
Computing Weak Consistency in Polynomial Time

[Extended Abstract]

Wojciech Golab
∗ †

Dept. of Electrical and Computer Engineering
University of Waterloo, Canada

wgolab@uwaterloo.ca

Xiaozhou (Steve) Li
‡

Google Inc.
Mountain View, CA, USA

xzli@google.com

Alejandro López-Ortiz
†

School of Computer Science
University of Waterloo, Canada
alopez-o@uwaterloo.ca

Naomi Nishimura
†

School of Computer Science
University of Waterloo, Canada

nishi@uwaterloo.ca

ABSTRACT
The k-atomicity property can be used to describe the consis-
tency of data operations in large distributed storage systems.
The weak consistency guarantees offered by such systems
are seen as a necessary compromise in view of Brewer’s CAP
principle. The k-atomicity property requires that every read
operation obtains a value that is at most k updates (writes)
old, and becomes a useful way to quantify weak consistency
if k is treated as a variable that can be computed from a
history of operations. Specifically, the value of k quanti-
fies how far the history deviates from Lamport’s atomicity
property for read/write registers. We address the problem
of computing k indirectly by solving the k-atomicity verifi-
cation problem (k-AV): given a history of read/write opera-
tions and a positive integer k, decide whether the history is
k-atomic. Gibbons and Korach showed that in general this
problem is NP-complete when k = 1, and hence not solvable
in polynomial time unless P = NP. In this paper we present
two algorithms that solve the k-AV problem for any k ≥ 2
in special cases. Similarly to known solutions for k = 1 and
k = 2, both algorithms assume that all the values written to
a given object are distinct. The first algorithm places an ad-
ditional restriction on the structure of the input history and
solves k-AV in O(n2+n·k log k) time. The second algorithm
does not place any additional restrictions on the input but is
efficient only when k is small and when concurrency among

∗Author supported in part by the Google Faculty Research
Awards Program.
†Author supported in part by the Natural Sciences and En-
gineering Research Council (NSERC) of Canada.
‡Part of this research was conducted while this author was
at Hewlett-Packard Labs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
ACM 978-1-4503-3617-8/15/07.
http://dx.doi.org/10.1145/2767386.2767407.

write operations is limited. Its time complexity is O(n2) if
both k and our particular measure of write concurrency are
bounded by constants.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; D.2.4 [Software]: Software En-
gineering—Software/Program Verification

General Terms
Algorithms, theory, verification

Keywords
Consistency; atomicity; verification; distributed storage

1. INTRODUCTION
Distributed storage and data management systems em-

power a broad range of data-intensive services today includ-
ing social networking, web search, e-mail, calendars, and on-
line auctions. In an effort to cope with web-scale workloads
in the face of immense competitive pressures, the designs of
such services have shifted away from conventional relational
databases and towards simpler but more scalable solutions.
As a result, many practical systems offer simple key-value
operations and BASE (Basically Available, Soft state, Even-
tual consistency) properties either instead of or side-by-side
with conventional transactions and more powerful ACID
(Atomicity/Consistency/Isolation/Durability) properties.

Eventually consistent key-value stores are an important
breed of distributed storage systems that provide BASE
properties [7, 25, 27]. Their distinguishing characteristic
is the ability to remain available in the face of network par-
titions, in which disjoint subsets of hosts become isolated
from one another and are unable to communicate. To ensure
that storage operations can proceed despite such partitions,
specialized replication techniques such as sloppy quorums
[7, 17, 23] are used. As a side effect, eventually-consistent
systems can only provide weak consistency guarantees—a
necessary compromise according to Brewer’s CAP principle
[5], which states that a distributed storage system cannot si-
multaneously provide strong consistency (C), high availabil-

395

ity (A), and partition-tolerance (P). This observation has
been formalized by Lynch and Gilbert as the impossibility
of implementing an atomic read/write register object in an
asynchronous message passing system with unreliable com-
munication channels [11]. A read/write register object in
this context corresponds to a key-value pair as follows: the
key is the object’s name and is immutable, whereas the value
is the object’s state and can be accessed using read and write
operations.

As defined by Vogels [27], eventual consistency means that
if an object is not updated and no failures occur for a suf-
ficiently long period of time, then eventually all read oper-
ations on the object return the last updated value of that
object. Although this definition captures nicely the essence
of eventual consistency, it also leaves open important ques-
tions regarding the behavior of key-value stores in practice:
how long is “eventual”, and how consistent are reads when
objects are updated continuously? In an attempt to answer
the latter question, various notions of data staleness have
been defined and analyzed. In this context, a value written
to a key is considered stale once it is overwritten by another
value, and so the staleness of a particular read is a measure
of the “distance” between two write operations: the write
that assigned the value read (called the dictating write of
the read), and the write that assigned the latest value to
the object under consideration.

In this paper, we focus on a formal notion of version-
based staleness, which is defined by counting write opera-
tions. Specifically, we consider the k-atomicity property of
Aiyer et al. [1], which is a generalization of Lamport’s atom-
icity property for read/write registers [18]. Both properties
are defined over an execution history, which is a collection of
read/write operations tagged with distinct start and finish
times. An operation in such a history “happens before” an-
other operation if the former finishes before the latter starts,
and a history is called k-atomic if there exists a total order
over the operations that extends the “happens before” par-
tial order, and in which every read returns a value written
by one of the last k writes preceding the read in the total
order.

The k-atomicity verification (k-AV) problem is to decide
for a given execution history and integer k ≥ 1 whether
the history is k-atomic. An efficient solution to this prob-
lem makes it possible to compute the smallest k for which
a given history is k-atomic, which quantifies the maximum
degree of staleness observed by clients accessing an eventu-
ally consistent storage system. Thus, solving k-AV makes it
possible to analyze the actual consistency provided by such
systems in arbitrary workloads, including ones where writes
occur continuously and concurrently with each other.

Our main contribution in this paper is a pair of algorithms
that solve the k-AV problem for arbitrary k ≥ 2 and address
the previously unsolved case k ≥ 3. Both algorithms assume
that all the values written to a given object in a history are
distinct, which makes 1-AV solvable in O(n logn) time for
a history of n operations. The first algorithm, called GPO
(“greedy plus obligations”), places an additional restriction
on the structure of the input history and solves k-AV for ar-
bitrary k in O(n2 + n · k log k) time. The second algorithm,
called CGS (“configuration graph search”), does not place
any additional restrictions on the input but is efficient only
when k is small and when concurrency among write oper-
ations is restricted. Its time complexity is O(n2) if both k

and our specific measure of write concurrency are bounded
by constants. As explained in Section 7, we expect these al-
gorithms to perform efficiently in the vast majority of cases
encountered in practice.

