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We consider the problem faced by a firm that receives highly differentiated products in an online fashion

and needs to price them in order to sell them to its customer base. Products are described by vectors of

features and the market value of each product is linear in the values of the features. The firm does not

initially know the values of the different features, but it can learn the values of the features based on

whether products were sold at the posted prices in the past. This model is motivated by a question in

online advertising, where impressions arrive over time and can be described by vectors of features. We first

consider a multi-dimensional version of binary search over polyhedral sets, and show that it has exponential

worst-case regret. We then propose a modification of the prior algorithm where uncertainty sets are replaced

by their Löwner-John ellipsoids. We show that this algorithm has a worst-case regret that is quadratic in

the dimensionality of the feature space and logarithmic in the time horizon. We also show how to adapt

our algorithm to the case where valuations are noisy by using a technique called shallow cuts. Finally, we

present computational experiments to illustrate the performance of our algorithm.
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1. Introduction

The majority of models of dynamic pricing assume that a firm sells identical products to its

customer base over time. Even the models that do allow for product differentiation, generally

assume that the seller offers a manageable number of distinct products. However, there exist

important business settings where sellers offer an enormous number of different products to its

customer base. Our paper addresses the following problem: how should a seller price its products

when they arrive online and are hugely differentiated from each other?

One setting where such a problem emerges is online advertising. Consider the problem faced by a

web publisher (such as The New York Times) when selling impressions (user views) to advertisers.

At each period, a new user visits the publisher’s website, hence creating an opportunity for the

publisher to sell an ad space on his website that is targeted towards that particular user. Because

of targeting technologies such as web browser cookies, the publisher may have access to useful
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information about each user. Therefore, each impression sold by the publisher is a unique product,

with its own set of characteristics. An ad space that will be shown to a middle-age mother who

lives in Chicago and was recently shopping online for a new laptop is likely to have a different

market value than an ad space that will be shown to a teenage girl who lives in Shanghai whose

main online interest is music.

The publisher’s problem is to set prices for the impressions as they arrive. A priori, the seller

does not know the market value of the different impressions. Since impressions are so highly dif-

ferentiated, it is hopeless for the publisher to try to learn the value of each specific impression

before extracting revenue. Instead, we propose that the seller use a hedonic pricing model, where

the market value of each impression is a function of the market values of its features. This way,

the seller needs to learn only the market values of the different features, thus borrowing strength

from the similarity between impressions. In the context of online advertising, some of the natural

features that sellers can utilize are demographic information (age, gender, location) and data that

can be obtained from the browsing history (interests, online shopping history).

Specifically, we consider a firm selling products to customers over a finite time horizon. In each

period, a new product arrives and the firm must set a price for it. The product features are chosen

antagonistically by nature. The firm can base its pricing decision on the features of the product

at hand, as well as on the history of past prices and sales. Once a price is chosen, the product is

either accepted or rejected by the market, depending on whether the price is below or above he

product’s market value. The firm does not know the market value of each product, except for the

fact that the market value of each product is linear in the value of the product features (we also

consider commonly used non-linear models in Section 7). The seller can therefore use past prices

and sales data to estimate the market values of the different features, and use those estimates to

inform future pricing decisions. Our goal is to find a pricing algorithm that performs well in the

sense that it generates a low worst-case regret. Our concern is how the regret scales with the time

horizon, as well as how it performs with respect to the dimensionality of the feature space.

Our first attempt is to propose a multi-dimensional version of binary search in order to learn

the values of the different features. In each period, the seller represents the possible values of

the different features by a polyhedral-shaped uncertainty set. Whenever a new product arrives,

the seller solves two linear programs, one to compute the maximum possible market value of the

product, and the other to compute the minimum possible market value of the product given the

uncertainty set. If these two numbers are close together, the seller uses the minimum possible

market value as an “exploit” price, in order to ensure that a sale occurs. If these two numbers

are far apart, the seller performs a binary search step (or “explore” step), and chooses a price

halfway between the minimum and the maximum possible market values. We call this algorithm
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PolytopePricing. However, despite seeming to be a suitable algorithm for the problem at hand,

we show in Theorem 1 that this algorithm has a worst-case regret that is exponential in the

dimension of the feature set. This occurs because nature can choose a sequence of vectors of features

that forces the seller to explore for exponentially many periods without exploiting.

Fortunately, we can modify PolytopePricing to make it a low regret algorithm. The modifi-

cation invokes an idea from the ellipsoid method for solving a system of linear equations. At every

step of the algorithm, we replace the convex uncertainty set (previously a polytope) by its Löwner-

John ellipsoid. The Löwner-John ellipsoid of a convex body is the minimal volume ellipsoid that

contains that convex body. We call this modified algorithm EllipsoidPricing. The main result of

our paper is Theorem 2, which proves that EllipsoidPricing generates a worst-case regret that

is quadratic in the dimension of the feature set and logarithmic in the time horizon. The proof

is based on two ideas. The first is the classical idea from the ellipsoid method: the volume of the

ellipsoidal uncertainty set shrinks exponentially fast in the number of cuts (in our problem, the cuts

are explore prices). The second main idea is that, under EllipsoidPricing, the smallest radius of

the ellipsoid cannot shrink below a given threshold. To prove this second idea, we build on linear

algebra machinery that characterizes the evolution of the eigenvalues after rank-one updates. This

machinery is useful because an ellipsoid can be represented by a matrix whose eigenvalues corre-

spond to the squares of the ellipsoid radii, and using an explore price corresponds to performing a

rank-one update. Combining the two ideas, we get a quadratic bound on the number of possible

explore steps, which yields our bound on the regret of the algorithm. EllipsoidPricing is also

computationally more efficient than PolytopePricing, since it does not require solving linear

programs at each iteration. In fact, all computational steps – optimizing a linear function over an

ellipsoid and replacing a half-ellipsoid by its own Löwner-John ellipsoid – require nothing more

than matrix-vector products.

The basic form of EllipsoidPricing assumes that the market value of each product is a deter-

ministic function of its features. We also propose a variant of the algorithm that is robust to noise.

We call this variant ShallowPricing. The ShallowPricing algorithm is based on the idea of

a shallow cut of an ellipsoid, which is an off-center cut, designed to maintain more than half of

the original uncertainty set. By using shallow cuts, we can add a safety margin to each cut and,

therefore, still obtain regret guarantees under bounded adversarial noise or i.i.d. Gaussian noise

(see Section 6).

Online advertising is a very large market, and some of the largest corporations in the world,

such as Google and Facebook, earn most of their revenues from online ad markets. A lot of the

value created by online advertising is due to the fact that online ads can be far more targeted than

traditional ads. Our paper is a step towards developing pricing algorithms that allow publishers to
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monetize targeting. We would like to point out that most online ad markets are run as auctions,

but our paper does not consider auctions, only posted prices. It would be natural to embed the

algorithm we propose into auctions, where our algorithm would generate reserve prices. We note

that finding reserve prices in markets for targeted ads is a challenging and important problem.

When highly targeted, many ad auctions become thin, in the sense that there is only a single bidder,

or that one bidder assigns a much higher value to the product relative to the other bidders. For

obvious reasons, it is hard for a seller to extract revenues in thin auctions. Therefore, an algorithm

that produces good reserve prices for targeted ads would generate significant value for publishing

platforms.

Our model is applicable to several other online markets beyond advertising. Consider Airbnb,

the popular sharing economy platform for subletting homes and individual rooms. The products

in Airbnb are stays, which are highly differentiated products: they involve different locations,

amenities and arrival dates, among many other features. Airbnb does not set prices but offer pricing

suggestions to the hosts. Airbnb receives a fixed fraction of the revenue earned by the hosts, so that

its incentives are aligned with the hosts’ incentives. As in our model, if a given good (in this case,

a one night stay in a home at a particular day) is not sold, it generates no revenue and becomes

obsolete. The model and algorithm proposed in this paper could be used by a platform such as

Airbnb in order to extract revenue and at the same time, learn the values of the different listing

features. Other online marketplaces, such as eBay or Etsy, could also use an algorithm such as

ours to help sellers price their products. An additional application is online flash sales websites

such as Gilt, Rue La La and Belle & Clive. These vendors periodically receive various goods from

luxury brands to sell online. Usually, a flash sale lasts for a short time period, and the vendor

needs to choose the price of each good. As in our model, the owner sells highly differentiated

products and must set prices to balance exploration and exploitation. There also exist classical

markets that involve highly differentiated products that arrive over time, such as the high-end art

and the premium wine markets. The algorithm we propose in this paper may also be useful in such

contexts.

2. Related Literature

Our work lies at the intersection of two literatures: dynamic pricing with learning and contextual

bandits. The literature on dynamic pricing with learning studies pricing algorithms for settings

where the demand function is unknown. The problem is typically modeled as a variant of the

multi-armed bandit problem, where the arms represent prices and the payoffs from the different

arms are correlated since the demand values evaluated at different price points are correlated

random variables. The first paper that modeled dynamic pricing as a multi-armed bandit problem is
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Rothschild (1974). Kleinberg and Leighton (2003) deserve credit for formulating the finite-horizon,

worst-case regret version of the problem of dynamic pricing with learning, a formulation that we

use in our paper. In particular, they solve the one-dimensional version of our problem, as we discuss

in Section 4.1. A large body of literature has recently emerged studying this topic. This includes

both parametric approaches (Araman and Caldentey (2009), Broder and Rusmevichientong (2012),

Harrison et al. (2012), Chen and Farias (2013), den Boer and Zwart (2013) and Besbes and Zeevi

(2015)) as well as non-parametric ones (e.g., Besbes and Zeevi (2009) and Keskin and Zeevi (2014)).

The literature also includes models that, like ours, use a robust optimization approach to model

uncertainty (see, e.g., Bertsimas and Vayanos (2015)). Cesa-Bianchi et al. (2013) observe that

although the loss function induced by pricing problems is neither continuous nor convex, it is

well-structured enough to enable algorithms with improved regret over general-purpose bandit

algorithms. Relying on this observation, they provide an Õ(T 1/2) regret algorithm1 for the problem

of setting reserve prices in a second price auction environment. Another important dimension in

pricing problems is that of limited supply. Badanidiyuru et al. (2013) study a problem where the

seller has a fixed number of goods, so he must trade-off learning and earning not only across time

but also across supply levels. They provide near optimal results for this setting. In fact, their result

is cast in a more general setting of bandits with knapsacks, where bandit algorithms have resource

constraints. In their follow-up paper, Badanidiyuru et al. (2014) extend this analysis to contextual

settings and obtain a non-trivial improvement over the standard reduction to contextual settings.

This line of work has been further improved in a series of papers by Agrawal and Devanur (2015a,b)

and Agrawal et al. (2016).

