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1. INTRODUCTION

There has been substantial concern in the Internet advertising business over whether
improvements in targeting technology will reduce revenue from online advertising.
The intuition for these concerns runs as follows. Improvements in targeting enable
advertisers to more accurately identify consumers’ interests. If a consumer’s interests
are so accurately identified that advertisers know there is only one product that this
consumer would ever buy, this process could result in only a single advertiser who is
willing to advertise to this consumer. This means that this advertiser could conceivably
bid without competition. A more nuanced version of this argument relies on a quantity
effect. Since advertisers will no longer purchase ads that reach consumers who are not
interested in their products, the total demand for advertisements will go down. If the
supply of advertising opportunities remains unchanged, revenue from ads will decline.

The question of whether enhanced targeting increases revenue is important because
of two powerful trends. First, media consumption is moving online, and print newspa-
pers have waned. The survival of much of the existing media appears to depend on the
ability to monetize online content with advertising. Second, Internet advertising is in-
creasingly using sophisticated targeting. Thus, the likely survival of existing publishers
turns on whether enhanced targeting will increase advertising revenue. Furthermore,
since advertising exchanges typically take a constant fraction of a publisher’s revenue,
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there is a direct correspondence between whether revenue increases for intermediaries
and for publishers.

The argument that improvements in targeting will result in only a single relevant
advertiser for each consumer is likely misplaced. The argument assumes that the pur-
chase of the customer is a foregone conclusion, which ignores one of the main purposes
of advertising: to influence the consumer’s choice. While there is some advertising that
is informational in nature, alerting consumers to the existence of a product and its
features, the majority of advertising is intended to sway the consumers’ perception of
the product. This kind of advertising is commonly called emotional branding, and it is
the most common kind by revenue. Coca-Cola advertises extensively to people already
aware of its products. Similarly, how many American television watchers are unaware
of Proctor and Gamble’s Tide product?

The fact that the demand for advertisements to an individual consumer will not
decline to one does not invalidate the argument that targeting might reduce revenue,
however. Enhanced targeting will typically increase advertiser welfare by making ad-
vertising more effective, while reducing competition through specialization.! The effect
of improving targeting in online advertising is exactly the reverse of pure bundling for
a monopolist, in which the monopolist requires consumers to purchase a bundle of
objects or none at all. Targeting permits advertisers to distinguish unlike consumers,
whereas pure bundling, or the lack of targeting, forces advertisers to treat different
types of consumers as if they were the same.

Thus, to analyze whether improvements in targeting technology increase revenue
from auctions for advertisements, we can analyze whether enabling advertisers to
learn more detailed information about their value before bidding would increase rev-
enue from the auction. In particular, under targeting, we assume that the targeting
information enables advertisers to learn their exact value for advertising to a consumer
before deciding how much to bid. By contrast, when advertisers are unable to target,
they only know that their value will be a random draw from some distribution, the dis-
tribution reflecting the different values that the advertisers might place on advertising
to different types of consumers. We compare a seller’s expected revenue from auctions
under these two different scenarios.

Throughout, we consider a model in which bidders have private values and bidders’
values are independently distributed. While this is not the only possible modeling
choice, it is a natural one. There is empirical evidence that there is little correlation
in bidder values within auctions on Microsoft’s Ad Exchange, which Celis et al. [2011]
indicate implies that “bidder valuations are private, driven by idiosyncratic match
quality, rather than a common component.” Furthermore, if there is a common com-
ponent to bidders’ values that is not known and the bidders have private values that
are independent conditional on the common value, then the results of this article for
the zero reserve price will continue to hold since the results are attained for each
realization of the common component.?

We also frequently make use of the standard hazard rate condition on the cumu-
lative distribution of the buyers’ values. Although this assumption is not completely
innocuous, it is satisfied by many distributions frequently encountered in empirical
studies.

1Bergemann and Bonatti [2011] and Levin and Milgrom [2010] also note that such a trade-off is likely to
arise as a result of improved targeting.

2In addition, we know from Milgrom and Weber [1982] that if there is a common component to bidder values,
then the seller has an incentive to reveal this information when bidders are symmetric. Abraham et al.
[2014] further discuss when information asymmetries in common-value auctions can lead to revenue loss.
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In this environment, when advertisements are being sold via standard second-price
auctions, we first demonstrate a result analogous to that in Board [2009], Ganuza and
Penalva [2010], and Palfrey [1983], which illustrates that targeting decreases revenues
when there are two bidders even if there are asymmetries in the distributions of the
bidders’ values. We next show that when bidders’ values are drawn from identical dis-
tributions, then improved targeting has an ambiguous effect on revenue when there
are three bidders, but improved targeting increases revenue if there are at least four
bidders. These results are virtually unaffected by the possibility that a seller can set
reserve prices. Finally, we address the question of what happens when the bidders’ val-
ues are drawn from different distributions. Here, we find that if the strongest firm wins
the auction less than 30.4% of the time, then improved targeting increases revenue, but
targeting can reduce revenue when the two strongest bidders win a disproportionate
percentage of the time, at least under a particular model of bidder values in which
shares are well defined.?

While standard second-price auctions for a single advertising opportunity are used
by most publishers, we also consider the possibility of position auctions, as these are
frequently used by search engines as well as a smaller number of publishers. We first
present a new characterization of the properties of equilibria in generalized second-
price auctions when buyers have private information about their own values. We then
use these results to compare revenue under targeting and bundling in position auctions.
Here, we find that targeting unambiguously decreases revenue when there are a small
number of bidders, increases revenue when there are a large number of bidders, and has
an ambiguous effect on revenue when there are an intermediate number of bidders.
When there are an intermediate number of bidders, improved targeting increases
revenue if and only if the click-through rates of the top positions are sufficiently large
compared to the click-through rates of the lower positions.

Finally, we address the question of how improved targeting affects revenue when only
some advertisers are able to make use of the targeting information. In this setting, we
show that, even with symmetric bidders, it could be the case that a seller’s revenue
may vary nonmonotonically with the number of bidders who are able to make use
of the targeting information. That is, the seller may be indifferent between targeting
and bundling when only one bidder can target, prefer targeting to bundling when two
bidders can target, and prefer bundling to targeting when three bidders can target.
We also illustrate how improved targeting affects revenue when there is exactly one
bidder who can make use of the targeting information. We find that this decreases
revenue when the strongest bidder is making use of the targeting information, increases
revenue when the weaker bidders are making use of the targeting information, and
has an ambiguous effect for bidders of intermediate strength.

Our article relates to two distinct strands of literature. First, our article relates to
the literature on whether a mechanism designer should provide information to bidders
in a private-value auction that would better help them assess their values for an ob-
ject. Here, Fu et al. [2012] provide examples that illustrate that improving targeting
may decrease revenue in a private-value auction and Ganuza [2004] illustrates that an
auctioneer may have an incentive to release less than full information to the bidders
when the auctioneer has the ability to release partial information. Bergemann and
Valimaki [2006] consider the optimal information structure in a joint design problem
in which there may be a direct tie between the information that the seller discloses

3In particular, we work with a model in which firms have many products, but in any particular auction,
a firm can only advertise its best product, and the firm’s value for advertising a particular product is
independent and identically distributed. In this model, each firm’s probability of winning the auction (share)
is proportional to the number of products that the firm has.
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and the mechanism that the seller then uses to sell the object. Esé and Szentes [2007]
address the question of how much information the mechanism designer should provide
under the optimal mechanism, which may possibly involve charging the bidders in the
auction for providing the information. de Corniére and de Nijs [2016] consider ques-
tions related to how information disclosure affects the ultimate prices that advertisers
would charge for their products. Finally, Bhawalkar et al. [2014] analyze the value
of targeting data to advertisers, Ganuza and Penalva [2010] provide general meth-
ods of classifying the informativeness of signals to bidders in private-value auctions,
and Tadelis and Zettelmeyer [2015] conduct field experiments analyzing the effect of
information disclosure on wholesale auto auctions.*

The second related strand of literature is work analyzing when sellers would want
to bundle goods and sell them together. Bakos and Brynjolfsson [1999] and Fang and
Norman [2006] both study a standard bundling framework in which a monopolist
considers selling bundles of goods to buyers without using auctions. Adams and Yellen
[1976], Jehiel et al. [2007], and McAfee et al. [1989] study mixed bundling, in which a
monopolist offers buyers both the option of buying various goods individually and the
option of buying multiple goods at the same time, possibly for a discount. Chakraborty
[1999] studies a model in which a seller sells two objects via an auction and the
seller must decide whether to sell them separately or via bundling. Hart and Nisan
[2012] study how a seller’s revenue from selling two objects separately or from only
offering to sell the objects together compares to the seller’s revenue from an optimal
mechanism, which may not involve either of these approaches.® McAfee and McMillan
[1988] and Vincent and Manelli [2007] study questions related to when a monopolist’s
optimal mechanism involves take-it-or-leave-it mechanisms that set a price for each
possible collection of goods. Finally, Armstrong [2013] studies questions related to
optimal bundling with multiple sellers.

While these papers are all interesting, they all differ from our work in significant
ways. Our article differs from the work on bundling goods in that very few of these
papers consider models of bundling in an auction setting. Our article also differs from
the literature on information provision by a mechanism designer in that these papers
do not attempt to derive the detailed results in this article on how the number and
sizes of the various bidders affects the suitability of bundling compared to targeting
for a fixed-auction format. Furthermore, none of these papers considers the problem of
whether to sell goods using targeting or bundling when the seller must use a position
auction, and these papers also do not consider scenarios in which some of the buyers
buy objects using bundling while other buyers buy the objects separately. Our article
thus makes a number of new contributions to the literature on information provision
by a mechanism designer and bundling.

2. THE MODEL

Each buyeri € {1, 2, ..., n} has a value v; that is an independent draw from the cumu-
lative distribution function F;(v) with finite mean and variance, and a corresponding
continuous density f;(v) on its support [0, v;), where v; may be infinite. These bid-
ders compete in an auction, and bid either before their value is realized (bundling) or

4In addition, Ghosh et al. [2015] analyze incentives to share information when there is a risk of information
leakage that enables an advertiser to target a user on a different publisher, Johnson and Myatt [2006] analyze
a framework for considering questions related to general transformations in buyer demand, and Bergemann
and Valimaki [2006] further survey the literature on information provision in mechanism design.

5In addition, Yao [2015] studies bundling in the context of reducing the k-item n-bidder auction with additive
valuations to £-item 1-bidder auctions.
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after their value is realized (targeting). The model also applies to situations in which
bidders do not learn their exact values under targeting, but instead learn estimates
v; that are correct in expectation. Each bidder i’s expected value under bundling is
Jo vfiv) dv = [;°1 — F;(v) dv. For convenience, we name the bidders in decreasing

order of their expected values; thus, [;°1 — F;(v)dv > [;° 1 — F;;1(v) dv for all i.