2. RELATED WORK
The fundamental problem of defining consistency prop-

erties for shared objects was first addressed by Misra [20]
and Lamport [18]. Lamport defined a number of key con-
cepts in this area, including the happens before and −→ (i.e.,
precedes) relations, and the atomicity property for registers
[18]. The “happens before” relation is an irreflexive partial
order over instantaneous events that captures the following
notion of causality: given two events e1, e2 in Einstein’s four-
dimensional space-time, we say that e1 happens before e2 if
it is possible for a pulse of light emitted at A to arrive at
B, and hence for A to physically cause B. Operations on
objects are modeled as collections of events, and given two
operations op1, op2 we say that op1 −→ op2 if every event
of op1 happens before every event of op2. In the presence
of a global clock events can be totally ordered according
to time, in which case op1 −→ op2 means that op1 finishes
before op2 starts. Lamport’s atomic read/write register sat-
isfies the property that any collection of operations applied
to the object can be arranged (conceptually) in some to-
tal order that extends −→ and in which every read returns
the value assigned by the latest write [18]. Misra’s axioms
provide an alternative definition of such a register, and ex-
plicitly address the case of multiple concurrent writers [20],
whereas Lamport’s definitions are given for the single-writer
case but generalize easily to multiple writers. Herlihy and
Wing’s linearizability property is a generalization of Lam-
port’s atomicity property to arbitrary typed shared objects,
and to scenarios that include pending (i.e., incomplete) op-
erations that may appear to take effect before they finish
[15]. Herlihy and Wing’s happens before relation over pairs
of operations is a special case of Lamport’s−→ relation when
events are totally ordered.

Several relaxed consistency properties have been defined
in an attempt to describe the behavior of weakly consis-
tent distributed storage systems. In general these properties
capture the staleness of the values returned by read oper-
ations, which we can think of more precisely as the “dis-
tance” between operations, as explained in Section 1. Two
notions of staleness have been defined in literature: time-
based and version-based. A time-based staleness of t time
units means that a read returned a value that was consid-
ered fresh at most t time units earlier. Torres-Rojas et al.
formalize this notion by defining timed consistency proper-
ties in distributed message passing systems as generaliza-
tions of sequential consistency and causal consistency [26].
Similarly, Golab et al. generalize Lamport’s atomicity prop-
erty for read/write registers [18] by defining ∆-atomicity [13]
and Γ-atomicity [14]. On the other hand a version-based
staleness of k versions means that a read returned the value
assigned by one of the last k writes in some total ordering
of the write operations. Aiyer et al. formalize this notion
as the k-atomicity property, which is also inspired by Lam-
port’s atomic register. A collection of read/write operations
is k-atomic if the operations can be arranged in some total
order that extends −→ and in which every read returns the
value assigned by one of the k latest writes.

396

Several storage systems and modeling frameworks incor-
porate relaxed consistency properties. The TACT (Tunable
Availability/Consistency Tradeoffs) framework of Yu and
Vahdat defines version-based and time-based staleness in-
formally as order error and staleness [29]. Lee and Welch
describe a probabilistic consistency framework in the context
of randomized registers implemented using probabilistic quo-
rums [19]. Their analysis refers implicitly to version-based
staleness by deriving bounds on the probability that a stale
replica exists for a data item that has been overwritten a cer-
tain number of times. The Probabilistically Bounded Stale-
ness (PBS) framework of Bailis et al. uses similar principles
to derive bounds on time-based and version-based staleness
[3]. They formalize both notions of staleness in the simpli-
fied model where write operations do not overlap in time
with other read or write operations. Ardekani and Terry
as well as Terry et al. propose storage systems that can be
configured using service level agreements (SLAs) to provide
bounds on time-based staleness [2, 24]. Our contributions
complement this body of work in the following way: our
techniques for computing version-based staleness from ob-
served histories could be used to validate frameworks like
TACT and PBS, and verify the correctness of storage sys-
tems that support staleness-based SLAs, provided that tech-
nical differences among various definitions of staleness can
be reconciled. This approach stands in contrast to the tech-
nique used by Wada et al., and by Bermbach and Tai, which
measures the convergence time of the replication protocol of
a distributed system rather than capturing the staleness ac-
tually observed by clients [4, 28].

Decision problems pertaining to the consistency properties
discussed herein were first studied in the context of verifying
shared memories. The input to the decision problem is an
execution history—a sequence of invocation and response
events corresponding to operations applied to a collection
of shared objects. The events in a history define the in-
vocations and responses of operations on objects. Gibbons
and Korach showed that deciding whether such a history is
atomic is NP-complete in the general case [10]. However, in
the special case when each write operation on a given object
assigns a distinct value, polynomial-time decision algorithms
for atomicity have been developed. Under this assumption,
Misra’s axioms can be used to characterize atomicity as the
absence of cycles in a conflict graph whose vertices represent
values and whose edges represent precedence constraints im-
posed by the ordering of reads and writes in the history [20].
For a history with n operations the time complexity of this
algorithm is O(n2). Gibbons and Korach instead followed
the approach of clustering operations according to the value
read or written, and characterized atomicity as the absence
of conflicts between pairs of such clusters [10]. Their algo-
rithm has time complexity O(n logn).

The decision problem for the k-atomicity property is called
the k-atomicity verification (k-AV) problem. Given a history
and an integer k ≥ 1, the objective is to decide whether the
history is k-atomic. The locality property of k-atomicity
states that the input history is k-atomic if and only if for
each object accessed, the subhistory of operations on that
specific object is k-atomic [12, 15]. Accordingly, solutions to
k-AV assume without loss of generality that all operations
are applied to the same object. A solution to k-AV can be
used to compute the k-value of a history: the smallest k
for which the history is k-atomic. The k-value equals 1 if

and only if the history is atomic in Lamport’s sense [18],
and larger k-values indicate deviation from atomicity and
hence from linearizability; the higher the k the greater the
deviation.

The k-AV problem was first considered by Golab et al. [13].
Like the problem of deciding atomicity, k-AV is NP-complete
in the general case, assuming that k is part of the input. Go-
lab et al. present the first polynomial-time solutions to 2-AV
under the assumption that each write operation on a given
object assigns a distinct value, which is the same assumption
that makes 1-AV tractable [12]. One algorithm, called LBT,
runs in O(n2) time for a history with n operations. It lever-
ages ideas inspired by Misra [20], as well as the technique of
limited backtracking [8]. The other algorithm, called FZF,
runs in O(n logn) time, and borrows the clustering idea of
Gibbons and Korach [10].

