
Kier Storey

Game Physics on the GPU with 
PhysX 3.4



2www.gameworks.nvidia.com

PhysX 3.4 Features

•GPU Rigid Bodies

• Improved threading and performance

•New CCD mode

•Low-level immediate mode

•Enhanced Determinism

•Faster, more robust convex hull cooking

•Faster mid-phase structure

•Serializable scene query trees for level streaming

•Split-sim

• Improved vehicles

gameworks.nvidia.com


3www.gameworks.nvidia.com

Basic PhysX Rigid Body Pipeline

Broad Phase

Pair Filtering

Narrow Phase

Island Gen

Solver

CCD (Optional)

Fetch Results

gameworks.nvidia.com


4www.gameworks.nvidia.com

Pipeline Stages

•Broad Phase

•Produces set of candidate pairs that are potentially interacting

•Quickly rejects non-overlapping pairs

•Uses approximate bounds (e.g. AABBs or spheres)

•Pair Filtering

•Apply application-rules to permit/disallow pairs to be processed by narrow phase or solver

•Narrow Phase/Contact gen

•Processes the set of pairs produced by broad phase

•Determines if the geometries are actually interacting, in which case generates contacts.

gameworks.nvidia.com


5www.gameworks.nvidia.com

Main Pipeline stages cont.
• Island Management

• Groups bodies into islands

• Island = collection of bodies interacting via contacts or constraints

• A given object can be a member of only 1 island unless that body is static or kinematic

• Constraint Solver

• Solves islands

• Produces constraints from the set of contacts and joints

• Computes new velocities and transform for rigid bodies that satisfy constraints.

• Fetch Results

• Buffering

• Fire user callbacks

• Update Scene Query structures

gameworks.nvidia.com


6www.gameworks.nvidia.com

GPU vs CPU

• GPU

•Massive FLOPS and memory 
bandwidth.

• 1000s of compute cores

• Lower clock frequencies

• Longer-latency instruction 
pipeline

•Highly-sensitive to memory 
access patterns and branching

•Algorithms must scale to 1000s of 
threads.

• CPU
• Lower FLOPS and 

memory bandwidth
• Small number of cores
• Higher clock 

frequencies
• Lower-latency 

instruction pipeline
• Tolerant to memory 

access patterns 
branching

• Executes sequential and 
parallel algorithms well

gameworks.nvidia.com


7www.gameworks.nvidia.com

GPU Rigid Body Goals

•Easy to integrate

•Same semantics and behavior as CPU PhysX

•Support full PhysX feature-set

•Must be fast!

•Minimize latency to access results

•Gameplay-effecting simulation

•Plan:

•Port broad phase, narrow phase and solver to GPU

•Leave rest of pipeline on CPU

gameworks.nvidia.com


8www.gameworks.nvidia.com

Potential performance gains?

•Moving pipeline stages from CPU to GPU can yield significant performance gains

• It can also introduce additional overhead

•Memory transfer

•Kernel dispatch overhead

•Amdahl’s Law applies

•The serial stages of the pipeline will become a bottleneck as the number of cores 
processing the parallel stages increases

gameworks.nvidia.com


9www.gameworks.nvidia.com

A PhysX 3.3 CPU simulation frame

Update AABBs
0%

Broad Phase
26%

Post Broad Phase
5%

Narrow Phase
30%

Island Gen
11%

Solver
22%

Fetch Results
6%

PhysX 3.3 per-stage breakdown (13824 convexes)

gameworks.nvidia.com


10www.gameworks.nvidia.com

What if GPU stages were faster?

0 20 40 60 80 100 120 140 160

Orig

5x Faster

10x Faster

100x Faster Update AABBs

Broad Phase

Post Broad
Phase

Narrow Phase

Island Gen

Solver

Fetch Results

gameworks.nvidia.com


11www.gameworks.nvidia.com

Performance in PhysX 3.3

•Broad Phase, narrow phase and solver ~70-80% of total simulation time

•Meaning maximum speed-up is limited to 3.3-5x

•Not enough!

•Serial stages of pipeline quickly become bottleneck!

•Either migrate more to GPU or optimize CPU code

gameworks.nvidia.com


12www.gameworks.nvidia.com

An Improved Physics Pipeline!

•PhysX 3.3 pipeline too serial

•New pipeline parallelizes more stages

•Optimized parallel interaction framework to scale to 1m+ pairs

•New incremental island management

•New sim controller and AABB manager 

•Shares common information between broad phase, narrow phase and scene query to avoid 
redundant work

•Optimized CPU contact generation and constraint solver

gameworks.nvidia.com


13www.gameworks.nvidia.com

An Improved Physics Pipeline!

• Improved memory footprint and cache coherence

•Decouple and overlap pipeline stages so CPU and GPU can both be busy at the same 
time

•Also provides better multi-core CPU performance

•New split fetchResults API to enable application to parallelize callbacks

•Callbacks can potentially become a bottleneck!

•New split sim API

gameworks.nvidia.com


14www.gameworks.nvidia.com

GPU Rigid Bodies in PhysX 3.4

•Hybrid CPU/GPU rigid body simulation

•Execute the following Rigid Body pipeline stages on GPU

•Broad Phase, Narrow Phase, Solver

•Miscellaneous state management, bounds computation etc.

•Execute the following stages on the CPU

• Island Management

• Shape filtering and interaction management

•CCD

•Triggers

•User callbacks

•Updating scene query structures

gameworks.nvidia.com


15www.gameworks.nvidia.com

GPU Broad Phase

•Two-phase incremental broad phase algorithm

•Produces only delta pairs

•New or lost pairs since last time BP was run

•Significantly reduces data transfer between CPU and GPU

•Highly-scalable

•Often orders of magnitude faster than commonly-used CPU sweep and prune 
approaches.

•Can be enabled without enabling the rest of the GPU pipeline

•PxAggregates are partially handled on CPU

•PxAggregate is usually not beneficial if using GPU broad phase

gameworks.nvidia.com


16www.gameworks.nvidia.com

GPU Narrow Phase

• PCM-based

• Supports boxes, convex hulls, meshes and heightfields

• Convex hulls must have <= 64 verts and <= 32 verts per-face

• Meshes and convex hulls need extra cooked data

•CPU processes

• Incompatible shape pairs (sphere, capsule, plane, complex convex)

• Pairs with contact modification enabled

•Contacts generated on CPU are automatically transferred to GPU to be processed by the solver

•Contacts generated on GPU are automatically transferred back to CPU as needed

•Trigger pairs are processed on CPU

• Trigger behaviour can be emulated on GPU using touch found/lost events

gameworks.nvidia.com


17www.gameworks.nvidia.com

GPU Constraint Solver

•Hybrid PGS/MS constraint solver

•Provides equivalent behaviour to PhysX CPU solver

•Extracts and exploits massive levels of parallelism from within islands

•Utilizes an efficient lazy algorithm to determine dependency chains

•Cost is proportional to how much connectivity changes rather than the complexity of the 
graph itself

•Solves all contacts and joint constraints

•Native support for D6 joints (full pipeline executed on GPU)

•Other joint types have joint shaders execute on CPU and results transferred to GPU for 
processing

gameworks.nvidia.com


18www.gameworks.nvidia.com

GPU Constraint Solver continued

•Supports most features supported by CPU

•Force reports and force thresholding

•Breakable joints

•Applies all modifiable properties

• Limiting contact/constraint force, target velocity, max de-penetration velocity, dominance and 
local mass modifications

•Doesn’t currently support articulations

•Designed to provide good performance while using as few GPU compute resources as 
possible.

gameworks.nvidia.com


19www.gameworks.nvidia.com

GPU Simulation Controller

•Body and shape state management

•Manages pair and constraint states

•Controls actor sleeping

•Handles user state modifications to actors and pairs

•Efficiently keeps CPU and GPU view of current body/shape/pair states up-to-date by lazily 
updating states as required

•Buffers external/internal states to minimize per-frame data transfers between CPU 
and GPU.

gameworks.nvidia.com


20www.gameworks.nvidia.com

Ease of Integration

Basic scene initialization

PxSceneDesc sceneDesc(gPhysics->getTolerancesScale());

sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f);

sceneDesc.cpuDispatcher= PxDefaultCpuDispatcherCreate(4);

sceneDesc.filterShader= PxDefaultSimulationFilterShader;

gScene = gPhysics->createScene(sceneDesc);

Basic scene initialization with GPU rigid bodies

PxSceneDesc sceneDesc(gPhysics->getTolerancesScale());

sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f);

sceneDesc.cpuDispatcher= PxDefaultCpuDispatcherCreate(4);

sceneDesc.filterShader= PxDefaultSimulationFilterShader;

PxCudaContextManagerDesc cudaContextManagerDesc;

gCudaContextManager = PxCreateCudaContextManager(*gFoundation, 
cudaContextManagerDesc);

sceneDesc.gpuDispatcher = gCudaContextManager->getGpuDispatcher();

sceneDesc.flags |= PxSceneFlag::eENABLE_GPU_DYNAMICS;

sceneDesc.broadPhaseType = PxBroadPhaseType::eGPU;

gScene = gPhysics->createScene(sceneDesc);

gameworks.nvidia.com


21www.gameworks.nvidia.com

Performance Results

•Windows 10 64-bit

• I7-5930k

•32GB RAM

•GTX 1080

gameworks.nvidia.com


22www.gameworks.nvidia.com

13,824 Convex Objects

0

20

40

60

80

100

120

T
im

e
 i
n
 m

il
li
se

c
o
n
d
s

PhysX 3.3

PhysX 3.4

PhysX 3.4 GPU

gameworks.nvidia.com


23www.gameworks.nvidia.com

Hallway Destruction

0

20

40

60

80

100

120

T
im

e
 i
n
 m

il
li
se

c
o
n
d
s PhysX 3.3

PhysX 3.4

PhysX 3.4 GPU

gameworks.nvidia.com


24www.gameworks.nvidia.com

Arena Demo Destruction

0

20

40

60

80

100

120

140

160

T
im

e
 i
n
 m

il
li
se

c
o
n
d
s

PhysX 3.3

PhysX 3.4

PhysX 3.4 GPU

gameworks.nvidia.com


25www.gameworks.nvidia.com

GRB Demo (Kapla Tower) 20,000 convexes

0

20

40

60

80

100

120

T
im

e
 i
n
 m

il
li
se

c
o
n
d
s

PhysX 3.3

PhysX 3.4

PhysX 3.4 GPU

gameworks.nvidia.com


26www.gameworks.nvidia.com

700 Ragdolls

0

20

40

60

80

100

120

140

160

180

T
im

e
 i
n
 m

il
li
se

c
o
n
d
s

PhysX 3.3

PhysX 3.4

PhysX 3.4 GPU

gameworks.nvidia.com


27www.gameworks.nvidia.com

N convex objects Complexity Scaling

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000

PhysX 3.3 4T PhysX 3.4 4T PhysX 3.4 GPU

gameworks.nvidia.com


28www.gameworks.nvidia.com

N convex objects Complexity Scaling Cont.

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000 14000 16000

PhysX 3.3 4T PhysX 3.4 4T PhysX 3.4 GPU

gameworks.nvidia.com


29www.gameworks.nvidia.com

Scene Query Performance (Raycast Mesh)

0

5

10

15

20

25

30

PhysX 3.3.4 PhysX 3.4

gameworks.nvidia.com


30www.gameworks.nvidia.com

Box Sweep vs Mesh

0

5

10

15

20

25

30

35

40

45

50

PhysX 3.3.4 PhysX 3.4

gameworks.nvidia.com


31www.gameworks.nvidia.com

Convex sweep vs Convex

0

0.5

1

1.5

2

2.5

PhysX 3.3.4 PhysX 3.4

gameworks.nvidia.com


32www.gameworks.nvidia.com

Convex Cooking Speed Improvements

0

100

200

300

400

500

600

700

16 Verts 32 Verts 64 Verts 128 Verts

PhysX 3.3 PhysX 3.4

gameworks.nvidia.com


33www.gameworks.nvidia.com

Conclusions and Future Work

•PhysX 3.4 - Full CPU source available NOW!

•Significantly faster to PhysX 3.3 across-the-board with lots of cool features

• If you use PhysX 3.3 – you should upgrade ASAP 

•GPU rigid body simulation available on Windows and Linux (Kepler and above)

•GPU rigid body Future work

•Further performance improvements

• Improve simulation quality

•Make feature complete

gameworks.nvidia.com


34www.gameworks.nvidia.com

Questions?

gameworks.nvidia.com