Throughout this article, we consider two possible auction formats in which the
bidders may compete. First, we consider standard second-price auctions, in which
there is one object for sale and the bidder who makes the highest bid wins the
object and pays the second-highest bid. The results with symmetric buyers for
this format will also extend to first-price auctions by the revenue equivalence
theorem.

The second auction format that we consider is a position auction. Position auctions
differ from the setting considered earlier in that there are s positions, where s is a
positive integer satisfying 1 < s < n. Each position £ < s has a click-through rate
¢ > 0, where ¢, is nonincreasing in k& for all £ < s. Bidders compete by submitting bids
per clicks. The top position then goes to the bidder with the highest bid, the second
position goes to the bidder with the second-highest bid, and so on, with ties broken
randomly.

We consider two methods for setting prices in position auctions. The first pricing
method that we consider is a generalized second-price (GSP) auction. In this setting,
the k"-highest bidder pays a price per click that is equal to the bid submitted by the
k+ 1**-highest bidder. Thus, if v denotes the value of the £**-highest bidder and b 1)
denotes the bid submitted by the &+ 1**-highest bidder, then the final payoff of the £*-
highest bidder is cx(v) — b+1))- This is the same basic model of GSP auctions without
clickability of ads that is considered in Edelman et al. [2007] and Varian [2007].

The second possibility that we consider is the Vickrey-Clarke-Groves (VCG) mecha-
nism. Under VCG pricing, each advertiser pays a total cost equal to the externality that
the advertiser imposes on other bidders by bidding in the auction. Thus, under VCG
pricing, the bidder who wins the £ position pays a total cost of ijk(c i —cjr1)bis1)
and a total price per click equal to % Z;:k(c j — ¢;j+1)bj+1), where we abuse notation by
letting ¢s,1 = 0.

Finally, we also sometimes allow for reserve prices. If there is a reserve price of r,
then only bidders who bid at least » will be considered in the auction. Under standard
second-price auctions, if only one bidder bids more than the reserve, then this bidder
pays r for the object. Under GSP auctions, if there are only £ < s bidders who bid more
than the reserve price, then the payoffs of the first £ — 1 of these bidders are unaffected
by the reserve price, but the #"-highest bidder pays a price of  per click and obtains a
payoff of c (v — 7).

Finally, under position auctions using VCG pricing, we introduce reserve prices in
the following manner. If at least s + 1 bidders submit a bid in the auction that is
greater than the reserve price, then the reserve price has no effect on the outcome of
the auction. If K < s bidders submit a bid in the auction that is greater than the reserve
price, then only the bidders who submitted a bid greater than the reserve price have
their ads shown, and these bidders pay a price per click equal to the price that they
would pay if there were exactly K positions available and there were an additional
bidder who submitted a bid equal to the reserve price. Hummel [2016] has noted in
a more general setting that this method of introducing reserve prices into the VCG
mechanism both preserves the incentive for advertisers to bid truthfully and ensures
that any advertisers who have their ads shown pay a price per click that is greater
than or equal to the reserve price.
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3. SECOND-PRICE AUCTIONS WITHOUT RESERVE PRICES

We begin by comparing bundling to targeting in a standard second-price auction setting
with no reserve price. Throughout our analysis of second-price auctions, we assume
that bidders follow their weakly dominant strategies of bidding their (expected) values.
Thus, under bundling, all bidders bid their expected values, the bidder with the highest
expected value wins and pays the second-highest bid, and the seller’s revenue is the
second-highest expected value, or f0°° 1— Fy(v) dv.

Under targeting, bidders bid their exact values after learning their values, and the
seller’s revenue is the second-highest realized value. The second-highest realized value
is less than or equal to v when either the highest value is no greater than v or the
highest value exceeds v but all other values are less than or equal v. Thus, if vy,
denotes the realization of the second-highest value, the distribution of this realization
is given by

Privg < v) = HF(v)+Z<1 Fi) [[Fw) = ZHF(U)—(n—l)nF(v)

i#] J=1i#j

From this, it follows that the difference between the seller’s expected revenue under
targeting and bundling is

An = fool—Z]"[Fi(v)Hn—1)]‘[Fj(v)—(1—Fz(v>)dv

0 j=1 i;éj j=1

f Fo(v) — l_[F(v)+(n— 1)1—[F (v) dv.

Jj=11i#] J=1

First, we illustrate that the insight in Ganuza and Penalva [2010] and Palfrey [1983]
that the seller prefers bundling to targeting when there are two bidders extends to
cases in which the values of the bidders are not drawn from identical distributions.

TuEOREM 3.1. Suppose that there are n = 2 bidders. Then, the seller prefers bundling
to targeting.

All proofs are in the appendix. Next, we consider cases in which the bidders’ values
are drawn from the same distributions. When F;(v) = F(v) for all v, the difference
between the seller’s expected revenue under targeting and bundling is

A, = / F®) — nF" ') + (n — F™(v) dv.
0

Now, we use this expression for the difference between the seller’s expected revenue
under targeting and bundling to show that the seller prefers targeting to bundling
when there are n > 4 bidders. Throughout the remainder of this article, we let f(v)
denote the density corresponding to the cumulative distribution function F(v).

When at least four values are independently drawn from the same distribution, the
second-highest of these values will typically be higher than the average value under
certain regularity conditions. This insight is useful in proving the following result.

THEOREM 3.2. Suppose that F;(v) = F(v) for all i, l‘ff; ()“) is nonincreasing in v through-

out its support, and n > 4. Then, the seller prefers targeting to bundling.

Thus, in the symmetric case, when there are at least four bidders and the usual
hazard rate condition is satisfied, targeting dominates bundling. The reason for this is
that the second-highest realized value (the revenue under targeting) when there are
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at least four bidders is greater than the average value of these bidders (the revenue
under bundling) as long as the distribution does not have fat tails. The possibility of
fat tails is ruled out by the hazard rate condition; thus, targeting dominates bundling
when there are n = 4 bidders in this case.®

Similarly, when there are three bidders, the second-highest value is the median value;
thus, the seller’s expected revenue under targeting is just the expectation of the median
value of three samples. The seller’s expected revenue under bundling is the expected
value of the bidders. Since the mean (expectation of the median of three samples) of
a given distribution is greater than the expectation of the median of three samples
(mean) if the density corresponding to that distribution is decreasing (increasing), we
obtain the following result.

THEOREM 3.3. Suppose that F;(v) = F(v) for all i and there are n = 3 bidders. Then,
the seller prefers targeting to bundling if f(v) is nondecreasing in v (but not constant) on
its support, prefers bundling to targeting if f(v) is nonincreasing in v (but not constant)
on its support, and is indifferent between targeting and bundling if f(v) is constant on
its support.

In summary, when the buyers’ values are drawn from identical continuous distribu-
tions, the seller typically prefers targeting to bundling when there are four or more
bidders, while the seller prefers bundling to targeting when there are two bidders. The
seller’s exact preferences in the case in which there are three bidders depend on the
distribution, but since most natural distributions of values have a density f(v) that is
decreasing on most of its support, the seller is also likely to prefer bundling to targeting
when there are three bidders.

We conclude this section by noting when targeting would be preferred to bundling
in a model in which each bidder’s value is either equal to 0 or 1. This case is useful
to model scenarios under which an impression is either valuable to an advertiser
(when it converts) or not valuable (when the impression fails to convert), but there
is little heterogeneity in the value of an impression conditional on the impression
being valuable. This model is also important in that the worst-case analyses of many
famous problems, such as the secretary problem, achieve their worst case under such
a distribution.

THEOREM 3.4. Suppose that there are n > 3 bidders whose values are independent and
identically distributed draws from the Bernoulli distribution that takes on the value 1
with probability p. Then, there is some p*(n) € (0, 1) such that the seller prefers targeting
to bundling if and only if p > p*(n). Furthermore, lim,_, ,, n%p*(n) = 2.

Theorem 3.4 indicates that, when buyers’ values are drawn from the same binomial
distribution, there are always some values of p for which the seller prefers targeting
to bundling, and there are also values of p for which the seller prefers bundling to
targeting. However, the seller is more likely to prefer targeting to bundling if p is
large, and in the limit as the number of players becomes large, the set of values of p for
which the seller prefers bundling to targeting becomes arbitrarily small. Intuitively,
this arises because of the following: when there are a large number of bidders, the
probability that there will be at least two bidders who have a value of 1 for the object
becomes arbitrarily close to 1, and the seller is fairly certain to obtain 1 unit of revenue
if the seller allows targeting.

8For any finite number of players, there exists a distribution with sufficiently fat tails such that the seller
prefers bundling to targeting. In particular, if each bidder’s value is a random draw from the lognormal
distribution with mean 1 < 0 and variance 62 = —2, then, for any n, one can show that for sufficiently
negative p, the seller prefers bundling to targeting.
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4. RESERVE PRICES

This section illustrates that, with the exception of the case in which there is one bidder,
in symmetric settings, appropriate reserve prices favor targeting. Thus, when there are
four or more bidders, targeting with reserve prices dominates bundling with reserve
prices when bidder values are drawn from a distribution with a monotone hazard rate.
However, we also show that reserve prices are not enough to overturn the conclusion
that bundling is preferred to targeting when there are two bidders or the conclusion
that there is no general result as to whether targeting is preferred to bundling when
there are three bidders.

With symmetric bidders, the only case in which reserve prices make bundling rel-
atively more favorable is the case in which there is only one bidder. Without reserve
prices, the seller’s revenue when there is only one bidder is zero regardless of whether
the seller uses targeting or bundling. However, when the seller uses reserve prices, the
seller can extract the entire surplus under bundling by setting a reserve equal to the
bidder’s expected value. By contrast, the seller cannot extract the entire surplus under
targeting; thus, the seller will prefer bundling to targeting when there is one buyer
and the seller can set a reserve price.

Although the introduction of reserve prices makes targeting relatively less favorable
compared to bundling in the case in which there is only one bidder, when there are
multiple bidders whose values are all drawn from the same distribution, the introduc-
tion of reserve prices can only make the situation better for targeting. Adding reserve
prices does not improve the seller’s revenue under bundling since the seller’s revenue
is equal to the bidders’ expected values under bundling regardless of whether the seller
uses a reserve price. However, reserve prices do increase the revenue from targeting.
Nonetheless, it is still the case that the seller typically prefers bundling to targeting
when there are two symmetric bidders.

TuEOREM 4.1. Suppose that there are n = 2 bidders, Fi(v) = Fy(v) = F(v), and the
density f(v) is nonincreasing in v. Then, the seller prefers bundling to targeting with
the optimal reserve.

In addition to bundling still typically being optimal with two bidders, it is also the
case that the seller will sometimes want to use bundling with three bidders. Although
the seller now prefers targeting to bundling in the case in which the buyers’ values are
drawn from a uniform distribution, the seller still prefers bundling to targeting when
the buyers’ values are drawn from an exponential distribution, even if the seller uses
the optimal reserve price.

OBSERVATION 4.1. Suppose that there are n = 3 bidders and F;(v) = F(v) for all i.
Then, the seller prefers targeting to bundling when the bidders’ values are drawn from
the uniform distribution, but the seller prefers bundling to targeting when the bidders’
values are drawn from the exponential distribution.

5. ASYMMETRIC BIDDERS WITHOUT RESERVE PRICES

We now consider a scenario in which the values of the bidders are not all drawn from
the same distribution. In particular, we consider a scenario in which there is some
cumulative distribution function F'(v) and some values a7, ..., o, satisfying a7 > ag >

. > a, > 0 such that Fj(v) = F(v)*% for all i. This model has practical relevance
because a firm typically has many products that it might wish to advertise, but in
any particular auction, the firm will only have an opportunity to advertise its best
product. If the firm’s value for advertising a particular product is an independent and
identically distributed draw from the distribution F(v), then the value of the firm’s
best product is a random draw from the distribution F(v)* if the firm has «; products.
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This formulation is also useful because the values of @; have a natural interpretation
in terms of the bidders’ probabilities of winning the auction. If A= }"_; «;, then the
probability that bidder j has the highest value is

Prvi>v Vi#j)= /Omgﬂ(v)ajF(v)"‘flf(v) dv = %.

We now present a result that expresses the circumstances under which targeting is
preferred to bundling as a function of the probabilities with which the bidders have the
highest values.

LemMA 5.1. Suppose that F;(v) = F(v)* for some a, ..., ay, satisfying a1 > ag > -+ >

oy > 0, ag (and A) are sufﬁczently large, n > 3, and * ffv ()”) is nonincreasing in v. Then,

if % <(1—-)1 - %) =" E2s , the seller prefers targeting to bundling.

The inequality in Lemma 5.1 is a function only of two variables, % and %. We now
seek to show when this inequality is satisfied given that «; and o must meet the
constraints 0 < 2 <min{%,1 - Z}.

TueoreM 5.2. The inequality in Lemma 5.1 is satisfied if % < 0.30366. If % >
0.30366, there exists some y* € (0, min{%}, 1 — %1}) such that this inequality is satisfied
if and only if 2 < y*. Furthermore, if this key value of y* is taken as a function of %,

¥y (F)/1 — )Ls increasing in %4 and as % — 1, y*(3)/(1 - %) — 1L

This result indicates that, When 73 < 0.30366 and the strongest firm wins the auc-
tion less than 30.366% of the time, there is automatically enough competition in the
auction that targeting will increase revenue. When the largest firm is larger than this,
then improved targeting will increase revenue if and only if the second-largest firm is
sufficiently small and there is enough competition from other firms.

Interestingly, the result that y*(%4)/(1 — %) is increasing in < indicates that, as the
strongest firm becomes more dominant, the second-strongest firm can be relatively
stronger compared to the weaker firms without changing the result that targeting im-
proves revenue. Furthermore as % — 1 and the strongest firm becomes arbitrarily
strong, y*(%4)/(1 — %) — 1, indicating that the second-strongest firm can also become
arbitrarily strong re ﬁatlve to the weaker firms and still ensure that targeting improves
revenue. This makes sense intuitively. When the strongest firm becomes more domi-
nant, the expected second price becomes lower, and there is a greater need to allow
targeting to increase the chances that the strongest firm will be given a substantial
challenge.”

6. POSITION AUCTIONS

Having discussed whether targeting is preferred to bundling in the case of a single-
object auction, we now consider how the results would be affected by using position
auctions. We focus on the case in which F;(v) = F(v) for all 7, and F(v) has compact
support [0, v]. Throughout, we also focus on symmetric pure-strategy equilibria.

In this symmetric case, if the seller uses bundling and all bidders bid before learning
the realizations of their values, then all bidders have an expected value for a click that
equals fooo 1 — F(v) dv, and the unique symmetric pure-strategy equilibrium is for all

"These results all also hold regardless of whether the bidders know the distribution from which other bidders’
values are drawn. Regardless of whether bidders know this distribution, a bidder’s dominant strategy is to
bid truthfully; this is all that is needed to derive the results in this section.
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bidders to bid this expected value regardless of whether we use GSP or VCG pricing.
Total revenue for the seller under bundling is therefore equal to } ;_; ¢ [~ 1— F(v) dv.

Next, we consider the case in which bidders bid after learning the realizations of their
values (targeting). We assume that when bidders bid, they know their own values but
not the bids or the values of any of the other bidders. The assumption that bidders do
not know the values of the other bidders is logical because, in practice, there are myriad
dimensions in which auctions will differ from one another. There will be auctions for
users of different ages, genders, or geographical areas, auctions that take place on
different times of day, days of the week, or months of the year, auctions that take place
on different devices such as mobile, tablet, or desktop, and so on. The myriad possible
targeting dimensions means that it is unlikely that any exact auction will ever repeat
itself; thus, bidders are unlikely to know the other bidders’ exact values at the time
that they bid in an auction.

We first address the question of when there exists an equilibrium to this game under
GSP when there is a reserve price r. In addressing this question, we make the sim-
plifying assumption that bidders are restricted to making bids in discrete increments
of ¢ for some small ¢ > 0. This assumption is realistic in situations in which bidders
cannot adjust their bids by less than some very small amount (such as a small fraction
of a penny). Under this assumption, we obtain the following result.

LeEmMA 6.1. If bidders must make bids in discrete increments, then there exists a pure-
strategy equilibrium in GSP auctions in which each bidder i with value v > r follows
a strategy of making some bid b;(v) € [r,v;] that depends only on the bidder’s value v.
Moreover, in this equilibrium, it is necessarily the case that b;(v) must be nondecreasing
in v for all i, and any equilibrium must be equivalent to a pure-strategy equilibrium.

This result illustrates that, even in the asymmetric model, there exists a monotonic
equilibrium in pure strategies. It is worth noting that this result can also be extended
to cases in which the ads have different quality scores. In some GSP auctions, each
advertiser i is ranked in part by the advertiser’s quality score y; which reflects the
overall likelihood that users will want to click on bidder i’s ad. In these auctions, a
bidder with the £**-highest value of y;b; obtains the £ position and pays a price-per-
click equal to y4+1)b¢11)/ y(k), where b, 1) and y+1) denote the bid and quality score of
the bidder with the & + 1% hlghest value of y;b;. Nothing in the overall proof strategy
used to prove this result requires the assumption that the ads have the same quality
scores; thus, a substantively identical proof can be used to show that there also exists
a pure-strategy equilibrium in monotonic strategies in an analogous model in which
ads have different quality scores.

Next, we consider the case in which the players’ values are all drawn from the same
distribution. In this case, we can go further by noting that there exists a symmetric
equilibrium of the form given in the previous theorem. In analyzing the symmetric
case, we let v denote the upper bound of the support of the distribution of the players’
values.

LeEMMA 6.2. Suppose that F;(v) = F(v) for all i and bidders must make bids in discrete
increments. Then, there exists a symmetric pure-strategy equilibrium in GSP auctions
in which each bidder i with value v > r follows the same bidding strategy b(v) € [r,v]
that depends only on the bidder’s value v. Moreover, in this equilibrium, it is necessarily
the case that b(v) must be nondecreasing in v.

We now return to the case in which players make bids on a continuous scale.
Although the previous results do not guarantee existence of a symmetric monotonic
equilibrium when players may make bids along a continuous scale, we have shown that
symmetric monotonic equilibria always exist in GSP auctions if players must make
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bids in arbitrarily fine discrete increments. Furthermore, Gomes and Sweeney [2014]
have illustrated that for a wide variety of cases, there exists a symmetric pure-strategy
equilibrium in which bidders follow strictly monotonic bidding strategies even if the
players may submit bids along a continuous scale. We thus take symmetric monotonic
equilibria as a starting point and use this to address the question of whether targeting
is preferred to bundling for the seller.

In order to address this question, we must first derive expressions for the seller’s
revenue in the case in which the bidders are allowed to target. This is done in the
following lemma.

LeEmMA 6.3. Suppose that F;(v) = F(v) for all i and the bidders use a symmetric and
strictly monotonic bidding strategy b(v) in equilibrium. Then, expected revenue in GSP

auctions equals n [ 35 c(4~1)(1 = F)F1F ()"~ — W) £(v) dv,

This result illustrates that there is a natural correspondence between the seller’s
expected revenue in an auction for a single slot and the seller’s revenue in a GSP
auction. In a standard private-value auction, the seller’s expected revenue is just the

expectation of the highest virtual valuation v — l}fv ()”). In a GSP auction, the only

difference is that the seller’s expected revenue is now the sum of the expectations of

the j*-highest virtual valuations v — 1_f<—l';()”) weighted by the various click-through rates.

The seller’s revenue in GSP auctions also turns out to be exactly the same as the
seller’s revenue in position auctions using VCG pricing. Hummel [2016] has charac-
terized the seller’s revenue in a more general class of position auctions under VCG
pricing. In the special case of Hummel [2016] corresponding to the model considered in
this article, the seller’s revenue under VCG pricing is exactly the same as the seller’s
revenue in Lemma 6.3.

Now, we use this result to address the question of whether the seller prefers targeting
or bundling in position auctions. Our characterization of the circumstances under
which the seller prefers targeting to bundling illustrates that there are some natural
similarities between the situations in which the seller prefers targeting to bundling in
position auctions and single-object auctions. When there is a relatively small number
of players, the seller prefers bundling to targeting, and when there is a larger number
of players, the seller prefers targeting to bundling. For an intermediate number of
players, it is ambiguous as to whether the seller prefers targeting to bundling. This
result is formalized in the following theorem.

THEOREM 6.4. Suppose that F;(v) = F(v) for all i, v — l}f; ()”) is increasing in v, the

bidders use a symmetric and strictly monotonic bidding strategy b(v) in equilibrium
under GSP pricing, and the reserve price is either zero or greater than or equal to
the optimal reserve (but less than the bids under bundling).® Then, the following hold
regardless of whether the seller uses GSP or VCG pricing:

(1) There exists some n* > 2 such that bundling is preferred to targeting for all values
of cp if and only if n < n*.

1-Flg)
Flog)
in &, where v denotes the k-highest value. This is immediate when either » = 0 (and Pr(vg > r) = 1)

or when r is greater than or equal to the optimal reserve (and v — l}f; ()") > 0 for all v > r). However, this

may not hold for other values of r because smaller values of £ may mean that it is more likely that vy > r
1-Flog,)
flug)
conjecture that it may be possible to generalize the results to other suboptimal reserves.

80ur proof of Theorem 6.4 makes use of the fact that Elvg, — vy = rlPr(vg) > r) is decreasing

and V) —

< 0 will be satisfied. Thus, our proof breaks down without this assumption, though we
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(2) There exists some n** > n* such that targeting is preferred to bundling for all values
of ¢, if and only if n > n**.

(3) Forvaluesof n € (n*, n**), there exists some positive integer k* < s such that targeting
is preferred to bundling if and only if the values of ¢y, for k < k* are sufficiently large
compared to the values of c;, for k > k*. Moreover, this k* is nondecreasing in n.

In position auctions with symmetric bidders, the number of players never has any ef-
fect on seller revenues under bundling because the players always bid their (identical)
expected values under bundling. However, seller revenues are increasing in the number
of bidders in position auctions because the expectations of the £“*-highest virtual valu-

ations v — 1}(—1';()“) are all increasing in the number of players. This explains the observed

comparative statics results with respect to the number of players in Theorem 6.4.

The comparative statics results in Part (3) of Theorem 6.4 follow from the difference
between the seller’s expected revenue from each position in the position auction under
targeting and bundling. Under targeting, the seller’s expected revenue per click from
the top positions is greater than the seller’s expected revenue per click from the bottom
positions, but the seller’s expected revenue per click is independent of position under
bundling. Thus, situations in which the top positions contribute a disproportionate
percentage of revenue compared to the bottom positions make targeting a better choice,
whereas situations in which the bottom positions contribute a substantial percentage of
revenue may make bundling a better choice. This gives the comparative statics results
given in Part (3) of Theorem 6.4.

Finally, we present an example to give a sense of the values n* and n** that arise in
Theorem 6.4. When the players’ values are drawn from the uniform distribution and
there is no reserve price, we obtain the following result.

OBSERVATION 6.1. Suppose that the bidders’ values are independent draws from the
uniform distribution on [0, 1] and there is no reserve price. Then, the appropriate values
for n* and n** in Theorem 6.4 are n* = 3 and n** = 2s + 1.

We close with one remark about the robustness of these results to modeling assump-
tions. Throughout this section, we have assumed that bidders do not know each other’s
values when they bid under targeting. However, the results of this section for the zero
reserve price will hold even if bidders are able to learn the other bidders’ values before
bidding. If bidders know each other’s values, then we know from Edelman et al. [2007]
that, even under GSP, there exists an envy-free equilibrium in which the players’ pay-
offs are the same as they would be in the dominant strategy equilibrium of the VCG
mechanism. Under this equilibrium, the seller’s revenue would be the same as it is un-
der VCG for any realization of the targeting data. Thus, the seller’s expected revenue
unconditional on the realization of the targeting data is also the same as it would be
under VCG. However, the expression we have given for the seller’s expected revenue
under targeting in Lemma 6.3 is equal to the seller’s expected revenue under VCG.
Thus, even if bidders learn each other’s values before bidding under targeting, the sub-
stantive conclusions in Theorem 6.4 will hold if bidders follow the main equilibrium
strategies considered in Edelman et al. [2007].

7. WHAT IF NOT ALL BIDDERS CAN TARGET?

So far in this article, we have compared scenarios in which all bidders can target with
scenarios in which no bidders can target. While this an important baseline, there may
also be settings in which targeting information would only help some bidders more
accurately assess the values they have for a particular advertisement. Additionally, a
seller may want to experiment with making targeting information available to certain
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advertisers but not to others. This section explores the consequences of allowing only
certain bidders to target.

As before, we consider a model in which there are n bidders, and bidder i’s value, v;, is
an independent draw from the cumulative distribution function F; with corresponding
density f;. If bidder i is able to target, i learns i’s value before placing a bid, but if
bidder i is not able to target, then the bidder simply knows that the bidder’s expected
value for a click equals [~ vfi(v) dv = [;° 1 — F;(v) dv. For notational convenience, we

assume throughout that [;° 1 — F;(v) dv > [;° 1 — Fj;1(v) dv for all i. We consider both
standard second-price auctions and generalized second-price auctions with no reserve
price.

First, we address whether the types of comparative statics results that we obtained
in the previous sections continue to hold when only some of the bidders can target.
Previously, we obtained results that suggested that targeting is more likely to be
preferred to bundling when there are more bidders who can target. While this will
continue to hold if at least two bidders cannot target, this will not hold in general, as
the following result illustrates.

THeEOREM 7.1. If bidders’ values are drawn from the same distribution, a seller’s
expected revenue from targeting need not be monotonic in the number of bidders that
can target in an auction for a single object. However, a seller’s expected revenue from
targeting will be monotonic in the number of bidders that can target if at least two
bidders cannot target.

When at least two bidders cannot target, the second-highest bid will always be at
least as large as the expected value, but could be strictly larger if the second-highest
bid of the bidders that can target is greater than this expected value. This second-
highest bid of the bidders that can target will be larger, on average, when more bidders
can target. Thus, a seller’s expected revenue from targeting will be monotonic in the
number of bidders that can target if at least two bidders cannot target.

However, the seller’s revenue from targeting may be lower if only one bidder can
target than if two bidders can target. This is especially likely to arise if the bidders’
values are drawn from distributions with fat tails. In this case, if there are four bidders
and only two bidders can target, the seller’s expected revenue under targeting is larger
than that of bundling. However, if three bidders can target, then it is very likely that
these bidders will all learn that they have a very small value, the seller’s revenue is
likely to be very small, and bundling will be preferred to targeting.

Now, we turn to the question of how allowing just one bidder to target would affect
seller revenues when the buyers’ values are drawn from different distributions. This
situation is important because some targeting information may affect only one bidder’s
estimate of the bidder’s value for advertising to a certain user. First, we consider
auctions for a single object.

THEOREM 7.2. Suppose that the bidders’ values are drawn from different distributions
and only one bidder will be able to make use of certain targeting information in an
auction for a single object. Then, the following results hold:

(1) The seller strictly prefers bundling to targeting if the bidder with the highest expected
value is the only bidder that can target.

(2) The seller strictly prefers targeting to bundling if a bidder with the k"-highest
expected value for some k > 3 is the only bidder that can target.

(3) Ifa bidder with the second-highest expected value is the only bidder that can target,
then the seller prefers targeting to bundling if and only if the values of the highest
and third-highest expected bids are sufficiently high.
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Next, we address how allowing just one bidder to target would affect seller revenues
in position auctions. In analyzing how this would affect seller revenues in position
auctions, we make the assumption that the seller’s revenue is the same as it would be
in the dominant-strategy equilibrium of the VCG mechanism. Edelman et al. [2007]
have noted that, even in the GSP auction, there are settings in which there is always
an envy-free equilibrium in which the players’ payoffs are the same as they would be
in the dominant-strategy equilibrium of the VCG mechanism. Since this is a natural
equilibrium to focus on, we consider how allowing only one bidder to target would affect
the seller’s revenue in such an equilibrium.

THEOREM 7.3. Suppose that only one bidder will be able to make use of certain targeting
information. Then, if bidders follow an equilibrium of the position auction that results
in the same revenue as the dominant-strategy equilibrium of the VCG mechanism, the
following results hold:

(1) The seller strictly prefers bundling to targeting if the bidder with the highest expected
value is the only bidder that can target.

(2) The seller strictly prefers targeting to bundling if a bidder with the k-highest
expected value for some k > s + 2 is the only bidder that can target.

(3) If a bidder with the F"-highest expected value for some k € [2,s + 1] is the only
bidder that can target, there is no general result as to whether the seller prefers
targeting to bundling.

Together with Theorem 7.2, Theorem 7.3 suggests that it is not in a seller’s inter-
est to enable targeting if only the strongest bidder will be able to use the targeting
information. It is in a seller’s interest to improve targeting if only the weakest bidders
will be able to make use of the targeting information, and it may or may not be in
a seller’s interest to improve targeting if only intermediate-strength bidders will be
able to make use of the targeting. These results are somewhat related to the insights
on optimal auctions by Myerson [1981]. Myerson [1981] finds that, when asymmetric
bidders are competing in an auction, a seller can improve its revenue by giving an
artificial bonus to the weaker bidders. In this setting, the seller can likewise improve
revenue when the weaker bidders have the advantage of being able to target.

8. EXPLORING ADS

In this section, we explore a connection between the circumstances under which im-
proved targeting increases revenue and the circumstances under which exploring ads
with unknown click-through rates would increase revenue. Often in online advertising,
ads are ranked on the basis of the product of the bid that an advertiser has placed per
click as well as a predicted click-through rate, which we refer to as an expected cost-
per-1000-impressions or eCPM bid. While the predicted click-through rates are likely
to be quite accurate for ads for which there is a lot of evidence about the click-through
rate of the ad because the ad has been shown a large number of times, they may be less
accurate for ads for which there is little that is known about the click-through rate of
the ad because the ad has hardly been shown at all.

In this case, if the system always ranks the ads on the basis of their eCPM bids,
then ads ranked below the top ad will never be shown and we will never learn the
click-through rates of these ads. On the other hand, the system could try to explore ads
for which the click-through rates of the ads are not known by sometimes showing these
ads to learn more about their click-through rates. If one does enough exploration, then
over the course of many auctions, one will eventually learn the click-through rates of
all the ads with arbitrary precision.
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There is a connection between the circumstances under which exploring the click-
through rates of ads will increase long-run revenue relative to not doing any exploration
in a Bayesian model for uncertain eCPMs and when improved targeting increases
revenue. If one does not explore the click-through rates of the ads, then one will simply
always show the ad that one expects to be best, and this advertiser will pay an average
price equal to the expected second-highest eCPM bid. If one systematically explores
the click-through rates of the ads, then one eventually learns the true eCPMs of all the
ads and revenue will ultimately equal the actual second-highest eCPM bid. From this,
we have the following result.

Remark 8.1. The circumstances under which exploring ads increases revenue in
the long run are isomorphic to the circumstances under which improved targeting
increases revenue.

An implication of this result is that if it is beneficial to improve one’s estimates of the
predicted click-through rates of the ads, then it is also beneficial to improve targeting.
Similarly, improving targeting is beneficial if it is beneficial to improve one’s estimates
of the predicted click-through rates of the ads.

9. CONCLUSION

This article has analyzed when improved targeting increases revenue. We have gen-
erally found that improved targeting increases revenue when there are a sufficiently
large number of serious bidders, but targeting can hurt revenue when there are just a
few dominant bidders. These types of results tend to hold regardless of whether we are
in a standard second-price auction or a position auction, and regardless of whether the
seller uses reserve prices.

We close by discussing the robustness of our results to one possible modeling as-
sumption. Throughout this article, we have assumed that the number of bidders in
the auction is the same regardless of whether the seller uses bundling or targeting,
but one might imagine that the number of bidders in the auction could change as a
result of improved targeting. However, this possibility would have no effect on most of
the results in this article. When bidders’ values are all drawn from the same distri-
bution, the seller’s revenue under bundling is independent of the number of bidders
in the auction, assuming that at least two bidders bid in the auction or there is a
reserve price. Thus, if we interpret n to be the number of bidders in the auction under
targeting, whether targeting is preferred to bundling is independent of the number of
bidders under bundling. We therefore can immediately extend all of our results for the
symmetric setting to a model in which the number of bidders may change as a result
of improved targeting.

APPENDIX

Proor or THEOREM 3.1. The difference between the seller’s expected revenue under
targeting and bundling when there are n = 2 bidders is

00 2 2
Ay = / B =Y [[F@+@-D[][Fiwdv
0 =1

J=Llij

= / —F1(v) + Fo()F1(v) dv = / (Fo(v) — 1)F1(v) dv < 0.
0 0

Thus, the seller prefers bundling to targeting when there are n = 2 bidders. O
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Throughout the proofs of Theorems 3.2 and 3.3, we let v denote the upper bound of
the support of F(-).

ProoF oF THEOREM 3.2. First, note that ifn > 4, then ¢(y) = §+y3—3+~ : ~+f%—”;nly” >0
forally e 2[0, 1. ¢(y) = y"(5-+- - -+ —1); thus, ¢ > Oifand onlyif -4 4L -1 >
0. Since 3% + -4+ # — 1 is decreasing in y, ¢ > 0 for all y € [0, 1] if and only if

%+~-~+ }L — 1 > 0, which holds for all n > 4. Thus, ¢(y) > 0 for all y € [0, 1] if n > 4.
Now, the difference between the seller’s expected revenue under targeting and
bundling when there are n bidders and F;(v) = F(v) for all i is

A, = /v F(v) — nF" Y(v) + (n — DF™v) dv
0

_ / (1‘F (v))(F(v)+F2(v)+~-~~I—F”2(v)—(n—1)F”l(v))f(v)dv
0

)
1-Fw)\ (Fv) F3) Frlw) n—-1_. \/|
- () (5P e e )|
V1 —F)\ [(Fiv) F3@) F1(v) n-1 n
—/O< o )( 2 - T F(v))dv

= (L 1-F() 1 1 1 n—1
_(”1_1’1’} f() >[§+§+m+n—1_ n ]
T(1-F)\ [FXw)  F@) Frl) n-1,.,
_/o< f) )[ o tT3 vt T T, F(v)] dv.

By the result in the first paragraph of this proof, both terms in square brackets

are positive for all v > 0. Also, the term lim, .3 l}f; ()”) is nonnegative since 1}(—";()”) is

nonnegative for all v, and the term (l}ﬁ ()”))/ is nonpositive by assumption. Thus, A, > 0

and the seller prefers targeting to bundling. O

Proor or TaEOREM 3.3. The difference between the seller’s expected revenue under
targeting and bundling when there are n = 3 bidders is
vl
——(F(v) — 3F%(v) + 2F3)) f(v) dv

Ag = / F(v) — 3F%(v) + 2F3(v) dv =
0 o fw)

1 (P, FYN[ [T 1\ [P0 o Fi)
_W<2 _ PR+ 2>0_/0<W><2 _ PR+ 2>dv
F2(v) 2|” Vo1 F3(v) 2
570 (1= Fw)*| /0 ( f(v)) 2 (1~ Fw)? du

Now, if f(v) is nondecreasing in v on its support, then 5;8;(1 — F()?|y = 0 and
Ag=— [ félu))’ F22(”)(1 — F(v))? dv. Thus, if f(v) is nondecreasing in v (but not constant)
onits support, then Az > 0, and if f(v) is constant on its support, then Az = 0. Similarly,
if f(v) is nonincreasing in v (but not constant) on its support and g;gz;( 1- F(v))2|g =0,

v / 2 v
then Az = _fo(ﬁ) F2( )(1 - F(v))? dv < 0.
> _

If f(v) is nonincreasing in v and gfzsi(l — F(v))2|8 # 0 (which implies that v = 00),

then consider what Ag would equal if the players’ values were instead random draws
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from the distribution F(v|0) satisfying F(v|0) = ;Eg; for v < 0 and F(v) = 1 for v > 6.

For any finite 6 > 0 such that f(v) is not constant for all v < 0, it is necessarily the

case that 5;8:3;(1 — F(v|9))2|”‘9 = 0, where f(v|0) denotes the density corresponding to

F(v|0) and v]0 denotes the upper bound on the support of F(v|0). Moreover, f(v|0) is
nonincreasing in v (but not constant) on its support; thus, A < 0 when the players’
values are random draws from F(v|6). Furthermore, A3 must be bounded away from 0
for all & > 6*, where 6* is some constant in the interior of the support of F(.).
However, in the limit as 6 becomes arbitrarily large, the value of Ag when the values
of the players are random draws from the distribution F'(v|60) becomes arbitrarily close
to the value of A3 when the values of the players are random draws from the distribution
F(v). From this, it follows that if f(v) is nonincreasing in v (but not constant) on its

support, then Ag < 0 even if g sz;(l — F(v))2|g # 0. The result follows. O

Proor or THEOREM 3.4. Under bundling, all bidders have an expected value of p; thus,
all bidders bid p and the seller obtains a revenue of p. Under targeting, if at least two
bidders learn that they have a value of 1, these bidders will all bid 1, and the seller’s
revenue will be 1. However, if no more than one bidder learns that it has a value of
1, then all other bidders make a bid of 0, the second-highest bid will be 0, and the
seller’s revenue will be 0. Thus, under targeting, a seller’s expected revenue is just the
probability there will be at least two bidders who learn that they have a value of 1, or
1-(1—p—np(l—pr1

From this, it follows that the seller prefers targeting to bundling if and only if 1 —(1—
p—np(l—py1>pel-p>A-p)l+np(l—p ! & 1> 1A-p) 4+np(1—p)—2. Now,
g(p)=1—p) 14np(1—p)*2 = (1+(n—1)p)(1—p)* 2 satisfies g(0) = 1and g(1) = 0 and
§§ (n—1)(1—p)"2—(n—2)1+(n—-1p)1—p)"3 = (n—1)(1—p)(1—p)" 2 —(n—2)(1+(n—

Dp)1—p)—2 = [(n—1D)—(n—1) p—(n—2)—(n—2)(n—1) pl(1—p)* 3 = [1 (n—1)2p)(1—p)y*=3.
However, the fact that di [1—(n—1)2pl(1 — p)* 3 means that—p > 0if p < 725 and

;)2, meaning that g(p) is initially increasing in p and then decreasing

Comblmng this with the fact that g(0) = 1 and g(1) = 0 means that there is some
p* € (0,1) for which g(p*) = 1, and at this p*, it must be the case that g'(p*) < 0,
g(p) > 1for p < p*, and g(p) < 1 for p > p*. Thus, there is some p*(n) € (0, 1) such that
the seller prefers targeting to bundling if and only if p > p*(n).

Furthermore, since this p*(n) must satisfy g(p*(n)) = 1, we must have that (1 —
p )" 1 +np*(n)(1— p*(n))"~2? = 1. This, in turn, implies that lim,_, ., p*(n) = 0 because,
for any fixed p* € (0, 1), lim,_, (1 — p*)* ! + np*(1 — p*)*2 = 0. Thus, it must be that
lim,,_, . p*(n) = 0 in order for (1 — p*(n))* ! + np*(n)(1 — p*(n))* 2 = 1 to hold for all n.

It also must be the case that lim,, ., ., np*(n) = 0. To see this, note that if there is some
subsequence of {n}7° ; for which lim,_, ., np*(n) = @ > 0 along this subsequence, then

limy,_, oo (1= p* ()" 1 +np*(n)(1—p* ()" 2 = limy oo (1-2)" 1 4+a(1-2)"2 = e " fae ™™ =
(14 a)e @ # 1 for o # 0. Thus, in order for (1 — p*(n)* ! + np*(n)(1 — p*(n))* 2 =1 to
hold for all n, it must be the case that lim,,_, ., np*(n) = 0.

Finally, it must be the case that lim,_, ., n?p*(n) = 2. To see this, note that

(1 - p*)" 1 + np*(n)(1 — p*(n))" 2

=1-(n—-Dp*n)+ wp*(n)z + 0 p*(n)®)

2
+ np*(n)(1 — (n — 2)p*(n) + O p*(n)?))
1(n—2
=1+p'(n)— W—)z# p*(n)? + 03 p*(n)®).
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Thus, in order for (1 — p*(n))* ! + np*(n)(1 — p*(n))* 2 = 1 to hold, it must be the
case that 1+ p*(n) — "H2=2 p*(n)2 + O(n®p*(n)*) = 1 for large n. However, a necessary

condition for this to hold is that limy,_, oo 2 = 1. Since this

T*()Z =1lor hmn_wo

2
nzp*(n)
can only hold if lim,,_, o, 7% p*(n) = 2, we know that lim, ., n?2p*(n) = 2. DO

Proor or THEOREM 4.1. We know from Bulow and Klemperer [1996] that when f(v)
is nonincreasing in v, the seller’s expected revenue in an auction with two bidders and
the optimal reserve price is lower than the seller’s expected revenue in an auction with
three bidders and no reserve price. However, we know from Theorem 3.3 that when
F;(v) = F(v) for all i, and the density f(v) is nonincreasing in v, then the seller prefers
bundling to targeting when there are n = 3 bidders and no reserve price. Since the
seller’s expected revenue under targeting when there are two bidders with the optimal
reserve price is even lower than the seller’s expected revenue under targeting when
there are three bidders and no reserve price, it follows that the seller prefers bundling
to targeting when there are n = 2 bidders, even if the seller uses the optimal reserve
price. O

Proor or OBSERVATION 4.1. When there are n = 3 bidders and each bidder’s value is an
independent and identically distributed draw from the uniform distribution, we know
from Theorem 3.3 that the seller is indifferent between bundling and targeting when
there is no reserve price. Since setting the optimal reserve price increases the seller’s
revenue under targeting but not under bundling, it then follows that, when there are
n = 3 bidders and the seller sets the optimal reserve price, the seller obtains greater
revenue under targeting than under bundling when the bidders’ values are drawn from
the uniform distribution.

Now, suppose that there are n = 3 bidders and the bidders’ values are independent
and identically distributed draws from the exponential distribution with cumulative
distribution function F(v) = 1—e". If there is no targeting, then all bidders bid their ex-
pected value of 1, and the seller’s revenue will be 1. If there is targeting, then the seller’s

optimal reserve price r satisfies r = l‘f(—ﬁ;()’) =1, and the seller’s expected revenue is

f ” (v - 1_—””) nFQ) 1 f(v) dx = / "0 = DnF@P1 £ do
i 70 )

(=11 - FWw)")

+f 1-Fw)"dv
1 1
o) 92 _ 1 2
=/ 1—(l—e)pqy= 2218
1 663

Thus, the seller prefers bundling to targeting when the bidders’ values are drawn
from the exponential distribution. O

Proor or LEMMA 5.1. The revenue gain from targeting is

/Fz(v)—Zl_[F(v)+(n—1)HF(v)dv

J=1i#] j=1
f F*(v) — l_[F“‘(v)—i-(n—l)l_[F""(v)dv
J=11i#] j=1

/ Fw) — Y FA9(0) 4 (1 DFA) do.

Jj=1
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Now, define A(2) to be h(z) = 2% — 377, 247% 4+ (n — 1)z%. Note that h(0) = i(1) = 0.

Also, since n > 3, we have o < A — «; for all j; thus, for very small values of z > 0, we
have that A(z) > 0. Furthermore, /(1) = as — Z?Zl(A— a;)+(n—1)A = ag > 0; thus, for
values of z near 1, A(z) < 0. Combining these facts shows that there must be at least
one value of z € (0, 1) for which A(z) = 0.

We now show that there is, in fact, only one value of z € (0, 1) for which A(z) = 0. To
see this, note that, if A(z) = 0, Z?:l 247% = 2% 4 (n — 1)z4. Thus, for any such z, we
have that

2h(2) = agz™ — ) (A= a2 + (n— DA

j=1

= @2 —n)y LA—apeh 1 (- 1A
n

=1

"1 "1
> a2 —n) —(A—a;)y =z*% —1)Az4
> 92 nj:1 n( Ot,)j:1 2 +n-1

n 1 n
= @2 =) —(A-a)) 2"+ (- DA?
Jj=1 j=1

ooz~ P A (- 1At (n— DAA
n

<a2—n;1A>z’12+(n—1)(1— n_1>AZA
n n

<a2 s 1A) gy DL gt [(aQ s 1A) LR 1A2A“2} |
n n n n

where the inequality follows from the fact that A — «; is increasing in j and z
is decreasing in j. Therefore, the covariance between these terms, Cov(A — «;, 24,
is nonpositive. Thus, E[(A — « J-)(zA*"‘J' )] = E[A—« j]E[zA*"‘J] + Cov(A — «j, zA9) <
E[A—«;]E[z*~%], meaning that Z?:l %(A— aj)zA < Z?:l ’ll(A— o;) Z?zl ,lle*“j. The
fifth line in these equations invokes the fact that »7_, 24 =z 4 (n — 1)z# when
h(z) = 0.

Now, the sign of the final expression in this inequality for zA'(z) is nondecreasing in
z for z > 0. From this, it follows that if there is some 2 € (0, 1) for which A(2) = 0 and
A (2) > 0 (thus, h(z) > 0 for values of z slightly greater than 2), then it is necessarily the
case that, for any other values of z > 2 for which A(z) = 0, we must have that #'(z) > 0
as well. However, if h(z) > 0 for values of z slightly greater than 2, it is necessarily the
case that the next smallest value of z > 2 satisfying h(z) = 0 also satisfies #'(z) < 0.
Since there is at least one other value of z > 2 satisfying i(z) = 0 (when z = 1), this
contradicts the fact that #/(z) > 0 for any values of z > 2 for which A(z) = 0. Thus, if
there is some Z € (0, 1) for which A(2) = 0, it must be the case that A'(2) < 0.

However, if #/(2) < 0 for any 2 € (0, 1) satisfying A(2) = 0, then it must be the case
that h(z) < 0 for values of z slightly greater than 2, and the next smallest value of
z > 2 satisfying h(z) = 0 also satisfies #/(z) > 0. Combining this with the results in the
previous paragraph shows that if 2'(2) < 0 for any 2 € (0, 1) satisfying h(2) = 0, then
z = 1 must be the next smallest value of z > 2 satisfying A(z) = 0. From this, it follows
that that there is exactly one value of z € (0, 1) for which A(z) = 0. Furthermore, if 2

A—O(j
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4:20 P. Hummel and R. P. McAfee

denotes the unique z € (0, 1) for which A(z) = 0, then A(z) > 0 for values of z € (0, 2) and
h(z) < 0 for values of z € (2, 1).
Now, by construction,

o= [ Few- 3 FA0) 4 (1 DFA) do = [ Fenan

Jj=1
* 1 - F(v) h(F))
a /0 ) 1-Fw
_1-F@) (" hF()) o /°°<1—F(v)>/ v W(F(y))
= b 1oFp/ % ) (T ) L o rg [

Since there is some 2 € (0, 1) for which h(z) > 0 for values of z € (0,2) and A(z) < 0

for values of z € (2,1), it follows that if [ h(F;%y))) f(y) dy > 0 when v = oo, then

o W;{% f(y) dy > 0 also holds for all v < co. Combining this with the fact that 1 ff (;” is

nonincreasing in v shows that if [;* h(ﬁ;,%)) fy)dy = fol 20 gy > 0, we have that A, > 0.
Now,

6 = /1 h(v) do — /1 ve2 =30 v 4 (n— Dot
0 0

1-—v 1-v v
1va2_vA_Zf%: (vAfaj_vA) 1A-1 n
- — /zv—zzvdv
1=0rg Jj=li=A—qa;
A-1 n -1 A 1 n A
:Zz—i-l_ZZ z+1 Z?_Z Z
i=ag Jj=li=A—q; i=ag+1 j=li=

Note that log("+) < 31" < log(3%). Thus, ¢ = Zi:az+1 % - Xia Z?:Awﬁl% =
log(AH) ZJ 1 log(45- a) therefore, if log(A ) — Z?:l log(Af‘aj) > 0, then ¢ > 0

2+1

holds as well. Furthermore, log(A 7) — 21:1 log( A_aj) >0 & ﬁ > H;ZIA_L%_
ag+1

A < ]—[;l (1= ﬂ) However, in the limit as as (and A) become large, the difference
between %2 and "Xjr’ll becomes vanishingly small. Thus, if as is sufficiently large and
2 <IT; J=1( 1- ’) it follows that A, > 0, and the seller prefers targeting to bundling.
Now, the minimizer of the function ﬂ?zz(l — %) subject to the constraints that
Z?zz o; =A—aj and a; < ag for all j < 2 is the same as the minimizer of the function
log [Tj_o(1 — %) = >~} _5log(1 — %), which is minimized when @y = a3 = --- = a, for
the largest value of m satisfying Z;-":z o < A—oa1, dmp1 = A— a1 — (m — Dag, and
aj = 0 for all j > m+ 1. Thus, the minimum possible value of []}_,(1 — %) subject to
the constraints that " ,aj = A— a1 and o < ap for all j < 2is greater than or equal

A-a A—a a1 /A
to(1— 2 . From this, it follows that if 2 < (1 -%)(1—-%) = n o= (1— L)(1— %) o ,
then the seller prefers targeting to bundhng ]

Proor or THEOREM 5.2. First, we show that there is some y* € (0, 1 — %) such that the
inequality in Lemma 5.1 is satisfied if and only if 2 < y*. Note that % < (1 — %)(1 —

1-aq/A 1-oq
@) @/t holds if and only if (%4, < (1 % S Now, let p = @ andlety = 1— %. We
can rewrite this inequality in terms of and y as 5 <(1- ,3)7’//’ or (B/y)f/") <1 —p.If
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= 5, then we can further rewrite this inequality as x* < 1 — yx or x* + yx < 1. Now,

glx;y) = x* + yx is a convex function of x that satisfies g(0;y) =1, g(1;¥) =1+ y, and
g'(0) = —oo. Thus, g(x; y) < 1if x is sufficiently close to 0, g(x;y) > 1 if x is sufficiently
close to 1, and there is some x*(y) € (0, 1) such that g(x;y) < 1 if and only if x < x*(y).
From this, it follows that this inequality is satisfied if and only if 2 < y* for some
y*e(0,1—%).

The resultA in the previous paragraph implies that if the inequality in Lemma 5.1 is
satisfied when % = <1, then this inequality is also satisfied for any values of ¢ < <.
Now, the inequality in Lemma 5.1 is satisfied when %2 = % if and only if 7 < (1 —

1-aq/A 1-aq/A

) - “—X)T/l‘/*, which holds if and only if 12[/1% <1- ‘%)“17}‘4. Thus, if § = %, then
this holds if and only if {5 < (1 — 8 or (257079 4§ < 1. Now, A(8) = (25)/19 + 8
satisfies h(0) = 1, A(1) = oo, and A'(0) = —oo. Thus, A() < 1 for § sufficiently close to 0,
h(8) > 1if § is sufficiently close to 1, and there is some §* € (0, 1) such that A(5*) < 1 if
and only if § < §*. Thus, the inequality in Lemma 5.1 is satisfied for all ¢ < % if and
only if & < §*, where §* is the unique § € (0, 1) satisfying A(§) = 1. Computationally, it
follows that 6* = 0.30366; thus, the inequality in Lemma 5.1 is satisfied if %} < 0.30366,
and if % > 0.30366, then there is some y* € (0, min{?%, 1— % }) such that this inequality
is satisfied if and only if % < y*.

Furthermore, since g(x;y) is increasing in y, the critical value of x*(y) given in
the first paragraph of this proof is decreasing in y, meaning that x* is increasing
in . Thus, for the key value of y* earlier, it must be the case that y*(%)/(1 — ) is
increasing in % . Furthermore, when y = 0, x*(y) = 1since g(1;0) = 1. Thus, as % — 1,
y(3)/A—-3) - laswell. D

Proor or LEMMA 6.1. Note that an equilibrium to the related game in which each
bidder ¢ with value v; > r is restricted to making bids in the interval [r, 7;] is also an
equilibrium of the original game. This is because of the fact that any strategy that
ever involves making bids b > v; is weakly dominated by a strategy that replaces all
of these bids with a bid equal to v;. Thus, it suffices to demonstrate that there exists a
symmetric equilibrium in the related game in which bidders are restricted to making
bids in the interval [r, 7;].

Now, consider another game that differs from the just-mentioned game only in that
players may now use distributional strategies, as defined in Milgrom and Weber [1985].
In this context, a distributional strategy for bidder i is a joint distribution over values
and bids with the property that the marginal density over his values is f;. Note that the
set of distributional strategies for each bidder is a convex and compact metric space.
Furthermore, for any given distributional strategies of the players, x and y, a player’s
payoff when the players use the distributional strategy ax + (1 — «)y is linear in « for
all @ € [0, 1]. Thus each bidder’s payoff function is quasiconcave in one’s distributional
strategy.

Further note that this game is also better-reply secure in the sense defined in Reny
[1999] and Reny [2008]. The condition of better-reply security is trivially satisfied when
bidders are restricted to making bids in discrete increments since a player’s payoff is
never discontinuous in the strategy choices of the players in the game in this case.
Thus, this game is better-reply secure.

We know from Theorem 3.1 of Reny [1999], however, that for any game in which
the players’ strategy spaces are convex and compact metric spaces, the player’s payoff
function is quasiconcave, and the game is better-reply secure, there must exist a pure-
strategy equilibrium. From this, it follows that there exists a pure-strategy equilibrium
in the game in which players use distributional strategies.
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To prove the result, it thus suffices to show that any equilibrium in distributional
strategies must be equivalent to a pure-strategy equilibrium in which each bidder i fol-
lows a strategy of making some bid b;(v) € [r, v;] that depends only on the bidder’s value
v. To see this, suppose by means of contradiction that there were a positive measure of
values of v for which a bidder i randomized among bid choices when the bidder had a
value of v. Let G;(b) denote the cumulative distribution function corresponding to the
distribution of bids that i uses (unconditional on the realization of i’s value). Consider
an alternative bidding strategy in which the distribution of bids that i uses (uncondi-
tional on the realization of i’s value) is still G;(b), but i instead uses a pure-strategy
bidding function b;(v) that is nondecreasing in v. If bidder i uses this alternative strat-
egy, then the probability bidder i finishes in the £ position is the same as before for
any k, but the average value per click that the bidder obtains in the circumstances
under which the bidder obtains a click is greater than before since the bidder is now
making higher bids when the bidder has a higher value. Since this would be a profitable
deviation for bidder i, it follows that any equilibrium in distributional strategies must
be equivalent to a pure-strategy equilibrium in which each bidder i follows a strategy
of making some bid b;(v) € [r, 7;] that depends only on the bidder’s value v.

Identical reasoning to that just given shows that any pure-strategy equilibrium in
which each bidder i follows a strategy of making some bid b;(v) € [r, v;] that depends
only on the bidder’s value v must be monotonic in the sense that b;(v) must be non-
decreasing in v. If G;(b) denotes the cumulative distribution function corresponding to
the distribution of bids that i uses (unconditional on the realization of i’s value), and
the bidder employs an alternative bidding strategy in which the distribution of bids
that i uses (unconditional on the realization of i’s value) is still G;(b) but i instead uses
a pure-strategy bidding function b;(v) that is nondecreasing in v, then this would be a
profitable deviation for bidder i by the same reasoning in the previous paragraph. From
this, it follows that bidders must use monotonic bidding strategies in any pure-strategy
equilibrium. 0O

Proor or LEmMMA 6.2. Consider the same related game described in the proof of
Lemma 6.1 in which bidders are restricted to making bids in the interval [r, 7] and
players use distributional strategies, in which a distributional strategy for bidder i is
a joint distribution over values and bids with the property that the marginal density
over the bidder’s values is f. We know from the proof of Lemma 6.1 that this is a
game in which the players’ strategy spaces are convex and compact metric spaces, the
player’s payoff function is quasiconcave, and the game is better-reply secure. From
this, it follows that the game also satisfies the weaker conditions of being diagonally
quasiconcave and diagonally better-reply secure that are defined in Reny [1999]. Thus,
we know from Theorem 4.1 of Reny [1999] that this game possesses a symmetric pure-
strategy equilibrium in which players use distributional strategies.

The same argument used in the proof of Lemma 6.1 to show that any equilibrium
in distributional strategies must be a pure-strategy equilibrium in which each bidder
follows a monotonic bidding strategy also applies in this less general setting. From this,
it follows that there exists a symmetric pure-strategy equilibrium in which each bidder
i follows the same bidding strategy b(v) € [r, v] that depends only on the bidder’s value
v and that bidders necessarily use monotonic bidding strategies in this equilibrium. O

Proor or LEMMA 6.3. If bidders are following a symmetric and strictly monotonic
bidding strategy b(v) in equilibrium, then a bidder with value v > r wins the £ position
if and only if the bidder has the #"-highest value, which happens with probability

(Zj)(l — F(v))*"1F(v)"*. Now, we know from the Integral Form Envelope Theorem in
Milgrom [2004] that if u(b, v) denotes the expected utility that a bidder with value v > r
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obtains from making a bid of b and U(v) = sup,.y w(b, v), then U(v) = u(b(v), v) =
w(b(r),r)+ fr " us(b(x), x) dx, where ug(b, x) denotes the derivative of u(b, v) with respect
to v evaluated at v = «.

Now, if p(v) denotes the expected payment that a bidder with value v makes in equi-

librium, then we know that u(b(v), v) = Y ;_ 1ck( DA —F@)F 'F )" *v— p(v). We also
know that u(b(r),7) = 0. Since ua(b(x), x) = £ 375 _; cx(}71)(1 — F)) 1 F(x)"*v — p(x)
evaluated at v = x or 35_; cx(}_1)(1 — F(x))* ' F(x)**, we have that [’ us(b(x), x) dx =
L0305 1er(f )@ — F(x) 'F(x)"* dx. Combining these facts with the result in
the previous paragraph shows that Y5 cx(}_1)1 — F)'F)y*v — pv) =
LU (YA — o AR dx.

From this, it follows that a bidder’s expected payment if the bidder has
a value of v is equal to Y _;ci(} 1)1 — F)F 1R * v — [°35 e} -
F(x)Y* 1F(x)"* dx, and a bidder’s expected payment unconditional on the precise real-
ization of the bidder’s value is 3"5_; ¢z (}_7)[/'(1 — F) 1 F)" *vf(v) dv — [ ['(1 -
F)Y'Fy* f() dx dvl = 351 cr(f 1) (A — F) TRy of(v) dv — [ [0 —
F@)1F )y * f(v) dv dx] = Yo 1Ck( )[f (1 — F): 'F)*vfv) dv — f 1 -
F)YF@y* ded = [755 cr(i]) A — Fo)F 1 F@)y—*w — 12 LB f(v) do. Since the

n bidders all make the same expected payments uncond1t10na1 on the precise realiza-
tions of their values, it then follows that the seller’s expected revenue in the generalized

second-price auction equals n [* Y5_ cx(71)(1 — F)F 1 Fu)" (v — =0 fw) dv. O

Proor or THEOREM 6.4. The seller’s expected revenue from targetlng under the con-
ditions of the theorem can be rewritten as Y ;_; ccElvg) — f(vuj(;” lvay = r1Pr(vg = 1),
where v, denotes the £-highest value of n draws from the distribution F. We use this
to prove each of the three results.

First, note that in the limit as n — oo, Elvg) —

lfF(U(k))
f(v(k>)

for all % since in the limit as n — oo, v — v and

|U(k) >rlPr(vgy =r) - v

ffi((: f’) — 0 with probability

arbitrarily close to 1 for all . Thus, in the limit as n — oo, the expected revenue from
the mechanism under targeting approaches »;_; ¢;v. By contrast, under bundling, all

bidders bid w = fg 1 - F(v) dv < v, and the total expected revenue under bundling is
Y hoicrw < Y ;_;crv. From this, it follows that for sufficiently large values of n, the
expected revenue from targeting exceeds the expected revenue from bundling for all
values of ¢;,.

Also, note that E[vg,) — ff;(: f’)

distribution of the #*-highest of n+ 1 draws from the cumulative distribution function
F, first order stochastically dominates the distribution of the #"-highest of n draws

from the cumulative distribution function F, and the %A*-highest virtual valuation

V() — %((Z(f)) is strictly increasing in the £*-highest value v. From this, it follows that

the expected revenue from the mechanism under targeting is strictly increasing in n.
However, we have seen that the expected revenue from the mechanism under bundling
is ) ;_; cpw, which is independent of n. Combining this with the results in the previous
paragraph shows that there is some n** such that targeting is preferred to bundling for
all values of ¢;, if and only if n > n**.

Next, note that if n = 2, then bundling is strictly preferred to targeting. If n = 2,
then it must be the case that s = 1 and the position auction is equivalent to a standard

lvgy = r1Pr(vg > r) is increasing in n for all & since the
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second-price auction. However, we have already seen under the standard second-price
auction that bundling is strictly preferred to targeting when n = 2. Thus, bundling is
also preferred to targeting in position auctions when n = 2. We have also seen that the
seller’s expected revenue from targeting is strictly increasing in n, while the seller’s
expected revenue from bundling is independent of n. Combining these facts shows that
there is some n* > 2 such that bundling is preferred to targeting for all values of ¢;, if
and only if n < n*.

Finally, consider values of n € (n*, n**) for which it is neither the case that target-
ing is preferred to bundling nor that bundling is preferred to targeting for all values

of ¢;. The seller’s expected revenue under targeting is Y ;_; czElvg) — 1_f+((;’;;")|

rlPr(vg > r), whereas the seller’s expected revenue under bundling is ) ;_; czw,

>

where w = foF 1 - F(v) dv < 7v. Thus, the difference between the seller’s ex-
pected revenue under targeting and the seller’s expected revenue under bundling is

1-F(vp) 1-F(vg)
g cr(Elvg — T:)(f’lv(k) > r]Pr(vg > r) — w). Elvg) — T::f)lv(k) > r]Pr(vg > r),

however, is decreasing in % since the distribution of the %**-highest of n draws from
the cumulative distribution function F, first order stochastically dominates the dis-
tribution of the % + 1**-highest of n draws from the cumulative distribution function

F,and v — 1‘]{; ()“) is strictly increasing in v. Thus, there is some £* € [1, s) such that

Elvge — S22 ugy > r1Pr(vg > r) > w if and only if & < &*.

From this, it follows that the difference between the seller’s expected revenue
under targeting and the seller’s expected revenue under bundling, >;_; cx(Elvg) —
1;{' (U(;E))

U(k)
increasing in c¢; for all 2 < k£*. It then follows that, for values of n € (n*, n**), there is
some k* € [1,s) such that targeting is preferred to bundling if and only if the values
of ¢, for k < k* are sufficiently large compared to the values of ¢;, for £ > &*. Moreover,

v > rlPr(vg > r) — w), is strictly decreasing in ¢ for all £ > £* and strictly

since Elvg) — l}f;((;";)) v > r1Pr(vg) > r) is increasing in n for all &, the relevant value
of k* € [1,s) for which Elvgy — 5529 1y, > rlPr(vge > r) > w if and only if k < £* is

fog)
nondecreasing in n. Thus, the £* € [1, s) for which targeting is preferred to bundling if
and only if the values of ¢, for £ < k* are sufficiently large compared to the values of ¢;,
for & > k* is also nondecreasing inn. O

Proor or OBSERVATION 6.1. Under position auctions, the seller’s expected revenue
from targeting equals the seller’s expected revenue under the VCG mechanism, which
is 51 klcr — cx11)Elvgs1)), where vy, denotes the value of the bidder with the £-
highest value, and c¢s;,; = 0. Now, when the bidders’ values are draw from the uniform

distribution on [0, 1], it is necessarily the case that Elvg. )] = 1 — % = f?’]{; thus,
k(n—k)

ol (¢ — cpy1). Also, since the bidders all
make a bid of 1 under bundling, the seller’s revenue under bundling is 2 >_; cz.
Now, if n = 3, then s < 2, and the seller’s revenue under targeting reduces to
%(01 —c9)+ %cz = %cl, while the seller’s revenue under bundling is %(01 +c¢2). From this,
1t follows that if n = 3, then bundling dominates targeting. If n = 4, then s < 3, and the
seller’s revenue under targeting reduces to g(cl —c9)+ %(02 —c3)+ 203 = %cl + %(02 —c3),
but the seller’s revenue under bundling is %(01 + co +c¢3). Thus, if ¢co = ¢35 = 0, then the
seller’s revenue under targeting is greater than the seller’s revenue under bundling,
but if ca = c¢3 = c1, then the seller’s revenue under bundling is greater than the seller’s
revenue under targeting. Therefore, the key value of n* in Theorem 6.4 is n* = 3.

the seller’s revenue under targeting is ) ,_;
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Now, by Part (3) of Theorem 6.4, we know that if the seller’s revenue under targeting
is greater than the seller’s revenue under bundling when ¢ = --- = ¢4 = ¢1, then the
seller’s revenue under targeting is greater than the seller’s revenue under bundling
for all possible values of the click-through rates. Now, when ¢; = cg = -+ = c¢;, the
seller’s revenue under targeting is ) ;_; k(r:if)(ck — Cht1) = s(rz:ls)cl, and the seller’s
revenue under bundling is §c;. Thus, the seller’s revenue under targeting is greater

than the seller’s revenue under bundling if and only if ;=5 > %, which holds if and

only if n > 2s + 1. From this, it follows that the seller’s revenue under targeting is only
guaranteed to be greater than the seller’s revenue under bundling if n > 2s + 1.

By combining the results in the previous two paragraphs, it follows that, under the
conditions of the theorem, the critical values n* and »** in Theorem 6.4 are n* = 3 and
n** = 2s + 1, respectively. O

Proor oF THEOREM 7.1. We first show that if at least two bidders are unable to target,
then the seller’s expected revenue will be monotonic in the number of bidders that can
target. To see this, let w denote the common bid that is made by the bidders that are
unable to target, and let v9) denote the second-highest bid of the bidders that are able
to target. If at least two bidders are unable to target, then the seller’s revenue will be
max{v), w}. But if G(vg)|m) denotes the distribution of v conditional on the number
of bidders who can target m, then G(vg)|m + 1) first order stochastically dominates
G(v(g)|m) for all m. Thus, E[max{v), w}] is increasing in m, and if at least two bidders
are unable to target, the seller’s expected revenue will be monotonic in the number of
bidders that can target.

Now, we show a seller’s expected revenue need not be monotonic in the number of
bidders that can target in general. To see this, suppose that there are n = 4 bidders and
each bidder’s value is drawn from the lognormal distribution with parameters u < 0
and 02 = —2u. Note that if no bidders can target, then each bidder has an expected

value of et+o%/2 — 1, each bidder bids this amount, and the seller’s revenue is 1. If
exactly one bidder can target, then three of the bidders only know that they have an
expected value equal to 1, these three bidders all bid this amount, and the seller’s
revenue is again 1.

If exactly two bidders are able to target, then the two bidders that are not able to
target both only know that they have an expected value equal to 1, these two bidders
both bid this amount, and the seller’s revenue is always at least 1. At the same time,
there is a strictly positive probability that both bidders that are able to target will learn
that their values are greater than 1, these bidders will both bid more than 1, and the
seller’s revenue will be greater than 1. Thus, if exactly two bidders are able to target,
then the seller’s expected revenue in the auction is strictly greater than 1.

Now, consider what happens when exactly three bidders can target in the limit as
nw — —oo and 02 = —2u. Note that if exactly one of the three bidders who can target
learns that its value is greater than 1 and the other bidders who can target learn that
their values are less than or equal to 1, then the seller’s revenue will be exactly the same
as it would be if no bidders were able to target. Thus, whether it is beneficial for the
seller to allow targeting depends on the relative costs and benefits from circumstances
in which all three bidders who are able to target learn that their values are less than
1 with the circumstances under which at least two bidders learn that their values are
greater than or equal to 1.

Note that the probability that a given bidder has a value less than ¢ for any ¢ > 0 goes
to one in the limit as © — —oo when o2 = —2u. From this, it follows that, conditional
on a buyer having a value less than 1, the expectation of the buyer’s value goes to zero
in the limit as 4 — —oo when o2 = —2. Similarly, if p(1) denotes the probability that
a buyer has a value greater than 1 for a given 1 < 0 when o2 = —2p, it follows that
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lim,_, o p(n) = 0. Thus, when exactly three bidders are able to target, in the limit as
w — —oo and 62 = —2u, the probability that all three bidders who are able to target
learn that their values are less than or equal 1 goes to 1 and, conditional on this event
taking place, the expectation of the highest of these three bidders’ values goes to 0.
Now, a bidder’s expected value is (1 — p(w)E[v|v < 1]+ p(w)E[v|v > 1]. We know that
in the limit as 4 — —oo when 02 = —2u, we have that p(u) — 0 and E[vjv < 1] — 0.
Thus, since each bidder has an expected value of 1, it follows that in the limit as

w — —oo when o2 = —2u, we must have that p(u)E[v|v > 1] — 1, meaning that
Elvjv > 1] = @(Z%M)). However, the probability that at least two of the bidders who are

allowed to target learn that their values are greater than or equal to 1 is O(p(1)?) in
the limit as © — —oo. The expectation of the second highest of these bidders’ values
given that at least two of these bidders have values greater than 1 is no greater than
Efvjv > 1] = @(ﬁ). From this, it follows that the total expected benefit to allowing
exactly three bidders to target from the circumstances in which at least two bidders

learn that their values are greater than or equal to 1 is O( p(,u)zﬁ) = O(p(w)), which
2

goes to zero in the limit as © — —oo when 6 = —2u.

We have seen, however, that the total expected costs to the seller from allowing
exactly three bidders to target that result from the circumstances in which all three
bidders who are able to target learn that their values are less than 1 is roughly 1 unit
of revenue in expectation in the limit as 4 — —oo when 02 = —2pu. It thus follows that,
for sufficiently negative values of 1 and 02 = —2u, a seller’s expected revenue from
allowing exactly three bidders to target is lower than the seller’s expected revenue from
not allowing any bidders to target. From this, it follows that a seller’s expected revenue
from targeting need not be monotonic in the number of bidders that can target. O

Proor oF THEOREM 7.2. If the bidder with the highest expected value is the only
bidder that can target and this bidder learns that its value exceeds the second-highest
expected value, then the seller’s revenue is unaffected by targeting. But if this bidder
learns that its value is lower than the second-highest expected value, then allowing
targeting decreases the seller’s revenue. Thus the seller prefers bundling to targeting
if the bidder with the highest expected value is the only bidder that can target.

Similarly, if a bidder with the £**-highest expected value for some % > 3 is the only
bidder that can target and this bidder learns that its value is less than or equal to the
second-highest expected value, then the seller’s revenue is unaffected by targeting. But
if a bidder with the £*-highest expected value for some % > 3 learns that its value is
greater than the second-highest expected value, then targeting increases the seller’s
revenue. Thus, the seller prefers targeting to bundling if a bidder with the £**-highest
expected value for some % > 3 is the only bidder that can target.

Finally, if a bidder with the second-highest expected value is the only bidder that
can target, then the second-highest bid is the value of the bidder with the second-
highest expected value (if this value is between the highest expected value and the
third-highest expected value), the highest expected value (if this value is less than
the value of the bidder with the second-highest expected value), or the third-highest
expected value (if this value is greater than the value of the bidder with the second-
highest expected value). Thus, the seller’s expected revenue is [, w) f2(v) dv +

fu’f:;) vfa(v) dv + fufi) w(y f2(v) dv, where w(;, denotes the highest expected value and

w(s) denotes the third-highest expected value. This expression is increasing in both
w) and w). Furthermore, in the limit as ws) — we), where w) denotes the second-
highest expected value, and wg) — oo, [ w) fa(v) dv+fl;‘i;> vfa(v) dv—i—fjom wq) fa(v) dv

approaches [i"” w) fa(v) dv + [ vfo(v) dv > [ vfav) dv = we). In the limit as
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wg) — 0and wa) — we), [y * we) f20) dv+ [V vfa(v) dv + fuci) w(y) f2(v) dv approaches

w(3)

o 2 vfa(v) dv + [ we fo(v) dv < [57 vfa(v) dv = wiz). Combining these results shows

that if a bidder with the second-highest expected value is the only bidder that can
target, then the seller prefers targeting to bundling if and only if the values of the
highest and third-highest expected bids are sufficiently high. O

Proor or THEOREM 7.3. If bidders follow an equilibrium of a position auction that
results in the same payoffs as the VCG mechanism, then the seller’s total revenue from
the auction is Y ;_; k(cr — cr41)vt1), Where vy denotes the value of the bidder with the
k-highest value and c¢,,1 = 0. From this, it follows that if the bidder with the highest
expected value is the only bidder that can target and this bidder learns that it has
a value that is still greater than or equal to the second-highest expected value, then
the value of ) ;_; k(c;, — cr11)v+1) is the same regardless of whether the seller allows
targeting, and the seller’s revenue is unaffected by targeting. But if the bidder with the
highest expected value learns that it has a value that is less than the second-highest
expected value, then the value of ) ;_; k(¢ — cz+1)ve+ 1) is lower under targeting than it
would be under bundling, and allowing targeting decreases the seller’s revenue. Thus,
the seller strictly prefers bundling to targeting if the bidder with the highest expected
value is the only bidder that can target.

Similarly, if a bidder with the £**-highest expected value for some % > s+2 is the only
bidder that can target, and this bidder learns that it has a value that is still less than
or equal to the s + 1*-highest expected value, then the value of Y i1 kler — cri)vges )
is the same regardless of whether the seller allows targeting, and the seller’s revenue
is unaffected by targeting. But if a bidder with the £*-highest expected value for some
k > s + 2 instead learns that it has a value that is greater than the s + 1**-highest
expected value, then the value of }*;_; k(cz — cz+1)vz+1) is greater under targeting than
it would be under bundling, and allowing targeting increases the seller’s revenue. Thus,
the seller strictly prefers targeting to bundling if a bidder with the £**-highest expected
value for some & > s + 2 is the only bidder that can target.

Finally, if a bidder with the £*-highest expected value for some % € [2, s + 1] is the
only bidder that can target, there is no general result as to whether the seller prefers
targeting to bundling. If ¢; = ¢4 for all j < &, but ¢; > ¢;;1 for all other values of j,
then the seller strictly prefers bundling to targeting by the same reasoning in the first
paragraph of this proof. If # > 3 and ¢; = ¢jq for all j > £ — 1, but ¢; > ¢;;1 for all
other values of j, then the seller strictly prefers targeting to bundling by the reasoning
in the previous paragraph. If 2 = 2 and ¢; = ¢4 for all j > 2, but ¢; > cg, then we
know from Theorem 7.2 that there is no general result as to whether the seller prefers
targeting to bundling. Thus, if £ € [2,s + 1], there is no general result as to whether
the seller prefers targeting to bundling. O
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