
Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

A representation theorem for second-order functionals

MAURO JASKELIOFF and RUSSELL O'CONNOR

Journal of Functional Programming / Volume 25 / 2015 / e13
DOI: 10.1017/S0956796815000088, Published online: 08 September 2015

Link to this article: http://journals.cambridge.org/abstract_S0956796815000088

How to cite this article:
MAURO JASKELIOFF and RUSSELL O'CONNOR (2015). A representation theorem for second-
order functionals. Journal of Functional Programming, 25, e13 doi:10.1017/S0956796815000088

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, IP address: 74.125.59.35 on 09 Sep 2015

JFP 25, e13, 36 pages, 2015. c© Cambridge University Press 2015. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/

3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original

work is properly cited.

doi:10.1017/S0956796815000088

1

A representation theorem for second-order
functionals

MAURO JASKELIOFF

CIFASIS, CONICET, Argentina, FCEIA, Universidad Nacional de Rosario, Argentina

(e-mail: mauro@fceia.unr.edu.ar)

RUSSELL O’CONNOR

Google Canada, Kitchener, Ontario, Canada

(e-mail: oconnorr@google.com)

Abstract

Representation theorems relate seemingly complex objects to concrete, more tractable ones.

In this paper, we take advantage of the abstraction power of category theory and provide a

datatype-generic representation theorem. More precisely, we prove a representation theorem

for a wide class of second-order functionals which are polymorphic over a class of functors.

Types polymorphic over a class of functors are easily representable in languages such as

Haskell, but are difficult to analyse and reason about. The concrete representation provided

by the theorem is easier to analyse, but it might not be as convenient to implement. Therefore,

depending on the task at hand, the change of representation may prove valuable in one

direction or the other. We showcase the usefulness of the representation theorem with a range

of examples. Concretely, we show how the representation theorem can be used to prove that

traversable functors are finitary containers, how coalgebras of a parameterised store comonad

relate to very well-behaved lenses, and how algebraic effects might be implemented in a

functional language.

1 Introduction

When dealing with a type which uses advanced features of modern type systems

such as polymorphism and higher-order types and functions, it is convenient to

analyse whether there is another datatype that can represent it, as the alternative

representation might be easier to program or to reason about. A simple example

of a datatype that might be better understood through a different representation

is the type of polymorphic functions ∀A. A → A which, although it involves a

function space and a universal quantifier, has only one non-bottom inhabitant:

the identity function. Hence, a representation theorem opens the design space for

programmers and computer scientists, providing and connecting different views on

some construction. When a representation is an isomorphism, we say that it is exact,

and the change of representation can be done in both directions.

In this article, we will consider second-order functionals that are polymorphic

over a class of functors, such as monads or applicative functors. In particular, we

2 M. Jaskelioff and R. O’Connor

will give a concrete representation for inhabitants of types of the form

∀F . (A1 → F B1) → (A2 → F B2) → · · · → F C

Here Ai, Bi, and C are fixed types, and F ranges over an appropriate class of

functors. There is a condition on the class of functors which will be made precise

during the presentation of the theorem, but basically it amounts to the existence of

free constructions. The representation is exact, as it is an isomorphism.

We will express the representation theorem using category theory. Although the

knowledge of category theory that is required should be covered by an introductory

textbook such as (Awodey, 2006), we introduce the more important concepts in

Section 2. The usefulness of the representation theorem (Section 3) is illustrated

with a range of examples. Concretely, we show how coalgebras of a specific

parameterised comonad are related to very well-behaved lenses (Section 4), and how

traversable functors, subjected to certain coherence laws, are exactly the finitary

containers (Section 5). Finally, we show how the representation theorem can help

when implementing free theories of algebraic effects (Section 6) and discuss related

work (Section 7).

There is a long tradition of categorically inspired functional programming (Bird &

de Moor, 1997) even though functional programming languages like Haskell usually

lack some basic structure such as products or coproducts. The implementation of

our results in Haskell, as shown in Sections 4.1 and 6, should be taken simply

as categorically-inspired code. Nevertheless, the code could be interpreted to be

“morally correct” in a precise technical sense (Danielsson et al., 2006).

1.1 A taste of the representation theorem

In order to get a taste of the representation theorem, we reason informally on a

total polymorphic functional language. Consider the type

T = ∀F : Functor. (A → F B) → F C .

What do the inhabitants of this type look like?

The inhabitants of T are functions h = λg. r. Given that the functor F is universally

quantified, the only way of obtaining a result in F C is that in the expression r there

is an application of the argument g to some a : A. This yields something in F B

rather than the sought F C , so a function k : B → C is needed in order to construct

a map F(k) : F B → F C . This informal argument suggests that all inhabitants of

T can be built from a pair of an element of A and a function B → C . Hence,

it is natural to propose the type A × (B → C) as a simpler representation of the

inhabitants of type T .

More formally, in order to check that the inhabitants of T are in a one-to-

one correspondence with the inhabitants of A × (B → C), we want to find an

A representation theorem for second-order functionals 3

isomorphism

∀F : Functor. (A → F B) → F C

ϕ
��

∼=

ϕ−1

�� A × (B → C).

We define ϕ−1 using the procedure described above.

ϕ−1 : A × (B → C) → ∀F : Functor. (A → F B) → F C

ϕ−1 (a , k) = λg . F (k) (g a).

In order to define ϕ, notice that R C = A × (B → C) is functorial on C , with

action on morphisms given by R (f) (a , g) = (a , f ◦ g). Hence, we can instantiate a

polymorphic function h : T to the functor R and obtain hR : (A → R B) → R C ,

which amounts to the type hR : (A → (A × (B → B))) → A × (B → C).

ϕ : (∀F : Functor. (A → F B) → F C) → A × (B → C)

ϕ h = hR (λa . (a , idB))

The proof that ϕ and ϕ−1 are indeed inverses will be given for a Set model in

Section 3.

The simple representation A × (B → C) is possible due to the restrictive nature

of the type T : all we know about F is that it is a functor. What happens when F

has more structure?

Consider now the type

T ′ = ∀F : Pointed. (A → F B) → F C .

In this case, F ranges over pointed functors. That is, F is a functor equipped with a

natural transformation ηX : X → F X . An inhabitant of T ′ is a function h = λg. r,

where r can be obtained in the same manner as before, or else by applying the

point ηC to a given c ∈ C . Hence, a simpler type representing T ′ seems to be

(A × (B → C)) + C .

More formally, we want an isomorphism

∀F : Pointed. (A → F B) → F C

ϕ′

��
∼=

ϕ′−1

�� (A × (B → C)) + C.

The definition of ϕ′−1 is the following.

ϕ′−1 : (A × (B → C)) + C → ∀F : Pointed. (A → F B) → F C

ϕ′−1 (inl (a , k)) = λg . F (k) (g a)

ϕ′−1 (inr c) = λ . ηC c

In order to define ϕ′, notice that R′ C = (A × (B → C)) + C is a pointed

functor on C , with η = inr. Hence, we can instantiate a polymorphic function

h : T ′ to the pointed functor R′ to obtain hR′ : (A → R′ B) → R′ C , or equivalently

hR′ : (A → ((A × (B → B)) + B)) → (A × (B → C)) + C .

4 M. Jaskelioff and R. O’Connor

ϕ′ : (∀F : Pointed. (A → F B) → F C) → (A × (B → C)) + C

ϕ′ h = hR′ (λa . inl (a , idB))

We can play the same game in the case where the universally quantified functor

is an applicative functor.

T ′′ = ∀F : Applicative. (A → F B) → F C .

An applicative functor is a pointed functor F equipped with a multiplication

operation �X,Y : (FX × FY) → F(X × Y) natural in X and Y , which is coherent

with the point (a precise definition is given in Section 5.1). An inhabitant of T ′′

is a function h = λg. r, where r can be obtained by applying the argument g to n

elements of A to obtain an (F B)n, then joining the results with the multiplication of

the applicative functor to obtain an F (Bn), and finally applying a function Bn → C

which takes n elements of B and yields a C .

∀F : Applicative. (A → F B) → F C

ϕ′′

��
∼=

ϕ′′−1

��

∑
n∈�

(An × (Bn → C)).

The definition of ϕ′′−1 is the following.

ϕ′′−1 : (
∑

n∈� (An × (Bn → C))) → ∀F : Applicative. (A → F B) → F C

ϕ′′−1 (n , as , k) = λg . F (k) (collectn g as)

Here, collectn : ∀F : Applicative. (A → F B) → An → F (Bn) is the function that

uses the applicative multiplication to collect all the applicative effects, i.e.

collectn h (x1, . . . , xn) = h x1 � . . . � h xn.

In order to define ϕ′′, notice that R′′ C =
∑

n∈�(An × (Bn → C)) is an applicative

functor on C , with ηc = (0, ∗, λx : 1. c), where ∗ is the sole inhabitant of 1, and the

multiplication is given by

(n , as , k) � (n ′, as ′, k ′) = (n + n ′, as ++ as ′, λbs . (k (take n bs), k ′ (drop n bs)))

Hence, we can instantiate a polymorphic function h : T ′′ to the applicative functor R′′

to obtain hR′′ : (A → R′′ B) → R′′ C , or equivalently hR′′ : (A →
∑

n∈� (An × (Bn →
B))) →

∑
n∈� (An × (Bn → C)).

ϕ′′ : (∀F : Applicative. (A → F B) → F C) →
∑

n∈� (An × (Bn → C))

ϕ′′ h = hR′′ (λa . (1, a , idB))

We have seen three different isomorphisms which yield concrete representations

for second-order functionals which quantify over a certain class of functors (plain

functors, pointed functors, and applicative functors, respectively). The construction

of each of the three isomorphisms has a similar structure, so it is natural to ask

what the common pattern is. In order to answer this question and provide a general

representation theorem we will make good use of the power of abstraction of

category theory.

A representation theorem for second-order functionals 5

2 Categorical preliminaries

A category C is said to be locally small when the collection of morphisms between

any two objects X and Y is a proper set. A locally small category is said to be small

if its collection of objects is a proper set. We denote by X
C−→ Y the (not necessarily

small) set of morphisms between X and Y and extend it to a functor X
C−→ − (the

covariant Hom functor). When the category is Set (the category of sets and total

functions), we will omit the category from the notation and write X → Y . Given

two categories C and D, we will denote by DC the category which has as objects

functors F : C → D and natural transformations as morphisms. A subcategory D of

a category C consists of a collection of objects and morphisms of C which is closed

under the operations domain, codomain, composition, and identity. When, for every

object X and Y of D subcategory of C, we have X
D−→ Y = X

C−→ Y , we say that D
is a full subcategory of C.

2.1 The Yoneda lemma

The main result of this article hinges on the following famous result:

Theorem 2.1 (Yoneda lemma)

Given a locally small category C, the Yoneda Lemma establishes the following

isomorphism

(B
C−→ −)

SetC−−→ F ∼= F B

natural in object B : C and functor F : C → Set.

That is, the set F B is naturally isomorphic to the set of natural transformations

between the functor (B
C−→ −) and the functor F .

Naturality in B means that given any morphism h : B → C , the following diagram

commutes

((B
C−→ −)

SetC−−→ F)
∼= ��

(h
C−→−)

SetC−−→F
��

FB

Fh

��
((C

C−→ −)
SetC−−→ F) ∼=

�� FC

Naturality in F means that given any natural transformation α : F → G, the

following diagram commutes

((B
C−→ −)

SetC−−→ F)
∼= ��

(B
C−→−)

SetC−−→α
��

FB

αB

��
((B

C−→ −)
SetC−−→ G) ∼=

�� GB

The construction of the isomorphism is as follows:

6 M. Jaskelioff and R. O’Connor

• Given a natural transformation α : (B
C−→ −) → F , its component at B is

a function αB : (B
C−→ B) → FB. Then, the corresponding element of F B is

αB(idB).

• For the other direction, given x : F B, we construct a natural transformation

α : (B
C−→ −) → F in the following manner: the component at each object C ,

namely αC : (B
C−→ C) → FC is given by λf : B → C. F(f)(x).

We leave as an exercise for the reader to check that this construction indeed yields

a natural isomorphism.

In order to make the relation between the programs and the category theory more

evident, it is convenient to express the Yoneda lemma in end form:∫
X∈C

(B
C−→ X) → F X ∼= F B (2.1)

The intuition is that an end corresponds to a universal quantification in a program-

ming language (Bainbridge et al., 1990), and therefore the above isomorphism could

be understood as stating an isomorphism of types:

∀X . (B → X) → F X ∼= FB

Hence, functional programmers not used to categorical ends can get the intuitive

meaning just by replacing in their minds ends by universal quantifiers. The complete

definition of end can be found in Appendix 7. More details can be found in the

standard reference (Mac Lane, 1971).

A simple application of the Yoneda lemma which will be used in the next section

is the following proposition.

Proposition 2.2

Consider an endofunctor F : Set → Set, and the functor R : Set×Setop ×Set → Set

defined as R (A,B,X) = A× (B → X), R (f, g, h)(a, x) = (fa, g ◦x◦h), where we write

RA,BX for R (A,B,X). Then

A → F B ∼= RA,B
SetSet

−−−→ F (2.2)

Proof

A → F B
∼= { Yoneda }

A →
∫
X
((B → X) → F X)

∼= { Hom functors preserve ends (Remark A.4) }∫
X
A → ((B → X) → F X)

∼= { Adjoints (currying) }∫
X
A × (B → X) → F X

∼= { Definition of RA,B }∫
X
RA,B X → F X

∼= { Natural transformations as ends }
RA,B

SetSet

−−−→ F

A representation theorem for second-order functionals 7

More concretely, the isomorphism is witnessed by the following functions

αF : (A → F B) → RA,B
SetSet

−−−→ F

αF (f) = τ where τX : A × (B → X) → F X

τX(a, g) =F(g)(f(a))

α−1
F : (RA,B

SetSet

−−−→ F) → A → F B

α−1
F (h) = λa. hB (a, idB).

This isomorphism is natural in A and B. �

2.2 Adjunctions

An adjunction is a relation between two categories which is weaker than isomorphism

of categories.

Definition 2.3 (Adjunction)

Given categories C and D, functors L : C → D and R : D → C, an adjunction is

given by a tuple (L,R,
−�, �−), where
−� and �− are the components of the

following isomorphism:

−� : LC
D−→ D ∼= C

C−→ R D : �− (2.3)

which is natural in C ∈ C and D ∈ D. That is, for f : LC → D and g : C → R D we

have

f� = g ⇔ f = �g (2.4)

The components of the isomorphism
−� and �− are called adjuncts. That the

isomorphism is natural means that for any C,C ′ ∈ C; D,D′ ∈ D; h : C ′ → C;

k : D → D′; f : LC → D; and g : C → R D, the following equations hold:

R k ◦
f� ◦ h =
k ◦ f ◦ Lh� (2.5)

k ◦ �g ◦ Lh = �R k ◦ g ◦ h (2.6)

We indicate the categories involved in an adjunction by writing C ⇀ D (note the

asymmetry in the notation), and often leave the components of the isomorphism

implicit and simply write L � R.

The unit η and counit ε of the adjunction are defined as:

η =
id� ε = �id; (2.7)

The adjuncts can be characterised in terms of the unit and counit:

f� = R f ◦ η �g = ε ◦ Lg. (2.8)

For more details, see (Mac Lane, 1971; Awodey, 2006).

8 M. Jaskelioff and R. O’Connor

3 A representation theorem for second-order functionals

Consider a small subcategory F of SetSet, the category of endofunctors on Set.1 By

Yoneda,

∫
F∈F

(G
F−→ F) → H F ∼= H G (3.1)

Note that G is any functor in F and H is any functor F → Set. In particular, given

a set X, we obtain the functor (−X) : F → Set that applies a functor in F to X.

That is, the action on objects is F �→ F X. The above equation, specialised to (−X)

is

∀G ∈ F.

∫
F

(G
F−→ F) → F X ∼= GX (3.2)

For example, let RA,B X = A× (B → X) as in Proposition 2.2, and let E be a small

full subcategory of SetSet such that RA,B ∈ E.

Then, we calculate∫
F∈E(A → F B) → F X

∼= { Equation (2.2) }∫
F∈E(RA,B

E−→ F) → F X
∼= { Equation (3.2) }

RA,B X.

That is, we have proven that∫
F

(A → F B) → F X ∼= RA,B X (3.3)

This isomorphism provides a justification for the first isomorphism of the introduc-

tion, namely

∀F : Functor. (A → F B) → F C ∼= A × (B → C)

3.1 Unary representation theorem

Let us now consider categories of endofunctors that carry some structure. For

example, a category F may be the category of monads and monad morphisms, or

the category of applicative functors and applicative morphisms. Then we have a

functor that forgets the extra structure and yields a plain functor. For example, the

forgetful functor U : Mon → E maps a monad (T , μ, η) ∈ Mon to the endofunctor T ,

forgetting that the functor has a monad structure given by μ and η. It often happens

that this forgetful functor has a left adjoint (−)∗ : E → F. Such an adjoint takes

an arbitrary endofunctor F and constructs the free structure on F . For example, in

1 We are interested in functors representable in a programming language, such as realisable
functors (Bainbridge et al., 1990; Reynolds & Plotkin, 1993). Therefore, it is reasonable to assume
smallness.

A representation theorem for second-order functionals 9

the monad case, F∗ would be the free monad on F . The adjunction establishes the

following natural isomorphism between morphisms in F and E:

E∗ F−→ F ∼= E
E−→ UF (3.4)

In this situation we have the following representation theorem.

Theorem 3.1 (Unary representation)

Consider an adjunction ((−)∗, U,
−�, �−) : E ⇀ F, where F is small and E is a

full subcategory of SetSet such that the family of functors RA,B X = A × (B → X) is

in E. Then, we have the following isomorphism natural in A, B, and X.∫
F

(A → UF B) → UF X ∼= UR∗
A,B X (3.5)

Proof∫
F
(A → UF B) → UF X

∼= { Equation (2.2) }∫
F
(RA,B

E−→ UF) → UF X
∼= { (−)∗ is left adjoint to U (see Eq. 3.4) }∫

F
(R∗

A,B

F−→ F) → UF X
∼= { Yoneda }

UR∗
A,B X

Every isomorphism in the proof is natural in X, the first one is natural in A and

B, and the last two are natural in RA,B . Therefore, the resulting isomorphism is also

natural in A and B. �

Since the free pointed functor on F is simply F∗ = F + Id, and the free applicative

functor on small functors such as RA,B exists (Capriotti & Kaposi, 2014), this

theorem explains all the isomorphisms in the introduction. Furthermore, it explains

the structure of the representation functor (it is the free construction on RA,B) and

what is more, it tells us that the isomorphism is natural.

For the sake of concreteness, we present the functions witnessing the isomorphism

in the theorem:

ϕ : (
∫
F
(A → UF B) → UF X) → UR∗

A,B X

ϕ(h) = hR∗
A,B

(α−1
UR∗

A,B
(ηRA,B

))

ϕ−1 : UR∗
A,B X →

∫
F
(A → UF B) → UF X

ϕ−1(r)= τ where τF : (A → UF B) → UF X

τF (g) = (U �αUF (g)X)(r)

Here, η is the unit of the adjunction, and α is the isomorphism in Proposition 2.2.

3.2 Generalisation to many functional arguments

Let us consider functionals of the form

∀F . (A1 → F B1) → · · · → (An → F Bn) → F X .

10 M. Jaskelioff and R. O’Connor

The representation theorem, Theorem 3.1, can be easily generalised to include the

above functional.

Theorem 3.2 (N-ary representation)

Consider an adjunction ((−)∗, U,
−�, �−) : E ⇀ F, where F is small and E is a

full subcategory of SetSet closed under coproducts such that the family of functors

RA,B X = A × (B → X) is in E. Let Ai, Bi be sets for i ∈ {1, . . . , n}, n ∈ �. Then, we

have the following isomorphism∫
F

(∏
i

(Ai → UF Bi)

)
→ UF X ∼= U

(∑
i

RAi,Bi

)∗

X (3.6)

natural in Ai, Bi, and X.

Proof

The proof follows the same path as the one in Theorem 3.1, except that now we

use the isomorphism (A → C) × (B → C) ∼= (A + B) → C that results from the

universal property of coproducts. More precisely, the proof is as follows:∫
F
(
∏

i(Ai → UF Bi)) → UF X
∼= { Equation (2.2) }∫

F
(
∏

i(RAi,Bi

E−→ UF)) → UF X
∼= { Coproducts }∫

F
(
∑

i RAi,Bi

E−→ UF) → UF X
∼= { (−)∗ is left adjoint to U (see Equation (3.4)) }∫

F
((

∑
i RAi,Bi

)∗ F−→ F) → UF X
∼= { Yoneda }

U(
∑

i RAi,Bi
)∗ X

Naturality follows from naturality of its component isomorphisms. �

4 Parameterised comonads and very well-behaved lenses

The functor RA,B X = A × (B → X) plays a fundamental role in Theorems 3.1

and 3.2. Such a functor R has the structure of a parameterised comonad (Atkey,

2009a; Atkey, 2009b) and is sometimes called a parameterised store comonad. As

a first application of the representation theorem we analyse the relation between

coalgebras for this parameterised comonad and very well-behaved lenses (Foster

et al., 2007).

Definition 4.1 (Parameterised comonad)

Fix a category P of parameters. A P-parameterised comonad on a category C is a

triple (C, ε, δ), where:

• C is a functor P×Pop×C → C. We write the parameters as (usually lowercase)

subindexes. That is, Ca,b X = C(a, b, X).

• the counit ε is a family of morphisms εa,X : Ca,a X → X which is natural in X

and dinatural in a (dinaturality is defined in Appendix 7, Definition A.1),

A representation theorem for second-order functionals 11

• the comultiplication δ is a family of morphisms δa,b,c,X : Ca,c X → Ca,b (Cb,c X)

natural in a, c and X and dinatural in b.

These must make the following diagrams commute:

Ca,b X

δa,b,b,X

�����������������
δa,a,b,X

�����������������

Ca,b (Cb,b X)
Ca,b εb,X

�� Ca,b X Ca,a (Ca,b X)
εa,Ca,b X

��

Ca,d X
δa,b,d,X ��

δa,c,d,X

��

Ca,b (Cb,d X)

Ca,b δb,c,d,X

��
Ca,c (Cc,d X)

δa,b,c,Cc,d X

�� Ca,b (Cb,c (Cc,d X))

Definition 4.2 (Coalgebra for a parameterised comonad)

Let C be a P-parameterised comonad on C. Then a C-coalgebra is a pair (J, k) of

a functor J : P → C, and a family ka,b : J a → Ca,b (J b), natural in a and dinatural

in b, such that the following diagrams commute:

J a
ka,b ��

ka,c

��

Ca,b (J b)

Ca,b kb,c

��
Ca,c (J c)

δa,b,c,J c

�� Ca,b (Cb,c (J c))

J a
ka,a ��

���������

��������� Ca,a (J a)

εa,J a

��
J a

comultiplication-coalgebra law counit-coalgebra law

The definitions of parameterised comonad and of coalgebra for a parameterised

comonad are dualisations of the ones for monads found in Atkey (2009a).

Example 4.3

The functor Ra,b X = a × (b → X) is a parameterised comonad, with the following

counit and comultiplication:

εa,X : Ra,a X → X

εa,X (x, f) = fx

δa,b,c,X : Ra,c X → Ra,b (Rb,c X)

δa,b,c,X (x, f) = (x, λy. (y, f)).

Example 4.4

Given a functor K : P → Set, define the functor R
(K)
a,b X = Ka × (Kb → X) :

P × Pop × Set → Set. For every functor K , R(K) is a parameterised comonad, with

12 M. Jaskelioff and R. O’Connor

the following counit and comultiplication:

εa,X : R(K)
a,a X → X

εa,X (x, f) = fx

δa,b,c,X : R(K)
a,c X → R

(K)
a,b (R(K)

b,c X)

δa,b,c,X (x, f) = (x, λy. (y, f))

The parameterised comonad R from Example 4.3 is the same as R(I) where I is

the identity functor.

The proposition below shows how the comonadic structure of R(K) interacts nicely

with the isomorphism of Proposition 2.2.

Proposition 4.5
Let F,G : Set → Set, f : a → Fb, and g : b → Gc, then the following equations hold.

a. εa,X = αI (idKa)X : R(K)
a,a,X → X

b. (αF (f) · αG(g))X ◦ δa,b,c,X = αF·G(Fg ◦ f)X : R(K)
a,c X → F(GX)

where F · G is functor composition and where α · β is the horizontal composition

of natural transformations. That is, given natural transformations α : F → G, and

β : F ′ → G′, horizontal composition α ·β : F ·F ′ → G ·G′ is given by α ·β = G(β)◦αF ′ .

Example 4.6
The pair ((×C), k) is an R-coalgebra with

ka,b : a × C → Ra,b(b × C)

ka,b (a, c) = (a, λb. (b, c))

Coalgebras of R(K) play an important role in functional programming as they

are precisely the type of very well-behaved lenses, hereafter called lenses (Foster

et al., 2007). A lens provides access to a component B inside another type A. More

formally a lens from A to B is an isomorphism A ∼= B × C for some residual type

C . A lens from A to B is most easily implemented by a pair of appropriately typed

getter and setter functions

get : A → B

set : A × B → A

satisfying three laws2

set(x, get(x)) = x

get(set(x, y)) = y

set(set(x, y1), y2) = set(x, y2)

More generally, given two functors J : P → Set and K : P → Set, we can form a

parameterised lens from J to K with a family of getters and setters

geta : Ja → Ka

seta,b : Ja × Kb → Jb

2 In Foster et al., (2007), the less well-behaved lenses do not satisfy all three laws.

A representation theorem for second-order functionals 13

satisfying the same three laws, and with get being natural in a and set being natural

in b. By some simple algebra we see that the type of lenses is isomorphic to the type

of coalgebras of the parameterised comonad R(K).

(Ja → Ka) × (Ja × Kb → Jb) ∼= Ja → R
(K)
a,b (Jb).

Furthermore the coalgebra laws are satisfied if and only if the corresponding lens

laws are satisfied (O’Connor, 2010; Gibbons & Johnson, 2012). For instance, the

coalgebra given in Example 4.6 is a parameterised lens into the first component of

a pair.

Using the representation theorem and some simple manipulations we can define

a third way to represent a parameterised lens from J to K . The so-called Van

Laarhoven representation (Van Laarhoven, 2009a; O’Connor, 2011) is defined by a

family of ends ∫
F:E

(Ka → F(Kb)) → Ja → F(Jb)

that is natural in the sense that given two arrows from P, p : a → a′ and q : b → b′,

and given f : Ka′ → F(Kb) for some F : E then

F(Jq) ◦ va′ ,b,F (f) ◦ Jp = va,b′ ,F (F(Kq) ◦ f ◦ Kp).

The corresponding laws for the Van Laarhoven representation of lenses are

• the linearity law

For all f : Ka → F(Kb) and g : Kb → G(Kc),

va,c,F·G(Fg ◦ f) = Fvb,c,G(g) ◦ va,b,F (f)

• and the unity law

va,a,I (idKa) = idJa.

The following theorem proves that the coalgebra representation and Van

Laarhoven representation of parameterised lenses are equivalent.

Theorem 4.7 (Lens representation)

Given E, a small full subcategory of SetSet and given functors J,K : P → Set, then

the families ka,b : Ja → R
(K)
a,b (Jb) which form R(K)-coalgebras (J, k) are isomorphic

to the families of ends ∫
F:E

(Ka → F(Kb)) → Ja → F(Jb)

which satisfy the linearity and unity laws.

Proof

First, we prove the isomorphism of families without regard to the laws

14 M. Jaskelioff and R. O’Connor

Ja → R
(K)
a,b (Jb)

∼= { definition of R(K) }
Ja → RKa,Kb(Jb)

∼= { Equation 3.3 }
Ja →

∫
F
(Ka → F(Kb)) → F(Jb)

∼= { Hom functors preserve ends (Remark A.4) }∫
F
Ja → (Ka → F(Kb)) → F(Jb)

∼= { Swap argument }∫
F
(Ka → F(Kb)) → Ja → F(Jb)

This isomorphism is witnessed by the following functions:

γ : (
∫
F
(Ka → F(Kb)) → Ja → F(Jb)) → (Ja → R

(K)
a,b (Jb))

γ(h) = h
R

(K)
a,b

(α−1
R

(K)
a,b

(id))

γ−1 : (Ja → R
(K)
a,b (Jb)) →

∫
F
(Ka → F(Kb)) → (Ja → F(Jb))

γ−1(k) = τ where τF : (Ka → F(Kb)) → Ja → F(Jb)

τF (g) = αF (g)Jb ◦ k

In order to prove that the laws of coalgebras for parameterised comonads correspond

to unity and linearity, we first prove two technical lemmas.

Lemma 4.8

γ−1(ka,c)F·G(Fg ◦ f) = (αF (f) · αG(g))Jc ◦ δa,b,c,Jc ◦ ka,c

Proof

This follows from Proposition 4.5(b). �

Lemma 4.9

F(γ−1(kb,c)G(g)) ◦ γ−1(ka,b)F (f) = (αF (f) · αG(g))Jc ◦ R
(K)
a,b (kb,c) ◦ ka,b

Proof

This follows from the definition of γ−1 and properties of functors and natural

transformations. �

Generalised versions of Lemmas 4.8 and 4.9 appear with detailed proofs in

Appendix 7, Lemmas A.8 and A.9.

By the previous two lemmas, to prove that the comultiplication-coalgebra law is

equivalent to the linearity law it suffices to prove the following:

R
(K)
a,b (kb,c) ◦ ka,b = δa,b,c,Jc ◦ ka,c

⇐⇒
∀F,G, f, g.(αF (f) · αG(g)) ◦ R

(K)
a,b (kb,c) ◦ ka,b = (αF (f) · αG(g)) ◦ δa,b,c,Jc ◦ ka,c

The forward implication is clear. To prove the reverse implication take F = R
(K)
a,b

and f = α−1
R

(K)
a,b

(id)Jb. Also take G = R
(K)
b,c and g = α−1

R
(K)
b,c

(id)Jc. Then αF (f) = id and

αG(g) = id. Therefore, αF (f) · αG(g) = id and the result follows.

A representation theorem for second-order functionals 15

To prove that the counit-coalgebra law is equivalent to the unity law it suffices to

prove that εa,Ja ◦ ka,a = γ−1(ka,a)I (id).

γ−1(ka,a)I (id)

= { definition of γ−1 }
αI (id)Ja ◦ ka,a

= { Proposition 4.5(a) }
εa,Ja ◦ ka,a �

The previous theorem can be generalised to the case where we have an adjunction.

Theorem 4.10 (Generalised lens representation)

Let E and F be two small categories of Set-endofunctors, such that E and F are

(strict) monoidal with respect to the identity functor I and functor composition

− · −, and E is a full subcategory. Let (−)∗ � U : E ⇀ F, be an adjunction between

them, such that U is strict monoidal. Then

1. UR(K)∗ is a parameterised comonad.

2. Given functors J,K : P → Set, then the family ka,b : Ja → UR
(K)∗
a,b (Jb) which

form the UR(K)∗-coalgebras (J, k) are isomorphic to the family of ends∫
F:F

(Ka → UF(Kb)) → Ja → UF(Jb)

which satisfy the linearity and unity laws.

Proof

See Appendix 7, Proposition A.7. �

By considering the identity adjunction between E and itself, Theorem 4.7 can be

recovered from this generalised version.

4.1 Implementing lenses in Haskell

The Lens representation theorem demonstrates that the coalgebra representation of

lenses and the Van Laarhoven representation are isomorphic. Both representations

can be implemented in Haskell.

-- Parameterised store comonad

data PStore a b x = PStore (b → x) a

-- Coalgebra representation of lenses

newtype KLens ja jb ka kb = KLens (ja → PStore ka kb jb)

-- Van Laarhoven representation of lenses

type VLens ja jb ka kb = ∀f . Functor f ⇒ (ka → f kb) → ja → f jb

There are a few observations to make about this Haskell code. Firstly, neither the

coalgebra laws nor the linearity and unity laws of the Van Laarhoven representation

can be enforced by Haskell’s type system, as it often happens when implementing

algebraic structures such as monoids or monads. We have accordingly omitted

16 M. Jaskelioff and R. O’Connor

writing out the parameterised comonad operations of PStore. Secondly, rather than

taking J and K as parameters, we take source and target types for each functor.

By not explicitly using functors as parameters, we avoid newtype wrapping and

unwrapping functions that would otherwise be needed. Consider the example of

building a lens to access the first component of a pair.

fstLens :: VLens a b (a , y) (b, y)

fstLens f (a , y) = (λb → (b, y)) ‘fmap‘ (f a)

Above we are constructing a VLens value but the argument applies equally well

to a KLens value. The pair type is functorial in two arguments. For fstLens , we care

about pairs being functorial with respect to the first position. If we were required

to pass a J functor explicitly to VLens , we would need to add a wrapper around

(a , b) to make it explicitly a functor of the first position. Furthermore, we are

implicitly using the identity functor for the K functor. If we were required to pass

a K functor explicitly to VLens , we would have to wrap and unwrap the Identity

functor in Haskell in order to use the lens. Fortunately, all lens functionality can be

implemented without explicitly mentioning the functor parameters.

The third thing to note about the VLens formulation is that we use a type alias

rather than a newtype. This allows us to compose a lens of type VLens ja jb ka kb

and another lens of type VLens ka kb la lb by simply using the standard function

composition operator. There is another advantage that the type alias gives us, which

we will see later.

The isomorphism between the two representations can be written out explicitly in

Haskell.

instance Functor (PStore i j) where

fmap f (PStore h x) = PStore (f ◦ h) x

kLens2VLens :: KLens ja jb ka kb → VLens ja jb ka kb

kLens2VLens k f = (λ(PStore h x) → h ‘fmap‘ f x) ◦ k

vLens2KLens :: VLens ja jb ka kb → KLens ja jb ka kb

vLens2KLens v = v (PStore id)

The generalised lens representation theorem gives us pairs of representations of

various lens derivatives. Using pointed functors, i.e. using the free pointed functor

generated by PStore in the case of the coalgebra representation, or quantifying over

pointed functors in the case of the Van Laarhoven representation, gives us the notion

of a partial lens (O’Connor et al., 2013), also known as an affine traversal (Kmett,

2013).3

data FreePointedPStore a b x = Unit x
| FreePointedPStore (b → x) a

-- coalgebra representation of partial lenses
newtype KPartialLens ja jb ka kb = KPartialLens (ja → FreePointedPStore ka kb jb)

3 An affine traversal from A to B is so-called because it specifies an isomorphism between A and F B
for some affine container F , i.e. for some functor F where F X ∼= C1 × X + C2.

A representation theorem for second-order functionals 17

class Functor f ⇒ Pointed f where
point :: a → f a

-- Van Laarhoven representation of partial lenses
type VPartialLens ja jb ka kb = ∀f . Pointed f ⇒ (ka → f kb) → ja → f jb

A partial lens provides a reference to 0 or 1 occurrences of K within J . If we

instead use applicative functors (Section 5.1), we get a reference to a sequence of 0

or more occurrences of K within J . This lens derivative is called a traversal.

data FreeApplicativePStore a b x =
Unit x

| FreeApplicativePStore (FreeApplicativePStore a b (b → x)) a

-- coalgebra representation of traversals
newtype KTraversal ja jb ka kb = KTraversal (ja → FreeApplicativePStore ka kb jb)

-- Van Laarhoven representation of traversals
type VTraversal ja jb ka kb = ∀f . Applicative f ⇒ (ka → f kb) → ja → f jb

The Haskell implementation of the isomorphism between KPartialLens and

VPartialLens and the isomorphism between KTraversal and VTraversal is left

as an exercise to the interested reader.

The second advantage of using a type synonym for the Van Laarhoven represen-

tation is that values of type VLens are values of type VPartialLens and VTraversal ,

while the values of type KLens need to be explicitly converted to KPartialLens

and KTraversal . If Haskell’s standard library were modified such that Pointed was

a super class of Applicative, then values of type VPartialLens would be of type

VTraversal as well.

5 The finiteness of traversals

In this section, we show another application of the representation theorem. We show

that traversable functors are exactly the finitary containers. We first introduce the

relevant definitions and then provide the proof.

5.1 Applicative functors

The cartesian product gives the category Set a monoidal structure (Set,×, 1, α, λ, ρ),

where αX,Y ,Z : X × (Y × Z) → (X × Y) × Z , λX : 1 × X → X , and

ρX : X × 1 → X are natural isomorphisms expressing associativity of the product,

left unit and right unit, respectively.

Definition 5.1 (Applicative functor)

An applicative functor is a functor F : Set → Set which is strong lax monoidal with

respect to this monoidal structure. That is, it is equipped with a map and a natural

transformation

u : 1 → F 1 (monoidal unit)

�X,Y : F X × F Y → F (X × Y) (monoidal action)

18 M. Jaskelioff and R. O’Connor

such that

1 × F X

u × F X

��

λ �� F X F X × 1

F X × u

��

ρ��

F 1 × F X

�

��

F X × F 1

�

��
F (1 × X)

F λ
�� F X F (X × 1)

F ρ
��

F X × (F Y × F Z)

α

��

F X ×� �� F X × F (Y × Z)
� �� F (X × (Y × Z))

F α

��
(F X × F Y) × F Z

�× F Z
�� F (X × Y) × F Z

�
�� F ((X × Y) × Z)

All Set functors are strong, but the strength τ : F X × Y → F (X × Y) of an
applicative functor F is required to be coherent with the monoidal action, i.e. the
following diagram commutes.

(F X × F Y) × Z
α−1 ��

�× Z

��

F X × (F Y × Z)
F X × τ �� F X × F (Y × Z)

�

��
F (X × Y) × Z

τ �� F ((X × Y) × Z)
F α−1 �� F (X × (Y × Z))

Applicative functors may alternatively be given as a mapping of objects F : |Set| →
|Set| equipped with two natural transformations pureX : X → F X and �X,Y :

F (X → Y) × F X → F Y , together with some equations (see (McBride & Paterson,

2008) for details). This presentation is more useful for programming and therefore

is the one chosen in Haskell. However, for our purposes, the presentation of

applicative functors as monoidal functors is more convenient. This situation where

one presentation is more apt for programming, and another presentation is better

for formal reasoning also occurs with monads, where bind (>>=) is preferred for

programming and the multiplication (join) is preferred for formal reasoning.

Definition 5.2 (Applicative morphism)
Let F and G be applicative functors. An applicative morphism is a natural trans-

formation τ : F → G that respects the unit and multiplication. That is, a natural

transformation τ such that the following diagrams commute.

1
uF

		��
��

��
��

uG

�
��

��
��

�

F 1 τ1

�� G 1

F X × F Y
�F

X ,Y ��

τX × τY

��

F (X × Y)

τX × Y

��
G X × G Y

�G
X ,Y

�� G (X × Y)

Applicative functors and applicative morphisms form a strict monoidal category

A. The identity functor is an applicative functor, and the composition of applicative

functors is an applicative functor. Hence, A has the structure of a strict monoidal

category.

A representation theorem for second-order functionals 19

5.2 Traversable functors

McBride and Paterson (2008) characterise traversable functors as those equipped

with a family of morphisms traverseF,A,B : (A → FB) ×TA → F(TB), natural in an

applicative functor F , and sets A and B (cf. the type synonym VTraversable from

Section 4.1.) However, without further constraints this characterisation is too coarse.

Hence, Jaskelioff and Rypáček (2012) proposed the following notion:

Definition 5.3 (Traversable functor)

A functor T : Set → Set is said to be traversable if there is a family of functions

traverseF,A,B : (A → FB) × TA → F(TB)

natural in F , A, and B that respects the monoidal structure of applicative functor
composition. More concretely, for all applicative functors F,G : Set → Set and
applicative morphisms α : F → G, the following diagrams should commute:

T A
traverseF,A,B (f) ��

traverseG,A,B (αB ◦f) ����������������� F (T B)

αT B

��
G (T B)

F (T (G B))

F (traverseG ,B ,C (g))

��������������

T A
traverseFG ,A,C (F g◦f)

��

traverseF ,A,GB (f)
��											

F (G (T C))

naturality linearity

T (Id A)

traverseId,A,A(idA)

idTA
��
Id (T A)

unity

5.3 Characterising traversable functors

Let A be the category of applicative functors and applicative morphisms. In order

to prove that traversable functors are finitary containers, we first note that the

forgetful functor U from the category of applicative functors A into the category

of endofunctors has a left adjoint (−)∗ (Capriotti & Kaposi, 2014) and therefore we

can apply Theorem 4.10 to any traversal which satisfies the linearity and unity laws.

Hence, for every traversal on T

traverseA,B :

∫
F:A

(A → UFB) → TA → UF(TB)

there is a corresponding coalgebra

tA,B : T A → UR∗
A,B(T B)

where R∗
A,B is the free applicative functor for RA,B . The following proposition tells

us what this free applicative functor looks like.

Proposition 5.4

The free applicative functor on RA,B is

R∗
A,B X = Σ n : �. An × (Bn → X)

20 M. Jaskelioff and R. O’Connor

with action on morphisms R∗
A,B(h) (n, as, f) = (n, as, h ◦ f), and applicative structure

u : R∗
A,B 1

u = (0, ∗, λbs.∗)

�X,Y : R∗
A,B X × R∗

A,B Y → R∗
A,B(X × Y)

(n, as, f) � (m, as′, g) = (n + m, as ++ as ′, λbs.(f (take n bs), g (drop n bs)))

where we write X n for vectors of length n, i.e. the n-fold product

n times︷ ︸︸ ︷
X × · · · × X, ++

for vector append, and take n and drop n for the functions that given a vector of

size n + m return the first n elements and the last m elements respectively.

The datatype FreeApplicativePStore given in Section 4.1 is a Haskell implementation

of the free applicative functor on RA,B , namely R∗
A,B .

Hence R∗
A,B X consists of

1. a natural number, which we call the dimension,

2. a finite vector, which we call the position,

3. a function from a finite vector, which allows us to peek into new positions.

In order to make it easier to talk about the different components, we define

projections: let r = (n, i, g) : R∗
A,B X, then dim r = n , pos r = i , and peek r = g .

Theorem 4.10 tells us that UR∗ is a parameterised comonad with the following

counit and comultiplication operations.

εA,X : UR∗
A,A X → X

εA,X(n, as, f) = f as

δA,B,C,X : UR∗
A,C X → UR∗

A,B(UR∗
B,C X)

δA,B,C,X(n, as, f) = (n, as, λbs.(n, bs, f))

Furthermore, given a traversal of T , a coalgebra for UR∗, (T , t) is given by tA,B =

traverseA,B wrapA,B , where

wrapA,B : A → UR∗
A,B B

wrapA,B a = (1, a, idb)

In the other direction, given a coalgebra for UR∗, (T , t), we obtain a traversal for

T :

traverseA,B f x = let (n , as , g) = t x in F(g) (collectn f as)

where collectn f (x1, . . . , xn) = f(x1) � · · · � f(xn).

5.4 Finitary containers

A finitary container (Abbott et al., 2003) is given by a set of shapes S , and an

arity function ar : S → �. The extension of a finitary container (S , ar) is a functor

�S , ar� : Set → Set defined as follows.

�S , ar� X = Σ s : S . X (ar s)

A representation theorem for second-order functionals 21

Given an element of an extension of a finitary container c = (s , xs) : Σ s : S . X (ar s),

we define projections shape c = s , and contents c = xs .

As an example, lists are given by the finitary container (�, id�), where the set of

shapes indicates the length of the list. Therefore its extension is

��, id� X = Σ n : �. Xn .

Vectors of length n are given by the finitary container (1, λx.n). They have only

one shape and have a fixed arity. Streams are containers (Abbott et al., 2003) with

exactly one shape, but are not finitary.

Lemma 5.5 (Finitary containers are traversable)

The extension of any finitary container (S, ar) is traversable with a canonical traversal

given by:

traverseF,X,Y : (X → F Y) × �S , ar�X → F �S , ar�Y

traverseF,X,Y (f, (s, xs)) = F(λc. (s, c))(collectar(s) f xs)

5.5 Finitary containers from coalgebras

For the first part of our proof, we already showed that every traversal is isomorphic

to an UR∗-coalgebra. For the second part, we show that if (T , t) is a UR∗-coalgebra

then T is a finitary container.

Theorem 5.6

Let X : Set and let (T , t) be a coalgebra for UR∗. That is, T : Set → Set is a functor

and tA,B : T A → UR∗
a,b (T B) is a family natural in A and dinatural in B such that

certain laws hold (see Definition 4.2). Then T X is isomorphic to the extension of

the finitary container �T1 , λs . dim (t s)� X .

Proof

We define an isomorphism between T X and Σ s : T1 . X (dim (t s)).

Given a value x : T X , the contents of the resulting container are simply the

position of (t x). The shape of the resulting container is obtained by peeking into

(t x) at the trivial vector ∗n : 1n where n is the dimension of (t x). More formally,

we define one direction of the isomorphism as

Φ : T X → Σ s : T1 . X (dim (t s))

Φ x = let (n , i , g) = t x in (g (∗n), i)

Given a value (s , v) : Σ s : T1 . X (dim (t s)), we can create a T X by peaking into

(t s) at v. More formally, the other direction of the isomorphism is defined as

Ψ : Σ s : T1 . X (dim (t s)) → T X

Ψ (s , v) = peek (t s) v

22 M. Jaskelioff and R. O’Connor

First, we prove that Ψ (Φ x) = x .

Ψ (Φ x)

= { definition of Ψ, Φ }
let (n , i , g) = t x in peek (t (g (∗n))) i

= { map on morphisms of UR∗
a,b }

let (n , i , h) = UR∗
a,b (t) (t x) in peek (h (∗n)) i

= { comultiplication-coalgebra law }
let (n , i , h) = δ (t x) in peek (h (∗n)) i

= { definition of δ and peek }
let (n , i , g) = (t x) in g i

= { definition of ε }
ε (t x)

= { counit-coalgebra law }
x

Last, we prove that Φ (Ψ (s , v)) = (s , v).

Φ (Ψ (s , v))

= { definition of Ψ, Φ, and map on morphisms of UR∗
a,b }

let {(, , h) = UR∗
a,b t (t s); (n , i , g) = h v } in (g (∗n), i)

= { comultiplication-coalgebra law }
let {(, , h) = δ (t s); (n , i , g) = h v } in (g (∗n), i)

= { definition of δ }
let (n , j , g) = t s in (g (∗n), v)

= { j = (∗n) because 1n has a unique element }
let (n , j , g) = t s in (g j , v)

= { definition of ε }
(ε (t s), v)

= { counit-coalgebra law }
(s, v) �

Corollary 5.7

Let X : Set and T : Set → Set be a traversable functor. Then, T X is isomorphic

to the finitary container �T1 , λs . dim (traverse wrap s)� X .

Proof

Apply Theorem 5.6 with the UR∗-coalgebra t = traverse wrap. �

All that remains to show is that this isomorphism maps the traversal of T to the

canonical traversal of the finitary container.

Theorem 5.8

Let T : Set → Set be a traversable functor and let Φ: T X → �T1 , λs . dim (traverse

wrap s)� X be the isomorphism defined above. Let F be an arbitrary applicative

functor and let f : A → F B and x : T A. Then, F (Φ) (traverse f x) =

traverse f (Φ x).

A representation theorem for second-order functionals 23

Proof

Before beginning, we prove two small lemmas. First that pos (traverse wrap x) =

contents (Φ x).

pos (traverse wrap x)

= { definition of pos }
let (, i ,) = traverse wrap x in i

= { definition of Φ }
contents (Φ x)

Second, we prove that Φ (peek (traverse wrap x) w) = (shape (Φ x),w)

Φ (peek (traverse wrap x) w)

= { definition of peek }
let (, , g) = traverse wrap x in Φ (g w)

= { definition of Φ }
let {(, , g) = traverse wrap x ; (n , i , h) = traverse wrap (g w)} in (h (∗n), i)

= { definition of UR∗
a,b }

let {(, , g) = UR∗
a,b (traverse wrap) (traverse wrap x); (n , i , h) = g w } in (h (∗n), i)

= { coalgebra law for δ }
let {(, , g) = δ (traverse wrap x); (n , i , h) = g w } in (h (∗n), i)

= { definition of δ }
let (, , g) = traverse wrap x in (g (∗n),w)

= { definition of Φ }
(shape (Φ x),w)

Lastly, we prove our main result.

F (Φ) (traverse f x)

= { isomorphism in Theorem 4.10 }
let (n , i , g) = traverse wrap x in F (Φ) (F (g) (collectn f i))

= { functors respect composition }
let (n , i , g) = traverse wrap x in F (Φ ◦ g) (collectn f i)

= { application of above two lemmas }
let (s , v) = Φ x in F (λc. (s , c)) (collectn f v)

= { definition of canonical traverse for finitary containers }
traverse f (Φ x) �

The isomorphism between T and �T1 , λs . dim (traverse wrap s)� must be

natural by construction. However, naturality is also an immediate consequence

of the preceding theorem because traversing with the identity functor I is equivalent

to the mapping on morphisms of a traversable functor.

6 Implementing algebraic theories

As a last application of the representation theorem, we take a look at the case

where we consider M, the category of monads with monad homomorphisms. In this

situation, the functor (−)∗ : E → M, maps any functor F : E to F∗, the free monad

24 M. Jaskelioff and R. O’Connor

on F , while the functor U : M → E forgets the monad structure. The representation

theorem then states that∫
M∈M

(A → UMB) → UMX ∼= UR∗
A,B X (6.1)

where, RA,B X = A × (B → X) is the parameterised store comonad.

In Haskell, we can write the isomorphism (6.1) as

∀m . Monad m ⇒ (a → m b) → m x ∼= Free (PStore a b) x

where PStore (as given in Section 4.1) and the free monad construction are as

follows:

newtype PStore a b x = PStore (b → x) a

data Free f x = Unit x | Branch (f (Free f x))

instance Functor f ⇒ Monad (Free f) where

return = Unit

Pure x >>= f = f x

Branch xs >>= f = Branch (fmap (>>=f) xs)

This way of constructing a free monad from an arbitrary functor requires a

recursive datatype. The isomorphism Equation (6.1), on the other hand, shows a

non-recursive way of describing the free monad on functors of the form PStore a b.

While this result seems to be of limited applicability, we note that every signature

of an algebraic operation with parameter a and arity b determines a functor of

this form. Hence, the theorem tells us how to construct the free monad on a given

signature of a single algebraic operation. Intuitively the type

∀m . Monad m ⇒ (a → m b) → m x

describes a monadic computation m x in which the only source of impurity is the
operation of type a → m b in the argument. This type can be implemented in
Haskell in the following manner, where we have abstracted over the types of the
argument operation.

newtype FreeOp primOp x = FreeOp {runOp :: ∀m . Monad m ⇒ primOp m → m x }
instance Monad (FreeOp primOp) where

return x = FreeOp (const (return x))
x >>= f = FreeOp (λop → runOp x op >>= λa → runOp (f a) op)

Notice that the bind operation for FreeOp is not recursive, but is implemented

in terms of the bind operation for an arbitrary abstract monad.

For example, exceptions in a type e can be given by a nullary operation throw

with parameter e.4

type Exc e m = e → m ∅

4 In order to avoid clutter, we sometimes use a type synonym where a real implementation would require
a newtype, with its associated constructor and destructor.

A representation theorem for second-order functionals 25

where ∅ is the empty type, and hence FreeOp (Exc e) is the type of monadic

computations which can throw an exception using the following operation:

throw :: e → FreeOp (Exc e) ∅
throw e = FreeOp (λ throw → throw e)

We may model environments in r by an operation ask with parameter () and arity

r .

type Env r m = () → m r

Hence, FreeOp (Env r) is the type of monadic computation which can read an

environment using the following operation:

ask :: FreeOp (Env r) r

ask = FreeOp (λ ask → ask ())

More generally, we may want to consider algebraic theories with more than

one operation. Following the same argument as before, but considering the N-

ary representation theorem, we can construct the free monad on any signature of

algebraic operations and express it by its generic effects (Plotkin & Power, 2003) by

means of a polymorphic type.

For example, a simple teletype interface can be represented by the following

functor (Swierstra, 2008):

data Teletype x = GetChar (Char → x)

| PutChar Char x

The free monad generated by this Teletype functor produces a tree representing

all the interactions with a teletype machine a user can have. The Teletype functor is

isomorphic to a sum of instances of R

Teletype x ∼= ((),Char → x) + (Char , () → x) ∼= (R () Char + R Char ()) x

By the N-ary representation theorem, the free monad generated by Teletype is

isomorphic to

∀m . Monad m ⇒ (() → m Char) → (Char → m ()) → m x

We define a type for representing teletype operations. In order to reuse our

previous definition of FreeOp and to get names for each argument, we define the

type as a record in which each field corresponds to an operation.

data TTOp m = TTOp { ttGetChar :: m Char

, ttPutChar :: Char → m ()

}

We obtain the free monad for TTOp and define operations on it that basically

choose the corresponding field from the record.

type FreeTT = FreeOp TTOp

ttGetChar :: FreeTT Char

26 M. Jaskelioff and R. O’Connor

ttGetChar = FreeOp ttGetChar

ttPutChar :: Char → FreeTT ()

ttPutChar c = FreeOp (λpo → ttPutChar po c)

Values of type FreeTT can easily be interpreted in IO , by providing operations

of the appropriate type.

runTTIO :: FreeTT a → IO a

runTTIO = runOp ttOpIO

where ttOpIO :: TTOp IO

ttOpIO = TTOp { ttGetChar = getChar

, ttPutChar = putChar

}

Of course, the larger purpose is that FreeTT values can be interpreted in other

ways, for example, by logging input, or for use in automated tests by replaying

previously logged input. Furthermore, a FreeOp monad can easily be embedded into

another FreeOp monad with a larger set of primitive commands, or interpreted into

another FreeOp monad with a smaller, more primitive set of commands, providing a

simple way of implementing handlers of algebraic effects (Plotkin & Pretnar, 2009).

Hence, Theorem 3.2 might provide the basis for a simple implementation of an

algebraic-effects library.

7 Related work

Traversable functors were introduced by McBride and Paterson (2008), generalising

a notion of traversal by Moggi et al. (1999). The notion proposed was too coarse

and Gibbons and Oliveira (2009) analysed several properties that should hold for

all traversals. Based on some of these properties, Jaskelioff and Rypáček (2012)

proposed a characterisation of traversable functors, and conjectured that they were

isomorphic to finitary containers (Abbott et al., 2003). The conjecture was proven

correct by Bird et al. (2013) by a means of a change of representation. The proof

of this same fact presented in Section 5 uses a similar change of representation and

was found independently.

The representation of the free applicative functor on the parameterised store

comonad, R, is a dependently typed version of Van Laarhoven’s FunList data

type (Van Laarhoven, 2009b). Van Laarhoven’s applicative and parameterised

comonad instances for this type have been translated to work on the dependently

typed implementation. A particular case of the representation theorem has been

conjectured by Van Laarhoven (2009c), and proved by O’Connor (2011). The

proof of representation theorem for functors via the Yoneda lemma was discovered

independently by Bartosz Milewski (2013).

The representation theorems applied to the case where the structured functors

are monads (as in Section 6) yields isomorphisms analogous to the ones presented

by Bauer et al., (2013). However, our proof is based on a categorical model, while

A representation theorem for second-order functionals 27

theirs is based on a parametric model. Also, as opposed to us, they do not explore

the connection with algebraic effects.

Bernardy et al., (2010) use a representation theorem to transform polymorphic

properties of a certain shape into monomorphic properties, which are easier and

more efficient to test. This suggests that another application for the representation

theorems in this article is to facilitate the testing of polymorphic properties.

Acknowledgments

Jaskelioff is funded by ANPCyT PICT 2009-15. Many thanks go to Edward Kmett

who assisted the authors with the isomorphism between KLens and VLens , and to

Exequiel Rivas, Jeremy Gibbons, and the anonymous referees for helping us improve

the presentation of the paper. We also thank Shachaf Ben-Kiki for explaining why

affine traversals are called so, and Gabor Greif for finding some typos.

References

Abbott, M., Altenkirch, T. & Ghani, N. (2003) Categories of containers. In Proceedings of

Foundation s of Software Science and Computation Structures. pp. 23–38.

Atkey, R. (2009a) Algebras for parameterised monads. In Proceedings of the Algebra and

Coalgebra in Computer Science, 3rd International Conference, CALCO 2009, Udine, Italy

(September 7–10, 2009), Kurz, A., Lenisa, M. & Tarlecki, A. (eds), vol. 5728. Lecture Notes

in Computer Science, Springer, pp. 3–17.

Atkey, R. (2009b) Parameterised notions of computation. J. Funct. Program. 19(3 & 4),

335–376.

Awodey, S. (2006) Category Theory. USA: Oxford University Press.

Bainbridge, E. S., Freyd, P. J., Scedrov, A. & Scott, P. J. (1990) Functorial polymorphism.

Theor. Comput. Sci. 70(1), 35–64.

Bauer, A., Hofmann, M. & Karbyshev, A. (2013) On monadic parametricity of second-order

functionals. In Foundations of Software Science and Computation Structures, Pfenning, F.

(ed), vol. 7794. Lecture Notes in Computer Science, . Berlin Heidelberg: Springer, pp.

225–240.

Bernardy, J.-P., Jansson, P. & Claessen, K. (2010) Testing polymorphic properties. In

Programming Languages and Systems, Gordon, A. D. (ed), vol. 6012. Lecture Notes in

Computer Science. Berlin Heidelberg: Springer, pp. 125–144.

Bird, R. & de Moor, O. (1997) Algebra of Programming. Upper Saddle River, NJ, USA:

Prentice-Hall.

Bird, R., Gibbons, J., Mehner, S., Voigtländer, J. & Schrijvers, T. (2013) Understanding

idiomatic traversals backwards and forwards. In Proceedings of the 2013 ACM SIGPLAN

Symposium on Haskell. Haskell ’13. New York, NY, USA: ACM, pp. 25–36.

Capriotti, P. & Kaposi, A. 2014 (April) Free applicative functors. In Proceedings of the 5th

Workshop on Mathematically Structured Functional Programming. MSFP ’14, pp. 2–30.

Danielsson, N. A., Hughes, J., Jansson, P. & Gibbons, J. (2006) Fast and loose reasoning is

morally correct. Sigplan Not. 41(1), 206–217.

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. & Schmitt, A. (2007) Combinators

for bidirectional tree transformations: A linguistic approach to the view-update problem.

ACM Trans. Program. Lang. Syst. 29(3). (Article 17).

28 M. Jaskelioff and R. O’Connor

Gibbons, J. & Johnson, M. (2012) Relating algebraic and coalgebraic descriptions of lenses.

49 (Bidirectional Transformations 2012). Berlin, Germany.

Gibbons, J. & Oliveira, B. C. D. S. (2009) The essence of the iterator pattern. J. Funct.

Program., 19, 377–402.

Jaskelioff, M. & Rypacek, O. (2012) An investigation of the laws of traversals. In Proceedings

of the 4th Workshop on Mathematically Structured Functional Programming. EPTCS,

Chapman, J. & Levy, P. B. (eds), vol. 76, pp. 40–49.

Kmett, E. 2013 (October) Lens-4.0: Lenses, Folds and Traversals. Available at:

http://ekmett.github.io/lens/Control-Lens-Traversal.html.

Mac Lane, S. (1971) Categories for the Working Mathematician. Graduate Texts in

Mathematics, no. 5, 2nd ed., Springer-Verlag, 1998.

McBride, C. & Paterson, R. (2008) Applicative programming with effects. J. Funct. Program.

18(01), 1–13.

Milewski, B. 2013 (October) Lenses, Stores, and Yoneda. Available at:

http://bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda.

Moggi, E., Bellè, G. & Jay, C. B. (1999) Monads, shapely functors and traversals. Electron.

Notes Theor. Comput. Sci. 29, 187–208.

O’Connor, R. 2010 (Nov.) Lenses are Exactly the Coalgebras for the Store Comonad. Available

at: http://r6research.livejournal.com/23705.html.

O’Connor, R. (2011) Functor is to lens as applicative is to biplate: Introducing multiplate.

Corr, abs/1103.2841v1.

O’Connor, R., Kmett, E. A. & Morris, T. 2013 (October) Data-lens-2.10.4: Haskell 98

lenses. Available at: http://hackage.haskell.org/package/data-lens-2.10.4/docs/Data-Lens-

Partial-Common.html.

Plotkin, G. & Power, J. (2003) Algebraic operations and generic effects. Appl. Categ. Struct.

11(1), 69–94.

Plotkin, G. & Pretnar, M. (2009) Handlers of algebraic effects. In Programming Languages

and Systems, Castagna, G. (ed), vol. 5502. Lecture Notes in Computer Science, . Berlin

Heidelberg: Springer.

Reynolds, J. C. & Plotkin, G. D. (1993) On functors expressible in the polymorphic typed

lambda calculus. Inform. Comput. 105(1), 1–29.

Swierstra, W. (2008) Data types à la carte. J. Funct. Program. 18(4), 423–436.

Van Laarhoven, T. 2009a (Aug.) CPS Based Functional References. Available at:

http://twanvl.nl/blog/haskell/cps-functional-references.

Van Laarhoven, T. 2009b (Apr.) A Non-Regular Data Type Challenge. Available at:

http://twanvl.nl/blog/haskell/non-regular1.

Van Laarhoven, T. 2009c (Apr.) Where Do I Get My Non-Regular Types? Available at:

http://twanvl.nl/blog/haskell/non-regular2.

Appendix A: Ends

Ends are a special type of limit. The limit for a functor F : C → D is a universal

natural transformation KD → F (the universal cone to F) from the functor which is

constantly D, for a D ∈ D, into the functor F . The end for a functor F : Cop ×C → D
arises as a dinatural transformation KD → F (the universal wedge).

Definition A.1

A dinatural transformation α : F → G between functors F,G : Cop × C → D is

a family of morphisms of the form αC : F(C,C) → G(C,C), such that for every

A representation theorem for second-order functionals 29

morphism f : C → C ′ the following diagram commutes.

F(C,C)
αC �� G(C,C)

G(id,f)

��

F(C ′, C)

F(f,id)
��										

F(id,f) ��

 G(C,C ′)

F(C ′, C ′)
αC′

�� G(C ′, C ′)

G(f,id)

��										

Differently from natural transformations, dinatural transformations are not closed

under composition.

Definition A.2

A wedge from an object V ∈ D to a functor F : Cop × C → D is a dinatural

transformation from the constant functor KV : Cop × C → D to F . Explicitly, an

object V together with a family of morphisms αX : V → F(X,X) such that for each

f : C → C ′ the following diagram commutes.

F(C,C)

F(id,f)

������������

V

αC

�����������

αC′
�� F(C,C ′)

F(C ′, C ′)

F(f,id)

������������

Whereas a limit is a final cone, an end is a final wedge.

Definition A.3

The end of a functor F : Cop ×C → D is a final wedge for F . Explicitly, it is an object∫
A
F(A,A) ∈ D together with a family of morphisms ωC :

∫
A
F(A,A) → F(C,C) such

that the diagram

F(C,C)

F(id,f)

������������

∫
A
F(A,A)

ωC

��										

ωC′
��

F(C,C ′)

F(C ′, C ′)

F(f,id)

������������

commutes for each f : C → C ′, and such that for every wedge from V ∈ D, given

by a family of morphisms γc : V → F(C,C) such that F(id, f) ◦ γc = F(f, id) ◦ γ′
c for

every f : C → C ′, there exists a unique morphism ! : V →
∫
A
F(A,A) such that the

30 M. Jaskelioff and R. O’Connor

following diagram commutes.

F(C,C)

F(id,f)

������������

V

γC

�����������������������������

γC′
����������������������������� ! ��������

∫
A
F(A,A)

ωC

��										

ωC′

��

F(C,C ′)

F(C ′, C ′)

F(f,id)

������������

Remark A.4

When C is small and D is small-complete, an end over a functor C × Cop → D
can be reduced to an ordinary limit (Mac Lane, 1971). As a consequence, the Hom

functor preserves ends: for every D ∈ D,

D
D−→

∫
A

F(A,A) =

∫
A

D
D−→ F(A,A).

Appendix B: Generalised Lens Representation Theorem

For all the propositions below, assume we have two small monoidal categories of

endofunctors, (E, I, ·, α, λ, ρ) and (F, I, ·, α′, λ′, ρ′), E is a subcategory of endofunctors

over a base category C, and F is a subcategory of endofunctors over a base category

D, and where the monoidal operation is composition of endofunctors (written F ·G)

and with the identity functor, I , as the identity. Also assume we have an adjunction

(−)∗ � U : E ⇀ F, such that U is strict monoidal5 (i.e. U I = I , U(F ·G) = UF ·UG,

Uλ′
X = λUX , etc.).

To reduce notational clutter, in this section we work directly with natural

transformations. Rather that writing the counit of a parameterised comonad as

a family of arrows εa,X : Ca,aX → X as we did in Section 4, we will write it

as a family of natural transformations, εa : Ca,a → I . Similarly, instead of writing

comultiplication as δa,b,c,X : Ca,cX → Ca,b(Cb,cX) we will write δa,b,c : Ca,c → Ca,b ·Cb,c,

and so forth.

Proposition A.5

Let (C, εC, δC) be a P-parameterised comonad on C, such that for every a, b : P, we

have an endofunctor Ca,b : E. Then (C∗, εC
∗
, δC

∗
) is a P-parameterised comonad on

D where

εC
∗

a : C∗
a,a → I

εC
∗

a = �εCa

δC
∗

a,b,c : C∗
a,c → C∗

a,b · C∗
b,c

δC
∗

a,b,c = �(ηCa,b
· ηCb,c

) ◦ δCa,b,c

5 These propositions still hold under the assumption that U is a strong monoidal functor. In order to
avoid excessive notation, we use the simplifying assumption that U is strict.

A representation theorem for second-order functionals 31

The tensor · in the term corresponds to horizontal composition of natural transfor-

mations.

Proof

The first parameterised comonad law is

λCa,b
◦ (εCa · id) ◦ δCa,a,b = id : Ca,b

E−→ Ca,b

We check that

λ′
C∗
a,b

◦ (εC
∗

a · id) ◦ δC
∗

a,a,b = id : C∗
a,b

F−→ C∗
a,b

λ′
C∗
a,b

◦ (εC
∗

a · id) ◦ δC
∗

a,a,b

= { Definition of δC
∗ }

λ′
C∗
a,b

◦ (εC
∗

a · id) ◦ �(ηCa,a
· ηCa,b

) ◦ δCa,a,b

= { Equation (2.6) }
�Uλ′

C∗
a,b

◦ U(εC
∗

a · id) ◦ (ηCa,a
· ηCa,b

) ◦ δCa,a,b

= { U is strict monoidal. }
�λUC∗

a,b
◦ (U εC

∗

a · id) ◦ (ηCa,a
· ηCa,b

) ◦ δCa,a,b

= { Bifunctor ·, definition of εC
∗ }

�λUC∗
a,b

◦ ((U �εCa ◦ ηCa,a
) · ηCa,b

) ◦ δCa,a,b

= { Equation (2.8) }
�λUC∗

a,b
◦ (
�εCa � · ηCa,b

) ◦ δCa,a,b

= { isomorphism }
�λUC∗

a,b
◦ (εCa · ηCa,b

) ◦ δCa,a,b

= { naturality of λ }
�ηCa,b

◦ λCa,b
◦ (εCa · id) ◦ δCa,a,b

= { first parameterised comonad law }
�ηCa,b

= { Equation (2.7) }

�
id�
= { isomorphism }
id

For the second parameterised comonad law, we proceed in a similar way to the first.

The third parameterised comonad law states

αCa,b,Cb,c,Cc,d
◦ (δCa,b,c · id) ◦ δCa,c,d = (id · δCb,c,d) ◦ δCa,b,d : Ca,d

E−→ Ca,b · (Cb,c · Cc,d)

Let us prove that

α′
C∗
a,b,C

∗
b,c,C

∗
c,d

◦ (δC
∗

a,b,c · id) ◦ δC
∗

a,c,d = (id · δC∗

b,c,d) ◦ δC
∗

a,b,d : C∗
a,d

F−→ C∗
a,b · (C∗

b,c · C∗
c,d)

32 M. Jaskelioff and R. O’Connor

α′ ◦ (δC
∗

a,b,c · id) ◦ δC
∗

a,c,d

= { Definition of δC
∗ }

α′ ◦ (δC
∗

a,b,c · id) ◦ �(ηCa,c
· ηCc,d

) ◦ δCa,c,d
= { Equation (2.6), U strict monoidal }

�α ◦ (UδC
∗

a,b,c · id) ◦ (ηCa,c
· ηCc,d

) ◦ δCa,c,d
= { · bifunctor }

�α ◦ ((UδC
∗

a,b,c ◦ ηCa,c
) · ηCc,d

) ◦ δCa,c,d
= { Equation (2.8) }

�α ◦ (
δC∗

a,b,c� · ηCc,d
) ◦ δCa,c,d

= { Definition of δC
∗ }

�α ◦ (
�(ηCa,b
· ηCb,c

) ◦ δCa,b,c� · ηCc,d
) ◦ δCa,c,d

= { isomorphism }
�α ◦ ((ηCa,b

· ηCb,c
) ◦ δCa,b,c) · ηCc,d

) ◦ δCa,c,d
= { · bifunctor }

�α ◦ ((ηCa,b
· ηCb,c

) · ηCc,d
) ◦ (δCa,b,c · id) ◦ δCa,c,d

= { naturality of α }
�((ηCa,b

· (ηCb,c
· ηCc,d

)) ◦ α ◦ (δCa,b,c · id) ◦ δCa,c,d
= { third parameterised comonad law }

�((ηCa,b
· (ηCb,c

· ηCc,d
)) ◦ (id · δCb,c,d) ◦ δCa,b,d

= { · bifunctor }
�(ηCa,b

· ((ηCb,c
· ηCc,d

) ◦ δCb,c,d)) ◦ δCa,b,d
= { isomorphism }

�(ηCa,b
·
�(ηCb,c

· ηCc,d
) ◦ δCb,c,d�) ◦ δCa,b,d

= { Definition of δC
∗ }

�(ηCa,b
·
δC∗

b,c,d�) ◦ δCa,b,d
= { Equation (2.8) }

�(ηCa,b
· (UδC

∗

b,c,d ◦ ηCb,d
)) ◦ δCa,b,d

= { · bifunctor }
�(id · UδC

∗

b,c,d) ◦ (ηCa,b
· ηCb,d

) ◦ δCa,b,d
= { Equation (2.6), U strict monoidal }

(id · δC∗

b,c,d) ◦ �(ηCa,b
· ηCb,d

) ◦ δCa,b,d
= { Definition of δC

∗ }
(id · δC∗

b,c,d) ◦ δC
∗

a,b,d

�

A representation theorem for second-order functionals 33

Proposition A.6

Let (D, εD, δD) be a P-parameterised comonad on D, such that for every a, b : P, we

have an endofunctor Da,b : F. Then (U D, εU D, δU D) is a P-parameterised comonad

on C where

εU D
a : U Da,a → I

εU D
a = UεDa

δU D
a,b,c : U Da,c → U Da,b · U Db,c

δU D
a,b,c = UδDa,b,c

Proof

The laws of a parameterised comonad follow directly from the fact that U is a strict

monoidal functor. �

Proposition A.7 (Generalised lens representation (Theorem 4.10)

Given a functor K : P → Set, define R(K)
a,b X = Ka×(Kb → X) : P×Pop ×Set → Set

as the parameterised comonad with counit εR
(K)

and comultiplication δR
(K)

as defined

in Example 4.4. Assume that R(K)
a,b : E for every a and b. Then

1. UR(K)∗ is a parameterised comonad and

2. given a functor J : P → Set, then the families ka,b : Ja → UR
(K)∗
a,b (Jb) which

form the UR(K)∗-coalgebras (J, k) are isomorphic to the families of ends∫
F:F

(Ka → UF(Kb)) → Ja → UF(Jb)

which satisfy the linearity and unity laws.

Proof

The previous two propositions entail that UR(K)∗ is a parameterised comonad with

the following counit and comultiplication.

εUR(K)∗
a : UR(K)∗

a,a → I

εUR(K)∗
a = U�εR(K)

a

δUR(K)∗

a,b,c : UR(K)∗
a,c → UR

(K)∗
a,b · UR

(K)∗
b,c

δUR(K)∗

a,b,c = U�(η
R

(K)
a,b

· η
R

(K)
b,c

) ◦ δR
(K)

a,b,c

The unary representation theorem (Theorem 3.1) entails the isomorphism

Ja → UR
(K)∗
a,b (Jb) ∼=

∫
F:F

(Ka → UF(Kb)) → Ja → UF(Jb)

witnessed by the following functions

γ : (
∫
F
(Ka → UF(Kb)) → Ja → UF(Jb)) → (Ja → UR

(K)∗
a,b (Jb))

γ(h) = h
R

(K)∗
a,b

(α−1
UR

(K)∗
a,b

(η
R

(K)
a,b

))

γ−1 : (Ja → UR
(K)∗
a,b (Jb)) →

∫
F
(Ka → UF(Kb)) → (Ja → UF(Jb))

γ−1(k) = τ where τF : (Ka → UF(Kb)) → Ja → UF(Jb)

τF (g) =U�αUF (g)Jb ◦ k

34 M. Jaskelioff and R. O’Connor

All that remains is to show that ka,b satisfies the coalgebra laws if and only if

γ−1(ka,b) satisfies the linearity and unity laws.

First, we prove two lemmas:

Lemma A.8

For all F,G : F and f : Ka → UF(Kb) and g : Kb → UG(Kc), we have that

γ−1(ka,c)F·G(UFg ◦ f) = U(�αUF (f) · �αUG(g))Jc ◦ δUR(K)∗

a,b,c,Jc ◦ ka,c

Proof

γ−1(ka,c)F·G(UFg ◦ f)

= { Definition of γ−1 }
U�αUF·UG(UFg ◦ f)Jc ◦ ka,c

= { Proposition 4.5(b) }

U�(αUF (f) · αUG(g)) ◦ δR
(K)

a,b,cJc ◦ ka,c

= { isomorphism }

U�(
�αUF (f)� ·
�αUG(g)�) ◦ δR
(K)

a,b,cJc ◦ ka,c

= { Equation (2.8) }

U�((U�αUF (f) ◦ η
R

(K)
a,b

) · (U�αUG(g) ◦ η
R

(K)
b,c

)) ◦ δR
(K)

a,b,cJc ◦ ka,c

= { · bifunctor and U is strict }

U�U(�αUF (f) · �αUG(g)) ◦ (η
R

(K)
a,b

· η
R

(K)
b,c

) ◦ δR
(K)

a,b,cJc ◦ ka,c

= { Equation (2.6) and U is strict }

(U(�αUF (f) · �αUG(g)) ◦ U�(η
R

(K)
a,b

· η
R

(K)
b,c

) ◦ δR
(K)

a,b,c)Jc ◦ ka,c

= { Definition of δUR(K)∗ }

U(�αUF (f) · �αUG(g))Jc ◦ δUR(K)∗

a,b,c,Jc ◦ ka,c

�

We note that Lemma 4.8 follows from Lemma A.8 by considering the identity

adjunction between E and itself.

Lemma A.9

For all F,G : F and f : Ka → UF(Kb) and g : Kb → UG(Kc), we have that

UF(γ−1(kb,c)G(g)) ◦ γ−1(ka,b)F (f) = U(�αUF (f) · �αUG(g))Jc ◦ UR
(K)∗
a,b (kb,c) ◦ ka,b

Proof

UF(γ−1(kb,c)G(g)) ◦ γ−1(ka,b)F (f)

= { Definition of γ−1 }
UF(U�αUG(g)Jc ◦ kb,c) ◦ U�αUF (f)Jb ◦ ka,b

A representation theorem for second-order functionals 35

= { UF is a functor }
UF(U�αUG(g)Jc) ◦ UF(kb,c) ◦ U�αUF (f)Jb ◦ ka,b

= { U�αUF (f) is natural }
UF(U�αUG(g)Jc) ◦ U�αUF (f)

UR
(K)∗
b,c (Jc) ◦ UR

(K)∗
a,b (kb,c) ◦ ka,b

= { Definition of · }
(U�αUF (f) · U�αUG(g))Jc ◦ UR

(K)∗
a,b (kb,c) ◦ ka,b

= { U is strict }
U(�αUF (f) · �αUG(g))Jc ◦ UR

(K)∗
a,b (kb,c) ◦ ka,b �

We note that Lemma 4.9 follows from Lemma A.9 by considering the identity

adjunction between E and itself.

The linearity law for the image of γ−1 states

∀F,G, f, g.γ−1(ka,c)F·G(UFg ◦ f) = UF(γ−1(kb,c)G(g)) ◦ γ−1(ka,b)F (f)

By the previous two lemmas, this linearity law is equivalent to stating that

∀F,G, f, g

U(�αUF (f) · �αUG(g))Jc ◦ δUR(K)∗

a,b,c,Jc ◦ ka,c = U(�αUF (f) · �αUG(g))Jc ◦UR
(K)∗
a,b (kb,c) ◦ ka,b.

With this reformulation, we see that the comultiplication-coalgebra law,

δUR(K)∗

a,b,c,Jc ◦ ka,c = UR
(K)∗
a,b (kb,c) ◦ ka,b

trivially implies the linearity law. To derive the comultiplication-coalgebra law from

the linearity law, consider the instance where F = R
(K)
a,b , f = α−1

UR
(K)∗
a,b

(η
R

(K)
a,b

), G = R
(K)
b,c ,

and g = α−1
UR

(K)∗
b,c

(η
R

(K)
b,c

). In this case we have

U(�αUF (f) · �αUG(g))
= { definition of f and g }
U(�α

UR
(K)∗
a,b

(α−1
UR

(K)∗
a,b

(η
R

(K)
a,b

)) · �α
UR

(K)∗
b,c

(α−1
UR

(K)∗
b,c

(η
R

(K)
b,c

)))

= { isomorphism }
U(�η

R
(K)
a,b

 · �η
R

(K)
b,c

)

= { Equation (2.7) }
U(�
id� · �
id�)

= { isomorphism }
U(id · id)

= { identity }
id

and then the comultiplication-coalgebra law follows.

36 M. Jaskelioff and R. O’Connor

The unity law for the image of γ−1 states

γ−1(ka,a)I (id) = id : Ja → Ja

The counit-coalgebra law states

εUR(K)∗ ◦ ka,a = id : Ja → Ja

Therefore, in order to show that these laws are equivalent, it suffices to prove the

following.

γ−1(ka,a)I (id) = εUR(K)∗ ◦ ka,a

γ−1(ka,a)I (id)

= { definition of γ−1 }
U(�αI (id))(Ja) ◦ ka,a

= { Proposition 4.5 }

U(�εR(K)

a)(Ja) ◦ ka,a

= { Definition of εUR(K)∗ }

εUR(K)∗ ◦ ka,a

�

