

DU-08562-001_v01 | May 2017

Overview

VRWORKS AUDIO SDK

VRWorks Audio SDK DU-08562-001_v01 | ii

DOCUMENT CHANGE HISTORY

DU-08562-001_v01

Version Date Authors Description of Change
01 May 2017 AS Initial release

VRWorks Audio SDK DU-08562-001_v01 | iii

TABLE OF CONTENTS

VRWorks Audio SDK Overview .. 1
Introduction to Path-Traced Audio ... 1
Prerequisites ... 2
SDK Setup and Sample Applications ... 2

Include File ... 3
Library File .. 3
DLLs ... 3
Sample Applications ... 3

NVIDIA Acoustic Raytracer (NVAR) .. 4
NVAR API Return Codes .. 4
Functions for Passing Scene Information .. 4

Application Structure ... 4
Initialization .. 5

Initializing the Library ... 5
Creating an NVAR Context ... 5

Scene Setup ... 6
Specifying Acoustic Materials .. 6
Specifying Geometry .. 6

Game Loop ... 7
Listener .. 7
Sound Sources ... 7
Changing Scene Setup .. 7
Starting an Acoustic Trace ... 8
Using Trace Results ... 8

Termination .. 9
Configuring a Sound Source .. 9
Context Configuration Parameters .. 10

Compute Preset ... 10
Decay Factor .. 10
Unit Length .. 11
Reverb Length .. 11
Sample Rate ... 11
Output Format .. 11

Asynchronous Execution .. 12

VRWorks Audio SDK DU-08562-001_v01 | 1

VRWORKS AUDIO SDK OVERVIEW

The NVIDIA VRWorks Audio Software Development Kit (SDK) provides the ability to
add path-traced audio to applications, games, and virtual reality (VR) experiences. This
guide provides a conceptual overview of the VRWorks Audio SDK API and explains
how to use the functions in this API. For details of the functions and parameters in
VRWorks Audio SDK API, refer to the VRWorks Audio SDK Reference.

INTRODUCTION TO PATH-TRACED AUDIO

Path-traced audio uses ray-tracing techniques to model the propagation of acoustic
energy through a 3D space. Directional audio aims to give a listener information to
allow him or her to locate the sound source. This information is most often computed
only for the direct path: a straight line through 3D space between the source and the
listener.

Path-traced audio follows the sound’s direct path as well as many indirect paths which
may carry acoustic energy from the source and listener. In many environments, such as
cities and indoor environments, more acoustic energy may reach the listener from
indirect paths than from the direct path. VRWorks Audio provides the tools to make
these environments sound more realistic by following both direct and indirect acoustic
paths.

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 2

Path-traced audio involves these steps:

1. Simulation, which is also called tracing in VRWorks Audio, is the process of finding
paths through the specified 3D geometry between the sound source and the listener.
The product of the simulation step is an auditory filter which affects an audio signal
in the same manner as its propagation through the space.

2. Application, which is sometimes called auralization, is the application of that filter
to the audio data. The audio data before the application of the filter is called the ‘dry’
signal in audio production terminology, and the audio which results from the
application of the filter on the dry signal is referred to as the ‘wet’ signal. VRWorks
Audio provides functions for both simulation and application.

PREREQUISITES

Hardware and system requirements for VRWorks Audio are as follows:

 Hardware - Windows-compatible PC with the following processors:
● GPU - NVIDIA Maxwell or later
● CPU - Intel core i7 or equivalent

 Operating system - 64-bit Windows 7, Windows 8, or Windows 10
 Development environment - Visual Studio 2013
 Display driver - NVIDIA display driver 378.xx or higher

SDK SETUP AND SAMPLE APPLICATIONS

To get started using the VRWorks Audio SDK, set up the include files, library files, and
dynamic linked libraries (DLLs), and build the examples.

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 3

Include File
To compile the VRWorks Audio functionality into your project:

1. Add the include/ directory where you installed the SDK to the include path list of
your Visual C/C++ project or make file.