A crucial aspect of our model is that products arrive over time and are characterized by vectors

of features. The literature that studies multi-armed bandit problems in settings where the payoff

in each period depends on a particular set of features (that are relevant only for a specific period)

is called contextual bandits. This literature started with Auer (2003) and has recently grown into a

large literature (see, for example, Dudik et al. (2011) and Agarwal et al. (2014)). As in our paper,

many models of contextual bandits (but certainly not all) assume that payoffs – or market values

in our model – are linear in the feature vector (Chu et al. (2011), Abbasi-Yadkori et al. (2011)

and Agrawal and Devanur (2015a)). Products having market values which are a function of their

features is a typical assumption in the marketing literature, an assumption often referred to as

hedonic pricing (see Milon et al. (1984), Malpezzi (2003) and Sirmans et al. (2005)).

Closest to our paper is the work by Amin et al. (2014), which also studies a feature-based dynamic

pricing problem. In their model, features are stochastically drawn from a distribution, whereas in

1 The Õ(·) notation is a variant of the O(·) notation that ignores logarithmic terms.
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our model, features are adversarially selected by nature. Amin et al. (2014) propose an algorithm

that is based on stochastic gradient descent, and obtain a regret bound of Õ(T 2/3). However, they

do not investigate how their algorithm performs with respect to the dimension of the feature set. In

their stochastic setting, Amin et al. (2014) also analyze a version of the algorithm in which buyers

strategically react to the algorithm.

There exist additional learning problems for which researchers have developed techniques that

are somewhat related to the algorithm we propose in this paper. In the problem called ‘learning

from revealed preferences’, a seller sells an identical bundle of goods in each period to a single buyer.

The seller does not know the utility function of the buyer, but can learn from the past bundles

purchased by the buyer. Amin et al. (2015) and Roth et al. (2016) propose several algorithms for

this problem, some of which are, like our algorithm, based on the ellipsoid method (Khachiyan

(1979)). There are at least two important differences between this line of work and our paper.

First, no features are present in the literature on learning from revealed preferences. Second, the

decision variable in our problem at each time period is a single price, while in this literature the

seller selects a price for each item at each period. In addition, when applying the ellipsoid method

to the problem of learning from revealed preferences, one can choose the direction of each cut by

selecting an appropriate vector of prices. In our problem, however, we are given a cut direction

chosen adversarially by nature (the vector of features) and thus, we are only able to select where to

position the hyperplane. Another somewhat related field of study is adaptive choice-based conjoint

analysis, where a market researcher wants to design an adaptive survey to elicit the preferences

of individuals in a population. Though the problem is quite different from ours, some of the most

commonly used solutions share with our algorithm the property that they heavily rely on the

geometry of polyhedra and ellipsoids (see, e.g., Toubia et al. (2004) and Bertsimas and O’Hair

(2013)). The fact that we cannot choose directions of cuts makes our problem significantly harder

than the problem considered by Toubia et al. (2004).

In a paper subsequent to ours, Qiang and Bayati (2016) also consider a dynamic pricing problem

in a model where the value of different features (or covariates) need to be learned. Unlike us, they

assume many products arrive per period, all of which have the same set of features. The seller

thus observes an aggregate demand rather than a single transaction per period. Their model is

stochastic, as opposed to our adversarial model, and features arrive in an i.i.d. fashion. They show

that a greedy least squares approach performs well, which is not the case in a model without

covariates. They refer to this as an “astrology report” effect, where covariates introduce noise that

drives exploration. Approaches based on least squares can be used in stochastic models, but not

in adversarial models such as the model considered in this paper.
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3. Model

Consider a setting with a seller that receives a different product at each time period t= 1,2, . . . , T .

Each product is described by a vector of features xt ∈ X ⊂Rd and has a market value vt = v(xt),

which is unknown to the seller. Upon receiving each product, the seller observes the vector of

features xt and then, chooses a price pt. The market either accepts the price, which occurs if the

price pt is less than or equal to the market value vt, or rejects it, in which case the product is lost.

The goal of the seller is to design a pricing policy to maximize his revenue. The main challenge

here is that the market value is unknown to the seller and, at each time, the seller wants to earn

revenues but also to refine his knowledge about the market value function v.

Our model captures an online advertising problem where impressions (or user views) arrive one

at a time and are described by a vector of features, such as the demographics and browsing history

of the user. The publisher (or seller) chooses prices for the impressions as they arrive. If the price

is equal to or below the market value of the impression, the impression sells for the posted price.

If the price is too high, the impression disappears. The publisher can use prices not only to earn

immediate revenue, but also to learn how the different features of the impressions affect the market

price.

In order for this problem to be tractable, we need to make assumptions about the market value

function v. We assume that the market value of a product is a linear function of its features,

i.e., vt = θ′xt, an assumption that we partially relax in Section 7. We also assume for the sake of

normalization that ‖xt‖ ≤ 1 for all xt ∈X and that ‖θ‖ ≤R, where ‖·‖ refers to the `2-norm. The

exact value of θ is unknown to the seller. We encode the initial uncertainty of the seller as a polytope

K1 ⊆Rd, which represents all feasible values of θ. The set K1 could either be a d-dimensional box

or encode some initial domain specific knowledge about the problem.

The seller sets a price pt at each time period, and collects revenues if a sale occurs. If the price

selected by the seller is below or equal to the market value, i.e., pt ≤ θ′xt, a sale occurs and the

seller collects a revenue of pt. If the seller sets pt > θ
′xt, no sale occurs and no revenue is generated.

At each time period, the seller may learn some new information about the value of θ that can be

used in subsequent time periods. More precisely, the seller naturally updates the uncertainty set

with Kt+1 =Kt ∩ {θ ∈Rd : θ′xt ≥ pt} or Kt+1 =Kt ∩ {θ ∈Rd : θ′xt ≤ pt} depending on whether a

sale occurred or not, where Kt denotes the uncertainty set at time t.2

Our goal is to find a simple and computationally efficient dynamic pricing policy that achieves

a good performance in terms of regret. Let Π be the seller’s policy and X the strategies available

to nature (nature adversarially selects the true value of the parameter θ, and the feature vectors

2 If a sale does not occur at time t, the seller learns that θ′xt < pt. However, in order to maintain our uncertainty sets
closed, we add the constraint θ′xt ≤ pt to update the uncertainty set, rather than using a strict inequality.
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xt in every round). Both the seller and nature are allowed to use closed-loop policies, where their

actions at time t depend on the history of events up to time t− 1. The worst-case regret induced

by policy Π is given by:

Regret(Π) = max
θ∈K1, X∈X

T∑
t=1

[
θ′xt− ptI{θ′xt ≥ pt}

]
, (1)

where I{·} denotes the indicator function and X ∈ X represents the policy used by nature to

select the sequence of feature vectors {xt}. The first term inside the summation corresponds to

the maximal revenue the seller could extract if he knew the value of θ, and the second term is the

actual revenue generated by the policy Π for a given (θ,X) pair. We are concerned not just with

how the regret scales with T , as it is typical in multi-armed bandit problems, but also with how

the regret scales with the dimension of the feature space d.

3.1. Alternative Models

Most of the paper focuses on the model described above where the valuation is a fixed linear

function of the item’s features. This serves as the main building block for tackling richer models. We

consider extensions in two directions: non-linear and noisy valuations. A special case of non-linearity

is addressed via a Lipschitz continuity argument, as discussed in Section 7. Noisy valuations, on

the other hand, require more fundamental changes to our algorithm.

Noisy valuations are an important step towards a more realistic model of buyer’s valuation, since

they handle cases where no single model is a perfect prediction. We can model noise as the vector

of weights θt being drawn in each step from an unknown but fixed distribution F and vt = θ′txt. It

is useful to isolate the expectation θ=E[θt] and write:

vt = θ′xt + δt,

where δt is a scalar random variable given by δt = (θt − θ)′xt. We study this model in Section 6.

Our focus in Section 6 will be on the case with large signal-to-noise ratio, i.e., the noise term δt

has a smaller magnitude relative to θ′xt. We now briefly discuss how to handle the case where the

noise term is large (i.e., the same magnitude as θ′xt) or even fully adversarial.

One of the frameworks in the contextual bandits literature is the fully adversarial model, where

in each step an adversary picks a vector θt. In this setting, the regret is typically redefined as the

difference between the revenue obtained by the algorithm and the revenue generated via the best

fixed θ, i.e.:

Regret(Π) = max
θ,θt∈K1, X∈X

T∑
t=1

[
θ′xtI{θ′xt ≥ pt}− ptI{θ′txt ≥ pt}

]
.
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Kleinberg and Leighton (2003) show a lower bound of Ω(T 2/3) regret which is inherited by our

model, since their setting is a one-dimensional special case of our model. This lower bound (up to

logarithmic factors) can be attained even in a multidimensional contextual setting such as ours via

the algorithm of Agarwal et al. (2014). In particular, by an appropriate discretization argument,

one can obtain a total regret of

Õ(T 2/3d1/3). (2)

The derivation details of Eq. (2) can be found in the Appendix.

In this paper, we focus in cases where the valuation of buyers is not completely adversarial

enabling logarithmic guarantees on the regret. From a technical standpoint, those cases are of

special interest since they cannot be handled by off-the-shelf contextual bandit algorithms.

4. A Multi-Dimensional Binary Search Algorithm

4.1. Binary Search and the One-Dimensional Problem

The simplest special case of our problem is when there is only a single dimension, i.e., d= 1. Assume

further that R = 1, i.e, θ ∈ [0,1] and xt = 1 for every t (note that the exact value of xt does not

affect the problem in the one-dimensional case). Then, the problem consists of picking a price pt in

each time step and collecting revenue pt · I{pt ≤ θ}. A natural strategy is to perform binary search

for a few steps, build a good estimate of θ and then set the price using this estimate. More precisely,

start with K1 = [0,1], for each step t, keep Kt = [`t, ut] and then set the price pt = 1
2
(`t + ut). If

a sale occurs, set Kt+1 = [pt, ut] and if not, Kt+1 = [`t, pt]. Repeat this as long as ut − `t ≥ ε, for

some ε > 0. From this point onwards, set the price at pt = `t. Note that at that price, the seller is

guaranteed to sell the item. The algorithm uses log2( 1
ε
) steps to build a good estimate of θ, and

from then onwards, uses the lower estimate to price. It is not hard to see that the total regret is:

Regret≤ log2

(
1

ε

)
+

(
T − log2

(
1

ε

))
· ε=O(log2 T ) for ε=

log2(T )

T
.

