file file.txt from the drive containing this file to the other drive. The copied file will be renamed as
newfile.txt. LED 2 on the demonstration board will illuminate to indicate completion of the file transfer.

7. Disconnect the drives and confirm demonstration success by inserting them into a personal computer and verifying the file transfer completed
as expected.

The demonstration application will always be in state where it waits for two pen drives to be connected to the hub and at least one of these pen
drives contains a file named file.txt.

msd_basic

This application demonstrates the use of the MSD Host Class Driver to write a file to USB Flash Drive.

Description

This application demonstrates the use of the MSD Host Class Driver to write a file to a USB Flash drive. The application uses the USB Host_layer ,
MSD class driver and the MPLAB Harmony File System Framework to enumerate a USB Flash drive and to write a file to it.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB MSD Host
Class Driver Demonstration.

Description

To build this project, you must open the msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_basic.X <install-dir>/apps/usb/host/msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

chipkit_wf32 chipkit_wf32 Demonstration running on the chipKIT WF32 Development Board.

chipkit_wifire chipkit_wifire Demonstration running on the chipKIT Wi-FIRE Development Board.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit III with the PIC32MX470F512L microcontroller configured for Interrupt mode and
dynamic operation.

pic32mz_da_sk_int_dyn pic32mz_da_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Graphics (DA) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 371

pic32mx470_curiosity pic32mx470_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to run on
the PIC32MX470 Curiosity Development Board, with the PIC32MX470F512H microcontroller.
The USB Stack will be configured for Interrupt mode operation and the USB Driver will be
configured for Dynamic operation mode.

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to run on
the PIC32MZ EF Curiosity Development Board, with the PIC32MZ2048EFM100
microcontroller. The USB Stack will be configured for Interrupt mode operation and the USB
Driver will be configured for Dynamic operation mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32 USB Starter Kit III

JP1 should be in place.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

JP1 should be in place and the Ethernet plug-in board should be removed.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

chipKIT WF32 Wi-Fi Development Board

No hardware related configuration or jumper setting changes are necessary.

chipKIT Wi-FIRE Development Board

No hardware related configuration or jumper setting changes are necessary.

PIC32MX470 Curiosity Development Board

• Ensure that a jumper is placed at 4-3 on J8

• Place a jumper on J13 to drive VBUS in Host mode

PIC32MZ EF Curiosity Development Board

• Ensure that a jumper is placed at 4-3 on J8

• Place a jumper on J13 to drive VBUS in Host mode

Running the Demonstration

Provides instructions on how to build and run the USB Host MSD Basic demonstration.

Description

This application demonstrates the use of the MSD Host Class Driver to write a file to USB Flash drive. The application uses the USB Host_layer,
MSD class driver and the MPLAB Harmony File System Framework to enumerate a USB Flash drive and to write a file to it.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

1. Open_the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. With the code running, attach a USB Flash drive to the Host connector on the desired starter kit.

4. The demonstration application will then create a file named file.txt. It will then write the text "Hello World" to this file, and then close the file.

5. The demonstration will then move to Idle mode, which is indicated when LED2 on the starter kit illuminates.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 372

6. The USB Flash drive can then be attached to a USB Host personal computer to verify the demonstration application operation.

7. Steps 3 through 6 can be repeated.

8. If the USB Flash drive already contains a file with the name file.txt, the demonstration application will append the text "Hello World" to the
end of the file contents.

9. LED1 on the starter kit illuminates if the file creation or write failed.

Applications Help USB Demonstrations Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 373

Index

1

12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Examples 78

A

a2dp_avrcp 35

ADC Peripheral Library Examples 76

adc_pot 76

adc_pot_dma 77

adchs_3ch_dma 78

adchs_oversample 80

adchs_pot 82

adchs_sensor 84

adchs_touchsense 85

adcp_cal 87

Additional Bluetooth Resources 22

APP_ChangeMode function 184

APP_DATA structure 217

APP_DISK_FILE_NODE structure 194

APP_DISK_FILE_PATH structure 194

APP_DISK_MAX_DIRS macro 195

APP_DISK_MAX_FILES macro 195

APP_DoubleBufferingEnable function 193

APP_DrawBubble function 212

APP_DrawMenu function 213

APP_FillMenuBackBuffer function 213

APP_GenerateSysMsgGet function 184

APP_GLCD_LAYER0_BUFFER_ADDR macro 220

APP_GLCD_LAYER1_ALPHA_RESOLUTION macro 221

APP_GLCD_LAYER1_BUFFER_ADDR macro 220

APP_GLCD_LAYER2_BUFFER_ADDR macro 220

APP_GLCD_LAYER2_HOR_RES macro 221

APP_GoToNextSlide function 193

APP_HandleHomeSlide function 216

APP_HandleLanguageSetting function 185

APP_HandleTouchTest function 185

APP_HOME_MODE_SEMI_TRANSPARENT_ALPHA_VALUE macro
221

APP_Initialize function 213

APP_IsCircle function 214

APP_IsSupportedFile function 193

APP_LANGUAGES enumeration 195

APP_MENU_STATES enumeration 222

APP_MetaDataEnable function 193

APP_MODES enumeration 219

APP_MoveBubble function 214

APP_PrepareHomeMode function 216

APP_ProcessMenu function 214

APP_ProcessModeState function 185

APP_ReadNextImageHeader function 194

APP_ReceiveMenuTouch function 217

APP_RedrawRectangle function 185

APP_SelectNewSlide function 215

APP_SetSlidePauseTime function 194

APP_STATES enumeration 219

APP_Tasks function 215

APP_TouchEventHandler function 216

APP_TouchMessageCallback function 186

APP_TRANSPARENT_ALPHA_VALUE macro 221

APP_UpdateFeatureList function 186

APP_UpdateLanguageTexts function 186

APP_UpdateMainMenu function 187

APP_UpdateSlideShowTips function 187

Application Functions and Prototypes 184, 192, 211

Applications 329

Applications Help 2

Audio Demonstrations 3

audio_microphone_loopback 3

audio_speaker 361

audio_tone 5

B

basic 39, 232, 237, 245, 246, 250, 255

basic_image_motion 169

berkeley_tcp_client 264

berkeley_tcp_server 265

berkeley_udp_client 266

berkeley_udp_relay 267

berkeley_udp_server 268

blinky_leds 109

Bluetooth Demonstrations 22

BMX Peripheral Library Examples 89

Bootloader Demonstrations 39

Building the Application 3, 5, 8, 14, 17, 19, 20, 24, 27, 35, 39, 43, 47, 49,
51, 55, 57, 59, 60, 65, 68, 69, 70, 77, 79, 80, 82, 84, 85, 87, 89, 90, 93,
95, 96, 97, 99, 100, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114,
116, 118, 120, 121, 122, 123, 125, 127, 129, 130, 137, 139, 142, 143,
144, 146, 147, 149, 151, 155, 157, 159, 161, 164, 166, 168, 170, 175,
178, 181, 187, 189, 196, 200, 204, 206, 208, 210, 223, 224, 225, 228,
230, 233, 234, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 248,
249, 250, 251, 253, 254, 255, 256, 257, 258, 264, 265, 266, 267, 268,
270, 272, 273, 274, 275, 276, 277, 278, 279, 285, 288, 296, 299, 301,
312, 315, 317, 326, 327, 329, 336, 339, 342, 343, 346, 347, 349, 352,
353, 355, 356, 358, 359, 360, 362, 363, 365, 366, 367, 369, 370, 371