The k-AV problem is somewhat similar to the graph band-
width problem (GBW). Given a graph G and a positive in-
teger k, the GBW problem is to decide whether it is possible
to arrange the vertices of G at distinct positions on a line
such that any two vertices that are adjacent in G are sepa-
rated by at most k − 1 other vertices on the line. GBW is
NP-complete when k is part of the input [21], and is solvable
in polynomial time when k is fixed [9, 22]. The algorithm
of Saxe uses dynamic programming and runs in O(nk+1)
time where n is the number of vertices [22]. Kleitman and
Vohra [16] present a GBW algorithm that runs in O(n logn)
time, but is correct only for interval graphs.

Our graph-theoretic characterization of k-AV presented
in Section 2 (see Lemma 2) has a similar flavor to GBW in
the sense that it refers to a linear arrangement of vertices
that is constrained by edges. The main difference is that
we consider constraints with respect to two different but re-
lated sets of edges, with one set imposing “hard” constraints
similarly to edges in a topological ordering, and the other
set imposing “soft” constraints similarly to edges in GBW.
Furthermore, our edges are directed and the union of the
two edge sets has a structure similar to an interval graph,
whereas GBW is defined over arbitrary undirected graphs.
As regards time complexity, we are not aware of a poly-
nomial time Turing reduction from GBW to k-AV or vice
versa. Such a reduction from k-AV to GBW would imply
that k-AV is solvable in polynomial time for fixed k.

3. PRELIMINARIES
Following the model of Herlihy and Wing [15], we define

an execution history (or history for short) as a sequence
of events where each event is either the invocation or the
response of an operation on a read/write register. Each op-
eration in the history has both an invocation and a response
event, and all operations are applied to the same object (see
discussion of locality in Section 2). Each event is tagged
with a unique time, and events appear in the history in in-
creasing order of their times. The exact values of these times
are not important, only their relative order, and so we as-
sume without loss of generality that the ith event (counting
from i = 1) occurs at time i. Each event also records the
operation type (i.e., read vs. write), its argument (for writes
only) and its return value (for reads only). The value of an
operation op is its argument if op is a write, and its response
if op is a read. Given a read r and a write w we call w a
dictating write of r if r and w share the same value. In that

397

case we call r a dictated read of w. In the remainder of the
paper, the number of operations in H and the number of
writes in H are denoted by n and nw, respectively.

Given an operation op, we denote by s(op) and f(op) the
start time and finish time of op, respectively. Given a pair
of operations op1, op2 in a history H we denote Herlihy and
Wing’s happens before relation by <H (i.e., op1 <H op2 if
and only if f(op1) < s(op2)). We say that op1 and op2 are
concurrent if neither op1 <H op2 nor op2 <H op1. A total
order <T over the operations in a history H extends the par-
tial order <H , denoted <T⊇<H , if every pair of operations
op1, op2 in H satisfies op1 <H op2 ⇒ op1 <T op2. We call
<T a k-atomic total order for H if <T⊇<H and every read
operation returns the value assigned by one of the last k
writes that precede it in <T . A history H is k-atomic if and
only if there exists a k-atomic total order <T for H. Mathe-
matically a total order <T over the values in H is a relation,
but for convenience we often treat it as the corresponding
sequence of values and refer to it as T .

In the remainder of the paper, we make the following as-
sumption to circumvent the NP-completeness of k-AV:

Assumption 1. For any history H, every read operation
in H has exactly one dictating write.

Without Assumption 1 the k-AV problem is NP-complete,
assuming that k is part of the input, because 1-AV is NP-
complete [10]. Assumption 1 can be enforced in practical
storage systems by embedding a unique identifier, for exam-
ple based on the current time and client ID, in each value.

Under Assumption 1 we adopt the following notational
convention: for any history H and any value v read or writ-
ten in H, w(v) denotes the unique dictating write of v in H.
Similarly we use r(v) to denote a read of v in H. If more
than one read of v exists in H then the particular operation
corresponding to r(v) is specified in the context.

We make two additional assumptions to simplify our al-
gorithms and their analysis. First, we assume that a value
cannot be read before it is written:

Assumption 2. For any history H, if r is a read in H
and w is its dictating write then r <H w is false.

Any history H that violates Assumption 2 automatically
fails to satisfy k-atomicity for any k ≥ 1. Assumption 2
can be tested in O(n logn) steps by clustering operations
by their value, and checking for each value that no read
precedes its dictating write.

Second, we assume that a read never finishes before its
dictating write:

Assumption 3. For any history H, if r is a read and w
is its dictating write then f(w) < f(r).

Assumption 3 implies no loss of generality because any his-
tory H that satisfies Assumptions 1 and 2 can be trans-
formed efficiently into a history H ′ that in addition satis-
fies Assumption 3 in a manner that preserves k-atomicity.
This is done using the normalization procedure presented
as Algorithm 1. Theorem 1 asserts the correctness of this
procedure, and its proof is omitted due to lack of space.

Theorem 1. If the input history H of the normaliza-
tion procedure (Algorithm 1) satisfies the pre-conditions (As-
sumptions 1–2) then the output history H ′ satisfies the post-
conditions (Assumptions 1–3, H is k-atomic if and only if
H ′ is k-atomic).

Input: history H that satisfies Assumptions 1–2.
Output: history H ′ that satisfies Assumptions 1–3,

and is k-atomic if and only if H is.
1 H ′ := H
2 for every value v in H do
3 r(v) := read of v with earliest finish time in H
4 if f(r(v)) < f(w(v)) then
5 shift the response event for w(v)’s

counterpart in H ′ to the position
immediately preceding the response event of
r(v)’s counterpart in H ′

6 end

7 end

Algorithm 1: Normalization procedure for histories.

In general our algorithms assume that 2 ≤ k ≤ n. For
k = 1 the algorithm of Gibbons and Korach can be used
instead [10], and its time complexity is O(n logn). For k >
n one can decide k-atomicity efficiently by verifying that
each read has a dictating write and that no read precedes
any of its dictating writes. These conditions are implied by
Assumptions 1 and 2, and can be verified in O(n logn) time.

To simplify the presentation and analysis of our k-AV al-
gorithms we first describe two graph-theoretic representa-
tions of the input history. These are given in Definition 1,
which is inspired by Misra’s before relation on values [20],
and in Definition 2. We use both definitions to characterize
k-atomicity in Lemma 2, which we use extensively later in
Sections 4 and 5. The proof of Lemma 2 is omitted due to
lack of space.

Definition 1. The read value graph for a history H, de-
noted GR(V,ER), is a directed graph where V is the set of
values written in H, and ER contains an edge (v, v′) if and
only if v 6= v′ and there exists a read r(v′) in H such that
w(v) <H r(v′).

Definition 2. The write graph for a history H, denoted
GW (V,EW), is a directed graph where V is the set of values
written in H, and EW contains an edge (v, v′) if and only if
w(v) <H w(v′).

Lemma 2. A history H is k-atomic if and only if its cor-
responding write graph GW (V,EW) has a topological order-
ing T =

〈
v1, v2, . . . , v|V |

〉
, such that for any two vertices vi

and vj in T , if the read value graph GR(V,ER) for H con-
tains an edge (vi, vj) then j > i− k.

Informally speaking, GR and GW both capture constraints
on the order in which writes may appear to take effect.
Lemma 2 then asserts that H is k-atomic if and only if there
is an ordering of the writes that is consistent with GW and
in which the edges of GR never point “backward” by more
than k − 1 positions.

Examples of GR and GW are presented in Figure 1 with
respect to a small input history. Operations in the history
are illustrated as intervals of time following the style of di-
agrams used by Herlihy and Wing [15]. The horizontal di-
mension represents time and the vertical dimension is used
only to separate the intervals visually. The history has two
3-atomic total orders, namely 〈5, 2, 1, 3, 4〉 and 〈5, 2, 3, 1, 4〉,

398

but fails to satisfy 2-atomicity because w(1) and w(3) both
separate w(2) from r(2). Consequently, the history is not
1-atomic either.

time

r(1)w(1)

r(2)w(2)

r(3)w(3)

w(4) r(4)

w(5)

1 2

3 4

GW (V, EW) GR (V, ER)

1 2

3 4

5 5

Figure 1: Example execution history (top) and cor-
responding graph representation (bottom).

4. AN EFFICIENT ALGORITHM FOR A RE-
STRICTED CLASS OF HISTORIES

In this section, we present an efficient algorithm called
GPO (“greedy plus obligations”) that solves k-AV for arbi-
trary k in the special case when the input history satisfies
Assumptions 1–3 as well as the following:

Assumption 4. For any history H and for any value v
written in H, the write w(v) has a dictated read r(v) such
that w(v) <H r(v).

Using the terminology of Gibbons and Korach, Assump-
tion 4 implies that every zone in the history is a forward
zone [10]. Intuitively, this requirement constrains the k-AV
problem by ensuring the presence of certain edges in the
representation of a history H as a write graph GW and a
read value graph GR. Specifically, for every pair of val-
ues v and v′, Assumption 4 ensures that GR contains the
edge (v, v′) if f(w(v)) < f(w(v′)), or the edge (v′, v) if
f(w(v′)) < f(w(v)). In contrast, Assumptions 1–3 alone
do not imply that v and v′ are ordered by GW or GR in the
case when w(v) and w(v′) are concurrent.

4.1 Algorithm description
The main idea behind GPO is “greedy plus obligations;”

hence the name. Like the LBT algorithm for 2-AV [12], GPO

constructs a k-atomic total order in reverse. For each value
placed in the k-atomic total order the algorithm evaluates
any constraints this placement imposes on the choice of sub-
sequent values, and records these constraints using internal
data structures.

Given multiple candidates for the next value to be placed,
GPO greedily picks the one whose dictating write has the
largest finish time. In some cases this choice is narrowed
down to a subset of values that must be placed within the
next k−1 (or fewer) positions in the k-atomic total order due
to constraints imposed on them by values that were placed
earlier. Once GPO chooses the next value v, it identifies
two types of constraints imposed by v: (i) if the write of v
happens before the read of some value v′ that has not yet
been placed then v′ must be placed in one of the next k− 1
positions; and (ii) if the write of such a value v′ happens
before the write of another value v′′ that has not yet been
placed then v′′ must also be placed in the next k−1 positions.

The constraints are tracked using k−1 sets of values called
obligation sets, denoted by B[1] to B[k − 1], initially all
empty. The purpose of B[i] is to record the values that
must be placed in the next i positions of the k-atomic total
order, and so naturally GPO must maintain the invariant
B[1] ⊆ B[2] ⊆ · · · ⊆ B[k − 1]. An obligation set B[i] is
called overfull, full, or underfull if |B[i]| > i, |B[i]| = i, or
|B[i]| < i, respectively. As GPO decides the next value to be
placed it faces three possibilities. If there exists an overfull
obligation set then GPO simply outputs NO because it is
impossible to place more than i values in the next i positions.
If no obligation sets are overfull but at least one of them
is full then GPO first identifies the smallest full set, and
then among the values in that set it greedily picks the one
whose dictating write has the largest finish time. Otherwise
all obligation sets are underfull, and GPO greedily chooses
a value that has not yet been placed and whose dictating
write has the largest finish time.

Having chosen the next value v, GPO updates the obli-
gation sets by removing the value that was just placed, and
then copying the remaining values from B[i+ 1] to B[i]. In-
tuitively, if a value was supposed to be placed in the next
i + 1 positions at the beginning of a given iteration and is
not chosen in the same iteration then it must be placed in
the next i positions at the beginning of the next iteration.
In addition, GPO updates B[k − 1] by adding values deter-
mined according to the two types of constraints imposed by
v, as described earlier. As long as no overfull obligation set
is encountered the algorithm continues to choose values and
update the obligation sets until it has constructed a k-atomic
total order for the input history. At that point GPO returns
YES. The full procedure is presented as Algorithm 2.

The intuition underling lines 7 and 9 of GPO, which choose
a value v with maximum finish time over any other candidate
value v′, follows from two observations. First, w(v) happens
before a subset of the operations that w(v′) happens before,
and hence the choice of v as the next value in the reverse k-
atomic order is the least constraining with respect to other
values that have not yet been chosen. Second, choosing v
in an earlier iteration than v′ positions v′ before v in the
k-atomic total order, which tends to be consistent with the
direction of edges in GR because f(w(v′)) < f(w(v)) im-
plies that GR contains the edge (v′, v) under Assumption 4.
Given that this edge exists, choosing v′ instead in an earlier
iteration than v would open the possibility that v precedes

399

v′ by more than k − 1 positions in the chosen total order
over values, which precludes such an order being k-atomic
(see Lemma 2).

4.2 Examples
With respect to the example history presented in Figure 1,

GPO works correctly only if we remove w(5), which lacks a
dictated read and hence violates Assumption 4. Consider
the case k = 3 with w(5) removed. The algorithm chooses 4
at line 9 in the first iteration, which imposes no additional
constraints. It then chooses 3 at line 9 in the second it-
eration, and adds the values {1, 2} to B[2]. In the third
iteration it chooses 1 from B[2] at line 7, and then copies
2 to B[1]. In the fourth iteration it chooses 2 from B[1]
at line 7. Thus, GPO computes the total order 〈2, 1, 3, 4〉
and returns YES. This response is correct because the input
history without w(5) is 3-atomic.

Next, consider the case k = 2 with w(5) removed. As
before the algorithm chooses 4 in the first iteration. In the
second iteration it chooses 3 at line 9, and adds the values
{1, 2} to B[1], causing a return of NO at line 19 because
|B[1]| = 2 > 1. This response is correct because the input
history is not 2-atomic, even without w(5).

Finally, consider the full history in Figure 1 with w(5)
included. The algorithm chooses 4 at line 9 in the first it-
eration, which imposes no additional constraints. It then
chooses 5 at line 9 in the second iteration, and adds the
values {1, 2, 3} to B[2], causing a return of NO at line 19
because |B[2]| = 3 > 2. This response is incorrect because
the input history is 3-atomic. Thus, GPO breaks because
the input history fails to satisfy Assumption 4.

4.3 Analysis
References to GR(V,ER) and GW (V,EW) in our analysis

pertain to the read value graph and the write graph for the
input history H (Definitions 1 and 2). These structures are
needed only for analysis and therefore do not appear in the
pseudo-code of Algorithm 2. The symbols Tx, Ux, and Bx[i]
denote the values of T , U , and B[i] at the end of iteration x
of the outer loop. Detailed proofs of correctness are omitted
due to lack of space.

Lemma 3. The outer loop of the algorithm provides the
following invariant:

(a) for every value v accessed in H, v is either in Tx or in
Ux (but not in both); and

(b) for every i, 1 ≤ i ≤ k − 1, if there exists a value
v ∈ Bx[i] and a value v′ ∈ Ux such that w(v) <H w(v′)
then v′ ∈ Bx[i].

Lemma 4. Suppose that the algorithm outputs YES. Then
the sequence of values T obtained when line 22 is reached is
a topological ordering of GW .

Lemma 5. If the algorithm outputs YES then H is k-
atomic.

Lemma 6. If H is k-atomic then the algorithm outputs
YES.

Proof sketch. Suppose that H is k-atomic. We show
that the algorithm outputs YES by proving the following
predicate P (x) for all x ≤ nw, where nw denotes the number
of writes in H:

Input: history H and integer k, 2 ≤ k ≤ n.
Output: YES if H is k-atomic, NO otherwise.
// suffix of k-atomic total order for H

1 T := empty sequence
// set of values that have not yet been added

to T
2 U := set of values written in H
3 for i := 1 to k − 1 do B[i] := ∅
4 while U 6= ∅ do

// apply greedy heuristic

5 if ∃ i : |B[i]| = i then
6 ` := smallest such i
7 v := value in B[`] such that w(v) has the

largest finish time

8 else
9 v := value in U such that w(v) has the

largest finish time

10 end
11 remove v from U and pre-pend it to T

// update obligation sets

12 W := subset of values v′ ∈ U such that some
read r(v′) satisfies w(v) <H r(v′)

13 W ′ := subset of values v′ ∈ U such that some
value v′′ ∈W satisfies w(v′′) <H w(v′)

14 for j := 1 to k − 2 do
15 B[j] := B[j + 1] \ {v}
16 end
17 B[k − 1] := (B[k − 1] ∪W ∪W ′) \ {v}
18 if ∃ i : |B[i]| > i then
19 return NO
20 end

21 end
22 return YES

Algorithm 2: The GPO algorithm.

(a) the algorithm executes line 11 at least x times and
computes a sequence Tx = 〈v1, v2, . . . , vx〉 that is the
suffix of some k-atomic total order for H;

(b) for any i such that 1 ≤ i ≤ k−1 and for any value v, if
v ∈ Bx[i] then v is one of the i immediate predecessors
of v1 in any k-atomic total order for which Tx is a
suffix, and hence |Bx[i]| ≤ i; and

(c) for any value v, if GR contains an edge (a, b) such that
a is i ≥ 0 positions to the right of v1 in Tx and b is
not in Tx, then b ∈ Bx[k − 1 − j] for all j such that
0 ≤ j ≤ i.

Part (b) of the predicate P (x) ensures that the algorithm
never exits at line 19, and therefore outputs YES at line 22,
as wanted. The predicate is proved by induction on x, and
the most technically challenging aspect of the induction step
is to establish P (x + 1)-(a). To that end, we show that no
matter which value v the algorithm chooses during iteration
x + 1 (at line 7 or 9), there is some k-atomic total order T
for H such that Tx is a suffix of T .

Theorem 7. The algorithm outputs YES if and only if H
is k-atomic. Furthermore, the algorithm has time complexity
O(n2 +n ·k log k) where n is the number of operations in the
input history H.

400

Proof sketch. Correctness of the return value follows
from Lemmas 5 and 6. Assuming that U and B[1] to B[k−1]
are represented using balanced trees, each iteration can be
completed in O(n+k log k) steps: O(n) to remove v from U
as well as to compute W and W ′, and O(k log k) to update
B[i] for all i. We assume that each set B[i] is implemented
using a balanced tree, and that Algorithm 2 is optimized to
return NO at line 15 or 17 if the size of B[i] exceeds i, in
accordance with lines 18–19. This optimization ensures that
B[`] at line 7 can be scanned in O(k) time, that deletions
from B[i] at line 15 or 17 complete in O(log k) time, and
that the set unions at line 17 complete in O(k log k) time.
The total number of iterations is bounded by n and hence
the overall time complexity is O(n2 + n · k log k).

5. A GENERAL ALGORITHM
In this section we present a k-AV algorithm called CGS

(“configuration graph search”) that is correct for any history
satisfying Assumptions 1–3, and whose worst case time com-
plexity is polynomial only in the special case when both k
and our specific measure of write concurrency are bounded
by constants.

5.1 Algorithm description
The algorithm uses the graph-theoretic representations of

the input history H described in Section 3 as Definitions 1
and 2. Its complexity depends on both the size of these
graph structures and on a formal notion of concurrency
among write operations captured in Definition 3.

Definition 3. The write concurrency of a history H is
the maximum number of writes that any one write overlaps
with, including itself.

The algorithm works by analyzing possible topological or-
derings of GW starting with small permutations of values
called configurations, which are formalized in Definition 4.
Intuitively, each configuration is a candidate contiguous sub-
sequence of a k-atomic total order for H, and must therefore
satisfy constraints related to edges of GW and GR in ac-
cordance with Lemma 2. Furthermore, it must be possible
to compose smaller configurations to form larger contigu-
ous subsequences of a k-atomic total order for H. These
requirements have two implications regarding the size of a
configuration S. First, for Lemma 2 the order of the k − 1
immediate predecessors of at least one value in S (i.e., the
last one) must be fixed, and so S must contain at least k val-
ues. Second, for composability the set of values outside of S
must be partitioned into those that can only precede S in a
topological ordering of GW , and those that can only follow
S. As a result, the number of values in S must be greater
than or equal to the write concurrency of H, denoted in this
section by m. Thus, S must have size at least max(m, k).

Definition 4. An (m, k)-configuration with respect to a
read value graph GR(V,ER) and write graph GW (V,EW)
is any sequence S = 〈v1, v2, . . . , vl〉 of l = max(m, k) values
that satisfies the following properties:

(a) S is a contiguous subsequence of some topological or-
dering of GW ;

(b) if GR contains an edge (v, v′) such that both v and v′

are values in S, say v = vi and v′ = vj, then j > i−k;
and

(c) if GR contains an edge (v, v′) such that v is the last
value in S and v′ is not in S, then S contains a value
v′′ such that GW contains the edge (v′′, v′).

The algorithm attempts to find a k-atomic total order for
the input history by stringing together (m, k)-configurations.
To that end, the algorithm searches for a sufficiently long
path in a directed graph of configurations where the edge set
represents the extends relation formalized in Definition 5.

Definition 5. For any (m, k)-configurations C and C′

with respect to a read value graph GR(V,ER) and write graph
GW (V,EW), we say that C′ extends C if and only if C′ is
obtained from C by removing the first value v and appending
a value v′ 6= v such such that (v′, v) 6∈ EW .

As we show later on in Lemma 8, a path through the
directed graph of configurations induces a non-repeating se-
quence of values whose order obeys the constraints imposed
by the happens before relation <H for the input history H.
As a result, the length of the longest path in this graph can
be used to decide k-atomicity. The full procedure is pre-
sented as Algorithm 3, where the parameter k is given as
input and the write concurrency of the input history, de-
noted by m, is computed explicitly at line 8.

Input: history H and integer k, 2 ≤ k ≤ n.
Output: YES if H is k-atomic, NO otherwise.

1 GR(V,ER) := read value graph for H
2 GW (V,EW) := write graph for H
3 if |V | ≤ k then
4 return YES

5 else if ∃v ∈ V s.t.
|{v′ ∈ V | (v′, v) ∈ EW ∧ (v, v′) ∈ ER}| ≥ k then

6 return NO

7 else
8 m := write concurrency of H
9 C := set of (m, k)-configurations with respect to

GR and GW

10 EC := {(c, c′) ⊆ C × C | configuration c′ extends
configuration c}

11 GC := configuration graph (C, EC)
12 if GC is non-empty and contains a path with

|V | −max(m, k) edges then
13 return YES

14 else
15 return NO
16 end

17 end

Algorithm 3: The CGS algorithm.

5.2 Examples
With respect to the example history presented in Figure 1,

CGS works correctly for all k ≥ 1. The write concurrency
for this particular input is m = 5. Recall from Section 3
that the input history is 3-atomic but not 1-atomic or 2-
atomic. For k = 1 the condition at line 5 holds with v = 1
and v′ = 2, and so the algorithm correctly returns NO at
line 6.

For k = 2 the condition at line 5 is false and so the algo-
rithm proceeds to build the set C of (5, 2)-configurations at

401

line 9. According to Definition 4 there are no possible (5, 2)-
configurations because it is impossible to satisfy clause (b).
As a result, the configuration graph GC computed at line 11
is empty. Thus, the condition at line 12 is false and CGS
correctly returns NO at line 15.

For k = 3 the condition at line 5 is false and so the al-
gorithm proceeds to build the set C of (5, 3)-configurations
at line 9. According to Definition 4 the only possible (5, 3)-
configurations are 〈5, 2, 1, 3, 4〉 and 〈5, 2, 3, 1, 4〉, which are
the two possible 3-atomic total orders for H. The configura-
tion graph GC computed at line 11 is therefore non-empty
and contains a path with |V |−max(m, k) = 5−5 = 0 edges.
Thus, the condition at line 12 holds and CGS correctly re-
turns YES at line 13.

Finally, consider the case when w(5) is removed from the
input. In that case the write concurrency becomes m = 3.
For k = 2 the condition at line 5 is false and so the al-
gorithm proceeds to build the set C of (3, 2)-configurations
at line 9. The possible (3, 2)-configurations are: 〈2, 1, 4〉,
〈2, 3, 4〉, 〈1, 3, 4〉, 〈1, 4, 3〉, and 〈3, 1, 4〉. However, the con-
figuration graph GC computed at line 11 does not con-
tain any edges, and hence does not contain a path with
|V | − max(3, 2) = 4 − 3 = 2 edges. Thus, the condition at
line 12 is false and CGS correctly returns NO at line 15.
For k = 3 the condition at line 5 is again false and the
possible (3, 3)-configurations include 〈2, 1, 3〉, 〈1, 3, 4〉, and
several others. Since 〈1, 3, 4〉 extends 〈2, 1, 3〉 it follows that
the graph GC computed at line 11 is non-empty and contains
a path with |V | − max(3, 3) = 4 − 3 = 1 edges. Thus, the
condition at line 12 holds and CGS correctly returns YES
at line 13.

5.3 Analysis
In this section we suppose that Assumptions 1–3 hold and

we show that the algorithm returns YES if and only if the
input history H is k-atomic. In our analysis any references to
the configuration graph GC pertain to the graph structure
computed at line 11 of the algorithm. Detailed proofs of
correctness are omitted due to lack of space.

Definition 6. Let P = 〈C1, C2, C3, . . . , Cl〉 be a finite
path in the configuration graph GC . The sequence S of val-
ues induced by P is defined recursively as follows: if l = 1
then S = C1, otherwise S is the sequence of values induced
by 〈C1, C2, C3, . . . , Cl−1〉 followed by the last value of Cl.

Lemma 8. For any finite path P = 〈C1, C2, C3, . . . , Cl〉 in
the configuration graph GC , the sequence S of values induced
by P is a subsequence of some topological ordering of GW .

Corollary 9. Suppose that H contains nw ≥ k writes.
Then any path P through the configuration graph GC has
length (number of edges) at most nw −max(m, k).

Lemma 10. Suppose that H contains nw ≥ k writes. Then
H is k-atomic if and only if the configuration graph GC is
non-empty and has a path with exactly nw−max(m, k) edges.

Theorem 11. The algorithm returns YES if H is k-atomic,
and NO otherwise.

Proof sketch. If |V | ≤ k then any topological ordering
of GW shows that H is k-atomic (Lemma 2) under Assump-
tions 1–3, and so the algorithm returns YES at line 4. Oth-
erwise if the condition at line 5 holds then H is not k-atomic

because in any topological ordering of GW one of the ver-
tices v′ precedes v by more than k− 1 positions (Lemma 2),
and so the algorithm returns NO at line 6. Finally, if the
algorithm reaches line 12 then k-atomicity is decided using
Lemma 10 and the algorithm returns the correct response
at line 13 or line 15.

