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Abstract. Many popular search engines run an auction to determine
the placement of advertisements next to search results. Current auctions
at Google and Yahoo! let advertisers specify a single amount as their
bid in the auction. This bid is interpreted as the maximum amount the
advertiser is willing to pay per click on its ad. When search queries arrive,
the bids are used to rank the ads linearly on the search result page.
Advertisers seek to be high on the list, as this attracts more attention
and more clicks. The advertisers pay for each user who clicks on their
ad, and the amount charged depends on the bids of all the advertisers
participating in the auction.

We study the problem of ranking ads and associated pricing mechanisms
when the advertisers not only specify a bid, but additionally express their
preference for positions in the list of ads. In particular, we study prefiz
position auctions where advertiser ¢ can specify that she is interested
only in the top k; positions.

We present a simple allocation and pricing mechanism that generalizes
the desirable properties of current auctions that do not have position
constraints. In addition, we show that our auction has an envy-free [1]
or symmetric [2] Nash equilibrium with the same outcome in allocation
and pricing as the well-known truthful Vickrey-Clarke-Groves (VCG)
auction. Furthermore, we show that this equilibrium is the best such
equilibrium for the advertisers in terms of the profit made by each ad-
vertiser. We also discuss other position-based auctions.

1 Introduction

In the sponsored search market on the web, advertisers bid on keywords that
their target audience might be using in search queries. When a search query is
made, an online (near-real time!) auction is conducted among those advertisers
with matching keywords, and the outcome determines where the ads are placed
and how much the advertisers pay. We will first review the existing auction
model before describing the new model we study (a description can be found in
Chapter 6 of [3]).



Current Auctions. Consider a specific query consisting of one or more keywords.
When a user issues that search query, the search engine not only displays the
results of the web search, but also a set of “sponsored links.” In the case of
Google, Yahoo, and MSN, these ads appear on a portion of the page near the
right border, and are linearly ordered in a series of slots from top to bottom.
(On Ask.com, they are ordered linearly on the top and bottom of the page).

Formally, for each search query, we have a set of n advertisers interested
in advertising. This set is usually derived by taking a union over the sets of
advertisers interested in the individual keywords that form the query. Advertiser
i bids b;, which is the maximum amount the advertiser is willing to pay for a
click. There are k < n positions available for advertisements. When a query for
that keyword occurs, an online auction determines the set of advertisements,
their placement in the positions, and the price per click each has to pay.

The most common auction mechanism in use today is the generalized second-
price (GSP) auction (sometimes also referred to as the next-price auction). Here
the ads are ranked in decreasing order of bid, and priced according to the bid of
the next advertiser in the ranking. In other words, suppose wlog that b; > by >
... > by; then the first k ads are placed in the k positions, and for all i € [1, k],
bidder i gets placed in position i and pays b;;1 per click.!

We note two properties ensured by this mechanism:

1. (Ordering Property) The ads that appear on the page are ranked in decreas-
ing order of b;.

2. (Minimum Pay Property) If a user clicks on the ad at position 4, the adver-
tiser pays the minimum amount she would have needed to bid in order to be
assigned the position she occupies.

Search engine companies have made a highly successful business out of these
auctions. In part, the properties above have dissuaded advertisers from trying
to game the auction. In particular, the minimum-pay property ensures that an
advertiser has no incentive to lower a winning bid by a small amount in order
to pay a lower price for the same position. Still, the GSP auction is not truth-
revealing, that is, an advertiser may be incentivized to bid differently than her
true value under certain conditions [4].

Only recently have we obtained a detailed formal understanding of the prop-
erties of this auction. Authors in [1, 2, 4] have analyzed the auction in terms of
its equilibria. They show that when the click-through rates are separable, i.e. the
click-through rate of an ad at a given position is the product of an ad-specific
factor and a position-specific factor, the GSP has a Nash equilibrium whose out-
come is equivalent to the famous Vickrey-Clarke-Groves (VCG) mechanism [5-7)
which is known to be truthful. [1,2] go on to show that this equilibrium is envy-
free, that is, each advertiser prefers the current outcome (as it applies to her)
to being placed in another position and paying the price-per-click being paid

! The Google auction actually ranks according to w;b;, for some weight w; related to
the quality of the ad, and then sets the price for bidder ¢ to wit1bi1/w;. All our
results generalize to this “weighted” bid case as well.



