C_ UMOO036
’I User Manual

ST Visual Develop
(STVD)

April 2010

Introduction

Welcome to ST Visual Develop (STVD). STVD is a powerful, integrated development
environment for ST microcontrollers. This Windows-based environment provides interfaces
for all phases of application development, from building and debugging your application, to
programming your ST microcontroller.

New features described in this document are not present in earlier versions of STVD.

This document will help you get started developing your application with STVD. It includes:
m Detailed descriptions of STVD’s user interface and features

m Information about STVD features that are specific to your debugging hardware

m Tutorials to help you learn to use STVD'’s build, debug and program features

Features

m For building your application, STVD supports ST Assembler-Linker, Cosmic C,
Raisonance C and Metrowerks C toolsets. Its graphics interface provides easy access to
a range of options when building your application for debugging or programming your
microcontroller.

m For debugging your application, STVD supports a complete range of in-circuit
debugging, emulation hardware, and advanced debugging features, including advanced
breakpoints and trace recording that will make application development easy and fast. It
can also be used as a stand-alone tool, providing a software simulation of your
microcontroller's behavior as it runs your application.

m For programming, STVD provides a programming interface that is based on ST Visual
Programming (STVP) software and supports a complete range of hardware for in-circuit,
in-situ and socket programming.

Doc ID 7705 Rev 11 1/385

www.st.com

http://www.st.com

Contents UMO0036

Contents
1 INntroduction 18
1.1 Building and debugging applications 18
1.2 Programming your microcontroller 19
1.3 Advanced debugging features 19
14 Getting assistance 21
1.5 Associated documentation 21
1.6 CONVENLIONS . . .ottt 22
2 Getting started with STVD 23
2.1 Set the toolset and path information 23
2.2 Create a workspace with anew project 23
221 Create anew WOrkSpacettt 24
222 Create a projectin your workspace 25
2.2.3 Specify a target MCU for your project 25
2.3 Add source files (.asm, .c, .s)toyourproject 27
2.4 Build your application 28
241 Configuring project settings for Debug or Release 28
24.2 Build commands and output 29
2.5 Select and connect to your debug instrument 30
2.6 Debug your application e 32
2.7 Program your application to your microcontroller 32
3 Your STVD graphical environment 34
3.1 The main applicationwindow 34
3.2 The main menus and theircommands 36
3.3 VIeW WINAdOWS 40
3.4 Workspace WINdOWt 41
35 Editor Windows 43
351 Editor window contextual menu 49
3.5.2 Editing features 49
3.6 OUtPUL WINAOW 56
3.6.1 Buildtaband Toolstab 57

2/385 Doc ID 7705 Rev 11 KYI

UMO0036 Contents
3.6.2 FindinFiles1 & FindinFiles2tabs 58

3.6.3 Debugtab 58

3.6.4 Consoletab 58

3.7 Customizing your work environment 60
3.7.1 Customizing editor features 61

3.7.2 Customizingtoolbars i 65

3.7.3 Adding custom commands e 67

3.8 TOOIIPS © . 69
3.9 Help and supportfeatures 70
3.10 Migrating old workspaces (STVD7 2.5.4 and prior versions) 71
4 Project creationand build 75
4.1 Specifying atoolset 75
4.2 Loading and creating workspaces (.Stw) 76
421 Loading an existing workspace 76

422 Creating a new workspace, 78

4.3 Creating and loading projects in aworkspace 80
43.1 Loading an existing projectt 80

4.3.2 Creating NewW ProjectsSt e 80

4.3.3 Adding and removing folders andfiles 83

4.4 Project build configurations 83
4.5 Configuring project settings i e 84
451 General settingstab 85

45.2 Debug settingstab 86

453 MCU selectiontab 86

454 Pre-link settingstab 87

455 Post-build settingstab 87

4.6 Customizing build settings for ST Assembler/Linker toolset 88
4.6.1 ST ASMItab ... 89

4.6.2 STLinktab 90

4.6.3 ST Post-Linktab 92

4.7 Customizing build settings for Cosmic Ctoolsets 93
4.7.1 CosmicCcompilertab 95

4.7.2 Cosmic C Assemblertab 107

4.7.3 CosmicClinkertab 110

4.8 Customizing build settings for Raisonance Ctoolset 116
K7_1 Doc ID 7705 Rev 11 3/385

Contents UMO0036
48.1 Raisonance C compilertab 118

4.8.2 Raisonance Assemblertab 125

4.8.3 Raisonance Clinkertab, 127

4.9 Customizing build settings for Metrowerks C toolset 131
4.9.1 Metrowerks C Compilertab 133

492 Metrowerks Assemblertab 143

4.9.3 Metrowerks linkertab 148

4.10 Configuring folder and file settings 156
4.10.1 General settings for filesand folders 156

4.10.2 Custombuildtab 157

4.11 Specifying dependencies between projects 158
4,12 Builldcommands i 158
5 Basic debugging features 160
5.1 Selecting the debug instrument 161
51.1 Identify your debug instrument 161

5.1.2 Add communication ports 162

5.2 Configuring yourtarget MCU i, 164
52.1 MEMOIY MaP . oot e 164

5.2.2 On-chipperipherals i, 166

5.3 Running an application 167
5.3.1 Runcommands i 167

5.3.2 Stepping MOUESot 168

5.3.3 Program and STVD status bardisplay 169

534 Monitoring execution in source Windows 169

54 Editordebug actions 169
54.1 Editor debug margin 172

5.4.2 QuickWatch window 174

5.5 Disassembly window 175
5.6 Online assembler 178
5.7 Memory WindOW e 180
57.1 Viewing memory Contents 180

5.7.2 Viewing features 181

5.8 Instruction breakpoints 183
5.8.1 Setting an instruction breakpointo oL 183

5.8.2 Viewing the instruction breakpoints 184

4/385 Doc ID 7705 Rev 11 Ky_’

UMO0036 Contents
5.8.3 Setting counters and conditions 184

5.8.4 Showing breakpoints 185

5.9 Data breakpoints 186

5.9.1 Inserting data breakpoints 186

5.9.2 Using the Data Breakpoints window 187

510 Call staCk WindOW oo 188

5.11 Localvariableswindow 190

512 Watchwindow 191

513 Coreregisters window 192

514 MSCltoolswindow 194

5.15 Symbols browser 195

5.16 Peripheral registerswindow 196

517 Memorytrace Window 198

5.18 Online commands 199

5.18.1 The loadcommandt 199

5.18.2 Theoutput filecommand ccuiire... 199

5.18.3 The stimulicommando i, 199

5.18.4 The symbol-filecommanduuuuiuunnnennnnnnn. 200

5.185 The save memorycommand 200

5.18.6 Thehelpcommand, 200

5.19 Limitations and discrepancies 200

6 Simulator features 202
6.1 Using the stack control features 202

6.2 Using the input pin stimulator 203

6.3 Using the simulation plotter 207

6.3.1 Plotter selection window 208

6.3.2 Plotter Window 209

6.4 Using read/write on-the-fly 220

6.5 Forcing interrupts o e 221

7 In-circuit debugging 223
7.1 Connecting to and configuring the microcontroller 224

7.1.1 Connecting the hardware for in-circuit debugging 224

7.1.2 Selectingyour MCU 225

K7_I Doc ID 7705 Rev 11 5/385

Contents UMO0036
7.1.3 Ignoring option bytes (ICConly) 226

7.1.4 Configuring option byte settings 226

7.2 Using breakpoints 228

7.2.1 Software breakpoints 228

7.2.2 Hardware breakpoints 229

7.2.3 Setting advanced breakpoints 230

7.2.4 Advanced breakpointoptions o 232

7.3 Creating a break on trigger input (TRIGIN) 233

7.4 In-circuit debugging in hot plug mode (SWIMonly) 233

7.5 In-circuit debugging limitations 234

8 DVP and EMU2 (HDS2) emulator features 237
8.1 Working with output triggers 237

8.2 Using hardware events i 237

8.2.1 The hardware event window and contextual menu 238

8.2.2 Addingahardware event 239

8.3 Trace reCcording e 242

8.3.1 Trace contextual mMenuUt 242

8.3.2 Viewing trace contents 245

8.4 Using hardwaretesting i 246

8.5 Logical analyser (EMU2 emulatorsonly) 248

8.5.1 Defining logical analyserevents, 248

8.5.2 Advanced breaks using the logical analyser 251

8.5.3 Trace filtering using the logical analyser 252

8.6 Stack control window (DVP emulators) 254

8.7 Trigger/trace settings (DVP emulators) 255

8.7.1 Working with output triggers (DVP) i 255

9 STice features 258
9.1 Trace recordingottt 258

9.1.1 Trace bufferfields 258

9.1.2 Trace contextual mMenut 262

9.1.3 Emulator commands 265

9.2 Coverage and profiling i 266

9.2.1 Configuring the coverage and profiling settings 267

9.2.2 Running a coverage and profiling session 271

6/385 Doc ID 7705 Rev 11 Ky_’

UMO0036 Contents

9.2.3 Reading coverage and profiling results 272

9.24 Typical examplesofuse 276

10 EMU3 emulator features 284
10.1 Trace reCording oo e 284
10.1.1 Trace bufferfields 284

10.1.2 Trace contextual menu 286

10.1.3 Emulatorcommands 290

10.2 Using advanced breakpoints 291
10.2.1 Defining advanced breakpoints 292

10.2.2 Memory aCCesSS BVENESttt ittt e 296

10.2.3 Othertypesofeventsc .. 300

10.2.4 Enabling advanced breakpoints 301

10.2.5 Startingwithtrace ON 301

10.2.6 The configuration summaryt 301

10.2.7 Synoptic representation of advanced breakpoints 302

10.2.8 Saving and loading advanced breakpoints 304

10.2.9 Advanced breakpointexamples i .. 304

10.3 Programming trace recordingt 309
10.4 Using OUtPUL QOIS . .o it e et 313
10.4.1 Trigger programming examplesc.iiiiin... 314

10.5 Using analyzerinputsignals 317
10.5.1 Analyzerinputexamples e 318

10.6 Performance analysis e 319
10.6.1 Running a performance analysis 319

10.6.2 Using the Run/Stop/Continue commands 320

10.6.3 Viewing resultsot 321

10.7 Read/writeonthefly 323
10.8 Performing automatic firmware updates 324
11 Program 325
11.1 Configuring general programming settings 325
11.2 Assigning filestomemoryareasc.iiiiiii... 328
11.3 Configuring option byte settings i 329
11.4 Starting the programming SEQUENCEt v vt i e 330

IYI Doc ID 7705 Rev 11 7/385

Contents UMO0036
12 STMB Ctutorial 332
12,1 SeUP . 333

12.1.1 Install the toolset and configurethe STVD 333

12.1.2 Create aworkspace o 334

12.1.3 Create aproject 334

12.1.4 Addthesourcefiles 337

12.1.5 Create a folder to organize files in the project 338

122 BUIld .. 339

12.2.1 Specifythetarget STM8 i 339

12.2.2 Customize the C compileroptions 340

12.2.3 Change build settings for a specificfile 342

12.2.4 Buildthe application 343

12.3 Startdebugging 344

12.3.1 Startthe debugging Session i 344

12.3.2 Run and stop the application 345

12.3.3 Stepthrough the application 346

12.4 Instruction breakpoints e 347

12.4.1 Setaninstruction breakpoint L 348

12.4.2 Set a counter on an instruction breakpoint 349

12.4.3 Set a condition on an instruction breakpoint 350

12.5 VieW eXeCULIONo e e 351

12.5.1 Viewcallstothestack 351

12.5.2 View and change local variables 351

12.5.3 View variables using the Watch, QuickWatch and Memory windows . 352

12.6 Perform memory mappingttt 355

12.7 Advanced emulator features for EMU3 (ST7) and STice (STM8) 356

12.7.1 View program execution history 357

12.7.2 Usereadiwrite on-the-fly 358

12.7.3 Setan advanced breakpoint 360

12.7.4 Run a coverage and profiling session 363

12.7.5 Runaperformanceanalysis 363

13 ST Assembler/Linker build tutorial 366
13.1 Create a new workspace with the New Workspace wizard 366

13.2 Create a project using Add New Project to Workspace command 367

13.3 Inserting filesinyour project 368

8/385 Doc ID 7705 Rev 11 Ky_’

UMO0036 Contents
13.4 Creating a folder to organize filesinthe project 370

13.5 Project settingso 370

13.6 Build aversion fordebugging 372

13.7 Building a version for programming 373
Appendix A ProduCt SUPPOIT.ttt 377
Al Softwareupdates e 377

A.2 Hardware spare partst 377

A.2.1 SOCKEES . . .t 377

A2.2 CONNECIONS . . . 377

A.3 Getting prepared beforeyoucall................. 378

ReVISIoN NiStOry 379

Doc ID 7705 Rev 11 9/385

List of tables UMO0036

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.

10/385

Debugging configurations and supported hardware. 18
Programming configurations and supported hardware. 19
Advanced debugging features e 19
Associated documentation 21
Default files and folders for projects e 27
Edit menu commands. 36
Project menu commands i e 37
Debug Instrument menu commands.t 38
TOOIS MENU COMMANAS . . . ottt et e e e e e 39
Window menu COMmMaANdSttt 39
Help menu commandst e 39
VIBW WINAOWS . . .ot e e e e 40
Common contextual menu Commandsttt e 42
Window-specific contextual menucommands i 43
Editor supported file formats. e 44
Regular XPresSSIONS oo e e 55
Optionswindow tabs. e 60
Editand print OptionNs e 62
WOord Wrap OptioNS oo 62
DEbUQG OPtIONS. . . .ttt e 63
Long line indicator options i e 63
Line endings OptioNS.o e 64
Syntax highlighting options. e 64
Toolbar OPtiONSo e e 65
Migration strategy advantages and disadvantagest 72
Supported toolsets and file formats e 75
Formats for OBSEND OUPUL oottt e e e e e 92
Cosmic C compiler memory models for ST7 i 96
Cosmic C compiler memory models for STM8. i 97
Cosmic C compiler debug informationoptions 100
Cosmic C compiler optimization options. i 101
Cosmic C compiler language optionNSo oot 103
Cosmic C compiler listing Options. i 104
Cosmic C compiler outpUt OPtioNSttt e e 107
Cosmic Assembler debug options 109
Cosmic Assembler language options i 109
Cosmic Assembler listing Options 110
Cosmic linker output OPtiIoNS.o e e 115
Raisonance C compiler optimization options 122
Raisonance C compiler language optionst 123
Raisonance C compiler listing options i 124
Raisonance assembler listing options i e 126
Raisonance linker output Options i e 130
Metrowerks C compiler memory models. e 134
Metrowerks C compiler optimizationoptions 137
Metrowerks C compiler input options e 139
Metrowerks C compiler output optionst e 141
Metrowerks C compiler listing options e 142

Doc ID 7705 Rev 11 KYI

UMO0036 List of tables
Table 52. Metrowerks C compiler language options. e 143
Table 53. Metrowerks assembler language options 147
Table 54. Metrowerks linker optimization Options. 151
Table 55. Metrowerks linker output Options e 153
Table 56. Toolchain specifictabs 156
Table 57. Build commands 159
Table 58. Debug inStrument types 161
Table 59. MemOry tYPeS . . . e 164
Table 60. Debug menu run commandst e 167
Table 61. Editor contextual menu commands 170
Table 62. Stimulifile syntax 207
Table 63. Tab contextual MENU 211
Table 64. Display area contextual menu 211
Table 65. Name column contextual menu e 212
Table 66. Z0OM COMMANGSttt et et e e e e e e 213
Table 67. Marker COmmandst 215
Table 68. Plotter tab management commands. e 216
Table 69. Itemdisplay controls. e 217
Table 70. INterrupt Mapping« o oot 222
Table 71. ICD-incompatible option byte settings 227
Table 72. Flash memory limitation on HDFlash devices. o . 235
Table 73. Advanced breakpoint programming SUMMAryuoiiiieeaaa.n. 307
Table 74. Advanced breakpoints summary e 307
Table 75. Advanced breakpoints summary e 309
Table 76. Advanced breakpoints summary e 310
Table 77. Advanced breakpoints summary e 311
Table 78. Advanced breakpoints summary 311
Table 79. Advanced breakpoints summary e 311
Table 80. Advanced breakpoints summary e 312
Table 81. Advanced breakpoints summary e 315
Table 82. Advanced breakpoints summary 315
Table 83. Advanced breakpoints summary e 317
Table 84. Advanced breakpoints summary e 319
Table 85. Tutorial sections and applicable debug instrument. 332
Table 86. Advanced breakpoint configuration 361
Table 87. Document revision hiStory e 379
Ky_l Doc ID 7705 Rev 11 11/385

List of figures UMO0036

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

12/385

New Workspace WiNdOW.t et e 24
NeW ProjeCt WINAOWo e e e 25
MCU selection dialog boX. e 26
WOrKSpace WINAOW. e e e e 26
OPEN WINAOW . . .ot e e 27
WOrKSpace WiNAOW. e e e e 28
Project configurations Window e 29
Outputwindow Build tab. 29
Debug instrument selection e 30
Debug instrument target port selection. e 31
Hot Plug startdebug option e 31
Restart with SWIM off option e 32
Programmer WINAOW.o e e e 33
Main application WINdOW.t e e 35
StatUS DAl . . o 35
Workspace window tabs e 42
Scintilla text editor copyright notice i 44
Editor window file display and editing features. 45
File folding display and controls i e 46
Leftmargin features e 47
BOOKMArk iCONSo 47
Status bar elements e 48
WINAOW CONMIOIS . . . o e 48
Contextual menu edit commMands e 49
Auto completion pop-up list e 50
Parameter information tip e 51
AUto INDENtationt 51
Brace matChing.t e 52
Find dialog boXo e 53
Quick find for strings or variablesina sourcefile................. 53
Find/replace Windowt e e 54
Find in Files dialog boX. e 54
Look in additional folders 54
Findin Files tabs. 55
GO TOWINAOW. . o ottt ittt e e e e e e e 55
OULPUL WINAOW . . .o e e e e e 56
Output window contextual MEeNU.ttt e 57
Outputwindow Buildtab. 57
Parser error selection OptioNS. i e 58
Outputwindow FindinFilestab e e 58
Output window, Consoletab. i e e 59
Console tab contextual menu e 59
Options and CustomMize WINAOWSttt e e e e 60
Edit/Debug and Styles/Languagestabs i 61
Standard toolbars e 65
Adding new custom toolbars. e 66
Options window, Commandstab i i 67
CUSIOMIZE OPtION . . . o e 67

Doc ID 7705 Rev 11 KYI

UMO0036 List of figures
Figure 49. Adding custom cOommandsottt e 68
Figure 50. Customized command in TOOIS MENU e e 69
Figure 51. TOOIPS . . o o oo 69
Figure 52. To0l desCription e e 70
Figure 53. Generate Information File for Supportwindow 71
Figure 54. TOOISet OPiONS 76
Figure 55. Workspace WiNdOW. e 77
Figure 56. Project parameters 81
Figure 57. Default project Contents e 81
Figure 58. MCU selectiontab e 86
Figure 59. ST ASM A e 89
Figure 60. ST LINKtab 90
Figure 61. ST Post-Linktab 92
Figure 62. Standard OptioNnS.o e 94
Figure 63. CusStomizing OPtiONS oo e 94
Figure 64. Cosmic C compiler general VIiew e 95
Figure 65. Cosmic C debug informationview 100
Figure 66. Cosmic C compiler optimizations VIEW 101
Figure 67. Cosmic Clanguage VIEWttt e e e e 103
Figure 68. Cosmic C compiler listing VIEWo e 104
Figure 69. Cosmic C compiler preproCeSSOr VIEW o oo it e et e et e e e e 105
Figure 70. Cosmic C compiler INpUL VIEW.ottt e e 106
Figure 71. Cosmic C compiler output view for ST7(left) and STM8 (right). 106
Figure 72. Cosmic Assembler general VIew. 107
Figure 73. Cosmic Assembler debug View. 108
Figure 74. Cosmic linker general view 110
Figure 75. Cosmic linker inpUt VIEWo 112
Figure 76. Cosmic linker oUtpUt VIEW L 115
Figure 77. Standard OptioNS.o i e 117
Figure 78. CusStomizing OPtiONS oo 117
Figure 79. Raisonance C compiler general view for ST7 (left) and STMS8 (right). 118
Figure 80. Raisonance C compiler optimizations VIeW. e 121
Figure 81. Raisonance C compiler l[anguage View. i 122
Figure 82. Raisonance C compiler listings View e 123
Figure 83. Raisonance C compiler preproCessOr VIEW.ttt t i it e e e e 124
Figure 84. Raisonance Assembler generalView 125
Figure 85. Raisonance linker general VIeW 127
Figure 86. Raisonance linker inpUt VIEW 129
Figure 87. Raisonance linker OUtpUt VIEWot e e 130
Figure 88. Standard OptioNnS. o 132
Figure 89. CuStomizing OPtiONS o oo e 133
Figure 90. General category VIEW oo e e e 133
Figure 91. Metrowerks C compiler optimizations view. i 137
Figure 92. Metrowerks C compiler input View 139
Figure 93. Metrowerks C compiler output View e 140
Figure 94. Metrowerks C compiler listing View. e 142
Figure 95. Customizing C language VIEW e e e 143
Figure 96. Metrowerks Assembler general View i 144
Figure 97. Metrowerks Assembler language VIEWt e 146
Figure 98. Metrowerks Assembler liStingS View 147
Figure 99. Metrowerks linker general View 148
Figure 100. Metrowerks linker optimizationS View e 151
Ky_l Doc ID 7705 Rev 11 13/385

List of figures UMO0036

Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.

14/385

Customizing Metrowerks linker output view 152
Metrowerks linker PRM VIEW 153
Identify debug instrument and connection e 161
Add an Ethernet Connection 163
Add @ USB CONNECLIONt e e e 163
MemOry MapPinNg . . .« o oottt e e 165
Specifying a NeW MEMOIY ZONEttt e e e e 166
On-chip peripherals e 166
Debugger statuson status bar 169
Watch pop-up for variables. 171
Editor window margin icons and contextual menu o L 172
Brown breakpoint icon in Disassembly window 173
Call Stack frame indicator. e 174
QuickWatch Window e 175
Disassembly WINdOW 175
PCineditor WINdOW 176
Program halted at breakpoint 177
“Grayed” breakpoint e 177
“Brown” breakpoint 178
Disassembly window contextual menu. e 178
Online assembler dialog box 179
Online ST7 INSIIUCHON SEL. o e 179
Online assembler dialog box 180
MemOory WINAOWo o e 181
Memory contextual MENU e 181
Fill Memory dialog box 182
Save Memory to File dialog box 182
Restore memory configuration dialog box i i 183
Instruction breakpoints Window. e 184
Instructions breakpoints contextual menu i 185
Inserting write data breakpoint 187
Data breakpoints window (EMU2) e 188
Data breakpoints window (DVP and Simulator) 188
Call stack window and interaction with other debug windows 189
Stepping backwards incall stack 190
Local Variables and Call Stack Windows i 190
WatCh WINAOW.o e 191
Watch contextual menu 192
Concurrent IT regiSterSot e e 193
Nested [T registers o 193
Simulator time registers (Simulatoronly) 193
Simulator instruction counter (Simulatoronly) i 193
MSCI TOOIS . . oot 194
Symbols Browser — variables 195
Symbols browser—types 196
Peripheral registers Window e 197
Peripheral registers contextual menu e 197
Forced read Warning.ttt e 198
ST7 Emulation Discrepancies Windowot 201
Stack control WINdOWo e 202
Configuration Setup WINAOW 203
Define a value and delay foraninputsignal. L 204

Doc ID 7705 Rev 11 KYI

UMO0036

List of figures

Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.
Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.

574

Define a periodic signal e 205
Trigger an input signal on-the-fly 206
Select elements for plotting 208
View plotted elements. 210
No information to plot e 213
SCroll CONMrolS o e 214
Selectitems for exportin VCD format 218
Selectitems for printing 220
Memory and Watch windows with Read/Write onthefly 221
MCU configuration WindOW 225
Setting the option byte values. 228
ST7-ICD emulator advanced breakpoints window 230
Disable instruction breakpoints prompt. 231
Disabled instruction breakpoints. 231
Hardware events window for EMU2 emulator. 238
Hardware event settings window for EMU2 emulator. 239
Hardware event settings window for DVP2 240
Hardware events window (EMU2 emulators) 240
Hardware events window (DVP2 emulators) 241
Hardware events settings dialog box (EMU2 emulators) 241
Hardware events settings dialog box (DVP2 emulators) 241
Trace contextual MenU 243
Columns dialog box for DVP emulators 243
Columns dialog box for EMU2 emulatorso 243
Trace display filter dialog box 244
Save Trace Contents dialog boX. 245
EMU2 emulator trace WiNdOW.ottt 245
DVP2/DVP3 trace WiNQOWottt e e e e e e 245
Hardware Test dialog box (DVP VErsion) e 247
Hardware test underway (EMU2 emulator version) 247
Logical Analyser mode selection 248
Logical analyser Window. 249
Defining an eVent 250
Event 1 as programmed 251
Defining an advanced breakpoint. 252
Defining an advanced breakpoint (continued)o L. 252
Trace filtering Options 253
Trace filtering event schematics 254
Stack Control WINAOWo e 254
Configuration Setup WINAOW e 255
Trigger/Trace Settings WINdOWttt e 256
DVP1 trigger Settings o oo e 257
DVP2 trigger/trace Settings.« oottt 257
STICe trace WINOW.t e e e 259
Trace contextual MenU 262
Trace Display Filter dialog boxo 263
Saving trace CONLENTS oot e 264
Show/hide COlUMNS. e 265
Customized trace WINAOW.ttt e e e e 265
Data coverage and occurrence profiling settings window. 268
Code coverage and profiling settings window 268
Code coverage and profiling settings window 270

Doc ID 7705 Rev 11 15/385

List of figures UMO0036

Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.
Figure 227.
Figure 228.
Figure 229.
Figure 230.
Figure 231.
Figure 232.
Figure 233.
Figure 234.
Figure 235.
Figure 236.
Figure 237.
Figure 238.
Figure 239.
Figure 240.
Figure 241.
Figure 242.
Figure 243.
Figure 244.
Figure 245.
Figure 246.
Figure 247.
Figure 248.
Figure 249.
Figure 250.
Figure 251.
Figure 252.
Figure 253.
Figure 254.
Figure 255.
Figure 256.

16/385

Code coverage and profiling analysis: functions/instructions view. 273
SOMtrESUILS . . e e 274
Data coverage and profiling analysis: dataview. L. 275
Data coverage and profiling analysis: source view. i 276
Lines not covered by test suite e 277
Source vView Of teSt SUIE.t e 278
Coverage and Profiling Analysis of test suite after alongerwait 278
Stack memory in Data View tab of the Coverage and Profiling Analysis 279
Stack space details 279
Bottleneck detection: top level 281
Bottleneck detection: intermediate level 281
Bottleneck detection: bottom level 282
EMUSB trace WiNdOWo 285
Trace contextual MenU 287
Trace Display Filter dialog box 288
Saving trace CONLENTS o oo e e e 289
Show/hide COlUMNS. e 290
Customized trace WINAOW.ttt e e e e 290
Setting timestamp clock 291
Advanced breakpoints window—Ilevel 1 programming. 293
Defining @ CoUNter.o 294
Defining Level 1, Event 1 e 295
Then WINAOW.o e 296
MeEMOIY BVENES 297
Memory Access dialog boX. e 297
Memory Access with Data dialog box. 298
Opcode Fetch dialog boxX o 299
Opcode Fetch with Data dialog box 300
Other BVENES e 300
Emulator commands in trace contextual menu. 301
Advanced breakpoints configuration summary. oo 302
Graphical SynoptiC SEQUENCEt 302
Configuration enabled. 303
Configuration disabled 304
Programming the memory aCCESSot e 305
Memory access dialog boX 305
Programming Then e 306
Enabling the configuration 306
Programming memory access withdata. 308
Configuration summary of program 308
Configuration SUMMAIY.o e e e e 309
Calling function my _lib e 310
Output trigger action MOdeS 314
Programmed WindOW 315
Programming level 1. e 316
Programming Advanced Breakpoints window 317
Defining events using Analyzer probe signals o L. 318
Specifying an Analyzer probe value withbitmask 318
Performance Analysis dialog box e 320
Statistics compiled by performance analysis i .. 321
Graphical representation of performance analysis. 322
Memory and Watch windows with read/write onthefly 323

Doc ID 7705 Rev 11 KYI

UMO0036

List of figures

Figure 257.
Figure 258.
Figure 259.
Figure 260.
Figure 261.
Figure 262.
Figure 263.
Figure 264.
Figure 265.
Figure 266.
Figure 267.
Figure 268.
Figure 269.
Figure 270.
Figure 271.
Figure 272.
Figure 273.
Figure 274.
Figure 275.
Figure 276.
Figure 277.
Figure 278.
Figure 279.
Figure 280.
Figure 281.
Figure 282.
Figure 283.
Figure 284.
Figure 285.
Figure 286.
Figure 287.
Figure 288.
Figure 289.
Figure 290.
Figure 291.
Figure 292.
Figure 293.
Figure 294.
Figure 295.
Figure 296.
Figure 297.
Figure 298.
Figure 299.
Figure 300.
Figure 301.
Figure 302.
Figure 303.
Figure 304.
Figure 305.

Emulator update Window 324
Programmer settingS VIEWo e 325
Programmer, MemOry ar€as VIEW. oottt e et e e e e 328
Programmer, option byte VIeW e 329
Programmer program VIBWottt et e e 330
OPtIONS MENUS . . . o e e e 333
Workspace information e 334
Project parameters 335
MCU SeleCtioNo 336
Default project CONteNnts e 336
Project with source file and dependencies 338
Selectthe MCU. e 340
C compiler options for Raisonance. 341
C compiler options for COSMICottt e 342
Exclude the makefile from build 343
Select the debug instrument. 344
Activate the Watch Pop-up feature. 345
Application is stopped at the cursor position i 346
Stepoverline 242to line 243 347
View the value of nbOfTransitions e 348
Instruction breakpoints 349
SettiNg COUNTEY . . . o 349
Setting condition 350
CoNditioN Mto e 350
Call Stack WINAOW.o e e 351
QuickWatch WindoWw e 352
QuickWatch Window e 352
WatCh WINAOW.o e 353
Memory and Watch windows e 354
WatCh WINAOW.o e 354
MCU configuration 356
Trace contextual MenU 357
Saving trace CONLENTS oot e e 358
Memory and Watch windows e 359
Evolution of variables in Watch window i 359
Location of bookmarks 360
Setting advanced breakpoints 361
Synoptic view of advanced breakpoint configuration 362
Advanced breakpointinfointrace 363
Setting up a performance analysis 364
Performance analysis results e 364
QUICKWaALCh e 365
New performance analysis results e 365
Create a NEW PrOJECL. v vt ittt e e e e e 367
Arrange the files e 369
Defineavalue (-d) 371
Exclude file from build. 372
Change the build configuration. 374
Enter a post build copy command 375

Doc ID 7705 Rev 11 17/385

Introduction

UMO0036

1 Introduction

This chapter summarizes the features that are detailed later in this manual.

1.1 Building and debugging applications

For building your application, STVD supports ST Assembler-Linker, Cosmic C, Raisonance
C and Metrowerks C toolsets. Its graphic interface provides easy access to a range of
options when building your application for debugging or programming your microcontroller.

When debugging your application, STVD supports a complete range of in-circuit debugging
and emulation hardware. It can also be used as a stand-alone tool, providing a software
simulation of your microcontroller's behavior as it runs your application.

Table 1. Debugging configurations and supported hardware
Depuggmg Hardware development tools Appllcatlon.board
configuration connection
Simulation No hardware necessary
ST7-ICD (STMC) debugger
ST7-DVP3 series emulator
o ST7-EMU3 series emulator with ICC add-on)
In-circuit . L Connect to the MCU with on-
. Raisonance RLink in-circuit debugger/programmer . .
debugging chip Debug Module, installed
(ICC or SWIM) ST7-STICK on your application board.
ST-LINK in-circuit debugger/programmer for STM8
(SWIM)
STice advanced emulation system
ST7-DVP2 series emulator
ST7-DVP3 series emulator o
. ST7-EMUS3 series emulator Conne_ct to your application
Emulation ST7-EMU2 seri lator (f v HDS? board in place of your
- series emulator (formerly) microcontroller.
ST7-STICK
STice advanced emulation system

Depending on your microcontroller and hardware configuration you choose, STVD provides
you with Advanced debugging features that make application development easy and fast.

18/385

Doc ID 7705 Rev 11

UMO0036 Introduction
1.2 Programming your microcontroller
When you are ready to program your application to your microcontroller, STVD provides a
programming interface based on ST Visual Programming (STVP) software which supports a
complete range of hardware for in-circuit, in-situ and socket programming.
Table 2. Programming configurations and supported hardware
Prog'ramm.lng Hardware development tools Application board connection
configuration
ST7-STICK
In-circuit ST7-DVP3 series emulator Connect to the ST7(2)Fxxxx
programming ST7-EMUS series emulator with ICC add-on microcontroller on your
(Icc) ST7xxxx-EPB application board.
Raisonance RLink in-circuit debugger/programmer
In-situ ST7-DVP2 series emulator Cc_mnect o the ST72Cxxxx
rogrammin ST7-EPB2 seri | microcontroller on your
prog g - series emulator application board.