Lemma 12. The graph GC of (m, k)-configurations for a

history H with nw writes has at most nw ·(2m−1)max(m,k)−1

vertices and at most nw · (2m− 1)max(m,k) edges.

Proof sketch. In each (m, k)-configuration there are at
most nw choices for the first value, and for each value v
there are at most 2m − 1 choices for the successor of v: at
most m − 1 values whose writes overlap with w(v), and an
independent set of at most m out-neighbors of v in GW .

Theorem 13. The time complexity of the algorithm is
O(n2 + n · max(m, k)2 · (2m − 1)max(m,k)−1) where n de-
notes the number of operations in the input history H, and
m is the write concurrency of H.

Proof sketch. O(n2) steps are required to construct
GR and GW , as well as some intermediate structures that
speed up the construction of GC . Computing m at line 8
requires O(n2) steps. The total number of vertices in GC is

at most n ·(2m−1)max(m,k)−1 by Lemma 12 and each vertex
can be identified along with its in-edges in O(max(m, k)2)
steps given that the condition tested at line 5 of the algo-
rithm is false.

6. PRACTICAL APPLICABILITY
In this section we investigate the time complexity of algo-

rithm CGS (Section 5) in practice by computing the param-
eters n (number of operations) and m (write concurrency,
see Definition 3) from experimental data. The data set is
borrowed from the experimental study of Γ-atomicity [14].

Experimental environment.
The experiments were conducted using ten 64-bit 2.2 GHz

dual-core AMD Opteron servers equipped with 7200 RPM
SATA disks and Gigabit Ethernet. Five servers were used to
execute Cassandra 1.2.4 [17] and another five to run the Ya-
hoo Cloud Serving Benchmark (YCSB) 0.1.4 [6]. The soft-
ware environment included CentOS 5.5 Linux and OpenJDK
1.7.0 19. Clocks skew across servers was estimated using the
ntpq command as less than 10ms.

Translation of execution histories into k-AV test cases.
The data set includes five sets of experiments, where each

experiment comprises multiple (3-9) runs with different com-
binations of storage system settings and workload parame-
ters. In each run the benchmark (YCSB) applies operations
to the storage system (Cassandra) for 60 seconds, usually
at the peak throughput level of approximately 1000 opera-
tions/s/server, which yields an execution history containing
hundreds of thousands of operations.

Although the history generated by each of the 49 experi-
mental runs could be used directly as an instance of k-AV,
each object accessed in the history can be analyzed sepa-
rately thanks to the locality property of k-atomicity, as ex-
plained in Section 2. Therefore, we first project the history
obtained from a given run into a set of sub-histories corre-
sponding to distinct objects. Furthermore, each of these sub-
histories can often be decomposed into smaller fragments

402

FZ8

FZ6

FZ2

FZ3

FZ4FZ1 FZ5

FZ7

BZ1 BZ2 BZ3 BZ4 BZ5 BZ6 BZ7

Figure 2: Example of zones in a history, reproduced from [12].

that can be analyzed separately—a technique used by the
FZF algorithm for solving 2-AV [12]. The decomposition
is based upon Gibbons and Korach’s method of clustering
operations into zones, each of which comprises a write opera-
tion and its dictated reads [10]. A zone is represented as the
time interval from the minimum finish time of any operation
in the zone to the maximum start time of any operation in
the zone. A forward zone occurs when the minimum finish
time is less than the maximum start time, meaning that at
least one dictated read starts after some other operation in
the zone finishes. A backward zone occurs when the mini-
mum finish time is greater than or equal to the maximum
start time, meaning that all operations in the zone overlap
at a common point in time. For completeness we include in
Figure 2 a copy of Figure 3 from [12], which illustrates a pos-
sible combination of zones in one history. In this figure FZx
and BZx indicate forward and backward zones, respectively,
and time increases from left to right.

The decomposition procedure groups zones into maximal
subsets called chunks such that (i) two forward zones are
in the same chunk if they intersect, and (ii) a backward
zone belongs to a chunk if its time interval is contained
entirely in the union of the time intervals of the forward
zones in that chunk. As an example, in Figure 2 there
are three chunks: {FZ 1,BZ 1}, {FZ 2,FZ 3,FZ 4,BZ 3,BZ 4},
and {FZ 5,FZ 6,FZ 7,FZ 8,BZ 6}. The remaining zones BZ 2,
BZ 5 and BZ 7 can be ignored in the context of k-AV, in-
tuitively because their operations can be linearized easily
in-between chunks. It is straightforward to show that un-
der Assumptions 1–2 an execution history is k-atomic if and
only if each chunk of that history is k-atomic.

Experimental results.
We applied the above translation procedure to the 49 ex-

ecution histories in the data set, which generated more than
two million chunks. For each history we computed the to-
tal number of chunks, total number of zones, total number
of operations, maximum number of operations per chunk,
maximum write concurrency, number of chunks with m ≤ 5,
number of chunks that satisfy Assumption 4, and number of
chunks where m > 5 and Assumption 4 is not satisfied.

The detailed results, which we omit due to lack of space,
show that the chunks are quite small, generally comprising
fewer than 200 operations and 4-5 operations per zone on
average. Thus, the problem instances are fairly small but
not small enough to permit solving k-AV by brute force.
More than 99.3% of the chunks satisfy Assumption 4 and can
therefore be analyzed efficiently using the GPO algorithm
from Section 4. More than 99.9% of the chunks have write
concurrency m ≤ 5, and hence they are likely good candi-
dates for the CGS algorithm from Section 5 provided that k
is similarly small. The remaining chunks, where m > 5 and

Assumption 4 does not hold, account for fewer than 0.1%
of the test cases. These inputs may be too complex for our
CGS algorithm.

7. CONCLUSION AND DISCUSSION
In this paper we have presented two algorithms that solve

the k-AV problem for arbitrary k ≥ 2 in special cases. Our
algorithms assume that each read has exactly one dictating
write (Assumption 1), which circumvents NP-completeness
when k ≤ 2. The first algorithm (GPO) places an additional
restriction on the structure of the execution history but al-
ways runs in polynomial time. The second algorithm (CGS)
does not place any additional restrictions on the input but its
running time is polynomial only if both k and our measure of
write concurrency (Definition 3) are bounded by constants.
The time complexity of k-AV under Assumption 1, with no
additional restrictions, remains unsettled.

Our algorithms enable precise measurement of version-
based staleness, which in turn has several applications: (i)
analyzing and understanding the behavior of eventually con-
sistent storage systems (e.g., [7, 17, 23]); (ii) validating
mathematical models of consistency (e.g., [3]); as well as
(iii) verifying that a storage system or consistency tuning
framework (e.g., [2, 24, 29]) delivers a promised level of con-
sistency, and quantifying the severity of any consistency vi-
olations observed.

Measurement of version-based staleness entails computing
the k-value of a history H, denoted kH , which is the smallest
integer k ≥ 1 for which H is k-atomic. This value can be
computed by a brute force method where k-AV is solved for
consecutive values of k starting at k = 1, or by executing
a binary search over 1 ≤ k ≤ nw where nw is the number
of writes in H. When kH is sufficiently large compared to
m, the brute force approach is optimal for an exponential
time algorithm such as CGS because the time complexity is
dominated by the cost of solving k-AV for k = kH + 1. Oth-
erwise the computation may benefit from binary search with
the overall time complexity bounded by O(lognw) times the
cost of solving k-AV for k = nw.

Given that our k-AV algorithms do not guarantee poly-
nomial running time without additional restrictions, their
practical value depends on how often these restrictions hold
in real data sets. To shed light on this point we analyzed the
execution histories from [14] to determine representative val-
ues of n (number of operations) and m (write concurrency,
Definition 3). The results suggest that in practice n is typi-
cally small (<1000), and the vast majority (>99%) of k-AV
instances satisfy Assumption 4, which makes GPO applica-
ble. In most of the remaining cases m is small (≤ 5) and
hence CGS is efficient for small k (e.g., k ≤ m). A very small
fraction of cases (<0.1%) fail to satisfy both Assumption 4
and m ≤ 5, and may be too complex for CGS.

403

8. REFERENCES
[1] A. Aiyer, L. Alvisi, and R. A. Bazzi. On the

availability of non-strict quorum systems. In Proc. of
the 19th International Symposium on Distributed
Computing (DISC), pages 48–62, September 2005.

[2] M. S. Ardekani and D. B. Terry. A self-configurable
geo-replicated cloud storage system. In Proc. of the
11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 367–381,
2014.

[3] P. Bailis, S. Venkataraman, M. J. Franklin, J. M.
Hellerstein, and I. Stoica. Probabilistically bounded
staleness for practical partial quorums. PVLDB,
5(8):776–787, 2012.

[4] D. Bermbach and S. Tai. Eventual consistency: How
soon is eventual? An evaluation of Amazon S3’s
consistency behavior. In Proc. of the 6th Workshop on
Middleware for Service Oriented Computing
(MW4SOC), 2011.

[5] E. A. Brewer. Towards robust distributed systems
(abstract). In Proc. of the 19th ACM Symposium on
Principles of Distributed Computing (PODC), 2000.

[6] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In ACM Symposium on
Cloud Computing (SoCC), pages 143–154, June 2010.

[7] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proc. of the 21st ACM Symposium on Operating
System Principles (SOSP), pages 205–220, October
2007.

[8] S. Even, A. Itai, and A. Shamir. On the complexity of
timetable and multicommodity flow problems. SIAM
Journal on Computing, 5(4):691–703, December 1976.

[9] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E.
Knuth. Complexity results for bandwidth
minimization. SIAM Journal on Applied Mathematics,
34(3):477–495, May 1978.

[10] P. Gibbons and E. Korach. Testing shared memories.
SIAM Journal on Computing, 26:1208–1244, August
1997.

[11] S. Gilbert and N. A. Lynch. Brewer’s conjecture and
the feasibility of consistent, available,
partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.

[12] W. Golab, J. Hurwitz, and X. Li. On the
k-atomicity-verification problem. In Proc. of the 33rd
International Conference on Distributed Computing
Systems (ICDCS), 2013.

[13] W. Golab, X. Li, and M. A. Shah. Analyzing
consistency properties for fun and profit. In Proc. of
the 30th ACM Symposium on Principles of Distributed
Computing (PODC), pages 197–206, June 2011.

[14] W. Golab, M. R. Rahman, A. AuYoung, K. Keeton,
and I. Gupta. Client-centric benchmarking of eventual
consistency for cloud storage systems. In Proc. of the
34th International Conference on Distributed
Computing Systems (ICDCS), pages 493–502, 2014.

[15] M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM

Transactions on Programming Languages and
Systems, 12(3):463–492, July 1990.

[16] D. J. Kleitman and R. V. Vohra. Computing the
bandwidth of interval graphs. SIAM Journal on
Discrete Mathematics, 3(3):373–375, August 1990.

[17] A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[18] L. Lamport. On interprocess communication, Part I:
Basic formalism and Part II: Algorithms. Distributed
Computing, 1(2):77–101, June 1986.

[19] H. Lee and J. L. Welch. Randomized registers and
iterative algorithms. Distributed Computing,
17(3):209–221, 2005.

[20] J. Misra. Axioms for memory access in asynchronous
hardware systems. ACM Transactions on
Programming Languages and Systems, 8(1):142–153,
January 1986.

[21] C. H. Papadimitriou. The NP-completeness of the
bandwidth minimization problem. Computing,
16(3):263–270, September 1976.

[22] J. Saxe. Dynamic-programming algorithms for
recognizing small-bandwidth graphs in polynomial
time. SIAM Journal on Algebraic and Discrete
Methods, 1(4):363–369, December 1980.

[23] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman,
and S. Shah. Serving large-scale batch computed data
with project Voldemort. In Proc. of the 10th USENIX
Conference on File and Storage Technologies (FAST),
2012.

[24] D. B. Terry, V. Prabhakaran, R. Kotla,
M. Balakrishnan, M. K. Aguilera, and H. Abu-Libdeh.
Consistency-based service level agreements for cloud
storage. In Proc. of the 24th ACM Symposium on
Operating Systems Principles (SOSP), pages 309–324,
2013.

[25] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected
replicated storage system. In Proc. of the 15th ACM
Symposium on Operating Systems Principles (SOSP),
pages 172–182, 1995.

[26] F. J. Torres-Rojas, M. Ahamad, and M. Raynal.
Timed consistency for shared distributed objects. In
Proc. of the 18th ACM Symposium on Principles of
Distributed Computing (PODC), pages 163–172, 1999.

[27] W. Vogels. Eventually consistent. Queue, 6(6):14–19,
Oct. 2008.

[28] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu.
Data consistency properties and the trade-offs in
commercial cloud storages: the consumers’
perspective. In Proc. of the 5th Biennial Conference
on Innovative Data Systems Research (CIDR),
January 2011.

[29] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for
replicated services. ACM Trans. Comput. Syst.,
20(3):239–282, 2002.

404