by the current occupant of the position. Further, among all the envy-free equi-
libria, the VCG equilibrium is bidder-optimal; that is, for each advertiser, her
price-per-click is minimum under this equilibrium. We note that when the click-
through rates are separable, the outcome produced by the VCG mechanism has
the ordering property. Authors in [4] also show that even when the click-through
rates are arbitrary, there is a pricing method with the ordering property that
is truthful. (This pricing method reduces to the VCG pricing method when the
click-through rates are separable.) Furthermore, they show that the GSP has
a Nash equilibrium that has the same outcome as their mechanism. Together,
these results provide some understanding of the current auctions. That in turn
provides confidence in the rules of the auction, and helps support the vast market
for search keyword advertising.

Emerging Position-Based Auctions. As this market matures, advertisers are be-
coming increasingly sophisticated. For example they are interested in the relative
performance of their ads and keywords, and so the search engines provide tools
to track statistics. As advertisers learn when and where their ads are most ef-
fective, they need more control over their campaigns than is provided by simply
stating a keyword and a bid.

One of the most important parameters affecting the performance of an ad-
vertisement is its position on the page. Indeed, the reason the auction places the
ads in descending order on the page is that the higher ads tend to get clicked
on more often than the lower ones. In fact, having an ad place higher on the
page not only increases the chances of a click, it also has value as a branding
tool, regardless of whether the ad gets clicked. Indeed, a recent empirical study
by the Interactive Advertising Bureau and Nielsen//NetRatings concluded that
higher ad positions in paid search have a significant brand awareness effect [8].
Because of this, advertisers would like direct control over the position of their
ad, beyond just increasing the bid. Ideally, the search engine would conduct a
more general auction that would take such position preferences into account; we
refer to this as a position-based auction.

Our Results. In this paper, we initiate the study of position-based auctions where
advertisers can impose position constraints. In particular, we study the most
relevant case of prefiz position constraints, inspired by the branding advertiser:
advertiser 7 specifies a position x; and a bid b;, which says that the advertiser
would like to appear only in the top k; positions (or not at all) and is willing to
pay at most b; per click. Upon receiving bids from a set of n such advertisers,
the search engine must conduct an auction and place ads into k£ positions while
respecting the prefix constraints.

Our main results are as follows. We present a simple auction mechanism
that has both the ordering and the minimum pay property, just like the current
auctions. The mechanism is highly efficient to implement, taking near-linear
time. Further, we provide a characterization of its equilibria. We prove that this
auction has a Nash equilibrium whose outcome is equivalent in allocation and



pricing to that of VCG. Additionally, we prove that this equilibrium is envy-free
and that among all envy-free equilibria, this particular one is bidder-optimal.

Our results generalize those in [1, 2], which proved the same thing for the GSP
without position constraints. The main difficulty in generalizing these results
lies in the fact that once you allow position constraints, the allocation function
of VCG no longer obeys the ordering property, thus making it challenging to
engineer an appropriate equilibrium. Our principal technical contributions are
new structural properties of the VCG allocation that allow us to relate the VCG
allocation with an auction that preserves the ordering property.

In the future, advertisers may want even more control over ad position. We
discuss more general position-based auctions at the end of the paper.

2 Prefix Position Auction Mechanisms

Formally, the prefix position auction problem is as follows. There are n advertis-
ers for a search keyword. They submit bids by, ...,b, respectively. There are k
positions for advertisements numbered 1,...,k, top to bottom. Each advertiser
i € {1,...,n} also submits a cutoff position x; < k, and requires that their
advertisements should not appear below position ;.

An auction mechanism consists of two functions:

— an allocation function that maps bids to a matching of advertisers to posi-
tions, as well as

— a pricing function that assigns a price per click ppc; to each position won
by an advertiser. We restrict our attention to mechanisms where the prices
always respect the bids; i.e., we have ppc; < b; if ¢ is assigned to j.

A natural allocation strategy that retains the ordering property is as follows:
rank the advertisers in decreasing order of b; as in GSP. Now, go through the
ranking one position at a time, starting at the top; if you encounter an advertiser
that appears below her bottom position k;, remove her from the ranking and
move everyone below that position up one position, and continue checking down
the rest of the list.

Two natural pricing strategies immediately come to mind here: (1) Set prices
according to the subsequent advertiser in the ranking before any advertiser is
removed, or (2) set prices according to the subsequent advertiser in the ranking
after all the advertisers are removed (more precisely, the ones that appear below
her position). It turns out that neither of these options achieves the minimum
pay property as shown by the following examples. Assume for the sake of these
examples that $0.05 is the amount used to charge for the last position.