This regret is surprisingly not optimal for the one-dimensional problem. Kleinberg and Leighton

(2003) show that the optimal regret for the one-dimensional problem is O(ln lnT ). This result

implies a lower bound of Ω(d ln lnT ) for any algorithm in our multidimensional problem.

The binary search algorithm has low enough regret in T , O(lnT ), and is pretty simple so that

we can hope it generalizes to higher dimensions.

4.2. Binary Search in High Dimensions

We now return to our original setting with d dimensions and features xt chosen adversarially by

nature. Our first instinct might be to follow the same approach and use the first few iterations

to build a good estimate of θ (we call this the explore phase), and then use this estimate to set



Cohen and Lobel and Paes Leme: Feature-based Dynamic Pricing
10

a close-to-optimal price (we call this the exploit phase). One problem with this approach is that

the features selected by nature might never offer an opportunity for the seller to learn θ precisely.

In our online advertising example, some features might represent properties of the impression that

are rarely seen, such as whether the user is shopping for a private yacht. The seller may never see

an impression with a non-zero entry on this specific feature, or might see too few to build a good

estimate of its market value.

It can also happen that in all the examples seen by the seller, two of the features are correlated.

Perhaps, a user who recently visited a hotel website is also very likely to have visited an airline

website. In this case, it would be hard for the seller to disentangle the values of these two features.

Moreover, if these two features are often correlated, it might not be worth the effort for the seller

to try to disentangle them, since there is often a trade-off between learning and generating revenue.

Finally, even in the case where all the different features are present and not correlated, it might

still not be wise for the seller to wait until he reaches a good estimate of θ to start exploiting. For

example, perhaps T is equal to a year-long period and in the first T/2 periods, the warm months

of the year, the seller received almost no skiing-related impressions. It does not make sense for

the seller to wait until he starts receiving skiing-related impressions before he starts exploiting on

other types of impressions. We refer the reader to Mirrokni et al. (2012) for an argument on why

Internet advertising requires models that are robust to the sequence of features.

4.3. Explore and Exploit Prices

Based on our discussion so far, we know that we cannot hope to learn the value of θ exactly. Also,

pre-determined exploration and exploitation phases do not seem to be adequate here. Instead, for

each product that arrives, we will decide whether we exploit or not. In particular, we will exploit

if we have gathered enough information about the market value for this particular set of features.

In order to evaluate the amount of information we have for the feature vector xt, the seller can

use the current uncertainty set Kt to compute an interval [bt, b̄t] that contains the actual market

value vt = θ′xt, by solving the following pair of linear programs:

bt = min
θ̂∈Kt

θ̂′xt and b̄t = max
θ̂∈Kt

θ̂′xt. (3)

By pricing the item at pt = bt, the seller is guaranteed to sell the item and generate revenue bt.

However, the seller will learn nothing about the market value from such a price. We call such a

price an exploit price. Inspired by binary search, we define an explore price as the price that will

provide us with most information about the buyer’s valuation for that particular feature vector,

which is: pt = 1
2
(b̄t + bt).

In the simple two-dimensional examples in Figure 1, note that the explore price always divides

the feasible region into two parts, whereas the exploit price is always located at the boundary of
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Figure 1 Explore and exploit prices when x1 = (1,0) and when x1 = (1/
√

2,1/
√

2).

the set. Note also that by definition an exploit price guarantees some revenue, while an explore

price may or may not generate a sale.

Now, we describe the algorithm PolytopePricing, which is parametrized by a threshold value

ε > 0. Starting from an initial uncertainty set K1, for each t, compute the values bt and b̄t. If

b̄t − bt ≤ ε, set the exploit price pt = bt, collect revenue pt and set Kt+1 = Kt. If b̄t − bt > ε, set

the explore price pt = 1
2
(b̄t + bt). If a sale occurs, update the uncertainty set to Kt+1 =Kt ∩ {θ ∈

Rd : θ′xt ≥ pt}. If not, update it to Kt+1 =Kt ∩{θ ∈Rd : θ′xt ≤ pt}.

4.4. The Exponential Regret of PolytopePricing

Although PolytopePricing is a straightforward generalization of the single-dimensional binary

search algorithm, it is far from an ideal algorithm. First, it needs to keep track of a complicated

polytope. Second, each step is computationally expensive as it requires solving two linear programs.

Furthermore, for any parameter ε > 0, the worst-case regret of PolytopePricing is exponential

in d. We prove this result using the following combinatorial lemma, the proof of which we defer to

the Appendix.

Lemma 1. Let d be a multiple of 8 and S1, S2, S3, . . . be a sequence of uniformly-drawn random

subsets of {1, . . . , d} of size d/4. Then, t0 = Ω(1.2d):

Pr(|Sj ∩Sk| ≤ d/8,∀1≤ j < k≤ t0)≥ 1/2.

Using Lemma 1, we next show that PolytopePricing has a worst-case regret that is exponen-

tial in d.

Theorem 1. For any parameter ε > 0, the algorithm PolytopePricing suffers worst-case

regret Ω(Rad) with the constant a= 1.2.



Cohen and Lobel and Paes Leme: Feature-based Dynamic Pricing
12

Proof. Consider a setting where K1 = [1,2]d. For Ω(ad) steps, assume that nature draws a

random subset St of {1, . . . , d̃} with size d̃/4, where d̃= 8bd/8c. Nature chooses the feature vectors

xt = 1√
d̃/4
I{St}, i.e., the i-th coordinate of the vector xt is 1√

d̃/4
if i ∈ St, and zero otherwise. We

will show that with at least probability 1/2 the regret is at least Ω(Rad), where a is the constant

1.2 from Lemma 1. To keep notation cleaner, we will assume that d is a multiple of 8 and therefore

use d instead of d̃.

We divide the proof into two cases depending on the value of ε.

1. Assume that ε < 0.5
√
d and consider the case θ= (1,1, . . . ,1). We now analyze the event where

the pairwise intersection of sets St is at most d/8. In this case, we have:

min
θ̂∈K1

θ̂′x1 =
√
d/4 = 0.5

√
d and max

θ̂∈K1

θ̂′x1 =
2(d/4)√
d/4

=
√
d.

The difference is equal to 0.5
√
d and is larger than ε, so that our algorithm will explore and set

an explore price of p1 = 0.75
√
d. Since θ′x1 < p1, a sale does not occur, and the algorithm incurs a

regret of 0.5
√
d.

We next claim by induction that for every t= 1,2, . . . , k, we have:

min
θ̂∈Kt

θ̂′xt = 0.5
√
d and max

θ̂∈Kt
θ̂′xt =

√
d.

As a result, the price is set to pt = 0.75
√
d, no sale occurs and the algorithm incurs a regret of

0.5
√
d in every period. The base case (t= 1) was shown above. Assume that the claim is true for t

and we next show that it holds for t+ 1.

We have: Kt+1 = Kt ∩ {θ′xt ≤ 0.75
√
d} = K1 ∩s=1,2,...t {θ′xs ≤ 0.75

√
d}. Note that for any s =

1,2, . . . , t, we have: (1,1, . . . ,1)′xs = 0.5
√
d and hence, θ= (1,1, . . . ,1)∈Kt+1. Therefore, we obtain:

min
θ̂∈Kt+1

θ̂′xt+1 = (1,1, . . . ,1)′xt+1 = 0.5
√
d.

Consider the vector θ̃ such that θ̃i = 2 for i∈ St+1, and θ̃i = 1 otherwise. If we show that θ̃ ∈Kt+1,

then we have:

max
θ̂∈Kt+1

θ̂′xt+1 ≥ θ̃′xt+1 =
√
d.

Since the maximum over the initial set K1 is also equal to
√
d, the above maximum cannot be

larger than
√
d. The last step is to show that θ̃ ∈Kt+1. We know that θ̃ ∈K1. In addition, we have

for any s= 1,2, . . . , t:

θ̃′xs =
1√
d/4

∑
i∈Ss

[1 + I{i∈ St+1}] =
1√
d/4

[
d

4
+ |Ss ∩St+1|

]
≤ 1√

d/4

[
d

4
+
d

8

]
= 0.75

√
d,
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where the inequality follows from Lemma 1. Therefore, θ̃ ∈Kt+1.

For all t= 1,2, ..., k, our algorithm incurs a regret of 0.5
√
d. Recall that we have k= Ω(ad) such

steps, so that the total regret is given by: 0.5
√
d ·Ω(ad) = Ω(

√
d · ad).

2. Assume that ε≥ 0.5
√
d and consider the case θ= (2,2, . . . ,2). In this scenario, our algorithm

will always exploit (as the difference between the maximum and minimum is equal to 0.5
√
d). The

total regret is then: (
√
d− 0.5

√
d) ·Ω(ad) = Ω(

√
d · ad).

Note that in the argument above, we assumed K1 = [1,2]d, which is an uncertainty set where

R = maxθ∈K1
‖θ‖ = 2

√
d. If we replace the uncertainty set with K1 = [α,2α]d, for some α > 1, R

would increase to 2α
√
d and the regret would scale with α. Consequently, the regret as a function

of d and R is Ω(Rad). �

We remark that the proof of Theorem 1 shows that the PolytopePricing algorithm has expo-

nential regret in d even for an adversary that draws his feature vectors from a very simple i.i.d.

distribution, the distribution that samples 1/4 of the features.

We chose to omit the dependency on T in the statement of Theorem 1 to highlight the exponential

dependency on the dimension. The reader should notice, however, that a lower bound of Ω(ad lnT )

can be obtained by interleaving sequences like the ones in the proof of Theorem 1 with a sequence

of vectors in the coordinate directions that restore the knowledge set to the shape of a cube.

5. Ellipsoid Pricing

In this section, we modify the PolytopePricing algorithm from the previous section so as to

achieve a regret that is polynomial (in fact, quadratic) in the dimension. As an added bonus,

the algorithm becomes also simpler to implement and computationally cheap. The algorithm now

requires only that we maintain a d× d matrix and that we perform a few matrix-vector products

in each iteration.

Our new algorithm is inspired by Khachiyan’s celebrated ellipsoid method (Khachiyan (1979)).

The central idea is that instead of keeping the uncertainty set Kt in each iteration, we “round”

it up to the smallest ellipsoid Et that contains Kt. This is often referred to as the Löwner-John

ellipsoid of set Kt.

We call our algorithm EllipsoidPricing. The algorithm starts from the smallest ellipsoid E1

that contains K1, or in fact any ellipsoid that contains K1 (see Figure 2). At each time step t, the

algorithm computes the values bt and b̄t using the ellipsoid Et instead of the uncertainty set Kt:
3

bt = min
θ̂∈Et

θ̂′xt and b̄t = max
θ̂∈Et

θ̂′xt. (4)

3 Note that we slightly abuse notation by reusing the variable names bt and bt in this section.
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θ1	

θ2	
K1	

(a) The initial uncertainty set K1 is a polytope.