2. Add the following include directive to the relevant files within your project.
#include <nvar.h>

Library File
Projects which use NVAR must include nvar.lib during the link step. You can meet
this requirement in one of the following ways:

 Add the lib/ directory where you installed the SDK to the library path list.
 Add nvar.lib to the linker input or add the following pragma directive: to one of

the source files.
#pragma comment(lib, "nvar.lib")

DLLs
When testing or deploying an application that uses VRWorks Audio, ensure that the
following .dll files are present in the application directory or installed into a location
within the system’s $PATH variable:

 nvar.dll. – The NVAR library binary
 optix.1.dll. - NVIDIA’s OptiX GPU ray tracing library

Sample Applications
The VRWorks Audio SDK includes these sample applications:

 NvAudioBasic is a simple demonstration of using VRWorks Audio to create a filter
and apply it to an audio file. It renders a source and listener within a simple box
geometry and applies the resulting filter to an input .wav file and writes the output to
a .wav file.

 NvAudioDemo is an interactive, game-like demonstration which loads a geometry
from a file and allows the user to move the source and listener location within this
geometry and experience VRWorks Audio interactively. This sample serves to
illustrate how VRWorks Audio fits within a typical interactive application structure.

The SDK contains a Visual Studio 2013 solution called Samples_vs2013.sln that
builds the sample applications.

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 4

NVIDIA ACOUSTIC RAYTRACER (NVAR)

VRWorks Audio functionality is accessible to applications through the NVIDIA Acoustic
Raytracer (NAVR) application programming interface (API). NVAR is a GPU-
accelerated acoustic path-tracing solution which makes use of the ray tracing hardware
capabilities of NVIDIA GPUs.

NVAR API Return Codes
NVAR functions always return an error code of type nvarStatus_t that indicates
either the status of the call or an error state of the library.

Functions for Passing Scene Information
Most of the functions which pass scene information to NVAR have both a ‘Set’ and a
‘Get’ function. The exception to this is mesh data, which cannot be retrieved. In the
interest of brevity, only the set routines are described in this document. For a full list of
functions provided by VRWorks Audio, refer to the VRWorks Audio API Reference.

APPLICATION STRUCTURE

The functions of the NVAR API can be categorized according to what part of the
application will likely use them. A subset of NVAR functions and where they are used
are shown in the following table.

Application
Phase

Description Functions

Initialization Application startup, initializing
library, querying system
configuration

nvarInitialize()
nvarCreate()
nvarGetDevices()

Scene Setup Pass geometry and material
information to NVAR

nvarCreateMaterial()
nvarCreateMesh()
nvarCommitGeometry()

Game Loop Create sound sources, change
listener location or orientation,
change source location, start a new
acoustic trace, apply the filter
generated by the trace to an audio
stream.

nvarTraceAudio()
nvarCreateSource()
nvarSetListenerLocation()
nvarSetListenerOrientation()
nvarSetSourceLocation()
nvarApplySourceFilters()
nvarSetMeshTransform()

Termination End of application, clean up nvarDestroy()

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 5

During the game loop phase, operations must happen quickly and interactively. Some
setup functions are expensive and should be used sparingly, if ever, during the game
loop. Because NVAR is designed for real-time acoustic tracing, many functions that
reconfigure the scene can be called without restriction during the game loop.

INITIALIZATION

Applications must initialize the library and create an NVAR context.

Initializing the Library
The library is initialized by calling nvarInitialize(). This function must be called
before any other library functions are called.

Creating an NVAR Context
Before any scene or source setup can be performed, an NVAR context must be created
by using nvarCreate(). An NVAR context is created on one and only one GPU and
contains all the necessary processing state for one scene and its geometry and sound
sources. The application passes the GPU NVAR will use to carry out acoustic processing
as a parameter to nvarCreate(). NVAR provides functions to query the topology of
the system:

• nvarGetDeviceCount()
• nvarGetDevices()
• nvarGetDeviceName()
• nvarGetPreferedDevice()

The nvarGetPreferedDevice() function optionally accepts a DXGIAdapter
argument and returns a preferred device which is not running DX graphics if available.

NVAR contexts are created with a name. If no name is provided, a default context is
returned. If nvarCreate() is called for the same context name more than once,
including the empty name, later calls will return the same context as the first call. This
behavior enables code running in different areas of the application, such as the geometry
system and the audio system, to both use the same context without the need to share
memory.

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 6

SCENE SETUP

Scene setup conveys information about the 3D scene to the NVAR API. In some
applications, setup may occur only once. In other applications, such as a multi-level
game, setup may occur multiple times.

During scene setup, an application specifies acoustic materials and geometry to NVAR.
The geometry consists of one or more 3D meshes. A single acoustic material is applied to
an individual mesh. Different meshes may use different acoustic materials.

Specifying Acoustic Materials
Acoustic materials are created with the nvarCreateMaterial() or
nvarCreatePredefinedMaterial() functions.
nvarCreatePredefinedMaterial() creates a material with preset parameters for a
set of common materials. The material for a mesh must be created before adding a mesh
to the scene.

Material properties can be changed interactively within the game loop at very low cost:

 Call nvarSetMaterialReflection() to change reflection coefficient.
 Call nvarSetMaterialTransmission() to change the transmission coefficient.

To respect conservation of energy, the material reflection and material transmission
coefficients must have a sum which is less than or equal to 1.0. NVAR does not enforce
conservation of energy.

Specifying Geometry
Scene geometry is added by using nvarCreateMesh() and removed by using
nvarDestroyMesh(). It is most efficient if scene geometry is added before tracing is
started. However, meshes can also be added and deleted within the game loop with
these calls.

When all of the geometry has been added to a scene, nvarCommitGeometry() can
optionally be called to compute internal geometry data structures before time-critical
processing in the game loop begins. Calling nvarCommitGeometry() is not necessary,
but the first audio trace will be slow if it is not called first.

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 7

GAME LOOP

The game loop is the interactive phase of a game or VR application when the user is
playing. During the game loop, the application must inform NVAR of changes to the
state of the listener, sound sources, and 3D scene. Starting acoustic traces and applying
the filters that a trace creates also occur during the game loop.

Listener
To change the location and orientation of the listener as the listener moves through the
3D scene, call nvarSetListenerLocation() and
nvarSetListenerOrientation().

Sound Sources
Sound sources may be created or destroyed any time after the NVAR context has been
created, including within the game loop:

 Create a sound source by calling nvarCreateSource().
 Destroy a sound source by calling nvarDestroySource().

Sound source parameters other than the preset effect can be adjusted between traces. For
more information about sound source parameters, see “Configuring a Sound Source,”
on page 9.

Performance Note

The audio trace time increases with the number of sources. For maximum performance,
sources which can be grouped should be treated as a single NVAR source. For example,
in a first-person shooter game, all sounds originating from the player location can be
combined into a submix, and this mixed signal used as the input to
nvarApplySourceFilters().

Changing Scene Setup
The scene geometry and materials can be changed at any time. Material reflection and
transmission coefficients can be changed for existing materials by using
nvarSetMaterialReflection() and nvarSetMaterialTransmission(). The
material applied to a mesh may also be changed by using nvarSetMeshMaterial().
Meshes within the scene may also be moved by changing their transform matrix by
using nvarSetMeshTransform().

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 8

The functions described in the paragraph above are extremely lightweight and can be
used as often as needed. Additionally, nvarCreateMesh() and nvarDestroyMesh()
can be used to add new meshes to the scene at any time. Major additions or deletions
may result in extensive changes to internal geometry representations, which may lead to
an unusually long execution time for the nvarTraceAudio() function which follows
calls to nvarCreateMesh() or nvarDestroyMesh() which add or delete large
amounts of geometry.

Starting an Acoustic Trace
After the materials and geometry have been specified, the user location and orientation
set, and at least one source has been created, NVAR is ready to trace acoustic energy
through the scene. The function nvarTraceAudio() launches an acoustic trace. This
function is asynchronous with respect to the calling thread. Therefore, it may safely be
called from the rendering thread without stalling graphics draw calls or other work
originating from that thread. nvarTraceAudio() schedule a trace and returns
immediately.

nvarTraceAudio() accepts a Windows event handle which will be signaled when the
trace has completed. When calling nvarTraceAudio(), applications should ensure
that another trace is not already scheduled or running by checking the state of the
Windows event passed to the previous call to nvarTraceAudio(). Calling
nvarTraceAudio() faster than traces can be completed creates a backlog of traces that
may interrupt real-time operation.

Using Trace Results
An NVAR sound source is not tied to a specific audio stream until the filter generated by
the acoustic ray tracer is applied to an audio input stream. The result of a trace is a set of
filters, one for each output channel, e.g. left and right. The input audio is assumed to be
a single, mono, audio stream as physical sound sources are naturally monaural.

To apply the filter generated by NVAR to an audio stream, call
nvarApplySourceFilters(). This function retrieves the latest filter set generated for
the specified source and applies them to the audio stream. This function is expected to
be called asynchronously with respect nvarTraceAudio() – there is no danger in
calling nvarApplySourceFilters() while a trace is executing or scheduled. In
typical use cases, nvarApplySourceFilters() is called from a signal processing
chain driven by a thread created by the sound engine or sound output device.

If an application has another use for the filter or has its own convolution
implementation, the filter data may be retrieved with nvarGetSourceFilters().

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 9

The filters generated by NVAR are typically much larger than the individual source
buffers passed to nvarApplySourcefilters(). NVAR maintains signal history and
state within its internal convolution implementation. A single NVAR source should only
be used for a single audio stream. Changing the audio stream or using the sharing the
same NVAR source for multiple audio streams causes audio discontinuities.

TERMINATION

When a game level is unloaded, the NVAR state should be cleaned up by calling the
corresponding nvarDestroy() function for all nvarCreate() functions called
during setup or during the game loop. When the NVAR context is destroyed, all its
contents are destroyed and any handles to its contents are invalid. However, if multiple
locations have called nvarCreate(), the NVAR context will not be destroyed until the
number of calls to nvarDestroy() equals the number of calls to nvarCreate() for a
specific context. nvarFinalize() closes down the library. After calling
nvarFinalize(), an application can no longer use any NVAR functionality.

CONFIGURING A SOUND SOURCE

At any point, an application can add a new sound source to NVAR by using the
nvarCreateSource() function or remove a sound source by using the
nvarDestroySource() function. When a source is created, the application must
specify the effect preset to be used. NVAR has three presets for the level of effect desired
on a sound source:

 NVAR_EFFECT_LOW – Subtle reverb, fast acoustic attenuation
 NVAR_EFFECT_MEDIUM – Realistic reverb and direct sound mixture
 NVAR_EFFECT_HIGH – Accentuated reverb, long-lived acoustic energy

Other than the effect preset, a source is created with default parameters. The application
must call additional ‘Set’ functions to change these parameters. The following table
summarizes these parameters and lists the functions for changing them.

Source
Parameter

Description Functions

Location Position of a sound source in the 3D
scene

nvarSetSourceLocation()

Direct Path
Gain

A gain [0.0 – Inf) applied to the direct
path between the listener and the
specified sound source.

nvarSetSourceDirectPathGain()

Indirect
Path Gain

A gain [0.0 – Inf) applied to all
indirect paths between the specified
sound source and the listener.

nvarSetSourceIndirectPathGain()

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 10

These parameters can be changed as often as needed. For example, in a typical usage
scenario, the game loop changes the location of a sound source as often as every frame,
but may set the direct and indirect path gains only once (and only if needed) when the
source is created.

CONTEXT CONFIGURATION PARAMETERS

Some NVAR parameters apply to every source within a context.

Compute Preset
When an NVAR context is created, a compute preset must be passed to the create
function. The compute preset dictates the amount of computational resources NVAR
should use in calculating direct and indirect paths. There compute presets are as follows:

 NVAR_COMPUTE_HIGH uses more rays through more bounces to create a more dense
and realistic filter. The use of more rays through more bounces incurs the cost of
more GPU computations, higher memory consumption and longer trace times.
NVAR_COMPUTE_HIGH is ideal for systems in which a GPU other than the GPU
rendering graphics can be used for NVAR.

 NVAR_COMPUTE_LOW uses fewer rays through fewer bounces to create the filter. The
priority of this compute mode is to complete the traces rapidly so they can be
interspersed between frame renders on a single GPU.

After the compute preset for a context has been set, it cannot be changed.

Decay Factor
NVAR continuously refines the acoustic simulation across multiple calls to
nvarTraceAudio(). Decay factor controls the interval over which the acoustic
simulation is refined. A higher decay factor creates filters that incorporate a larger
history of acoustic simulations, but reacts more slowly to changes in listener position,
source position, or geometry changes. The decay factor can be in the range 0.0 to 1.0. A
decay factor of 0.0 uses only the most recently discovered acoustic paths, while a decay
factor of 1.0 uses all paths ever found. Decay factor should be less than 1.0 in gaming
and VR applications.

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 11

Unit Length
For correct physical simulation, the scale of the geometry passed to NVAR must be
established. The function nvarSetUnitLength() is used to give NVAR a reference
distance. The argument to nvarSetUnitLength() is the length, in meters, of a unit
vector, that is, a vector with a length of 1.0, within the geometry assets passed to
nvarCreateMesh(). For example, if the geometry is created in units of centimeters, the
value passed to nvarSetUnitLength() should be 0.01, because there are 0.01 meters
in a unit length of the geometry, a centimeter.

Reverb Length
NVAR generates reverbs that are finite impulse response (FIR) filters. The total length of
the filter can be set with nvarSetReverbLength(). This function takes the reverb
length in seconds. The length of the filters generated by NVAR is affected by this
parameter, so changes cause reallocation of internal buffers, which may be expensive.
This function should be called during application initialization or scene setup and the
reverb length changed as infrequently as possible.

Sample Rate
To create effects correctly, NVAR requires the sample rate of the audio streams to which
the filters will be applied. This can be set with nvarSetSampleRate(). The length of
the filters generated by NVAR is affected by the sample rate, and changing it results in
reallocation of internal buffers, which may be expensive. This function should be called
during application initialization or scene setup and the sample rate changed as
infrequently as possible.

Output Format
The output format specifies the type of audio device that will render the audio. NVAR
creates a set of filters consisting of one filter one per channel of the output format for
each sound source. The output format must be specified when a context is created and
cannot be changed. Only NVAR_OUTPUT_FORMAT_STEREO_HEADPHONES, which has
two output channels, is supported.

VRWorks Audio SDK Overview

VRWorks Audio SDK DU-08562-001_v01 | 12

ASYNCHRONOUS EXECUTION

To avoid stalling the game loop and graphics dispatch, many NVAR functions enqueue
the operation to be completed and return. The operation is added to a command queue
and control returns to the calling thread. The requested operation is then carried out
asynchronously with respect to the calling thread. Commands issued will be executed in
the order that they were issued.

An application may synchronize the internal command queue which executes enqueued
operations by using the function nvarSynchronize(), which blocks the calling thread
until the command queue has finished executing. The application can also add Windows
events to the command queue by using nvarEventRecord(). The Windows event
passed in through this function will be signaled once all work added to the command
queue before to the call to nvarEventRecord() has completed.

The following functions execute asynchronously to the calling thread:

 nvarTraceAudio()
 nvarCreateMaterial()
 nvareCreatePredefinedMaterial()
 nvarDestroyMaterial()
 nvarSetMeshMaterial()
 nvarSetMaterialReflection()
 nvarSetMaterialTransmission()
 nvarCreateMesh()
 nvarDestroyMesh()
 nvarSetMeshTransform()
 nvarCommitGeometry()

www.nvidia.com

Notice
The information provided in this specification is believed to be accurate and reliable as of the date provided.
However, NVIDIA Corporation (“NVIDIA”) does not give any representations or warranties, expressed or
implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties
that may result from its use. This publication supersedes and replaces all other specifications for the product
that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other
changes to this specification, at any time and/or to discontinue any product or service without notice.
Customer should obtain the latest relevant specification before placing orders and should verify that such
information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized
representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general
terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military,
aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death or property or environmental damage.
NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and
therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid
a default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this specification. NVIDIA does not accept any liability related to any default,
damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any
manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA
intellectual property right under this specification. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents
or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other
intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if
reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all
associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be
limited in accordance with the NVIDIA terms and conditions of sale for the product.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and
DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards
Association in the United States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2017 NVIDIA Corporation. All rights reserved.

	VRWorks Audio SDK Overview
	Introduction to Path-Traced Audio
	Prerequisites
	SDK Setup and Sample Applications
	Include File
	Library File
	DLLs
	Sample Applications

	NVIDIA Acoustic Raytracer (NVAR)
	NVAR API Return Codes
	Functions for Passing Scene Information

	Application Structure
	Initialization
	Initializing the Library
	Creating an NVAR Context

	Scene Setup
	Specifying Acoustic Materials
	Specifying Geometry

	Game Loop
	Listener
	Sound Sources
	Performance Note

	Changing Scene Setup
	Starting an Acoustic Trace
	Using Trace Results

	Termination
	Configuring a Sound Source
	Context Configuration Parameters
	Compute Preset
	Decay Factor
	Unit Length
	Reverb Length
	Sample Rate
	Output Format

	Asynchronous Execution