Socket

programming

ST7SB socket board with an ICP capable programming tool
ST7xxxx-EPB
ST7xxxx-DVP and DVP2 series emulators

1.3 Advanced debugging features
Depending on the debugging configuration you choose, STVD supports a full range of
advanced debugging features, including advanced breakpoints and trace recording. Table 3
provides a summary of STVD’s advanced debugging features for common debugging
configurations.
Table 3. Advanced debugging features
Debugging configuration Features
— Data breakpoints on read/write access
. — Specify the address for the stack overflow or underflow point
Simulator

(STVD software only)

— Input stimulator for pin level simulations

— Plotter for view the evolution of simulated signals and the values of variables and
registers

ST7-ICD with ST7

— Unlimited software-based breakpoints

— Hardware breakpoints that can be combined to generate advanced breakpoints,

. including break on: read/write access, data value at an address, a stack write,

\ & Opcode fetch, and some combinations such as an Opcode fetch OR data access
po) at an address.

Doc ID 7705 Rev 11 19/385

Introduction UMO0036

Table 3. Advanced debugging features

Debugging configuration Features

ST7-DVP series emulator

— Output signals triggered by advanced breakpoints

L .,'-""Eﬂ—(._ ~ — Trace recording and trace filtering capability (256 hardware cycles for DVP2, 512
&g — T\ hardware cycles for DVP3)
7 X — Specify the address for the stack overflow point
, .| |— Data breakpoint on address read and/or write access
P d — Hardware test feature for troubleshooting your emulator
-~ — In-circuit debugging and programming via ICC connection

ST7- EMU2 series emulator

— Output signals triggered by hardware events
— Trace recording and trace filtering capability (1K hardware cycles)
2o — Data breakpoint on address read and/or write access

N \ — Logical analyzer controls breaks in application execution or trace recording based
: on multiple conditions

< — Hardware Test feature for trouble shooting your emulator

— Output signals triggered by advanced breakpoints
— Trace recording and trace filtering capability (256K hardware cycles)

ST7-EMU3 series emulator

(\’ — Instruction breakpoints on Opcode fetch
) — Advanced breakpoints control breaks in application execution or trace recording
> based on multiple, nested conditions
&S5 — Non-intrusive read/write of variable during emulation with Read/Write on-the-fly

— Application performance analysis with graphical display measures real execution
time of specified portions of code

— In-circuit debugging and programming via ICC add-on

-3

— Advanced breakpoints with up to 4 levels of user-configured conditions

STice emulation — Application profiling for execution time or number of executions at instruction,
configuration source code or function level

— Unlimited instruction breakpoints for the entire MCU memory space

— Control of application memory accesses configurable at byte level

— Trace of 128K records with time stamp

— Data breakpoints

— Non-intrusive read/write to memory and internal registers during emulation
— CPU frequency from 250Hz up to 50MHz.

P — Power supply follower managing application voltages in the range 1.65V to 5.5V
(0.8V is possible for MEB with a specific TEB)

STice ICD configuration

< — In-circuit debugging/programming via the SWIM protocol

’ﬂ

20/385 Doc ID 7705 Rev 11 [‘II

UMO0036

Introduction

1.4

1.5

Getting assistance

For more information, application notes, FAQs and software updates on all the ST
microcontroller families, check out the CD-ROM or our web site: www.st.com.

For assistance on all ST microcontroller subjects, or for help using your emulator, refer to
Appendix A: Product support.

Associated documentation

This manual is released with STVD version 4.0.1 and contains some features that are not
present in earlier versions of STVD. For information about setting up and connecting the
hardware intended for use with STVD, refer to the documents listed in Table 4.

Table 4. Associated documentation
Hardware Supporting documentation
ST7 ST7xxxx datasheet
MCUs
STM8 STMB8xxxx datasheet
ST7-ICD (STMC) debugger ST7-ICD User Manual
ST7-EMU3 series emulator with ICC Add-on | ST7-EMU3 User manual
. ST7-DVP series emulator ST7-DVPx Emulator User Manual
ICD devices
ST7-STICK ST7 Flash STICK User Manual
. . STice advanced emulation system for
STice advanced emulation system ;
ST microcontrollers User Manual
ST7-DVP series emulator ST7-DVPx Emulator User Manual
ST7xxxx-DVPx Probe User Guide
ST7-EMUS3 series emulator ST7-EMU3 Emulator User Manual
ST7xxxx-EMU3 Probe User Guide
Emulators
ST7-EMU2 series emulator ST7xxxx-EMU2x Emulator User
(formerly the HDS?2) Manual
. . STice advanced emulation system for
STice advanced emulation system .
ST microcontrollers User Manual
ST7-STICK ST7 Flash STICK User Manual
ST7-DVP3 series emulator ST7-DVP3 Emulator User Manual
. ST7-EMU3 series emulator with ICC Add-on | ST7-EMU3 Emulator User Manual
ICP devices

ST7 EPB

ST7 EPB User Manual

STice advanced emulation system

STice advanced emulation system for
ST microcontrollers User Manual

Doc ID 7705 Rev 11

21/385

http://mcu.st.com
http://mcu.st.com

Introduction

UMO0036

1.6

22/385

Conventions

The following conventions are used in the documentation:

Bold text highlights key terms and phrases, and is used when referring to names of
dialog boxes and windows, as well as tabs and entry fields within windows or dialog
boxes.

Bold italic text denotes menu commands (or sequence of commands), options,
buttons or checkboxes which you must click with your mouse in order to perform an
action.
The > symbol is used in a sequence of commands to mean “then”. For example, to
open an application in Windows, we would write: “Click Start>Programs>ST7 Tool
Chain>...".
Courier font designates file names, programming commands, path names and any
text or commands you must type.
Italicized type is used for value substitution. Italic type indicates categories of items for
which you must substitute the appropriate values, such as arguments, or hypothetical
filenames. For example, if the text was demonstrating a hypothetical command line to
compile and generate debugging information for any file, it might appear as:

cxst7 +mods +debug file.c
Items enclosed in [brackets] are optional. For example, the line:

[options]
means that zero or more options may be specified because options appears in
brackets. Conversely, the line:

options
means that one or more options must be specified because options is not enclosed by
brackets.
As another example, the line:

filel. [o]|st7]
means that one file with the extension .o or . st7 may be specified, and the line:

filel [file2...]

means that additional files may be specified.

Blue italicized text indicates a cross-reference—you can link directly to the reference by
clicking on it while viewing with Acrobat Reader.

Doc ID 7705 Rev 11 KYI

UMO0036 Getting started with STVD

2 Getting started with STVD
Once you have installed and launched ST Visual Develop (STVD), the following section will
provide you with information to help you get started building, debugging and programming
your application to your target microcontroller.

The following sections will explain how to:

e Section 2.1: Set the toolset and path information

e Section 2.2: Create a workspace with a new project

e Section 2.3: Add source files (.asm, .c, .S) to your project

e Section 2.4: Build your application

e Section 2.5: Select and connect to your debug instrument

e Section 2.6: Debug your application

e Section 2.7: Program your application to your microcontroller

2.1 Set the toolset and path information
When you first open STVD, you should confirm the default toolset and path information that
will be used when building your application. STVD will automatically set path and subpath
information for standard installations of the supported toolsets. However, you should confirm
that these paths are correct for your particular installation.

Note: Even though you have specified these default settings in STVD, which are applied to all
projects using a toolset, you can still change the toolset and paths for a specific project in
the General tab of the Project Settings window (see Section 4.5: Configuring project settings
on page 84).

To change default toolset paths:

1. Select Tools > Options.

2. Inthe Options window click on the Toolset tab.

3. Select your toolset from the Toolset list box.
If the path is incorrect you can type the correct path in the Root Path field, or use the
browse button to locate it.

4. In the subpath fields, type the correct subpath if necessary.
These paths are relative to the toolset path in the Root Path field.

Note: For Metrowerks toolset users, some versions use the filename “prog” instead of “bin” for the
binary path.

2.2 Create a workspace with a new project

The workspace is a generic, global environment for STVD, which can contain one or more
projects and their dependencies. Projects, however, contain the specific information for
building your application including the toolset information, build configuration and target
device information. When you started debugging, the project also stores the debug context
each time you save it.

Doc ID 7705 Rev 11 23/385

Getting started with STVD UMO0036

Note: Workspace files for previous versions of STVD (. wsp) can be opened in STVD 3.0 and later
versions. For information on migrating your workspaces to the new workspace format, refer
to Migrating old workspaces (STVD7 2.5.4 and prior versions) on page 71.

With the Create Workspace with New Project wizard you can quickly and easily:
e Create a new workspace

e Create a project in your workspace

e Specify a target MCU for your project

221 Create a new workspace

Create a new workspace by selecting File > New Workspace. The New Workspace
window opens. Here, select the Create Workspace and Project icon and click on OK.

Note: For information on creating workspaces from a project, an executable file or a makefile, refer
to Section 4.2.2: Creating a hew workspace on page 78.

Figure 1. New Workspace window

Mew Workspace] |

Workspace filename

Im_l,l_wnrkspace

Wiorkspace location

|C:'xstvd?\my_wu:urkspace _I EI
Ok LCancel

In the New Workspace window:
1. Enter the name in the Workspace Filename field.

2. Enter the pathname where you want to store your workspace by typing it, or using the
Browse button to locate a file. Click on the Create a New Folder button if you need to
create a folder for your workspace, then enter the new folder name in the pop-up
window.

3. Click on OK, and the New Project window opens.

24/385 Doc ID 7705 Rev 11 KYI

UMO0036 Getting started with STVD
2.2.2 Create a project in your workspace
Figure 2. New project window
\ Froject filename
Ilealtime
' Project location
I Ic:'\stvd?'\my_workspace\realtime _I ﬁl
— 'y . Toolchain
P 3&:* IST Azzembler Linker ;I
iz gl
' Taolchain root
.J IE:'\F’rogram Files\ST Microslectronidsat? _I
Ok LCancel |
In the New Project window:
1. Enter the name of your project in the Project Filename field.
2. Type the pathname where you want to store it.
By default, this is the pathname you entered for your workspace.
3. Select your toolset (ST Assembler/Linker, Cosmic C or Metrowerks C) from the
Toolchain list box.
4. Enter the pathname for your toolset by typing the path or using the Browse button to
find it.
5. Click on OK.
The Select an MCU dialog box opens.
2.2.3 Specify atarget MCU for your project

In the MCU Selection dialog box:

1. Choose the target device for your application from the complete list of supported
MCUs.

2. Click on Select.
The name of the MCU appears in the Selected MCU field.
3. Click on OK.

Your new workspace and project are created. Only the project is associated with the
selected MCU. Your, workspace can contain multiple projects that are to be built for
different target MCUSs.

Doc ID 7705 Rev 11 25/385

Getting started with STVD

UMO0036

Note:

26/385

Figure 3. MCU selection dialog box

Project Settings

Settings for: |Del:uug ﬂ

+- 28 cosmic

General] Debug MCU Selection l C Eu:umpiler] Azzembler

Filter
Shiow MCUz containing...

STME5207CE
STMBS207KE
STMB5207ME
STMB5207RE
STMB5207RE
STMB5207RE
STMBS2075E
STMBS 20758
STMB5208ME
STMB5205RE

Select

520

Selected MCL
|STMSS510554

OO0 OOUOOeeP

If necessary, you can change the MCU selection later in the MCU selection tab of the

Project Settings window.
RESULT

A project file (. stp) and its associated folders have been created in your workspace and
appear in the Workspace window. Depending on your toolset, the folders and files listed in
Table 5 are created in your project by default.

Figure 4. Workspace window

Wiorkspace

¥

JuliaExample, stw
=28l juliaexample

(17 Source Files
(27 Inchude Files
(L7 External Dependencies

Wurkspace

Doc ID 7705 Rev 11

UMO0036

Getting started with STVD

2.3

Table 5. Default files and folders for projects
Foltha)rrsc,)jeCt defauItF”es STALsiiir;rbler Cosmic C | Metrowerks C | Raisonance C
Source files X X X
interupt_vector.c
vector.c X
main.c X X X
Include files X X
External dependencies X X X X
modm.h X

Add source files (.asm, .c, .s) to your project

Source files (. asm,

application source files to your project:
1. Right-click on the Source Files folder, then select Add Files to Folder from the

contextual menu.

. ¢, .s) contain the code for building your application. To add the

A browse window opens, allowing you to find the source files to add to your project.
2. Highlight the file(s) and click on Open.

Figure 5. Open window
Open K B3
Lock it | ' realtime j E!
B S T72211N4.azm
B ST7231 M4 inc
A tim_ric.asm
File pame: [tim_the: asmn Open
Files of tupe: [Sowrcednclude Fles ["e. cpo” e s 451 | Cancel
RESULT

Your project’s Source Files folder now contains the source code that you want to use to

build your application.

Doc ID 7705 Rev 11

271385

Getting started with STVD UMO0036

Caution:

2.4

24.1

28/385

Figure 6. Workspace window

rny_wiorkspace. sh
=22 timer
=45 Source Files
I - #7231 nd. asm
g - birn_rte. azm
= Include Files
I - #7231 nd.inc
------ [C Esternal Dependencies

Workspace I

When building with ST Assembler Linker, your application source files may need to be
assembled in a specific order. To change the order of the files, you need to disable the Add
Sorted Elements option in the workspace contextual menu. For more information, refer to
Ordering source files before assembly on page 88.

Build your application

Once you have created your project, you are in the Build context by default. You have
access to all the commands necessary for setting up, customizing and building your
application. You do not yet have access to the commands for debugging your application, or
programming it to your microcontroller.

In the build context, you can select default settings for building your application in order to
debug it, or to generate a release version to be programmed to your microcontroller.

In addition, you have access to the interface for customizing the building of your application
and identifying the target microcontroller. When using STVD, you must identify the target
MCU to which you will program your application.

Configuring project settings for Debug or Release

Build configurations allow you to change project settings quickly and easily. STVD has two

preset configurations:

e Debug: creates a version of your application that allows you to use all of STVD’s
advanced debugging features. When using this configuration, output files are saved in
the Debug folder in your workspace directory.

e Release: creates a version of your application using the default optimizations for your
toolset. This version of your application is ready to be programmed to your target
microcontroller. Output files are saved in the Release folder in your workspace
directory.

1. To choose a build configuration, select Build > Configurations.
The Project Configurations window is displayed.

2. Highlight the configuration you want to use and then click on Set Active. Click on
Close, to close the window.

Doc ID 7705 Rev 11 KYI

UMO0036 Getting started with STVD

Figure 7. Project configurations window

Project Configurations

Project: Close

Caonfiqurationz:

Debug d
Release

Remove

Set Active

Rename...

FEEE £

3. To view the project settings that have been applied, select Project > Settings.

The Project Settings window opens and you can view the options for your toolset’s
Compiler, Assembler and Linker, among others. You can also customize these options.
For more information about the available options for your toolset, refer to Section 4.5:
Configuring project settings on page 84.

2.4.2 Build commands and output

Once you have selected your MCU and configured all the options for building, use the
commands in the Build menu to build and rebuild your application, or compile your source
files. When STVD builds your application the command lines and any warnings, errors or
other build information are displayed in the Build tab of the Output window.

Figure 8. Output window Build tab

Project | Build Debug Debuginstrument Tools

3 | = = Bompie Eilin
Eebuil§.ﬁ.ll

» Select Build>Build

B atch Build
Clean
Stop Buid il Ereak

* Viewthe resulting comma
and build informtion in the |
tab of the Output window.

Configurations. ..

Compiling "c:hprogram fileshstmicroelectronicshst7toolseth atwdTh
cxat? +debug -pxp -no -1 +wodm -pp —iC:NCOSMICHEVALITT\H3t? -cl
cihprogram fileahstwicroelectronicshatTtoolset) stvd?yexample’ tut

Funning 3T7 linker
clnk -o Debughtimer.st? —-1C:WCOIMICHYEVALST?YLibh -—mDebugh timer . m
cydwarf Debudgh timer,st?

IYI Doc ID 7705 Rev 11 29/385

Getting started with STVD UMO0036

2.5 Select and connect to your debug instrument

STVD allows you to debug your application using the Simulator (software only), or a range
of debug instruments (emulators and in-circuit debugging hardware).

1. Once you have built your application for debugging, select Debug Instrument > Target
Settings.

The Debug Instrument Settings window will open.

2. Inthis window, use the Debug Instrument Selection list box to select your debugging
hardware (emulator or other device), as shown in Figure 9.

This list box contains the list of debug instruments that support your target
microcontroller.

Figure 9. Debug instrument selection

Debug Instrument Settings

T arget]

Drebug Inztrument S election;

Select the Target wou want 3
| to uze for debug session . aTice ﬂ

Sirmulator ~
- i
Swim Rlink.
[RHestar N S STice =
Swim 5T -Link e
T arget Port Selection;
Select the connection port for
the Target zelected above, | yzh: /fush L]
Add Bemove ‘

3. Use the Target Port Selection list box to identify the port (parallel, USB, or Ethernet)
that your debug hardware is connected to, as shown in Figure 10.

To add a port that is not in the list, click on Add to open the Add Connection dialog
box. For more information about adding a connection, see Section 5.1: Selecting the
debug instrument on page 161.

4. To confirm your selection, click on Apply. Close the window by clicking on OK.

When you start your debugging session (Debug > Start Debugging), STVD will ask
you to confirm your selection and then establish the connection with your debug
instrument.

30/385 Doc ID 7705 Rev 11 I‘!I

UMO0036 Getting started with STVD

Figure 10. Debug instrument target port selection

Debug Instrument Settings

Target]

Debug Inztument Selection;

Select the Target you want
| to uze for debug session . Emu3 LJ

[T
-

Target Port Selection;

Select the connection part for
the Target selected above. ||_,|3|:|:,.",."ug|:| LJ

LFT1
LPTZ

The SWIM debugger has two additional parameters to define the target connection:

1. Out of workspace, you can connect in Hot Plug mode, which means the microcontroller
is not put under reset while initializing the connection. For more details on Hot Plug
mode refer to Section 7.4: In-circuit debugging in hot plug mode (SWIM only).

Figure 11. Hot Plug start debug option
Debug Instrument Settings

Target]

Debug Inztrurment Selection:

Select the Target you want c ,
| to uze for debug session . |5W"T' 3Tice LJ

Iv Hat Plug Start Debug [only when no application is loaded}
r

2. When you are inside a workspace and stop debug, by default STVD removes the
software breakpoints (if any, and if possible) and makes the application restart with the
SWIM module OFF on the microcontroller side (see Figure 12). You may change this
default behavior by unchecking the Restart Application checkbox.

Caution: You must choose the behavior before the target is connected (start debug), even though the
behavior only affects the target disconnection (stop debug).
Software breakpoints, if any, remain in Flash memory until reprogrammed.
After a reset the microcontroller needs a SWIM host before it can continue. A power-on
reset is required to escape this state.

IYI Doc ID 7705 Rev 11 31/385

Getting started with STVD UMO0036

2.6

2.7

32/385

Figure 12. Restart with SWIM off option

Debug Instrument Settings

T arget]

Drebug Inztrument S election;

Select the Target wou want
| to uze for debug seszzion .

Swim S5 Tice

-
v FRestart the application with Swim Off on stop debug

T arget Port Selection;

Select the connection port for
the Target selected above. uzbe Auzh L]

Add Bemove ‘

[Show the zelected target notification at start of debugging session

k. | Cancel Apply

Debug your application

In the Debug context, STVD provides access to the commands and windows that are
specific to debugging applications, and that are specific to your debugging instrument.

Select Debug > Start Debugging to change from the Build context to the Debug context.

RESULT:

The commands in the Build menu are no longer available. Instead, commands specific to
debugging, view windows for debugging and emulator features are now available.

For more information about debugging features, you can refer to Section 5: Basic debugging
features on page 160.

Program your application to your microcontroller

Once you have finished debugging your application and have built the final version, you can
program it to your target microcontroller using STVD’s Programmer.

To access the Programmer, select Tools > Programmer from the main menu bar. The
Programmer window opens.

Doc ID 7705 Rev 11 IYI

UMO0036

Getting started with STVD

Figure 13. Programmer window

+# Light Programmer E
Gehy Seltings Ii‘—nl- Wemany .-!ireas-l [-# OPTION EYTE] i Programl
Tamget Device
ST7FLITEDH
— Hardware
Board: Paits: Frogranmming hode:
28 sTicKk = [Lpri =] |icPoOFT Disable ¥]
Fratecthons:
["1Pratect RC Calbrafion vabues on Program Memaony [" | Eraze Before Programming
[IPiatect RC Calbration walues on Data Memoey
[Unlock Device
Fun STWF
(1] 4 Cancel Help
Lt

From this window, you have interfaces that allow you to:

e Select your programming hardware and mode

e Identify files to be programmed to specific Memory areas

e Configure the option bytes for your Flash microcontroller

e Monitor the status while your application is being programmed to your microcontroller

For a complete description of features, refer to Section 11: Program on page 325.

Doc ID 7705 Rev 11 33/385

Your STVD graphical environment UMO0036

3

3.1

34/385

Your STVD graphical environment

These sections describe the layout of STVD: the various menus, toolbars and status
indicators that will help you, whether you are building, or debugging your application. In
particular the following sections provide information about:

e Section 3.1: The main application window

e Section 3.2: The main menus and their commands

e Section 3.3: View windows

e Section 3.4: Workspace window

e Section 3.5: Editor windows

e Section 3.6: Output window

e Section 3.7: Customizing your work environment

e Section 3.8: Tooltips

e Section 3.9: Help and support features

e Section 3.10: Migrating old workspaces (STVD7 2.5.4 and prior versions)

The main application window

Figure 14 shows STVD’s main application window. An application has been opened and
several of the debugging windows are seen in a typical configuration. This is one possible
arrangement of window elements; you can change the position of all windows, open or close
individual elements, change the windows that are visible at startup, and save the
configuration.

The different areas on this screen are:

e Main menu bar: The main menu bar is always visible. It contains pull-down menus to
access the principal STVD functions (see Section 3.2: The main menus and their
commands).

e Relocatable toolbars: Under the main menu, control buttons are grouped by subject
into relocatable toolbars (default position). Toolbars may be shown or hidden
independently. The contents of each toolbar can be user-defined, and new toolbars
created as required (see Section 3.7.2: Customizing toolbars on page 65).

e Text Editor windows: You can open up one or all of your application's source files in
text editor windows. These windows can be cascaded, floated, minimized or maximized
(see Section 3.5: Editor windows on page 43).

e Docking windows: The various STVD view windows are dockable for greater ease of
use when several windows are open at the same time. They may be moved to different
docking positions, undocked and placed independently on the desktop, or free-floating
within the main STVD window area. The name of each window appears in a caption at
the top of the window (see Section 3.5: Editor windows on page 43).

e The Status bar: Displays current attributes associated with the Edit window and STVD
status.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Figure 14. Main application window

28 5T72521{A)RI Simulator - tutorial.stw - [ebug] - cosmic.elf

File Edit Yiew Project Build Debug Debuginstrument Tools-—sd Main Menu Bar

Fosd M8 | wa?ae |»enan Ee (& iadl
] =

Wiorkspace . x
T = Relocatable Tool Bars
75 tutorial. stw 4 CDocuments and Set us
=8 cosmic - T
--{Z3 Source Files [_ (O]
a -
Trap Interrupt Service Routine to he set in the ve
61
H (7] External Dependenci 62 Binterrunt Pnostack woid tranTsB [void)
st7_asm 63
N - o Text Editor Windows L
Uurkxpal:e :: by hardware at thi
oo E L (=) /% Determine next state */
erecioniye s s & 69 & | switchicurrenticate)
Location Ca... 70 ¢
@ limerc:E9, in ‘l 71 case RED:
i77 InﬁqurirﬁzﬂDT‘”\T- hd
4 » é
o
Dockable View Windows
T
= S S— Bl
WDG_HALT:RESET v
-> Run...
*% Application stopped: Breskpoint 1, trapI3R (] at timer.c:i:69 Status Bar
= K
Sl [Build A Tools & FindinFiles 1 A Findin Files2 jyDebug 4 Consale /.

[Breakpairt 1. waplSR () at timer c:63 [Lr B3, Cal 1 [MODIFIED READ [2F MUM oAl [vr I

Status bar

Note:

The status bar in the lower frame of the STVD main application window contains useful
information about editor attributes and debugger status.

Editor attributes such as keyboard states (for example CAPS On/Off, Type Over On/Off) are
shown in the center of the bar. Also displayed are attributes of the active file in the Edit
window, such as the current location of the cursor in the editor window, and whether the file
has been modified or not. These attributes and their functions are described in more detail
in Editor status bar information on page 48.

Figure 15. Status bar

uu SLALC | LULLCULILALT] - SLALTULL UL T

67 B
55 B =lse

== { -
4 3

ForHelp. press FT— | Ln88.Col7 [MODIFIED [AEAD [cAP NUM [SCAL [ovA INETER IGEERT /|

]] Debugger
[Editor attributes) E

The two right-most panels of the status bar show the current status. Stop and Ready shown
in green mean that the program is halted and the debugger awaits further instruction. Run
and Debugger, shown in red and orange, respectively, mean that the program is currently
running on the debugger.

The status bar does not explicitly indicate whether you are in the Build or the Debug context.
The Stop and Ready messages appear when you are in either context. However the Run
and Debugger messages only appear when you are in the Debug context.

Doc ID 7705 Rev 11 35/385

Your STVD graphical environment UMO0036

3.2

File menu

Edit menu

36/385

The main menus and their commands

STVD’s menus provide a range of common commands for general activities such as
opening projects, or loading, editing and saving files, as well as access to build and debug
commands.

The File menu provides standard commands for managing workspace and text files,
including: New, Open, Close, Close All, Save, Save as, Save All, Print and Recent.

The New Workspace and Open Workspace commands are very important because before
you start creating projects, building or debugging your application, you must create or open
a workspace. For more information, refer to Loading and creating workspaces (.stw) on
page 76.

The Edit menu provides file editing and text search commands that are available whenever
an Editor window is open, in both the Build and Debug context. In addition, this menu
provides breakpoint commands, and access to the QuickWatch window, which you will use
in the Debug context.

This section provides a summary of available commands. For more information about
editing features and commands, refer to Editor windows on page 43. For more information
about using debug commands from the Editor windows, refer to Basic debugging features
on page 160.

Table 6. Edit menu commands

Command Description

Undoes the last edit (text processing) command, or redoes last undone

Undo/Redo
command.

Cut, Copy, Paste | Standard clipboard operations.

E'gxi'éh';md Finds and/or replaces text in the text editor. The Find command is also available
in the contextual menu.

Replace

Go to Opens the Go To window. Define a line, address or function to go to.

Find in Files Finds a string within any of the files in a given directory.

Inserts breakpoint symbols into the source code in the active Edit window. The
Breakpoints program can then be run taking into account the symbols that you inserted. For
details, see Editor debug actions on page 169.

Insert/remove and navigate through the bookmarks in the margins of the current

Bookmarks .
source file.

QuickWatch Opeqs a QuickWatch window, which allows rapid access of common watch
functions.

Refresh Refreshes all windows.

Goes to the brace that corresponds to the brace you have highlighted in the

Match Brace Editor window.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Table 6. Edit

menu commands (continued)

Command

Description

Complete Word

Opens the auto completion pop-up for a list of context specific keywords to
complete the word you are typing.

Parameter Info

Opens the parameter information pop-up to see the syntax for the ASM
instruction that you are typing.

View menu

The commands in the View menu open the Workspace, Output and Instruction
Breakpoint windows when you are in the Build or the Debug context. When you are in the
Debug context this menu also allows you to open the different view windows for viewing
disassembled code, registers, memory, stack and variables. These views are not available
when you are in the Build context. They are explained in greater detail in Basic debugging

features on page

160.

This menu may offer some different commands depending on your debug instrument. For

information about

commands that are specific to your debugging hardware, refer to the

sections on target-specific debugging features.

Project menu

The Project menu gives you access to all of the following project-related commands and

activities.
Table 7. Project menu commands
Command Description

Set Active Project

Allows you to select which project you want to make active for building or
configuration.

Insert Files into
Project

Opens a browse window from which you can locate an existing file to insert in
the active project (see Section 4.3.3: Adding and removing folders and files on
page 83).

Dependencies...

Allows you to set dependencies among the projects in the current workspace
(see Section 4.12: Build commands on page 158).

Settings...

Opens the Project Settings window (see Section 4.5: Configuring project
settings on page 84).

Export Makefile...

Generates a makefile script that can be launched with the gmake utility,
separately from STVD full IDE.

Insert Projectinto
Workspace

Opens a browse window from which you can locate an existing project to insert
in the current workspace (see Section 4.3.1: Loading an existing project on
page 80).

Add New Project
to Workspace

Allows you to create a new project and add it to the current workspace (see Add
a project (.stp) to your workspace on page 81).

Remove Project
from Workspace

Deletes the active project from the workspace.

Doc ID 7705 Rev 11 37/385

Your STVD graphical environment UMO0036

Build menu

The Build menu contains the commands that allow you to set the configuration for building
your application, and to start and stop the build. These commands, with the exception of
Compile and Batch Build, apply to the active project in your workspace. Compile applies
to the source file that you have selected in the Workspace window. Batch Build applies to
the projects that you identify in the Batch Build window. For more information, see Build
commands on page 158.

Note: You do not have access to the commands in this menu until you have created a workspace
with a project.

Debug menu

This menu provides access to the commands associated with running and stopping a
loaded program (Run, Restart, Continue, Run to Cursor and Stop), single stepping
through it (Step Into, Step Over, Step Out), and the commands Go To PC, and Set PC.
These commands are specific to running your program while debugging. For more
information about using these commands refer to Running an application on page 167.

Debug instrument menu

This menu gives you access to options that are specific to your target debugging hardware.
As a result, the menu contents will change when you start a debugging session, depending
on the features supported by the debugging tool that you have specified.

Before you identify your debug instrument, this menu contains the following command by

default.
Table 8. Debug Instrument menu commands
Command Description

Opens the Debug Instrument Settings window, which allows you to choose
Target Settings your debug instrument and configure the parallel, USB or Ethernet connection
(see Selecting the debug instrument on page 161).

For more information about other commands that can appear in this menu, refer to the
debugging features that are specific to your debug instrument.

Tools menu

The Tools menu offers customization and setup options for defining the look and layout of
STVD and to set a number of user options. The options of the Tools menu are described in
Table 9.

38/385 Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Table 9. Tools menu commands
Command Description
. Allows you to specify functions to add to the Tools menu (see Adding custom

Customize

commands on page 67).

Allows you to customize user options including:

— Toolbars (see Creating user-defined toolbars on page 66)
Options — Commands (see Rearranging toolbar icons on page 67)

— Edit/Debug options (see Customizing editor features on page 61)

— Workspaces (see Customizing your work environment on page 60)
Programmer Opens the Programmer interface that you will use to program the release version of

g your application to your target MCU (see Program on page 325).

Window menu

This menu gives you access to commands for arranging and navigating in open Editor

windows.
Table 10. Window menu commands
Command Description

Next/Previous

Cycles through the open Editor windows and any other windows that are
floating inside the main application window.

Cascade/Tile

Arranges all open windows within the main application area according the
option selected. Independent and docked windows are not affected.

Arrange Icons

Arranges any minimized window icon.

Status Bar

Controls the displaying of the status bar.

List of opened files

Creates a list of all files in the Main window. A checkmark indicates which is
the active window. A single left-mouse-click on any of the listed windows sets
it as the active window and brings it to the front of the group in the main
application area. Double-click on the filename to view.

Help menu

This menu gives you access to commands for accessing help features.

Table 11. Help menu commands
Command Description
Search Allows you to search the contents of the online Help.

Help Home Page

Opens the online Help Home Page.

Provides version information about STVD and your target debugging

About... .
instrument.
Help On . .
: Opens the Index to the Instruction Set online assembler reference pages.
Instruction...

Doc ID 7705 Rev 11 39/385

Your STVD graphical environment UMO0036

Table 11. Help menu commands (continued)

Command Description
Instruction Set Opens the Table of Contents of the Instruction Set online assembler reference
Contents... pages.

Opens the Generate Information File for Support window for outputting log
files that you can send to support when seeking assistance after an
application crash.

Generate Support
File

For details about these features, refer to Help and support features on page 70.

Contextual menus

STVD provides contextual menus in the view, editor and workspace windows. Contextual
menus contain commands that are specific to a window or STVD feature. In some cases,
commands are only accessible in the contextual menu and not the main menu. You can
access contextual menus for a window by right-clicking within that window. To find out more
about the commands that are available in a contextual menu, refer to the section that
describes the feature or window that you are interested in.

3.3 View windows

Within STVD’s main window, positionable view windows are provided to give you easy
access to debugging information and features. These view windows are specific to
debugging features and activities. A list of these windows and summary description is
provided in Table 12.

Table 12. View windows

Command Description

Allows you to manage your project, add projects and source files and define

Workspace window dependencies. (refer to Workspace window on page 41).

Contains tabs that display messages and information related to specific
activities or features. For example, the Build tab displays the commands
errors and messages that are the result of building your application. In
Output window addition, the Console tab is a powerful tool that allows you to view the
commands sent by the core debugger when you use an STVD feature, or
bypass the GUI and send commands directly to the core debugger (refer to
Output window on page 56).

Disassembly Displays disassembled application code (refer to Disassembly window on
window page 175).