θ1	

θ2	

E1	

K1	

(b) The smallest ellipsoid E1 that contains K1.

Figure 2 The polytope K1 and its Löwner-John ellipsoid E1.

θ1	

θ2	
x1	

E1	
<ε	

(a) Solve for the max and the min over E1.

θ1	

θ2	
x1	

E1	

p1	

(b) Compute the exploit price p1.

Figure 3 The vector x1 = (1/
√

2,1/
√

2) induces an exploit price p1.

If b̄t − bt ≤ ε, the seller offers the exploit price pt = bt, collects revenue pt and sets Et+1 = Et

(see Figure 3). If b̄t − bt > ε, the seller offers the explore price pt = 1
2
(b̄t + bt). If a sale occurs, let

Ht+1 =Et ∩ {θ ∈Rd : θ′xt ≥ pt}. If not, let Ht+1 =Et ∩ {θ ∈Rd : θ′xt ≤ pt}. Now, let Et+1 be the

smallest ellipsoid that contains the half-ellipsoid Ht+1 (see Figures 4 and 5). Our main result is:

Theorem 2. The worst-case regret of the EllipsoidPricing algorithm with parameter ε =

Rd2/T is O(Rd2 ln(T/d)).

We defer the proof of this theorem until Section 5.3. A remarkable fact is that efficiency is

achieved by enlarging the uncertainty set. At the expense of adding candidate vectors θ̂ that are
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θ1	

θ2	

E1	

x1	

>ε	

(a) Solve for the max and the min over E1.

θ1	

θ2	
p1	

E1	

x1	

(b) Compute the explore price p1.

Figure 4 The vector x1 = (1/
√

2,1/
√

2) induces an explore price p1.

θ1	

θ2	

H2	

p1	

(a) Update the uncertainty set by observing a sale.

θ1	

θ2	

H2	E2	

(b) Compute the Löwner-John ellipsoid E2.

Figure 5 Updating the uncertainty set and computing the Löwner-John ellipsoid E2.

known not to be the true θ (when we enlarge Ht+1 to Et+1) at each iteration t, we are regularizing

the uncertainty sets. In other words, we are making the uncertainty sets symmetric and easier to

analyze.

The reader familiar with the mechanics of the ellipsoid method will readily recognize it here:

we start with an ellipsoid, and at each time we find a hyperplane passing through its center, cut

it in half and replace the remaining half by its smallest enclosing ellipsoid. The guarantee that

the ellipsoid method offers is that the volume of the ellipsoid decreases at each time step. More

precisely, after n cuts (which in our case correspond to n exploration rounds), the volume of the

ellipsoid is at most e−
n
2d of the original volume. However, it provides no guarantee about the shape
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of the ellipsoid. An ellipsoid of small volume could definitely be very skinny in some dimensions,

but quite long in other dimensions.

In order to prove Theorem 2, we show that if we cut the ellipsoid only along directions in which

it is not very skinny yet (i.e., we explore only if the gap b̄t − bt is large) sufficiently many times,

then the ellipsoid will eventually become small in every direction. As a result, we won’t need to

explore from that point onwards. In order to do so, instead of bounding the volume of the ellipsoid,

we need to bound the eigenvalues of the matrix defining the ellipsoid.

We will make the statements in the previous paragraph precise in a moment. Before that, we

provide the reader with a quick introduction of the theory of ellipsoids. We refer the reader to

the book by Grötschel, Lovász and Schrijver (Grötschel et al. (1993)), or the survey by Bland,

Goldfarb and Todd (Bland et al. (1981)) for an in-depth discussion.

5.1. A Primer on Ellipsoids

We invite readers who are familiar with the ellipsoid method to skip this section and move directly

to Section 5.2. A d×d matrix A is symmetric if A=A′, i.e., it is equal to its transposed matrix. It

is a basic fact of linear algebra that every symmetric matrix A admits an eigenvalue decomposition,

i.e., we can write A = QΛQ′, where Q is a d × d orthogonal matrix (i.e., Q′Q = I) and Λ is a

diagonal matrix with elements λ1 ≥ λ2 ≥ . . .≥ λd in its main diagonal and zero elsewhere. We refer

to λi(A) as the i-th largest eigenvalue of A. A symmetric matrix is said to be positive definite if

all of its eigenvalues are strictly positive, i.e., λd(A)> 0.

An ellipsoid E is a subset of Rd defined by a vector a ∈ Rd, which we call the center and a

positive definite matrix A as follows:

E(A,a) := {θ ∈Rd : (θ− a)′A−1(θ− a)≤ 1}.

Each of the d radii of E(A,a) corresponds to the square root of an eigenvalue of A and the

volume of the ellipsoid is given by:

Vol E(A,a) = Vd ·
√∏

i λi(A),

where Vd is a constant that depends only on d and corresponds to the volume of the unit ball in

Rd. Since the volume depends on the matrix A and not on a, we will often write Vol E(A) instead

of Vol E(A,a), when the center is not important or can be inferred from the context.

For any vector x ∈ Rd \ {0}, arg maxθ∈E(A,a) x
′θ = a+ b and arg minθ∈E(A,a) x

′θ = a− b for b =

Ax/
√
x′Ax (see, Grötschel et al. (1993)). Furthermore, the hyperplane perpendicular to x passing

through a is given by x′(θ− a) = 0. This plane cuts the ellipsoid E(A,a) in two symmetric pieces.

The smallest ellipsoid containing each of these pieces (called the Löwner-John ellipsoid) can be
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θ1	

θ2	

E1	
x1	

p1	

(a) Assume E1 is a sphere and x1 = (1,0).

θ1	

θ2	

E1	
x1	

p1	

H2	E2	E1	

(b) The half-ellipsoid H2 and ellipsoid E2.

Figure 6 After an explore step where x1 = (1,0), the new ellipsoid E2 shrinks along the θ1-axis but expands

along the θ2-axis.

computed by the following closed form formula. The smallest ellipsoid containing E(A,a) ∩ {θ ∈

Rd : x′(θ−a)≤ 0} is E(Ã, a− 1
d+1

b) and the smallest ellipsoid containing E(A,a)∩{θ ∈Rd : x′(θ−

a)≥ 0} is E(Ã, a+ 1
d+1

b), where:

Ã=
d2

d2− 1

(
A− 2

d+ 1
bb′
)
. (5)

A central fact used in the analysis of the ellipsoid method is that:

Vol E(Ã)≤ e−1/2d ·Vol E(A).

One can note that while the volume (and hence the product of eigenvalues) decreases after an

update, some eigenvalues might increase whereas other eigenvalues decrease. To see this, consider

for example the ellipsoid where A= I (where I denotes the identity matrix) and assume x1 = e1 =

(1,0, . . . ,0), i.e., the coordinate vector in the 1-direction. Using equation (5), we obtain that Ã is

the diagonal matrix with eigenvalue d2

(d+1)2
< 1 in the direction e1, and d2

d2−1
in all other directions.

In general, the ellipsoid shrinks in the direction of x1 but expands in directions orthogonal to x1

(see Figure 6 for an illustration). For example, if one starts with a unit ball, successively cut the

ellipsoid along the e1 direction and replace one of the halves by its Löwner-John ellipsoid, then one

direction shrinks exponentially while the other directions grow exponentially.

5.2. Revisiting EllipsoidPricing

Before analyzing the regret of the EllipsoidPricing algorithm, we revisit it using the tools

introduced in Section 5.1. We can represent the ellipsoid at time t by Et =E(At, at). Furthermore,
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computing bt and b̄t can be done in closed form:

bt = min
θ̂∈Et

x′tθ̂= x′t

[
at−

Atxt√
x′tAtxt

]
= x′tat−

√
x′tAtxt.

Similarly, b̄t = x′tat +
√
x′tAtxt, which means that the gap b̄t − bt = 2

√
x′tAtxt. First, note that

deciding between exploration and exploitation as well as setting the appropriate price can be

accomplished by computing a matrix-vector product instead of solving two linear programs (as

it was the case for PolytopePricing). Second, updating the ellipsoid can be done via equation

(5). The algorithm needs to keep track only of a d× d matrix and a d-dimensional vector. Unlike

PolytopePricing, the amount of information that the algorithm needs to keep track does not

depend on T .

5.3. Regret Analysis for EllipsoidPricing

In order to show that the regret of EllipsoidPricing is small, we prove that if ε is set properly,

then the number of exploration rounds is bounded. To be precise:

Lemma 2. EllipsoidPricing will choose the explore price in at most 2d2 ln(20R(d+1)/ε) time

periods.

We defer the proof of this lemma until Section 5.5. It is simple to see how Lemma 2 can be used

to prove our main result by setting the parameter ε appropriately.

Proof of Theorem 2. In an exploitation round, since we collect revenue bt and the best possible

revenue from that round is b̄t, the regret from that round is at most b̄t − bt ≤ ε. For exploration

rounds, we use the trivial bound of regret R per round. So, if we have at most N exploration

rounds, Regret≤NR+ (T −N)ε. By Lemma 2 we have: Regret≤ 2Rd2 ln(20R(d+ 1)/ε) +Tε.

Choosing ε=Rd2/T , the total regret becomes Regret=O(Rd2 ln(T/d)). �

The core of our analysis consists of proving Lemma 2. Recall that the algorithm explores if and

only if b̄t−bt = 2
√
x′tAtxt > ε. If the matrix At is such that max{x∈Rd: ‖x‖≤1} 2

√
x′Atx≤ ε, then all the

feature vectors will lead the algorithm to exploit. We note that the quantity max{x∈Rd: ‖x‖≤1} x
′Atx

corresponds to the largest eigenvalue λ1(At) of the matrix At. Our goal, then, is to show that

after 2d2 ln(20R(d + 1)/ε) exploration steps, all the eigenvalues of At are at most ε2/4, so that

max{x∈Rd: ‖x‖≤1} 2
√
x′Atx≤ ε.

The proof of this claim will crucially rely on the fact that we only perform exploration steps if
√
x′tAtxt is sufficiently large for the feature vector xt. If instead we were to explore in every round,

then, even though the volume is shrinking by the usual ellipsoid argument, the largest eigenvalue

may not shrink, as shown in the example at the end of Section 5.1.

Conceptually, we would like to show that after sufficiently many exploration steps, the largest

eigenvalue cannot be too large. We prove this result in a roundabout way. We first construct a
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lower bound for the smallest eigenvalue. Such a bound automatically implies a lower bound on the

volume of the ellipsoid. Since at each exploration step the volume decreases by a constant factor,

we also have an upper bound on the volume of the ellipsoid after a given number of exploration

steps. Combining these two results, we obtain an upper bound on the number of exploration steps,

which allows us to prove EllipsoidPricing is a low regret algorithm.

5.4. More Tools from Linear Algebra

In order to study how the eigenvalues of At change when we explore, we introduce some tools from

linear algebra to bound the variation in eigenvalues, when a matrix is perturbed by a rank-one

matrix.

Given a symmetric d×d matrix A, its characteristic polynomial is defined as ϕA(z) = det(A−zI),

which is a polynomial of degree d with the eigenvalues of A as roots.

Given a vector b ∈Rd and β > 0, consider the rank-one perturbation D=A− βbb′. If λ1 ≥ λ2 ≥
. . .≥ λd are the eigenvalues of A, Wilkinson (1965) showed that the characteristic polynomial of D

can be written as:

ϕD(z) = det(A−βbb>− zI) =
∏
j

(λj − z)−β
∑
i

b2
i

∏
j 6=i

(λj − z).

It is often convenient to write for z 6= λi for all i, the characteristic polynomial as:

ϕD(z) =
∏
j

(λj − z) · ϕ̂D(z) where ϕ̂D(z) = 1−β
∑
i

b2
i

λi− z
. (6)

We refer to Golub (1973) for an in-depth discussion of this result. An important consequence

is the fact that evaluating the characteristic polynomial ϕD(z) at λi, we obtain: ϕD(λd) ≤ 0,

ϕD(λd−1)≥ 0, ϕD(λd−2)≤ 0, and so on. The intermediate value theorem then allows us to pin down

the exact intervals in which the eigenvalues of D lie. Let σ1 ≥ σ2 ≥ . . .≥ σd be the eigenvalue of D,

then:

λd−βb′b≤ σd ≤ λd ≤ σd−1 ≤ λd−1 ≤ σd−2 ≤ λd−2 ≤ . . .≤ λ2 ≤ σ1 ≤ λ1. (7)

Consequently, this provides us with a tool to lower bound the smallest eigenvalue of D, as we show

in the next lemma.

Lemma 3. Let λ1 ≥ . . . ≥ λd be the eigenvalues of A and σ1 ≥ . . . ≥ σd be the eigenvalues of

D=A−βbb′. Consider any z < λd. If ϕD(z)≥ 0, then σd ≥ z.

Proof. For any z < λd, the sign of ϕD(z) is the same as the sign of ϕ̂D(z) since in equation (6),

we have
∏
j(λj − z)> 0. Thus, ϕD(z)≥ 0 implies ϕ̂D(z)≥ 0. Note that ϕ̂D(·) is a non-increasing

function since ∂ϕ̂D(z)

∂z
= −β

∑
i

b2i
(λi−z)2

≤ 0. We also have that ϕ̂D(σd) = 0 by the definition of the

characteristic polynomial. Therefore, ϕ̂D(z)≥ 0 implies σd ≥ z. �
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5.5. Back to the Regret Analysis

As discussed at the end of Section 5.3, our proof strategy is to lower bound the smallest eigenvalue

of At and then to use the traditional ellipsoid method argument that upper bounds the volume of

the ellipsoid. The two bounds combined can then be used to upper bound the number of exploration

steps. First, we use Lemma 3 to show that the smallest eigenvalue doesn’t decrease by much in

any given iteration:

Lemma 4. For any exploration step t, we have: λd(At+1)≥ d2

(d+1)2
λd(At).

Proof. From the update rule in equation (5), we can write At+1 = d2

d2−1
D for D =At− 2

d+1
bb′,

where b=Atxt/
√
x′tAtxt. For convenience, we move to the base of eigenvalues of At, which we do

by writing At =QΛQ′. We define Ãt+1 =Q′At+1Q and D̃ =Q′DQ. We thus obtain Ãt+1 = d2

d2−1
D̃

and D̃= Λ− 2
d+1

b̃b̃′ where b̃=Q′b= Λc/
√
c′Λc and c=Q′xt.

Since the eigenvalues are invariant by changes of bases, λd(At+1) = λd(Ãt+1). We know that

λd(Ãt+1) = d2

d2−1
λd(D̃), so we only need to prove that λd(D̃)≥ d2−1

d2
· d2

(d+1)2
λd(At) = d−1

d+1
λd(At).

To simplify notation, we refer to λd(At) as simply λd from now on. Using Lemma 3, we only

need to argue that ϕ̂D̃(d−1
d+1

λd)≥ 0. We have:

ϕ̂D̃

(
d− 1

d+ 1
λd

)
= 1− 2

d+ 1

∑
i

b̃2
i

λi− d−1
d+1

λd
≥ 0.

Using the fact that b̃i = λici/
√∑

j λjc
2
j , one can rewrite the expression as follows:

1− 2

d+ 1

∑
i

λic
2
i∑

j λjc
2
j

1

1− d−1
d+1

λd
λi

≥ 1− 2

d+ 1
max
i

1

1− d−1
d+1

λd
λi

= 1− 2

d+ 1

1

1− d−1
d+1

λd
λd

= 0.

The inequality follows from the fact that the term
λic

2
i∑

j λjc
2
j

depicts a convex combination and can

be bounded by the maximal element. The equality follows from the fact that λd is the smallest

eigenvalue. �

Lemma 4 shows that the smallest eigenvalue of At decreases in each time step by at most

d2/(d+ 1)2. The intuition for this result is as follows. At the end of Section 5.1, we argued that

when the matrix At corresponds to the unit sphere and x1 = e1, the new matrix At+1 will have

d2/(d+ 1)2 as its smallest eigenvalue, which will correspond to direction e1. The same statement

is true more generally. Assume xt is the eigenvector that corresponds to the smallest eigenvalue of

an arbitrary At. Then, the smallest eigenvalue of At+1 is equal to d2

(d+1)2
λd(At). Lemma 4 proves

that this particular xt is the one that causes the smallest eigenvalue to shrink the most.

In the next lemma, we show that this eigenvalue cannot decrease past a certain point. More

precisely, we show that there exists a constant k(d) such that once the smallest eigenvalue is below

k(d)ε2, then either (i) x′tAtxt ≤ 1
4
ε2, resulting in an exploit step, or (ii) λd(At+1)≥ λd(At), i.e., the

smallest eigenvalue doesn’t decrease.
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Lemma 5. There exists a sufficiently small k= k(d) such that if λd(At)≤ kε2 and x′tAtxt >
1
4
ε2,

then λd(At+1)≥ λd(At), i.e., the smallest eigenvalue doesn’t decrease after the update. In addition,

one can take k= 1
400d2

.

Proof. In this proof, we assume d≥ 2. Note that the lemma is trivially true for d= 1. Using

the same notation as in the proof of Lemma 4, we need to show that λd(At+1) = d2

d2−1
σd ≥ λd(At),

where σd is the smallest eigenvalue of D̃. To prove that σd ≥ d2−1
d2

λd(At), it is sufficient to show that

ϕD̃

(
d2−1
d2

λd

)
≥ 0 by using Lemma 3. Note that ϕD̃

(
d2−1
d2

λd

)
≥ 0 holds if and only if ϕ̂D̃

(
d2−1
d2

λd

)
≥

0 since d2−1
d2

λd <λd. Therefore, the remainder of the proof focuses on showing that ϕ̂D̃

(
d2−1
d2

λd

)
≥ 0.

We next split the sum in the definition of ϕ̂D into two parts, depending on whether the eigenvalue

λi is smaller or larger relative to
√
kε2. We obtain:

ϕ̂D̃

(
d2− 1

d2
λd

)
= 1− 2

d+ 1

 ∑
i: λi≤

√
kε2

λic
2
i∑

j λjc
2
j

1

1− d2−1
d2

λd
λi

+
∑

i: λi>
√
kε2

λic
2
i∑

j λjc
2
j

1

1− d2−1
d2

λd
λi

 .
In order to bound the previous expression, we use some bounds on the eigenvalues. For the first

sum, we know that λi ≤
√
kε2,

∑
j λjc

2
j >

1
4
ε2 and λi ≥ λd. For the second sum, we use λi ≥

√
kε2 =

kε2√
k
≥ λd√

k
. Therefore, we obtain:

ϕ̂D̃

(
d2− 1

d2
λd

)
≥ 1− 2

d+ 1

 ∑
i: λi≤

√
kε2

√
kε2c2

i
1
4
ε2

1

1− d2−1
d2

+
∑

i: λi>
√
kε2

λic
2
i∑

j λjc
2
j

1

1− d2−1
d2

√
k


≥ 1− 2

d+ 1

[
4d2
√
k+

1

1− d2−1
d2

√
k

]
.

The last inequality follows from the facts that
∑

i c
2
i ≤ 1 and

∑
i

λic
2
i∑

j λjc
2
j

= 1. In the limit when

k→ 0, the above expression approaches 1− 2
d+1

and hence, is positive. Consequently, there exists

a sufficiently small k= k(d) such that ϕ̂D

(
d2−1
d2

λ1

)
≥ 0. This concludes the proof of existence. By

substituting k= 1/400d2 in the final bound of ϕ̂D̃

(
d2−1
d2

λd

)
, inspecting the first few values of d and

the derivative, we can conclude that taking k= 1/400d2 is enough. �

The intuition behind Lemma 5 is as follows. Assume λd is sufficiently small (λd ≤ kε2). If xt

is equal to the eigenvector that corresponds to the smallest eigenvalue, the algorithm will choose

to exploit (thus preserving the ellipsoid). If xt is not far from this eigenvector, the algorithm

still chooses an exploit price. More generally, any xt that is approximately a convex combination

of eigenvectors associated with small eigenvalues (where small means λi ≤
√
kε2) will induce an

exploit step. For the algorithm to choose an explore step, the vector xt has to be approximately

a convex combination of eigenvectors that correspond to large eigenvalues (where large means

λi >
√
kε2). However, such an xt cannot cause the smallest eigenvalue to shrink, as this xt will be
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nearly orthogonal to the eigenvectors corresponding to the smallest eigenvalues (see Figure 6 for a

2-dimensional illustration).

Finally, we are in the position of proving Lemma 2, which is the last missing piece of our

argument:

Proof of Lemma 2. Let Ẽ1 = E1 and Ẽn be the ellipsoid obtained after the n-th explore step.

Let Ãn be the matrix defining the ellipsoid Ẽn. We will build two bounds on the volume ratio

Vol Ẽn+1/Vol Ẽ1. The first bound is the usual upper bound from the ellipsoid method (see

Section 5.1) given by:

Vol Ẽn+1

Vol Ẽ1

≤ e− n
2d .

Next, we construct a lower bound by using the previous lemmas. Since Ẽ1 lies in the ball of radius

R, we know that Vol Ẽ1 ≤ Vd ·Rd, for a constant Vd defined in Section 5.1. For Ẽn+1, we can use:

Vol Ẽn+1 = Vd ·
√∏

i

λi(Ãn+1)≥ Vd ·λd(Ãn+1)d/2.

From Lemma 5, when the smallest eigenvalue is below ε2/400d2, it can’t shrink further. Also, from

Lemma 4, whenever the smallest eigenvalue shrinks, it has to shrink by at most d2/(d+ 1)2, and

hence, at any given time:

λd(Ãn+1)≥ d2

(d+ 1)2
· ε2

400d2
=

ε2

400(d+ 1)2
.

Therefore, we have:

Vol Ẽn+1 ≥ Vd ·
(

ε

20(d+ 1)

)d
.

The ratio of those two expressions gives us a bound on the volume decrease. Putting the two

bounds together, we obtain: (
ε

20R(d+ 1)

)d
≤ Vol Ẽn+1

Vol Ẽ1

≤ e− n
2d ,

which implies that the number of explore steps satisfies n≤ 2d2 ln
(

20R(d+1)

ε

)
. �

6. Noisy Valuations

Up until now, we have assumed that the market value of product t is determined according to a

pure linear model with vt = θ′xt. In this section, we extend the model to allow for idiosyncratic

noise: vt = θ′xt + δt, where δt represents an error in our estimate of vt. We consider two variants of

this model. The first one is a robust optimization model, where we assume the noise is bounded.

The second version is a probabilistic model, where we assume the noise is normally distributed.
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6.1. Bounded Noise

We first assume that the noise term δt is bounded within an interval [−δ, δ]. We assume nature

selects the noise term in each period according to an adversarial closed-loop policy. To account for

this adversarial noise model, we need to modify our definition of regret to incorporate the noise

term:

Regret(Π) = max
θ∈K1, X∈X, δt∈[−δ,δ]

T∑
t=1

[
θ′xt + δt− ptI{θ′xt ≥ pt}

]
.

Note that in a model with noise, the EllipsoidPricing algorithm, as presented in Section 5,

might incorrectly remove the true value of θ from the uncertainty set. The algorithm we propose

next is designed to make our algorithm robust to bounded noise. We call the modified algorithm

ShallowPricing. The essence of the technique is to make our cuts safer. For exploit steps, we

propose using the price pt = bt − δ. This is the highest price we could choose and still guarantee

a sale. For explore steps, we propose using the same price as before: pt = (bt + bt)/2. However, we

propose a modification on the update of the uncertainty set. The robust version of our algorithm

takes into account that the true θ might be on the wrong side of the cut. When a sale occurs, we

remove elements from the uncertainty set as if we had used the price pt− δ, i.e., Kt+1 =Kt ∩{θ ∈

Rd : θ′xt ≥ pt − δ}. Similarly, when a sale does not occur, we remove elements from the set as if

we had used the price pt + δ, i.e., Kt+1 =Kt ∩{θ ∈Rd : θ′xt ≤ pt + δ}. The cuts we used in Section

5 remove half of the volume of the ellipsoid and are called central cuts. The cuts we propose here

remove less than half of the volume of the ellipsoid and are called shallow cuts. Figure 7 shows the

difference between a central cut and a shallow cut.

θ1	

θ2	
p1	

E1	

x1	
p1-δ	

Figure 7 If we remove the half-ellipsoid below p1, we are performing a central cut of the ellipsoid E1. If we

remove only the subset below p1− δ, we are performing a shallow cut of E1.
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In order to analyze ShallowPricing, we need to introduce the concept of the depth of a cut,

which is given by:

αt =− δ√
x′tAtxt

.

The depth of a cut is a number between -1 and 0, where -1 represents a supporting hyperplane of

the ellipsoid and zero represents a central cut of the ellipsoid. Our analysis does not involve the

third kind of standard cut, the deep cut, which is a cut that removes more than half of the volume

of the ellipsoid and, thus, has positive depth.

For ShallowPricing to work, the depth of cuts has to be at least −1/d. With αt ≥ −1/d,

the following machinery allows us to compute the Löwner-John ellpsoids of the sets that remain

after shallow cuts (see Eq. (3.1.17) in Grötschel et al. (1993)). The Löwner-John ellipsoid of the

set Kt+1 = E(At, at) ∩ {θ ∈ Rd : θ′xt ≥ (bt + bt)/2 − δ} is given by E(At+1, at + 1+dαt
d+1

bt), where

bt =Atxt/
√
x′tAtxt and

At+1 =
d2

d2− 1
(1−α2

t )

(
At−

2(1 + dαt)

(d+ 1)(1 +αt)
btb
′
t

)
. (8)

Similarly, the Löwner-John ellipsoid of the set Kt+1 =E(At, at)∩ {θ ∈Rd : θ′xt ≤ (bt + bt)/2 + δ}

is given by E(At+1, at− 1+dαt
d+1

bt).

Note that Eq. (8) is not all that different from Eq. (5). We can therefore adapt our analysis for

central cuts to allow for shallow cuts. We are now ready to present the performance guarantee of

our algorithm when tailored to an environment with bounded adversarial noise.

Theorem 3. Under bounded noise, the worst-case regret of the ShallowPricing(ε) algorithm

with parameter ε= max{Rd2/T,4dδ} is O(Rd2 ln(min{T/d,R/δ}) + dδT ).

Proof. The proof of this result closely mimics the proof of Theorem 2. Therefore, instead of

repeating all steps in the proof of that theorem and its intermediary lemmas, we restrict ourselves

to pointing out the necessary changes.

Let N be the number of exploration steps. The regret is bounded by:

Regret≤NR+ εT + 2δT, (9)

where the 2δT term captures a per-period error of up to 2δ in pricing. The key step in our analysis

is to bound N . To do so, we must first show that Lemmas 4 and 5 still apply in our noisy setting.

We first show that for any exploration step t,

λd(At+1)≥ d2(1−αt)2

(d+ 1)2
λd(At), (10)

which is a shallow-cut equivalent of Lemma 4. Define the matrix D =At − 2(1+dαt)

(d+1)(1+αt)
btb
′
t so that

At+1 = d2

d2−1
(1− α2

t )D according to Eq. (8). Perform the same change of basis as in the proof of
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Lemma 4 to define D̃. Eq. (10) is equivalent to d2

d2−1
(1−α2

t )λd(D̃)≥ d2(1−αt)2

(d+1)2
λd(At), which is itself

equivalent to showing that

λd(D̃)≥ (1−αt)(d− 1)

(1 +αt)(d+ 1)
λd(At).

Using Lemma 3, we can prove the statement above by showing that

ϕ̂D̃

(
(1−αt)(d− 1)

(1 +αt)(d+ 1)
λd(At)

)
= 1− 2(1 + dαt)

(d+ 1)(1 +αt)

∑
i

b̃2
i

λi(At)− (1−αt)(d−1)

(1+αt)(d+1)
λd(At)

≥ 0,

where b̃i is as defined in the proof of Lemma 4. The lowest possible value of the right-hand side of

the equation above takes place when b̃2
d = λd(At) and b̃2

i = 0 for i 6= d. Thus,

ϕ̂D̃

(
(1−αt)(d− 1)

(1 +αt)(d+ 1)
λd(At)

)
≥ 1− 2(1 + dαt)

(d+ 1)(1 +αt)

1

1− (1−αt)(d−1)

(1+αt)(d+1)

= 0,

proving Eq. (10). This equation immediately implies the weaker statement λd(At+1)≥ d2

(d+1)2
λd(At)

since αt ≤ 0.

We now prove a shallow-cut equivalent of Lemma 5. We argue that for a sufficiently small

k = k(d) such that if λd(At)≤ kε2 and x′tAtxt >
1
4
ε2, λd(At+1)≥ λd(At). As in Lemma 5, one can

take k= 1
400d2

. To show this result, it is sufficient to prove that

ϕ̂D̃

(
(d2− 1)

d2(1−α2
t )
λd(At)

)
≥ 0.

We can mimic the proof of Lemma 5 to obtain that

ϕ̂D̃

(
(d2− 1)

d2(1−α2
t )
λd(At)

)
≥ 1− 2(1 + dαt)

(1 + d)(1 +αt)

 4
√
k

1− d2−1
d2(1−α2

t )

+
1

1− d2−1
d2(1−α2

t )

√
k

 . (11)

Since we assumed that ε≥ 4dδ and we know that
√
x′tAtxt ≥ 1

2
ε, we have by the definition of αt that

αt =−δ/
√
x′tAtxt ≥−2δ/ε≥−1/2d. Since αt ∈ [−1/2d,0], the quantity inside the square brackets

in Eq. (11) converges to 1 when k goes to infinity. The limit as k goes to infinity of the right-hand

side of the inequality above is therefore 1− 2(1+dαt)

(1+d)(1+αt)
, which is strictly positive when d> 1 (as in

the proof of Lemma 5, we ignore the trivial case of d= 1). We thus reach our desired result. Note

that we obtain the precise value of k= 1/400d2 by numerical inspection, as in Lemma 5.

We have now proved that Lemmas 4 and 5 still apply in a noisy setting. We are thus ready to

prove our theorem. Just as in Theorem 2, our core argument is that the volume of the ellipsoid

decreases exponentially fast in the number of explore steps, and that Lemmas 4 and 5 together

provide a bound on the smallest volume possible of the ellipsoid. If we use an explore price at step

t, the following volume decrease bound applies under a shallow cut:

Vol Et+1

Vol Et
≤ e−

(1+dαt)
2

5d ,
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as shown in Eq. (3.3.21) of Grötschel et al. (1993). Since αt ≥−1/2d,

Vol Et+1

Vol Et
≤ e− 1

20d .

We can therefore repeat the proof of Lemma 2, with the sole difference that we replace e−n/2d with

e−n/20d. We therefore obtain a bound on the number of explore steps N :

N ≤ 20d2 ln

(
20R(d+ 1)

ε

)
. (12)

Plugging in ε= max{Rd2/T,4dδ}, we obtain that N =O(d2 ln(min{T/d,R/δ})). Together with Eq.

(9), we have

Regret≤O(Rd2 ln(min{T/d,R/δ}) + max{Rd2, dδT}+ δT ).

The first term inside the maximand is dominated by the first term inside the big O and can be

removed. The last term inside the big O is dominated by the second term inside the maximand

and can also be removed. Our expression thus simplifies to

Regret≤O(Rd2 ln(min{T/d,R/δ}) + dδT ),

completing our proof. �

With bounded adversarial noise, we necessarily incur regret that is linear in T . This is the case

even if θ is known a priori, as the seller would have to price products at θ′xt − δ to ensure the

occurrence of sales. Fortunately, if the noise parameter δ is small, the regret expression in Theorem

3 is identical to the one in Theorem 2.