ADC Peripheral Library Demonstration (adc_pot) 77

ADC Peripheral Library Demonstration (adc_pot_dma) 77

ADCHS Peripheral Library Demonstration (adchs_3ch_dma) 79

ADCHS Peripheral Library Demonstration (adchs_oversample) 80

ADCHS Peripheral Library Demonstration (adchs_pot) 82

ADCHS Peripheral Library Demonstration (adchs_sensor) 84

ADCHS Peripheral Library Demonstration (adchs_touchsense) 85

Audio Demonstrations (audio_microphone_loopback) 3

Audio Demonstrations (audio_tone) 5

Audio Demonstrations (mac_audio_hi_res) 8

Audio Demonstrations (sdcard_usb_audio) 11

Audio Demonstrations (universal_audio_decoders) 14

Audio Demonstrations (usb_headset) 17

Audio Demonstrations (usb_microphone) 19

Audio Demonstrations (usb_speaker) 20

BMX Peripheral Library Demonstration (mem_partition) 89

Bootloader Demonstration (basic) 39

Bootloader Demonstration (LiveUpdate_uart_bootloader) 43

CAN Library Demonstration (echo_send) 90

Class B Library Demonstration (ClassBDemo) 47

Command Processor System Service Library Demonstration
(command_appio) 129

Comparator Peripheral Library Demonstration (simple_comparator)
93

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 374

Console System Service Library Demonstration
(multi_instance_console) 130

Crypto Library Demonstration (encrypt_decrypt) 49

Crypto Library Demonstration (large_hash) 51

CVREF Peripheral Library Demonstration (triangle_wave) 95

DDR Peripheral Library Demonstration (write_read_ddr2) 96

Debug System Service Library Demonstration (debug_uart) 137

Debug System Service Library Demonstration (debug_usb_cdc_2)
139

Device Control System Service Library Demonstration
(devcon_cache_clean) 142

Device Control System Service Library Demonstration
(devcon_cache_invalidate) 143

Device Control System Service Library Demonstration
(devcon_sys_config_perf) 144

DMA Peripheral Library Demonstration (dma_led_pattern) 97

DMA System Service Library Demonstration (dma_crc) 146

EBI Peripheral Library Demonstration (sram_read_write) 99

External Memory Programmer Demonstration (external_flash) 149

External Memory Programmer Demonstration (sqi_flash) 151

File System Demonstrations (nvm_fat_single_disk) 155

File System Demonstrations (nvm_mpfs_single_disk) 157

File System Demonstrations (nvm_sdcard_fat_mpfs_multi_disk) 159

File System Demonstrations (nvm_sdcard_fat_multi_disk) 161

File System Demonstrations (sdcard_fat_single_disk) 164

File System Demonstrations (sdcard_msd_fat_multi_disk) 166

File System Demonstrations (sst25_fat) 168

Graphics Demonstration (basic_image_motion) 170

Graphics Demonstration (emwin_quickstart) 175

Graphics Demonstration (external_resources) 178

Graphics Demonstration (lcc) 187

Graphics Demonstrations (graphics_showcase) 181

Graphics Demonstrations (s1d13517) 206

Graphics Demonstrations (ssd1926) 208

Graphics Demonstrations (wvga_glcd) 210

Graphics Library Demonstrations (media_image_viewer) 189

Graphics Library Demonstrations (object) 196

Graphics Library Demonstrations (primitive) 200

I2C Driver Demonstration (i2c_rtcc) 55

I2C Peripheral Library Demonstration (i2c_interrupt) 100

Input Capture Peripheral Library Demonstration (ic_basic) 102

MEB II Demonstrations (gfx_camera) 223

MEB II Demonstrations (gfx_cdc_com_port_single) 224

MEB II Demonstrations (gfx_photo_frame) 225

MEB II Demonstrations (gfx_web_server_nvm_mpfs) 228

NVM Driver Demonstration (nvm_read_write) 57

NVM Peripheral Library Demonstration (nvm_modify) 103

Oscillator Peripheral Library Demonstration (osc_config) 107

Output Compare Peripheral Library Demonstration (oc_pwm) 105

PIC32 Bluetooth Stack Demonstrations (data_basic) 24

PIC32 Bluetooth Stack Library Demonstrations (a2dp_avrcp) 35

PIC32 Bluetooth Stack Library Demonstrations
(data_temp_sens_rgb) 27

Pipelined ADC Peripheral Library Demonstration (adcp_cal) 87

PMP Peripheral Library Demonstration (pmp_lcd) 108

Ports Peripheral Library Demonstration (blinky_leds) 109

Ports Peripheral Library Demonstrations (cn_interrupt) 110

Power Peripheral Library Demonstration (deep_sleep_mode) 112

Power Peripheral Library Demonstration (sleep_mode) 113

Reset Peripheral Library Demonstration (reset_handler) 114

RTCC Peripheral Library Demonstration (rtcc_alarm) 116

RTCC System Service Library Demonstration (rtcc_timestamps) 147

RTOS Demonstrations/FreeRTOS (basic) 237

RTOS Demonstrations/FreeRTOS (cdc_com_port_dual) 238

RTOS Demonstrations/FreeRTOS (cdc_msd_basic) 239

RTOS Demonstrations/FreeRTOS (gfx) 241

RTOS Demonstrations/FreeRTOS (tcpip_client_server) 242

RTOS Demonstrations/Micriµm (basic) 245, 246

RTOS Demonstrations/Micriµm (gfx) 247

RTOS Demonstrations/Micriµm (gfx_usb) 248

RTOS Demonstrations/OPENRTOS (basic) 250

RTOS Demonstrations/OPENRTOS (cdc_com_port_dual) 251

RTOS Demonstrations/OPENRTOS (cdc_msd_basic) 253

RTOS Demonstrations/OPENRTOS (gfx) 254

RTOS Demonstrations/SEGGER embOS (basic) 255

RTOS Demonstrations/SEGGER embOS (gfx) 256

RTOS Demonstrations/SEGGER embOS (gfx_usb) 257

RTOS Demonstrations/SEGGER embOS (usb) 258

RTOS Demonstrations/ThreadX (basic) 233

RTOS Demonstrations/ThreadX (gfx) 234

RTOS Demonstrations/ThreadX (gfx_usb) 235

RTOS Demonstrations/ThreadX (usb) 236

SPI Demonstrations (spi_loopback) 118

SPI Driver Demonstration (serial_eeprom) 59

SPI Driver Demonstration (spi_loopback) 60

SPI Driver Demonstration (spi_multislave) 65

SPI Flash Driver Demonstration (sst25vf020b) 68

SQI Demonstrations (flash_read_dma_mode) 120

SQI Demonstrations (flash_read_pio_mode) 121

SQI Demonstrations (flash_read_xip_mode) 122

TCPIP Demonstrations (berkeley_tcp_client) 264

TCPIP Demonstrations (berkeley_tcp_server) 265

TCPIP Demonstrations (berkeley_udp_client) 266

TCPIP Demonstrations (berkeley_udp_relay) 267

TCPIP Demonstrations (berkeley_udp_server) 268

TCPIP Demonstrations (pic32_eth_wifi_web_server) 288

TCPIP Demonstrations (pic32_wifi_web_server) 296

TCPIP Demonstrations (snmpv3_nvm_mpfs) 270

TCPIP Demonstrations (snmpv3_sdcard_fatfs) 272

TCPIP Demonstrations (tcpip_tcp_client) 273

TCPIP Demonstrations (tcpip_tcp_client_server) 274

TCPIP Demonstrations (tcpip_tcp_server) 275

TCPIP Demonstrations (tcpip_udp_client) 276

TCPIP Demonstrations (tcpip_udp_client_server) 277

TCPIP Demonstrations (tcpip_udp_server) 278

TCPIP Demonstrations (web_net_server_nvm_mpfs) 279

TCPIP Demonstrations (web_server_nvm_mpfs) 285

TCPIP Demonstrations (web_server_sdcard_fatfs) 299

TCPIP Demonstrations (wifi_easyconf) 301

TCPIP Demonstrations (wifi_wolfssl_tcp_client) 315

TCPIP Demonstrations (wifi_wolfssl_tcp_server) 317

TCPIP Demonstrations (wolfssl_tcp_client) 326

TCPIP Demonstrations (wolfssl_tcp_server) 327

Test Applications (test_sample) 329

TMR Peripheral Library Demonstration (timer3_interrupt) 123

USART Driver Demonstration (usart_echo) 69

USART Driver Demonstration (usart_loopback) 70

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 375

USART Peripheral Library Demonstration (uart_basic) 125

USB Demonstrations (cdc_msd_basic) 342

USB Device Demonstrations (audio_speaker) 362

USB Device Demonstrations (cdc_com_port_dual_build) 336

USB Device Demonstrations (cdc_com_port_single) 339

USB Device Demonstrations (cdc_serial_emulator) 343

USB Device Demonstrations (cdc_serial_emulator_msd) 346

USB Device Demonstrations (hid_basic) 347

USB Device Demonstrations (hid_joystick) 349

USB Device Demonstrations (hid_keyboard) 352

USB Device Demonstrations (hid_mouse) 353

USB Device Demonstrations (hid_msd_basic) 355

USB Device Demonstrations (msd_basic) 356

USB Device Demonstrations (msd_fs_spiflash) 358

USB Device Demonstrations (msd_sdcard) 359

USB Device Demonstrations (vendor_device) 360

USB Host Demonstrations (cdc_basic) 363

USB Host Demonstrations (cdc_msd) 365

USB Host Demonstrations (hid_basic_mouse) 367

USB Host Demonstrations (hub_cdc_hid) 369

USB Host Demonstrations (hub_msd) 370

USB Host Demonstrations (msd_basic) 371

WDT Peripheral Library Demonstration (wdt_timeout) 127

Bulding the Application 11

C

CAN Peripheral Library Examples 90

cdc_basic 363

cdc_com_port_dual 238, 251, 336

cdc_com_port_single 339

cdc_msd 364

cdc_msd_basic 239, 252, 342

cdc_serial_emulator 343

cdc_serial_emulator_msd 346

Class B Library Demonstrations 47

ClassBDemo 47

cn_interrupt 110

Command Processor System Service Examples 128

command_appio 129

Comparator Peripheral Library Examples 93

Configuring MHC 152

Configuring the Hardware 4, 5, 8, 11, 14, 18, 19, 20, 24, 28, 36, 40, 44,
47, 50, 51, 56, 58, 60, 61, 66, 69, 70, 71, 77, 78, 79, 81, 83, 84, 86, 88,
90, 91, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107, 108, 110, 111, 112,
114, 115, 117, 118, 120, 121, 122, 124, 126, 127, 129, 131, 137, 140,
142, 143, 145, 146, 148, 149, 151, 156, 158, 160, 162, 164, 166, 168,
170, 176, 178, 182, 188, 190, 197, 200, 205, 207, 209, 211, 224, 225,
226, 229, 230, 233, 234, 235, 236, 238, 239, 240, 241, 242, 246, 247,
248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 264, 265, 266,
268, 269, 270, 272, 273, 275, 276, 277, 278, 279, 280, 285, 289, 297,
300, 302, 312, 315, 318, 326, 327, 330, 337, 340, 343, 344, 346, 348,
350, 352, 354, 356, 357, 358, 359, 360, 362, 363, 365, 366, 368, 369,
370, 372

ADC Demonstrations (adc_pot) 77

ADC Demonstrations (adc_pot_dma) 78

ADCHS Demonstrations (adchs_3ch_dma) 79

ADCHS Demonstrations (adchs_oversample) 81

ADCHS Demonstrations (adchs_pot) 83

ADCHS Demonstrations (adchs_sensor) 84

ADCHS Demonstrations (adchs_touchsense) 86

Audio Demonstrations (audio_microphone_loopback) 4

Audio Demonstrations (audio_tone) 5

Audio Demonstrations (mac_audio_hi_res) 8

Audio Demonstrations (sdcard_usb_audio) 11

Audio Demonstrations (universal_audio_decoders) 14

Audio Demonstrations (usb_headset) 18

Audio Demonstrations (usb_microphone) 19

Audio Demonstrations (usb_speaker) 20

BMX Demonstrations (mem_partition) 90

Bootloader Demonstration (basic) 40

Bootloader Demonstration (LiveUpdate_uart_bootloader) 44

CAN Library Demonstration (echo_send) 91

Class B Library Demonstration (ClassBDemo) 47

Command Processor System Service Library Demonstration
(command_appio) 129

Console System Service Library Demonstration
(multi_instance_console) 131

Crypto Library Demonstration (encrypt_decrypt) 50

Crypto Library Demonstration (large_hash) 51

DDR Peripheral Library Demonstration (write_read_ddr2) 97

Debug System Service Library Demonstration (debug_uart) 137

Debug System Service Library Demonstration (debug_usb_cdc_2)
140

Device Control System Service Library Demonstration
(devcon_cache_clean) 142

Device Control System Service Library Demonstration
(devcon_cache_invalidate) 143

Device Control System Service Library Demonstration
(devcon_sys_config_perf) 145

DMA Demonstrations (dma_led_pattern) 98

DMA System Service Library Demonstration (dma_crc) 146

EBI Demonstrations (sram_read_write) 99

External Memory Programmer Demonstration (external_flash) 149

External Memory Programmer Demonstration (sqi_flash) 151

File System Demonstrations (nvm_fat_single_disk) 156

File System Demonstrations (nvm_mpfs_single_disk) 158

File System Demonstrations (nvm_sdcard_fat_mpfs_multi_disk) 160

File System Demonstrations (nvm_sdcard_fat_multi_disk) 162

File System Demonstrations (sdcard_fat_single_disk) 164

File System Demonstrations (sdcard_msd_fat_multi_disk) 166

File System Demonstrations (sst25_fat) 168

Graphics Demonstration (basic_image_motion) 170

Graphics Demonstration (emwin_quickstart) 176

Graphics Demonstration (external_resources) 178

Graphics Demonstration (lcc) 188

Graphics Demonstrations (graphics_showcase) 182

Graphics Demonstrations (s1d13517) 207

Graphics Demonstrations (ssd1926) 209

Graphics Demonstrations (wvga_glcd) 211

Graphics Library Demonstrations (media_image_viewer) 190

Graphics Library Demonstrations (object) 197

Graphics Library Demonstrations (primitive) 200

I2C Demonstrations (i2c_interrupt) 101

I2C Driver Demonstration (i2c_rtcc) 56

Input Capture Demonstrations (ic_basic) 103

MEB II Demonstration (gfx_photo_frame) 226

MEB II Demonstration (gfx_web_server_nvm_mpfs) 229

MEB II Demonstrations (gfx_camera) 224

MEB II Demonstrations (gfx_cdc_com_port_single) 225

NVM Demonstrations (nvm_modify) 104

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 376

NVM Driver Demonstration (nvm_read_write) 58

Oscillator Demonstrations (osc_config) 107

Output Compare Demonstrations (oc_pwm) 106

PIC32 Bluetooth Stack Library Demonstrations (a2dp_avrcp) 36

PIC32 Bluetooth Stack Library Demonstrations (data_basic) 24

PIC32 Bluetooth Stack Library Demonstrations
(data_temp_sens_rgb) 28

Pipelined ADC Demonstrations (adcp_cal) 88

PMP Demonstrations (pmp_lcd) 108

Ports Demonstrations (blinky_leds) 110

Ports Peripheral Library Demonstrations (cn_interrupt) 111

Power Demonstrations (deep_sleep_mode) 112

Power Demonstrations (sleep_mode) 114

Reset Demonstrations (reset_handler) 115

Reset Demonstrations (simple_comparator) 94

Reset Demonstrations (triangle_wave) 95

RTCC Demonstrations (rtcc_alarm) 117

RTCC System Service Library Demonstration (rtcc_timestamps) 148

RTOS Demonstration/FreeRTOS (gfx) 241

RTOS Demonstration/FreeRTOS (tcpip_client_server) 242

RTOS Demonstrations/FreeRTOS (basic) 238

RTOS Demonstrations/FreeRTOS (cdc_com_port_dual) 239

RTOS Demonstrations/FreeRTOS (cdc_msd_basic) 240

RTOS Demonstrations/Micriµm (basic) 246, 247

RTOS Demonstrations/Micriµm (gfx) 248

RTOS Demonstrations/Micriµm (gfx_usb) 249

RTOS Demonstrations/Micriµm (usb) 250

RTOS Demonstrations/OPENRTOS (basic) 251

RTOS Demonstrations/OPENRTOS (cdc_com_port_dual) 252

RTOS Demonstrations/OPENRTOS (cdc_msd_basic) 253

RTOS Demonstrations/OPENRTOS (gfx) 254

RTOS Demonstrations/SEGGER embOS (basic) 256

RTOS Demonstrations/SEGGER embOS (gfx) 257

RTOS Demonstrations/SEGGER embOS (gfx_usb) 258

RTOS Demonstrations/SEGGER embOS (usb) 259

RTOS Demonstrations/ThreadX (basic) 233

RTOS Demonstrations/ThreadX (gfx) 234

RTOS Demonstrations/ThreadX (gfx_usb) 235

RTOS Demonstrations/ThreadX (usb) 236

SPI Demonstrations (spi_loopback) 118

SPI Driver Demonstration (serial_eeprom) 60

SPI Driver Demonstration (spi_loopback) 61

SPI Driver Demonstration (spi_multislave) 66

SPI Flash Driver Demonstration (sst25vf020b) 69

SQI Demonstrations (flash_read_pio_mode) 121

SQI Demonstrations (flash_read_xip_mode) 122

TCPIP Demonstrations (berkeley_tcp_client) 264

TCPIP Demonstrations (berkeley_tcp_server) 265

TCPIP Demonstrations (berkeley_udp_client) 266

TCPIP Demonstrations (berkeley_udp_relay) 268

TCPIP Demonstrations (berkeley_udp_server) 269

TCPIP Demonstrations (pic32_eth_wifi_web_server) 289

TCPIP Demonstrations (pic32_wifi_web_server) 297

TCPIP Demonstrations (snmpv3_nvm_mpfs) 270

TCPIP Demonstrations (snmpv3_sdcard_fatfs) 272

TCPIP Demonstrations (tcpip_tcp_client) 273

TCPIP Demonstrations (tcpip_tcp_client_server) 275

TCPIP Demonstrations (tcpip_tcp_server) 276

TCPIP Demonstrations (tcpip_udp_client) 277

TCPIP Demonstrations (tcpip_udp_client_server) 278

TCPIP Demonstrations (tcpip_udp_server) 279

TCPIP Demonstrations (web_net_server_nvm_mpfs) 280

TCPIP Demonstrations (web_server_nvm_mpfs) 285

TCPIP Demonstrations (web_server_sdcard_fatfs) 300

TCPIP Demonstrations (wifi_easyconf) 302

TCPIP Demonstrations (wifi_wolfssl_tcp_client) 315

TCPIP Demonstrations (wifi_wolfssl_tcp_server) 318

TCPIP Demonstrations (wolfssl_tcp_client) 326

TCPIP Demonstrations (wolfssl_tcp_server) 327

Test Applications (test_sample) 330

TMR Demonstrations (timer3_interrupt) 124

USART Demonstration (usart_echo) 70

USART Demonstrations (uart_basic) 126

USART Driver Demonstration (usart_loopback) 71

USB Device Demonstration (cdc_com_port_dual) 337

USB Device Demonstration (cdc_com_port_single) 340

USB Device Demonstration (cdc_serial_emulator) 344

USB Device Demonstration (cdc_serial_emulator_msd) 346

USB Device Demonstration (hid_basic) 348

USB Device Demonstration (hid_keyboard) 352

USB Device Demonstration (hid_mouse) 354

USB Device Demonstration (hid_msd_basic) 356

USB Device Demonstrations (audio_speaker) 362

USB Device Demonstrations (cdc_msd_basic) 343

USB Device Demonstrations (hid_joystick) 350

USB Device Demonstrations (msd_basic) 357

USB Device Demonstrations (msd_fs_spiflash) 358

USB Device Demonstrations (msd_sdcard) 359

USB Device Demonstrations (vendor_device) 360

USB Host Demonstration (cdc_basic) 363

USB Host Demonstrations (cdc_msd) 365

USB Host Demonstrations (hid_basic_mouse) 368

USB Host Demonstrations (hub_cdc_hid) 369

USB Host Demonstrations (hub_msd) 370

USB Host Demonstrations (msd_basic) 372

WDT Demonstrations (wdt_timeout) 127

Configuring the Hardware\SQI Demonstrations (flash_read_dma_mode)
120

Configuring the MHC 170, 179, 182, 190, 205, 280

Configuring the MHC\Graphics Demonstration (basic_image_motion) 170

Configuring the MHC\Graphics Demonstration (external_resources) 179

Console System Service Examples 130

Crypto Demonstrations 49

CVREF Peripheral Library Examples 94

D

Data Demonstrations 23

data_basic 23

data_temp_sens_rgb 27

DDR Peripheral Library Examples 96

Debug System Service Examples 136

debug_uart 136

debug_usb_cdc_2 139

deep_sleep_mode 112

Demonstration Application Configurations 334

Demonstration Functionality 22

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 377

Demonstrations 3, 22, 39, 47, 49, 55, 57, 59, 68, 69, 76, 78, 87, 89, 90,
93, 94, 96, 97, 99, 100, 102, 103, 105, 106, 108, 109, 112, 114, 116,
117, 119, 123, 125, 127, 128, 130, 136, 141, 146, 147, 149, 155, 169,
223, 263, 336

ADC Peripheral Library 76

ADCHS Peripheral Library 78

Audio Demonstrations (audio_microphone_loopback) 3

BMX Peripheral Library 89

Bootloader 39

CAN Library 90

Class B Library 47

Command Processor System Service Library 128

Comparator Peripheral Library 93

Console System Service Library 130

Crypto Library 49

CVREF Peripheral Library 94

DDR Peripheral Library 96

Debug System Service Library 136

Device Control System Service Library 141

DMA Peripheral Library 97

DMA System Service Library 146

EBI Peripheral Library 99

File System 155

Graphics Library 169

I2C Driver 55

I2C Peripheral Library 100

Input Capture Peripheral Library 102

MEB II Demonstrations 223

NVM Driver 57

NVM Peripheral Library 103

OSC Peripheral Library 106

Output Compare Peripheral Library 105

PIC32 Bluetooth Stack Library 23

Pipelined ADC Peripheral Library 87

PMP Peripheral Library 108

Ports Peripheral Library 109

Power Peripheral Library 112

Programmer 149

Reset Peripheral Library 114

RTCC Peripheral Library 116

RTCC System Service Library 147

SPI Driver 59

SPI Flash Driver 68

SPI Peripheral Library 117

SQI Peripheral Library 119

TCPIP 263

TMR Peripheral Library 123

USART Driver 69

USART Peripheral Library 125

USB 336

WDT Peripheral Library 127

devcon_cache_clean 141

devcon_cache_invalidate 143

devcon_sys_config_perf 144

Device 336

Device Control System Service Examples 141

DMA Peripheral Library Examples 97

DMA System Service Examples 145

dma_crc 146

dma_led_pattern 97

Driver Demonstrations 55

E

EBI Peripheral Library Examples 99

echo_send 90

emwin_quickstart 174

encrypt_decrypt 49

Examples 76

Express Logic ThreadX Demonstrations 232

External Memory Programmer Demonstrations 149

external_flash 149

external_resources 176

F

File System Demonstrations 155

flash_modify 103

flash_read_dma_mode 119

flash_read_pio_mode 120

flash_read_xip_mode 122

FreeRTOS Demonstrations 237

G

gfx 233, 241, 247, 254, 256

gfx_camera 223

gfx_cdc_com_port_single 224

gfx_photo_frame 225

gfx_usb 235, 248, 257

gfx_web_server_nvm_mpfs 228

Graphics Demonstrations 169

graphics_showcase 181

H

hid_basic 347

hid_basic_keyboard 366

hid_basic_mouse 367

hid_joystick 349

hid_keyboard 352

hid_mouse 353

hid_msd_basic 355

Host 361

hub_cdc_hid 368

hub_msd 370

I

I2C Driver Demonstrations 55

I2C Peripheral Library Examples 100

i2c_interrupt 100

i2c_rtcc 55

ic_basic 102

Input Capture Peripheral Library Examples 102

Introduction 3, 22, 39, 47, 49, 55, 57, 59, 68, 69, 76, 78, 87, 89, 90, 93,
94, 96, 97, 99, 100, 102, 103, 105, 106, 108, 109, 112, 114, 116, 117,
119, 123, 125, 126, 128, 130, 136, 141, 145, 147, 149, 155, 169, 223,
232, 260, 329, 331

ADC Demonstrations 76

ADCHS Demonstrations 78

BMX Demonstrations 89

Bootloader Demonstrations 39

CAN Library Demonstrations 90

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 378

Class B Library Demonstrations 47

CMP Demonstrations 93

Command Processor System Service Library Demonstrations 128

Console System Service Library Demonstrations 130

Crypto Library Demonstrations 49

CVREF Demonstrations 94

DDR Demonstrations 96

Debug System Service Library Demonstrations 136

Device Control System Service Library Demonstrations 141

DMA Demonstrations 97

DMA System Service Library Demonstrations 145

EBI Demonstrations 99

External Memory Programmer Demonstrations 149

File System Demonstrations 155

I2C Demonstrations 100

I2C Driver Demonstrations 55

IC Demonstrations 102

NVM Demonstrations 103

NVM Driver Demonstrations 57

OC Demonstrations 105

OSC Demonstrations 106

Peripheral Library Example Applications 76

PIC32 Bluetooth Stack Library Demonstrations 22

Pipelined ADC Demonstrations 87

PMP Demonstrations 108

PORTS Demonstrations 109

Power Demonstrations 112

RESET Demonstrations 114

RTCC Demonstrations 116

RTCC System Service Library Demonstrations 147

RTOS Demonstrations 232

SEGGER emWin MEB II Demonstration 223

SPI Demonstrations 117

SPI Driver Demonstrations 59, 68

SQI Demonstrations 119

TCPIP Demonstrations 260

Test Help 329

TMR Demonstrations 123

USART Demonstrations 125

USART Driver Demonstration 69

USB Demonstrations 331

WDT Demonstrations 126

L

large_hash 50

lcc 187

LiveUpdate 43

M

mac_audio_hi_res 7

MEB II Demonstrations 223

media_image_viewer 189

mem_partition 89

Micrium uC/OS-III Demonstrations 246

Micrium uC_OS_II Demonstrations 245

msd_basic 356, 371

msd_fs_spiflash 358

msd_sdcard 359

multi_instance_console 130

my_first_app 76

N

NVM Driver Demonstration 57

NVM Peripheral Library Examples 103

nvm_fat_single_disk 155

nvm_mpfs_single_disk 157

nvm_read_write 57

nvm_sdcard_fat_mpfs_multi_disk 159

nvm_sdcard_fat_multi_disk 161

O

object 195

oc_pwm 105

OPENRTOS Demonstrations 250

osc_config 106

Oscillator Peripheral Library Examples 106

Output Compare Peripheral Library Examples 105

P

Peripheral Library Examples 76

pic32_eth_web_server 284

pic32_eth_wifi_web_server 287

pic32_wifi_web_server 296

Pipelined ADC (ADCP) Peripheral Library Examples 87

PMP Peripheral Library Examples 108

pmp_lcd 108

Ports Peripheral Library Examples 109

Power Peripheral Library Examples 112

Premium Demonstrations 35

primitive 198

R

Reset Peripheral Library Examples 114

reset_handler 114

resistive_touch_calibrate 204

RTCC Peripheral Library Examples 116

RTCC System Service Examples 147

rtcc_alarm 116

rtcc_timestamps 147

RTOS Demonstrations 232

Running the Application 330

SPI Driver Demonstration (spi_loopback) 65

SPI Driver Demonstration (spi_multislave) 67

Test Applications (test_sample) 330

USART Driver Demonstration (usart_loopback) 74

Running the Demonstration 4, 6, 8, 11, 15, 18, 19, 21, 24, 28, 36, 42, 45,
48, 50, 53, 56, 58, 60, 65, 67, 69, 70, 74, 77, 78, 79, 81, 83, 85, 86, 88,
90, 91, 94, 96, 97, 98, 100, 101, 103, 104, 106, 107, 109, 110, 111, 113,
114, 115, 117, 119, 120, 122, 123, 124, 126, 128, 129, 131, 138, 140,
142, 144, 145, 146, 148, 150, 154, 156, 158, 160, 162, 165, 167, 168,
172, 176, 180, 183, 188, 191, 197, 203, 206, 207, 209, 211, 224, 225,
226, 229, 231, 233, 234, 235, 236, 238, 239, 240, 241, 243, 246, 247,
248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 264, 266, 267,
268, 269, 270, 272, 274, 275, 276, 277, 278, 279, 283, 285, 295, 298,
300, 310, 313, 316, 319, 326, 328, 338, 341, 343, 344, 347, 348, 350,
353, 355, 356, 357, 358, 359, 361, 362, 364, 365, 367, 368, 369, 370,
372

Audio Demonstrations (audio_microphone_loopback) 4

Audio Demonstrations (audio_tone) 6

Audio Demonstrations (mac_audio_hi_res) 8

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 379

Audio Demonstrations (sdcard_usb_audio) 11

Audio Demonstrations (universal_audio_decoders) 15

Audio Demonstrations (usb_headset) 18

Audio Demonstrations (usb_microphone) 19

Audio Demonstrations (usb_speaker) 21

Bootloader Demonstration (basic) 42

Bootloader Demonstration (LiveUpdate_uart_bootloader) 45

CAN Library Demonstration (echo_send) 91

Class B Library Demonstration (ClassBDemo) 48

Command Processor System Service Library Demonstration
(command_appio) 129

Console System Service Library Demonstration
(multi_instance_console) 131

Crypto Library Demonstration (encrypt_decrypt) 50

Crypto Library Demonstration (large_hash) 53

Debug System Service Library Demonstration (debug_uart) 138

Debug System Service Library Demonstration (debug_usb_cdc_2)
140

Device Control System Service Library Demonstration
(devcon_cache_clean) 142

Device Control System Service Library Demonstration
(devcon_cache_invalidate) 144

Device Control System Service Library Demonstration
(devcon_sys_config_perf) 145

DMA System Service Library Demonstration (dma_crc) 146

External Memory Programmer Demonstration (external_flash) 150

External Memory Programmer Demonstration (sqi_flash) 154

File System Demonstrations (nvm_fat_single_disk) 156

File System Demonstrations (nvm_mpfs_single_disk) 158

File System Demonstrations (nvm_sdcard_fat_mpfs_multi_disk) 160

File System Demonstrations (nvm_sdcard_fat_multi_disk) 162

File System Demonstrations (sdcard_fat_single_disk) 165

File System Demonstrations (sdcard_msd_fat_multi_disk) 167

File System Demonstrations (sst25_fat) 168

Graphics Demonstrations (graphics_showcase) 183

Graphics Demonstrations (s1d13517) 207

Graphics Demonstrations (ssd1926) 209

Graphics Demonstrations (wvga_glcd) 211

Graphics Library Demonstrations (media_image_viewer) 191

Graphics Library Demonstrations (object) 197

Graphics Library Demonstrations (primitive) 203

I2C Driver Demonstration (i2c_rtcc) 56

MEB II Demonstrations (gfx_camera) 224

NVM Driver Demonstration (nvm_read_write) 58

PIC32 Bluetooth Stack Library Demonstrations (a2dp_avrcp) 36

PIC32 Bluetooth Stack Library Demonstrations (data_basic) 24

PIC32 Bluetooth Stack Library Demonstrations
(data_temp_sens_rgb) 28

Ports Peripheral Library Demonstrations (cn_interrupt) 111

RTCC System Service Library Demonstration (rtcc_timestamps) 148

RTOS Demonstrations/FreeRTOS (basic) 238

RTOS Demonstrations/FreeRTOS (cdc_com_port_dual) 239

RTOS Demonstrations/FreeRTOS (cdc_msd_basic) 240

RTOS Demonstrations/FreeRTOS (gfx) 241

RTOS Demonstrations/FreeRTOS (tcpip_client_server) 243

RTOS Demonstrations/Micriµm (basic) 246, 247

RTOS Demonstrations/Micriµm (gfx) 248

RTOS Demonstrations/Micriµm (gfx_usb) 249

RTOS Demonstrations/Micriµm (usb) 249, 250

RTOS Demonstrations/OPENRTOS (basic) 251

RTOS Demonstrations/OPENRTOS (cdc_com_port_dual) 252

RTOS Demonstrations/OPENRTOS (cdc_msd_basic) 253

RTOS Demonstrations/OPENRTOS (gfx) 255

RTOS Demonstrations/SEGGER embOS (basic) 256

RTOS Demonstrations/SEGGER embOS (gfx) 257

RTOS Demonstrations/SEGGER embOS (gfx_usb) 258

RTOS Demonstrations/SEGGER embOS (usb) 259

RTOS Demonstrations/ThreadX (basic) 233

RTOS Demonstrations/ThreadX (gfx) 234

RTOS Demonstrations/ThreadX (gfx_usb) 235

RTOS Demonstrations/ThreadX (usb) 236

SPI Driver Demonstration (serial_eeprom) 60

SPI Flash Driver Demonstration (sst25vf020b) 69

TCPIP Demonstrations (berkeley_tcp_client) 264

TCPIP Demonstrations (berkeley_tcp_server) 266

TCPIP Demonstrations (berkeley_udp_client) 267

TCPIP Demonstrations (berkeley_udp_relay) 268

TCPIP Demonstrations (berkeley_udp_server) 269

TCPIP Demonstrations (pic32_eth_wifi_web_server) 295

TCPIP Demonstrations (pic32_wifi_web_server) 298

TCPIP Demonstrations (snmpv3_nvm_mpfs) 270

TCPIP Demonstrations (snmpv3_sdcard_fatfs) 272

TCPIP Demonstrations (tcpip_tcp_client) 274

TCPIP Demonstrations (tcpip_tcp_client_server) 275

TCPIP Demonstrations (tcpip_tcp_server) 276

TCPIP Demonstrations (tcpip_udp_client) 277

TCPIP Demonstrations (tcpip_udp_client_server) 278

TCPIP Demonstrations (tcpip_udp_server) 279

TCPIP Demonstrations (web_net_server_nvm_mpfs) 283

TCPIP Demonstrations (web_server_nvm_mpfs) 285

TCPIP Demonstrations (web_server_sdcard_fatfs) 300

TCPIP Demonstrations (wifi_easyconf) 310

TCPIP Demonstrations (wifi_wolfssl_tcp_client) 316

TCPIP Demonstrations (wifi_wolfssl_tcp_server) 319

TCPIP Demonstrations (wolfssl_tcp_client) 326

TCPIP Demonstrations (wolfssl_tcp_server) 328

USART Demonstrations (usart_echo) 70

USB Demonstrations (cdc_com_port_dual) 338

USB Demonstrations (cdc_serial_emulator) 344

USB Demonstrations (cdc_serial_emulator_msd) 347

USB Device Demonstration (hid_basic) 348

USB Device Demonstration (hid_keyboard) 352

USB Device Demonstration (hid_msd_basic) 356

USB Device Demonstrations (audio_speaker) 362

USB Device Demonstrations (cdc_com_port_single) 341

USB Device Demonstrations (cdc_msd_basic) 343

USB Device Demonstrations (hid_joystick) 350

USB Device Demonstrations (hid_keyboard) 353

USB Device Demonstrations (hid_mouse) 355

USB Device Demonstrations (msd_basic) 357

USB Device Demonstrations (msd_fs_spiflash) 358

USB Device Demonstrations (msd_sdcard) 359

USB Device Demonstrations (vendor_device) 361

USB Host Demonstrations (cdc_basic) 364

USB Host Demonstrations (cdc_msd) 365

USB Host Demonstrations (hid_basic_mouse) 368

USB Host Demonstrations (hub_cdc_hid) 369

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 380

USB Host Demonstrations (hub_msd) 370

USB Host Demonstrations (msd_basic) 372

Running the Demonstration\ADC Demonstrations (adc_pot) 77

Running the Demonstration\ADC Demonstrations (adc_pot_dma) 78

Running the Demonstration\ADCHS Demonstrations (adchs_3ch_dma)
79

Running the Demonstration\ADCHS Demonstrations
(adchs_oversample) 81

Running the Demonstration\ADCHS Demonstrations (adchs_pot) 83

Running the Demonstration\ADCHS Demonstrations (adchs_sensor) 85

Running the Demonstration\ADCHS Demonstrations
(adchs_touchsense) 86

Running the Demonstration\BMX Demonstrations (mem_partition) 90

Running the Demonstration\DDR Peripheral Library Demonstration
(write_read_ddr2) 97

Running the Demonstration\DMA Demonstrations (dma_led_pattern) 98

Running the Demonstration\EBI Demonstrations (sram_read_write) 100

Running the Demonstration\Graphics Demonstration
(basic_image_motion) 172

Running the Demonstration\Graphics Demonstration (emwin_quickstart)
176

Running the Demonstration\Graphics Demonstration
(external_resources) 180

Running the Demonstration\Graphics Demonstration (lcc) 188

Running the Demonstration\I2C Demonstrations (i2c_interrupt) 101

Running the Demonstration\Input Capture Demonstrations (ic_basic) 103

Running the Demonstration\MEB II Demonstrations
(gfx_cdc_com_port_single) 225

Running the Demonstration\MEB II Demonstrations (gfx_photo_frame)
226

Running the Demonstration\MEB II Demonstrations
(gfx_web_server_nvm_mpfs) 229

Running the Demonstration\NVM Demonstrations (nvm_modify) 104

Running the Demonstration\Oscillator Demonstrations (osc_config) 107

Running the Demonstration\Output Compare Demonstrations (oc_pwm)
106

Running the Demonstration\Pipelined ADC Demonstrations (adcp_cal) 88

Running the Demonstration\PMP Demonstrations (pmp_lcd) 109

Running the Demonstration\Ports Demonstrations (blinky_leds) 110

Running the Demonstration\Power Demonstrations (deep_sleep_mode)
113

Running the Demonstration\Power Demonstrations (sleep_mode) 114

Running the Demonstration\Reset Demonstrations (reset_handler) 115

Running the Demonstration\Reset Demonstrations (simple_comparator)
94

Running the Demonstration\Reset Demonstrations (triangle_wave) 96

Running the Demonstration\RTCC Demonstrations (rtcc_alarm) 117

Running the Demonstration\SPI Demonstrations (spi_loopback) 119

Running the Demonstration\SQI Demonstrations
(flash_read_dma_mode) 120

Running the Demonstration\SQI Demonstrations (flash_read_pio_mode)
122

Running the Demonstration\SQI Demonstrations (flash_read_xip_mode)
123

Running the Demonstration\TMR Demonstrations (timer3_interrupt) 124

Running the Demonstration\USART Demonstrations (uart_basic) 126

Running the Demonstration\WDT Demonstrations (wdt_timeout) 128

S

s1d13517 206

sdcard_fat_single_disk 163

sdcard_msd_fat_multi_disk 166

sdcard_usb_audio 10

SEGGER embOS Demonstrations 255

segger_emwin 230

Selecting the Decoders Using MHC 14

serial_eeprom 59

simple_comparator 93

sleep_mode 113

snmpv3_nvm_mpfs 269

snmpv3_sdcard_fatfs 271

SPI Driver Demonstrations 58

SPI Flash Driver Demonstrations 68

SPI Peripheral Library Examples 117

spi_loopback 60, 118

spi_multislave 65

SQI Peripheral Library Examples 119

sqi_flash 150

sram_read_write 99

ssd1926 208

sst25_fat 167

sst25vf020b 68

System Service Library Examples 128

T

TCP/IP Demonstrations 260

tcpip_client_server 242

tcpip_tcp_client 273

tcpip_tcp_client_server 274

tcpip_tcp_server 275

tcpip_udp_client 276

tcpip_udp_client_server 277

tcpip_udp_server 278

Test Applications 329

test_sample 329

Timer Peripheral Library Examples 123

timer3_interrupt 123

triangle_wave 94

U

uart_basic 125

universal_audio_decoders 13

USART Driver Demonstrations 69

USART Peripheral Library Examples 124

usart_echo 69

usart_loopback 70

usb 236, 249, 258

USB Demonstrations 331

USB Device Stack Component Memory Requirements 332

USB Device Stack Demonstration Application Program and Data
Memory Requirements 331

USB HID Host Keyboard and Mouse Tests 333

USB MSD Host USB Pen Drive Tests 333

usb_headset 17

usb_microphone 18

usb_speaker 20

V

vendor 360

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 381

W

WDT Peripheral Library examples 126

wdt_timeout 127

web_net_server_nvm_mpfs 279

web_server_nvm_mpfs 284

web_server_sdcard_fatfs 299

Wi-Fi Console Commands 261

Wi-Fi Demonstration Configuration Matrix 260

wifi_easy_configuration 301

wifi_g_demo 312

wifi_wolfssl_tcp_client 314

wifi_wolfssl_tcp_server 317

wolfssl_tcp_client 325

wolfssl_tcp_server 327

write_read_ddr2 96

wvga_glcd 209

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 382

	MPLAB® Harmony Help - Demo Apps
	Applications Help
	Audio Demonstrations
	Introduction
	Demonstrations
	audio_microphone_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	audio_tone
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	mac_audio_hi_res
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sdcard_usb_audio
	Bulding the Application
	Configuring the Hardware
	Running the Demonstration

	universal_audio_decoders
	Building the Application
	Configuring the Hardware
	Selecting the Decoders Using MHC
	Running the Demonstration

	usb_headset
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_microphone
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_speaker
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Bluetooth Demonstrations
	Introduction
	Demonstrations
	Demonstration Functionality
	Additional Bluetooth Resources
	Data Demonstrations
	data_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	data_temp_sens_rgb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Premium Demonstrations
	a2dp_avrcp
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Bootloader Demonstrations
	Introduction
	Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	LiveUpdate
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Class B Library Demonstrations
	Introduction
	Demonstrations
	ClassBDemo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Crypto Demonstrations
	Introduction
	Demonstrations
	encrypt_decrypt
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	large_hash
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Driver Demonstrations
	I2C Driver Demonstrations
	Introduction
	Demonstrations
	i2c_rtcc
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	NVM Driver Demonstration
	Introduction
	Demonstrations
	nvm_read_write
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SPI Driver Demonstrations
	Introduction
	Demonstrations
	serial_eeprom
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	spi_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	spi_multislave
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SPI Flash Driver Demonstrations
	Introduction
	Demonstrations
	sst25vf020b
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	USART Driver Demonstrations
	Introduction
	Demonstrations
	usart_echo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usart_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Examples
	my_first_app
	Peripheral Library Examples
	Introduction
	ADC Peripheral Library Examples
	Introduction
	Demonstrations
	adc_pot
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	adc_pot_dma
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Examples
	Introduction
	Demonstrations
	adchs_3ch_dma
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	adchs_oversample
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	adchs_pot
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	adchs_sensor
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	adchs_touchsense
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Pipelined ADC (ADCP) Peripheral Library Examples
	Introduction
	Demonstrations
	adcp_cal
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	BMX Peripheral Library Examples
	Introduction
	Demonstrations
	mem_partition
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	CAN Peripheral Library Examples
	Introduction
	Demonstrations
	echo_send
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Comparator Peripheral Library Examples
	Introduction
	Demonstrations
	simple_comparator
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	CVREF Peripheral Library Examples
	Introduction
	Demonstrations
	triangle_wave
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	DDR Peripheral Library Examples
	Introduction
	Demonstrations
	write_read_ddr2
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	DMA Peripheral Library Examples
	Introduction
	Demonstrations
	dma_led_pattern
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	EBI Peripheral Library Examples
	Introduction
	Demonstrations
	sram_read_write
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	I2C Peripheral Library Examples
	Introduction
	Demonstrations
	i2c_interrupt
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Input Capture Peripheral Library Examples
	Introduction
	Demonstrations
	ic_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	NVM Peripheral Library Examples
	Introduction
	Demonstrations
	flash_modify
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Output Compare Peripheral Library Examples
	Introduction
	Demonstrations
	oc_pwm
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Oscillator Peripheral Library Examples
	Introduction
	Demonstrations
	osc_config
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	PMP Peripheral Library Examples
	Introduction
	Demonstrations
	pmp_lcd
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Ports Peripheral Library Examples
	Introduction
	Demonstrations
	blinky_leds
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cn_interrupt
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Power Peripheral Library Examples
	Introduction
	Demonstrations
	deep_sleep_mode
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sleep_mode
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Reset Peripheral Library Examples
	Introduction
	Demonstrations
	reset_handler
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	RTCC Peripheral Library Examples
	Introduction
	Demonstrations
	rtcc_alarm
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SPI Peripheral Library Examples
	Introduction
	Demonstrations
	spi_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SQI Peripheral Library Examples
	Introduction
	Demonstrations
	flash_read_dma_mode
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	flash_read_pio_mode
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	flash_read_xip_mode
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Timer Peripheral Library Examples
	Introduction
	Demonstrations
	timer3_interrupt
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	USART Peripheral Library Examples
	Introduction
	Demonstrations
	uart_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	WDT Peripheral Library examples
	Introduction
	Demonstrations
	wdt_timeout
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	System Service Library Examples
	Introduction
	Command Processor System Service Examples
	Introduction
	Demonstrations
	command_appio
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Console System Service Examples
	Introduction
	Demonstrations
	multi_instance_console
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Debug System Service Examples
	Introduction
	Demonstrations
	debug_uart
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	debug_usb_cdc_2
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Device Control System Service Examples
	Introduction
	Demonstrations
	devcon_cache_clean
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	devcon_cache_invalidate
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	devcon_sys_config_perf
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	DMA System Service Examples
	Introduction
	Demonstrations
	dma_crc
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	RTCC System Service Examples
	Introduction
	Demonstrations
	rtcc_timestamps
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	External Memory Programmer Demonstrations
	Introduction
	Demonstrations
	external_flash
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sqi_flash
	Building the Application
	Configuring the Hardware
	Configuring MHC
	Running the Demonstration

	File System Demonstrations
	Introduction
	Demonstrations
	nvm_fat_single_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	nvm_mpfs_single_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	nvm_sdcard_fat_mpfs_multi_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	nvm_sdcard_fat_multi_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sdcard_fat_single_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sdcard_msd_fat_multi_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sst25_fat
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Graphics Demonstrations
	Introduction
	Demonstrations
	basic_image_motion
	Building the Application
	Configuring the Hardware
	Configuring the MHC
	Running the Demonstration

	emwin_quickstart
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	external_resources
	Building the Application
	Configuring the Hardware
	Configuring the MHC
	Running the Demonstration

	graphics_showcase
	Building the Application
	Configuring the Hardware
	Configuring the MHC
	Running the Demonstration
	Application Functions and Prototypes
	Functions
	APP_ChangeMode Function
	APP_GenerateSysMsgGet Function
	APP_HandleLanguageSetting Function
	APP_HandleTouchTest Function
	APP_ProcessModeState Function
	APP_RedrawRectangle Function
	APP_TouchMessageCallback Function
	APP_UpdateFeatureList Function
	APP_UpdateLanguageTexts Function
	APP_UpdateMainMenu Function
	APP_UpdateSlideShowTips Function

	Data Types and Constants

	lcc
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	media_image_viewer
	Building the Application
	Configuring the Hardware
	Configuring the MHC
	Running the Demonstration
	Application Functions and Prototypes
	Functions
	APP_DoubleBufferingEnable Function
	APP_GoToNextSlide Function
	APP_IsSupportedFile Function
	APP_MetaDataEnable Function
	APP_ReadNextImageHeader Function
	APP_SetSlidePauseTime Function

	Data Types and Constants
	APP_DISK_FILE_NODE Structure
	APP_DISK_FILE_PATH Structure
	APP_DISK_MAX_DIRS Macro
	APP_DISK_MAX_FILES Macro
	APP_LANGUAGES Enumeration

	object
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	primitive
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	resistive_touch_calibrate
	Building the Application
	Configuring the Hardware
	Configuring the MHC
	Running the Demonstration

	s1d13517
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	ssd1926
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wvga_glcd
	Building the Application
	Configuring the Hardware
	Running the Demonstration
	Application Functions and Prototypes
	a) Functions
	APP_DrawBubble Function
	APP_DrawMenu Function
	APP_FillMenuBackBuffer Function
	APP_Initialize Function
	APP_IsCircle Function
	APP_MoveBubble Function
	APP_ProcessMenu Function
	APP_SelectNewSlide Function
	APP_Tasks Function
	APP_TouchEventHandler Function
	APP_HandleHomeSlide Function
	APP_PrepareHomeMode Function
	APP_ReceiveMenuTouch Function

	b) Data Types and Constants
	APP_DATA Structure
	APP_MODES Enumeration
	APP_STATES Enumeration
	APP_GLCD_LAYER0_BUFFER_ADDR Macro
	APP_GLCD_LAYER1_BUFFER_ADDR Macro
	APP_GLCD_LAYER2_BUFFER_ADDR Macro
	APP_GLCD_LAYER2_HOR_RES Macro
	APP_GLCD_LAYER1_ALPHA_RESOLUTION Macro
	APP_HOME_MODE_SEMI_TRANSPARENT_ALPHA_VALUE Macro
	APP_TRANSPARENT_ALPHA_VALUE Macro
	APP_MENU_STATES Enumeration

	MEB II Demonstrations
	Introduction
	Demonstrations
	gfx_camera
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx_cdc_com_port_single
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx_photo_frame
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx_web_server_nvm_mpfs
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	segger_emwin
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	RTOS Demonstrations
	Introduction
	Express Logic ThreadX Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx_usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	FreeRTOS Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_com_port_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_client_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Micrium uC_OS_II Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Micrium uC/OS-III Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx_usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	OPENRTOS Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_com_port_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SEGGER embOS Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	gfx_usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	TCP/IP Demonstrations
	Introduction
	Wi-Fi Demonstration Configuration Matrix
	Wi-Fi Console Commands
	Demonstrations
	berkeley_tcp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_tcp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_udp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_udp_relay
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_udp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	snmpv3_nvm_mpfs
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	snmpv3_sdcard_fatfs
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_tcp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_tcp_client_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_tcp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_udp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_udp_client_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_udp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	web_net_server_nvm_mpfs
	Building the Application
	Configuring the Hardware
	Configuring the MHC
	Running the Demonstration

	web_server_nvm_mpfs
	pic32_eth_web_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	pic32_eth_wifi_web_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	pic32_wifi_web_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	web_server_sdcard_fatfs
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_easy_configuration
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_g_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_wolfssl_tcp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_wolfssl_tcp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wolfssl_tcp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wolfssl_tcp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Test Applications
	Introduction
	Applications
	test_sample
	Building the Application
	Configuring the Hardware
	Running the Application

	USB Demonstrations
	Introduction
	USB Device Stack Demonstration Application Program and Data Memory Requirements
	USB Device Stack Component Memory Requirements
	USB MSD Host USB Pen Drive Tests
	USB HID Host Keyboard and Mouse Tests
	Demonstration Application Configurations
	Demonstrations
	Device
	cdc_com_port_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_com_port_single
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_serial_emulator
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_serial_emulator_msd
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_joystick
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_keyboard
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_mouse
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_fs_spiflash
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_sdcard
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	vendor
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Host
	audio_speaker
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_basic_keyboard
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_basic_mouse
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hub_cdc_hid
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hub_msd
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Index