Ezample 1. Suppose we set prices before removing out-of-position advertisers.
Now suppose we have the following ranges and bids where the number in paren-
theses is the position constraint x;:

A: (5) $5 B: (5) $4 C: (5) $3 D: (2) $2 E: (5) $1



We run the auction, and the order is (A, B, C, D, E). If we price now, the prices
are ($4, $3, $2, $1, $0.05). Bidder D gets removed and so we end up with (4, B, C,
E), and we charge ($4, $3, $2, $0.05). However, if bidder C had bid $1.50, which
is below what she was charged, the auction would still have ended up as (A, B,
C, E). Thus, the minimum pay property is violated by charging too much.

For a more intuitive reason why this is a bad mechanism, it would allow a
form of “ad spam”. Suppose a bidder sets her bottom cutoff to (2), but then bids
an amount that would never win position one or two. In this case, she drives up
the price for those that are later in the auction (e.g., competitors), at no risk
and no cost to herself.

Ezxample 2. Now suppose we set the prices after removing out-of-position adver-
tisers, and we have the following bids and prefix constraints:

A: (5) $5 B: (5) $4 C: (2) $3 D: (5) $2

We run the auction, and the order is (A, B, C, D). Now we remove C and we
get the order (A, B, D). We price according to this order and so the prices are
(%4, $2, $0.05). Bidder B bid $4 and paid $2; however, if B changed her bid to
$2.50, then bidder C would have gotten second position. Thus the minimum pay
property is violated, but this time because we are charging too little.

As for intuition, this option opens up a possible “race for the bottom” sit-
uation. Suppose we have a group of bidders only interested in positions 1-4
(perhaps because those appear on the page without scrolling). The winners of
the top three positions pay according to the competitive price for those top po-
sitions, but the winner of position 4 pays according to the winner of position 5,
who could be bidding a much lower amount. Thus, these top bidders have an
incentive to lower their prices so that they can take advantage of this bargain.

But now consider a third alternative, which will turn out to be the one
that achieves the minimum-pay property: For each advertiser that is allocated a
particular position j, set the price according to the first advertiser that appears
later in the original ranking that included j in her range. For an example of this
pricing method, consider the situations from the examples above:

In Example 1, the advertisers would be ranked (A, B, C, D, E), and then (A,
B, C, E) after removal. The price for A is set to $4, since B had position 1 in its
range. Similarly, the price for B is set to $3 since C had position 2 in its range.
The price for C is set to $1, however, since D did not include position 3 in its
range. The price for C is set to $0.05.

In Example 2, the advertisers would be ranked (A, B, C, D) and after removal
we get (A, B, D). The price for A is $4, but the price for B is now $3; even though
C did not win any position, it was still a participant in the auction, and was
bidding for position 2. The price for D is $0.05.

Top-down Auction. We now define an auction mechanism for prefix position
constraints that is equivalent to the final proposal above, and is easily seen to
have the minimum-pay property. Furthermore, this mechanism is exceedingly
easy to implement, taking time O(nlogn).



Definition 1. The top-down auction mechanism works as follows: For each po-
sition in order from the top, iteratively run a simple second-price auction (with
one winner) among those advertisers whose prefix range includes the position
being considered. By a “simple second-price auction,” we mean that the highest
bidder in the auction is allocated the position, and pays a price-per-click equal to
the second-highest bid. This winner is then removed from the pool of advertisers
for subsequent auctions and the iteration proceeds.

3 Analysis of the top-down prefix auction

We have found a natural generalization of GSP to use with prefix position con-
straints, and now we would like to know what properties this auction has. Since
GSP is a special case, we already know that the auction is not truthful [4]. But
from [2, 1,4] we at least know something about the equilibria of GSP. It is natural
to ask whether or not these results hold true in our more general setting.

In this section, we answer this in the affirmative, and prove that the top-
down prefix auction has an “envy-free” Nash equilibrium whose outcome (in
terms of allocation and pricing) is equivalent to that of VCG. (“Envy-freeness”
is a stronger condition than is imposed by the Nash equilibrium, dictating that
no bidder envies the allocation and price of any other bidder.) We go on to
prove that this equilibrium is the bidder-optimal envy-free Nash equilibrium in
the sense that it maximizes the “utility” (or profit) made by each advertiser.

Definitions. Each position j has an associated click-through rate c¢; > 0 which
is the probability that a user will click on an ad in that position. Using the idea
that higher positions receive more clicks, we may assume c¢; > co > ... > cg.
To make the discussion easier, we will abuse this notation and say that an ad in
position j “receives c; clicks,” even allowing c; > 1 for some examples.

Each advertiser has a valuation v; it places on a click, as long as that click
comes from one of its desired positions. Using the “branding” motivation, we
assume a valuation of —oo if an ad even appears at a position below its bottom
cutoff k;. Since ¢; > 0 for all positions j, we can (equivalently) think of this as a
valuation of —oo on a click below position ;. So, given some total price p (for
all the clicks) for a position j, the wtility of bidder ¢ is defined as w; = ¢jv; — p
if j < k;, and —oo otherwise.?

The Vickrey-Clarke-Groves (VCG) Auction. The VCG auction mechanism [5-7]
is a very general technique that can be applied in a wide range of settings. Here
we give its application to our problem. For a more general treatment, we refer
the reader to Chapter 23 of [9)].

2 Note that we are making the assumption that click-through rates are dependent
only on the position and not on the ad itself. Our results hold as long as the click-
through rates are separable, i.e. the click-through rate of an ad at a given position is
the product of a per-position factor and a per-advertiser factor. More general forms
of click-through rate would require further investigation.



Let © represent the allocation of bidders to positions that maximizes the
total valuation on the page; i.e., © is a matching M of advertisers ¢ to positions
Jj that respects the position constraints (j < k;), and maximizes Z(i7j)EM v;¢5.
Note that this assignment could also have empty slots, but they must be con-
tiguous at the bottom end. The @ allocation is the most “efficient” allocation,
but an allocation function in an auction mechanism has access to the bids b; not
the valuations v;. So instead, the VCG allocation M™ is the matching M that
maximizes . oy bicj.

Intuitively, the VCG price for a particular bidder is the total difference in
others’ valuation caused by that bidder’s presence. To define this pricing function
formally, we need another definition: Let M*_ be the VCG allocation that would
result if bidder « did not exist. More formally, this allocation is the matching M
that does not include bidder z and maximizes }_; ;¢ bic;.

The VCG price for bidder 7 in position j is then p; = M*, — M* +¢;b;. (Here
we are abusing notation and using M* and M*, to denote the total valuation of
the allocation as well as the allocation itself.) Note that p; is a total price for all
clicks at that position, not a per-click price. Only in the case that b; = v; does
the VCG mechanism actually successfully compute ©@. However, it is well-known
(see [9] for example) that the pricing method of VCG ensures that each bidder
is incentivized to actually reveal their true valuation and set b; = v;. This holds
regardless of the actions of the other bidders, a very strong property referred
to as “dominant-strategy truthfulness.” Thus in equilibrium, we get b; = v;,
M* = 6, and M*, = ©_;, where O_; is the © allocation that would result if
bidder 4 did not exist.

For convenience, for the remainder of paper we rename the bidders by the
slots to which they were assigned in ©, even when we are talking about the
top-down prefix auction. The unassigned bidders are renamed to (k+ 1,...,n)
arbitrarily. We will use p; = ©_; — © + ¢;v; to denote the VCG price (at equi-
librium) for position (and bidder) .

Envy-Free Nash Equilibria and the GSP Auction. The VCG mechanism is de-
sirable because it has an equilibrium that results in the most efficient allocation
according to the true valuations of the bidders. Furthermore this equilibrium oc-
curs when each bidder actually reveals their true valuations. The GSP auction
(without position constraints) does not have this second property, but in fact
it does have the first: namely that it has an equilibrium whose allocation is the
most efficient one (this was proved in [1, 2, 4]). Furthermore, this equilibrium also
results in the same prices that result from VCG. This validates the GSP from
an incentive-compatibility point of view, and shows that the ordering property
does not preclude efficiency. This equilibrium also has the following property:

Definition 2. An allocation and pricing is an envy-free equilibrium if each bid-
der prefers the current outcome (as it applies to her) to being placed in another
position and paying the price-per-click being paid by the current occupant of the
position.



Moreover, among all envy-free Nash equilibria, this particular one is bidder-
optimal, in the sense that it results in the lowest possible price for each particular
advertiser. Note that in GSP, for a particular bidder, the only position for which
envy-freeness is not implied by Nash is the position directly above.

3.1 Equilibrium in the top-down auction

It is natural to ask if all these properties also hold true in the presence of posi-
tion constraints. One of the difficulties in proving this comes from the fact that
the VCG allocation no longer preserves the ordering property, as shown by the
following simple example. Suppose advertiser A has bottom cutoff (2) and a bid
of $2, advertiser B has cutoff (1) and a bid of $1, and we have ¢; = 101 and
co = 100. The VCG allocation gives position 1 to B and position 2 to A, for
a total revenue of ~ $300. The top-down auction will give position 1 to A and
position 2 will be unfilled. The revenue is equal to =~ $200.

Despite this, it turns out that there is an equilibrium of the top-down auction
where bidders end up in the optimal allocation, which we prove in our main
theorem:

Theorem 1. In the top-down prefix auction, there exists a set of bids and stated
position cutoffs such that

(a) each bidder is allocated to the same slot as she would be in the dominant-
strategy equilibrium of VCG,

(b) the winner of each slot pays the same total price as she would have in the
dominant-strategqy equilibrium of VCG, and

(c) the bidders are in an envy-free Nash equilibrium.

Furthermore (d), for each advertiser, her utility under VCG outcomes is the
mazximum utility she can make under any envy-free equilibrium. In other words, a
VCG outcome is a bidder-optimal envy-free equilibrium of the top-down auction.

The remainder of this section is devoted to proving this theorem. The bids
that satisfy this theorem are in fact quite simple: we set b; = p;—1/c;—1 for all
bidders ¢ assigned in ©. Thus, if we show that by > by > ... > by, we would get
that the top-down auction assigns the bidders exactly like @ and sets the same
prices (modulo some technical details). This would prove (a) and (b) above.

The chain. To show that the bids are indeed decreasing, and to show (c), it
turns out that we need to prove some technical lemmas about the difference
between © and ©_; for some arbitrary bidder i. In ©_;, some bidder i’ takes
the place of ¢ (unless i is in the last slot, in which case perhaps no bidder takes
this slot). In turn, some bidder " takes the slot vacated by i, etc., until either
the vacated slot is the bottom slot k, or some previously unassigned bidder is
introduced into the solution. We call this sequence of bidder movements ending
at slot ¢ the “chain” of moves of ©_;. Note that the chain has the property that
it begins either with an unassigned bidder, or with the bidder from the last slot



and ends at slot 4. If we consider the slots not on the chain, we claim that (wlog)
the assignment does not change on these slots when we go from © to ©_;. This
is easily seen by substituting a purported better assignment on these slots back
into ©. Note that this implies that ©_; has at most one new bidder (that wasn’t
in ©), and that no bidder besides ¢ that was assigned in © has dropped out. The
chain is said to have minimum length if there is no shorter chain that achieves
the same valuation as ©_;. A link in this chain refers to the movement of a
bidder ¢ from slot 7 to some slot i'. We say that this is a downward link if i’ > i;
otherwise it is an upward link.

Lemma 1. The minimum length chain for @_; does not contain a downward
link followed by an upward link.

Proof. Suppose it does contain such a sequence. Then, some bidder i; moved
from slot i1 to slot i > i1, and bidder is moved from slot is to a slot i3 < is.
An alternate solution, and thus a candidate solution for @_; is to have bidder i,
move from slot i; to slot i3, have bidder i remain in slot i5, and keep everything
else the same. (Bidder ¢; can move to slot i3 since i3 < iz and i is in range for
bidder i1 (by the fact that i; moved to iy in ©_;).)

The difference between the two solutions is ¢;, (vi, — viy) + Ciy(vi, — viy) =
(Cig —Ciy) (Vi —04,). We know ¢;, > ¢, since ig < i2. We also know v;, > v;, since
otherwise © could switch bidders ¢; and i2 (note again that bidder i; can move
to slot iz, since it did so in @_;). Thus the difference is non-negative, and so this
alternate solution to ©_; has either greater valuation or a shorter chain. ad

Lemma 2. Let x and y be arbitrary bidders assigned to slots x and y in O,
where x < y. Then, (i) if slot y is in the range of bidder x, we have O_, >
O_s + cy(vy —vy), and (i) O_y > O_y + cp(vy — Vg).

Proof. (i) Consider the assignment of bidder y in ©_,. Recall that for any 7,
all bidders besides ¢ present in @ are also present in ©_;. Thus y is present
somewhere in ©_,. Note also that the minimum-length chain for ©_, ends at
slot x, and so if y is present in this chain, it cannot follow a downward link;
otherwise the chain would contradict Lemma 1, since x is above y. Thus we may
conclude that y ends up in position y’ < y. Since slot ¥ is in range for bidder x by
assumption, we also have that 3’ is in range for bidder z; thus we can construct
a candidate solution for ©_, by replacing (in ©_;,) bidder y with bidder z. We
may conclude that ©@_, > O_, + ¢, (v — vy) 2> O_y + ¢y (Ve — vy).

(ii) This time we need to consider the assignment of = in ©_,. By the same
logic as above, bidder z is present somewhere, and if = either stayed in the same
place of moved up, we can replace « with y (in ©_,) to get a candidate for O_,,
and we are done. The only remaining case is when z moves down in &_, and
this is a bit more involved.

Consider the section of the chain of ©_, from bidder x to the end at bidder
y (who is below ). Since « is on a downward link, and downward links cannot
be followed by an upward link (Lemma 1), it must be the case that this section



of the chain is entirely downward links. Let * — 7 — 22 — ... — xy — y be
this chain, and so we have x < 1 < x3... < xy < y.

We write the assignment of @ to these £ 4+ 2 places using the notation
[x,21, 2, ...,2,y], and consider other assignments to these slots using the same
notation. The solution ©_, assigns these slots as [w,z,x1,..., 2], where w is
the bidder before z in the chain. For notational purposes define x4 = y.

Consider the following alternate solution constructed from ©_,: change only
the assignments to these special £+2 slots to [w, 21, ..., z¢, y]. This is a candidate
for ©_, and so by calculating the difference in valuation between this candidate
solution and ©_, we get

14

O_,>0_y+ (Z Vg, (Cary — cle)) + cyvy — Cqy Uy (1)

Putting this aside for now, consider the following alternate solution for 6.
Take the assignment in @ and change the assignment to only those £+ 2 positions
to [y, x,x1,. .., 2. This is feasible since y moves up, and the remaining changes
are identical to ©_,. Since this solution must have valuation at most that of &,

Vi ¢
CpVy + Czy Uz + g Vg Cypy < CpUy + ( g vxicxi> + ¢cyvy

1 1
¢

= cz(vy —vy) < (Z Vg, (Coy — ca:iﬂ)) + €YUy — Cay Vg
1

This, combined with (1), implies (ii). ad

Now we are ready to prove the first part of our main theorem: that our bids
give the same outcome as VCG, and are indeed an envy-free equilibrium.

Proof of Theorem 1(a-c) The bids of the equilibrium are defined as follows.
For all bidders 7 > 1 assigned in ©, we set b; = p;—1/ci—1. We set by to any
number greater than by. For all bidders assigned in @, we set their stated cutoff
to their true cutoff x;. If there are more than k bidders, then for some bidder
« that was not assigned in @, we set b, = pi/ck, and set the stated cutoff of
bidder j to the bottom slot k. For all other bidders not in @, we set their bid to
zero, and their cutoff to their true cutoff.

Consider two arbitrary bidders z and y assigned in ©, where x < y. Using
Lemma 2(ii), we get O_, > O_, + cz(vy — v;). Substituting for ©_, and 6_,
using the definitions of p, and p,, respectively, we get:

p b
Pz — CxUz > Py — CyUy + Cz(Vy — 1) = (vy — y) cy > (vy — z) Ca
Cy Cy
Since ¢, < ¢z, we get = > By
Since we chose x and y arbitrarily, we have just showed that by > ... > by,

and by > b, if bidder « exists. We have b; > bs by definition, and all other bids



are equal to zero. Thus the bids are decreasing in the VCG order, and so the
top-down auction will choose the same allocation as VCG. By construction, the
top-down auction will also have the same prices as VCG.

It remains to show that this allocation and pricing is an envy-free equilibrium.
Consider again two bidders x and y assigned in © with z < y. The utilities of x
and y are u, = ¢V — pp and u, = cyv, — py. We must show that = does not
envy y, and that y does not envy x.

If y is out of range of bidder z, then certainly x does not envy y. If x is
in range of bidder y, then by Lemma 2(i), we get O_,; > O_, + cy(vy — vy).
Substituting for ©_, and ©_, using the definitions of p, and p,, we get

O +py — vy > O + pp — Uy + cy (v — vy)

< CyUg — Py < CpUp — Pz = Ug-

Thus z does not envy y. Similarly, Lemma 2(ii) shows that y does not envy x.

Now consider some bidder z not assigned in @. We must show that bidder
z does not envy any bidder that is assigned a slot in the desired range of z.
Consider some such bidder y; replacing y with z creates a candidate for 6_,.
Thus we have ©_, > ©+c, (v, —v,), which becomes p, = O_,—O+c,v, > c,v,.
This implies that z does not envy y. ad

Now it remains to show the second part of Theorem 1, namely that among
all envy-free equilibria, the one we define is optimal for each bidder. First we
give a lemma showing that envy-freeness in the top-down auction implies that
the allocation is the same as VCG. Then we use this to compare our equilibrium
with an arbitrary envy-free equilibrium.

Lemma 3. Any envy-free equilibrium of the top-down auction has an allocation
with optimal valuation.

Proof. For the purposes of this proof, we will extend any allocation of bidders to
slots to place all n bidders into “slots”. For this, we will introduce dummy slots
indexed by integers greater than k, with click-through rate ¢; = 0. We index the
bidders according to their (extended) allocation in 6.

For the purposes of deriving a contradiction, let E,p be the allocation and
pricing for an envy-free equilibrium of the top-down auction such that the val-
uation of F is less than ©. Thus, p; refers to the price of slot ¢ in this envy-free
equilibrium. Define a graph on n nodes, one for each slot. For each bidder i,
make an edge from i to j, where j is the slot in which bidder i is placed in
FE; i.e., bidder i is in slot 4 in © and in slot j in E. Note that this graph is a
collection of cycles (a self-loop is possible, and is defined as a cycle).

Define the weight of an edge (i,7) to be the change in valuation caused by
bidder ¢ moving from slot ¢ in @ to slot j in E. So, we have that the weight
of (¢,7) is equal to v;(¢; — ¢;). Since the total change in valuation from © to E
is negative by definition, the sum of the weights of the edges is negative. This
implies that there is a negative-weight cycle Y in the graph, and so we have

Z vi(e; —¢;) <O. (2)

(1,7)€Y



By the fact that F is envy-free, for each edge (i,7), we also have that bidder
i would rather be in slot j than in slot ¢ (under the prices p imposed by the
envy-free equilibrium). In other words, v;c; — p; > vic; — p;. Rearranging and
summing over the edges in Y, we get

Z vi(c; —¢) > Z pj —pi =0. (3)

(1,5)eY (i,5)€Y

(The sum on the right-hand side equals zero from the fact that Y is a cycle.)
Equations (2) and (3) together give us a contradiction. O

Note that the profit of an advertiser i is the same under all VCG outcomes,
and is equal to the difference in valuation between © and 6_;.

Proof of Theorem 1(d) Consider some envy-free equilibrium E of the top-
down auction. This equilibrium must have an allocation with optimal valuation
(by Lemma 3). We will call this allocation ©. Let {p}; be the price of slot i in
this equilibrium; We will rename the bidders such that bidder 7 is assigned to
slot ¢ by allocation ©. Consider one such bidder x assigned to slot z. Consider
the chain xy — 2¢—1 — ... — xo = = for ©_,. (Here bidder z; moves from slot
x; in © to slot z;_1 in ©_,.) By the fact that E is envy-free, for all j € [0,¢— 1]
we have

E E
Vzjp1Cajrr — Py 2 Vzjy1Ca; — Pu;
E E
= Py, 2 Vagy (Coy = Cayyy) TP,

(Each move is this chain is feasible, since it was made by ©_,.) Composing these
equations for j =0,...,£ — 1, we get

pf = prg 2 Uz, (C-”Eo — Cpy) + Vg, (Coy —Cay) F ot Vi (CIZ—I - sz)

But note that each term of the right-hand side of this inequality represents the
difference in valuation for a bidder on the chain of @_,. Thus the sum of these
terms is exactly the VCG price p,, and we have pf > p,. Hence, the profit of
advertiser x under equilibrium E is no less than her profit under VCG. a

4 Concluding Remarks

The generalized second-price auction has worked extraordinarily well for search
engine advertising. We believe that the essential properties of this auction that
make it a success are that it preserves the ranking order inherent in the positions,
and that it is stable in the sense that no bidder has an incentive to change her
bid by a small amount for a small advantage. We have given a simple new prefix
position auction mechanism that preserves these properties and has the same
equilibrium properties as the regular GSP.

A natural question arises if advertisers will have preference for positions that
go beyond the top k;’s. It is possible that there are other considerations that



make lower positions more desirable. For example, the last position may be
preferable to the next-last. Also, appearing consistently at the same position
may be desirable for some. Some of the advertisers may not seek the topmost
positions in order to weed out clickers who do not persist through the topmost
advertisements to choose the most appropriate one. Thus, there are a variety of
factors that govern the position preference of an advertiser. In the future, this
may lead to more general position auctions than the prefix auctions we have
studied here. We briefly comment on two variants.

Arbitrary Ranges. If we allow top cutoffs (i.e., bidder 4 can set a valuation a; and
never appear above position «;), we can consider running essentially the same
top-down auction: For each position in order from the top, run a simple Vickrey
auction (with one winner) among those advertisers whose range includes the
position being considered; the winner is allocated the position, pays according
to the next-ranked advertiser, and is removed from the pool of advertisers for
subsequent auctions.

The difference here is that we can encounter a position j where there are not
advertisers willing to take position j, but there are still advertisers willing to
take positions lower than j. (This cannot occur with prefix ranges.) On a typical
search page, the search engine must fill in something at position j, or else the
subsequent positions do not really make sense. Practically speaking, one could
fill in this position with some sort of “filler” ad. Given some sort of resolution of
this issue, the top-down auction maintains the minimum pay property for general
ranges, by essentially the same argument as the prefix case in this paper.

However, the property that there is an equilibrium that matches the VCG
outcome is no longer true, as shown by the following example:

Ezxample 3. Suppose we have three bidders, and their ranges and valuations
are given as follows: A (1,1) $3;B (2,3) $2;C (1,3) $1. We also have three
positions, and we get 100, 99 and 98 clicks in them, respectively. The VCG
outcome is an allocation of [A,B,C], and prices [$2, $1, $0] (for all clicks). To
achieve this outcome in the top-down range auction, we must have A with the
highest bid, and it is oo wlog. Since C is the only other bidder competing for the
first slot, the price of A (which must be $2) is determined by the bid of C, and
thus $2 = p; = boep = 100b¢. Therefore we have that bc = 2/100. Since bidder
B wins the second slot, we must have bidder B outbidding bidder C, and the
price of B is also determined by the bid of C; so we get pa = baca = 99(2/100).
This is inconsistent with the VCG price of $1.

General Position Bids. One is tempted to generalize the position-based auction
so that instead of enforcing a ranking, each advertiser submits separate bids for
each position and the market decides which positions are better. Suppose we
allowed such bids, and let b; ; denote the bid of advertiser i for position j.

In this setting, the ordering property no longer makes sense, but it still might
be interesting to consider the minimum-pay property. We do need to clarify our
definition of this property; because the advertiser has control of more than just



the bid that gave her the victory; we need to make sure that altering the other
bids cannot give the advertiser a bargain for this particular position.

A natural mechanism and pricing scheme is as follows: Given the bids b; ;,
compute the maximum matching of bids to positions (i.e., the VCG allocation).
Now for each winning bid b;, do the following. delete all other edges from i, and
lower this bid until the max matching no longer assigns ¢ to j. Set the price per
click ppe; to the bid where this happens.

Note that this price has the property that if the winner of a position bids
between the bid and the price, then they either get the same position at the same
price, or perhaps one of their other bids causes them to get a different position.
But, we still have the property that the winner cannot get the position she won
for a lower price.

It turns out that this is exactly the VCG mechanism, as seen by the following
argument. In the following, let M be the valuation of the maximum matching,
and for some ¢ let M_; be the valuation of the maximum matching that does
not include bidder ¢. Note also that if bidder 7 is assigned position j, the VCG
price is M_; — (M —b; jc;).

In the suggested auction, when setting the price for bidder i, consider the
moment when the bid is lowered to ppc;. The total valuation of the matching at
this point is M — (b; ; — ppcj)cj. But the valuation of the matching at this point
also is equal to M_; since lowering the bid below ppc; makes the matching
no longer assign 7 to j (and all other edges are deleted, so ¢ is not assigned
anywhere else). So we get M — (b; ; — ppc;)c; = M_;, and therefore ppc;c; =
M_; — (M — b, jc;j), which is the VCG price.
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