Corollary 1. Assume δ ≤ Rd/4T . Then, the worst-case regret of the ShallowPricing(ε)

algorithm with parameter ε=Rd2/T is O(Rd2 ln(T/d)).

Proof. Under δ ≤ Rd/4T , Theorem 3 says that the regret of ShallowPricing(ε) with ε =

Rd2/T is O(Rd2 ln(T/d) + dδT ). Under δ≤Rd/4T , we also have that O(dδT ) =O(Rd2). �

6.2. Gaussian Noise

We now consider the case with vt = θ′xt + δt, where δt is an i.i.d. Gaussian noise with mean zero

and standard deviation σ. Our regret metric for this setting still makes worst-case assumptions

with regards to θ and the feature vectors, but makes a probabilistic assumption about the noise

term δt:

Regret(Π) = max
θ∈K1, X∈X

T∑
t=1

Eδt

[
θ′xt + δt− ptI{θ′xt ≥ pt}

]
.
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Despite the noise no longer being bounded, we still propose using the ShallowPricing algo-

rithm. While δ was a model primitive in Subsection 6.1, δ is now an additional parameter of the

ShallowPricing(ε, δ) algorithm.

Under bounded noise, the ShallowPricing(ε, δ) algorithm never made mistakes, in the sense

that θ was always inside the uncertainty set. With unbounded noise, there is a positive probability

that ShallowPricing(ε, δ) will make a mistake, regardless of our choice of δ. We now prove a

performance bound on ShallowPricing(ε, δ) under Gaussian noise.

Theorem 4. Under Gaussian noise, the regret of the ShallowPricing(ε, δ) algorithm with

parameters ε= max{Rd2/T,4dδ} and δ= 2σ
√

ln(RT ) is O (Rd2 ln(min{T/d,R/δ}) + dδT ).

Proof. In the event that the error δt is in the range [−δ, δ] in each time step, we obtain by

Theorem 3 that the regret is bounded by O(Rd2 ln(min{T/d,R/δ}) + dδT ). We now reason about

what happens when the noise falls outside this range. We will say that a mistake happens in time t,

if δt does not lie in the range [−δ, δ]. We denote this event by Zt. In any given round, the probability

that a mistake occurs is:

Pr(Zt) = 2Φ(−δ/σ)≤ 2e−δ
2/2σ2 ,

where Φ(·) is the cdf of a standard Gaussian and the inequality follows from the bound 2Φ(z)≤

e−z
2/2 (see Chang et al. (2011)). The probability that some mistake happens is:

Pr(∪tZt)≤ T2e−δ
2/2σ2 = Te−2 ln(RT ) =

1

R2T
,

where the inequality follows from the union bound, and the first equality follows from the definition

of δ. Now, if a mistake occurs, we will use the crude bound of RT for the regret. Since this happens

with probability at most 1/(R2T ), this only adds a constant term to the regret. �

As in the bounded noise case, if the noise is sufficiently small, we recover the regret expression

from Theorem 2.

Corollary 2. Assume σ ≤ Rd/(T
√

ln(RT )). Then, the regret of the ShallowPricing(ε, δ)

algorithm with parameters ε=Rd2/T and δ= 2σ
√

ln(RT ) is O(Rd2 ln(T/d)).

Proof. When σ≤Rd/(T
√

ln(RT )), the term inside the logarithm in the regret bound of Theo-

rem 4 becomes T/d. In addition, the second term becomes: O(dδT ) =O(dσT
√

ln(RT )) =O(Rd2),

and hence gets absorbed in the first. �

7. Extensions

In this section, we extend our results to non-linear market value models and to the case where the

length of the horizon T is not known in advance.
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7.1. Non-linear Models

So far, we assumed that the market value follows a linear model of the form vt = θ′xt. An alternative

common model in Internet advertisement is the logistic regression: vt = [1 + exp(θ′xt)]
−1 — see

Richardson et al. (2007) and Chakrabarti et al. (2008) for examples where market values are learned

from data via logistic regressions. More generally, a basic set of features xt is often transformed by

a feature-map φ(·) in order to capture correlations and non-linear dependencies on the features.

In applications of hedonic pricing, popular models of market values are (i) the log-log model, i.e.,

lnvt =
∑

i θi ln(xt,i) and (ii) the semi-log (or log-linear) model: lnvt = θ′xt. In all such cases, one

can express: vt = f(θ′φ(xt)) for some given functions f(·) and φ(·). Next, we argue that Theorem

2 can easily be extended to this more general setting:

Proposition 1. Let f be a non-decreasing and continuous function with Lipschitz constant L

over the domain [−R,R]. Denote f̄ = f(R). Let φ(·) be a feature map such that ‖φ(xt)‖ ≤ 1 and

let the market value take the form vt = f(θ′φ(xt)). Then, the EllipsoidPricing algorithm with

parameter ε= f̄d2/LT has regret O(f̄Ld2 · ln(RT/f̄d)).

Proof. Denote by x̃t = φ(xt), so that vt = f(θ′x̃t). For every exploitation round, we know that

the value of θ′x̃t lies in an interval It = [bt, b̄t] of length at most ε. The loss by pricing at f(bt) is

at most f(b̄t)− f(bt)≤ L · (b̄t− bt)≤ Lε. Using the trivial loss of f̄ in each exploration round, we

obtain:

Regret≤ TLε+ f̄ · 2d2 ln(20R(d+ 1)/ε)≤O(f̄ · d2 ln(RT/f̄d)),

where the second inequality follows from taking ε= f̄d2/LT . �

7.2. Unknown Horizon

An additional assumption that can be relaxed is the knowledge of the time horizon T . Note that

when we set the EllipsoidPricing parameter ε=Rd2/T in Theorem 2, we need to know the value

of T in advance. Using the standard doubling trick4 in online learning, one can make the algorithm

agnostic in T at the expense of a constant factor. Consequently, this extends our result to the case

where the value of T is unknown. We construct a sequence of phases of doubly exponential size:

call phase 0 the first 220 time steps, phase 1 the next 221 steps and so on, i.e., phase k has 22k

time steps. In each phase k, we re-start the algorithm (forgetting all of the information gained in

the past) and run it with T = 22k . In other words, for each phase k, we decrease ε to Rd2/22k and

restart our algorithm.

Proposition 2. By applying the EllipsoidPricing algorithm with ε = Rd2/22k in phase k,

we obtain a total regret O(Rd2 lnT ), while being agnostic about the length of the horizon T .

4 For settings like ours where the regret is logarithmic in T , the technique is sometimes called the squaring trick since
the length of a phase is the square of the length of the previous phase (see Amin et al. (2011)).
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Proof. Given T time steps, let k̄ be the minimum value such that
∑k̄

k=0 22k ≥ T . Therefore, for

T time steps, the algorithm will have k̄ ≤ dlog2 log2 T e phases. The total regret from all the time

steps in phase k is at most O(Rd2 ln(22k)) =O(Rd22k). Therefore, the total regret over all phases

is at most
∑dlog2 log2 Te

k=0 O(Rd22k) =O(Rd22log2 log2 T ) =O(Rd2 lnT ). �

8. Computational Experiments

In this section, we computationally test the algorithm EllipsoidPricing developed in Section 5,

as well as the algorithm ShallowPricing from Section 6 that allows for noisy valuations.

8.1. Regret as a function of T and d

In this paper, we considered an adversarial setting where nature selects the worst vectors of features

xt at each time, as well as the worst vector θ within a bounded set. Computing an actual optimal

policy for nature is a hard task, so we test our algorithm in a stochastic environment. We consider

the case where nature selects both xt and θ in an i.i.d. fashion. Interestingly, we show that the

regret in such an i.i.d. setting behaves similarly as in an adversarial world.

(a) Using continuous features. (b) Using discrete features.

Figure 8 Regret of the EllipsoidPricing algorithm as a function of T and d for continuous and discrete features.

We first consider a setting where the vectors xt are drawn i.i.d. with a multivariate Gaussian

distribution N(0, I), with the values normalized so that ||xt||= 1 for all t. We also tested several

other continuous distributions (e.g., uniform and exponential) and the results in terms of regret

happen to be very similar. We vary the value of T between 100 and 10,000 and the value of d

between 10 and 25. For simplicity, we use R= 1. In Figure 8(a), we plot the regret as a function

of T for different values of d. Even though the setting is i.i.d. (and not adversarial), we obtain

a regret that is of similar magnitude to our bound. In the proof of Lemma 2 in Section 5.3, we
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derived an upper bound on the regret, given by: Rd2[1 + 2 ln(20(d+1)T

d2
)]. For example, when R= 1,

d = 10, T = 10,000, this amounts to 2,099. Numerically, we obtain regret equal to 563.42, and

hence of similar magnitude. We also consider a setting where xt are drawn i.i.d. with a Bernoulli

distribution. This case can correspond to binary features such as user gender or mobile versus

desktop computer. In this case, we obtain a similar regret behavior (see Figure 8(b) for the case

where the Bernoulli success probability is set to 0.6).

8.2. Estimation Error

In each exploration step of the EllipsoidPricing algorithm, we update the vector at, which

corresponds to the center of the ellipsoid (see Section 5). The vector at can be interpreted as an

estimate of the (unknown) vector θ at time t. Consequently, one interesting question is how the

estimation error ||θ−at||2 evolves as a function of T . In Figure 9, we plot the error in the θ estimate

as a function of T for d= 15 when xt are normally distributed N(0, I) (and normalized). One can

see that the algorithm learns the true value of θ, and the error quickly converges to zero.

Figure 9 Errors in estimates as a function of T for d= 15.

8.3. Adaptability

In the previous cases, the algorithm explores until some threshold time, and then it mostly exploits.

The separation between the exploration and exploitation phases follows from the fact that the

vectors xt are randomly drawn. We illustrate this phenomenon in Figure 10, where we plot the

proportion of exploration rounds as a function of time intervals of length T/20. However, this is

not always the case. As we mentioned earlier in the paper, our algorithm can explore and exploit

without a clear separation between the phases. Depending on the amount of uncertainty in a

specific direction, it can decide whether or not to explore. To illustrate this behavior, we test a



Cohen and Lobel and Paes Leme: Feature-based Dynamic Pricing
31

Figure 10 Explore rounds versus exploit rounds for the EllipsoidPricing algorithm as a function of T for d= 15.

situation where the setting evolves over time by changing the distribution of xt after half of the

time periods.

In what follows, we show that our algorithm can adapt to dynamic environments. We consider

two different settings, depicted in Figure 11. Figure 11(a) considers the case where the first half

of the iterations (i.e., during the first T/2 time periods), the vectors of features are normally dis-

tributed N(0, I), and the second half of the periods, the vectors of features are uniformly distributed

U [−1,1]d (in both cases, the vector xt is normalized such that ||xt||= 1 for all t).

(a) Normal then uniform features. (b) Half then all features.

Figure 11 Regret of the EllipsoidPricing algorithm as a function of T for d= 35 when the distribution of the

features changes at T/2.
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Figure 11(b) considers the case where the vector is random but in the first half of the iterations,

the last half of the components are zero. In other words, we have random values in the first d/2

elements and 0 in the second half. After T/2, all the d elements of xt are random. Both before

and after, all features are drawn from a normalized Gaussian distribution. One can see that in the

two different settings, the regret of our algorithm remains low, while adapting to the change in the

distribution. In these cases, the algorithm will explore again when needed. Figure 12 shows the

algorithm starting to explore again after the change in distributions at T/2, under the same setting

as in Figure 11(a). This type of situations is very typical as the vectors of features can depend on

external factors such as seasonality and trends.

Figure 12 Explore rounds versus exploit rounds for the EllipsoidPricing algorithm as a function of T for d= 15

using continuous features

8.4. Testing the ShallowPricing algorithm

Finally, we test the version of our algorithm when the valuation is noisy (see Section 6). We assume

that the additive noise is uniformly distributed U [−δ, δ]. In Figure 13, we plot the regret as a

function of T and d for different values of δ. In Figure 13(a), we set d= 15 and vary T , whereas in

Figure 13(b), we set T = 100,000 and vary d. One can see as expected, that the regret behaves as

O(Rd2 ln(min{T/d,R/δ}) + dδT ) as we have shown in Theorem 3. On one hand, for small values

of δ, we have a logarithmic dependence with respect to T and we retrieve the result of Corollary

1. On the other hand, when δ becomes large, we switch to a linear dependence.

Interestingly, when we consider Gaussian noise, we obtain a very similar behavior as Figure 13.

In Figure 14, we set δ = 0.001 and consider the case of an additive Gaussian noise. For any value

of σ≤ 0.1, we obtain a regret plot similar to the one depicted in Figure 14.
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(a) Regret as a function of T . (b) Regret as a function of d.

Figure 13 Regret of the ShallowPricing algorithm as a function of T and d for different supports of the noise.

Figure 14 Regret of the ShallowPricing algorithm as a function of T for d= 15 using continuous features and

an additive Gaussian noise N(0, σ), with σ= 0.01.

8.5. Numerical Insights

This section allowed us to test and validate computationally the performance of the algorithms

proposed in this paper. We draw the following insights:

• Even though our regret bound was derived for an adversarial setting, we observe that the

regret achieved when the vectors of features are drawn i.i.d. is of similar magnitude.

• Our results are robust to the distributions of both the vector θ and the vectors of features

xt. We tested several different distributions (both continuous and discrete) and observed that the

magnitude of the regret attained by our algorithm is robust to the distribution.
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• Our algorithm is able to adapt to the data. In particular, if the vectors of features vary in time

and have a time-dependent distribution, the algorithm still estimates θ correctly and the regret

remains small. This follows from the fact that our algorithm does not separate the exploration and

exploitation phases, as in some other classical approaches. Instead, the algorithm always learns

from new features and reacts accordingly.

• Our algorithm works also for the case where the valuation is noisy (see Section 6). We tested

different distributions of the additive noise (both bounded and unbounded), and observed a good

regret performance.

9. Conclusions and Future Directions

In this paper, we considered the problem of pricing highly differentiated products described by

vectors of features (e.g., impressions in online advertising). The firm has to set the price of each

product in an online fashion. The market value of each product is linear in the values of the features

and the firm does not initially know the values of the different features. Our goal is to propose an

efficient online pricing method by balancing the exploration/exploitation tradeoff so as to achieve

a low regret. We first considered a multi-dimensional version of binary search over polyhedral sets,

and showed that it has exponential worst-case regret. We then proposed a modification of the prior

algorithm where uncertainty sets are replaced by their Löwner-John ellipsoids. We showed that

the algorithm we proposed has a worst-case regret that is quadratic in the dimensionality of the

feature space and logarithmic in the time horizon.

We would like to end by discussing some future research directions. An interesting direction

would be to consider a setting where the parameter θ changes over time. For example, one could

consider a problem where, at each time period, a vector θt takes a different value, but under the

assumption of limited variation, i.e., ‖θt+1− θt‖ ≤∆t. Another important future direction would

be to explicitly embed our algorithm in a dynamic auction design problem. In an auction design

setting, an algorithm like ours could be used to dynamically generate reserve prices for the sequence

of auctions.
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Appendix

Reduction to Contextual Bandits. Here, we show how to reduce our problem to a standard

contextual bandit setting and, thus, obtain a regret bound for a version of our model with fully

adversarial noise. More precisely, we prove Eq. (2) via the algorithm of Agarwal et al. (2014). In

order to use this algorithm, we must first discretize the policy space, which in our problem corre-

sponds to the set K1. In what follows, we assume for simplicity that R= 1. To achieve the desired

regret bound, we discretize K1 into a d-dimensional lattice with increments of η = 1/(T
√
d)1/3.

This induces a policy space with cardinality O(1/ηd). We also discretize the set of prices, restrict-

ing ourselves to multiples of η
√
d. Therefore, our set of prices has cardinality O(1/η

√
d). In this

discretized space, a policy θ determines a price pt as a function of xt by first computing the value

of θ′xt and then rounding down the result to the nearest multiple of η
√
d. The maximum revenue

loss per period from this discretization is O(η
√
d). Therefore, over the entire horizon of T periods,

discretization costs us up to O(Tη
√
d) regret.

We now apply the result of Agarwal et al. (2014) for this discretized class of policies, yielding a

regret of O

(√
T

η
√
d

ln
(

1
ηd

))
. Adding the regret from the discretization, we obtain a total regret of

O

(√
T

η
√
d

ln

(
1

ηd

))
+O

(
Tη
√
d
)

= Õ
(
T 2/3d1/3

)
,

where the equality follows from the definition of η.
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Proof of Lemma 1. Let Sj and Sk be two randomly sampled subsets of the set {1, . . . , d} of

cardinality d/4. Consider a given feasible set Sk (a subset of {1, . . . , d} of size d/4). Then, there

exists exactly
(
d
d/4

)
possibilities for the set Sj. The number of possibilities for the set Sj that share

exactly i elements with the set Sk is given by the product of binomials
(
d/4
i

)(
3d/4
d/4−i

)
. Therefore, the

number of possible sets Sj with more than d/8 elements from Sk is given by
∑d/4

i=d/8+1

(
d/4
i

)(
3d/4
d/4−i

)
.

Thus,

Pr (|Sj ∩Sk|>d/8) =

d/4∑
i=d/8

(
d/4
i

)(
3d/4
d/4−i

)(
d
d/4

) ≤O(1.69−d), (13)

where we will demonstrate the last inequality shortly. Now, consider a collection of S1, S2, ..., St0

sets where t0 = 1.2d. Using the union bound, we can write:

Pr (|Sj ∩Sk| ≤ d/8,∀1≤ j < k≤ t0) = 1−Pr(∃ j < k ∈ {1, ..., t0} | |Sj ∩Sk|>d/8)

≥ 1−
∑

1≤j≤t0

∑
1≤k<j

Pr(|Sj ∩Sk|>d/8)

≥ 1− (1.2d)2 ·O(1.69−d)

≥ 1/2 for sufficiently high d.

This proves the statement of the lemma.

We now prove the inequality in Eq. (13). From Stirling inequalities,
√

2πn(n/e)n ≤ n! ≤
e
√
n(n/e)n, we have that(

d

d/4

)
≥ p1(d)

dd

(d/4)(d/4)(3d/4)(3d/4)
= p1(d)1.755d, (14)

where we use p1(d) to represent a polynomial function of d. Our next step is to use the same tech-

nique to show that the numerator from Eq. (13),
∑d/4

i=d/8+1

(
d/4
i

)(
3d/4
d/4−i

)
, is bounded by p2(d)1.038d,

where p2(d) is a polynomial function of d. We define:

h(d) =

d/4∑
i=d/8+1

(
d/4

i

)(
3d/4

d/4− i

)
,

Using the Stirling inequalities once more, we can bound the quantity above by

h(d) =

d/4∑
i=d/8

(d/4)!

i!(d/4− i)!
(3d/4)!

(d/4− i)!(d/2 + i)!

≤ p̃2(d)

d/4∑
i=d/8

(d/4)(d/4)

ii(d/4− i)(d/4−i)
(3d/4)(3d/4)

(d/4− i)(d/4−i)(d/2 + i)
(d/2+i)

,

for some polynomial p̃2(d). Note that we can bound the sum by (d/4−d/8) times the highest value

of i and therefore

h(d) ≤ p2(d) max
i∈{d/8,....,d/4}

(d/4)(d/4)

ii(d/4− i)(d/4−i)
(3d/4)(3d/4)

(d/4− i)(d/4−i)(d/2 + i)
(d/2+i)

,
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with a slightly different polynomial p2(d) than before. We now replace i by yd for some y ∈ [1/8,1/4]

to obtain the following bound:

h(d) ≤ p2(d) max
y∈[1/8,1/4]

(d/4)(d/4)

(yd)(yd)(d/4− yd)(d/4−yd)

(3d/4)(3d/4)

(d/4− yd)(d/4−yd)(d/2 + yd)
(d/2+yd)

= p2(d) max
y∈[1/8,1/4]

[
(1/4)(1/4)(3/4)(3/4)

yy(1/4− y)(1/2−2y)(1/2 + y)(1/2+y)

]d
. (15)

Now consider the function g(y) defined as

g(y) = yy(1/4− y)(1/2−2y)(1/2 + y)(1/2+y).

The second derivative of the logarithm of g(y) is equal to

d2 lng(y)

dy2
=
−y2 + 2.75y+ .05

(y− 1)2y(y+ 1)
,

which is positive in the region [1/8,1/4]. Therefore lng(y) is strictly convex within this region and

thus, has a unique minimizer. Using the first order condition, we can compute this minimizer to

be y= 0.169. In addition, g(0.169) evaluates to 0.549. Replacing this value in Eq. (15), we obtain:

h(d)≤ p2(d)

(
.570

.549

)d
= p2(d)1.038d. (16)

The ratio between the two bounds from Eqs. (14) and (16) gives us

p2(d)1.038d

p1(d)1.755d
=O(1.69−d),

since the polynomials are absorbed by the exponential terms. This proves Eq. (13), completing our

proof. �


