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Abstract

Advertisers often estimate the performance of
their online advertising by either running ran-
domized experiments, or applying models to ob-
servational data. While randomized experiments
are the gold standard of measurement, their cost
and complexity often lead advertisers to rely in-
stead on observational methods, such as attri-
bution models. A previous paper demonstrated
the limitations of attribution models, as well as
information issues that limit their performance
[1]. This paper introduces “near impressions”,
an additional source of observational data that
can be used to estimate causal ad impact without
experiments. We use both simulated and real ex-
periments to demonstrate that near impressions
greatly improve our ability to accurately mea-
sure the true value generated by ads.

1 Introduction

Advertisers need to understand the causal im-
pact of their advertising in order to make sound
marketing decisions. Properly randomized and
controlled experiments are the most accurate
way to measure the impact of advertising. For
example, Google’s ghost ad methodology is a
technology that identifies control group users in a
cookie level experiment who would have been ex-
posed to an ad in the absence of the experiment
[2]. However, the sophistication of this technol-
ogy adds complexity to the ad serving systems.
In these experiments, user lists must be main-

tained for each advertiser, and additional sys-
tems are required to simulate auction results for
control cookies. Further, these experiments are
often costly, since impressions and revenue are
lost by actively withholding ads that would have
otherwise been served. Few ad serving systems
currently offer ghost ad experimentation, and its
complexity could limit broader adoption.

Intent-to-treat (ITT) experiments are another
unbiased alternative. This type of experiment
compares outcomes for all users across the test
and control groups. Specifically, ITT estimators
measure the outcome for each user assigned to
the test group, regardless of whether the user
was exposed to the advertising being measured.
Similarly, the outcome for each control group
user is measured, regardless of whether the user
would have been exposed to this advertising. Ex-
amples of ITT include user level [3] and geo
level [4] experiments. A major drawback to ITT
experiments is that their estimates have rela-
tively high variance due to the lack of expo-
sure tracking. This greater variability makes it
much more difficult to detect significant causal
impact from treatment. Applied to advertising,
this means that ITT experiments typically re-
quire large campaign changes in order to detect
lift.

Public Service Announcement (PSA) tests are a
third common type of experiment. PSA tests
aim to identify the subset of control group users
who would have been exposed, had they been as-
signed to the test arm, by serving PSA advertise-
ments to users within the control arm [5]. How-
ever, this approach has several disadvantages.
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2 NEAR IMPRESSIONS

First, PSA tests are costly, since advertisers must
pay for the PSA ads served to users assigned
to the control group. Second, complexity is in-
troduced by the need to differentiate ad serving
between test and control users. In particular, a
mechanism is needed to randomly serve the PSA
and non-PSA ads. Finally, PSA tests with mod-
ern ad servers can yield biased estimates, since
ad serving systems use optimization to deliver
those ads that generate the most clicks or con-
versions. This optimization causes PSA tests to
deviate from the conditions needed for a valid
experiment, by disrupting the comparability of
the test and control groups.

Due to complexity, cost, and limitations, exper-
iments are often impractical or impossible for
advertisers to rely upon as a primary means of
measurement. More typically, advertisers use
experiments in a one-off capacity. Instead, ad-
vertisers use observational methods to measure
and monitor the performance of their advertis-
ing. Attribution models are a common observa-
tional method used to accomplish this task for
online advertising. Attribution models allocate
credit for conversions in observational user-level
path data to the marketing events observed prior
to each conversion. Observational methods are
easy to apply and offer the promise of always-on
measurement. However, typical formulations of
these models can yield misleading estimates of
advertising effectiveness [1].

Improved modeling, such as the Upstream Data-
Driven Attribution (UDDA) model described in
[1], can significantly improve the accuracy of at-
tribution estimates. However, limitations in in-
formation available in the attribution data were
also shown to be another factor that limits the
accuracy of attribution models. First, attri-
bution models have no visibility to users who
have no observed interactions with the adver-
tiser. Second, there can be unobserved dissimi-
larity in the browsing behavior of exposed and
unexposed users, since many unexposed users
were not active on websites serving the ads be-
ing measured. Third, ads are often targeted to-
wards users who behave differently than untar-

geted users. All three issues lead to bias in the
comparison groups of unexposed users who serve
as pseudo-controls for the exposed users.

This paper introduces near impressions, a source
of observational data that can be used in attri-
bution models to construct naturally occurring
pseudo-control groups that enable us to recover
causal ad impact in situations where these mod-
els currently fail. Compared to traditional ex-
periments, near impressions are more scalable,
less costly, have simplified infrastructure require-
ments, and enable ongoing monitoring of ad ef-
fectiveness.

2 Near Impressions

2.1 Description

Near impressions are observational, user-level
events that identify instances in which a user ac-
tivity generated an ad serving opportunity that
matched an advertiser’s targeting criteria, but
didn’t result in the user being exposed to the
advertiser’s ad. Examples include instances in
which an ad loses an auction, an advertiser is out
of budget, or an ad system is overbooked. Near
impressions are very powerful because they allow
us to differentiate among unexposed users: we
can identify the subset of unexposed users who
were both active and targeted by the advertiser.
This is important because this group of users
may behave similarly to the exposed users, and
very differently than users who were not active
or targeted by the advertiser. These unexposed
users with near impressions serve as weighted ob-
servational pseudo-controls, as described in de-
tail in Section 2.2. They allow us to better esti-
mate causal ad impact without experiments.

The manifestation of near impressions is flexible,
and can vary by ad channel. For example, near
impressions can include served but unviewable
ads, or instances of an ad that nearly missed
being delivered by the ad server. In a single-
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winner auction environment, a near impression
event based on a lost auction occurs when an
ad participated in, and was competitive in, the
auction, but did not win. These near impres-
sion events are identified through auction bid
data. For reservation-based ads, near impression
events can be identified as eligible but unrealized
ad impression opportunities within the targeted
reservation inventory. These lost opportunities
could be caused, for example, by the advertiser
being over budget, or by another eligible adver-
tiser’s impression being shown.

This paper uses advertising in a single-winner ad
format auction as an example of using of near im-
pressions to estimate ad effectiveness. For these
near impressions, the nearness criteria can be
viewed as a bias-variance tuning parameter. In-
cluding only those losing auctions that were very
near to winning is best for removing bias, while
including all losing auctions generates more near
impressions and more opportunities for counter-
factual comparisons.

2.2 Ad Impact Estimation: UDDA-
NI

The UDDA with Near Impressions (UDDA-NI)
algorithm is a simple modification to UDDA
that incorporates near impression information.
UDDA aggregates users with the same sequence
of events upstream from the index of ad expo-
sure, and matches them with unexposed user
paths which have the same upstream sequence of
events, but no ad exposure at the exposure in-
dex. UDDA-NI operates similarly to UDDA, but
further restricts the unexposed user set to those
paths that also have a near impression at the ex-
posure index. That is, UDDA-NI still matches
users based on their upstream paths, and in ad-
dition matches ad exposure events with near im-
pression events. By introducing this additional
matching of impressions with near impressions,
we obtain a control group that matches the test
group better than one that includes all unex-
posed users.

Figure 1 illustrates the matching procedure used
in the UDDA-NI algorithm. UDDA-NI assigns
credit to an ad exposure within a user path
by comparing the conversion rate of user paths
with a common sequence of marketing events up-
stream from an ad exposure to the conversion
rate of paths that have the same sequence of
events upstream from a near impression event
instead of an ad exposure. The difference in
conversion rates between the exposed and near
impression paths estimates the ad’s effectiveness
within this set of exposed paths. Total ad ef-
fectiveness within this exposed set is found by
aggregating ad effectiveness estimates for all ex-
posed users in the set. These credits are aggre-
gated across all unique upstream paths among
the exposed users to calculate an overall ad ef-
fectiveness.

We provide a formal description of the UDDA-
NI algorithm below. Note that these steps are
analogous to the UDDA algorithm described in
[1]; the primary modification occurs at Step 3b,
where we impose near impression matching at
the exposure index for the set of unexposed
users.

Using the same notation as [1], let user i have an
ordered path of observed events denoted by the
vector Xi = (Xi

1, . . . , X
i
L(i)), with length L(i).

Let A denote an ad impression exposure of the
type currently being analyzed, let N denote a
near impression of the type currently being ana-
lyzed, and let C denote a conversion event. For
the index m, let U i

m = (Xi
1, . . . , X

i
m−1) denote

the upstream path that includes the first m − 1
events in a user path, i.e. the sequence of events
that occurred prior to index m in the path. The
UDDA-NI algorithm then proceeds as follows:

1. Classify all user paths as either containing
or not containing an ad impression A:

(a) For all exposed paths, i.e. ∃A ∈ Xi,
set exposure indicator Ti = 1.

(b) For all other paths, which are unex-
posed, set Ti = 0.

Google Inc. Confidential and Proprietary 3
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specific
marketing event
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of specific

marketing event
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match exposed
with near impression
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no matching on
downstream events

compare
conversion rates

Figure 1: Illustration of UDDA-NI algorithm. Users with the same observed sequence of events
prior to the index of ad exposure are aggregated. A set of unexposed users with a near impression
in the exposure index, and the same upstream sequence of events is also aggregated. The difference
in conversion rates between the exposed and near impression paths estimates the ad effectiveness
for the set of exposed paths. Overall ad effectiveness is found by aggregating estimates across all
unique upstream paths among the exposed users.

2. For each user path i with Ti = 1:

(a) Let mi denote the index of the first oc-
currence of A in the path. That is,
Xmi = A, and no previous event in the
path equals A.

(b) Record the upstream path of user i as
the sequence of events prior to this ex-
posure index: U i

mi
.

(c) Calculate the number of downstream
conversions that occur after index mi

as: Ci =

L(i)∑
j=mi+1

I(Xi
j = C).

3. For each unique upstream path uj from
Step 2b:

(a) Let nj(T = 1) denote the number of
users in the exposed group with up-
stream path uj . Calculate the average
conversion rate among these users as:

c̄j(T = 1) =
1

nj(T = 1)

nj(T=1)∑
i=1

Ci.

(b) Find all unexposed users i with a near
impression at index mj , i.e. Xmi = N ,
and upstream path uj from index mj ,
i.e. U i

mj
= uj . Calculate the number of

downstream conversions Ci after index
mj for each of these users analogous to
Step 2c. Calculate the average conver-
sion rate c̄j(T = 0) among these users
analogous to Step 3a.

(c) Estimate the incremental conversion
rate among these users as the difference
in conversion rate among exposed ver-
sus near impression users: r̂j = c̄j(T =
1)− c̄j(T = 0).

(d) Estimate the number of incremental
conversions among these users as: r̂j ·
nj(T = 1).

4. Aggregate the estimated incremental num-
ber of conversions among all exposed user
paths by aggregating over all unique up-

stream paths: θ̂ =
∑
uj

r̂j · nj(T = 1).
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2.3 Regression Discontinuity

Near impressions from lost auctions1 are concep-
tually similar to regression discontinuity designs.
Regression discontinuity designs provide an ob-
servational method for estimating causal impact
of an intervention when treatment assignment is
determined by a common exogenous threshold
[6], and they have been applied in advertising
research to study position effects in search ads
[7]. A classic application of regression discon-
tinuity designs is the evaluation of scholarship
programs, as in [8]. In this setting, the causal
impact of receiving the scholarship is estimated
by comparing outcomes among individuals with
test scores very close, both above and below, to
the threshold for awarding scholarship. Since
these individuals are presumably similar, differ-
ences between their later outcomes are likely due
to receiving the scholarship or not.

While similar in flavor, we highlight some key dif-
ferences between near impressions from lost auc-
tions and regression discontinuity designs. First,
auctions do not have a common, fixed winning
threshold. Instead, the threshold for winning an
auction varies across auctions, and we aggregate
losing bids both within each upstream path, and
then across all unique upstream paths, as de-
scribed in Section 2.2. The effect of this aggre-
gation is to estimate the average causal impact
of winning an auction, averaged over a mix of
different observed thresholds, and is likely repre-
sentative of the similar mixture of thresholds in
future auctions.

Second, in the conversion rate comparison, we in-
clude all winning auctions, rather than only win-
ners near the threshold. In the scholarship pro-
gram evaluation setting, this comparison would
result in overestimation bias, since individuals
with test scores significantly above the thresh-
old are more likely to have successful outcomes,
compared to those with scores near the thresh-

1Near impressions from lost auctions are the focus of
this paper, but near impressions are applicable beyond
auctions (for example, in reserved ad buy situations). See
Section 2.1 for further details.

old. An auction setting is less likely to facilitate
a similar overestimation bias due to competition
within the market dynamic, since auctions with
different thresholds are grouped together within
the test and control groups. These pooled sets
of data are used to estimate the average causal
impact of winning the auction across a range of
thresholds, and it is unlikely that advertisers will
win only the most effective auctions while losing
the less effective ones. It is difficult for a given
advertiser to win only the most effective auc-
tions, while losing the lesser opportunities. Fur-
ther, matching on upstream paths of observed
activities prior to exposure is designed to miti-
gate any potential bias, similar to the inclusion
of covariates to reduce bias in a regression dis-
continuity design. In the performance evaluation
results that follow in Section 3, we do not observe
significant bias with near impressions.

3 Performance Evaluation

We evaluated the performance of near impres-
sions using both simulated and real user-level
path data. In both evaluations, an experimen-
tal ground truth is available, which allows us to
compare each observational estimate using near
impressions to the corresponding experimentally
determined result.

3.1 Simulations

The Digital Advertising System Simulation
(DASS) [9] is a simulation framework which
models online advertising and its impact on
user behavior using an extended, non-stationary
Markov model. The simulation consists of a user
activity path model for user browsing behav-
ior in the absence of advertising, an ad serving
model for the process by which users are exposed
to advertising events, and an ad impact model
for how exposure to advertising impacts down-
stream user behavior.
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Since the original version of DASS described in
[9] does not generate near impression events,
we introduced a modification to generate lost
ad serving opportunity events. Specifically, we
modified DASS to record lost ad serving oppor-
tunity event types as instances in which a user
met the campaign’s serving criteria, but the ad
was not served due to share of voice constraints.
That is, the user’s activity state was one on
which the ad type was eligible to be served, the
user’s impressibility to the ad type met the ad’s
minimum threshold, and the user’s number of
previous exposures to the ad was below the ad’s
frequency cap, but the ad was not served to the
user because the random share of voice Bernoulli
draw indicated that the ad should not be shown.

Four display ad simulation scenarios generated
by DASS were provided in [1] to illustrate the
capabilities and limitations of the UDDA algo-
rithm. In this section, we apply near impressions
via the UDDA-NI algorithm to the same four sce-
narios to demonstrate how near impressions can
be used to address the three key challenges that
limit the performance of UDDA without near im-
pressions2. For each scenario, we compare the re-
sults of UDDA-NI to the UDDA algorithm with
visibility to censored user paths (UDDA-VCU)
but without visibility to near impressions. In
real data, attribution models do not have visi-
bility to users who have no observed interactions
with the advertiser; these user paths are system-
atically censored. Visibility to censored paths is
possible in the simulated environment of DASS,
but is not possible in practice. That is, UDDA-
VCU is included in this paper for theoretical per-
formance comparison only, and is not a viable
approach for real path data3.

2A complete description of the parameterization of
these four simulation scenarios is available in the Ap-
pendix of [1].

3The performance of UDDA without visibility to cen-
sored users (and without visibility to near impressions) is
generally much worse than UDDA-VCU.

3.1.1 Systematically Censored Users

The first two scenarios illustrate how near im-
pressions can address the challenge introduced
by the systematic censoring of users who have
no observed interactions with the advertiser. We
show results for two possible ways in which
display ads might impact user behavior. Fig-
ure 2(a) shows results for the scenario in which
display ads impact user browsing behavior: in-
creasing the user’s likelihood of performing a re-
lated branded or generic search, or visiting the
advertiser’s website. Figure 2(b) shows results
for the scenario in which display ads directly im-
pact user conversion probability if the user hap-
pens to visit the advertiser’s website, but do not
change the user’s downstream browsing behavior
in any other way.

In these scenarios, UDDA-VCU is able to ac-
curately recover the true number of incremental
conversions generated by the display ads, and
UDDA-NI achieves comparable performance.
Most importantly, UDDA-NI is a feasible algo-
rithm for real path data, while UDDA-VCU is
not.

3.1.2 User Browsing Dissimilarity

The next scenario models dissimilarity between
the browsing behavior of exposed versus unex-
posed users. That is, all users exposed to a given
ad type visited a website on which that ad was
eligible to be served, but this is not the case for
all unexposed users. Specifically, not all unex-
posed users had the opportunity to be served
the ad. Results for this scenario are presented in
Figure 2(c).

UDDA-VCU is not able to capture the true value
generated by display ads in this scenario, even
with visibility to censored users, since the unex-
posed user set in this scenario includes users who
never browsed to an activity state on which the
ads were eligible to be served. In contrast, by
incorporating near impression information, the
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(a) Simulations that vary the level of display ad effective-
ness in changing user browsing behavior.
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(b) Simulations that vary the level of display ad effective-
ness in directly changing user conversion rate.
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(c) Simulations that vary the level of display ad effective-
ness in changing user browsing behavior, modified to in-
clude user browsing dissimilarity. Some unexposed users
never had opportunity to be served a display ad.
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(d) Simulations that vary the level of display ad effec-
tiveness in changing user browsing behavior, modified to
include ad targeting. Some unexposed users do not meet
the ad’s targeting criteria.

Figure 2: Performance comparison on simulated datasets of near impressions via the UDDA-NI al-
gorithm, versus the idealized but infeasible UDDA-VCU. Near impressions are an effective addition
to the UDDA algorithm that provide a viable way to recover incremental conversions generated by
ads, even in situations in which the incorporation of visibility to censored users is unsuccessful.
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UDDA-NI algorithm is able to accurately esti-
mate the true number of incremental conversions
generated by the display ads. In this case, the
near impressions allow us to identify unexposed
users who did browse to an activity state on
which the ads were served.

3.1.3 Ad Targeting

The final scenario simulates ad targeting, with
the display ads targeted towards users who are
inherently more likely to convert. Users who do
not meet the ad’s targeting criteria are less likely
to convert, on average. Figure 2(d) shows results
for this scenario.

Visibility to censored users is again not sufficient,
since UDDA-VCU is not able to accurately es-
timate the true number of incremental conver-
sions from the display ads in this scenario. Here,
all unexposed users browsed to an activity state
on which the ads were eligible to be served, but
the unexposed user set also includes users who
were not targeted by the ad. By adding near im-
pression information, the UDDA-NI algorithm
can again recover the true value of the display
ads. The near impressions make it possible to
pinpoint unexposed users who did meet the ad’s
targeting criteria.

3.2 Real Ad Experiments

Google’s ghost ad technology is a framework that
enables advertisers to run experiments to mea-
sure the impact of their display and video ad
campaigns [2]. Ghost ad experiments randomly
assign users to either a test or control arm. Users
within the test group are eligible to be served
ad impressions from the advertiser, while users
within the control group have the advertiser’s
ads withheld. Within the test group, exposed
users are identified as those who are served one
or more ad impressions. Ghost ads allow us to
identify a comparable set of users, those users
who would have been exposed if not for the ex-

periment, within the control group. The ground
truth incremental conversion lift for each exper-
iment is calculated based on the difference be-
tween conversion rates for the exposed test group
users versus the would-have-been-exposed con-
trol group users.

We evaluated the performance of near impres-
sions by comparing estimates from the UDDA-
NI algorithm to experimental measurements of
lift from 178 display and video ad experiments.
All experiments measured an online conversion
outcome, but different conversion types were
measured across the experiments. For example,
conversion outcomes ranged across engagement
type off-site conversions (such as subscribing to
advertiser’s social media channel, or watching
more of the advertiser’s videos on YouTube) to
advertiser-defined on-site conversions (such as
traditional e-commerce conversions, or reaching
a particular page on the advertiser’s website).

Each study’s advertiser-specific impressions,
near impressions4, and conversions among the
test arm users were made available to the
UDDA-NI algorithm, since only the test group
contains the observational data that is typically
available to an observational model. That is, we
did not use any data dependent on the exper-
iment to compute the observational estimates.
This allows us to evaluate methodologies in the
same environment as would be used in practice,
that is, one in which an experiment is not be-
ing run. As a result, UDDA-NI’s upstream path
matching was limited to only prior conversions
and prior near impressions.

For comparison, we also computed results for
a standard attribution model5, without access
to near impressions. Figure 3 shows an exam-

4Lost auctions have a reported auction score. Various
relative and absolute thresholds were used to constrain
the lost auctions that were deemed to be near impres-
sions. In this application, algorithm performance was not
strongly dependent on the choice of threshold.

5Results shown are independent of the model used,
since typical attribution models are subject to reporting
constraints that cause them to assign the same aggregate
credit when the data contains only one event type.
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conversion
display ad
impression

display ad
impression

conversion

Figure 3: Example user path without access to near
impression events from a display ad experiment. Only
display ad impression and conversion events are observ-
able. All standard attribution models will ignore the first
conversion, since it occurs prior to any other observed
events, and assign credit for the second conversion to the
display ad. Note that any potential split between the first
and second display ad is irrelevant for this example, since
the total credit assigned to this type of display ad remains
the same.

ple user path without near impressions from a
display ad experiment. Note that without near
impressions, only impressions and conversions
within the test group users were made available
to the standard attribution algorithm. As a re-
sult, any typical attribution model will attribute
all conversions following an impression, or se-
quence of impressions, to that one type of im-
pression. This behavior is caused by the require-
ment that attribution credits assigned within
each user path must sum to the total number of
conversions that occur after the first ad impres-
sion. That is, the impression is credited for all
conversions following it (or them), since no other
event types are available to share the credit. This
is true for all current common attribution mod-
els, both position rule-based models and data-
driven models.

Since the lift point estimates and uncertain-
ties vary greatly across the 178 experiments, we
evaluated the performance of the observational
methods via a standardized evaluation metric.
For a given study k, let δk and σk denote the
experimentally-determined incremental conver-
sion lift point estimate and standard error for
that experiment, and let θ̂k denote the UDDA-NI
estimate of incremental conversions generated by
the advertising. We then use the following eval-
uation metric εk to measure the performance of
UDDA-NI for experiment k:

εk =
θ̂k − δk
σk

(1)

An analogous evaluation metric is used to mea-
sure the performance of the standard attribution
model estimates.

This ε metric measures the distance between the
observational method’s estimate and the experi-
mental result, standardized by the experiment’s
uncertainty. Standardization allows us to com-
pare across a large number of studies, by moving
to a common scale. A metric value of zero is the
best possible value, as this means that the ob-
servational and experimental estimates are the
same. However, by randomness alone, these re-
sults will not agree exactly, so we need to con-
sider the distributions of the metric values across
experiments.

We highlight the percentage of studies in which
each observational method’s estimates are within
the 95% confidence interval of the experimen-
tal measurement. Method estimates that satisfy
−1.96 < ε < 1.96 are within a 95% confidence
interval for the experimental result. By random-
ness alone, we expect 5% of the results to lie
outside of a 95% confidence interval. So, 95% of
results within the 95% confidence interval is the
gold standard6.

Results are shown in Figure 4. Figure 4(a) com-
pares near impressions to standard attribution
model performance for each study. Each dot
shows the value of |εk|, for near impressions on
the x-axis, and for standard attribution on the y-
axis. Points lying on the 45◦ line indicate studies
where the methods have the same absolute met-
ric value. Near impressions have lower error for
points falling above this line, and higher error for
points below the line. Near impressions achieve
lower or equal error for 89% of the experiments.
Note that when the methods have equal abso-
lute error, this error tends to be low, since most
points on the 45◦ line are clustered near zero,

Figure 4(b) shows the distribution of ε values per

6Note that we are implicitly assuming that the obser-
vational method has no random error here. A more for-
mal evaluation would require incorporating its variance
and covariance.
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4 CONCLUDING REMARKS

method across the studies. The median metric
value per method is labeled. The boundaries of
each box are the method’s 25th and 75th quan-
tiles, and the whiskers are the method’s 10th
and 90th quantiles. The horizontal dashed lines
across the entire plot at ±1.96 represent a 95%
confidence interval for the experimental result.
In particular, any dot that is within these lines
means that the method’s estimate is within the
95% confidence interval for the experimental re-
sult. As mentioned above, a gold standard of
performance is for 95% of the experiments to be
within the 95% confidence interval.

Near impressions achieve a median standardized
error of 0.2, while the standard attribution model
has a median standardized error of 0.8. The near
impressions based estimate is within the experi-
mental 95% confidence interval for 88% of the ex-
periments, compared to 75% of the experiments
with the standard attribution model. Overall,
the near impressions method produces estimates
that are closer to the experimental result than
the standard method, as the near impressions
estimates cluster more closely around zero.

While near impressions produce promising per-
formance, their estimates are not perfect. Since
we evaluate performance compared to experi-
ments, which are the gold standard of measure-
ment, we don’t expect any observational method
to be flawless. For UDDA-NI, there may be
residual differences between the exposed and
near impression user groups. We conclude with
some thoughts towards further improving perfor-
mance.

First, exact upstream path matching can induce
sparsity from users with uncommon upstream
paths. This type of data sparsity could be bet-
ter handled by generalizing the upstream match-
ing procedure to group together users with sim-
ilar, but not identical, upstream paths. Sec-
ond, grouping all impressions (with the same
upstream path) together, and matching them
with all near impressions (having the same up-
stream path) may produce user groups that are
not sufficiently comparable. Refining the impres-

sion and near impression grouping and matching,
for example by requiring groups and matches to
come from the same campaign, may yield more
comparable user groups. Finally, the real user
path data we used in this paper limited match-
ing to only prior conversions and prior near im-
pressions. Adding additional user behaviors and
characteristics for upstream matching could re-
duce differences between the groups.

4 Concluding Remarks

In this paper, we introduce near impressions, an
abundant type of observational data that can be
used to identify the subset of unexposed users
who were both active and targeted by an ad-
vertiser’s ad. We describe how near impression
events can be incorporated into the UDDA attri-
bution algorithm. Finally, we illustrate promis-
ing performance using near impressions to esti-
mate the incremental value generated by adver-
tising using both real and simulated experimen-
tal results from single-winner ad formats.

We are continuing research on applying near im-
pressions to measure advertising impact more
broadly. For example, we are working to extend
near impressions to multi-winner ad formats
(such as search ads), incorporate near impres-
sions into digital attribution modeling, and col-
lect currently unavailable conversion outcomes
for near impression users (such as survey re-
sponses).

Near impressions have the potential to make ob-
servational measurement more useful and trust-
worthy. They enable measurement for ads where
experiments are not currently available. For ads
in which one-off experiments are possible, they
open the door for always-on measurement. The
results in this paper show that near impressions
based estimates can be similar to experimental
measurements, making it possible for advertis-
ers to supplement experiments and measure ad
impact at greater scale.
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