
5136-SD-VME-R

User's Guide

Version 1.03

50 Northland Road, Waterloo, Ontario N2V 1N3

(519) 725-5136     fax (519) 725-1515

©1995-1998 S-S Technologies Inc.

Printed in Canada



5136-SD-VME-R User's Guide

©1995-1998 S-S Technologies Inc.



5136-SD-VME-R User's Guide

©1995-1998 S-S Technologies Inc.

Publication Name :

 Publication Revision:

Date Printed:

SDVMER.DOC

1.03

July 23, 1998

©1995-1998 S-S Technologies Inc.

 --This Document Applies To --

5136-SD-VME-R

Interface Card





5136-SD-VME-R User's Guide

i

1. INTRODUCTION ................................................... 1
1.1 Purpose of this Document............................................ 1
1.2 Card Overview ............................................................... 1
1.3 Manual Organization..................................................... 2
1.4 Conventions .................................................................. 2
1.5 Reference Documents ................................................... 3
1.6 Licensing ....................................................................... 3

2. INSTALLATION .................................................... 5
2.1 Card Installation ............................................................ 5
2.2 Setting the Switches and Jumpers .............................. 8

2.2.1 Setting the Short I/O Base Address........................... 8
2.2.2 Address Modifier Codes .......................................... 11
2.2.3 Setting the Interrupt ................................................ 11
2.2.4 Transmit Enable Jumper......................................... 12
2.2.5 SYSFAIL* Jumper................................................... 12

2.3 Short I/O Registers...................................................... 13
2.3.1 Control and Status Register .................................... 13
2.3.2 Interrupt Status/ID Register..................................... 15
2.3.3 Memory Address Register....................................... 16

2.4 Standard Address Space ............................................ 17
2.5 Diagnostic LEDs.......................................................... 17
2.6 Connecting to the Communication Network ............. 18
2.7 Loading a Program on the Card ................................. 19
2.8 VME Programming Notes (READ THIS!!!!!) ............... 20
2.9 Software Modules ....................................................... 20
2.10 Card Options ............................................................. 21
2.11 Troubleshooting Installation .................................... 22

3. THE REMOTE I/O CARD MODULE.................... 23
3.1 Overview................................................................ ...... 23
3.2 Programming Overview .............................................. 24
3.3 Variables and Flags..................................................... 25

3.3.1 BAUD RATE Flags.................................................. 25
3.3.2 CONFIG Flag.......................................................... 25
3.3.3 PLC_TYPE Byte ..................................................... 26
3.3.4 CHK Bytes .............................................................. 26
3.3.5 BT_BASE ............................................................... 26
3.3.6 BT_CONFIG........................................................... 26



5136-SD-VME-R User's Guide

ii

3.3.7 COMM Flag ............................................................ 27
3.3.8 ALL_VIRT_GOOD .................................................. 27

3.4 Enabling and Monitoring Racks................................. 28
3.4.1 Rack Status ............................................................ 28
3.4.2 RACK_ENABLE Table ............................................ 29
3.4.3 Partial Racks .......................................................... 30
3.4.4 Rack Options .......................................................... 33

3.5 Discrete Outputs ......................................................... 35
3.6 Discrete Inputs ............................................................ 36
3.7 Block Transfers ........................................................... 37

3.7.1 Block Transfer Reads.............................................. 37
3.7.2 Block Transfer Writes ............................................. 38
3.7.3 Block Transfers on Virtual Racks ............................ 39
3.7.4 Installing Block Transfers on Virtual Racks.............. 41

3.8 Diagnostic Counters ................................................... 42
3.9 Double Buffering ......................................................... 43

3.9.1 Enabling Double Buffering ...................................... 43
3.9.2 Discrete I/O Double Buffering ................................. 44
3.9.3 Discrete Output Double Buffering............................ 44
3.9.4 Passive Discrete Input Double Buffering ................. 45
3.9.5 Active Discrete Input Double Buffering.................... 46
3.9.6 Block Transfer Double Buffering ............................. 47

3.10 DEM Host Interrupts.................................................. 48
3.11 Running DEM ............................................................ 51

3.11.1 Reconfiguring DEM............................................... 51
3.12 Summary of Memory Locations ............................... 52
3.13 Sample Programs...................................................... 55

TECHNICAL DATA ................................................. 57
ACKNOWLEDGMENTS.......................................... 59
TECHNICAL SUPPORT.......................................... 61
WARRANTY............................................................ 62



5136-SD-VME-R User's Guide

1

1. Introduction

1.1 Purpose of this Document

This document is a user's guide for the SST 5136-SD-VME-R remote
I/O card for Allen-Bradley 1771 remote I/O.  This card makes it
possible for an application running on a VME host computer to
communicate with Allen-Bradley PLCs and monitor 1771 remote I/O.

1.2 Card Overview

The 5136-SD-VME-R interface card provides an intelligent front end
between VMEbus master cards and Allen-Bradley PLCs.

The card is a co-processor card with circuitry to provide a standard bus
interface to the VMEbus backplane.  The card's form factor is
double-height, single-width with electrical connection to the VMEbus
backplane via the P1 connector.  The card acts as a slave on the
VMEbus.

The card contains a Z180 processor which is loaded with software by
the host computer to enable it to perform the communication tasks on
the network.

The card contains no software in ROM; the appropriate interface
software is downloaded to the card from the host computer.

Interaction between the task resident on the card and the application
software on a VME host is made through shared memory.  The lower
32 Kbytes of memory on the card are reserved for the software module
which is downloaded when the card is initialized; the upper 32 Kbytes
are used for data and tables.

The card occupies a 64 Kbyte block of Standard Access space for the
shared memory and a 6-byte "control block" in Short I/O space.  (By
definition, short addressing applies to boards which decode A01-A15.
This mode of addressing is normally used for I/O boards.  A16-A23
are not decoded; therefore the I/O memory is usually, but not always,
mapped into the 64 Kbyte block $FF0000 to $FFFFFF.)  The address
of the control block is set using DIP switches on the card.



5136-SD-VME-R User's Guide

2

There are three registers in the control block which affect the
operation of the card: the control/status register,  the interrupt
status/ID register and the memory address register.  All control block
registers are 1 byte wide.

The control/status register is a read-write register which allows the
host to control and monitor the card.  The interrupt status/ID register
is used for interrupt initialization and processing.  The memory
address register is used to assign the address of the 64  Kbyte block of
RAM associated with the card in the VMEbus standard access memory
map.

The card supports the VMEbus Priority Interrupt Bus.  The interrupt
vector is software selectable using the "Interrupt status/ID" register in
the control block.  The interface card generates interrupt requests
using an I(1) through I(7) (Stationary), ROAK interrupter.  D08(O)
(Stationary) status/ID transfer capability is used.

The card responds to Data D08(O) Transfer Bus (DTB) cycles in the
A16 (Short) addressing mode and D16 or D08(EO) DTB cycles in the
A24 (Standard) addressing mode.  D08(EO) bus cycles are single-byte
cycles.  When 16-bit values are read from the card (i.e. buffer pointers)
the values are organized in low-byte, high-byte order.

The address modifier (AM) codes can be one of standard or short
supervisory data access ($3D, $2D) or standard or short non-privileged
data access ($39, $29).

For diagnostic purposes the card is considered to be a "non-intelligent"
card;  diagnostic routines (i.e. memory test) are performed on the card
by a master processor rather than by the card itself.

1.3 Manual Organization

This document is divided into several sections: part 2 describes how to
install the card,  part 3 describes the card software and the steps in
writing an application.  The appendices give some technical
information on the card and explain how to obtain technical support.

1.4 Conventions

In this manual, a leading $ or 0x indicates a hexadecimal number.

VMEbus signals are shown in bold.  An asterisk indicates an active-
low signal, for example SYSFAIL*.



5136-SD-VME-R User's Guide

3

1.5 Reference Documents

Refer to the appropriate Allen-Bradley documents for information on
Allen-Bradley hardware and cabling.

Refer to “IEEE Standard for a Versatile Backplane Bus: VMEbus”,
ANSI/IEEE Std. 1014-1987 for explanations of VMEbus terminology.

1.6 Licensing

To use the remote I/O module, you must have a license from
Allen-Bradley.  Contact SST for details.

In addition, the card must have the remote I/O option enabled in the
EEPROM on the card.  The “-R” in the part number indicates a card
with the remote I/O option enabled.  Refer to section  2.10 for more
information about card options.





5136-SD-VME-R User's Guide

5

2. Installation

The 5136-SD-VME-R interface card contains components that are
sensitive to electrostatic discharge.  Do not remove the card from its
protective bag without using the following precautions:

• Before handling the card, ground yourself by touching a grounded
object, such as the case of your computer.

• Never touch the backplane connectors or pins.  Handle the card by
its mounting bracket.

• Always store the card in its protective bag.

This chapter describes the procedures for:

• setting the switches and jumpers on the interface card

• installing the card in your computer

• downloading the firmware to the card

• getting the card to communicate on a network and verifying that it
is working

It also contains information about short I/O register usage on the card.

2.1 Card Installation

Before you install the card in the VMEbus chassis, you must decide on
the answers to the following questions:

• which 1 Kbyte block in the Short address space will be used for
card control?

• will interrupts be used?

• should the card respond to supervisory mode commands and data
accesses only?

In order to answer these questions, you must know the memory usage
of the system and the capabilities of the application software.

The answers to these questions determine the settings of  the switches
and jumpers on the card.  These must be set before you install the card
in a VMEbus computer.



5136-SD-VME-R User's Guide

6

The table below shows the use for the various switch positions on the
10 position switch on the card and shows where to look for
information on how to set the switch.

Positions Used to set   Reference
section

1-6 Short I/O address 2.2.1

7 Allowed address modifiers 2.2.2

8-10 Interrupt 2.2.3

In addition there is a jumper which controls transmission from the
card.  Refer to section 2.2.4.

The SYSFAIL* Jumper controls how the card handles the SYSFAIL*
line.  Refer to section 2.2.5.

The following diagrams show the position of the switches, jumpers
and LEDs on each of the cards.



5136-SD-VME-R User's Guide

7

5136-SD-VME-R



5136-SD-VME-R User's Guide

8

2.2 Setting the Switches and Jumpers

2.2.1  Setting the Short I/O Base Address

The 1 Kbyte block of short address space occupied by the card is
located on a 1Kbyte boundary at an address selected by positions 1
through 6 of the switch .  These switch positions correspond to address
bits A15 through A10, respectively, with a switch in the ON position
matching the corresponding address signal as a 0.

Switch Position Address bit

1 A15

2 A14

3 A13

4 A12

5 A11

6 A10

The following table shows possible addresses and the corresponding
switch settings.

Address 1 2 3 4 5 6

FC00 OFF OFF OFF OFF OFF OFF

F800 OFF OFF OFF OFF OFF ON

F400 OFF OFF OFF OFF ON OFF

F000 OFF OFF OFF OFF ON ON

EC00 OFF OFF OFF ON OFF OFF

E800 OFF OFF OFF ON OFF ON

E400 OFF OFF OFF ON ON OFF

E000 OFF OFF OFF ON ON ON

DC00 OFF OFF ON OFF OFF OFF

D800 OFF OFF ON OFF OFF ON

D400 OFF OFF ON OFF ON OFF

D000 OFF OFF ON OFF ON ON

CC00 OFF OFF ON ON OFF OFF

C800 OFF OFF ON ON OFF ON



5136-SD-VME-R User's Guide

9

Address 1 2 3 4 5 6

C400 OFF OFF ON ON ON OFF

C000 OFF OFF ON ON ON ON

BC00 OFF ON OFF OFF OFF OFF

B800 OFF ON OFF OFF OFF ON

B400 OFF ON OFF OFF ON OFF

B000 OFF ON OFF OFF ON ON

AC00 OFF ON OFF ON OFF OFF

A800 OFF ON OFF ON OFF ON

A400 OFF ON OFF ON ON OFF

A000 OFF ON OFF ON ON ON

9C00 OFF ON ON OFF OFF OFF

9800 OFF ON ON OFF OFF ON

9400 OFF ON ON OFF ON OFF

9000 OFF ON ON OFF ON ON

8C00 OFF ON ON ON OFF OFF

8800 OFF ON ON ON OFF ON

8400 OFF ON ON ON ON OFF

8000 OFF ON ON ON ON ON

7C00 ON OFF OFF OFF OFF OFF

7800 ON OFF OFF OFF OFF ON

7400 ON OFF OFF OFF ON OFF

7000 ON OFF OFF OFF ON ON

6C00 ON OFF OFF ON OFF OFF

6800 ON OFF OFF ON OFF ON

6400 ON OFF OFF ON ON OFF

6000 ON OFF OFF ON ON ON

5C00 ON OFF ON OFF OFF OFF

5800 ON OFF ON OFF OFF ON

5400 ON OFF ON OFF ON OFF

5000 ON OFF ON OFF ON ON

4C00 ON OFF ON ON OFF OFF

4800 ON OFF ON ON OFF ON

4400 ON OFF ON ON ON OFF

4000 ON OFF ON ON ON ON

3C00 ON ON OFF OFF OFF OFF



5136-SD-VME-R User's Guide

10

Address 1 2 3 4 5 6

3800 ON ON OFF OFF OFF ON

3400 ON ON OFF OFF ON OFF

3000 ON ON OFF OFF ON ON

2C00 ON ON OFF ON OFF OFF

2800 ON ON OFF ON OFF ON

2400 ON ON OFF ON ON OFF

2000 ON ON OFF ON ON ON

1C00 ON ON ON OFF OFF OFF

1800 ON ON ON OFF OFF ON

1400 ON ON ON OFF ON OFF

1000 ON ON ON OFF ON ON

0C00 ON ON ON ON OFF OFF

0800 ON ON ON ON OFF ON

0400 ON ON ON ON ON OFF

0000 ON ON ON ON ON ON



5136-SD-VME-R User's Guide

11

2.2.2 Address Modifier Codes

The 5136-SD-VME-R provides 8-bit access to objects in its short
address space, and 8- and 16-bit access to objects in its standard
address space.  Whether a particular bus cycle accesses short,
standard, extended, or long (extended and long are not used on the
5136-SD-VME-R) address spaces, and the type of access that is made,
are selected by the VME master through the use of the address
modifier codes.  These codes are decoded by the card and used to
determine the object to be accessed.

In addition to selecting from among the four spaces available on the
VMEbus, address modifier codes also select whether the master is
making a supervisory or non-privileged access, and (for all but short
address space accesses) whether the access is to program or data space,
and whether it is to be a single-object or block access.

The 5136-SD-VME-R can respond to address modifier codes $3D,
$39, $2D, and $29.  This means that supervisory and non-privileged
data accesses may be made to standard address space ($3D and $39),
and that supervisory and non-privileged accesses may be made to short
address space ($2D and $29).  An access which can be positively
determined to address the card, but with an address modifier code that
is not supported, causes a VMEbus error.

The selection of whether only supervisory accesses or both supervisory
and non-privileged accesses are permitted is made with position 7 of
the card’s DIP switch.  The use of this switch is detailed in the
following table.  If a non-privileged access is made to the card when
this switch is in the supervisory only position, a VMEbus error occurs.

Switch position 7 Permitted accesses

ON Both Supervisory and Non-privileged

OFF Supervisory only

2.2.3 Setting the Interrupt

If so enabled, the software module on the local processor can assert a
VME interrupt on the switch-selected level.  The level is set using
positions 8, 9 and 10 of the corresponding switch block.



5136-SD-VME-R User's Guide

12

Switch position Interrupt

8 9 10

ON ON ON none

OFF ON ON 1

ON OFF ON 2

OFF OFF ON 3

ON ON OFF 4

OFF ON OFF 5

ON OFF OFF 6

OFF OFF OFF 7

2.2.4 Transmit Enable Jumper

The jumper labelled TXENA is used to enable or disable transmission
from the card. Transmission is disabled when the jumper is placed
over the pins labelled DISA of the block.  Transmission is enabled
when the jumper is placed over the pins labelled ENA.

The card must transmit so the jumper should be in the ENA position.

2.2.5 SYSFAIL* Jumper

This jumper is labelled P6 on the 5136-SD-VME-R.  When it is in the
ON (right) position, assertion of the SYSFAIL* control bit in the
control register causes the VMEbus SYSFAIL*  signal to be asserted,
the PASS LED to turn off, and the FAIL LED to turn on.  When the
jumper is in the OFF position, the LEDs reflect the state of the
SYSFAIL*  control signal but the card does not drive the VMEbus
signal.



5136-SD-VME-R User's Guide

13

2.3 Short I/O Registers

The card occupies 1 Kbyte of the short I/O space but only three 1-byte
registers are used in that 1K.

The following table gives the map of the registers contained in the
short address space to which the card responds.  Since the short
address space of the card is essentially a D08(O) Slave, the objects in
this space are not at contiguous addresses.  Any attempt to access
addresses other than those specified in the table (e.g. offsets 0, 2 or 4),
or to access objects larger than 8 bits from the card's short address
space, results in a VMEbus error.

Offset from short I/O base Selected register

1 Control and status register

3 Interrupt vector register

5 Memory address register

2.3.1 Control and Status Register

The control and status register permits the host computer to:

• enable/disable the local processor (Z180)

• assert/deassert an interrupt to the local processor

• sense and clear an interrupt from the local processor

• control an indicator LED

• assert/deassert the VME SYSFAIL signal from the card

• enable/disable access to the card's shared RAM

• enable/disable write protection to the local processor's code space

The control and status register is located at offset 1 from the selected
register base address in short address space.  Its bits are all high true,
and their assignments and reset states are detailed in the following
table.



5136-SD-VME-R User's Guide

14

Control/Status Register (byte at offset 1)

BIT FUNCTION R/W RESET

0 local processor reset control R/W 1

1 interrupt to local processor R/W 0

2 clear interrupt from local
processor (reads as 0)

 W 0

3 LED control R/W 0

4 SYSFAIL control R/W 0

5 shared RAM enable R/W 0

6 low 32KB write inhibit R/W 0

7 interrupt from local processor R 0

Setting the local processor reset control bit to '1' holds the processor
on the card in reset and prevents it from running.  Since this is the
case following a system reset, the processor does not run until the host
computer releases it, after the code has been loaded.  When this bit is a
'1' and the host writes a '0' to it, a reset pulse is issued to the Z180 on
the card, causing it to begin execution at its own offset 0000.

The interrupt to local processor bit is used by application software to
get the attention of the module running on the Z180.  This bit cannot
be cleared by the local processor, so the host must clear it when it
detects that the local processor has handled the interrupt.  This
interrupt is edge-sensitive.  No current modules for the card use
interrupts to the local processor.

A status ID is placed on the bus during the interrupt acknowledge
cycle, as specified in the Interrupt ID register.  The local processor
generates an interrupt by setting the interrupt from local processor bit,
which causes the selected VME interrupt signal to be asserted.  This
signal is released when the interrupt acknowledge cycle takes place,
but the interrupt from local processor bit that caused that interrupt
remains set until cleared explicitly by an interrupt service routine.
The routine must do this by writing a '1' to the clear interrupt from
local processor bit, which clears and re-enables the hardware for
further interrupts.

The LED control  bit turns on (1) and off (0) the RUN LED for the
card.  (The STATUS LED is controlled by the local processor directly
and is used by the software as an indicator of its current state.)



5136-SD-VME-R User's Guide

15

Setting the SYSFAIL control bit to '1' asserts the SYSFAIL*  signal on
the VMEbus if the SYSFAIL jumper is in the "ON" position.  This bit
also controls the state of the PASS and FAIL LEDs on the card.

Following reset, the shared RAM enable bit assures that the card will
not drive the VMEbus for any standard address cycles.  This bit must
not be set to '1', enabling access to the shared RAM, until the Memory
Address register has been set to the required base in standard address
space.

Since all of the Z180's memory is shared with the VME host, it may be
desirable to prevent the host from writing to the lower 32 Kbytes of
Z180 memory.  SST software uses the lower 32 Kbytes for Z180 code
and unintentional writes to this area by the host could cause the Z180
software module to crash.  The low 32KB write inhibit  bit, when '1',
prevents host-initiated write cycles from altering shared RAM in the
range $0000 to $7FFF (offset from the selected standard access base).
Such cycles do not cause VMEbus errors and appear to complete
normally.  Nevertheless, as with all shared RAM cycles, they should
be minimized as they rob cycles from the local processor.

Whenever the card software generates an interrupt, it sets the
interrupt from local processor bit.

2.3.2  Interrupt Status/ID Register

When an interrupt request is made from the card on one of the VME
interrupt lines, an interrupt handler acquires the bus and executes an
interrupt acknowledge cycle.  The card recognizes the
acknowledgment and places an 8-bit interrupt ID on the odd half of
the data bus.  The value for this ID is taken from the Interrupt ID
register, located at offset 3 from the selected register base address in
short address space.

This register is zeroed by system reset and may be read or written at
any time.  If interrupts are used from the card, this register should be
initialized before the local processor is allowed to run.



5136-SD-VME-R User's Guide

16

2.3.3  Memory Address Register

Following system reset, the shared RAM enable bit in the
Control/Status register is reset, preventing the card from driving the
bus during any standard address cycles.  This is done in order that the
location in standard address space occupied by the shared RAM may
be selected.  Standard address space accesses use 24 bits of address
(16MB) while the card uses only 16 bits of address (64 Kbytes) for
generating addresses into the shared RAM.  For standard address bus
cycles, the upper 8 bits from the VMEbus are compared to the bits in
the 8-bit Memory address register, located at offset 5 from the selected
register base address in short address space.  If these match exactly,
and the shared RAM enable bit is set, then a shared RAM access is
performed.

For example, if it is required that the shared RAM occupy the 64
Kbyte block between $0D0000 and $0DFFFF in standard address
space, then the Memory address register should be set to $0D.

The memory address register is zeroed by system reset, and may be
read or written at any time.  It should be initialized with the upper 8
bits of the 24-bit address at which the shared RAM area is to begin.



5136-SD-VME-R User's Guide

17

2.4 Standard Address Space

The card contains 64 Kbytes of static RAM that is used as the code
and data memory for the local processor (Z180) and the tables and
registers for all network activity in which the card is involved.  This
RAM is accessible at any time to a master on the VMEbus, regardless
of whether or not the local processor is running.  As necessary, the
local processor pauses while the VMEbus master accesses the memory.

This memory is located at offsets $0000 through $FFFF from the
24-bit base address, whose upper 8 bits are determined from the
Memory Address register contents.  A VME master may access the
memory either 8 or 16 bits at a time.  If a 16-bit object is accessed, it
must be aligned on a 16-bit boundary.  That is, an access to a 16-bit
object, 8 bits of which are in the odd byte of one address, and whose
other 8 bits are in the even byte of the next address, is not possible.  If
this is attempted by host software, the hardware on the master will
probably take care of the details, performing two single-byte accesses
invisibly to the software.

Byte addresses on the VMEbus access locations that correspond
exactly to addresses on the local processor.  Also, 16-bit accesses on
the VMEbus access the expected bytes from the local processor's
space.  For example, if $1234 is written by a VMEbus master to offset
0 in the shared RAM, the local processor sees $12 at address 0, and
$34 at address 1.  Since the processor on the card puts low bytes at low
addresses and VMEbus masters put low bytes at high addresses, care
must be taken when accessing 16-bit objects in the shared RAM to
ensure that the byte ordering is what the software (and local processor)
expect.

2.5 Diagnostic LEDs

The PASS and FAIL LEDs provide information on the overall
operation of the card.  They follow the state of the SYSFAIL line when
the SYSFAIL jumper is in the ON position.  See section 2.2.5.

In addition, there are two diagnostic LEDs on the card.

The red RUN LED is controlled by application software using the
card's control register.  This allows a host processor to perform
diagnostics on the card and manipulate the state of the LED to give an
indication of the results.



5136-SD-VME-R User's Guide

18

The green STATUS LED is under control of the microprocessor on the
card.  It is on whenever racks have been enabled in the card.

2.6 Connecting to the Communication Network

The card has been designed to provide direct connection to
Allen-Bradley programmable controller communication networks.
Allen-Bradley specifies Belden 9463 twinaxial cable ("Blue Hose") for
their network installations.  The Blue Hose is wired into the card using
the Phoenix Combicon connector supplied with the card. See page 57
for the part number of the connector.

For wiring purposes pin 1 of the Phoenix connector is identified on the
faceplate of the card and is the bottom pin.  Pins 1, 2 and 3 are
connected internally to pins 4, 5 and 6, respectively.

Connect Pin 1 to the Line 1 of the remote I/O network.  This is
usually, but not always, the blue wire.  Connect Pin 2  to the shield.
Connect Pin 3  to Line 2.  This is usually, but not always, the clear
wire.

Termination

The nodes at the two physical ends of the network should have
terminating resistors.  All other nodes should not.  Every network
should have exactly two terminators.

The card does not have an onboard terminator.  If you require a
terminator, it consists of a resistor between the blue and clear wires.
Allen-Bradley recommends a 150 ohm resistor at 57.6 and 115.2
kbaud and an 82 ohm resistor at 230.4 kbaud.



5136-SD-VME-R User's Guide

19

2.7 Loading a Program on the Card

An application must take the following steps to initialize the interface
card.

1. Make sure the processor is reset by writing to the control/status
register.  Select the card address by writing to the address register.

2. Enable card memory by setting the enable bit in the control
register.

3. If interrupts are to be used, initialize the interrupt status/ID
register.

4. Perform memory test etc. as required by the application.

5. Set or clear the RUN LED according to the result of the memory
test.

6. Load the software module SDDEM.BIN onto the card at the
standard memory address.  That is, read the file SDDEM.BIN and
write it the memory on the card, starting at the base address of the
card in standard memory space.  Verify that the module has been
correctly loaded.

7. Write $A5 into offset $8000 from the start of memory.

8. Set the run bit in the control register.

9. Look at the byte at offset $8000.  Wait up to 7 seconds for it to
change.  If it doesn't change, the module did not run on the card.
If it becomes 00, everything has run correctly. If it becomes 01,
there is a null-terminated string starting at offset $8001 which
describes the error. If it has any other value, the result is invalid
and the processor did not run correctly.

10. Run your application.

The distribution disk contains a sample loader for a Xycom XVME
computer.



5136-SD-VME-R User's Guide

20

2.8 VME Programming Notes (READ THIS!!!!!)

The following information should always be kept in mind when
reading the module descriptions.

The tables on the card are all memory mapped.  Within the 64K of
card memory, the lower 32K is reserved for the card software; the
upper 32K is used by the tables by which the host application
communicates with the card.

The card processor organizes data in low-byte/high-byte format.  Your
application must take this into consideration.  For example, messages
are placed into buffers at locations given by the card software.  When
your application reads the card to determine the location of the next
free buffer and the bytes read are sequentially $00 and $0A, the next
free buffer is at offset $0A00 from the start of the data area (rather
than $000A as you might expect in a VMEbus environment.)

The tables on the card contain some elements that are one byte wide.
Some compilers by default align structure elements on word
boundaries; you must tell your compiler to use byte alignment for
structure elements that refer to data on the card.

2.9 Software Modules

The following modules are shipped with the 5136-SD-VME-R.

Module Purpose

sddopt.bin module to display card options

sddem.bin module to emulate remote I/O.



5136-SD-VME-R User's Guide

21

2.10 Card Options

The 5136-SD-VME-R contains an EEPROM that is programmed
before the card is shipped to select which software modules the card
can run.  Possible options include:

DH Data Highway

DHP Data Highway Plus

MON Data Highway Plus monitoring  (for DH+ Network Analyzer)

NET network monitor (for DH+ Network Analyzer)

KTEMU KT emulation

EXEC the exec module

RIO for emulating remote I/O.  For use on the 5136-SD-VME-R card.
Requires a licence from Allen-Bradley.  Contact SST for details.

RMAS for scanning remote I/O.  For use on the 5136-SD-VME-R card

The 5136-SD-VME-R is shipped with just the RIO option enabled.

To determine what options are enabled on your card, load the card
module SDDOPT.BIN.

The module simply reads the options enabled and displays them at
offset $8001, then sets $8000 to 01 (same as an error).

If you try to load a module for which the option is not enabled, the
module puts the message "*** Fatal Error ; Option Not Enabled on
this Card ***" at location $8001, $8000 gets set to 01 (same as an
error) and the module does not run.



5136-SD-VME-R User's Guide

22

2.11 Troubleshooting Installation

This section describes what to do if the card cannot communicate on a
network.  It also provides more detailed information on some common
sources of problems.

• Check cabling for correct wiring to the card.

• Check for shorted wires, leads on terminating resistors shorted to
cables, strands from the shield shorting to the other wires.

• Check baud rate

• Check network termination.  Only the two nodes at the physical
ends of the network should have terminating resistors.



5136-SD-VME-R User's Guide

23

3. The Remote I/O Card Module

3.1 Overview

The remote I/O network is a master-slave network with the
programmable controller acting as the master.  During normal
operation, the programmable controller sends messages to the remote
I/O racks, to which the remote racks send replies. Only the master
initiates communication. There can be only one master on the
network.

This constant exchange of information allows the programmable
controller to maintain an up-to-date image of the status of inputs and
to manipulate outputs accordingly.  During a program scan, the
programmable controller uses the logic defined in the ladder program
to update an "output image" table.  During an I/O scan, the
programmable controller scanner updates the physical outputs from
this table and reads the state of inputs into an "input image" table.  In
some programmable controllers, the logic and I/O scans are
synchronized; in most cases they are asynchronous.

The DEM software monitors this data exchange and maintains its own
copy of input and output image tables.  These tables are accessible to
application programs through the interface card's shared memory
interface.

The DEM software can also send replies to the PLC as if it were one or
more racks of remote I/O.  These emulated racks are referred to as
virtual racks.  The programmable controller acts as if there is a
physical rack of I/O on the network.  An application can use these
virtual racks to simulate I/O or by the logic in the programmable
controller (i.e., a rung of ladder logic could use the status of virtual
inputs).  With appropriate ladder logic in the programmable
controller, an application can also use a virtual rack to indirectly
monitor the status of local I/O or the state of storage bits defined by the
ladder logic.

The DEM software is capable of monitoring and emulating any
combination of real and virtual racks up to a total of 32 I/O racks.
This is subject to the limits imposed by the type of programmable
controller used.  For example, the PLC-5/20 scans a maximum of three
remote racks.



5136-SD-VME-R User's Guide

24

The DEM module supports partial racks as well as full racks. (See
section 3.4.3)  It can also generate host computer interrupts on the
reception of messages for any or all racks.

DEM is capable of monitoring block transfers on real racks and of
responding to block transfer requests from the programmable
controller.  This includes both block transfer reads and writes.

Code fragments in this manual and sample programs on the
distribution disk are written in C.

Hexadecimal numbers are identified by a preceding 0x, as in C.

3.2 Programming Overview

An application program interfaces with the DEM software by reading
and writing to memory locations and tables that are defined by the
DEM software.

All addresses in this manual are offsets from the start of the data tables
on the card.  See section 2.8.

Section 3.12 on page 52 summarizes the layout of tables in memory.

Section 3.11 describes the steps involved in configuring and running
the DEM software.

The following sections describe the various tables and flags in detail.



5136-SD-VME-R User's Guide

25

3.3 Variables and Flags

Several flags are used to control DEM and to provide information to
the host application.

3.3.1 BAUD RATE Flags

Communication over the Allen-Bradley remote I/O network can occur
at a baud rate of 57.6K baud, 115.2K baud or 230.4K baud.  You must
set the DEM baud rate to match the baud rate for the network to which
you are attached or you will not be able to receive or transmit any data
on the network.

There are two flags in DEM for setting the baud rate: the
BAUD_230K flag at offset 0x800 from the base address of card
memory and the BAUD_RATE flag at offset 0x801 from the base
address.  These flags are used in combination to set the baud rate at
which DEM communicates.

Baud BAUD_230K BAUD_RATE

57.6K 0 0

115.2K 0 0xff

230.4K 0xff 0xff

The DEM software defaults to a baud rate of 115.2K baud when you
load the DEM module.

Changes to the baud rate do not take effect until you set the CONFIG
flag to reconfigure DEM.

3.3.2 CONFIG Flag

Offset 0x803 contains the CONFIG flag.  An application program
must set this flag to 0xff to signal DEM to perform a reconfiguration.
You must do this if you change BAUD_RATE or ENA_DBL_BUF.
When the DEM software recognizes the configuration request, it sets
the baud rate and clears all data tables.  The DEM software then clears
the CONFIG flag to inform the application program that the
reconfiguration is complete and communication has started.



5136-SD-VME-R User's Guide

26

3.3.3 PLC_TYPE Byte

Offset 0x804 is a byte value written by the DEM module to tell you the
type of programmable controller on the network.  DEM uses the
messages from the programmable controller to determine what type of
programmable controller is on the line. If the card is not receiving
messages from a programmable controller, this value is not valid.  A
value of 0xff indicates that a PLC-2 is connected.  A value of 0
indicates that a PLC-3 or a PLC-5 is connected (the messages from the
PLC-3 and PLC-5 are identical so DEM cannot distinguish between
them).

3.3.4 CHK Bytes

The host can use the three CHK bytes starting at offset 0x80b to
determine that the DEM module is present and running.  They contain
0xc3, 0x04 and 0x00 respectively.  DEM writes these bytes as the last
step in its startup initialization after it is loaded.

3.3.5 BT_BASE

This word location, at offset 0x820, contains the beginning address of
the area which DEM is to use to store data for any real block transfers
it sees on the remote I/O network.  If you are using block transfers on
virtual racks, you must write an appropriate starting value in this
location; otherwise you can ignore it and let DEM initialize it.  It is
used in conjunction with the BT_CONFIG flag.  Refer to section 3.7.3
for more information on using block transfers on virtual racks.

3.3.6 BT_CONFIG

Offset 0x822 is a byte value used by the host application to install
block transfers on virtual racks.  If you are using virtual block
transfers, before setting the CONFIG flag, reset the BT_CONFIG byte
to 0.  Then set the CONFIG flag and wait until DEM clears CONFIG.
At this point, install any block transfers and update the value in
BT_BASE.  Finally, set BT_CONFIG, which tells DEM to finish the
configuration and to go online.

Refer to section 3.7.3 for more information on using block transfers on
virtual racks.



5136-SD-VME-R User's Guide

27

3.3.7 COMM Flag

An application program can monitor the status of communication on
the remote I/O network using the COMM flag, at offset 0x824.  The
DEM software sets this flag to 0xff during normal communications
and resets the flag to 0 if it does not receive a valid message from the
programmable controller within a period of 160 milliseconds.

3.3.8 ALL_VIRT_GOOD

This flag, at offset 0x825, is non-zero if no virtual racks are in error.
If any virtual rack is in error, this flag is zero.



5136-SD-VME-R User's Guide

28

3.4 Enabling and Monitoring Racks

3.4.1 Rack Status

The RACK_STATUS table occupies offsets 0x1c00 to 0x1c1f.  The
RACK_STATUS table shows the status of all real or virtual racks on
the network.  There is one byte in the table for each rack.  Possible
states for the status bytes are:

Value Meaning

0 no rack present.

1 programmable controller in run mode, rack is OK.

2 programmable controller in test or program mode.

3 rack error, programmable controller sees no response from
this rack

The following formula gives the correspondence between rack
numbers and the location in the table:

RACK_STATUS = 0x1c00 + RACK - PLCTYPE

where RACK is the rack number and PLCTYPE is defined as 1 for the
PLC-2 and 0 for the PLC-3 and PLC-5.

Example:

To determine the status of rack 5 in a PLC-2 system, read the byte
found at the address calculated from:

RACK_STATUS = 0x1c00 + RACK - PLCTYPE

RACK_STATUS = 0x1c00 + 5 - 1

RACK_STATUS = 0x1c04

Example:

In a PLC-3 system, the address containing the status of rack 12 (octal)
is:

RACK_STATUS

RACK_STATUS

 RACK_STATUS

= 0x1c00 + RACK - PLCTYPE

= 0x1c00 + 0x0a - 0

= 0x1c0a



5136-SD-VME-R User's Guide

29

Note that rack addresses are in octal.  12 octal is the same as 10
decimal or 0x0A hexadecimal.

If your application uses virtual racks, it must enable them in DEM.
You must also tell the programmable controller that you are using
these racks or no communication can take place.

WARNING:

It is essential that none of the racks enabled in the RACK_ENABLE
table duplicate any real racks on the I/O network.  If a virtual rack
duplicates a real rack, both real racks and virtual racks attempt to
reply to the programmable controller.  This causes numerous
communication errors and rack faults on the remote I/O network.  This
could manifest itself as improper operation of real I/O devices and
could be hazardous!

Also note that there are limits to the number of racks a specific PLC
can communicate with.  If there are already a number of real racks in
the system, this reduces the number of possible virtual racks.

3.4.2 RACK_ENABLE Table

When an application uses virtual racks, the DEM software must know
which racks it is to emulate.  This is the purpose of the
RACK_ENABLE table.  Each byte in the table corresponds to a rack
number.  When you write 0xff to a corresponding rack location in the
RACK_ENABLE table, the DEM software replies as a full rack when
the programmable controller sends a message to the given rack.  The
RACK_ENABLE table occupies memory between 0x2c00 and 0x2c1f
on the card.  Note that placing a value of 0xff in the RACK_ENABLE
table enables a full rack, starting at the first quarter.  See section 3.4.3
for information on partial racks.

The following formula gives the address of a rack in the
RACK_ENABLE table:

ACT_RACK_ADDRESS = 0x2c00 + RACK - PLCTYPE

In this formula, RACK is the rack number to be emulated and
PLCTYPE is defined as 1 for the PLC-2 and 0 for the PLC-3 and
PLC-5.

Example:

To activate rack 2 as a full rack in a PLC-2 system, write 0xff to the
address given by:



5136-SD-VME-R User's Guide

30

ACT_RACK_ADDRESS = 0x2c00 + RACK - PLCTYPE

= 0x2c00 + 2 - 1

= 0x2c01

Example:

To activate rack 3 as a full rack in a PLC-5 system, write 0xff to the
address given by:

ACT_RACK_ADDRESS = 0x2c00 + RACK - PLCTYPE

= 0x2c00 + 3 - 0

= 0x2c03

3.4.3 Partial Racks

The DEM module can monitor partial racks or emulate partial virtual
racks.  This is accomplished by breaking the bytes in the various tables
(RACK_ENABLE, RACK_STATUS...) into four parts (two bits per
quarter rack).  The following table summarizes the correlation between
bit positions and rack quarters:

7 6 5 4 3 2 1 0

Fourth quarter Third quarter Second quarter First quarter

There are two bits for each quarter rack.  All tables except BTR_LEN,
BTR_LOC, BTW_LEN and BTW_LOC are divided this way.

Each quarter rack corresponds to two I/O groups.  The following table
shows the correlation between quarter racks and I/O groups:

Quarter I/O Groups

First 0,1

Second 2,3

Third 4,5

Fourth 6,7



5136-SD-VME-R User's Guide

31

To enable a particular quarter rack, place 01 in the corresponding bit
position for the starting quarter to be enabled in the RACK_ENABLE
table.  The status for that rack/quarter may then be read from the
corresponding bit positions in the RACK_STATUS table.

The DEM module must know the length of the partial rack that it is to
emulate.  This is accomplished through the use of another table called
the RACK_END table.  This table is located at offsets 0xc00-0xc1f.
There are two bits available to define the end quarter for a particular
rack/quarter.  The following table shows the correlation between the
two-bit value and the end quarter defined:

Bit Value Rack End

 00 End of first quarter

 01 End of second quarter

 10 End of third quarter

 11 End of fourth quarter

When you write 0xff into the RACK_ENABLE table, the DEM
module automatically sets the RACK_END value for the first quarter
to 11 binary, enabling a full rack.  This allows full racks to be enabled
easily and maintains compatibility with existing "full rack"
applications.  The host must fill in the RACK_END values before
writing any value other than 0xff to the RACK_ENABLE table.

The DEM module fills in the RACK_END table for all real racks.
This allows an application to know the size of existing racks, which
indicates where it can place partial virtual racks.

Example 1:

Enable a virtual three-quarter rack starting at the second quarter in
rack 3 of a PLC-3 or PLC-5 system that already has a real quarter rack
starting at the first quarter, as in the following table:

Fourth quarter Third quarter Second quarter First quarter

Virtual rack Real rack



5136-SD-VME-R User's Guide

32

The DEM module automatically detects the real quarter rack that is
already attached and updates the tables appropriately.  The host should
check the RACK_END table to ensure that the real rack is a quarter
rack. (Bits 0 and 1 should be 00.)

Since the required virtual rack starts at the second quarter, bits 2 and 3
in the various tables are used.

To enable the virtual three-quarter rack, follow these steps:

1. Put the end quarter value into the RACK_END table at 0x0c03. The
virtual rack ends at the end of the fourth quarter.  The two bit end
quarter value is then 11.  Write this in the RACK_END table bits 2
and 3 without changing the other bits.  The following line of C code
demonstrates this.

RACK_END[3] = (RACK_END[3] & ~(0x3 << 2) ) | (0x03 << 2);

2. To enable the rack, place 01 in bits 2 and 3 of the RACK_ENABLE
table.  Even though these are the only bits used, and the other bits are
all 0, it is generally better to affect only the bits used. The following
line of C code demonstrates this:

RACK_ENABLE[3] = (RACK_ENABLE[3] & ~(0x3 << 2) ) | (0x1 << 2);

The status for the real rack and the virtual rack is found in the
RACK_STATUS table at address 0x1c03.  Bits 0 and 1 contain the
status for the real rack (since it starts at the first quarter) and bits 2
and 3 contain the status for the virtual rack (since it starts at the
second quarter). The following lines of C code demonstrate how to
read the rack status.

real_rack_status    = (RACK_STATUS[3] >> 0) & 0x3;

virtual_rack_status = (RACK_STATUS[3] >> 2) & 0x3;

Example 2:

To enable a real half rack as the second and third quarter of rack 1, a
virtual quarter rack starting at the first quarter, and a virtual quarter
starting at the fourth quarter as in the following table:

Fourth quarter Third quarter Second quarter First quarter

Virtual rack Real rack Virtual rack



5136-SD-VME-R User's Guide

33

It is assumed that the real half rack which is configured as rack 1
starting at module group 2 is already connected to the remote I/O
network.

Since the required virtual racks start at the first and fourth quarter, bits
0,1 and 6,7 in the various tables are used.  To enable the two virtual
quarter racks the following steps should be taken:

1. Put the end quarter values into the RACK_END table at 0x0c01.
The virtual racks end at the end of the first quarter and the fourth
quarter respectively.  The two-bit end quarter value for the first quarter
rack is then 00, and the two-bit end quarter value for the quarter rack
is 11.  Write this in the RACK_END table without changing the other
bits.  The following lines of C code demonstrate this.

RACK_END[1] = (RACK_END[1] & ~(0x3 << 0) ) | (0x0 << 0);

RACK_END[1] = (RACK_END[1] & ~(0x3 << 6) ) | (0x3 << 6);

2. To enable the racks, place 01 in bits 0,1 and 6,7 of the
RACK_ENABLE table.  Even though these are the only bits used, and
the other bits are 0, it is generally better to affect only the bits used.
The following lines of C code demonstrate this:

RACK_ENABLE[1] = (RACK_ENABLE[1] & ~(0x3 << 0) ) | (0x1 << 0);

RACK_ENABLE[1] = (RACK_ENABLE[1] & ~(0x3 << 6) ) | (0x1 << 6);

The status for the real rack and the virtual racks is found in the
RACK_STATUS table at 0x1c01.  Bits 0 and 1 contain the status for
the first virtual rack (since it starts at the first quarter), bits 2 and 3
contain the status for the real rack (since it starts at the second quarter)
and bits 6 and 7 contain the status for the second virtual rack (since it
starts at the fourth quarter).  The following lines of C code
demonstrate how to read the rack status.

virtual_rack_status_1 = (RACK_STATUS[1] >> 0) & 0x3;

real_rack_status  = (RACK_STATUS[1] >> 2) & 0x3;

virtual_rack_status_2 = (RACK_STATUS[1] >> 6) & 0x3;

3.4.4 Rack Options

The RACK_OPTION table, 0x2f00-0x2f1f, sets various options for
each rack.  There are two possible option bits for each rack or partial
rack.



5136-SD-VME-R User's Guide

34

The lower bit emulates the ‘last state’ switch on an I/O chassis.  If this
bit is 1, DEM clears the outputs to 0 when communication with the
PLC is lost.  If the bit is 1, outputs remain in their last state.  The
default is 0.

The higher bit determines what happens with the outputs when the
PLC is in program mode.  If the bit is 0, DEM clears outputs to 0
when the PLC is in program mode.  If the bit is 1, outputs remain in
their last state.  The default is 0.



5136-SD-VME-R User's Guide

35

3.5 Discrete Outputs

The OUTPUT table contains the values of all outputs.  This table is
located from offset 0x0000 through 0x01ff.  Every I/O group (16
points) requires two bytes in the table.  The low-order byte contains
the data for output points 008 to 078 of the I/O group (slot 0), the high-
order byte contains data for output points 108 to 178 of the I/O group
(slot 1).  The following formula gives the address of the output data for
a particular I/O group and slot:

OUT_ADDRESS = 0x000 + (RACK - PLCTYPE) * 16 + IOGROUP * 2 + SLOT

Example:

In a PLC-5 system determine the value of output O:12/14.

This address corresponds to the output point in rack 1 group 2, slot 1,
bit 4. Using the formula:

OUT_ADDRESS = 0x000 + (RACK - PLCTYPE) * 16 + IOGROUP * 2 + SLOT

OUT_ADDRESS = 0x000 + (1 - 0) * 16 + 2 * 2 + 1

OUT_ADDRESS = 0x000 + 16 + 4 + 1

OUT_ADDRESS = 0x015

I/O group 012 slot 1 corresponds to address 0x015 and output point 14
is located in bit 4 of 0x15 (bit 4 of slot 1).



5136-SD-VME-R User's Guide

36

3.6 Discrete Inputs

The INPUT table, from offset 0x400 through 0x5ff, contains the values
of discrete inputs.  This table reflects the values of inputs in real racks.
Application programs can also fill in this table to update the inputs of
virtual racks.  To monitor the value of an input point, the application
reads from the table at the address that corresponds to that point.  To
change the value of virtual inputs, the application sets or clears the bits
that correspond to the desired input points.  Every I/O group (16
points) requires two bytes in the table.  The low-order byte contains
the data for output points 008 to 078 of the I/O group (slot 0), the high-
order byte contains data for output points 108 to 178 of the I/O group
(slot 1).  The following formula gives the location of the input data for
a particular I/O group:

IN_ADDRESS = 0x400 + (RACK - PLCTYPE) * 16 + IOGROUP * 2 + SLOT

Example:

In a PLC-2 system determine the value of input 111/07.

This address corresponds to the input point in rack 1, group 1, slot 0,
bit 7. Using the formula:

IN_ADDRESS = 0x400 + (RACK - PLCTYPE) * 16 + IOGROUP * 2 + SLOT

IN_ADDRESS = 0x400 + (1 - 1) * 16 + 1 * 2 + 0

IN_ADDRESS = 0x400 + 0 + 2 + 0

IN_ADDRESS = 0x402

I/O group 110 corresponds to address 0x402.  Input point 07 is located
in bit 7 of 0x402 (bit 7 of slot 0).

Writing inputs to racks that are not virtual racks has no effect on the
programmable controller's input data tables.  On the next scan, DEM
overwrites the inputs on the card by data from messages from the real
rack to the programmable controller.



5136-SD-VME-R User's Guide

37

3.7 Block Transfers

DEM monitors block transfers between real racks and the
programmable controller and lets you exchange data with the
programmable controller using block transfers on virtual racks.  DEM
maintains tables that tell where block transfers are located and what
the current length is, as well as a table of pointers to the actual block
transfer data for each block transfer.  DEM has a large pool of free
memory from which it allocates space for the data from any block
transfer it sees on the line.  DEM can monitor up to 160 block
transfers.  (If you use double buffering, the number is reduced to 64.
See section 3.9.6.)

3.7.1 Block Transfer Reads

The DEM software can monitor block transfers on the remote I/O
network. The DEM software automatically stores the block transfer
data to a buffer on the card.  An application gains access to this buffer
by reading a pointer to the buffer and the length of the data from tables
that are organized by rack, group, and slot.  Up to 160 block transfers
can be buffered by the DEM module.

To access block Transfer Read information, you use the BTR_LOC
and BTR_LEN tables.  The BTR_LOC table contains pointers into the
block transfer buffer.  The BTR_LEN table contains the length of the
data (number of words) in the buffer.  These tables are located at
0x1000 to 0x13ff and 0x1800 to 0x19ff respectively.

The following formula gives the location in the BTR_LOC table for a
particular block transfer module:

BTR_LOC =  0x1000 + (RACK - PLCTYPE) * 32 + (IOGROUP * 4) + (SLOT * 2)

and the following formula gives the location in the length table:

BTR_LEN = 0x1800 + (RACK - PLCTYPE) * 16 + (IOGROUP * 2) + SLOT

Note:

The DEM software stores the pointers in Least Significant Byte-Most
Significant Byte (LSB-MSB) format.

Example:

For an analog input module located in rack 3, I/O group 2, slot 1 of a
PLC-2 system, the pointer to the block transfer read data is stored at:

 BTR_LOC = 0x1000 + (RACK - PLCTYPE) * 32 + (IOGROUP * 4) + (SLOT * 2)



5136-SD-VME-R User's Guide

38

 BTR_LOC = 0x1000 + (3 - 1) * 32 + (2 * 4) + (1 * 2)

 BTR_LOC = 0x1000 + 64 + 8 + 2

 BTR_LOC = 0x1000 + 74

 BTR_LOC = 0x1000 + 0x4a

 BTR_LOC = 0x104a

The current length of the block transfer read is stored at:

 BTR_LEN = 0x1800 + (RACK - PLCTYPE) * 16 + (IOGROUP * 2) + SLOT

 BTR_LEN = 0x1800 + (3 - 1) * 16 + (2 * 2) + 1

 BTR_LEN = 0x1800 + 32 + 4 + 1

 BTR_LEN = 0x1800 + 37

 BTR_LEN = 0x1800 + 0x25

 BTR_LEN = 0x1825

If 0x104a and 0x104b contain 0x80 and 0x30 respectively and address
0x1825 contains 0x06, the block transfer information is found in the
12 bytes (6 words) beginning at address 0x3080.

The DEM module also maintains a table called the BTR_UPDATE
beginning at location 0x1400.  The correlation between rack and I/O
group is the same as in the BTR_LEN table.  Each time a BTR
updates, the DEM module writes 0xff into the corresponding location
in this table.  The host polls this location to determine if a given BTR
has been updated.  The host then clears the location.  The DEM
module sets it to 0xff when the BTR is next updated.

3.7.2  Block Transfer Writes

The mechanism for monitoring block transfer writes is similar to the
one used for block transfer reads.  Only the location of the BTW_LOC
and BTW_LEN tables is different.  These tables start at address
0x2000 for BTW_LOC and address 0x2800 for BTW_LEN.
Substitution of 0x2000 for 0x1000 in the BTR_LOC formula and
0x2800 for 0x1800 in the BTR_LEN formula gives the BTW_LOC
formula and the BTW_LEN formula:

BTW_LOC = 0x2000 + (RACK - PLCTYPE) * 32 + (IOGROUP * 4) + (SLOT * 2)

BTW_LEN = 0x2800 + (RACK - PLCTYPE) * 16 + (IOGROUP * 2) + SLOT



5136-SD-VME-R User's Guide

39

The DEM module maintains a table called the BTW_UPDATE at
location 0x2400.  The correlation between rack and I/O group is the
same as in the BTW_LEN table.  Each time a BTW updates, the DEM
module writes a 0xff into the corresponding location in this table.  The
host polls this location to determine that the given BTW has been
updated.  The host then clears the given location.  The DEM module
sets it to 0xff when the BTW is next updated.

3.7.3 Block Transfers on Virtual Racks

The interface card can respond automatically to block transfer requests
from the programmable controller on virtual racks.  These are referred
to as active block transfers.  All such block transfers must first be
installed on the card.

There's a specific procedure for installing the block transfer data on
the card but first we'll describe what data has to be written.

For each emulated block transfer in your programmable controller
program, you need to know the length (in words), the location (rack,
I/O group and slot) and the block transfer type (read or write).

For each active block transfer, you have to write into the card data
tables the following information:

- the length in words. The address where the length is written is
calculated as described in sections 3.7.1 and 3.7.2.  Separate tables are
used for block transfer reads and writes.

For example, if you have a block transfer read at rack 2, I/O group 3,
slot 0 with length 7 words, you would write a value of 7 to the location

 0x1800 + 2 * 0x10 + 2 * 3 + 0 = 0x1826

A second example is a block transfer write at rack 2, I/O group 2, high
slot, length 22 words.  Write 0x16 (22 decimal) to location

0x2800 + 2 * 0x10 + 2 * 2 +1 = 0x2825



5136-SD-VME-R User's Guide

40

- the address where the block transfer data is stored.  DEM uses a
pool of free memory from addresses 0x3000 to 0x7FFF to store block
transfer data for both read and write block transfers.  Tables based on
the rack, I/O group and slot indicate where the actual data is to be
found.  You must allocate 2 bytes in the free memory pool for each
word of data in your block transfers.  To conserve memory, use just as
much memory as you need.  If you do not know the length of the block
transfer, reserve the maximum possible space - 64 words or 128 bytes.
The calculations of the location where you write the pointer to the
actual data are as described in section 3.7.1 and 3.7.2 except that in
this case you are creating the addresses rather than having them
automatically created by the card software.

Example:

Let's say you have two block transfers on rack 2, the first a block
transfer read at I/O group 3, low slot, length 7 words and the second a
block transfer write at I/O group 2, high slot, of length 22 words.  To
install the block transfer read, you'll need 14 (0x0E) bytes to store the
data.  Since this is the first block transfer you are installing, memory
locations 0x3000 to 0x300D are used.  The pointer to this data
(0x3000) is stored in the table BTR_LOC at

0x1000 + 2 * 0x20 + 3 * 0x4 + 0 = 0x104C

in low byte, high byte order.  In other words, you'd write 0x00 to
0x104C and 0x30 to 0x104D.

The next available location in the free memory pool is 0x300E and
that's where you store the data for the block transfer write.  It's 22
words long so you need 44 (0x2C) bytes, starting at 0x300E and
ending at 0x300E + 0x2C - 1 = 0x3039.  The pointer is found in the
BTW_LOC table at location

0x2000 + 2 * 0x20 + 4 * 2 + 2 = 0x204A

so you write 0x0E at 0x204A and 0x30 at 0x204B

(Of course, you'd also have to write the lengths of these block transfers
in the BTR_LEN and the BTW_LEN tables respectively.)

If you have other block transfers to install, continue until they have all
been installed.  For each block transfer, write the length and the
pointer to the data in the appropriate table and location.



5136-SD-VME-R User's Guide

41

The final step in the installation procedure is to write the next location
to be used in the free memory area of memory (again in low-byte,
high-byte format) to location 0x820.  In the example, the next location
is 0x303A, so write 0x3A to 0x820 and 0x30 to 0x821.

DEM uses this value to begin allocating memory for any block
transfers on real racks.  You must write to this location to ensure that
real block transfer data does not overwrite the data for your active
block transfers on the virtual racks.

3.7.4 Installing Block Transfers on Virtual Racks

The procedure for the installation is:

• write 0x00 to BT_CONFIG (offset 0x822)

• write 0xff to CONFIG (offset 0x803)

• wait until DEM clears CONFIG.  DEM is now waiting while you
write any necessary data to the tables on the card.

Write the :

• baud byte

• active rack table

• for each emulated block transfer:

• block transfer length data

• block transfer data location

• the base address for future allocation of block transfer data,
BT_BASE, at offset 0x820.

When you're done, write 0xff to BT_CONFIG to tell DEM you've
finished writing data.  DEM then completes the configuration.

DEM now responds to each active block transfer as the programmable
controller requests it. All you have to do is write the data to the card
memory area for each block transfer read and read the card memory
for each block transfer write on the virtual racks.  (Of course, you must
program the block transfer in the programmable controller and make
sure the block transfer is enabled for the block transfer to occur.)



5136-SD-VME-R User's Guide

42

3.8 Diagnostic Counters

DEM maintains various diagnostic counters that show the state of
communication and also its internal operation.  These counters occupy
offsets 0x8c0 to 0x8d0.

Counter Offset Description

good_plc_packs 8c0 count of good packets from the PLC

good_rck_packs 8c1 count of good packets from other racks
on the network

bad_packs 8c2 count of packets with bad CRCs

lerror 8c3 status of last bad packet

buf_ovrflow 8c4 receive buffer overflow

pkt_too_shrt 8c5 received packet too short

rx_ovrun 8c6 receive processing overrun

bad_inp_rkmg 8c7 rack/module group mismatch

rck_too_hi 8c8 rack number is too high (0-37 octal)

len_err_ctr 8c9 rack length error

bt_rx_err_ctr 8ca block transfer receive error counter

bt_tx_err_ctr 8cb block transfer transmit error counter

btw_len_err_ctr 8cc bad btw length error counter

bt_time_out 8cd block transfer timeout counter

bt_srch_err 8ce bt search value was out of range

bad_int 8cf internal error

int_err 8d0 internal error

You can clear these counters by writing a 0 to them at any time.



5136-SD-VME-R User's Guide

43

3.9 Double Buffering

Double buffering allows an application to insure that the values of any
groups of data (such as inputs for a rack, a block transfer etc.) are kept
together and all changes are read from or sent to the programmable
controller at the same time.  For example, if the card is updating the
values from a BTW at the same time the host is reading the values
from the card, the host could read values that come partially from the
last scan and partially from the present scan.  With double buffering,
two tables are used for each type of quantity (discrete inputs, discrete
outputs, BTWs and BTRs).  Double buffering can be enabled for each
of these types of quantities independently.  All values that are supplied
by the DEM module (discrete outputs, inputs from non-virtual racks,
BTWs, and BTRs), use the buffers alternately and DEM sets a flag
telling the host which table to use.  All values that are supplied by the
host (virtual discrete inputs only), should be placed in alternate buffers
and the host must set a flag telling the DEM module which buffer to
use.  The following subsections describe double buffering.

Double buffering block transfers reduces the number of block transfers
that the DEM module can buffer.  Without double buffering, the total
size of the block transfer data area is 20K, enough for 160 64-word
block transfers.  If you enable double buffering, this reduces the block
transfer data area to 8K, enough for 64 64-word block transfers.

You can also achieve data synchronization by using host interrupts, in
which case double buffering is not necessary.

3.9.1 Enabling Double Buffering

To enable double buffering, use the ENA_DBL_BUF byte located at
offset 0x828.  To enable the various types of double buffering, set
various bits within the ENA_DBL_BUF byte.  The following table
summarizes the correlation between the bit positions and the types of
double buffering enabled:

Type of Double Buffering bit #

Discrete Outputs 0

Passive Discrete Inputs 1

Active Discrete Inputs 2

Block Transfer Writes 3

Block Transfer Reads 4



5136-SD-VME-R User's Guide

44

NOTE:

If you change ENA_DBL_BUF, you must send the reconfig command
to the DEM module (set CONFIG to 0xff).

3.9.2 Discrete I/O Double Buffering

Two additional tables are used to allow double buffering for discrete
I/O.  These tables are the following:

Table Location

OUT_DBL_TOG 0x1e00

INP_DBL_TOG 0x2e00

These tables are broken up in the same way as the RACK_ENABLE
table.  In a PLC-3 or PLC-5 system, rack 4 corresponds to 0x1e04 for
outputs or 0x2e04 for inputs.  Each byte is again broken up into
quarters for partial racks, with two bits for each quarter rack.

There is a second input image table and a second output image table.
The second output image table is located at offsets 0x0200 to 0x03ff
and the second input image table is located at offsets 0x0600 to 0x07ff.

If the value of the two bits in the DBL_TOG table for a given
rack/quarter is 00, use the lower or primary I/O table.  If these two bits
contain 01, use the higher or alternate buffer.

3.9.3 Discrete Output Double Buffering

If you enable discrete output double buffering, each time the DEM
module receives an update for a particular rack/quarter from the
programmable controller, the DEM module looks at the
OUT_DBL_TOG table to see which image table was used last time
(primary or alternate).  The DEM module then updates the other table.
In other words, if the primary table was used last, the alternate table is
updated and vice versa.  The DEM module then sets the
OUT_DBL_TOG table to indicate which output table was just updated.

An application then checks to see which output table to use by
checking the appropriate bits for the given start quarter in the
appropriate byte for the given rack in the OUT_DBL_TOG table.



5136-SD-VME-R User's Guide

45

NOTE 1:

After checking the OUT_DBL_TOG table to determine which output
image table to use for the given rack/quarter, the host must get the
values from the output image table within 4ms (2 ms at 230 kbaud).  If
more time elapses, there is no guarantee that DEM won't update the
data in the buffer at the same time as the host accesses it, which
defeats the purpose of double buffering.

NOTE 2:

Partial racks are updated and therefore double buffered independently.
This means that if, for example, a particular rack number has a real
quarter rack, a virtual half rack and a virtual quarter rack connected,
the PLC updates them independently.  You must check the
OUT_BUF_TOG table before you access corresponding locations in
the output image table.

3.9.4 Passive Discrete Input Double Buffering

Passive discrete inputs are inputs that do not come from virtual racks
running on the DEM module being used.  Usually they are inputs from
real racks but they could also be from other DEM modules running on
other cards.  Passive discrete input double buffering works similarly to
output double buffering.  If you enable passive discrete input double
buffering, each time the DEM module receives an update from a
particular rack/quarter to the programmable controller, the DEM
module looks at the INP_DBL_TOG table to see which image table
was used last time (primary or alternate).  The DEM module then
updates the other table. In other words, if the primary table was used
last, the alternate table is updated and vice versa.  The DEM module
then sets the INP_DBL_TOG table to indicate which input table was
just updated.

An application then checks to see which input table to use by checking
the appropriate bits for the given start quarter in the appropriate byte
for the given rack in the INP_DBL_TOG table.



5136-SD-VME-R User's Guide

46

NOTE 1:

After checking the INP_DBL_TOG table to determine which input
image table to use for the given rack/quarter, the host must get the
values from the input image table within 4ms (2 ms at 230 kbaud).  If
more time elapses, there is no guarantee that the DEM does not update
data in the buffer as the host accesses it, which defeats the purpose of
double buffering.

NOTE 2:

Partial racks are updated and therefore double buffered independently.
This means that if, for example, a particular rack number has a real
quarter rack, a virtual half rack and another real quarter rack
connected, the inputs from the real quarter racks are updated
independently.  You must check the INP_BUF_TOG table before you
access corresponding locations in the input image table.

3.9.5 Active Discrete Input Double Buffering

If you have enabled active discrete input double buffering, each time
the DEM module is about to send discrete input data to the
programmable controller, it checks the INP_DBL_TOG table for the
particular rack/quarter that is to be updated.  If the two bits for the
given rack quarter contain 002, use the primary input image table; if
the two bits contain 012, use the alternate input image table.

An application checks the INP_DBL_TOG table to see which input
table was used last, then fills in the other table with the desired values,
then sets the appropriate byte/bits of the INP_DBL_TOG table so that
the DEM module uses the buffer which was just updated.

NOTE 1:

You must fill in all the input data for the virtual rack, in the alternate
table.  For example, if you enable a three-quarter virtual rack, you
must fill in 6 words (12 bytes) of data each time the input image buffer
is toggled.

NOTE 2:

After changing the INP_DBL_TOG table, the host application must
wait at least 500µs before making any changes to the input image table
that was not just updated.



5136-SD-VME-R User's Guide

47

3.9.6 Block Transfer Double Buffering

Block transfer double buffering is very simple.  Each time the DEM
module receives a new BTR or BTW, it puts the data in an appropriate
buffer, and changes the pointer in BTR_LOC or BTW_LOC to point
to the new buffer.  The host application must read the pointer each
time it accesses data for any BTR or BTW.

NOTE:

After creating a pointer to the BT data by reading the BTR_LOC or
the BTW_LOC table, the host must get the values for the given BT
from the BT buffer within 4ms (2 ms at 230 kbaud).  If more time
elapses, there is no guarantee that the DEM will not update data in the
buffer at the same time that the host accesses it, which defeats the
purpose of double buffering.



5136-SD-VME-R User's Guide

48

3.10 DEM Host Interrupts

The primary purpose of interrupts with the DEM module is to
synchronize the host computer operation to the I/O scan of the
programmable controller.

This section describes how to use interrupts with the DEM module.
The following table lists all locations associated with interrupts.

Register Name Location

INT_EN 0x830

VALID_DATA 0x831

INT_RACK_NUM 0x832

INT_BTR_NUM 0x833

INT_BTW_NUM 0x834

RACK_INT_ENABLE 0x2d00-0x2d1f

To globally enable or disable interrupts, use INT_EN (offset 0x830).
Setting bit 0 to 1 enables interrupts; clearing bit 0 to 0 disables
interrupts.

The interrupt service routine can use VALID_DATA (offset 0x831) to
indicate that data in the tables is stable for at least 1.5ms.  If the data
is stable VALID_DATA contains 0xff; otherwise, it contains 0.
VALID_DATA simply means that the next rack update has not begun
yet and the I/O table will not change within 1.5ms.  There is no
guarantee that the data on the card is not being updated by DEM if the
card data tables are accessed when VALID_DATA is not set.

INT_RACK_NUM (offset 0x832) indicates to the ISR which
rack/quarter has just been updated.  Note that the rack number is
shifted left 2 bits and the quarter is placed in the least significant two
bits. For example, an update to the first quarter of rack 3 causes 0x0c
to be placed in INT_RACK_NUM.  An update to the third quarter of
rack 1 causes 0x6 to be placed in INT_RACK_NUM.  Also note that
this value is updated regardless of whether interrupts are enabled.  The
host can poll this location to determine the current location of the I/O
scan.



5136-SD-VME-R User's Guide

49

INT_BTR_NUM (offset 0x833) indicates to the host that a BTR has
occurred to the rack in INT_RACK_NUM since the previous I/O scan.
If this byte is non-zero, bits 0-3 contain the I/O group and slot which
sent the block transfer read.  The host then checks the BTR data for
that location. The following table summarizes INT_BTR_NUM:

7 6 5 4 3 2 1 0

BTR
update

Always 0 I/O group of updated BTR Slot

INT_BTW_NUM (offset 0x834) indicates to the host that a BTW has
occurred to the rack in INT_RACK_NUM since the previous I/O scan.
If this byte is non-zero, bits 0-3 contain the module group and slot
which received the block transfer write.  The host then checks the
BTW data for that location.  The following table summarizes
INT_BTW_NUM:

7 6 5 4 3 2 1 0

0 BTW
update

Always 0 I/O group of updated BTW Slot

The RACK_INT_ENABLE (offset 0x2d00 - 0x2d1f) table is divided
in the same way as the RACK_ENABLE table.  To enable interrupts
for a specific rack/quarter, place 01 in the two bits that correspond to
start quarter, in the byte that corresponds to the rack, as with the other
tables described.  If interrupts are enabled for a rack that the
programmable controller is not updating, no interrupt is generated for
that rack.  The following line of C code enables interrupts for a partial
rack that starts at the third quarter of rack one.  Note that the two bits
to be used are cleared first, and only the bits to be used are changed.
This is not necessary but it is good programming practice.

RACK_INT_ENABLE[1] = (RACK_INT_ENABLE[1] & ~(0x3 << 6) ) | (0x1 << 6);

DEM Host Interrupt Timing

The host must respond to the DEM interrupt within 2ms.  The ISR
length must not exceed 1.5ms.  If these conditions are not met, two
undesirable consequences may arise:



5136-SD-VME-R User's Guide

50

1. The data in the I/O tables and the various interrupt variables
(INT_RACK_NUM...) could change, in which case they would
not reflect the information that was intended at the time the
interrupt was generated.

2. The interrupt for a given rack/quarter could be missed altogether.



5136-SD-VME-R User's Guide

51

3.11 Running DEM

Following is the procedure an application should take before going
online.

1. Read the CHK bytes to determine whether it’s OK to begin to
access DEM.

2. Set BT_CONFIG to 0.
Set CONFIG to 0xff
Wait for DEM to clear CONFIG to 0.

3. Set BT_BASE to 0x3000

4. Set BAUD_RATE and BAUD_230K to match the network baud
rate.

5. Enable virtual racks and set rack options.  Write to the:
RACK_ENABLE table
RACK_END table
RACK_OPTION table

6. Install block transfers on virtual racks.  For each block transfer,
write to the :

BTR or BTW location table
BTR or BTW length table

and update BT_BASE

7. Set any initial data values such as discrete inputs or block transfer
read data on virtual racks

8. Set BT_CONFIG to 0xff

9. DEM is now online and ready to run.

The sample program DEMCNF.C and the accompanying
configuration files can be used to configure and run DEM.

3.11.1 Reconfiguring DEM

If an application program needs to change the baud rate or clear the
data tables, repeat these steps.  Changes to the BAUD_RATE flag do
not take effect until you set the CONFIG flag.  Setting the CONFIG
flag also clears the data tables on the card; in that case information
about the I/O configuration must be reinstalled.



5136-SD-VME-R User's Guide

52

3.12 Summary of Memory Locations

The table below provides a summary of memory locations for
interfacing with the DEM software module.

Name Offset Type Function

OUTPUT 0x000-
0x1ff

R primary output image table

DBL_OUT 0x200-
0x3ff

R alternate output image table for
use with double buffering

INPUT 0x400-
0x5ff

R/W primary input image table

DBL_INPUT 0x600-
0x7ff

R/W alternate input image table for
use with double buffering

BAUD_230 0x800 R/W sets the baud rate

BAUD_RATE 0x801 R/W sets the baud rate

CONFIG 0x803 R/W sets the baud rate and clears all
data tables before starting
communications

PLC_TYPE 0x804 R DEM sets this byte to 0xff if the
PLC is a PLC-2; 0 otherwise

CHK 0x80b
0x80c
0x80d

R host can use these bytes to
check that DEM is present.  The
three bytes contain 0xc3 0x04
0x00 when the DEM module is
loaded and running

BT_BASE 0x820 R/W start of block transfer area for
real racks.  Needed only if you
are using block transfers on
virtual racks

BT_CONFIG 0x822 R/W flag used when host is installing
block transfers

COMM 0x824 R communication flag, DEM sets it
to 0xff when it's receiving from
the PLC, otherwise it's 0

ALL_VIRT_GOOD 0x825 R non-zero if all virtual racks have
good status

ENA_DBL_BUF 0x828 R/W set by host to enable double
buffering.  Various bits enable
different types of double
buffering



5136-SD-VME-R User's Guide

53

Name Offset Type Function

INT_EN 0x830 R/W bit 0 is global DEM interrupt
enable

VALID_DATA 0x831 R DEM sets it to 0xff when an
interrupt is generated and clears
it at least 1.5 ms before the next
I/O update begins.  Used to
indicate data tables are stable

INT_RACK_NUM 0x832 R indicates the rack/quarter which
was most recently updated

INT_BTR_NUM 0x833 R indicates the BTR module group
which was updated for the given
rack.  Used only with interrupts.

INT_BTW_NUM 0x834 R indicates the BTW module group
which was updated for the given
rack.  Used only with interrupts.

Diagnostic counters 0x8c0-
0x8d1

R/W for monitoring communication

RACK_END 0xc00-
0xc1f

R/W rack end table, used with partial
racks

BTR_LOC 0x1000-
0x13ff

R pointer to block transfer read
data in buffer

BTR_EVENT 0x1400-
0x15ff

R/W DEM sets the appropriate
location in this table when a BTR
is updated

BTR_LEN 0x1800-
0x19ff

R length of block transfer read data
in buffer

RACK_STATUS 0x1c00-
0x1c1f

R rack status table

OUT_DBUF_TOG 0x1e00-
0x1e1f

R used only with double buffering.
Indicates which of the two output
image tables should be used for
a given rack/quarter

BTW_LOC 0x2000-
0x23ff

R pointer to block transfer write
data in buffer

BTW_EVENT 0x2400-
0x25ff

R/W DEM sets the appropriate
location in this table when a
BTW is updated

BTW_LEN 0x2800-
0x29ff

R length of block transfer write data
in buffer

RACK_ENABLE 0x2c00-
0x2c1f

R/W enables virtual racks



5136-SD-VME-R User's Guide

54

Name Offset Type Function

RACK_INT_ENA 0x2d00-
0x2d1f

R/W enables interrupts for any
rack/quarter

INP_DBUF_TOG 0x2e00-
0x2e1f

R/W Used only with double buffering.
For passive discrete inputs,
indicates which of the two input
image tables should be used for
a given rack/quarter.  For active
inputs, host sets to indicate to
DEM which table to use for a
given rack/quarter.

RACK_OPTION 0x2f00-
0x2f1f

R/W enables various options for any
rack/quarter

block transfer data 0x3000-
end of

memory

R/W block transfer data



5136-SD-VME-R User's Guide

55

3.13 Sample Programs

The distribution diskette contains C source code for sample programs
that demonstrate the use of the DEM module.  All the programs were
developed using Borland C++ but should be easily portable to other C
compilers.

DEM.H

This file contains structures and definitions for accessing data on the
card.

DEM.C

DEM.C contains functions that:

• set the baud rate

• reconfigure the card

• check the communication status

• add or delete virtual racks

• display rack status

• display inputs or outputs

• set inputs for virtual racks

• use block transfers

These routines may be used in your application.

DEMCNF.C

This program, along with the sample files *.CFG, shows how to
configure DEM.





5136-SD-VME-R User's Guide

57

Technical Data

Card Type 5136-SD-VME-R

Function VMEbus card for Allen-Bradley remote I/O
network

Description IEEE 1014, 6U height, P1 compatible

Memory SD16, SD08(EO), SADO24

Registers SD08(O),SADO16

Standard Addressing: 64 Kbytes on any 64 Kbyte
boundary

Short addressing: 6 bytes on any 1 Kbyte
boundary

Interrupt capability:  switch selected level 1-7,
software set 8-bit vector, release on acknowledge
(ROAK)

Current
Consumed

1 A at 5V

from pins 32 of rows A, B, and C of the P1
connector

Environmental operating temperature 0-50 degrees Celsius

storage temperature 0 -70 degrees Celsius

Operating Humidity 5 to 95 % non-condensing

storage humidity 0 to 95%

Card
connector

Phoenix MSTB1.5/6ST-5.08

Cable Belden 9463, twinaxial, 20 AWG





5136-SD-VME-R User's Guide

59

Acknowledgments

PLC is a registered trademark of Allen-Bradley.

All other trade names referenced are trademarks or registered
trademarks of their respective companies.





5136-SD-VME-R User's Guide

61

Technical Support

Before you call for help ...

Please ensure that you have the following information readily available
before calling for technical support.

• Card type and serial number

• Computer make and model and hardware configuration (other
cards installed)

• Operating system type and version

• Details of the problem you are experiencing; application
module type and version, target network, circumstances that
caused the problem.

Getting Help

Technical support is available during regular business hours (eastern
standard time) or by fax, mail or e-mail.

Technical Support

SST

50 Northland Road

Waterloo, Ontario N2V 1N3

Voice: (519) 725-5136

Fax: (519) 725-1515

email: techsupport@sstech.on.ca

website: www.sstech.on.ca

Software Updates

The current distribution software for the 5136-SD-VME-R is available
from our website at www.sstech.on.ca



5136-SD-VME-R User's Guide

62

Warranty

SST warrants all new products to be free of defects in material and
workmanship when applied in the manner for which they were
intended and according to SST’s published information on proper
installation.  The Warranty period is one year from the date of
shipment for all cards except the following which carry a 10 year
warranty from date of purchase: 5136-SD, 5136-SD-104,
5136-SD-VME, 5136-SD-VME/2, 5136-DN, 5136-DN-PCM,
5136-DN-VME, 5136-DNP, 5136-PFB, 5136-PFB-104,
5136-PFB-PCI, 5136-PFB-VME and 5136-CN.

SST will repair or replace, at its option, all products returned to
factory freight prepaid, which prove upon examination to be within the
Warranty definitions and time period.

The Warranty does not cover costs of installation, removal or damage
to user’s property or any contingent expenses or consequential
damages.  Maximum liability of SST is the cost of the product(s).

Product Returns

If it should be necessary to return or exchange items, please contact
SST for a Return Authorization number.

SST

50 Northland Road

Waterloo, Ontario N2V 1N3

Voice: (519) 725-5136

     Fax: (519) 725-1515



5136-SD-VME-R User's Guide

63

—A—
Address modifier

setting, 11
Address Modifiers, 11
ALL_VIRT_GOOD, 27

—B—
BAUD RATE, 25
Block Transfer Reads, 37
Block Transfer Writes, 38
Block Transfers, 37

virtual racks, 39
BT_BASE, 26
BT_CONFIG, 26

—C—
Card Options, 21
Card Overview, 1
CHK Bytes, 26
COMM, 27
CONFIG Flag, 25
Connecting to the Network, 18
Control and Status Register, 13

—D—
DEM

running, 51
Diagnostic Counters, 42
DIP Switches, 8
Discrete Inputs, 36
Discrete Outputs, 35
Double Buffering, 43

active discrete input, 46
block transfer, 47
discrete output, 44
enabling, 43
passive discrete input, 45

—I—
Inputs, 36

Installation, 5
hardware, 5

Interrupt
setting, 11

Interrupt Vector Register, 15
Interrupts, 48

—J—
Jumpers, 8

—L—
LEDs, 17
Loading a Program, 19

—M—
Memory

summary, 52
Memory Address Register, 16

—O—
Options

card, 21
Outputs, 35

—P—
Partial Racks, 30
PLCTYPE, 26
Programming Overview, 24

—R—
RACK ENABLE Table, 29
Rack options, 33
Racks

enabling and monitoring, 28
options, 33
partial, 30

Running DEM, 51



5136-SD-VME-R User's Guide

64

—S—
Sample Programs, 55
Scanner Overview, 23
Short I/O Address

setting, 8
Short I/O Registers, 13
Software Modules, 20
Specifications, 57
Standard Address Space, 17
Summary of Memory Locations,

52
SYSFAIL* Jumper, 12

—T—
Technical Support, 61
Termination, 18
Transmit Enable Jumpers, 12
Troubleshooting Installation, 22

—V—
Variables and Flags, 25

—W—
Warranty, 62