Register windows

Displays the contents of all internal registers (Accumulator, registers X and Y,
Core registers Program counter, Stack pointer and Condition code register) at the location of
the program counter (refer to Core registers window on page 192).

Peripheral Displays all the peripheral registers of the target MCU and their values (refer
registers to Peripheral registers window on page 196).

Allows you to monitor the contents of the microcontroller's entire memory

Memory window (refer to Memory window on page 180).

40/385 Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Table 12. View windows (continued)

Command Description
Instruction Provides an interface for activating and inactivating instruction breakpoints
breakpoints and applying conditions and counters to them (refer to Instruction breakpoints
window on page 183).

Displays the current value of selected registers or variables in decimal,

Watch window hexadecimal or binary format (refer to Watch window on page 191).

Allows you to keep track of stack utilization, by displaying the function calls
Call stack window |that are stored in the microcontroller’s Stack (refer to Call stack window on
page 188).

Displays program variables that are local to a function, as well as their values
at particular points in the running of the application (refer to Local variables
window on page 190).

Local variables
window

Symbols browser | Allows you to find functions in the application files (refer to Symbols browser
window on page 195).

Docking view windows

3.4

All of the View windows (the windows accessible from the View menu or toolbar) are
docking windows.

Docking for each window is turned on/off from the contextual menu associated with that
window (except for Editor windows—see Editor windows on page 43 for more information).
Allow Docking turns docking on/off for that window. When docking is on, a black
rectangular outline presents possible docking positions as the window is moved. When
released the window fits into the docking position currently outlined. A docked window
always has one or more of its sides contiguous with the frame of the STVD main application
window.

Workspace window

The Workspace window shows a structured view of your project. The workspace is
represented in a typical directory structure. The root item is the workspace (. stw), and its
nodes are the projects (. stp) that contain the source files for your application.

Doc ID 7705 Rev 11 41/385

Your STVD graphical environment UMO0036

Figure 16. Workspace window tabs

4 realtim
—--4Z3 Source Files
; at72311.asm

: #7231 inc
------ [_1] Extemal Dependencies

Add Mew Project to \Workspace. ..
Inzert Project into Workspace... Ing

Settings...

Froperties

Show full path
v Add sorted glements

i [zl
LIRS v Allow Docking

Hide

The project file contains the target file name, the settings for building the project and the files
needed to build the application. Files can be organized in sub-folders. By default, a new
project contains three folders: Source files, Include files and Dependencies.

To open the Workspace window, either click on the Workspace window icon [in the View
toolbar or, from the main menu, select View>Workspace.

Workspace contextual menus

42/385

From the Workspace window you have access to the contextual menus that allow you to
add or remove files, view file properties and the build settings for projects, folders or files. In
addition, the contextual menus provide access to build commands that are specific to
projects folders and files.

The following commands and options are common to all contextual menus in the
Workspace window.

Table 13. Common contextual menu commands

Command Description

Provides access to the build settings for the active project, folder or file that

Settings... you have selected (see Configuring project settings on page 84).

Opens properties window where you will find information about the selected
Properties file that can include its directory locations, date of modification, associated
build tools and dependencies.

Show full path Activates “full path” feature so that files in the window are displayed with full

path name.

Protects the ordering of files in the project when activated. To change the
Add Sorted ordering, uncheck this option. This option is particularly useful when building
Elements projects with the Assembler Linker, when the source files must be assembled

in a specific order (see Ordering source files before assembly on page 88).
Allow Docking Activates docking for the Workspace window.
Hide Hides the Workspace window.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

3.5

Depending on the element that you select in the Workspace window (workspace, project,
folder, file), you will also find in the contextual menu the commands listed in Table 14.

Table 14.

Window-specific contextual menu commands

Command

Description

Workspace contextual menu

Add new Project to
Workspace

Opens the New Project Wizard, which leads you through the process of
setting up a new project in the current workspace (see Creating new projects
on page 80).

Insert Project into
Workspace

Opens browse window from which you can search for existing project files
(.stp, .mak) to insert in the current workspace (see Loading an existing
project on page 80).

Project contextual menu

Compiles, assembles and links the source code in the selected project (see

Build Build commands on page 158).

Removes files generated by previous builds of the selected project (see Build
Clean

commands on page 158).
New folder Opens the dialog box for creating a new folder (see Build commands on

page 158).

Add Files to Project

Opens a browse window from which you can search for existing source (. c,
.Cpp, -CXX, .S, .spp, .asm) and include files (.h, .hpp, .hxx, .inc) to
insert in the current project (see Adding and removing folders and files on
page 83).

Set as active project

In a workspace that contains more than one project, this command allows you
to select the project that you want to build, debug or program to your
microcontroller.

Remove from
Workspace

Deletes the selected project from the workspace (see Adding and removing
folders and files on page 83).

File and Folder contextual menus

Add Files to Folder

Opens a browse window from which you can search for existing source (. c,
.Cpp, .CXX, .S, .spp, .asm) and include files (.h, .hpp, .hxx, .inc) to
insert in the selected folder.

Remove from

Deletes the selected folder from the project. For more information about these

Project commands, refer to Adding and removing folders and files on page 83.
Open Opens the selected file so you can view it in the Editor window.

Compiles the selected file. This command is not available for object files in the
Compile Include and External Dependencies folders (see Build commands on

page 158).

Editor windows

STVD’s integrated text editor helps you edit source files by providing advanced editing and
navigation features. In addition, its full integration into the STVD environment makes it a
powerful tool during debugging for controlling and viewing the execution of your application.

Doc ID 7705 Rev 11 43/385

Your STVD graphical environment UMO0036

Note:

This section provides a description of Editor window features, including:
e Editor window contextual menu

e Editing features

e Customizing editor features

For more information about using the Editor window during debugging, refer to Editor debug
actions on page 169.

The integrated Editor windows are client windows that float in the main application window
(see Figure 14 on page 35). When an Editor window is maximized, any other open Editor
windows are hidden and the name of the open application file contained in the maximized
editor window is shown across the top of the STVD main application window. Editor
windows for any open files can be accessed by clicking on them in the Window menu.

The text editor in STVD 3.2 and later versions is adapted from the Scintilla text editor.

Figure 17. Scintilla text editor copyright notice

© Copyright 1998-2003 by Neil Hodgson (neilh@scintilla.org) All Rights Reserved.

Permission to use, copy, modify, and distribute the Scintilla software and its documentation
for any purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that both that copyright notice and this permission notice
appear in supporting documentation. NEIL HODGSON DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Supported file types

44/385

Any ASCII text file can be loaded into the text editor. The Editor is able to distinguish and
color-code the source code (for example, comments, keywords, functions, variables) for the
file types listed in Table 15.

Table 15. Editor supported file formats

Language Supported file extensions
Assembler *.asm, *.s, *.S, *.inc
C-language *.c, *.h

In addition to syntax highlighting, it provides advanced, language-specific features such as
auto-completion for C and Assembler source files, and parameter information for source
files in Assembler.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

File display and editing features

The Editor window has a number of advanced features to help you view, navigate and edit
your C and Assembler source files. Many of these features can be configured and
enabled/disabled in the Options window (Tools>Options). The following features are
illustrated in Figure 18:

1.

Margin controls and information including line numbers, line selection and
enabling/disabling of instruction breakpoints (see Margin features).

Margin icons for navigation and debugging, including bookmarks (shown in

Figure 18), instruction breakpoints, position counter and stack position indicator (see
Editor debug margin on page 172).

File folding for display of specific sections of code in the source file.

Configurable indentation features include the size of indents (in characters),
indentation guides and automatic indentation upon typing an opening or closing brace
(see Indentation).

Brace matching to highlight opening and closing braces (see Brace matching).

Auto-completion for quick prompting of language-specific keywords when coding in C
or Assembler (see Auto-completion).

Parameter information for quick prompting of ST Assembler instruction syntax in a tip
pop-up (see Parameter information).

Long line indicator shows lines that exceed the maximum number of characters that
you specify (see Customizing editor features on page 61).

Line wrapping indicator shows where long lines have been forced to a new line when
wrapping is enabled (see Customizing editor features on page 61).

Figure 18. Editor window file display and editing features

{
119 J T bugCountDhown = 5 + rand()%5;
120 Y
121 o
1zz

125 wvoid main_ loop(void)
126 =K
127 unsigned char *phata = (unsigned char *) &nbOfTransitions;

129 while (1)
130 (=

131 i,‘

13z waiting loop (state[currentState] . timeoutValue) ;

135 if {enableBug) o]

136 = {3
137 E if (bugCountDown == 0) r
i ¢ 9
139 phata[l] = Oxaa:

141 reset_bug count_down(};
14z }
143 bugCountDown—-;

147 mmw tranil-
145 register -

150 return
151 [short
154 signed
155 el

E

136 .TRte_Int

157 138 BTJF
brijf dst,#pos,rel
158 139 J «BPoS,

s KT I

Doc ID 7705 Rev 11 45/385

Your STVD graphical environment UMO0036

File folding

This feature allows you to hide or display sections of C source code. Folds are created
automatically for comments and {} braces as you write your code.

Figure 19. File folding display and controls

1

id main_ loop(void)
=k

unsigned char *phata = (unsigned char *) &nbOfTransitions;

129 while (1)
130 B i

2 131
132 waiting loop(state[currentitate] .timeoutValue) ;
133
134 3

155 al [ensb leBug)
136 [E3) {

147 asm_trap();
'

Folds are indicated in the margin by a minus (-) symbol and a vertical line ending in a short
horizontal leg (see 1 & 2, Figure 19). Folded/hidden sections of code are indicated by a plus
(+) sign and an unbroken horizontal line (see 3, Figure 19). When nested within another
fold, the nested fold begins with the minus symbol and ends with a short, diagonal line.

Margin features

46/385

The Editor window margin offers several standard and advanced features to help you view,
navigate and debug your source files, including line numbering, bookmarks and file folding.
You can customize the Editor window to display or hide these features. For more
information, refer to Section 3.7: Customizing your work environment on page 60.

Standard features include line numbering that you can choose to display and print, and line
selection.

When line numbering is enabled, each line ending in a return is numbered. Wrapping of
lines does not change the line numbering.

Margin line selection allows you to select complete lines by clicking the left button on your
mouse and dragging the cursor in the left margin as shown in Figure 20. Selecting lines in
this way ensures selection of the entire line. The right side of the margin is also used to
enable/disable instruction breakpoints (see Section 5.4: Editor debug actions on page 169).
However, Margin line selection can be set to use the entire left margin (see Section 3.7:
Customizing your work environment on page 60). When the Margin selection option is
checked in the Edit/Debug tab of the Options window, the margin can no longer be used to
enable/disable instruction breakpoints.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Figure 20. Left margin features

=i C:'Program FilesSTMicroelectronics' st 7toolset’ styd 7% Example’tutorial_cosmic'timer.c

woid waiting loop (const unsigned long count)
{
unsigned long i:

for (i=0; i<count; i++)
| i

% asm_nop () :
i

}

void reset buo count downivoid!

Bookmarks are particularly useful when editing large files. Bookmarks set in the Editor
margin permit easy navigation between marked lines in a source file. They also serve as
references for other tasks such as setting advanced breakpoints and conducting
performance analysis.

The bookmark icon is a rectangular, blue icon in the left margin of the Editor window
(see 1, Figure 21). A bookmark may be located on the same line as other margin icons,
such as breakpoint icons, (see 2, Figure 21).

Figure 21. Bookmark icons

121
1zz

24
125 ¥oid main_loop (void)
26

unsigned char *phata = (unsigned
128
129 while (1)
130 S
131
132 waiting loop(state[currentitat
133
134
155 if (ensbleBug)
136 = {

2 if (bugCountDown == 0)
138 {
139 (@) phata[l] = Oxas:
40
reset_bug count_down();

142 ¥

Set a bookmark by placing the cursor on a line in the file. In the main menu, select
Edit>Toggle Bookmark. A blue rectangle appears in the margin.

Remove the bookmark by using the Toggle Bookmark command a second time.

Remove all bookmarks in the file that is currently being edited with the Clear All
Bookmarks command.

Navigate through bookmarks using the Next and Previous Bookmark commands.

Doc ID 7705 Rev 11 47/385

Your STVD graphical environment UMO0036

Editor status bar information

The status information for each file in the Editor window is preserved when the file is
deselected (including cursor column/line position), and displayed when the file is reselected.

The status bar is divided into seven sections reporting current attributes of the Editor
window, plus two sections reporting the debugger status. A black keyword indicates the
attribute is active. When the keyword is gray, the attribute is inactive.

Figure 22. Status bar elements

+ Write protecton is disacivated

+ D_ooument has been modified | || =ca-= Lo wh LS bmeE | PoLRLE T wn
since loading or the lastsave

s
I’

[ForHel, pressF1 | Ln@8,Col? | MODIFIED | READ [CAP NUM [SCRL OV

Debugger
status

In Figure 22, the status elements, ordered from left to right, are:
e Ln xx, Col yy: Shows the line and column position of the cursor.

e MODIFIED: Shows if the current document has been changed since loading or last
save.

e READ: Shows the read/write status of the current document.
e CAP: Caps Lock

e NUM: Number Lock

e SCRL: Scroll Lock

e OVR: Overwrite is active; text insertion status.

[Editor attributes]

The status bar can be hidden by unchecking the Status Bar option in the Window menu.

Editor window positioning

48/385

The Editor windows can be maximized or minimized. When maximized, only one Editor
window is visible. When other windows are docked around a maximized Editor window, it
can no longer be resized by dragging on the border. Instead, it is resized automatically when
the docking windows are resized.

Commands to tile or cascade windows and switch between windows are available from the
Window menu. These commands are available on the Window toolbar, shown in Figure 23.

Figure 23. Window controls

Tile
Vertically

Tile
Horizontally

|

Previous

Doc ID 7705 Rev 11 KYI

UMO0036 Your STVD graphical environment
3.5.1 Editor window contextual menu
By right-clicking in any Editor window, you can access the contextual menu with options and
commands that are specific to the editor functions.
Figure 24. Contextual menu edit commands
o Cut
2 Gopy
Eﬁaste
@4 Find. ..
Insett Data Breakpaint
Insert Read Data Breakpoint
Insett Change Data Breakpoint
&’ Quickiwatch. ..
Open Docurment
E| Go To...
G0 To Disassembly
Go To Mext Line With Code
Go ko Definition OF “are”
o> Go Ta PC
@ InsertRemove Breakpoink
w Enable/Disable Breakpaint
*{ } Run To Cursor
& SetpC
Advanced ‘Word \Wrap
IMakch Brace Chrl+E
Complete Word Chrl+Space
Earameter Info Chrl+Shift+Space
Fold{Unfold &l
Wiew
Line Endings
In the Editor window, you have access to the basic editing commands: Cut, Copy, Paste,
Open Document and Find. In addition, you can access advanced editing features (Match
Brace, Complete Word, Parameter Info) and controls for advanced display conditions
(Word Wrap, and display of Whitespace, Line Numbers, Margins, Indentations Guide
and Long Line Marker). For more about these features, refer to Section 3.5.2: Editing
features.
During debugging, the contextual menu also provides access to various debug commands
(Go To, Run to Cursor, Insert/Remove Breakpoint, Enable/Disable Breakpoint, Set
PC), which are described in detail in Section 5.4: Editor debug actions on page 169.
3.5.2 Editing features

The Editor offers a complete range of text-viewing, text-editing and print features for editing
text and source code, including:

Syntax highlighting
Auto-completion
Parameter information
Indentation

Doc ID 7705 Rev 11

Brace matching

Text selection and clipboard operations

Find features

49/385

Your STVD graphical environment UMO0036

Note:

To edit source files during a debugging session, ensure that the Read-only source files
feature has been disabled. To do this, select Tools>Options and click on the Edit/Debug
tab, then uncheck the Read-only source files option. Then click on Apply and OK. Note
that while this allows you to modify the application source files, you must recompile the
executable file so that your changes are taken into account when running the application.

Syntax highlighting

Note:

STVD offers configurable syntax highlighting to improve the readability of your C and
Assembly source files. This feature allows you to define the source code display conditions
(text color, background color, character style) for a syntactic group. In addition to highlighting
for commands, variables and comments, the Editor recognizes language-specific keywords
for C and Assembler source files.

Language-specific highlighting is established at the file level, therefore no language-specific
highlighting is applied to Assembler code in C language files (*. ¢, *. h or *. ssp).

A basic highlighting configuration is set by default, which you can modify to meet your
specific needs or preferences by using the Styles/Languages tab of the Options window
(Tools>Options). For more information about modifying the syntax highlighting
configuration, refer to Section 3.7.1: Customizing editor features on page 61.

Auto-completion

While typing your code, use the auto-completion feature to see a list of language-specific
keywords that match what you have started typing. For example, when typing a command in
a C source file, type the first letters followed by CTRL+Space, or select Edit>Complete
Word. A pop-up window opens with the alphabetical listing of C language keywords, at the
section of the list that matches what you have started typing. Highlight the keyword you want
and press enter (see Figure 25).

Figure 25. Auto completion pop-up list

L:[l register ;I
< FEiNterpret cast
Il r=turn -
short
=signed LI
re

If you have just created a new C or Assembler source file, the auto-completion feature is not
available until you have saved the file with the file extension that is appropriate to the
language (for C: *.c, *.h, or for Assembly: *.asm, *.s, *.S or *. inc).

Parameter information

50/385

While typing your code in Assembly, the parameter information tips prompt you with the
syntax for the instruction that you are typing. Syntax information is provided for the ST ASM
instruction set.

For example, when typing an instruction in an Assembler source file, type the instruction
then press CTRL+Shift+Space, or select Edit>Parameter Info. A tip window appears with
the syntax of the instruction that you have named (see Figure 26).

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

If you have just created a new Assembler source file, the parameter information feature is
not available until you have saved the file with the appropriate file extension: *.asm, *. s,
.sor. inc.

Figure 26. Parameter information tip

130

131

132

133

134

135

136 .TRte_Int

137

138 ETJF|

130 btjf dst,#pos, rel

1 |

Indentation

During text entry, auto-indent returns the cursor to the column in which the previous line of
text starts, so that the indent of the base line is preserved in subsequent lines. In addition,
whenever you type the opening brace { for a function, the subsequent line is automatically
indented. When you type the closing brace } for your function, the line with the closing brace
and subsequent lines are un-indented by one level.

Figure 27. Auto indentation

100
101
10z

103 woid waiting loop (cons
104

105 nEigned long i:

106

107 or [i=0; i<count; i+

108 }|‘_)
103

When enabled, the editor also provides indentation guides to help you see code lines that
have the same indent level. For more information about configuring these options, refer to
Section 3.7: Customizing your work environment on page 60.

You can also manually indent lines by selecting a line or placing the cursor at the
beginning of the line and pressing the Tab key. Block indent allows any block of text
highlighted with the text cursor to be indented with the Tab key in the same way that you
would indent a single line. Pressing SHIFT+Tab un-indents the selected text block or line,
moving it to the left.

Doc ID 7705 Rev 11 51/385

Your STVD graphical environment UMO0036

Brace matching

When viewing and navigating in source code, brace matching highlights matching opening
and closing braces - {}, (), [], <>. If you highlight a brace with the cursor, then the matching
brace is highlighted in the same color. If you press CTRL+E, or select Edit>Match Brace,
then the cursor moves to the corresponding brace.

Figure 28. Brace matching

wiLas L)

i

ifdef SPI_SLAVE CONFIG
Temp = SPICSR:
if [(Tewp & 33M) && {'iTewmp & 3

waiting loop(state[currentitate]
{ _

if (enableBug)
1
if (bugCountDown == 0)
i
phatall] = Oxaa;

for (i = 0; i < SIZE; i++)

i
disk = PosiArray[src] [(S3IZE-1) e
if (disk)

reset_bug count downi):
i

asm trapi);
1

uglountbhown—--;

Text selection and clipboard operations

The editor offers the same clipboard features (Cut, Copy and Paste) used by standard
Windows-based text editors using the same keystroke combinations. You can select text
with the mouse, using the left mouse button alone or using <Alt + left mouse button> to
define any rectangle in the text area and select the text it contains.

Drag and drop

Any selected block of text (highlighted using the text cursor) can also be dragged while
holding down the left mouse button and moved to another window in STVD, another
application, or to a new location inside the Editor window. When dragged, a cross-hatch
square symbol accompanies the mouse cursor to indicate the transfer of text.

The same action (drag with left mouse button) with the Control key depressed, copies the
highlighted text to the new location. In this case, a square symbol containing a plus sign
accompanies the mouse cursor.

Find features

52/385

The Editor window provides standard find and replace commands to help you locate and
update specific strings. The Find, Find next, Replace and Find in files functions are available
from the Edit menu. The Find command is also available in the contextual menu.

In addition to searches for strings or variables, the Editor allows you to search for patterns of
characters by using Regular expressions.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Find
You can select the string for a search by placing the cursor anywhere in the string,
highlighting it or typing it directly in the search window.

If you place the cursor to select the string, the string for the search is delimited by white
space or any other non-alphabetic and non-numeric characters. On the other hand, when
you select by highlighting a string, the full string of characters regardless of the type of
characters appears in the Find window.

Figure 29. Find dialog box

Find HE

Find what: | Find [Hiext I

[Match whole word only Direction
r @ Cancel |
[Match case Up ' Down

™ Fegular expression

In addition to common find options (Match whole word, Match case), the Find dialog box
allows you to search for patterns of characters using Regular expressions.

Find pull-down list

The Edit toolbar in the active window contains a text entry box for quick string searches (see
Figure 30). Type the string you want to search for in the field, or select a string that you have
already searched for from the pull-down list.

Figure 30. Quick find for strings or variables in a source file

+ Type the string
o search for...

1
{time] f = &1

state
timer

J L

+ or choose a string from
the pulldown list.

Replace

In the active Editor window, a string at the cursor position (delimited by white space and/or
other usual separators) or any highlighted string, can be sought in the whole of the text. Pull
down the Edit menu from the main menu bar, and select the Replace command to open the
Replace window.

Doc ID 7705 Rev 11 53/385

Your STVD graphical environment UMO0036

54/385

Figure 31. Find/replace window

Replace EHE

Findwhat: | Eind ezt

X

Replace with: I Heplace

Feplace &l

I Match whale word only Directicn
I Match case C Up * Down Cancel

I Regular gxpression

dad}

In addition to common find options (Match whole word, Match case), the Replace dialog box
allows you to search for patterns of characters using Regular expressions.

Find in files

The Find in Files command allows you to search for any string in any number of file types
within a given source directory. In addition to common find features and directory search
options, the Find in Files dialog box allows you to search for patterns of characters using
Regular expressions.

For example, Figure 32 shows the search for the variable “alpha” in files with a variety of
extensions.

Figure 32. Find in Files dialog box

Find in Files HE
Find what: | =] End |
In filez/file types: I".c:,'".h,"‘.asm,‘".s;".inc;".spp; j Cancel |
In falder: IE:\Program FilezSTMicroelectronics j |

[~ Match whole word anly
[Match case

™ Regular expression

" Lock in project folders
™ Look in additional folders

If you put a checkmark beside the Look in additional folders option, a dialog box like the
one shown in Figure 33 is displayed. You can add additional folders to search.

Figure 33. Look in additional folders

Find in Files EHE

Find what: | =] Eind |
In filez/file types: I".c;".h;".asm;".s;".inc;".spp; j Cancel |

In falder: IE:\Program FilezSTMicroelectronics j |
[~ Match whole word anly ™ Lock in subfolders
[Match case ™ Output to pane 2

™ Regular expression
" Lock in project folders
V' Lock in additional folders

|I:00k in additional folders:
C:Mlibranyhat7

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

The results of your search are displayed in the Output window, by default in the Find in
Files 1 tab, or in the Find in Files 2 tab if you select the option Output to pane 2.

Figure 34. Find in Files tabs
Output BEE

Searching for "local®™

I:hycharamel’ stvd7Dyhiware ITENVIRO.C:75: char local;
I:hycharamel’ stvd7Dyhiware ITENVIRO.C:76: local=PADR;
I:hcharamel’ stvd7Dyhiware ITENVIRO.C:90: char local;
I:hycharamel’ stvd7Dyhiware ITENVIRO.C:92: local=FEDR;
I:hycharamel’ stvd7Dyhivareh ITENVIRO.C:133: char loecal:

[A[4> [#I, Build A Tools 4 Find in Files 1 4 Findin Files 2 A Debug A Console /

Go to

This command opens the Go To window, permitting a line in a source file to be defined as
the target for the Go To action.

Figure 35. Go To window

Go ta what: Enter location: GoTo I
201] Cloze |

Regular expressions

Regular expressions make it possible to search ASCII text for patterns of characters instead
of literal strings of characters. For example, they allow you to search for all expressions
consisting of a character followed by any character in a defined set, or to search only for
occurrences of a string of characters at the end of a line.

Checking the Regular Expressions checkbox in the Find, Replace or Find in files windows
enables the use of meta characters for regular expressions such as those listed in Table 16.

Table 16. Regular expressions
Meta
character Use Example
[] Find any characters in the defined set. X[A-B] finds any occurrences of XA or XB
] Find characters except those in the X[~c-2] finds any occurrences of XA or XB and excludes
defined set combinations with any other letters (XC, XD, ... XZ)
X. . [A-B] finds any occurrences of X followed by any two
Any character characters and then an A or B (X--A, or X--B where - is
equal to any ASCII character)
Matches one or more occurrences of the X[A-B]+ finds any occurrences of X followed by one or
+ more occurrences of the defined set (XA, XB, XAA, XAB,

specified characters

XBB, XAAA, XAAB, ...)

Doc ID 7705 Rev 11 55/385

Your STVD graphical environment UMO0036

Table 16. Regular expressions (continued)
Meta
character Use Example
X [A-B] * finds any occurrences of X and X followed by
Matches zero or more occurrences of the .
* specified characters one or more occurrences of the defined set (X, XA, XB,
P XAA, XAB, XBB, XAAA, XAAB, ..)
Beginning of line |nd|c.ator (when It ~X [A-B] finds only the occurrences of XA and XB at the
n precedes a search string and is not beginning of a line
enclosed by brackets) 9 9 '
$ End of line indicator (except when X [A-B]$ finds only the occurrences of XA and XB at the
preceded by a \) end of a line.
\ The meta character following the \ is Changing the preceding example to X[A-B] \$ finds all
treated as an ASCII character occurrences of XA$ and XB$.
Restricts the search to the beginnings of \<X[A-B] fm(_:ls _onIy the occurrences of XA and XB that
\< words are at the beginning of a word (that are followed by other
alpha-numeric characters — XAVIER or XA123)
X [A-B]\> finds only the occurrences of XA and XB that
\> Restricts search to the ends of words are at the end of a word (that are preceded by other alpha-
numeric characters — MIXA or 123XA)
These are just a few of the regular expressions that you might use to search your files. For
more information, you can refer to any reference about Unix regular expressions.

Note: When regular expressions are enabled in the Replace dialog box, they are used in the Find
what field. A regular expression in the Replace with field is treated as a string of ASCII
characters, not as a regular expression.

3.6 Output window

56/385

To open the Output window, either click on the Output window icon in the View toolbar
or from the main menu select View>Output Window.

The Output window is opened from the View toolbar or View menu.

Figure 36. Output window

Cutput [x]

done. ;I

Opening application D:istvd7tests) timer' Debughtimer.
—-» Chip-reset...
**% Application stopped:

1 | »
[[0[RI, Build A Taclks A Findin Files 1 A Find in Files 2 A Debug A Console

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Note:

3.6.1

The tabs located at the bottom of the Output window area are used to flip through the
different views available in the window. These tabs include:

e Build tab and Tools tab

e Findin Files 1 & Find in Files 2 tabs

e Debug tab

e Console tab

If you right-click the mouse in the Output window tabs a contextual menu appears specific to

that tab. For example, the contextual menu for the Build and Tools tabs is shown in
Figure 37.

Figure 37. Output window contextual menu

(Bt

(Copy
Easte

Clear

GoToEmordTag
Parzer Ermor Selection 3
Parze Errars and Jump ta File

v Allow Docking
Hide

Depending on the tab view you are in, the contextual menu may have fewer or different
options than the one shown above.

Build tab and Tools tab

These tabs display information on the current build or tools session.

For example, the view of the Build tab in Figure 38 shows the messages resulting during
build session using the Cosmic toolset. Errors are shown in bold text, and refer to the
source file and line number where the error was found.

Figure 38. Output window Build tab

Compiling "oc:' program files\stmicroelectronics\st'?t;l
cxst? +wodm +debug -pxp -no -pp -1 -iC:yCOSMICYEVAL
error cpst? c:program files\stmicroelectronicsist
Y program files\st,microelectronics\st,'?t,oolset.\st,vdJ
The command: "cxst? +wodm +debug -pxp -no -pp -1 -
exit code=1. -

1 | »
[A% [#1, Buitd £ Tools A Findin Files 1 A, Find in Files 2 A Debug A Console /7

The contextual menu for the Build and Tools tabs has options that make it easier to jump to
any errors found during the build.

In the Tools tab contextual menu, first choose the parser that corresponds to your toolset.
The various parsers installed appear when Parser Error Selection is selected. A
checkmark appears beside the active parser. Figure 39 shows that the ST Assembler Linker
parser has been activated.

Doc ID 7705 Rev 11 57/385

Your STVD graphical environment UMO0036

3.6.2

3.6.3

3.6.4

58/385

Figure 39. Parser error selection options

[Euit
Copy
Baste

Clear

Go To ErordTag

Parzer Emor Selection [v ST7 Azzembler Linker
v Parze Errorz and Jump to File ST7 Cozmic
STV Hiware

v Allow Docking
Hide

Float I b ain *indow

Once a parser is selected, you can use the Parse Errors and Jump to File option (a
checkmark indicates that it is enabled). This option allows you to automatically jump to the
source of any errors found during the build process by:

e Double-clicking on the error line in the Build tab.

e Selecting the error line in the Build tab, then right-clicking the mouse to bring up the
contextual menu, then selecting Go To Error/Tag.

Find in Files 1 & Find in Files 2 tabs

These tabs show the results of any Find in files searches. By default, results are posted to
Find in Files 1, unless you select the option Output to pane 2 in the Find in Files dialog box.

Figure 40. Output window Find in Files tab

Output]|
Searching for "local™

I:%charamel’stvd?D4hiware’ ITENVIRO.C:75: char local;
I:%charamel’stvd?D%hiware’ ITENVIRO.C:76: local=PADR;
I:%charamel’stvd?D4hiware’ ITENVIRC.C:90: char local;
I:%charamel’stvd?D4hiware’ ITENVIRO.C:92: local=FPEDR;
I:Ycharamel’stvd?DYhiware’ ITENVIRO.C:133: char local;

[T AR T#IT, Build A Tacls A Find in Files 1 4 Findin Files 2 A Debug A Console 7/

Debug tab

This tab gives information on the current debugging session, including:
e Emulator/Connection information

e Run/Stop information

e Warning messages

In addition to this information about the debugger and debug instrument, STVD also
provides a Console tab that allows you to enter debugging commands.

Console tab

This tab gives you access to a command console where you can enter debugging
commands for the STVD debugger (also referred to as GDB). Normally, you should not have

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

Caution:

to enter commands directly. However, in Section 5.18: Online commands on page 199, you
will find several basic online commands for reference.

This command console (shown in Figure 41) displays online output and allows you to enter
commands at the command prompt, marked by '—>'.

Figure 41. Output window, Console tab

[Ox1000-0xefff] : RESERVED ‘:J

[Oxf000-0x££dE] : ROM
[Oxffed-0x£fE££f£f] : VECTORS

> moumap —-set [0x0080-0x00££f] :RAM

> mowmap —set [0x0150-0x0eff] : RESERVED
> moumap —-set [0x1000-0xefff] :RESERVED
> moumap —-set [Ox£000-0x££df] :ROM

= gdi meuoption —-set CLOCEKE SMH=z

> gdi mcuoption -set CLOCK FILTER OFF
= gdi mocuoption -set PC_IT EXT IT1

> gdi mocuoption -set LWVD STATUS OFF

> gdi mouwoption —-set WDGH+HALT RESET

> gdi mouoption —-set WATCHDOS HARDWARE

-

3

«| |
[4 [> [#]A Findin Files 1A Findin Files 2 A Debug) Gonsole /

Under normal circumstances, the workspace must not be opened or closed, or a Quit
Debugger command issued, from within this window. The STVD graphical user interface
must be used for these operations.

The STVD graphical user interface is not refreshed systematically following direct entry of
commands, therefore use of the Run command within the command console should be
approached with caution.

Right-click anywhere in the Console tab to open the console contextual menu.

Figure 42. Console tab contextual menu

|Efvje
Eopy
Easte

Clear

Werboze

Log ta File

Log File...

Log Comrmands
Commandsz Log File...

v fillow Docking
Hide

The contextual menu provides options to edit online commands (Cut, Copy, Paste) plus
logging options (Log to file and Log commands to file) with file-creation options in each
case (Log file and Commands log file).

Option Verbose On/Off defines the level of comment displayed on screen.

Doc ID 7705 Rev 11 59/385

Your STVD graphical environment

UMO0036

3.7

60/385

Customizing your work environment

STVD offers a flexible working environment for developing your application with Options
and Customize windows to help you tailor STVD to your needs.

Figure 43. Options and Customize windows

Options ﬂ E
Toolbars | Commands I Edit/Debug I Styles/Languages I
Workspace Directories I Toolzet
Docking windows:
‘Workspace includes:
Output ¥ Wisual ervitorment
Dlsa.ssembly vV Debugging context
Registers
Memory
Instruction Breakpoints
“watch
Call Stack
Local ariables
Menu Contents
Cancel
:I Cancel Lpply

d

Menu Test: [new tool]

Command: l— | > |
Arguments: I LI
Initial Directory: I— S |

¥ Redirect to output window

[~ Redirect to file | 2 |

Bemove

Move Up

Ll el

ove Down

The Options window (Tools>Options) provides several tabs, listed in Table 17, that allow
you to enable, disable and configure STVD features.

Table 17. Options window tabs

Tab name Description
Workspace Configure docking windows and information stored in the workspace file.
Directories Define global directories to use when building and debugging your application.
Refer to Section 2.1: Set the toolset and path information on page 23.
Toolset Specify the toolset and paths to use when building your application. Refer to
Section 2.1: Set the toolset and path information on page 23.
Enable, disable, and configure toolbars. Refer to Section 3.7.2: Customizing
Toolbars
toolbars on page 65.
Commands View and customize the commands on the various toolbars.

Doc ID 7705 Rev 11

UMO0036 Your STVD graphical environment

Table 17. Options window tabs (continued)

Tab name Description

Enable and disable Editor features related to debugging and editing. Refer to

Edi/Debug Section 3.7.1: Customizing editor features on page 61.

Configure the language specific syntax highlighting. Refer to Section 3.7.1:

Styles/Languages Customizing editor features on page 61.

The Customize window (Tools>Customize) provides an interface for creating your own
commands to add to STVD’s menus and toolbars. For example, you can create commands
that launch other applications that you use frequently during application development. Refer
to Section 3.7.3: Adding custom commands on page 67.

3.7.1 Customizing editor features

You can define the attributes and functions of the integrated Editor in the Edit/Debug tab
and Styles/Languages tab of the Options window. To access this window, select
Tools>Options in the main menu bar.

Figure 44. Edit/Debug and Styles/Languages tabs

Toolbars I Commands I Edit/Debug Styles/Languages

— Syntax Highlighting
Dizplay items: Font: Use Default I Size:

I T Courier New j I‘ID j
Foreground color:

[ok | [t |

Background color:

[whie I | [Ete |

Comment [~ Bold [Underline
Character | [~ Italic [~ EOLFiled Reset |
Toolbars I Commands Edit/Debug | Styles/Languages
r— Edit and Print: —Debug
V' Line Numbers ™ Automatically open disazsembly
¥ Left Margin [Margin selection W] B vl crmantian stas

¥ Enable Folding i
¥ Autcdindsnt W Indentation Guides V' Read-only source files

Tah size: |2 " Insert Spaces [V Enable watch pap-up
Indent size: |2 ' Keep tabs ‘Watch arrays: expand |1 0 item(g]
™ Auto Erace Match Highlight

~Lang Line— Enabled by Default [~

| Fiitit lire: rumters
5 Limnit: |85
—whord “Wrap 4 ch dae
o ow edge ine

Initial indent: I‘ID * Change background color

Show 'wrap Symbal: [~ before wiap i X
B i amp Line Endings Show [V
B e Style: IWindows [CR+LF] 'l

IVI Doc ID 7705 Rev 11 61/385

Your STVD graphical environment

UMO0036

Edit/Debug tab

Use the Edit/Debug tab to enable/disable and configure editor features related to editing
source files and debugging your application. The tab is divided into the following areas:

62/385

e Edit and print

e Word wrap
e Debug

e Longline

e Line ending

Edit and Print allows you to access the editing and printing options described in Table 18.

Table 18.

Edit and print options

Option

Description

Line numbers

When checked, the line numbers are displayed in the line number margin on
the left side of the Editor window.

Left Margin

When checked, the margin used for enabling/disabling of instruction
breakpoints is visible.

Margin selection

When checked, clicking in the left margin of the Editor window selects the
entire line. When unchecked, a mouse click sets/disables/removes a
breakpoint on the indicated line.

Even when this box is not check, you can select a full line by clicking in the
Line number margin.

Enable Folding

When checked, folding of source code is enabled and the fold margin is
visible.

Auto-Indent

When checked, automatic indentation upon typing an opening or closing brace
for a function is enabled.

Indentation Guides

When checked, the thin vertical lines indicating indents and tabs are visible.

Tab size

Specifies the size for tabs in number of characters.

Indent size

Specifies the size for indents in number of characters.

Insert spaces

When checked, tabs in files that are opened with the editor are replaced with
spaces.

Keep Tabs

When checked, the editor retains the tabs in any files that are opened.

Auto Brace Match
Highlighting

When checked, the highlighting of matching braces is enabled. Even when
this option is disabled, users can still find matching braces by placing the
cursor next to a brace and selecting Edit>Match Brace, or pressing CTRL+E.

Word Wrap allows you to access the line wrapping options described in Table 19.

Table 19. Word wrap options
Option Description
Enable When checked, wrapping is enabled. This option is checked by default.
Initial Indent Specifies the indent at the beginning of each line that has been wrapped from

the preceding line. Enter 0 for no indent.

Doc ID 7705 Rev 11

UMO0036

Your STVD graphical environment

Table 19.

Word wrap options (continued)

Option

Description

Show Wrap Symbol

These checkboxes specify the position of the red arrow symbol indicating a
wrapped line:

Before wrap - symbol is at right edge of the window before the wrap.
After wrap - symbol is on the left side of the window after the wrap.
Near text - symbol is next to the last text symbol before the wrap.

Debug allows you to access the debugging options described in Table 20.

Table 20.

Debug options

Option

Description

Automatically Open
Disassembly

When checked, STVD automatically opens the Disassembly window when
you start a debug session

Beep When
Execution Stops

When checked, STVD generates an audible signal whenever the execution of
the application stops while debugging.

Read-Only Source
Files

When checked, the Editor will not allow editing of open source files during a
debug session. Source files are not protected from editing if you are not in a
debug session.

When disabled, if a source file is changed during the debugging session, the
change is not taken into account until the application has been rebuilt.

Enable Watch Pop-
Up

When checked, during debugging you will be able to view the current value of
a variable in a Watch pop-up field by hovering the mouse over a variable in the
source code.

Watch Arrays

This field allows you to specify the number of levels (1-256) of an array to
display for variables in the Watch window.

Long Line allows you to access the line length options described in Table 21.

Table 21. Long line indicator options
Option Description
When checked, this option enables the long line specification and display of
Enable C
the long line indicator or background color.
Limit This field allows you to specify the maximum length of code lines in number of

characters.

Show Edge Line

When checked, this option displays a red vertical line indicating the maximum
line length limit for each line of code.

Symbols and spaces/indent associated with wrapping lines are not subtracted
from the maximum number of characters in a line of code.

Change Background
Color

When checked, this option changes the text background color for all lines
exceeding the maximum line length.

Line Ending character formats vary from one operating system to another. Failure to
recognize end of line characters can cause compilation errors. If in doubt, you should
confirm that your source files use the Windows end of line character style (CRLF).

Doc ID 7705 Rev 11 63/385

Your STVD graphical environment UMO0036

When you open a file with end of line characters that are different from the default line
character style (the Editor is set to Windows style by default), STVD warns you and asks if
you want to change them to the default style.

If your file is read-only, STVD warns you that the characters are different from the default,
but cannot give you the option to change them.

In the Line Endings section of the Options window Debug/Edit tab, you can enable the
display of line endings and choose the line ending style to use. Table 22 summarizes the
line ending options.

Table 22. Line endings options

Option Description

When checked, an icon representing the end of each text line is displayed.
The icons are:

Show — CRLF for text files created under Windows
— LF for text files created under Unix
— CR for text files created under Mac

This option allows you to indicate the type of end of line character to use
(Windows, Unix or Mac), by choosing the line character style from the Style
list. By default the Style is set to Windows. When you change the style, all of
the end of line characters in open files are changed to the new default setting.

Style

Styles/Languages tab

The Syntax highlighting section allows you to modify the display characteristics used for
the display of syntactic items such as language-specific keywords, operators, comments,

and numbers. This is a machine-level configuration for STVD, which is applied to editable

files regardless of the project or workspace that you are in.

When making changes to the Editor display options, use the Apply button to see the effect
of the changes you have made. The Apply button is only available once you have clicked in
or modified a display option.

You can return to the original configuration at any time by clicking on the Reset button.

Table 23. Syntax highlighting options

Option Description

This listing allows you to select the syntactic items whose display
characteristics you would like to view or modify. Current characteristics are
shown when you select any display item. The font characteristics (font, size,
Display Items bold, italic, underline) of the Default item are applied to all other items that
have the Use Default option checked. The foreground and background color
of the Default item are applied to all other items that have foreground and/or
background set to Default.

When this box is checked for any display item, the settings of the Default item

Use Default -
are applied.

64/385 Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

3.7.2

Table 23.

Syntax highlighting options (continued)

Option

Description

Font and Size

These fields allow you to select the font and the font size (in points) to be
applied to all text items.

To change this configuration you can select Text as the display item and the
changes you make will be applied to all the display items where Use Default is
checked.

You can select any display Item, uncheck Use Default and select a font and/or
size that will be applied only to the selected display item.

Foreground and
Background colors

Select the text color (foreground) and background colors from a list of
available colors. These can be configured for each display item.

Bold, Underline and
Italic

These checkboxes allow you to apply text characteristics to any of the display
items.

EOL Filled

The End Of Line Filled checkbox enables filling of the background color to the
edge of the Editor window.

Customizing toolbars

A number of predefined relocatable toolbars are present by default. These toolbars may be
modified or others may be created. All toolbars are dockable and may be moved
independently, shown or hidden.

Figure 45. Standard toolbars

-

== =

JJIcosmic leebug j|@ Iﬁl || HJ%&% B M HJ“’:M@ ? ‘

LR QDD | 5@

B |ools ! HRE|(B BEBRE 0|3

ocsmB 00000 Ch (Wm0 e 4%k E |8 g2 |[Fe

The toolbar options dialog box

From the main menu, select Tools>Options to open the Options dialog box. Click on the
Toolbars tab (see Figure 43) to access the customizable toolbar options.

Table 24. Toolbar options
Option Description
. This list of toolbars with checkboxes allows you to configure which toolbars are
Toolbars list .
visible.
Show/hide tooltips | This checkbox enables/disables the Tooltips pop-ups.

Cool look and Large
Buttons

Use checkboxes to enable and disable button styles — Cool look (beveled
buttons), Large buttons (icon and text to indicate button’s functionality)

New button

Opens a window that allows you to specify the name of a new user-defined
toolbar. To make your own toolbars refer to Creating user-defined toolbars. To
add or remove toolbar commands Rearranging toolbar icons.

Doc ID 7705 Rev 11 65/385

Your STVD graphical environment UMO0036

Moving toolbars

Toolbars can be transformed to independent always-on-top windows, by placing them over
(or in part over) the main application window or on the desktop outside the frame of the
STVD main application window. In this floating form they may be relocated by mouse
dragging on the window title bar or any unoccupied area in the window. These toolbar
windows may be resized in the standard manner by dragging on the edge of the frame
(double arrow cursor indicates resize dimension).

Individual toolbars may be picked up and repositioned anywhere in the STVD main
application window.

When docking is active, toolbars locate themselves in a window border region close to the
drop point. This causes automatic rearrangement of the local windows to accommodate the
new toolbar position.

When docking is not active, the toolbar stays where dropped.

When a toolbar is placed over the main application window, it will remain where placed and
appear as a floating window with its own header. (In this case, it is located by absolute
screen position, and remains stationary when the Editor or STVD main application window
is moved or resized.)

Creating user-defined toolbars

66/385

1. From the main menu, select Tools>Options to open the Options window.
2. Click on the Toolbars tab and then New to open the New Toolbar window.

Figure 46. Adding new custom toolbars

Options ﬂﬂ
‘Workspace I Directories I Toolzet I
Toolbars | Commands I Edit/Debug I Styles/Languages
Toolbars:
[b enu bar V' Show Tooltips Mew...
pFile ¥ Cool Laok
WIEdi W gl Lod Beset |
] ig ™ Large Buttons
[w|Project Feset All |
[w]Debug ik
[w] D ebug instrument
Bl NewToobar K|
iwindow New Toolbar [%]
v|Hel
i Toolbar name: oK |
Lancel
Toolbar name:
IMenu bar
QK | Cancel Lpply

3. Enter a name for the new toolbar at the prompt.

This name is then added to the list of current toolbars on the Toolbars tab. By default,
the new toolbar is marked as visible. However, even though it has been named, the new
toolbar is still empty. Add elements to it as described in Rearranging toolbar icons.

Doc ID 7705 Rev 11 KYI

UMO0036 Your STVD graphical environment

Rearranging toolbar icons
1. From the main menu select Tools>Options.
2. Select the Commands tab and select a Category from the list (see Figure 47).
The icons for commands in the selected category are displayed.

3. To add a button to a toolbar, drag an icon from the Buttons field to any toolbar. To
remove a button from a toolbar, drag an icon off the toolbar.

Figure 47. Options window, Commands tab

Options

‘Workspace | Directories I Toolzet I
Toolbars Commands | Edit/Debug I Styles/Languages

Categories: — Button:
B g
Wi

Project

[ebug

[ebug instrument
Taols

“indow

Help

Menu

=M=

Select a category, then click a button to see its description. Drag the button
to any toolbar

r— Description

QK I Cancel | Lpply |

4. While the Commands tab is open, displace a button slightly left or right on the toolbar
to create a separator between toolbar elements at that point.

3.7.3 Adding custom commands

You can use the Tools>Customize command to define and add custom commands that link
to external add-on software directly from within STVD.

This interface allows you to define commands and parameters, and name the new
command. The new command name is then added to the Tools menu.

Figure 48. Customize option

Tools Mindow Help

< Pragrammer

IVI Doc ID 7705 Rev 11 67/385

Your STVD graphical environment UMO0036

68/385

For example, imagine that you want to add a command that would link directly to an external
editor (such as Windows® Notepad):

1.

From the main menu, select Tools>Customize to open the Customize dialog box
(shown in Figure 49).

Click Add.

In the Menu Text field, enter the new command keyword, which appears in the Tools
menu—for example, Ext. Editor.

In the Command field, enter or browse to the executable file for the custom command,
notepad.exe in the example.

In the Arguments field, you can specify an argument to go along with the executable.
This is useful if, for example, you always want to open a certain file that is located in
particular directory. Click > for a list of arguments. Possible arguments that can be
added include:

— Workspace Path — Executable Short Filename

— Makefile — Current Editor Path

— Project Directory — Current Editor Filename

— Executable Path — Current Editor Short Filename
— Executable Filename — Current Editor Selection

Figure 49. Adding custom commands

Menu Contents |

rl_ Eam

Menu Test: IE:-:[Editor

Commatd: IE “Program Files\Motepad | | :
Arguments: |$[\AforkspaceF'ath Jbutorial st | hovellp |

Iritial Drirectarny: IE.'\temp'\ | ¥ | ff e Down |

Workspace Path
Makefile

[~ Rediect ta file | Project Direckary
Executable Path
Executable Filznane

[~ Redirect to output windaoy

Executable Short Filename
Zurrent Editor Path

Current Editor Filename
Zurrent Editor Short Filename
Current Editor Selection

In the example, Notepad opens sample . wsp, wWhich is located in the directory of the
open workspace. This is specified using the Workspace Path argument.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

3.8

6. Inthe Initial Directory field, you can specify the directory from which you want the
command to be initialized. You can type the directory, browse to it, or specify it using
the argument list shown.

In our example, Notepad is initialized from C: \temp\.

7. Finally, there are two other options that can be used with Win32 console applications
(DOS applications) only. Redirect to output window sends any output to the Output
window within STVD and Redirect to file allows you to send your output to the file you
specify (by typing in its name and path, browsing to it or using arguments to specify it).

Once you have finished, a new function, called Ext Edit, is added to the Tools menu, which

can be accessed like any other tool as shown in Figure 50.

Figure 50. Customized command in Tools menu

Tools Window Help

] E Customize, ..
Fﬁ Qpkions. ..

<o Programmer

A% Ext Editor

Tooltips

A local banner describing each tool button can be activated from the Tools menu. In the
Toolbars tab of the Options window, the checkbox Show Tooltips turns on the Tooltips
function. The mouse pointer must remain inactive on the tool button for a short delay to

activate the tooltip.

Figure 51. Tooltips

IE'E

A mouse-over on any tool button can be set to open a tooltips banner with a short
description of the tool. At the same time, a longer descriptive statement on the selected tool
appears to the far left of the status bar, in the lower left border of the STVD main application
window.

This report offers more detail on the selected tool, and is active even when the tooltips
banner is inactive. The status bar report on a mouse-over of the Run command button is
shown in Figure 52. The corresponding tooltips message is illustrated in Figure 51.

Doc ID 7705 Rev 11 69/385

Your STVD graphical environment UMO0036

3.9

70/385

Figure 52. Tool description

A4 » [T Build A Toals b, Find in Files 1}, Find in Files

Run Programmer on the selected MCU

Help and support features

From the Help menu you can access a variety of STVD features that have been designed to
help learn about and use its most advanced features. These features include:

e STVD Online Help and Tutorial— provides detail information on using STVD with
supported debug instruments. Includes a tutorial with everything you need to create an
application that you can debug with STVD (see Section 12: STM8 C tutorial on
page 332 or Section 13: ST Assembler/Linker build tutorial on page 366).

e About...— provides version information for STVD and the various components of your
debug instrument

e Help on Instruction— provides information about ST assembly instructions

e Instruction Set Contents...— allows you to access the ST Instruction Set online
reference

e Generate support file— allows you rapidly transfer error log files to an single file that
you can send to support when seeking assistance after an application crash

Generate support file

An application crash during debugging could be the result of a combination of factors
involving the different components of STVD and/or your debug instrument. If an application
crash occurs, STVD and your debug instrument generate log files in various STVD
directories. These logs can help support representatives determine the source of the
problem.

The Generate Support File feature retrieves these error logs and allows you to save them
in an archive (zip) so that they can be sent to your support representative.

Following a crash, to retrieve all the error logs for support:

1. Select Help>Generate Support Information.

2. Inthe Destination Zip File field, you can enter the path and the name for the archive
where the logs will be gathered together.

In the resulting Generate Information File for Support window (see Figure 53) you
will see the list of standard error logs that have been generated as a result of the crash.

This list may include:

— stvd_pm.log— Contains information about any crashes of STVD that have
occurred since its installation (provided that it has not been modified manually).
Information is stored in chronological order from the first to the last crash.

Doc ID 7705 Rev 11 KYI

UMO0036

Your STVD graphical environment

3.10

— Start.log— Contains the target debug and STVD version information. Old
information is overwritten with the most recent, each time you enter a debug
session (Debug>Start Debugging).

— error.log— Contains information about errors that are specific to your debug
instrument. This information is cleared each time you enter a debug session
(Debug>Start Debugging).

— downloader.log— Contains information regarding the last update of your debug
instrument's firmware.

Figure 53. Generate Information File for Support window

Generate information file for support [%]

Destination Zip file IC:\Program Files\S T Microelectionicshst Ftoolsetst |

Standard Logs

C:\Program Filesh5 Thicroelectronics' st Ptoolzetstydhatvd_pm.log
C:\Program FileshS TMicroelectronics'stPtoolzet\sted 7 Start log
C:\Program FileshS Thicroelectronics' st Ptoolzet\styd P emu3henor. log

|Qdd file to archive:

Cancel |

3. Inthe Add File to Archive field, specify any additional files that you would like to add to
the archive.

4. Click on OK to retrieve the logs and place them in the archive.

You can mail this file to your support representative, who will use it to help you resolve
your problem.

Migrating old workspaces (STVD7 2.5.4 and prior versions)

When building ST7 applications with STVD7 prior to version 3.0, the command line options,
include files, and library path names used by your toolset were contained in a makefile
(.mak). STVD no longer relies on the makefile, which you had to write for previous versions.
Instead it offers a graphical interface that allows you to quickly and easily apply and change
build options, in addition to storing those options as build configurations.

To benefit fully from STVD’s new build features, you must manually transfer the build
configuration (options, paths) from the makefile used by your old workspace (.wsp) to the
build settings interface for your project (. stp), which is contained in a new workspace
format (. stw).

As an expedient, STVD also allows you to automatically create a new workspace (. stw)
from the makefile that you used with your old workspace (. wsp). This permits a rapid
migration, however, you will not be able to take advantage of the full range of STVD’s new
build features. Table 25 outlines the advantages and drawbacks of these two migration
methods.

Doc ID 7705 Rev 11 71/385

Your STVD graphical environment

UMO0036

Table 25.

Migration strategy advantages and disadvantages

Full migration

Partial migration (wrap makefile)®

Advantages

« Allows full use of the graphical interface for managing build
options and configuration

« Facilitates modification of build settings during development
» Automatic, complete management of dependencies

* No makefile to maintain

« Migrate your project one time only

» Automatic migration
» Rapid migration
» Use exactly the same settings used when building

with a previous version and produces exactly the
same executable

Disadvantages

« Manual migration
» Migration takes a little longer

« Cannot use the STVD graphical interface to
manage build options

» Must continue to maintain the makefile and the
dependencies manually

1. If you want to continue using your makefile to manage the build options for your application, refer to Create a workspace by

wrapping a makefile.

For a full migration of your project, follow the 7 steps outlined in this section. This will take a
little time up-front during the migration, but will give you full use of all STVD’s new build

features.

7 steps to full migration

To migrate your project from previous versions, you need to set up a workspace and project
in STVD 4.0.1, add the source and include files and then confirm the various options and
paths that were previously specified in your makefile.

Table 26. Migration steps 1 and 2

Step

Related information

STEP 1: Create a workspace in STVD.

Select File>New Workspace, then select the New
Workspace and Project icon.

Follow the steps in the different screens to create your
workspace and project.

Do not use the “Create from...” options.

If you need more help on how to create a workspace,
refer to Create a workspace with a new project.

STEP 2: Add the application source files to the project.
Select Project> Insert Files into Project, then drag the
source files to the Source Files folder in the Workspace
window.

Using the same command, you can add any include
or header files that your application may require and
place them in the appropriate folder in the
Workspace window.

If you need more help on adding files to your
workspace, refer to Add source files (.asm, .c, .S) to
your project.

To provide STVD all the information required to build your application, you must now specify

the target microcontroller, the build options,

script in the Project Settings interface.

additional include and library paths and the link

From the makefile, you can note the command line options and path information used in

previous builds of your application.

Open the Project Settings window by selecting Project>Settings... from the main menu.

72/385

Doc ID 7705 Rev 11

574

UMO0036

Your STVD graphical environment

Table 27. Migration steps 3-5

Step

Related information

STEP 3: In the General tab, confirm
that the toolset paths correspond to the
installation on your PC. Some paths
depend on options specified in the
project settings.

For Metrowerks users, the library path used corresponds to the output
format set in the Compiler tab:

« for Hiware format - lib\ST7c\lib,

« for ELF/DWARF 2.0 format - lib\ST7c\lib.e20

You can specify the ELF/DWARF 2.0 format by selecting Output in the
Category list box, and then checking ELF/DWARF 2.0 format. @

STEP 4: In the MCU Selection tab,
select the target microcontroller.

STEP 5: In the Compiler tab, confirm
the command line options in the gray
Command Line window at the bottom

of the tab (all compilers).

Cosmic users can specify additional include directories. Select
Preprocessor in the Category list box and enter the file and the path in
the field provided.

Metrowerks users can specify extra include files and their paths. Select
Input in the Category list box and enter the file and the path in the fields
provided.

For details on the available options for your toolset refer to Section 4.5:
Configuring project settings on page 84.

1. ltis highly recommended that you use the ELF/DWARF 2.0 format rather than the Hiware format. The ELF/DWARF 2.0
format is more powerful and the debug information is more reliable.

Note:

Most options for the supported toolsets can be set in the Project Settings window. However,

if there is an option that is not incorporated in the Project Settings interface, you can add it to
the command line using the User Defined Options field.

Table 28.

Migration steps 6 and 7

Step

Related information

STEP 6: In the Assembler tab, confirm
the command line options in the gray
Command Line window at the bottom

of the tab (all compilers).

Metrowerks users can specify extra include paths. Select General in the
Category list box and enter the pathname.

ST Assembler Linker users can specify additional include paths in the
provided field.

For details on the available options for your toolset refer to Section 4.5:
Configuring project settings on page 84.

Doc ID 7705 Rev 11 73/385

Your STVD graphical environment UMO0036

Table 28.

Migration steps 6 and 7 (continued)

Step Related information

STEP 7: In the Linker tab, confirm the
command line options in the gray
Command Line window at the bottom
of the tab (all compilers).

For details on the available options for
your toolset refer to Section 4.5:
Configuring project settings on page 84.

Cosmic users can specify additional Object Library Modules and Library
paths to include during linking. Select General in the Category list box
and enter the pathnames in the provided fields.

Cosmic users can choose to generate an automatic link script (. 1kf) file
for linking, or to use an existing . 1kf file. Select Linker Input in the
Category list box. To use an existing . 1kf file, uncheck the Auto
checkbox, and enter the name of the file to use in the Script LKF
Filename field. For more information about automatic script link
generation, refer to Section 4.7.3: Cosmic C linker tab on page 110.

Metrowerks users can specify additional Object Library Modules and
Library paths to include during linking. Select General in the Category
list box and enter the pathnames in the provided fields.

Metrowerks users can choose to generate an automatic parameter

(. prm) file for linking, or to use an existing . prm file. Select Linker PRM
File in the Category list box. To use an existing . prm file, uncheck the
Auto checkbox, and enter the name of the file to use in the Script PRM
Filename field. For more information about automatic parameter file
generation, refer to Section 4.9.3: Metrowerks linker tab on page 148.

ST Assembler Linker users can specify additional Library paths to include
during linking by entering the pathname in the provided field.

Note:

74/385

Metrowerks We recommend that users working with the Hiware format migrate their
workspaces to STVD 4.0.1. Once you have successfully done this, we recommend
switching to the ELF/DWARF 2.0 format to build your application. This gives you access to a
greater range of options and will allow you to use both the Auto PRM file generation
option, or your previous PRM file.

If you choose to use the previous PRM file, note that it must correspond to the syntax used
with the ELF/DWARF 2.0 format, notably the ELF syntax uses SECTION in place of
SEGMENT. Also ensure that the variables for the start07 routine are placed in a No.Init
section.

Once you have made the necessary entries and confirmed the command line options, click
on OK to apply the settings and exit the Project Settings window.

You have now migrated your project to STVD 4.0.1. You have access to the full range of
supported options and features for your toolset and you can now build your application using
the same build options used to generate previous versions of your application.

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build
4 Project creation and build
STVD provides a build interface that allows you to control the building of your application for
debugging or for programming to your target microcontroller. When you first open STVD, by
default you are in the Build context. In this context, you will set up your workspace and
project(s), configure project settings and build your application.
The following sections provide information about the build interface, including:
e Section 4.1: Specifying a toolset
e Section 4.2: Loading and creating workspaces (.stw)
e Section 4.3: Creating and loading projects in a workspace
e Section 4.4: Project build configurations
e Section 4.5: Configuring project settings
e Section 4.6: Customizing build settings for ST Assembler/Linker toolset
e Section 4.7: Customizing build settings for Cosmic C toolsets
e Section 4.8: Customizing build settings for Raisonance C toolset
e Section 4.9: Customizing build settings for Metrowerks C toolset
e Section 4.10: Configuring folder and file settings
e Section 4.11: Specifying dependencies between projects
e Section 4.12: Build commands
4.1 Specifying a toolset
When building your application, you can use one of supported toolsets: ST
Assembler/Linker, Metrowerks C (Hiware), or Cosmic C, and their respective options and file
formats.
Table 29. Supported toolsets and file formats
Toolset name . Supported Initia[source Compiler/ Linker output Final
microcontrollers files assembler output executable
ST assembler/linker ST7, STM8 .asm .obj, .Ist .map, .tab .s19, .hex
ST7 Metrowerks (1.1) ST7 .C, .asm .0, .dbg .abs .abs, .elf
ST7 Cosmic C ST7 .c,.s .0 .st7 .elf
STM8 Cosmic STM8 .Cc,.s .0 .sm8 .elf
Raisonance C ST7, STM8 .asm, .c .0 .aof elf

The toolset to use during the build is specified at the project level. The Project Settings
window provides the interface for configuring toolset options, libraries and include paths that
are specific to building an application. This organization makes it possible for one
workspace to contain projects that are built using different toolsets.

Before you start customizing toolset paths, you will want to ensure that the default paths are

correct for the installation of the toolsets on your host PC.

Doc ID 7705 Rev 11

75/385

Project creation and build UMO0036

Toolset path information

4.2

Note:

42.1

76/385

Upon installation, STVD will attempt to identify the toolsets and their paths. You can confirm
or modify default path information for the supported toolsets by selecting Tools > Options
(see Figure 54).

The resulting Options window provides a Toolset tab that allows you to specify the Bin,
Include and Library paths for your toolset on your host PC. It also provides a Directories
tab, where you can specify any additional default subpaths for include files and libraries that
you typically use when building your microcontroller applications. The paths that you specify
in the Options window will be the default settings applied for any project using a toolset.
However, you can also specify a project specific toolset and paths in the General tab of the
Project Settings window for any project (see also Section 4.5: Configuring project settings
on page 84).

Figure 54. Toolset options

Options
Toolbars Commands] Edit/Debug Styles/Languages]
‘Workspace] Directories Toolset
Toolset |ST? Cosmic _j
Fioot path E‘T? Metrowerks %11
aizonance
Toolzet sub-paths [relative to the Roat path]
Bir path |
Include path |H3t?
Lib path |Lib

(0] 8 | Cancel

Loading and creating workspaces (.stw)

The workspace (filename . stw) is the file that contains the project(s) you are building to
generate your application. Typically, a workspace contains one or more projects and their
source files and dependencies. This section provides information on:

e Loading an existing workspace
e Creating a new workspace

You cannot create a project and build or debug an application until you have created a
workspace.

Loading an existing workspace

e Opening a .stw workspace
e Opening a .wsp workspace from STVD7 prior to version 3.0

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Caution:

Opening a .stw workspace

To load a workspace (*. stw) created by STVD7 3.0 or later versions, select File > Open
Workspace. The Open Workspace browse window will open. Locate the workspace file
(. stw), highlight it, and then click on Open. The workspace will appear in the Workspace
window, typically on the left side of STVD’s main window (see Figure 55).

Figure 55. Workspace window

E--{E8 realtim
= Source Files

str23Linc . Add New Project to Workspace...

""" (13 Extemal Dependencies Inzert Project into Workspace... Ins
Settings...
Froperties
Show full path

v Add sorted glements

i [zl
LIRS v Allow Docking

Hide

Opening a .wsp workspace from STVD7 prior to version 3.0

You can open a workspace that was created by a version of STVD7 prior to version 3.0. This
method automatically creates a . stw workspace based on the makefile used by your .wsp
workspace.

A . stw workspace created by opening a . wsp and wrapping the makefile, does not allow
you to take full advantage of STVD's build interface. Instead, you must manually maintain
your makefile to manage the building of your application. For information about creating a

. stw workspace that allows you to use STVD's graphical build interface, refer to 7 steps to
full migration on page 72.

To open a .wsp workspace:

1. Select File > Open Workspace from the main menu bar.

2. Inthe resulting browse window, select Old Project Workspace (*.wsp) in the Files of
Type field. Then select the . wsp file and click on Open.

3. Readthe message in the Import Workspace message box. Click on Continue to open
your .wsp. Click on Cancel if you want to abandon the import procedure and do a full
migration instead (refer to 7 steps to full migration on page 72).

A pop-up dialog box will ask you if you want to add the files as filtered by your .wsp
workspace. Click on Yes to add the files automatically.

Doc ID 7705 Rev 11 77/385

Project creation and build UMO0036

Note:

4.2.2

Note:

78/385

If a pop-up message appears indicating that your makefile was not found, click on OK and
then check that your makefile is in the same directory as the .wsp that you are trying to
open.

4. Inthe MCU Selection window, pick the target microcontroller for your application from
the list, click on Select and then OK.

5. Select File > Save Workspace from the main menu bar.

A workspace in . stw format is created in the working directory. In the future, you will
open this file and not the old . wsp file. You can now continue building and debugging
your application.

The . stw workspace that you have created is limited to using your makefile when you build
and rebuild your application. For this reason you do not have access to the tabs in the
Project Settings window that provides an interface for controlling your toolset and the
building of your application.

Creating a new workspace

STVD provides several options for creating a workspace in the New Workspace window. To
access this window, select File > New Workspace. From this window you can:

e Create a workspace with a new project on page 23

e Create an empty workspace

e Create a workspace from an existing project

e Create a workspace by wrapping an executable

e Create a workspace by wrapping a makefile

Create an empty workspace
You can create an empty workspace by selecting the Create an Empty Workspace icon.

In the New Workspace window:
1. Type the name of the workspace in the Workspace Name field.

2. Enter the working directory where files are to be saved in the Workspace Location
field, or use the browse button to find a location.

3. Click on OK to create your workspace.

Create a workspace from an existing project

This option allows you to create a workspace around an existing STVD project file (. stp).

1. From the New Workspace window, select the Create from Project icon and click on
OK.

A browse window opens. By default it is set to display . stp project files.

2. Highlight the project file that you want to use to create your workspace and click on
Open.
Your workspace is created and named project_filename . stw. The new workspace file
appears in the Workspace window, typically on the left side of STVD’s main window.
Your workspace contains the project you identified and its contents.

When creating a workspace in this manner, make sure that your source files are in the
correct directory relative to the project file. Otherwise you must update the paths by adding
the files to the Source Files folder from their actual location (see Section 4.3.3: Adding and
removing folders and files on page 83).

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Create a workspace by wrapping an executable

You can create a workspace for an executable file (. abs, .elf, .hex, .s19) for debugging.
However, during debugging you will only have access to the disassembled code and not the
original source code.

1. To create your workspace, select the Wrap Executable icon and click on OK.
A browse window opens.

2. Highlight the executable file that you want to use to create your workspace and click on
Open.

The New Project window opens.
3. Here, enter a name for the project file (. stp) and the project’s location.

By default your project is named executable_filename . stp and its location is the
directory of the executable file.

4. Now, select your toolset from the list box and enter its path. Click on OK.

Your workspace is created and named executable_filename. stw. The new workspace
file appears in the Workspace window, typically on the left side of STVD’s main
window. Your workspace contains a project executable_filename. stp.

You can now identify your debug instrument and debug the application.

Create a workspace by wrapping a makefile

Early versions of STVD7 used a makefile (.mak) to define the build process for source files
and a specified toolset. Wrapping your makefile to create a new workspace allows you to
rapidly transition projects to STVD7 3.0 and later releases, with certain limitations.

However, if you follow this migration procedure you will not have access to the build options
in the Project Settings window. Any changes to options must, therefore be made manually
to the makefile. STVD will not automatically manage project dependencies either. You, must
instead use your makefile to specify dependencies and you must verify these dependencies
yourself. Finally, if you add files to the project to edit them, they are not automatically added
to the build. In order to be taken into account when building, you must manually update the
makefile to include the new files.

For information about migrating your project in a manner that preserves the full range of
STVD's build features, refer to 7 steps to full migration on page 72.
To create your workspace by wrapping an existing makefile:
1. Highlight the Wrap Makefile icon and click on OK.
A browse window opens. By default it is set to display . mak makefiles.

2. Highlight the makefile that you want to use to create your workspace and click on
Open.

You will receive an information message, notifying you that STVD is going to wrap the
makefile in a workspace.

3. Click on OK to continue.
The New Project window opens.

4. Here, enter a name for the project file (. stp) and the project’s location. By default your
project is named makefile_name . stp and its location is the directory of the makefile.
Click on OK.

The MCU selection window appears.

Doc ID 7705 Rev 11 79/385

Project creation and build UMO0036

4.3

Note:

43.1

4.3.2

80/385

5. Select the MCU for you application and then click on OK.

Your workspace is created and named makefile_name. stw. The new workspace file
appears in the Workspace window, typically on the left side of STVD’s main window.
Your workspace contains a project with the makefile that you have identified and the
External Dependencies folder.

Before you start debugging your application you will have to identify the executable file to
debug and you may have to rebuild your application.

Creating and loading projects in a workspace

The project file (. stp) contains the information that you need to build an application with a
specific toolset and for a specific microcontroller. It contains the source files needed to build
the application, the build configuration and the target MCU’s memory map. This section
provides information about:

e Loading an existing project
e Creating new projects
e Adding and removing folders and files

Until you create a project or add an existing one to your workspace, you do not have access
to STVD’s build and debug commands.

Loading an existing project

To load an existing project:

1. Select File > Insert Project into Workspace.
The Insert Project browse window will open.

2. Locate the project file (. stp), highlight it and then click on Open.
The project will appear in the Workspace window, typically on the left side of STVD’s
main window (see Figure 55 on page 77).

STVD will not allow you to insert a project into a workspace if it already contains a project
with the same name.

Creating new projects

STVD provides three options for creating a new project in a workspace.

To create a new project, select Project > Add New Project to Workspace. The New
Project window opens. From this window you can:

e Add a project (.stp) to your workspace

e Create a project from an existing executable

e Create a project from an existing makefile

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Add a project (.stp) to your workspace

Click on the New Project icon and then OK. This launches the New Project wizard as
shown in Figure 56. In this window you will enter all of the information required to create the
project including:

e A project name in the Project Filename field.

e The path name where you want to store the project and the resulting files in the Project
Location field. The path for the workspace is used by default.

e The toolset to use when building and the path for the toolset.

Figure 56. Project parameters
New Project E| New Project

Froject filename

|raisonance

Froject location

|t0rial_stm8\step1_setup\raisonance Jﬂ

Toaolchain

| Raizonance hd

Toolchain root
|E:\Program FilezR aizonanceRide

Ok | Lancel |

When you click on OK, the project (filename. stp) is added to the workspace in the STVD
Workspace window. By default, the project contains folders called Source Files, Include
Files and External Dependencies. These folders are used to organize your project within
STVD. They do not exist in the working directory. Other files may be added to the project
folders automatically based on your toolset’s default settings. STVD will change these
according to your project build settings and your application.

Figure 57. Default project contents

tutorial st
= raisonance
=43 Source Files

main.c
L3 Include Files
L3 External Dependencies
= cosmic
—--#-3 Source Files
main.c
stmE_intarrupt_vector.c
23 Include Files
- 23 External Dependencies
mods.h

Workzpace

When you save your workspace, the working directory is updated with the project file and
two folders: Debug and Release. These folders are the default locations for storing your
application executable and any intermediate files depending on whether you build using the
Debug or Release configuration.

Doc ID 7705 Rev 11 81/385

Project creation and build UMO0036

82/385

Create a project from an existing executable

To create a project from an executable (. abs, .elf, .hex, .s19):
1. Select the Create from Executable icon and click on OK.

You will receive an information message asking you if you want to create a project to
wrap the executable.

2. Click on OK to continue.
The New Project window opens.
3. Here enter a name for the project file (.stp) and the project location.

By default, your project is named executable_filename. stp and its location is the
directory of the executable file.

4. Next, select the appropriate microcontroller in the MCU Selection window and click on
OK.

Your project is created and appears in the Workspace window. It contains the default
folders and any files specified by the toolset settings. The Project Settings window
contains the Debug tab and the MCU Selection tab where you can change the
microcontroller selection.

You can now identify your debug instrument and debug the application.

Create a project from an existing makefile

Early versions of STVD used a makefile (.mak) to define the build process for source files
and a specified toolset. To support the migration of projects from earlier versions, STVD
allows you to create a project around a makefile. In this way you preserve the information
and conditions applied when building previous applications. For more information about this
process, refer to Migrating old workspaces (STVD7 2.5.4 and prior versions) on page 71.
To create your project:
1. Highlight the Create from Makefile icon and click on OK.

A browse window opens. By default it is set to display . mak makefiles.
2. Highlight the makefile file that you want to use to create your project and click on Open.

You will receive an information message, notifying you that STVD is going to wrap the
makefile in a new project.

3. Click on OK to continue.
The New Project window opens.
4. Here enter a name for the project file (. stp) and the project location.

By default, your project is named makefile_name . stp and its location is the directory
of the makefile.

5. Now, select your toolset from the list box and enter its path. Click on OK.
Your workspace has been created and nhamed makefile_name. stw. The new project
file appears in the Workspace window, typically on the left side of STVD’s main
window. Your project contains the makefile that you have identified and the External
Dependencies folder.

Before you start debugging your application you will have to identify the executable file to
debug and you may have to rebuild your application. For more information about this
process, refer to Migrating old workspaces (STVD7 2.5.4 and prior versions) on page 71.

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build
4.3.3 Adding and removing folders and files

Projects contain the files that you will use to build your application. These can be organized

in folders. By default, projects contain the following folders:

e Source Files — this folder contains the source files (. asm, . c, . s) that you identify for
the building of your application.

e Include Files — this folder contains header files required to build your source code.
These files are specified by the include statements in your project settings.

e External Dependencies — this folder contains any dependencies specified by the
source files or the toolset. The folder’'s contents are updated automatically and cannot
be modified by the user.

Adding folders

You can create your own folders in your project to create a virtual project structure that will

help you organize the links to your source files. Folders can be created in the project or in

any folder except the Dependencies folder.

To add folders to your project or in another folder:

1. Right-click on the project or on the folder to get the contextual menu. In the contextual
menu, select New Folder.

The New Folder dialog box opens.

2. Enter the name for the folder in the provided field and click on OK.
The folder is added to your project.

Adding files

To add source files to the source folder:

1. Right-click on the folder to get the contextual menu. From the menu, select Add Files
to Folder.

A browse window opens.

2. Select the file(s) you want to add to the folder and click on Open.

STVD will not allow you to add a file to a project if the project already contains a file with
the same path name. Files with the same name can be added to the same project it
they have different paths. A workspace may contain files with the same path name, as
long as they are in different projects.

The folder contextual menu also offers the Add Sorted Elements option. When this option

is checked, STVD protects the order of the files in the project. Upon build, the command

lines for the source files are executed in the same order as the files in the project from the
top (first) to the bottom (last). When this option is checked, STVD will not allow you to
change the order of the files. If you disable this option, change the order, and then reactivate
this option, STVD will maintain the new ordering of the files. This option is important when
using the ST Assembler/Linker toolset, which is sensitive to the ordering of source files upon

assembly (see Ordering source files before assembly on page 88).

4.4 Project build configurations

Once you have set up your project with the source files to build your application, you are
ready to configure your project for building. STVD offers extensive customizations for the
supported toolsets via the Project Settings window. In addition, these settings can be

Doc ID 7705 Rev 11 83/385

Project creation and build UMO0036

4.5

84/385

saved as Build Configurations so that you can easily switch between two or more
configurations.

The name of each build configuration also corresponds to a folder in your project directory
that is created automatically by STVD (for example, the Debug configuration corresponds to
the Debug folder in your project directory). This folder is the default Output directory for your
project and the Intermediate directory for each of your files when you build your application
with the corresponding build configuration.

By default, two configurations are automatically created for each project: Debug and
Release. The Debug configuration applies your toolset’s default settings to produce a
version of your application that is ready to be debugged. The Release configuration applies
your toolset’s default settings to produce an optimized version of your application that is
ready to be programmed to your target microcontroller.

Setting the build configuration

To set the build configuration for your project:
1. Select Build > Configurations.
The project configurations window opens.

2. If your workspace contains more than one project, use the Project list box to select the
project that you want to apply the build configuration to.

3. Select the configuration you want from the list in the Configurations field and then
click on Set Active.

The active configuration is in bold type.
4. Click on Close.

Once you have set the build configuration, you can customize it in the Project Settings
window.

Creating a new build configuration

When you change from one build configuration to another, the Output directory is
automatically changed to designate the appropriate folder. Likewise, the Intermediate
directories for all files are automatically changed to use the corresponding folder, except if
you have manually designated an alternate folder for the Intermediate directory. For more
information, refer to Section 4.10: Configuring folder and file settings on page 156.

To create a new build configuration based on the settings in any of the existing configuration:
1. Select Build > Configurations

2. Click on Add in the New Configuration window

3. Type a name for the configuration
4

In the Copy Settings From field, select the existing configuration to use as the basis
for the new configuration and click on OK.

Configuring project settings

The Project Settings window provides the standard interface for customizing the build of a
project or specific files within a project. The tabs in the Project Settings window present
commonly used options in menus, list boxes and check boxes. In addition, these tabs
provide fields for entering custom commands and other supported options.

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build
Some aspects of this interface are common to all toolsets, these common tabs are
described in the following sections:

e General settings tab

e Debug settings tab

e MCU selection tab

e Pre-link settings tab

e Post-build settings tab

Several tabs are specific to your toolset. STVD's graphical interface adapts automatically to
the toolset that you specify for your project in the General tab of the Project Settings
window. The options in each of the tabs that are specific to your toolset are explained in:
e Customizing build settings for ST Assembler/Linker toolset

e Customizing build settings for Cosmic C toolsets

e Customizing build settings for Raisonance C toolset

e Customizing build settings for Metrowerks C toolset

45.1 General settings tab
This tab allows you to specify general project information, such as the toolset to use and the
paths for the output directory, as well as for include, bin and library files.

To access this tab, select Project > Settings to view the Project Settings window. Then
click on the General tab. This tab should contain the toolset that you specified when you
created the project and the default path information that is specified for it in the Options
window (see Section 4.1: Specifying a toolset on page 75).

To replace the defaults with a project specific toolset and/or path options:

1. Change the toolset by selecting one from the Toolset list box.

Note: If you change the toolset selection for a toolset that does not support the selected MCU, you
will receive an error message to indicate that you must also select an MCU that is supported
by the new toolset.

2. Place a checkmark next to Project Specific Toolset Path.
The fields change from a protected state (gray) to an active state (white).

3. If necessary, enter the directory path for the toolset in the Root Path field by typing the
path or using the browse button to locate it.

4. Inthe Toolset sub-paths fields, specify bin paths, include paths and library paths to
use when building the application.
These paths are entered relative to the toolset path that you specified in step 3.

Note: Some versions of the Metrowerks toolset use the filename prog instead of bin for the bin

subpath.

5. Inthe Output Directory field you can specify a folder where output will be stored when
building.
By default, output is stored in the Debug or Release folders in the working directory,
depending on whether you are using the debug or release configuration (see
Section 4.4: Project build configurations on page 83). The folder specified as the
Output Directory for your project is also used as the Intermediate Directory
for all files unless you specify otherwise in the General settings for files and folders.

6. To confirm the settings you have made, click on OK.

Doc ID 7705 Rev 11 85/385

Project creation and build UMO0036

45.2

45.3

86/385

Debug settings tab

This tab allows you to specify common settings for debugging your application.

To access this tab, select Project > Settings to view the Project Settings window. Then
click on the Debug tab. Here you can specify:

e the Executable that you want to debug. By default, STVD will look for the target file
specified by the linker. However, you can also use the browse button to locate an
executable file manually.

e the Debug working directory. When using the Debug configuration, by default this is
the folder specified in the Output Directory field of the General settings tab.

e the Source Directories where any source files are located. By default, this field will
identify the directory path for your project. You can add other directories by clicking on
the New (Ins) button in the gray field. A field will open that allows you to type the new
directory path or use a browse button to locate the path.

To confirm the settings you have made, click on OK.

MCU selection tab

The MCU Selection tab is very important because when you build an application, your
toolset uses the memory map for your specific MCU. Therefore, any time you build an
application, the resulting executable is directly associated with the memory map of your
target microcontroller. As a result, if you change microcontrollers, you will have to rebuild
your application.

This also has an impact on debugging, because STVD only allows you to connect to a
debug instrument that supports the target microcontroller that you specified prior to building.

To access this tab, select Project > Settings to view the Project Settings window. Then
click on the MCU Selection tab.

Figure 58. MCU selection tab

General | Debug MCU Selection | 577 M | PreLink | 5141

Filker
Show MCUz containing... |FL

MCU =

ST7FLOS P
ST7FLOY

ST7FL19F1

ST7FL34

ST7FL35

ST7FL3g

ST7FL39

ST?FLCD1
STZFLITT10BFO
STZFLITT0BF1
STZFLIT10BYD
STPFLITT0BY1 s

@POGOCCLE

Selected MCU
|ST7FLISF

ak. Cancel

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

45.4

45.5

The current microcontroller setting is displayed in the gray Selected MCU field at the bottom
of the tab. The MCU field to the left displays a complete listing of supported microcontrollers.
When you highlight an MCU name in the MCU field, colored indicators tell you which debug
instruments support the highlighted MCU.

e Gray = Not supported

e Green = Supported

e Yellow = Supported in beta version

To select a microcontroller, click on the microcontroller name in the MCU list. To help you
locate your MCU, as you type the name in the Filter field, the choices are progressively

reduced according to what you type. To confirm your selection, click on Select. Your MCU’s
name will appear in the Selected MCU field.

Pre-link settings tab

The Pre-link tab allows you to control what occurs during the pre-link stage of compiling, by
entering commands defined by your toolset.

To access this tab, select Project > Settings to display the Project Settings window. Then
click on the Pre-link tab. Here you can:

e Type a Description. This description is displayed in the Build tab of STVD’s Output
window when the pre-link commands are executed.

e Enter a Pre-link Command. The Directory and File buttons provide lists of macros to
help you formulate commands. Refer to your toolset’s user documentation for more
information about the pre-link commands that it supports.

To confirm the settings you have made, click on OK.

Post-build settings tab

The Post-build tab allows you to control what occurs during the post-build stage of
compiling by entering commands defined by your toolset.

To access this tab, select Project > Settings to display the Project Settings window. Then
click on the Post-build tab. Here you can:

e Type a Description. This description is displayed in the Build tab of STVD’s Output
window when the post-build commands are executed.

e Enter a Post-build Command. The Directory and File buttons provide lists of macros to
help you formulate commands. Refer to your toolset’'s user documentation for more
information about the post-build commands that it supports.

To confirm the settings you have made, click on OK.

Doc ID 7705 Rev 11 87/385

Project creation and build UMO0036

4.6

Customizing build settings for ST Assembler/Linker toolset

The ST Assembler/Linker toolset builds your application from source code that is written in
Assembler language. Building requires the following steps:

e Assembler: Translates assembler source code into objects and generates listings with
relative addresses.

e Linker: Links objects from the source code and any included objects from libraries in a
.cod file.

e OBSEND: Translates the . cod file into the final executable format, which you specify.

e Abslist: Generates listings with absolute addresses from listings with relative
addresses, the executable file and the map file.

Ordering source files before assembly

The ST Assembler Linker is sensitive to the ordering of files during assembly. For example,
a source file that defines a label must be assembled before other source files that use this
label.

To protect the order of the source files for assembly you should:

1. Add the source files to your project (Project > Insert Files Into Project)

2. Right-click on the project in the Workspace window and disable the Add Sorted
Elements option in the project contextual menu.

3. Drag and drop the source files into the correct order. The first file to be assembled in at
the top, the last is at the bottom.

4. Right-click on the project in the Workspace window and reactivate the Add Sorted
Elements option in the project contextual menu.

Once the Add Sorted Elements option is reactivated, you can not drag and drop the files into
a new, non-alphabetic order. You can, however move the files individually to different folders
in the Workspace window.

Provided ASM include files for ST Assembler/Linker

Caution:

STVD comes with a complete set of include files (* . inc and * . asm) that define the
registers and vectors for all the supported microcontrollers. They are intended to save you
the time that you might spend writing these files yourself.

The ASM include files provided with STVD are not the same as those provided for the ST7
library. ST7 library users should use the C header and/or ASM include files specific to that
library.

These files are installed with the ST Assembler-Linker toolset. For standard installations
these files are located at:

C:\Program Files\STMicroelectronics\st toolset\asm\include\
You can use these files from their installed location. However, if you intend change these

files to meet the requirements for your application, you should copy the files for your target
microcontroller to your project’s working directory and make amendments to the copied files.

Project settings for ST Assembler/Linker

88/385

The Project Settings window allows you to configure settings for these steps. This window
contains five tabs that are common to all the toolsets (General, MCU selection, Debug, Pre-

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build
link and Post-Build) and three tabs that contain options and settings that are specific to ST
Assembler/Linker toolset.

This section provides details about configuring the options that are specific to the ST
Assembler/Linker toolset. These options include:

e STASMtab

e ST Link tab

e ST Post-Link tab

Note: For more details regarding options for this toolset, refer to the ST Assembler-Linker User
Manual.

Configuring projects settings in the five common tabs is described in Section 4.5:
Configuring project settings on page 84.
4.6.1 ST ASM tab

The ST ASM tab provides an interface for setting the options in the command line for the ST
Assembler. The gray Command line field displays the changes to the command line as you
make them.

The ASM tab allows you to specify defines and include paths.

Defines

The Defines field allows you to apply -d option in order to define a string that is to be
replaced by another string during assembly. Type the string that is to be replaced in the field.
The -d option is automatically added to the command line. To enter the string to replace it,
type a space then type the replacement string.

To make a second entry, type another space and then the second string that is to be
replaced. The -d is automatically added to the command line. Type a space followed by the
second replacement string.

Figure 59. ST ASM tab

General] Debug] MCU Selection ST ASM]Pre-Link] ST A ¥

Defaults

Defines

Include Paths

| -

User Defined Options

Command line

asm -spm -i=${lntermPath)$ | nputt ame) lsr $lnputFile)
$(ToolsetincOpts)

-obj=${IntermPath]${Input ame]. ${0bjectE «t)

(] 8 | Cancel

Doc ID 7705 Rev 11 89/385

Project creation and build UMO0036

4.6.2

Note:

90/385

Include paths

The Include path field introduces the -1 option in the command line. This option allows you
to specify search paths for files to be included during assembly. To enter a path, start typing
the path, or use the browse button to identify the path. When typing the path, the - T option
is automatically added to the command line.

To define a second path, type a semicolon (;) and then the second path. Again, the -1
option is automatically added to the command line.

ST Link tab

The ST Link tab provides you with an interface for setting linker and OBSEND options and
for defining segments in your microcontroller's memory to which sections of your code will
be assigned.

The gray Command line fields display changes as you make them. This tab contains two
Command line fields, one for the Linker step and the other for the OBSEND step.

Figure 60. ST Link tab

ST7A45M | PreLink 5T7Link | 577 PostLink | PostBuiid |+ |]
td apping File Marme

|7 Auto Imapping_asm | Drefaults |

Seqment Mame Frarm To I;I
ramid 0x80 o |
rarm1 200 087F
ztack 1+100 07 -

Output file name Format
#t7_al segss19 Motorola S-record j
Libraries

Usger Defined Options I

Command line options
Linker step

|Iyn $[0bjectFiles], $T argetMame.cod, '

Obzend step

Inbsend 3T argetMame. cod fET argeth ame. 519,3

Automatic segment declaration

When the Auto checkbox is not checked, the Linker requires that segments be declared in
your applications source files.

When the Auto checkbox is checked, a configurable mapping is displayed in the Linker tab.
This mapping is used to automatically generate a file in assembly language (default name is
mapping.asm) that contains the declarations of memory segments to which you can assign
sections of code. You assign code to a memory segment by using the segment name that
you have specified in the mapping in your source code. For more information about
assigning code to memory segments, refer to your ST Assembler Linker User Manual.

If you have declared segments in your source code and using the Linker tab, it is up to you
to ensure their consistency.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

The source file with the segment declarations (default is mapping.asm) is regenerated each
time you build the application when the Auto feature is enabled. If you make changes to the
file and Auto is enabled, your modifications will be overwritten when STVD updates the file
based on the mapping in the Linker tab.

This file must always be assembled first as the segment names are used in the other source
files in your project. For this reason it is automatically placed at the top of the list of source
files in your project in the Workspace window.

You can change the name of the output file assembly source file by typing a new name in
the Mapping File Name field.

Modify the segment mapping

The segment mapping in the Linker tab can be entirely modified. The interface allows you to:
e Change any segment name and address range.

e Add your own segments and specify their address ranges

e Delete any segment

However, the interface does not allow you to delete segment if it is the last segment in the
mapping. At least one segment must always be declared.

Right-clicking on a segment in the mapping opens a contextual menu with the following
commands:

e Add Segment - Adds a row of empty fields to the mapping. Enter the name of the new
segment and press the Enter key. If you do not enter a segment name, and only press
enter, the new segment is removed from the mapping. You cannot use the same
segment name twice. Naming is case sensitive.

e Change - Allows you to change the value or entry in the selected cell of the mapping.
Address values can be entered in decimal or hexadecimal (use “Ox " notation)
formats.

e Delete - Deletes the selected entry. The last segment entry in the mapping cannot be
deleted.

Output filename

The Output filename field allows you to specify the name of the final output. By default, the
output file is project_name.s19.

Libraries

The Libraries field allows you to enter the path names for object libraries to include when
linking your application. These path names appear in the command line for the linker step.

To specify a library to include, type the library path name in the field. To add a second library
type a semicolon (;) followed by the second path name.

Format

In the Format list box you can specify the file format of the executable. When a format is
specified a code appears at the end of the OBSEND command line. In the Format list box,
you can choose from the options described in Table 30.

Doc ID 7705 Rev 11 91/385

Project creation and build UMO0036

4.6.3

92/385

Table 30. Formats for OBSEND output

Format Description

Intel Hex (i) Intel hexadecimal format

Intel Hex extended (ix) | Intel hexadecimal format allowing 32 bit addressing

Motorola S-record (s) | Motorola hexadecimal format with 16 bytes of data per line

ST Post-Link tab

The ST Post-Link tab allows you to view any instructions that entail post-link actions that
result from the options or settings that you have made in the other tabs of the Project
Settings window. Specifically, during the post-link step, a listing with absolute addresses
that are used by the debugger is generated. You cannot edit the entries in this window
directly.

Figure 61. ST Post-Link tab

STASM | Predink | 5T Link ST PostLink | postBuid| <[»

Command lire:

abslist Debugimapping.ler -exe Debughasm_nested it.s19
abslist D ebughstrBs208m.lsr -exe Debughasm_nested _it.s1
abslist D ebugnested_it lsr -exe D ebughasm_nested_it.s19

oK | Cancel

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build
4.7 Customizing build settings for Cosmic C toolsets
The Project Settings window for building your application with the Cosmic C toolset
contains five tabs that are common to all the toolsets (General, MCU selection, Debug, Pre-
link and Post-Build) and three tabs that contain options and settings that are specific to the
Cosmic C compiler toolsets.
This section provides details about configuring options that are specific to the Cosmic C
toolset. These options include:
e Cosmic C compiler tab
e Cosmic C Assembler tab
e Cosmic C linker tab
Configuring projects settings in the five common tabs is described in Section 4.5:
Configuring project settings on page 84.
Note: For complete details regarding options for this toolset, refer to the C Cross Compiler User’s

Guide provided by Cosmic.

Provided microcontroller-specific C header files for Cosmic

Caution:

Depending on your MCU you can include a header file provided with STVD, which defines
the device's peripheral registers. This will save you the time of creating this header file
yourself.

The C header files provided with STVD for ST7 and STM8 microcontrollers are not the same
as those provided for the ST7 Library and STM8 Library. ST7 and STM8 library users should
use the C header and/or ASM include files specific to that library.

Depending on your installation, the C header files provided with STVD are typically located
at:

C:\Program Files\STMicroelectronics\st toolset\include\

To build your project using the provided header file for your device, specify its inclusion in
your application code. The name of the file to use is device_name . h.

Header files are provided for virtually all the supported devices. If you do not find your
device's name in the header files, this may be because the full name is not used. To
determine if your device has a header file, you can check the Peripheral Registers window
(View > Peripheral Registers) in the debug context. If peripheral register information is
provided in this window, then a header file has been generated for your device. The correct
file for your device, is the one with the device name you found in the Peripheral Registers
window.

Using the Project Settings interface

The tabs (C Compiler, Assembler and Linker) have a common interface that allows you to
choose from standard configurations, customize options and view changes to the command
line as you apply different options.

When the Category List box is set to General, the tab provides check boxes and list boxes
for easy access to commonly used options and configurations (see Figure 62).

Doc ID 7705 Rev 11 93/385

Project creation and build

UMO0036

Figure 62. Standard options

Project Settings

Settings for: IDebug 'l

General, choosefrom
commonly used settings

To customize settings either...

Debug C Campiler |Assembler|

P
« With the category set to Bcategmﬂ’:

G C Compiler |Assembler| Pre-Link

ategony: m

:Debug [nfo
Optimizations
C Language
~ . |Listings

[ptimizati| Preprocessor

yaable [For Debuggingj

or Debuggingj
ngs C Languan

+ Select a category to
customize from the

A\ N\

/ I C and Assembly j IDef N
Freprocessor Definitions ks liffs

Category list box |

User Defined Options

+ orchoose Customize |

[ebugger Compatible
On Data Objects Only

Debugger Compatible | l

froma list boxfora

On Ay Label

category)
.

-

\
cxst? +modm +debug -no -l $(T ool
-cof(IntermPath) ${lnputFile]

h—

To further customize options, select a category in the Category list box, or select

Customize in a list box for a category of settings. The view in the tab will change to present

more options (see Figure 63).

You can enable or disable options by clicking on the check boxes. When you invoke an
option, the change to the command line is immediately visible in the gray Command Line

window at the bottom of the tab.

Figure 63. Customizing options

Settings for: IDebug 'l Debug C Compiler |Assembler| Pre-LinkI Linker I Post-Bu 4 I r

tim-rtc
43 Source Files
interupt_vector.c

(2] Include Files

------ [Z] Extemal Dependencies

Ve

* Enable ordisable options
using the check boxes

*The option isimmediately
added to the command line

\ J]

.

— [v|Don't Uze Abzolute Paths in Debug Info [-pxp]

—==—ammand line

Cateqgory: I Debug Info A l

Debug Info

I Customize j

[v|Generate Debug Info (+debug)
[1Generate Debug Info only for Data Objects [-pxd)
Rdd Debug Info for any Labels [-pxx)

Defaults |

[1Run Preprocessor Only [-pe]
[C10nly Yerboze [don't exec the build commands] [-]

Uszer Defined Options

cxst? +modm +debug -pex -prp -no | $[T oolzeting) ;I
-clif{IntermPath] -coflntermPath] ${lnputFile] LI
()3 I Cancel |

Doc ID 7705 Rev 11

UMO0036 Project creation and build

4.7.1 Cosmic C compiler tab

The C Compiler tab provides an interface for setting the options in the command line for the
Cosmic C compiler for ST7 (cxst7) or for STM8 (cxstm8). The gray Command line field,
displays all the changes to the command line as you make them.

Figure 64. Cosmic C compiler general view

General] Debug] MCU Selection © Compiler lAssembIerl il

Categony: |[EEREE] Defaults

Memom Maodels Cormpiler Mezzages Dizplay
|Short temory ﬂ |Displa_l,l errors anly j
Optimizations Debug Info

| Dizable [For Debugging] ﬂ | Debugger Compatible j
Listings C Language

|Cust0mize ﬂ |Enf0rce Furchions F'mtotll

Freproceszar Definitions

User Defined Options

Command line

cxst? $[ToolzetincOpts) -clflIntermPath) -coflintermPath)
+miodm +debug -prp -ho -pp -l $llnputFilz]

] | Cancel |

The Category list box allows you to access a general view for easy access to standard
settings and options. You can also change the category to access views where you can
customize settings in greater detail.

In the Category list box, you can choose one of the following views:

e General: see General settings for Cosmic toolset

e Debug Info: see Customizing Cosmic C compiler debug information settings

e Optimizations: see Customizing Cosmic C compiler optimizations

e C Language: see Customizing Cosmic C compiler language settings

e Listings: see Customizing Cosmic C compiler listings

e Preprocessor: see Customizing Cosmic C compiler preprocessor definitions

e Input: see Customizing Cosmic C compiler input options

e Output: see Customizing Cosmic C compiler output options

IYI Doc ID 7705 Rev 11 95/385

Project creation and build

UMO0036

General settings for Cosmic toolset

With the category set to General, you can access the following standard settings and

options:

e Compiler memory models
e Debug information

e Optimizations

e Compiler messages display
e Clanguage

e Listings

e Preprocessor definitions
e User-defined options

Compiler memory models

You can choose to compile your application according to one of the predefined memory
models that can help you optimize your code’s size and performance. These models tell the
compiler how the stack is used and where the stack, global variables and pointers are
located in the memory.

Table 31 and Table 32 provide a summary of the memory model options for ST7 and STM8
microcontrollers.

Table 31.

Cosmic C compiler memory models for ST7

Memory model®

Stack type and location

Location of global
variables®

Location of pointers®

Small memory
(+modms)

Simulated in Short range
memory

Long range memory

Long range memory

Medium memory (+modmm)

Simulated in Long range
memory

Short range memory

Long range memory

Long memory
(+modm1)

Simulated in Long range
memory

Long range memory

Long range memory

Short memory
(+modm) (Default)

Simulated in Short range
memory

Short range memory

Long range memory

Compact memory (+modc)

Simulated in Short range

Short range memory

Short range memory

(ST7 only) memory

Long stack Physical stack in Long

(+mods1) range memory Long range memory Long range memory
Short stack Physical stack in Long Short range memory Long range memory
(+mods) range memory

1. For complete descriptions of memory models, refer to the C Cross Compiler User’s Guide

2. Short range means the variable is stored on one byte. Long range means the variable is stored on two bytes.

96/385

Doc ID 7705 Rev 11

UMO0036

Project creation and build

Table 32. Cosmic C compiler memory models for STM8

Memory model® Stack type and location Location of global variables@
Physical stack in Long range

(S+hortdst§)ck memory for code size under Short range memory

Moas 64Kbytes
Lona stack Physical stack in Long range
(gd 10) memory for code size under Long range memory
rmoas 64Kbytes
Short stack Physical stack in Long range Short range memory
(+mods) memory
Long stack Physical stack in Long range Long range memor
(+mods1) memory grang y

1. For complete descriptions of memory models, refer to the C Cross Compiler User’'s Guide

2. Short range means the variable is stored on one byte. Long range means the variable is stored on two
bytes.

Debug information

The Debug Info settings allow you to choose the debug information to generate for your
application based on use (for programming or debugging). Including the debug information
will make the application file larger, however debug information is not included in the code
that is loaded in the microcontroller's memory. This information is used by STVD’s debugger,
only.

When the category is set to General, the standard debug information options are:

e None: The resulting file is free of the debug information required for the debugger. This
option should only be used once your application is completely debugged and ready for
programming.

e Debugger Compatible (default): Inserts the +debug option in the command line,
which generates the debug information required by STVD for all supported debugging
instruments. Also inserts the -pxp option in the command line to disable the use of
absolute paths in the debug information. In this case, you provide the paths in the
Debug tab of the Project Settings window (see Section 4.5.2: Debug settings tab on
page 86).

e On Data Objects Only: Inserts the -pxd option in the command line, causing the
compiler to add the debug information to the object file for data only.

e On Any Label: Inserts the -pxx command in the command line, causing the compiler
to add debug information for any label defining code or data to the object file.

e Customize: Allows you to choose the options you want for generation of debug
information (Options are summarized in Customizing Cosmic C compiler debug
information settings on page 99).

Optimizations

The Optimization settings allow you to optimize your code once you have finished
debugging your application, in order to make the final version more compact and faster. You
should not optimize your code when debugging because some optimizations will eliminate
or ignore the debug information required by STVD and your debug instrument.

Doc ID 7705 Rev 11 97/385

Project creation and build UMO0036

98/385

When the category is set to General, the standard optimization options for ST7 are:
e Default: The following optimizations are employed by default:

— Uses registers a and x to hold the first argument of a function call if the function
call does not return a structure and is a “char,” “short,” “int,” “pointer to” or an “array
of” type function call.

— Performs operations in 8-bit precision if the operands are 8-bit.

— Eliminates unreachable code.

— Chooses the smallest possible jump/branch instructions and eliminates jumps to
jumps and jumps over jumps.

Performs multiplication by powers of two as faster shift instructions

e Disable (For Debugging): Introduces -no option in the command line, which disables
all optimizations.

e Customize: Allows you to choose the options you want for generation of debug
information. These options are summarized in Customizing Cosmic C compiler
optimizations on page 101.

" u

The standard optimization options for STM8 are:
e Maximize execution speed

e Disable (For Debugging): Introduces -no option in the command line, which disables
all optimizations.

e Minimize code size: Introduces +compact on the command line.

e Customize: Allows you to choose the options you want for generation of debug
information. These options are summarized in Customizing Cosmic C compiler
optimizations on page 101.

Compiler messages display

The Compiler Messages Display field offers the following options:
e Display compilation errors only
e Display errors and warnings (STM8 only)

C language

The C language settings allow you to define the programming language styles to apply
while compiling the application.

When the category is set to General, the standard C language options are:
e Default: Compiler default language options.

e Enforce Functions Prototyping: Inserts the -pp option in the command line, which
enforces prototype declaration for functions. An error message is issued if a function is
used and no prototype declaration is found for it.

e Enforce Strict ANSI Checking: Adds the -psa option in the command line, which
enforces strict ANSI checking by rejecting any syntax or semantic extension. This
option overrides the enum size optimization (-pne, see Customizing Cosmic C
compiler optimizations on page 101).

e Customize: Allows you to choose the options you want for generation of debug
information. These options are summarized in Customizing Cosmic C compiler
language settings on page 102.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Listings
The Listing settings allow you to generate a listing file and log errors to a file.

Listings are also used in generating jump tables when you optimize your code (see
Customizing Cosmic C compiler optimizations on page 101.

General, the standard Listing options are:
e None: Removes the -1 option from the command line so no listing is generated.

e Cand Assembly: Adds the -1 option to the command line to generate a listing with
the filename application. 1s.

e Customize: Allows you to choose the options that you want for generation of debug
information. These options are summarized in Customizing Cosmic C compiler listings
on page 104.

Preprocessor definitions

This field allows you to enter user specified preprocessor definitions. By changing the
category to Preprocessor Definitions, you also have access to a field for defining
additional include libraries. See Customizing Cosmic C compiler preprocessor definitions on
page 105.

User-defined options

This field allows you to enter the command for an option that you have defined for the
Cosmic C compiler. The options that you type in these fields are immediately added to the
command line below. For more information on creating user defined options, refer to the C
Cross Compiler User’s Guide.

Customizing Cosmic C compiler debug information settings

To further customize the debug information, select Customize in the Debug Information
list box. Alternatively, from the Category list box, select Debug Info.

The view in the C Compiler tab changes to that shown in Figure 65.

Doc ID 7705 Rev 11 99/385

Project creation and build UMO0036

Figure 65. Cosmic C debug information view

Generall Debugl MCL Selection C Compiler |Assembler| 1 I ’I

Categary: I Diebug Info - I Defaults |

Debug Info

Il:ustomize j

[w|Generate Debug Info [+debual

[|Generate Debug Info only for Data Objects [-prd]
[|&dd Debug Info for any Labels [-pex)

[w|Don't Uze Absolute Paths in Debug Info [-pep]

[|Run Preproceszsar Only [-pe]

[10nly Werboze [don't exec the build commands) [-]

Uzer Defined Options

Command line

cxgt? +modm +debug -pep -no - $[T oolseting] -cl${IntermPath) ;I
-cof(IntermPath] ${lnputFile) LI

Ok I Cancel |

In this tab view, you can choose from the optimization options described in Table 33.

Table 33. Cosmic C compiler debug information options

Option® Description

Produce complete debugging information that will allow you

Generate Debug Info (+debug) to take full advantage of STVD’s debugging features.

Generate Debug Info only for Data

Objects (-pxd) Add debug information to the object file for data only

Add Debug Info for any Labels Add debug information for any label defining code or data to
(-pxx) the object file.

Do not include absolute path names from the prefix filenames
in the debug information. You must provide the actual location
of the files for the debugger in the Debug settings tab.

Don’t Use Absolute Paths in
Debug Info (-pxp)

Run Preprocessor Only Expand the C source code and parse the resulting text only.

(-pe)
Only Verbose (don’t exec the build | Do not execute the passes, but write the commands that
commands) (-x) would have been performed to STDOUT.

1. For complete descriptions of compiler debug options, refer to the C Cross Compiler User’'s Guide.

As you check off each option, you can see the resulting command line changes in the
Command line box at the bottom of the tab.

You can also add a user-defined option to the command line by typing it in the provided field
(see Figure 65). When you type an option in this field it is appears immediately in the
command line, below. For more information about creating your own options for the Cosmic
C compiler, you can refer to the C Cross Compiler User’s Guide.

100/385 Doc ID 7705 Rev 11 KYI

Project creation and build

Customizing Cosmic C compiler optimizations

To further customize optimizations, select Customize from the list box. Alternatively, from
the Category list box, select Optimizations. The view in the C Compiler tab changes to

that shown in Figure 66.

Figure 66. Cosmic C compiler optimizations view

Categony:

Genelal] Debug] MCL Selection C Compiler l.-’-‘«ssembler] hull L4

Optimizations

Optimizations

Defaults

|Disable [Far Diebuaging) ﬂ
A

15 plit Functions in Separate Sections [+split)
10 ptimize Size of Enum Yarables [-pne)

10 ptimize -azm code [-ga)

[CLeave removed instructions as comments [-oc)

[| W PP P I S H T R
Jump Table
I Generate Jump Table

Min of Evtes for activating Factonzation [Cozmic:=\4. 3]
Uszer Defined Optionz

ambimim o mbmbimbims o)

[Optimize function call

Command line

cwst? $[ToolzetineOpts] -cllintermPath] -cointermPath)
+modm +debug -pxp -no -pp 4 ${nputFile]

=]

Cancel |

In this tab view, you can choose from the optimization options described in Table 34.

Table 34.

Cosmic C compiler optimization options

Option®

Description

Minimize Code Size (+compact)

Adds the +compact option to the command line, which
enables the optimizer factorization feature with a default depth
of 7 instructions. This option is not available with the ST7 C
compiler versions under 4.4.

Split Functions in Separate
Sections (+split)

Produce each C function in a separate section, thus allowing
the linker to suppress unused functions if the -k option has
been specified on at least one segment in the linker command
file.

Verbose Mode When Building
Jump Table (-v)
(ST7 only)

Display the name of each file that has been processed.

Optimize Size of Enum Variables
(-pne)

Do not optimize size of enum variables. By default, the compiler
selects the smallest integer type by checking the range of the
declared enum members.

Optimize -asm code (-ga)

Optimize assembler code by invoking the absolute assembler.

Leave removed instructions as
comments (-oc)

Leaves all removed instructions as comments in the application
code.

Doc ID 7705 Rev 11

101/385

Project creation and build UMO0036

Table 34. Cosmic C compiler optimization options (continued)

Option® Description

Write a log of modifications to STDERR. This displays the
number of removed instructions followed by the number of
modified instructions.

Display removed/modified
instruction statistics (-ov)

Introduces the -pcp option on the command line, which
disables the constant propagation optimization. By default,
when a variable is assigned with a constant, any subsequent
No Constant Propagation (-pcp) | access to that variable is replaced by the constant itself until
the variable is modified or a flow break is encountered.

This option is not available with the ST7 C compiler versions
under 4.4.

1. For complete descriptions of compiler optimizations, refer to the C Cross Compiler User’s Guide.
Minimum number of bytes for activation of factorization

This field allows you to enter an integer for the number of bytes required to trigger the
factorization feature. Entering an integer adds the -of option to the command line with the
integer specifying the number of bytes that triggers factorization. Any value less than 4
disables the factorization. The default value for triggering factorization is 7.

This option is not available with the ST7 C compiler versions under 4.4.

Generate jump table checkbox (for ST7 only)

When checked, this options creates a jump table using the -1 option to generate a listing

file, then linking the full application to generate the jmptab. s file. This is a necessary step
prior to using the Optimize Function Calls (+jmp) option. Be careful not to disable -1 via the
interface for the listing settings (see Customizing Cosmic C compiler listings on page 104).

Optimize function calls (for ST7only)

After compiling your application to generate a jump table, this option enables the
optimization of function calls to reduce the volume of code. However, it also creates a time
overhead at each function call.

When checked, this introduces the +jmp option on the command line. You cannot check
this option if you have not already compiled the application to generate a jump table.
Customizing Cosmic C compiler language settings

To further customize optimizations, select Customize from the list box. Alternatively, from
the Category list box, select C language. The view in the C Compiler tab changes to that
shown in Figure 67.

102/385 Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Figure 67. Cosmic C language view

Generall Debugl MCU Selection £ Compiler |.-’-‘«ssemb|er| 1 I ’I

Cateqary: I C Language - I

C Language

Defaults |

I Customize

=
[|Asllaw Painter Marrawing [-prp) ;I
[IFill Bitfields fram MSE ta LSE [-prb)

[|Dan't Rearder Local Varables [-ps)

[|Enfarce Strict ANSI Checking [-pza)

[Interpret Plain char as Type unsigned char [-pu]

wHandle overflows it integer comparnizons [+scov]

Uzer Defined Options

Command line

cxzt? +modnn +debug -pep -no +zcov - HToolzeting) ;I
$llntermPath] $IntermPath] ${lnputFile] ﬂ

In this tab view, you can choose from the C language options described in Table 35.

Table 35.

Cosmic C compiler language options

Option®

Description

Don’t make public symbols with
absolute addresses (-gna)

Do not produce an xdef directive for the equate names
created for each C object declared with an absolute address.

Enforce Type Checking
(+strict)

Instructs the compiler to enforce stronger type checking.

Enforce Prototyping for
Functions (-pp)

Enforces prototype declaration for functions. An error message
is issued if a function is used and no prototype declaration is
found for it.

Don’t replace a const object by
its value (-pnc)

Instructs the compiler to store const objects as variables.

Allow Pointer Narrowing (-pnp)

Allow pointer narrowing. By default, the compiler refuses to cast
the pointer into any smaller object.

Fill bitfields from MSB to LSB
(-prb)

Reverse the bitfield fill order. By default, bitfields are filled from
least significant bit (LSB) to most significant bit (MSB). If this
option is specified, bitfields are filled from the MSB to the LSB.

Don’t reorder local variables
(-ps)

Do not reorder local variables. By default, the compiler sorts the
local variables of a function and stores the most used variables
as close as possible to the frame pointer in order to shorten
addressing modes for those variables.

Enforce Strict ANSI Checking
(-psa)

Enforce a strict ANSI checking by rejecting any syntax or
semantic extension. This disables the enum size optimization

(-pne).

Doc ID 7705 Rev 11

103/385

Project creation and build UMO0036

Table 35. Cosmic C compiler language options (continued)

Option® Description
Interpret Plain char as Type Take a plain char to be of type unsigned char, not signed char.
unsigned char (-pu) This also affects strings constants.

Adds the -pc99 option to the command line, which enables the
Authorize Constant and Volatile |repetition of the const and volatile modifiers in the declaration
Repetition (-pc99) either directly or indirectly in the typede£. This option is not

available with the ST7 C compiler versions under 4.4.

1. For complete descriptions of compiler C language options, refer to the C Cross Compiler User’s Guide.

Customizing Cosmic C compiler listings

104/385

To customize compiler listings, select Customize in the Listings list box. Alternatively, from
the Category list box, select Listings. The tab view changes as shown in Figure 68.

Figure 68. Cosmic C compiler listing view

Generall Debugl MCU Selection C Compiler |Assembler| b I ’l

Categary: I Listings - l Defaults |

Listings

I Customize j

[1"erbose: print all commands in Qukput Windous [-v)
[w|Generate Listing Fila with C++ and Agzambly in <appliz |z [-)
[1Log emors in file: <srce filey e [-g]

User Defined Ophons

Cammand line

cxet 7 +modm +debug -prp -no A $(T oolzeting] -cl$ (| ntermPath) ;I

-cof(IntermPath] ${lnputFile) LI
oK I Cancel |

In this tab view, you choose from the listing options described in Table 36.

Table 36. Cosmic C compiler listing options

Option® Description
Verbose: print all commands in Each function name is sent to STDERR when cgst7 starts
Output Window (-v) processing it.
Generate Listing File with C++ Merge C source listing with assembly language code. The
and Assembly (-1) default listing output is application. 1s.

Log errors from parser in a file instead of displaying them on
Log errors in file (-e) the terminal screen. The name of the error file is
source_file.err. It is created only if there are errors.

1. For complete descriptions of compiler listing options, refer to the C Cross Compiler User’s Guide.

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build

Customizing Cosmic C compiler preprocessor definitions

When the Category list box is set to Preprocessor, the view in the tab changes to that
shown in Figure 69. In addition to adding preprocessor commands (-d), this view allows you
to add include directories (-1).

Figure 69. Cosmic C compiler preprocessor view

Debugl MCU Selection C Compilsr IAssembIerl F're-LinkI 1 | 'I

Category: I Preprocessor - I Defaults |

Preprocesszor definitions

Additional include directories

| |

Usger Defined Options

Command line

cxst? +modm +debug -pep +zplit -1 $[Toolzetinc) ;I
-cl$[IntermPath) -co$(lntermPath] ${InputFile] LI
ak. I Cancel |

When entering a Preprocessor definition (-d), you specify the name of a user-defined
preprocessor symbol. The form of the definition is:

-dsymbol [=value]
If the value is omitted, it is set to 1.

When entering definitions, the -d is automatically added to the command line as you type
the symbol. When you enter several definitions, separate them with a space and -4 will
automatically be added to the next symbol in the command line. The compiler allows you to
specify up to 60 definitions.

The Additional include directories (-1) allows you to specify the paths for other
directories that you want to include when compiling. You can either type the path name or
use the browse button to locate the directory.

When you type the path name for the directory, -1 is automatically added to the command
line. Each path name is the name of a directory and is not ended with a directory separator
(\). When you enter several path names, separate them with a semicolon (;) and - i is added
automatically to the next entry.

Customizing Cosmic C compiler input options

When the Category list box is set to Input, the view in the tab changes to that shown in
Figure 70. It allows to specify how input files are to be treated during compilation. This view
is not available with the ST7 C compiler versions under 4.4.

IYI Doc ID 7705 Rev 11 105/385

Project creation and build UMO0036

Figure 70. Cosmic C compiler input view

General] Debugl MCL Selection C Compiler]Assembler] bl I

Cotegor;: TN ~ | Defauks

[(1Treat Source files az C files [-ec)
[(1Treat Source filez az Azzembler files [-ez)

Uzer Defined Options

Command line

cwstmi +mods0 +debug -prp -pp -1 $[ToolsetincOpts)
-cl$[IntermPath] -cof(IntermPath] $llnputFile)

8 | Cancel

The input options are:
e Treat Source files as C files (-ec)
e Treat Source files as Assembler files (-es)

Customizing Cosmic C compiler output options

When the Category list box is set to Output, the view in the tab changes to that shown in
Figure 70. This view allows to specify the options listed in Table 36. This view is not
available with the ST7 C compiler versions under 4.4.

Figure 71. Cosmic C compiler output view for ST7(left) and STM8 (right)

General] Debug] MCU Selection © Compiler IAssembIel] i

Category: - Defaults

General] Debug] MCU Selection © Compiler]Assemblel] i]*

Categany: | Output - Defaults

[1Far Librarnesz Callz (-gfl] [Cosmicy=v¥4.3]
[IHandle Comparnizon Qverflow [+scov] [Cosmicy=\¥d.4]

[|Far library calls [-gfl]
= do niot o

ection [-gnc]

[|Functions do Mot Crozs Boundarie [+nocross)

Uszer Defined Options

Caommand ling

Uzer Defined Options

I

Caommand ling

cxzt? $(ToolzetineOptz] -cl$lntermPath] -co$(intermPath)
+modm +debug -prp -no -pp - ${lnputFile]

cxztm® +mods0 +debug -pep -pp -l $(T oolzetincOpts)
-cl$(IntermP ath] -cof(lntermPath) $lnputFils)

Ok, Cancel |

Doc ID 7705 Rev 11

UMO0036 Project creation and build
Table 37. Cosmic C compiler output options
Option® Description
Adds -g to the command line to invoke the code generator
Far Library Calls (-g£1) with the £1 option, which uses callf instructions for
STMS onl machine library calls. This is used in conjunction with memory
(only) models for large applications. This option is not available with
the ST7 C compiler versions under 4.4.
Handle Comparison Overflow Adds +scov option, which allows production of code for
(+scov) signed integer comparisons handling overflow situations. This
ST7 onl increases overall code size. This option is not available with the
(only) ST7 C compiler versions under 4.4.
Functions do not cross section . . S
(-gnc) Specifies that functions must remain within the same 64Kbyte
section.
(STM8 only)
1. For complete descriptions of compiler optimizations, refer to the C Cross Compiler User’s Guide.
4.7.2 Cosmic C Assembler tab

The Assembler tab (see Figure 72) provides an interface for setting the options in the
command line for the Cosmic C assembler (cast7). The gray Command line field displays
all the changes to the command line as you make them.

Figure 72. Cosmic Assembler general view

Debugl MCL Selectinnl C Compiler Assembler |F're-Link| 1 I ’I

Categary: IGeneraI VI Defaults |

Debug Infarmation:
¥ Generate Full Debug Info

O ptimization;
™ Do nat aptimize branch instuct

Preproceszor Definitions

|Jzer Defined Optiong

Command line

cast? -ux -l $[Toolzeting B
-0 (IntermPath)$[| nputh ame). $[0bjectE =t] $[lnputFie] LI

Ok I Cancel |

Doc ID 7705 Rev 11

107/385

Project creation and build

UMO0036

The Category list box allows you to access a general vi
settings and options. You can also change the category

ew for easy access to standard
to access views where you can

customize settings in greater detail. In this list box you can choose from the following views:
e General: We recommend starting in the General settings for Cosmic Assembler view.
e Debug: Customizing Cosmic Assembler debug information

e Language: Customizing Cosmic Assembler language settings

e Listing: Customizing Cosmic Assembler listing settings

General settings for Cosmic Assembler

When the Category list box is set to General, you can enable and disable the following

standard options:
e Generate Full Debug Info: Checking this box intro

duces the -xx option in the

command line, which enables the generation of debug information. For more debug
options, refer to Customizing Cosmic Assembler debug information on page 108.

e Do not optimize branch instruct: Checking this box introduces the -b option in the

command line, which disables the optimization of b

ranch instructions.

This view also provides a Customizing Cosmic C compiler preprocessor definitions field and
a User-defined options for entering commands that you define.

Customizing Cosmic Assembler debug information

108/385

To further customize the debug information options, select Debug from the Category list
box. The view in the C Compiler tab changes to that shown in Figure 73.

Figure 73. Cosmic Assembler debug view

Categony: I Debug - I

Debugl MCL Selectionl C Compiler Assembler | F're-Linkl h I 'I

Defaults |

— Debug Info Level
¥ Generate Full Debug Info

[Generate Line Debug Infa Only

—&dd more Debug Info
[&dd Debug Info on Local Yariables
[~ &dd Debug Info on Any Label

[~ Use Relative Path for Debug Info
Uzer Defined Options

Command line

cast? -# | ${T oolseting) ;l
-of(IntermPath)$lnputh ame). $[0bjectE «t] ${InputFile) ;I
(]4 I Cancel |
From this view you can choose from the options listed in Table 38.

Doc ID 7705 Rev 11

UMO0036

Project creation and build

Table 38. Cosmic Assembler debug options

Option®

Description

Generate full (-xx)

Generate debug information for any label defining code or data in
the object files, that will allow you to take full advantage of
STVD's debugging features.

Generate line (-x)

Add only line debug information to the object file. This
information provides the debugger the link between a line of
source code and the beginning and end address of an instruction
in the compiled application.

Add on local variable (-p1)

Add local symbols to the debug symbol table. These are only
displayed in the linker map file.

Add on any label
(-¢)

Lines that are changed or removed are kept in the assembly
source as comments.

Use relative path for debug info
(-xp)

Filenames in the debug information are not prefixed with an
absolute path name. The debugger must be informed about the
actual file location (see Section 4.5.2: Debug settings tab on
page 86)

1. For complete descriptions of assembler debug options, refer to the C Cross Compiler User’s Guide.

Customizing Cosmic Assembler language settings

The assembler language settings allow you to set options related to language checking
during assembly. To access these options, select Language from the Category list box. The
resulting view provides check boxes to enable or disable the options listed in Table 39.

Table 39. Cosmic Assembler language options

Option

Description

Map all sections as
Absolute (-a)

Map all sections, including predefined sections to absolute.

Mark all symbols as Mark all symbols as public. This option has the same effect as adding
Public (-p) an xdef directive for all symbols.
Mark all “equ” defined Mark all symbols defined with an equ directive as public. This option

Symbols as Public (-pe) |has the same effect as adding an xdef directive for those symbols.

1. For complete descriptions of assembler language settings, refer to the C Cross Compiler User’s Guide.

Customizing Cosmic Assembler listing settings

The assembler Listing settings allow you to generate listing and error files. The listing
contains the source code that was input to the assembler, along with the hexadecimal
representation of the corresponding object code and the address for which it was generated.

To access these options select Listing from the Category list box. The resulting view
provides check boxes to enable or disable the options listed in Table 40.

IYI Doc ID 7705 Rev 11 109/385

Project creation and build UMO0036

4.7.3

110/385

Table 40. Cosmic Assembler listing options

Option Description

Generate a listing file. The name of the file is name_of _input_file.1s,

Basic (-1) unless you use the +1 option to specify the name of the file.

With errors on undefined |Produces an error message in the listing file for all occurrences of an
symbols (-u) undefined symbol.

Generate error log file Generates an assembler error log instead of displaying the error
(+e*) messages on screen.

1. For complete descriptions of assembler listing options, refer to the C Cross Compiler User’s Guide.

Cosmic C linker tab

The Linker tab provides an interface for setting the options in the command line for the
Cosmic C linker (c1nk). The gray Command line field displays all the changes to the
command line as you make them.

Figure 74. Cosmic linker general view

I Compilel] Assembler] Pre-Link Linker lPUst-BuiId] fll I

Category: [EECC I ~ Defaults

Output File Mame: |$[F'miec:tSFiIe]. elf
Std. libraries

¥ Int [~ Float

Libraries List: |

Object/Libraries Madules

| 5
|

Libraries Paths:

v Run Coreerter Start-up file: |crtsilsmB »

User Defined Dptions

Caommand line

[clnk $(T oolsetLibOpts] -o $0utputPath)$(T argetSMame).sm8 A
-m$OutputPath)$(T argetSMarme]. map

»

ak. | Cancel |

The Category list box allows you to access a general view for easy access to standard
settings and options. You can also change the category to access views where you can
customize settings in greater detalil.

In the Category list box you can choose from one of the following views:

e General: We recommend starting in the General settings for Cosmic linker view.

e Input: Customizing linker input settings

e Output: Customizing linker output settings

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

General settings for Cosmic linker

Note:

With the category set to General, you can access the following standard options:

Output filename option

Allows you to specify the name for the output file. By default, this field contains a macro that
will specify the project source in . elf format.

Std. libraries

Select whether to use the Int or Float libraries by checking the appropriate box. If Int is
checked, the builder inserts the standard integer library in the . 1kf template.

There are several standard integer libraries depending on the memory model you have
chosen.

Object/Library modules

In this field, you can type the names for specific library or object modules to include in the
build.

Library path names

This field allows you to enter additional libraries to be included by the linker.

You can type the library path name or use the browse button to enter the libraries to include.
When entering more than one library, entries are separated by a semicolon (;). When you
add a library via this field, the -1 option followed by the library path name are added to the
command line.

Run the converter

The converter (chex utility) allows you to translate executable files produced by the linker
into either the Motorola S-record or Intel standard hexadecimal format, and output to a
specific location.

When you click to place a checkmark in the Run Converter checkbox, a command line with
the Write output to file option (-o) is added to the Commands field in the Post-build tab.
A pop-up window opens whenever you activate this option, to tell you that the command line
is being added or removed to the Post- build tab.

You can customize the command line with options that allow you to override text and data
biases or output only a portion of the executable. For more about the supported options
refer to C Cross Compiler User’s Guide.

Startup file

The startup file establishes the runtime environment for C. Typically it provides:
e Initialization of the .bss section

e ROM to RAM copy

e Initialization of the stack pointer

e Call-up of the program entry point

e An exit sequence

Doc ID 7705 Rev 11 111/385

Project creation and build UMO0036

The Startup File list box allows you to choose to use one of the provided startup files. The
list of startup files is different for the ST7 and STM8 toolsets. For a complete description of
startup files, refer to the C Cross Compiler User’s Guide.

Customizing linker input settings

112/385

The input settings interface for the linker allows you to define input sources for the linker
such as libraries and vector files, as well as allowing you to define segments in your
microcontroller’s memory and assign code sections to them. Access this view by selecting
Input in the Category list box. The view will change to that shown in Figure 75.

Figure 75. Cosmic linker input view

MCU Selection] CCompiIer] .&ssemblel] Pre-Link Linker l L

Categor. [T ~ | Defauks
Seript L file name: [$(0utputPath)$TargetsNam | [0 aute
Wector file name Wector addr.
stm8_interrupt_vector.c J |DHSDDD
Segments/Section name | From | To | Options |
+ Code.Constants | D=3080 | 0«17 |
+ Zero Page | 0=0 | Owff |
* Ram 0100 Oxbff |

Command line

clik $(ToolzetlibOpts] -0 $[0utputPath)$(T argetSMarme).zmd
-m¥[OutputPath)#(T argetSMame]. map

W

ak. | Cancel |

Auto segment declaration and section assignment

There are three ways to manage the Cosmic script link file:
e Automatic

e Semi-automatic

e Custom

When the Auto option is checked the script link file is automatically generated to the output
path. The filename by default is TargetSName.Ikf.

When the Custom option is selected, you can enter the path and filename that you want for
the script link. In this mode the script link file will not be updated if you make changes to your
project, such as adding or removing a source file. If you do make such a change you will
have to edit the script link manually.

When the Semi-auto option is selected, STVD automatically updates the linker file sections
that are delimited by specific markers. All fields out of these sections can be manually
edited. The markers reserved for STVD are:

<BEGIN SEGMENT CONF>, <END SEGMENT_CONF>
<BEGIN STARTUP_FILE>, <END STARTUP_FILE>.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

<BEGIN OBJECT FILES>, <END OBJECT FILES>

<BEGIN LIBRARY FILES>, <END LIBRARY FILES>

<BEGIN VECTOR FILE>, <END VECTOR FILE>

<BEGIN DEFINED VARIABLES>, <END DEFINED VARIABLES>

If you want to stop STVD automatic update for one section, simply remove both BEGIN/END
markers of this section.You may restore the mechanism later by restoring the markers.

In Automatic mode, a configurable mapping is displayed in the Linker tab. The mapping's
first level elements are segments in the target microcontroller's memory. Clicking on the "+"
sign for a segment allows you to see the code sections that are assigned to the segment.
This mapping is used to automatically generate a linker script file (default name
TargetSName.lkf) that contains the declarations of memory segments and the code sections
assigned for each.

The linker script file is regenerated automatically when you close the Project Settings
window, or execute a build command. In Automatic mode, any modification that you made
externally into the linker file are lost. In Semi-automatic mode, any modification that you
made inside STVD-reserved sections are lost.

If you want to customize the linker file but keep some automatic mechanisms (for instance,
define a customized segment while keeping the automatic update of object files list when
adding or removing files into the project), use the Semi-automatic mode.

Modify the segment mapping and section assignments

You can move code sections from any memory segment except the Zero Page Vars to any
other code segment by simply dragging and dropping them.

You can add memory segments and delete or rename the segments that you have created.
Default segments cannot be deleted or renamed. However, you can modify their start and
end addresses.

Right-clicking on a cell in the mapping opens a contextual menu with the following
commands:

e Add Segment - Adds a row of empty fields to the mapping. Enter the name of the new
segment and press the Enter key. If you do not enter a segment name, but click on
enter, the new segment is removed from the mapping. You cannot use the same
segment name twice. Naming is case sensitive.

e Add Section - Adds a new code section to the mapping. If you do not enter a section
name, but click on enter, the new section is removed from the mapping. You cannot use
the same section name twice. Naming is case sensitive. The interface only allows you
to enter the name of the section (not an address range for it). Upon link, the code
sections are assigned to the memory segment in the order in which they appear in the
mapping.

e Change - Allows you to change the value or entry in the selected cell of the mapping.
Address values can be entered in decimal or hexadecimal (use 0x notation)
formats. You cannot use the same section or segment name twice in the mapping. You
can change the names of the default memory segments, however you cannot change
the names of the default code sections.

e Delete - Deletes the selected entry. You cannot delete the default memory segments or
code sections.

Doc ID 7705 Rev 11 113/385

Project creation and build UMO0036

e Protect - Protects the selected code section from optimization. Adds the -k option to
the selected item in the link script file. Code sections that you have applied protection to
are displayed in red.

Vector file name and Vector address

By default, the filename is set to stm8 interrupt vector.c for STM8. You can change
the name of the interrupt vector file and also the interrupt vector table start address.

The interrupt vector file is regenerated with each build, which means that you must not
modify it yourself. Instead, you should disable the automatic management of the vector table
by leaving the vector file name edit box empty.

The script link file contains a section dedicated for the interrupt vector table. This section is
automatically generated in Automatic mode, and in Semi-automatic mode if <BEGIN
VECTOR_FILE> and <END VECTOR_FILE> markers are present. By default, the section
will consist of the following lines:

#Setting the beginning of the .const section at 0x8000:

+seg .const -b 0x8000

#The vector table is declared in stm8 interrupt vector.c as a
#constant, so it will start at 0x8000

#address:stm8 interrupt vector.o

STM8 linker .const and .text section limitations

e The .const section must be located in the first 64k segment (mandatory).

e Allowing large function to cross memory section boundaries means that you cannot
use the -gnc option (because -gnc forces the compiler to use short jumps).

Customizing linker output settings

114/385

The linker Output settings allow you to apply options that define the types and formats or
output. Access this view by selecting Input in the Category list box. The view will change to
that shown in Figure 76.

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build

Figure 76. Cosmic linker output view

WU Selection] CCDmpiIer{ .&ssemblel] PreLink Linker l il

Cateoon: | ~ | Defals

Ermors

I Generate Emor File

Ermor File Mame: |
b ap File
[w Generate Map File
Map File Mame: | ${0utputPath)$IT argetSMame).ma

¢ Logical Address Syrbal: % Symbals zorted by Alphab
" Physical Address Symbols © Symbols sorted by address

Uzer Defined Options

Command ling

clirk $[T oolzetLibOptz] -o ${0utputPath)$(T argetSHName).sm8 A
[0 utputP ath)$(T argetSh ame). map

b

Ok | Cancel

In this view, the options listed in Table 41 are available.

Table 41. Cosmic linker output options

Option® Description

You can choose to generate an error file by checking this option, and
Generate Error File entering the name for the error file in the field provided. By default, this
option is not enabled.

You can generate a map file by checking this option and entering a map
file name in the field provided. By default, this option is checked, and a
map file is generated to the output path with the extension . map.

In this map file, by clicking on the appropriate radio button, you can

Generate Map File have:
— logical address symbols

— physical address symbols
— symbols sorted alphabetically (STM8 only)
— symbols sorted by address (STM8 only)

In this field you may enter any additional options you want to apply when

User Defined Options generating the linker output.

1. For complete descriptions of linker output options, refer to the C Cross Compiler User’s Guide.

IVI Doc ID 7705 Rev 11 115/385

Project creation and build UMO0036

4.8

Customizing build settings for Raisonance C toolset

The Project Settings window for building your application with the Raisonance C toolset
contains five tabs that are common to all the toolsets (General, MCU selection, Debug, Pre-
link and Post-Build) and three tabs that contain options and settings that are specific to
Raisonance.

This section provides details about configuring options that are specific to the Raisonance
toolset. These options include:

e Raisonance C compiler tab

e Raisonance Assembler tab

e Raisonance C linker tab

Configuring projects settings in the five common tabs is described in Section 4.5:
Configuring project settings on page 84.

Provided C header files for Raisonance

Caution:

Depending on your MCU, you can include a header file provided with STVD that defines the
device's peripheral registers. This will save you the time of creating this header file yourself.

The C header files provided with STVD for ST7 and STM8 microcontrollers are not the same
as those provided for the ST7 Library and STM8 Library. ST7 and STM8 library users should
use the C header and/or ASM include files specific to that library.

Depending on your installation, the C header files provided with STVD are typically located
at:

C:\Program Files\STMicroelectronics\st toolset\include\

To build your project using the provided header file for your device, specify its inclusion in
your application code. The name of the file to use is device_name . h.

Header files are provided for virtually all the supported devices. If you don't find your
device's name in the header files, this may be because the full name is not used. To
determine if your device has a header file, you can check the Peripheral Registers window
(View > Peripheral Registers) in the debug context. If peripheral register information is
provided in this window, then a header file has been generated for your device. The correct
file for your device, is the one with the device name you found in the Peripheral Registers
window.

Using the Project Settings interface

116/385

The tabs (C Compiler, Assembler and Linker) have a common interface that allows you to
choose from standard configurations, customize options and view changes to the command
line as you apply different options.

When the Category list box is set to General, the tab provides check boxes and list boxes
for easy access to commonly used options and configurations (see Figure 77).

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Figure 77. Standard options

Project Settings

Settings for: IDebug 'l

General, choosefrom
commonly used settings

To customize settings either...

+ Select a category to
customize from the
Category list box

A\ N\

+ orchoose Customize

P
« With the category set to Bcategmﬂ’:

/ I C and Assembly j IDef
Freprocessor Definitions ks liffs

Debugger Compatible | l

ategany: IGeneraI 'l
:Debug [nfo
Optimizations
C Language
~ . |Listings

[ptimizati| Preprocessor

Debug C Campiler |Assembler|

G C Compiler |Assembler| Pre-Link

yaable [For Debuggingj

Short Memory
Optimizatje

or Debuggingj
ngs C Languan

| /
User Defined Options
| H

[ebugger Compatible
On Data Objects Only

froma list boxfora

On Ay Label

category)
.
-

\
cxst? +modm +debug -no -l $(T ool
-cof(IntermPath) ${lnputFile]

h—

To further customize options, select a category in the Category list box, or select

Customize in a list box for a category of settings. The view in the tab will change to present

more options (see Figure 78).

You can enable or disable options by clicking on the check boxes. When you invoke an
option, the change to the command line is immediately visible in the gray Command Line

window at the bottom of the tab.

Figure 78. Customizing options

Settings for: IDebug 'l

Debug C Compiler |Assembler| Pre-LinkI Linker I Post-Bu 4 I r

=8l tim-rte
-3 Source Files
F] interupt_vector.c
vectar.c
(2] Include Files

Ve

* Enable ordisable options
using the check boxes

*The option isimmediately
added to the command line

.

\ J]

Cateqgory: IDebug Infa 'l Defaults |

Debug Info

I Customize j

[w]Generate Debug Info (+debug)

[1Generate Debug Info only for Data Objects [-pxd)
d Debug Info for any Labels [-pax)

— on't Usge Abzolute Paths in Debug Info [-psp)
[1Run Preprocessor Only [-pe]

[C10nly Yerboze [don't exec the build commands] [-]

Uszer Defined Options

—==—ammand line
cxst? +modm +debug -pex -prp -no | $[T oolzeting) ;I

-clif{IntermPath] -coflntermPath] ${lnputFile] LI

()3 I Cancel |

Doc ID 7705 Rev 11

117/385

Project creation and build UMO0036

48.1

118/385

Raisonance C compiler tab

The C Compiler tab provides an interface for setting the options in the command line for the
Raisonance C compiler for ST7 and STM8. The options available on the C compiler tab
view correspond to the microcontrollers that are selected on the MCU Selection tab view.

The gray Command line field displays all the changes to the command line as you modify
the settings in the graphical interface.

Figure 79. Raisonance C compiler general view for ST7 (left) and STM8 (right)

Debug] MCLU Selection C Compiler l Assembler] Pre-Link] i General] Debug] MCLU Selection C Compiler l Assembler] i)
Categon - Defauls Categor: - Defauts
C language Global * ariablez C language Global Yariables
| Drefauilt ﬂ | in Zera Page ﬂ | Diefault ﬂ | inZera Page ﬂ
Listingz Locals and Parameters Listings Locals and Parameters
|None j |Dn Stack [Reentrant Fcﬂ |Default ligting j | J
Optimizations Optimizations Program model
Default Optimization + | Default Optimization ﬂ | STME Large model j
W Generate Debug Info v Generate Debug Info
Uszer Defined Options Uszer Defined Options
Command line Command line
1e3t? ${InputFile) ~ restmiE ${lnputFile] e
OBJECT[$(IntermPath)$lnputh ame). ${0bjectE <] 3 OBJECT[#(IntermPath)$] nputM ame]. ${0bjectE <t)) ;

Ok | Cancel | Ok | Cancel |

The Category list box allows you to access a general view that displays standard options
and settings. You can also change the category to access views where you can customize
settings in greater detail.

In the Category list box, you can choose one of the following views:

e General: it is recommended to start in the general settings view, see General settings
for the Raisonance toolset

e Optimizations, see Customizing Raisonance C compiler optimizations on page 121
e ClLanguage, see Customizing Raisonance C compiler language settings on page 122
e Listings, see Customizing Raisonance C compiler listings on page 123

e Preprocessor definitions, see Customizing Raisonance C compiler preprocessor
definitions on page 124

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

General settings for the Raisonance toolset

With the category set to General, you can access the following standard settings and
options, as shown in Figure 79:

e Clanguage

e Listings

e Optimizations

e Global variables

e Locals and parameters (disabled for STM8 microcontrollers)
e Generate debug info

e User-defined options

e Program model (STM8 only)

C language

The C language settings allow you to define the programming language styles to apply while
compiling the application.

When the category is set to General, the standard C language options are:

e Default: Compiler default language options.

e ANSImode restricted: Adds the MODANST option in the command line, which enforces
strict ANSI checking by rejecting any syntax or semantic extension.

e Customize: Allows you to choose the options you want for generation of debug
information. These options are summarized in Customizing Raisonance C compiler
language settings on page 122.

Listings
The Listing settings allow you to generate a listing file and log errors to a file.

When the category is set to General, the standard Listing options are:

e None: Adds the NOPR option to the command line so no listing is generated.

e Default listing: automatically selects the following options:
— “Show the assembler translation of C statements in the listings file”
— “Add the list of symbols generated from the source file”

e Preprocessor listing: automatically selects the option “Generate a preprocessor
listing file”.

e Customize: When you select this option, the category displayed changes to Listings.
This view allows you to choose the options that you want for generation of debug

information. These options are described in Customizing Raisonance C compiler
listings on page 123.

Optimizations

The Optimization settings allow you to optimize your code once you have finished
debugging your application, in order to make the final version more compact and faster. You
should not optimize your code when debugging because some optimizations will eliminate
or ignore the debug information required by STVD and your debug instrument.

Doc ID 7705 Rev 11 119/385

Project creation and build UMO0036

120/385

When the category is set to General, the standard optimization options are:

e Default optimization: The following optimizations are employed by default and cannot
be disabled:

— Expressions are reduced to constants whenever possible
— Internal data and bit access optimization
— Jump optimization
e Speed optimization: When you select this option, the category displayed changes to

Optimizations. A list of options for speed optimization is displayed. For further
information, refer to Customizing Raisonance C compiler optimizations on page 121.

e Size optimization: When you select this option, the category displayed changes to
Optimizations. A list of options for size optimization is displayed. For further
information, refer to Customizing Raisonance C compiler optimizations on page 121.

Global variables

When the category is set to General, you can use the Global Variables list box to specify
the default location of global variables:

e In Zero Page: This is the default option.

e In Data: Specifies to place global variables in the first 64Kbytes of memory.

Locals and parameters (disabled for STM8 microcontrollers)

When the category is set to General, the options available for the location of local variables
and parameters are:

e In Zero Page: This is the default option.
e In Data: Specifies to place local variables in the first 64Kbytes of memory.

e On Stack (reentrant Fct): Specifies to place local variables on stack if you want
functions to be reentrant. For more information, see the definition of the AUTO mode in
the Raisonance RCST7 Compiler Manual.

Generate debug info

Select the Generate Debug Info checkbox if you want the compiler to output debug
information.

User-defined options

The User Defined Options field allows you to enter the command for an option that you
have defined for the Raisonance C compiler. The options that you type in this field are
immediately added to the command line below. For information on creating user-defined
options, refer to the Raisonance RCST7 Compiler Manual.

Program model (STM8 only)

When the category is set to General, the Program Model field offers the following options:

e STM8 small model: specifies to generate small model code. Should be used for
projects where all the code fits in the zero section, that is, where all functions calls are
limited to a 16Kbyte address range.

e STM8 large model: specifies to generate large model code. Should be used for
projects with code above the zero section, with functions located within the 16MB
memory address range.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Customizing Raisonance C compiler optimizations

On the C Compiler tab of the Project Settings window, in the Category field, select
Optimizations to display the view shown in Figure 80.

Alternatively, when the category is set to General, in the Optimizations field, select either
Speed Optimization or Size Optimization.

Figure 80. Raisonance C compiler optimizations view

Genelal] Debug] MCL Selection C Compiler l.&ssemblel] ilr

Category: | [R[SEEEE Drefaults

Optimizations

|Size Optimization LJ
[w]0: Mo Optirization

[w1: Dead code elimination. Overlayable segments identified for

(w2 Loop modification,
[w]3: Peephiole optimization.

4 >
[Generate only Small Objects [Smaller than 255 bytez]
Uszer Diefined Options

Cormand line

rcetm8 ${lnputFile]
OBJECT[${IntermPath]$lnputh ame). $(0 bjectE =t))

Ok | Cancel

In the Optimizations field, you can choose:

e Default Optimization: you cannot modify the default settings. See description of the
optimizations performed when this option is selected in Optimizations on page 119.

e Speed Optimization

e Size Optimization

The optimization options available for speed optimization and size optimization are the

same, but the interface allows you to set different levels of optimization for speed and for
size. These options are described in Table 42.

Note that speed optimization options and size optimization options are incremental: if you
select option 4 as shown in Figure 80, options 0 (default), 1, 2 and 3 are automatically

selected.

Doc ID 7705 Rev 11 121/385

Project creation and build

UMO0036

Table 42. Raisonance C compiler optimization options

Level Description®

0 No optimization

— Dead code elimination

— Overlayable data is identified for linker optimization
— Conditional jump optimization

1 — Complex move operations optimization

— Switch optimization

— Loop optimization

— Local and global sub-expression optimization

2 Loop performance optimization

3 Peephole optimization

1. For complete descriptions of compiler optimizations, refer to the Raisonance RCST7 Compiler Manual.

As you select each option, you can see the changes in the command line in the Command

Line field at the bottom of the tab.

Generate only small objects

Check the Generate only small objects checkbox to indicate to the compiler to generate

objects smaller than 255 bytes.

Customizing Raisonance C compiler language settings

On the C Compiler tab of the Project Settings window, in the Category field, select C
Language to display the view shown in Figure 81. Alternatively, when the category is set to

General, in the C Language field, select Customize.

Figure 81. Raisonance C compiler language view

General] Debug] MCU Selection C Compiler].&ssemblel] bl B

Categany: ,m Defaults

C Langage

[]E rum wariables are handled as int [char by default].
[]5tatic variables are initialized to zero.

[Char will be zigned by default

[1Restict the compiler to AMSI mode.

Uzer Defined Options

Command line

csty FlnputFile) ~
OBJECT[$(IntermP ath)$(nputh ame]. $(0 biectE xt])

0K | Cancel

122/385 Doc ID 7705 Rev 11

UMO0036 Project creation and build

In the C Language field, you can choose:

e Default: compiler default language options

e Ansi Mode Restricted: automatically selects the ANSI-compliant mode

e Customize: the options available when you select this mode are described in Table 43.

Table 43. Raisonance C compiler language options

Directive Description®

Defines whether enum variables are handled as char or int (char by
ENUMTYPE

default).
INITSTATICVAR/ Defines whether static variables are initialized to zero or left uninitialized.
NOINITSTATICVAR
SIGNEDCHAR/ Defines whether characters are signed or unsigned (signed by default)
UNSIGNEDCHAR

Restricts the compiler to ANSI mode. Strict ANSI checking is enforced,
MODANSI

rejecting all syntax and semantic extensions.

1. For complete descriptions of compiler C language options, refer to the Raisonance RCST7 Compiler
Manual.

As you select each option, you can see the changes in the command line in the Command
Line field at the bottom of the tab.
Customizing Raisonance C compiler listings

On the C Compiler tab of the Project Settings window, in the Category field, select
Listings to display the view shown in Figure 82. Alternatively, when the category is set to
General, in the Listings field, select Customize.

Figure 82. Raisonance C compiler listings view

Generall Debugl MCL Selection C Compiler lf-‘«ssembler] L

Categony: | Listings > Defaults

Lizgtings

[15haow the azzembler translation of C statements in the listing file
[15how line number for conditionally not compiled code
[CInclude lines coming from include files in the listing
[|Generate a preproceszor listing file

[1Add the list of spmbol: generated from the source file

< >

Uzer Defined Dptions

Command line

rczt? 3l nputFile) -
OEJECT [$[IntermPath)$(l nputh ame]. $(0bjectE «t])

(] | Cancel

IYI Doc ID 7705 Rev 11 123/385

Project creation and build UMO0036

From the Listings field, you can choose:

e None: all options are grayed out.

e Default listing: automatically selects the default options, see Listings on page 119.

e Preprocessor listing: automatically selects the option Generate a preprocessor
listing file.

e Customize: displays a list of options that you can select individually. These options are
described in Table 44.

Table 44. Raisonance C compiler listing options

Directive Option®
CODE Includes the assembler translation of C statements in the listing
file.
Specifies whether to include the lines that were not compiled
COND /NOCOND because part of conditional compilation statements in the listing

file or not.

specifies whether to include lines coming from include files in

LISTINCLUDE/NOLISTINCLUDE -
the listing or not.

PRINT/NOPRINT Specifies whether to generate a preprocessor listing file.

SYMBOLS Adds the list of symbols generated from the source file.

1. For complete descriptions of compiler C language options, refer to the Raisonance RCST7 Compiler
Manual.

Customizing Raisonance C compiler preprocessor definitions

124/385

On the C Compiler tab of the Project Settings window, in the Category field, select
Preprocessor to display the view shown in Figure 83.

Figure 83. Raisonance C compiler preprocessor view

Gereral | Debug] MCU Selection € Compiler l.f-‘-.ssernbler] i
Category: |[EEEimeerae Defaults

Preprocessor definitions

Additional include directories

|include;extemal includes

Uzer Defined Options

Command line

rczt? ${lnputFile)
OBJECT(${I ntermPath)${| nputh ame). ${0bjsctE «t))

W

i]8 | Cancel |

This view allows you to add preprocessor commands, and to specify include directories.

Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build
Adding preprocessor definitions
When entering a preprocessor definition, you must specify the name of a user-defined
preprocessor symbol. The form of the definition is:

DF (symbol [=value])
If the value is omitted, it is set to 1.
When entering definitions, the DF option is automatically added to the command line as you
type the symbol. When you enter several definitions, separate them with a space or a
comma.
Specifying include directories
The field Additional include directories allows you to specify the paths for other
directories that you want to include when compiling. You can type the path name or use the
browse button to locate the directory. The form of the definition that is added to the
command line is:
PIN (pathname)

When you type the path name for the directory, the PIN option is automatically added to the
command line. Each path name is the name of a directory and is not ended with a directory
separator (\). When you enter several path names, separate them with a semicolon (;) and
the PIN option is added automatically to the next entry.

4.8.2 Raisonance Assembler tab

The Assembler tab of the Project Settings window provides an interface for setting the
options in the command line for the Raisonance C assembler. The gray Command line field
displays all the changes to the command line as you make them through the graphical
interface.

Figure 84. Raisonance Assembler general view

General | Debug | MCU Selection | C Compiler Assembler | h I

Category: |[EEEE] Defaults

Freproceszar Definitions

Additional include directories

|external includes;include

¥ Generate Debug Info

Uszer Defined Optionz

Command line

mast? ${lnputFile] ~
OBJECT [${IrtermP ath]| nputh ame). ${0bjectE =t)]

Ok Cancel

Doc ID 7705 Rev 11 125/385

Project creation and build UMO0036

The category list box gives you access to the following views:
e General, see General settings for Raisonance Assembler
e Listings, see Customizing Raisonance Assembler listings

General settings for Raisonance Assembler

When the category is set to General, the options available are identical to the preprocessor
view of the C Compiler tab, already described in Customizing Raisonance C compiler
preprocessor definitions on page 124.

In addition, this view offers a Generate Debug Info checkbox, that adds the SET option in
the command line at the bottom of the tab which enables the generation of debug
information.

Customizing Raisonance Assembler listings

When the category is set to Listings and the Generate a Listing file checkbox is enabled,
you have access to the listing file options described in Table 45.

Table 45. Raisonance assembler listing options

Directive Description®

Specifies whether to show unassembled line of conditional
COND/NOCOND

constructs.

Specifies to not include the program source text. By default, it is
NOLIST :

included.
LISTINCLUDE/ Includes the content of include files in the listing.
NOLISTINCLUDE
GEN/NOGEN Specifies whether to expand assembly instructions of macros.
SB/NOSB Specifies whether to generate a table of symbols.

Specifies whether to generate a cross-reference table of
XREF/NOXREF

symbols.

1. For complete descriptions of assembler listing options, refer to the Raisonance MA-ST-7 Assembler
Manual.

In addition, in this view you can enable the Log assembly errors in a file (.ERR) to
generate an error log file.

126/385 Doc ID 7705 Rev 11 K‘YI

UMO0036

Project creation and build

4.8.3

Raisonance C linker tab

The Linker tab of the Project Settings window provides an interface for setting the options
in the command line for the Raisonance C linker. The gray Command line field displays all
the changes to the command line as you make them through the graphical interface.

Figure 85. Raisonance linker general view

Categary:

Output File M ame:

EEDmpiIer] .-’-'-.sseml:uler] Pre-Link Linker lF'u:ust-BuiId]

LN
Defaults

|${ProjectSFile]. e
Object/Libraries Modules

[Ignare Al Default Libs

Librariez Pathz:

L

[v Generate Debug Info

[+ Bun HEX Convertor

Uzer Defined Ophions

N

[Run Code Compressor

[Generate Binary File

Command line

flztmi -P "D ebugmain.o’’

TO[$OutputPath]$(T argetSH ame]. aof] $[T oolzetLib0ptz]

[[>

The Category list box provides access to the following views:
e General: displays standard settings and options, see General settings for Raisonance

linker

e Input: provides access to linker input options, see Customizing Raisonance linker input

settings

e Output: provides access to linker output options, see Customizing Raisonance linker

output settings

Doc ID 7705 Rev 11

127/385

Project creation and build UMO0036

General settings for Raisonance linker

When the category is set to General, you can access the following standard options:

128/385

Output filename

Allows you to specify the name for the output file. By default, this field contains a macro
that specifies the project source in *.elf format.

Object/Library modules

Use this field to enter the names for custom libraries or object modules to include in the
build. You do not need to specify standard libraries.

Library path names

Use this field to enter additional libraries to be included by the linker. You can enter the
library path name or use the browse button to locate the libraries to include. If you add
several libraries, separate each one by a semicolon (;). For each library that you add,
the LIBPATH option followed by the library path name is added to the Command line
field at the bottom of the tab.

Generate Debug Info
Enable this checkbox if you want to generate debug information.
Run HEX converter

The converter (ohst 7 utility) allows you to translate executable files produced by the
linker into Intel standard hexadecimal format, and output to a specific location.

When you place a checkmark in the Run HEX Converter checkbox, a command line is
added to the Commands field in the Post-build tab. A pop-up window opens whenever
you activate this option, to indicate that the command line is being added to or removed
from the Post- build tab.

Ignore all default libraries

Place a checkmark in this checkbox if you do not want the compiler to use the default
libraries. In this case, use the Object/Libraries Modules field to specify the location of
the libraries to use.

Run Code Compressor

When Run Code Compressor is selected, the code compressor runs during the link
thus allowing some in-lining and code factorization.

Generate binary file
When you place a checkmark in this checkbox, the ohst 7 utility produces a binary file.
User-defined options

The User Defined Options field allows you to enter the command for an option that
you have defined for the linking stage. The options that you type in this field are
immediately added to the command line below. For information on creating user-
defined options, refer to the Raisonance ST7 Linker/Locator Manual.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Customizing Raisonance linker input settings

On the Linker tab of the Project Settings window, in the Category field, select Input to

display the view shown in Figure 86.

Figure 86. Raisonance linker input view

[Eompilerl .-’-‘«ssembler] Fre-Link ~ Linker] F'Ust-BuiId]

!

Relocation Directives

Cateqgaony: - Diefaults
Femary Area | Framm | Ta |
DATA 0=0 i
CODE 048080 | Ou27fff
STACK. 0x1400 01 7fF

Uzer Defined Optionz

Command line

1lzt7 -P "D ebughhewnew. oD ebughmain.o"
TO[$[DutputPath)$(T argetSH ame]. acf] $[T oolsetLibOpts]

o]

Cancel |

Note that variables are automatically allocated a memory location. For information on
memory relocation directives, refer to the Raisonance ST7 Linker/Locator Manual.

The Relocation Directives field allows you to directly enter relocation directives using the
syntax defined in the Raisonance ST7 Linker/Locator Manual.

The User Defined Options field allows you to enter the command for an option that you
want to apply when generating the linker input. The options that you type in this field are
immediately added to the command line below. For information on creating user-defined

options, refer to the Raisonance ST7 Linker/Locator Manual.

Customizing Raisonance linker output settings
On the Linker tab of the Project Settings window, in the Category field, select Output to

display the view shown in Figure 87.

Doc ID 7705 Rev 11

129/385

Project creation and build UMO0036

Figure 87. Raisonance linker output view

Cl:ompiler] .-’-‘«ssembler] Pre-Link Linker]F‘Dst-BuiId] hlll I
Cotopoy: | ~ | Detauks

¥ Generate Map File |$[DutputF‘ath]$[TargetSName].map

Map Filz Dptions

[10mit zource code lines fram the syrmbol table in the map file
[10mit public symbols from the symbol table in the map file
[10mit local sumbaols from the sumbal table in the map file

[10mit the: link map from the map file

™ Generate a Cross-Reference File
Uzer Defined Optionz

Caommand line

|rlst? -P "Debuginewnew.o","Debugimain.o"
|T O[$[OutputPath]$(T arget5Mame). aof) ${T oolsetlibO pts)

ok, | Cancel

The following options are available in this view:

Generate map file

You can generate a map file by checking this option and entering a map file name in the
field provided. By default, this option is checked, and a map file is generated with the
output path name and the extension .map.

The available map file options are described in Table 46. By default, all options are
turned on. You can use the list to turn each one off individually.

Generate a cross-reference file

This checkbox instructs the linker to generate a cross-reference file as an aid to
debugging.

User defined options

The User Defined Options field allows you to enter the command for an option that
you want to apply when generating the linker output. The options that you type in this
field are immediately added to the command line below. For information on creating
user-defined options, refer to the Raisonance ST7 Linker/Locator Manual.

Table 46. Raisonance linker output options

Directive Description®
NOLI Omits source code lines from the symbol table in the map file
NOPU Omits public symbols from the symbol table in the map file
NOSB Omits local symbols from the symbol table in the map file
NOMA Omits the link map from the map file

1.

130/385

For complete descriptions of linker output options, refer to the Raisonance ST7 Linker/Locator Manual.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

4.9

Note:

Customizing build settings for Metrowerks C toolset

The Project Settings window for building your application with the Metrowerks C toolset
contains five tabs that are common to all the toolsets (General, MCU selection, Debug, Pre-
link and Post-Build) and three tabs that contain options and settings that are specific to
Metrowerks.

This section provides details about configuring options that are specific to the Metrowerks
toolset. These options include:

e Metrowerks C Compiler tab

e Metrowerks Assembler tab

e Metrowerks linker tab

For more details regarding options for this toolset, refer to the STMicroelectronics ST7
Compiler and STMicroelectronics ST7 Assembler reference manuals from Metrowerks.

Configuring project settings in the five common tabs is described in Section 4.5: Configuring
project settings on page 84.

Provided ST7 C header files for Metrowerks

Caution:

Depending on your MCU you can include a header file provided with STVD, which defines
the device's peripheral registers. This will save you the time of creating this header file
yourself.

The C header files provided with STVD are not the same as those provided for the ST7
Library. ST7 library users should use the C header and/or ASM include files specific to that
library.

Depending on your installation, the C header files provided with STVD are typically located
at:

C:\Program Files\STMicroelectronics\st toolset\include\

To build your project using the provided header file for your device, specify its inclusion in
your application code. The name of the file to use is device_name.h.

Header files are provided for virtually all the supported devices. If you don't find your
device's name in the header files, this may be because the full name is not used. To
determine if you device has a header file, you can check the Peripheral Registers window
(View > Peripheral Registers) in the debug context. If peripheral register information is
provided in this window, then a header file has been generated for your device. The correct
file for your device, is the one with the device name you found in the Peripheral Registers
window.

When including the provided header files, you should be aware of the following:

e To specify the inclusion of the header file (#Include), you must add the define
statement, #Define _ DEFINE REGISTERS STVD7_ INCLUDE__ in one source file
and before any include statement.

e Alink error L1818 may be generated due to paginated registers. To override this error,
apply -wmsgsil818 as a user-defined option. This option will convert the error to a
warning message only.

Doc ID 7705 Rev 11 131/385

Project creation and build

UMO0036

Using the Project Settings interface

The tabs (C Compiler, Assembler and Linker) have a common interface that allows you to
choose from standard configurations, customize options and view changes to the command

line as you apply different options.

When the Category list box is set to General, the tab provides check boxes and list boxes
for easy access to commonly used options and configurations (see Figure 88).

Figure 88. Standard options

Project Settings

Settings for: IDebug 'l

General, choosefrom
commonly used settings

To customize settings either...

+ Select a category to
customize from the
Category list box

A\ N\

+ orchoose Customize

P
« With the category set to Bcategmﬂ’:

Debug C Campiler |Assembler|

Short Memory
Optimizatje

G C Compiler |Assembler| Pre-Link

ategony: m

:Debug [nfo
Optimizations
C Language
~ . |Listings

[ptimizati| Preprocessor

yaable [For Debuggingj

hgs

or Debuggingj

I C and Aszembly

Freprocessor Definitions

Debug Info

User Defined Options

froma list boxfora

[ebugger Compatible
On Data Objects Only
On Ay Label

Debugger Compatible | l

category)
.

-

|-

cxst? +modm +debug -no -l $(T ool
-cof(IntermPath) ${lnputFile]

h—

To further customize options, select a category in the Category list box, or select

Customize in a list box for a category of settings. The view in the tab will change to present

more options (see Figure 89).

You can enable or disable options by clicking on the check boxes. When you invoke an
option, the change to the command line is immediately visible in the gray Command Line

window at the bottom of the tab.

132/385

Doc ID 7705 Rev 11

UMO0036 Project creation and build

Figure 89. Customizing options

Settings for: IDebug 'l Debug C Compiler |Assembler| Pre-LinkI Linker I Post-Bu 4 I r

tim-rtc
43 Source Files
interupt_vector.c

Cateqgory: IDebug Infa 'l Defaults |

Debug Info

I Customize j

[w]Generate Debug Info (+debug)

[1Generate Debug Info only for Data Objects [-pxd)
Rdd Debug Info for any Labels [-pxx)

— [w]Don't Use Abzolute Paths in Debug Info [-psp]
[1Run Preprocessor Only [-pe]

[C10nly Yerboze [don't exec the build commands] [-]

Ve

* Enable ordisable options
using the check boxes

Uszer Defined Options

«The option is immediately |
added to the command line

\ J]

.

—==—ammand line

cxst? +modm +debug -pex -prp -no | $[T oolzeting) ;I
-clif{IntermPath] -coflntermPath] ${lnputFile] LI

L

Cancel |

49.1 Metrowerks C Compiler tab

The C Compiler tab provides an interface for setting the options in the command line for the
Metrowerks C compiler. The gray Command line field displays all the changes to the
command line as you make them.

Figure 90. General category view

Generall Debugl MCU Selection C Compiler |.&ssembler| 1 I 'I

Categor [EEEEERMNG] Defas_|

temong Models

Meszages Dizplay

I Large ﬂ IErrors + W arnings j
O ptirnizations Debug Info
IDisabIed [Debua) ﬂ IGenerates Debug Info j
Liztings C Language

IEI and Azsembler Listing [er IDefauIt

Preproceszor Definitions

=

¥ Don't use Eny

Uzer Defined Optian:

=

Command line

cet? Ml AWl Ona -

-OnCopyDawn -OnCztar -One -0nPMMC -Onr -0t -Onf -0nu LI

OnE -Onbf -OnBsr -0nbt -Onca -Onch ﬂ

Doc ID 7705 Rev 11

Project creation and build UMO0036

The Category list box provides a choice of standard options to choose from. For
descriptions of standard options and information about further customizing them, refer to the
category sections below:

e General: We recommend starting in the General settings for the Metrowerks toolset
view.

e Optimizations: Customizing Metrowerks compiler optimizations

e Input: Customizing Metrowerks C compiler input

e Output: Customizing Metrowerks C compiler output

e Listings: Customizing Metrowerks C compiler listings

e C Language: Customizing Metrowerks C compiler language settings

General settings for the Metrowerks toolset

134/385

With the category set to General, you can access the following standard settings and
options:

e Compiler memory models

e Message Display

e Optimizations

e Debug info

e Listings

e C Language

e “Do not use environment” option (-NoEnv)
e Preprocessor definitions

e User-defined options

Compiler memory models

From the General interface, you can choose to compile your application according to one of
three predefined memory models that can help you optimize your code’s size and
performance (see Figure 90).

Table 47 below provides a summary of these predefined memory models.

Table 47. Metrowerks C compiler memory models

Memory Local Global

Use
model®) variables® | variables®

— Default for debuggi
Extended or elaliit for debugging

Large (-M1) Direct Direct — Most efficient memory model for typical
microcontroller applications.

For small applications that only reference global

Small (-s) Direct Direct constant data (Strings) through _far pointers.

For large applications with lots of local and global

Extended (-Mx) Extended Direct
data

1. For complete descriptions of memory model options, refer to the STMicroelectronics ST7 Compiler user
manual from Metrowerks.

2. Direct: Data must be in the zero page, so that short addressing mode is used for all data access.

Extended: Data can be either in the zero page (short addressing mode), or outside the zero page
(extended addressing mode).

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Message Display

With the Category list box set to General, you can choose what types of messages to

generate from the following options:

e Errors + Warnings: Introduces -w1 option in the command line, which suppresses the
generation of information messages.

e Only Errors: Introduces -w2 option in the command line, which suppresses the
generation of error and warning messages.

e Errors + Warnings + Info: No option in the command line. Information, error and
warning messages are generated.

Optimizations

The Optimization settings allow you to optimize your code once you have finished
debugging your application, in order to make the final version more compact and faster. You
should not optimize your code when debugging because some optimizations will eliminate
or ignore the debug information required by STVD and your debug instrument.

When the Category list box is set to General, the standard optimization options are:

e Default (Minimize code size): Introduces -0s option in the command line, which
directs the Compiler to generate smaller code, even though it may be slower than other
possible solutions.

e Disabled (Debug): Introduces options in the command line that disable optimizations
that are not compatible with debugging.

e Maximize Execution Speed: Introduces -0t option in the command line, which
directs the Compiler to generate fast code, even though the code may be longer than
other possible solutions.

e Customize: Allows you to choose the optimization options that you want (options are
summarized in Customizing Metrowerks compiler optimizations on page 137). For
complete descriptions of these options, refer to the STMicroelectronics ST7 Compiler
user manual from Metrowerks.

Debug info

The Debug Info settings allow you to choose to generate debug information for your
application based on use (for programming or debugging). By default, the Metrowerks C
compiler generates the debug information required to debug your application with STVD.
Including the debug information will make the application file larger, however debug
information is not included in the code that is loaded in the microcontroller’'s memory. This
information is used by STVD’s debugger only.

When the Category list box is set to General, the standard debug information options are:

e Generates debug info: No option in the command line. This setting causes the
compiler to generate the debug information required by STVD

e No Debug info in Objects: Introduces -NoDebugInfo option in the command line,
which suppresses the generation of debug information in the object file(s).

e Strip Path Info from Objects: Introduces -NoPath option in the command line, which
suppresses the generation of path information in the object files

Listings

The Listing settings allow you to generate a listing file and log errors to a file.

Doc ID 7705 Rev 11 135/385

Project creation and build UMO0036

When the Category list box is set to General, the standard listing options are:

e Cand Assembler Listing: Adds -Lasm option to the command line. The output is
filename . 1st.

e No Listing

e List of Include Files: Adds -Li option to the command line. The output is
filename . inc.

e Preprocessor Output: Adds -Lp option to the command line, which generates a text
file containing the preprocessor output. The output is filename . pre.

e Customize: Allows you to choose the Listing options you want (options are
summarized in Customizing Metrowerks C compiler listings on page 141).

C Language

The Compiler C language settings allow you to define the programming language options to
apply while compiling the application.

When the Category list box is set to General, the standard language options are:

e Default: No option in the command line. The compiler accepts ANSI standard
keywords and some non-ANSI compliant keywords, including: @address, far, near,
rom, uni, alignof , va sizeof , interrupt and asm.

e Strict ANSI Checking: Introduces -Ansi option in the command line, which restricts
the compiler to recognition of ANSI standard keywords.

e Customize: Allows you to choose from the C language options that are listed in
Customizing Metrowerks C compiler language settings on page 143. For complete
descriptions of options, refer to Metrowerks STMicroelectronics ST7 Compiler user
manual.

“Do not use environment” option (-NoEnv)

This checkbox enables and disables the no environment option (-NoEnv) in the startup
routine. This option is specified independently for the assembler (see Section 4.9.2:
Metrowerks Assembler tab on page 143) and the linker (see Section 4.9.3: Metrowerks
linker tab on page 148).

When checked in the C compiler tab, the -NoEnv option is applied to the compiler command
line. This option is checked by default so the compiler uses environment variables specified
by options.

Uncheck this option if you want to use an environment file (such as default.env)to
specify environment variables for the C compiler. The environment file should be located in
the current directory.

Preprocessor definitions

This field allows you to enter user-specified macros for the preprocessor. The compiler
allows the definition of a macro in the command line. The effect is the same as having a
#define directive at the beginning of the source file.

When entering definitions, the -d option is automatically added to the command line as you
type the symbol. When you enter several definitions, separate them with a space and -d will
automatically be added to the next symbol in the command line.

136/385 Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

User-defined options

This field allows you to enter the command for an option that you have defined for the C
compiler. The options that you type in these fields are immediately added to the command
line below. For more information on creating user-defined options, refer to Metrowerks’
STMicroelectronics ST7 Compiler reference manual.

Customizing Metrowerks compiler optimizations

To further customize optimizations, select Customize from the Optimizations list box. The
view in the C Compiler tab changes to that shown in Figure 91.

Figure 91. Metrowerks C compiler optimizations view

MCU Selection © Compiler |.&ssembler| F're-LinkI Linkerl 1 I ’I

Categary: IDptimizations vI Defaults |

Optimizations

Il:ustomize j
[Mo Integral Pramation on characters -
[1Don't Use Stack for Temporary Storage

[ILoop Unralling

[|Minimize Code Size

[|t aximize Execution Speed

[0ptimize Dead Azsighments [only if no HLIL

[J&hways Optimize Dead Azsignments

[w|Mever Optimize Dead Aszignments LI

Usger Defined Options

Command line

csty MW -Lasm -Onu -0f -Ona -Onb -Onbf -Onbsr -Onbt ;I
-Onca -Oneh -0nCopyDown -OnCstvar -0ne -0nPMMC -Onr LI

Ok I Cancel |

In this view, you can choose from the optimization options listed in Table 48.

Table 48. Metrowerks C compiler optimization options

Option® Description

-Cni No integral promotion on characters

-Cns Do not use stack for temporary storage

-Cu Loop unrolling
-Obfv Optimize bitfields and volatile bitfields
-Obsr Generate always near calls

-Oc Common sub-expression elimination
-OdocF Dynamic option configuration for functions

_of Create sub-functions with common code when optimizing code size

(-0s)
Doc ID 7705 Rev 11 137/385

Project creation and build

UMO0036

Table 48.

Metrowerks C compiler optimization options (continued)

Option®

Description

-Oi=c$CodeSize

Enables inline expansion

-0i=c0 Switches on inlining except for Pragma INLINE
-01=0FF Switches off inlining except for Pragma INLINE
-0iLib Inline library functions
-0l0 Totally disable loop variables allocation in registers
-Ona Disable alias checking
-Onb Disable peephole optimization
-Onbf Disable optimize bitfields
-OnBsr Disable far-to-near optimization
-Onbt Disable ICG level branch tail merging
-Onca Disable and constant folding
-Oncn Disable any constant folding in case of a new constant
-OnCopyDown Don't generate copy down information for zero values
-OnCstVar Disable constant variable replaced by value
-One Disable and low level common sub-expression elimination
—onf Create. sub-functions with common code when optimizing code
execution speed (-0t)
-OnPMNC Disable code generation for NULL Pointer to Member check
-Oonr Disable optimizing register accesses
-Ont Disable all tree optimizations
-Onu Never optimize dead assignments
-Or Allocate local variables to registers
-0s Minimize code size
-0t Maximize execution speed
-Ou Always optimize dead assignments
-Rpe Large return value with temporary elimination
Rpt Large return value by pointer

1. For a complete description of optimization options, refer to the STMicroelectronics ST7 Compiler user

manual from Metrowerks.

Customizing Metrowerks C compiler input

138/385

The compiler input settings allow you to specify the options defining the files to be used in
compiling your application.

In the C Compiler tab, select Input in the Category list box. The view in the C Compiler tab
changes to that shown in Figure 92.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Figure 92. Metrowerks C compiler input view

General | Debug | MCU Selection © Campiler |Assembler|]

Categony: I IFipat - | Defaultz |

 Include File

[1Cut File Mames to DOS Length
[lInclude Filez Only Once
[1lgnare Escape Sequences in Include Paths

Extra Inchude Path: |

]
]

Extra Inchude Fils: I

Preproceszar Definitions

Uszer Defined Options

Cormmand line

cat? Ml w1 -Ona -OnB -0Onbf -OnBsr -Onbt -0nca -Onch ;I
-OnCopyDown -0nCefvar -One -0nPMMC -Onr -Ont -Onf -0 LI

ar. I Catcel |

In this view, you can choose from the optimization options listed in Table 49.

Table 49. Metrowerks C compiler input options

Option® Description

Cut File Names to DOS Length (-!) | This option cuts all file names to a length of 8 characters

This option causes the compiler to ignore include files that

Include Files Only Once (-P1o) have already been read once while compiling.

This option causes the compiler to ignore escape
Ignore Escape Sequences in Include | sequences in strings that contain a DOS drive letter
Paths (-Pe) followed by a colon and a back slash(:\). This is useful
when the code contains macros with file path names.

1. For complete descriptions, refer to the STMicroelectronics ST7 Compiler user manual from Metrowerks.

In addition, this view includes fields that allow you to enter the path name for a directory, or a
file to include when compiling.

Extra include paths

This field allows you to enter multiple paths for directories to include when compiling the
application.

You can type the path name. When you begin typing, the -1 for this compiler option is
automatically added to the command line. Separate directory entries with a semi-colon (;).
When you type the semi-colon to start a new entry, the -1 for the new entry is automatically
added to the command line.

You can use the browse button to locate a directory. Click on the file you want in the browse
window and the command line is automatically modified with the - I option and the path
name. To make another entry press the space bar and the browse window opens
automatically so that you can enter the next file path name.

Doc ID 7705 Rev 11 139/385

Project creation and build UMO0036

Extra include files
This field allows you to enter multiple files to include when compiling the application.

You can type the file’s path name. When you begin typing, the -AddInclude= for this
compiler option is automatically added to the command line. Separate multiple include files
with a semi-colon (;). When you type the semi-colon to start a new entry, the
-AddInclude= for the new entry is automatically added to the command line.

You can use the browse button to locate a file to include. Click on the file you want to include
in the browse window and the command line is automatically modified with the
-AddInclude= option and the path name. To make another entry press the space bar and
the browse window opens automatically, so that you can enter the next file path name.

Customizing Metrowerks C compiler output

140/385

The compiler output settings allow you to customize the type and options for files that are
output from the compiler.

In the C Compiler tab select Output in the Category list box. The view in the C Compiler
tab changes to that shown in Figure 93.

Figure 93. Metrowerks C compiler output view

Generall Debugl MCU Selection £ Compiler |.-’-‘«ssemb|er| 1 I ’I

Cateqary: IUutput vl Drefaults |

[15tip Path Info From Object File
[w]ELF/Dvwarf 2.0 object file format

[allocate Congtant Objects into ROM
[15top After Preprocessor

Enciyptation
’7 ™ Enciypt Source File Fen Mumber: I

Uszer Defined Options

Command line

caty Ml A -Ona -0nB -Onbf -OnBar -0nbt -0nca Oneh ;I
OnCopyDovan -OnCetyar -0ne -OnPMMC -Onr -0nt -Onf -Onu ﬂ

ak. I Cahicel |

In this view, you can choose from the compiler options listed in Table 50.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Table 50. Metrowerks C compiler output options

Option®

Description

Strip Path Info from Object Files
(-NoPath)

This option suppresses the generation of path information in
the object files.

ELF/Dwarf 2.0 Object File Format
(-F2)

Adds the -F2 option to the command line, which causes the
compiler to generate object files in ELF/Dwarf 2.0 format.

When not checked the compiler generates object files in
Hiware object file format (-Fh option in the command line). If
you change the output setting to Hiware, STVD warns you that
you must specify the PRM file to use in the Linker PRM File
settings of the Linker tab (see Configuring the Metrowerks
linker PRM file on page 153).

Allocate Constant Objects into
ROM
(-Ce)

This option causes any variables defined as const to be
assigned to a ROM section in the linker PRM file.

Stop after Preprocessor
(-LpX)

This option limits compiling to preprocessing so that no object
file is generated. Used with -Lp to generate a listing file (see
Customizing Metrowerks C compiler listings).

1. For complete descriptions of optimization options, refer to the STMicroelectronics ST7 Compiler user

manual from Metrowerks.

In addition, this view includes an Encryption field that allows you to enable and disable
encryption and set a key number for the encryption.

Checking the Encrypt Source File checkbox introduces the -Eencrypt option to the
command line, which causes the compiler to encrypt the source file using a key code that
you enter. The default name for the encrypted file is filename.file extensione (for example,
the encrypted file for application.cis application.ce).

To enter a key code for encryption, type the number in the Key Number field. Only numeric
characters are accepted. If you enter a non-numeric character in the Key Number field,
STVD prompts you with a warning. The -EKey option and the number you entered are
automatically added to the command line. 0 is the default if you do not enter a key code.
However, using this default is not recommended.

Customizing Metrowerks C compiler listings

If you choose Customize in the Listings list box, the tab view changes as shown in
Figure 94. The same tab view is displayed if you choose Listing directly from the Category

list box.

Doc ID 7705 Rev 11 141/385

Project creation and build UMO0036

142/385

Figure 94. Metrowerks C compiler listing view

Generall Debugl MCL Selection C Compiler |Asgemble[| 4 | >|
LCategary: IListings vI Defaults |

Liztings
IC and dzzembler Listing [%n.lst) j

CJGenerate Agzembler Include File [%1.inc)

[List all #define [predef.h)

[List all #include Files in Make Format [Make.txt]
15 tatiztice about each Function [logfile.txt)

|Jzer Defined Optiong

Command line

cztd bl A1 -Ona -0nB -Onbf -0nBsr -0nbt -0nza -Onck ;I
-OnCoppDiown -OnCattar -One OnPMNC -Onr -Ont -Onf O LI

ak. I Cancel |

In this view, you choose from the listing options summarized in Table 51.

Table 51. Metrowerks C compiler listing options

Option® Description

This option causes the compiler to generate an assembler include file
when a pragma CREATE_ASM_LISTING occurs. The default output is
filename . pre.

Generate Assembler
Include Files (-La)

This option allows you to list all #defines in the compiled source files.

List all #define (-Laf) The output is predef . h.

List all #include Files in | This option creates a listing of #include files specified by the source to
Make Format (-Lm) aid you in the creation of a makefile. The output is make . txt.

This option generates a fie with the following statistics for procedure in
the compiled file: code size in bytes, stack usage in bytes and
compilation time. The output is logfile.txt.

Statistics about each
function (-L1)

1. For complete descriptions of optimization options, refer to the STMicroelectronics ST7 Compiler user
manual from Metrowerks.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Customizing Metrowerks C compiler language settings

4.9.2

In the C Compiler tab, select C Language in the Category list box. The view in the C
Compiler tab changes to that shown in Figure 95.

Figure 95. Customizing C language view

MCU Selection C Compiler |Assembler| F're-LinkI Lirker | 1 | ’l

Category: IC Language VI Defailts |

C Lahguage
I Customize j

[1Strict AMNSI Checking

[1Tri- and Bigraph Support

[1Propagate const and valatile Qualifiers for Strucks
[|Conversion from 'const T to 'T*

User Defined Optionis

Command line

cel? MW -Lasm -Onu -OF -Ona -Onb -Onbf -Onbsr -Onbt ;I
Onea -Oncn -0nCopyDown -0nCstyar -One -0nPMMC -Onr ;I

Ok I Cancel |

In this tab view, you can choose from the language options described in Table 52.

Table 52. Metrowerks C compiler language options

Option®

Description

Strict ANSI
(-Ansi)

This option restricts the Compiler to recognition of ANSI-
standard keywords.

Tri- and Bigraph Support
(-ci)

This option enables the interpretation of Trigraph and
Bigraph symbols if present in the C source code.

Propagate const and Volatile
Qualifiers for Structs (-Cq)

If a structure is labeled constant or constant/volatile, then
this option propagates the qualifier to all members of the
structure.

Conversion from ‘const T* to ‘T*
(-Ec)

This option causes pointers to constants to be treated as
pointers to their non-constant equivalents.

Not ANSI compliant

1. For complete descriptions of optimization options, refer to the STMicroelectronics ST7 Compiler user

manual from Metrowerks.

Metrowerks Assembler tab

The Assembler tab provides an interface for customizing the command line for the
Metrowerks assembler. The gray Command line field, displays all the changes to the

command line as you make them.

Doc ID 7705 Rev 11 143/385

Project creation and build UMO0036

Figure 96. Metrowerks Assembler general view

C Compiler Assembler | Pre-Link | Linker | PostBuid| <[]

Categery: Defauts_|
Memory Models Messages Display

I Large j I Errors +'Wamings j
Output Liztings

[ELF/DwarF20 =] |FullListing File =l

¥ Don't uze Eny
Extra Include Paths

| N

User Defined Options

Command line

ast? Ml L F2 -MoEny $(Toolseting] $lnputFile] d
-0 b &I ntermP ath) $lnputhl ame). $[0bjectE «t] LI

The Category list box allows you to access a general view for easy access to standard
settings and options. You can also change the category to access views where you can
customize settings in greater detail.

In the Category list box, you can choose one on the following views:

e General: We recommend starting in the General settings for Metrowerks Assembler
view.

e Language: Customizing Metrowerks Assembler language settings
e Listings: Customizing Metrowerks Assembler listings

General settings for Metrowerks Assembler

144/385

With the category set to General, you can access the following standard settings and
options:

e Assembler memory models

e Message display

e Output

e Listings

e “Do not use environment” option (-NoEnv)
e Extra include paths

e User-defined options

Assembler memory models

From the General interface, you can choose to compile your application according to one of
three predefined memory models that can help you optimize your code’s size and
performance. These are the same command line options as for the Compiler tab. For a brief
description of these options, refer to Compiler memory models on page 134.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Note:

Message display

With the category set to General, you can choose what types of messages the Assembler
will generate. These are the same command line options as those used by the compiler.

For a brief description of these options, refer to Message Display on page 135.

Output

With the category set to General, you can choose the format of the object file that the
Assembler will generate. You can choose from:

e ELF/DWARF 2.0: Adds the -F2 option to the command line, which causes the
assembler to generate object files in ELF/Dwarf 2.0 format.

e Hiware: Adds the -Fh option to the command line, which causes the assembler to
generate object files in Hiware proprietary format. If you change the output setting to
Hiware, STVD warns you that you must specify the PRM file to use in the Linker PRM
File settings of the Linker tab (see Configuring the Metrowerks linker PRM file on
page 153).

We strongly recommend using the ELF/DWARF 2.0 format to build your application. This
gives you access to a greater range of toolset options. The Hiware format continues to be
supported for reasons of legacy compatibility.

Listings
The Listing settings allow you to generate a listing file and to log errors to a file.

When category is set to General, the standard listing options are:

e Full Listing File: Inserts the -L option in the command line. By default, the full listing
contains expanded included files, as well as macro definition, call and expansion lines.
The output is filename . 1st.

e No Listing

e Customize: Allows you to choose the Listing options that you want (options are
summarized in Customizing Metrowerks C compiler listings on page 141).

“Do not use environment” option (-NoEnv)

This checkbox enables and disables the no environment option (-NoEnv) in the startup
routine. This option can is specified independently for the C compiler (see Section 4.9.1.:
Metrowerks C Compiler tab on page 133) and the linker (see Section 4.9.3: Metrowerks
linker tab on page 148).

When checked in the Assembler tab, the -NoEnv option is applied to the assembler
command line. This option is checked by default so that the assembler uses environment
variables specified by options in the project settings.

Uncheck this option if you want to use an environment file (such as default.env) to
specify environment variables for the assembler. The environment file should be located in
the current directory.

Extra include paths

This field allows you to enter multiple paths for directories to include when assembling the
application.

Doc ID 7705 Rev 11 145/385

Project creation and build UMO0036

You can type the path name. When you begin typing, the -1 for this compiler option is
automatically added to the command line. Separate directory entries with a semi-colon (;).
When you type the semi-colon to start a new entry, the - I for the new entry is automatically
added to the command line.

You can use the browse button to locate a directory. Click on the file you want in the browse
window and the command line is automatically modified with the - I option and the path
name. To make another entry, press the spacebar and the browse window opens
automatically so that you can enter the next file path name.

User-defined options

This field allows you to enter the command for an option that you have defined for the C
compiler. The options that you type in these fields are immediately added to the command
line below. For more information on creating user defined options, refer to Metrowerks’
STMicroelectronics ST7 Compiler reference manual.

This view also provides a Customizing Cosmic C compiler preprocessor definitions on
page 105 and a User-defined options on page 99 field for entering commands that you
define.

Customizing Metrowerks Assembler language settings

The Assembler language settings allow you to set options related to language checking
during assembly.

In the Assembler tab, select Language in the Category list box. The view in the
Assembler tab changes to that shown in Figure 97.

Figure 97. Metrowerks Assembler language view

C Compiler Assembler | PreLink | Linker | PostBuid| <[]

Category: ILanguage 'I Defaults |

™ Support for Stuctured Types
[5T Microelectronics Compatibility tods

Uszer Defined Options

Command line

ast? Ml w1 -L -F2 $[Toolzeting) $lnputFile) ;I
O bt ntermP ath) $lnputh ame). $(0bjectE «t] ;I
Ok I Cancel |

In this view, you can choose from the language options listed in Table 53.

146/385 Doc ID 7705 Rev 11 KYI

UMO0036 Project creation and build

Table 53. Metrowerks assembler language options

Option® Description
Switches off case sensitivity for label names. However,
Case Insensitivity on Label name this is only used when generating directly the
(ELF/DAWRF) (-ci) ELF/DWARF 2.0 Absolute file (-FA2 option).

Refer to Output on page 145.

Supports the definition and use of structured types for
applications containing ANSI C and Assembly
modules.

Support for Structured Types
(-Struct)

Allows the assembler to process input files containing
STMicroelectronics Compatibility Mode |ST Assembler notation and directives.

(-sT) Refer to the STMicroelectronics ST7 Assembler user
manual from Metrowerks for limitations.

1. For complete descriptions of optimization options, refer to the STMicroelectronics ST7 Compiler user
manual from Metrowerks.

Customizing Metrowerks Assembler listings

If you choose Customize in the Listings list box, the tab view changes as shown in
Figure 98. The same tab view is displayed if you choose Listings directly from the
Category list box.

Figure 98. Metrowerks Assembler listings view

MCU Selection | C Compler Assembler | Pre-Link | Linker | 4]]

Categary: ILiStings vl Defaults |

I Cuztomize j

[w]Full Listing File

[Lizting File Wwithout Macro Call

[Listing File Without Macro Definition
[Listing File ‘without Macro Expangion
[Listing File WwWithout Include E<pansion

Uzer Defined Options

Command line
ast? bW -F2 L $(Toolzeting] $[InputFile) d
-0 bjH (I ntermPath) [l nputt ame]. $[0 bjectE «t] ﬂ

Ok I Cancel |

From this interface you can generate listings that include any, or all of the following:
e Macro call lines (-Lc)

e Macro definition lines (-1.d)

e Expanded macros (-Le)

e Expanded include files (-L1i).

IYI Doc ID 7705 Rev 11 147/385

Project creation and build

UMO0036

4.9.3

Metrowerks linker tab

The Linker tab provides an interface for customizing the command line for the Metrowerks
SmartLinker. The gray Command line window, displays all the changes to the command

line as you make them.

Figure 99. Metrowerks linker general view

C Eompilerl Assemblerl Pre-Link Linker IPost-BuiIdl 1 I 4

Defaults |

Category:

General

Olutput File M arne: |$[Proiect8 File).abs

Optimizations Meszages Dizplay
IDisabIed [Debug) j IErrors + W arnings j
Output

[Ship Debug Info

I.ﬁ.ll Listingz [Map + Statistics + j ¥ Don't use En

Ohiject/Lib Modules: |

L
Libraries Paths: I _I

User Defined Optioh:

Command line

linker -0%(PraojectSFile). abs M -StatF=statistic. tet MWEnNFile0n ﬂ
A 0utFile0n w1 -MoEny $0utputPath)$(T argetSMame). pri j

The Category list box allows you to access a general view for easy access to standard
settings and options. You can also change the category to access views were you can
customize settings in greater detail.

In the Category list box, you can choose one of the following views:

e General: We recommend starting in the General settings for Metrowerks linker view.

e Optimizations: Customizing Metrowerks linker optimization settings

e Output: Customizing Metrowerks linker output settings
e Linker PRM File: Configuring the Metrowerks linker PRM file

General settings for Metrowerks linker

148/385

With the category set to General, you can access the following standard settings and

options:

e Output filename options

e Optimizations
e Message display
e Output

e Strip debug information
e “Do not use environment” option (-NoEnv)

e Object/Lib modules

Library paths

Doc ID 7705 Rev 11

UMO0036

Project creation and build

Note:

Output filename options

Allows you to specify the name for the output file. It appears in the command line preceded
by the option -o0.

Optimizations

The Optimization settings allow you to optimize your code once you have finished
debugging your application, in order to make the final version more compact and faster. You
should not optimize your code when debugging as some optimizations will eliminate or
ignore the debug information required by STVD and your debug instrument.

When category is set to General, the standard optimization options are:

e Priority is to Fill Banks: This option minimizes the occurrence of partially filled blocks
of banks. This option adds the -DistOptiFillBanks option in the command line.
Used in generation of ELF files only.

e Priority is to Minimize Code Size: This option gives priority to minimizing the code
size over the memory fill optimization. The -DistOptiCodeSize option is added to
the command line. Used in generation of ELF files only.

e Disable (For Debugging): No optimizations, no option in the command line.
e Customize: Allows you to choose the options that you want for optimization (options
are summarized in Customizing Metrowerks linker optimization settings on page 151)

The Metrowerks toolset outputs files in ELF format and a Hiware proprietary format. The
optimization options above are for ELF format. Hiware optimizations are listed in Table 54.

Message display

This allows you to determine what messages are displayed in the Build tab of STVD’s
Output window. The display options include:

e Only Errors (-w2 in the command line)

e Errors + Warnings (-w1)

e Errors + Warnings + Info (-Wwmsg)

Output
The Output settings allow you to define listings and other output for the linker to generate.

When category is set to General, the standard output options are:

e All Listings (Map + Statistics + Errors): This option generates linker statistics in a
text file (statistic. txt), in addition to map and error listings. This option adds the
-Mand -StatF=statisti.txt optionsinthe command line.

e No listing: No listing generated, no option in the command line.

e Customize: Allows you to choose the options that you want for optimization (options
are summarized in Customizing Metrowerks linker output settings on page 152)

Strip debug information

Check the Strip Debug Info checkbox to remove debug information when you are
generating the release version of your application. Introduces the - s option in the command
line.

Doc ID 7705 Rev 11 149/385

Project creation and build UMO0036

Note:

Note:

150/385

“Do not use environment” option (-NoEnv)

This checkbox enables and disables the no environment option (-NoEnv) in the startup
routine. This option can is specified independently for the C compiler (see Section 4.9.1:
Metrowerks C Compiler tab on page 133) and the assembler (see Section 4.9.2:
Metrowerks Assembler tab on page 143).

When checked in the Linker tab, the -NoEnv option is applied to the linker command line.
This option is checked by default so that the linker uses environment variables specified by
options in the project settings.

Uncheck this option if you want to use an environment file (such as default.env)to
specify environment variables for the linker. The environment file should be located in the
current directory.

Object/Lib modules

This field allows you to specify additional object or library files without modifying the link
parameter file.

You can type the library path name or use the browse button to enter the object and library
modules to include. When entering more than one path, the entries are separated by a
semicolon (;). When you add an element via this field, the -Add option followed by the
filename are added to the command line.

The Metrowerks Linker does not accept spaces in path names.

Library paths

This field allows you to enter the paths for additional objects or libraries to be included by the
linker.

As with Object/Lib Modules, you can type the library path name or use the browse button to
enter the objects and libraries to include. When entering more than one path, the entries are
separated by a semicolon (;). When you add a library via this field, the -1 option followed by
the path name are added to the command line.

The Metrowerks Linker does not accept spaces in path names.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Customizing Metrowerks linker optimization settings

To further customize optimizations, select Customize from the Optimizations list box. The
view in the Linker tab changes to that shown in Figure 100.

Figure 100. Metrowerks linker optimizations view

MCL Selectionl El:ompilell Assemblerl Pre-Link ~ Linker | 1 | 'l

Category: IDplimizations VI Defaults |

Optimizations

I Cuztomize

=~

[Always use nest segment -

[Always check for free

[1Check. for free previous segment when current full
[10verlap Constant Data

[10verlap Code in ROM

[1Enable distribution optimization

] Pricrity iz to Fill the Bank

[1Priority iz to minimize the code size _I
-

1M mbraiza como Ao

Uszer Defined Options

previous segrment

Command line

linker -0%[ProjectSFile).abs M -StatF=statistic.txt WEnFileOn ;l
A0 utFile0n A1 $0utputPath)$(T argetSHame). prm LI

0K I Cancel |

In this view, you can choose from the optimization options listed in Table 54.

Table 54. Metrowerks linker optimization options

Option®

Description

Always use next segment
(-AllocNext)

Used in generation of ELF files only. Method that
allocates objects in the order presented.

(-AllocFirst)

Always check for free Previous Segment

Used in generation of ELF files only. Method that
checks if a partially filled segment will accommodate
the object. Allocation does not respect the order of
objects.

Check for free Previous Segment when
Current Full (-AllocChange)

Used in generation of ELF files only. Method that
allocates an object to the first available segment that
is large enough to accommodate it.

Overlap Constant Data

Used in generation of ELF files only. This option sets

(-cocc=D) the default for optimization to data.
Overlap Code in ROM Used in generation of ELF files only. This option sets
(-cocc=0) the default for optimization to code.

(-Dist)

Enable Distribution Optimization

Used in generation of ELF files only. Causes the linker
to generate a file with the optimized distribution.

Priority is to fill the bank
(-DistOptiFillBanks)

Used in generation of ELF files only. Minimizes the
free space in every bank.

Doc ID 7705 Rev 11 151/385

Project creation and build UMO0036

Table 54. Metrowerks linker optimization options (continued)

Option® Description
Priority is to minimize Code Size Used in generation of ELF files only. Prioritizes
(-DistOptiCodeSize) optimum code size over fill optimization.
Optimize Copy Down Used in generation of ELF files only. This optlm_lzatlon
changes the copy down structure when space is
(-oCopyon) -
limited.
Hiware: Allocate not referenced overlap | This option is used to ensure that all defined objects
variables (-CAllocUnusedOverlap) are allocated when Smart Linking is switched off.
Hiware: Allocate not specified const Constant data segments that are not specifically
segments in RAM (-CRam) allocated to ROM are allocated to RAM.

1. For complete descriptions of optimization options, refer to the SmartLinker user manual from
Metrowerks.

Customizing Metrowerks linker output settings

To further customize the linker output, select Customize in the Output list box. The view in
the Linker tab changes to that shown in Figure 101.

Figure 101. Customizing Metrowerks linker output view

MCL Selectionl CCompiIerl Assemblerl Pre-Link Linker | h I 'I

Category: I Output - I Defaults |

Clutput
I Custarnize: j

[1Link as ROM library

[|Generate both S-Record fle and abs file
[|Generate fixups in abs file

[w]Generate a Map file

[w|Generate a statistics file (statistic.twt)
[w|Create an error file (e log)

[w]Craate an errar listing file [ERRORFILE]

User Defined Options

Command line

linker -0%([ProjectSFile). abs w1 -b -StatF =statishic. bt ;I
MWEnFile0n 2w OutFile0n ${0utputP ath)$(T argetSHame). prm LI

QK I Cancel |

In this view, you can apply the options listed in Table 55.

152/385 Doc ID 7705 Rev 11

UMO0036 Project creation and build

Table 55. Metrowerks linker output options

Option® Description

The output objects are burned to ROM memory. Using this
option is equivalent to specifying “AS ROM_LIB"in the
parameter file.

Link as ROM Library
(-AsROM1ib)

Generate both S record and ABS | Results in the creation of an ABS file and an S record. By

file (-B -EnvSRECORD=s19) default the name for the S record is <filenames. sx.
Generate Fixups in ABS file Used in generation of ELF files only. This option is not
(-SFixups) compatible with debugging.

Generates a map file at the end of a successful link session.

Generate Map file This option is the equivalent to using MAPFILE ALL in the

-M .
(-2 parameter file.
Generate a Statistics file Generates listing of attributes of each allocated object in text
(-StatF=statistic.txt) file. The default file name is statistic. txt.

Create an error file (err.log)

. Creates an error log called err.log.
(-WErrFileOn)

Create an Error Listing file
(ERRORFILE) Creates an error listing file called ERRORFILE.
(-WOutFileOn))

1. For complete descriptions of optimization options, refer to the SmartLinker user manual from Metrowerks.

Configuring the Metrowerks linker PRM file

The Linker PRM file tab provides an interface for selecting the linker's parameter file (PRM)
or defining one automatically. Access this view by selecting Linker PRM File in the
Category list box. The view will change to that shown in Figure 102.

Figure 102. Metrowerks linker PRM view

MCU Selectionl EEompiIerI Assemblerl Pre-Link Linker I 1 I 4
Category: ILinker PRMFie =] Defaults |
Seript Prm file name: [${0utputPathi$(TargetsNa . | W Auto
Wectar File Mame: Ivector.c _l

Segment/Section name Fram Ta Type I;l
=l Fero Page Vars (B0 Oxbf MNO_L...
_ZEROPAGE
.overlap
E Global Vars 0100 0«87f | READ .
.data
bss
' Stack (w0 Chaff MNO_L...
.stack,
= Code,Congtant 0=f000 Oxfidf | READ... |
[hd
Command line
linker -0%(ProjectSFile).abs M -StatF=statistic. tat WEnFileOn ﬂ
A DutFileDn w1 -MaEnw $0utputPath)$T argetS M ame] prm j

From this interface you can identify a parameter file to use during linking or use the Auto
option to generate a parameter file according to the settings in the mapping table.

IVI Doc ID 7705 Rev 11 153/385

Project creation and build UMO0036

Note:

Note:

154/385

If you specified to output in Hiware format in the Compiler or Assembler tabs, you must
specify a PRM script that is written for this output format in the Script Prm file name field.
You cannot use the Auto option.

When the Auto option is not checked, you have access to the Script Prm file name field. All
other fields are grayed, as they pertain only to automatic generation of the parameter file. In
the Script Prm file name field, identify the parameter file to use either by typing the path
name or using the browse button to locate it.

If you are using your own PRM file (Auto option is not checked) you should remove the
LINK command from the PRM file before building your application. The -0 option in the
Linker command line is redundant with the LINK command in a PRM file. This results in a
warning during the linking of the application. For this reason, the LINK command is not
added to PRM files that are automatically generated by STVD.

For more information about creating parameter files manually, refer to the Metrowerks
SmartLinker User Manual.

Automatic segment declaration and section assignment

When the Auto checkbox is not checked, the Linker relies on script file (*. prm) that you
write for information about memory segments and the code sections that are assigned to
them.

When the Auto checkbox is checked, a configurable mapping is displayed in the Linker tab.
The mapping's first level elements are segments in the target microcontroller's memory.
Clicking on the "+" sign for a segment allows you to see the code sections that are assigned
to the segment. This mapping is used to automatically generate a linker script file (default
name TargetSName . prm) that contains the declarations of memory segments and the code
sections assigned to each.

The automatically generated linker script file is not write protected and you can modify this
file in any editor. However, it is regenerated each time you build the application when the
Auto feature is enabled. If you make changes to the file and Auto is enabled, the changes
will be overwritten when STVD updates the file based on the mapping in the Linker tab.

To protect your modifications, rename the file. You can then use this file to link you
application in the same way that you would use a link script file that you wrote yourself (see
Configuring the Metrowerks linker PRM file on page 153).

Using the ELF/DWARF 2.0 format to build your application will allow you to use both the
Auto PRM file generation option, or your previous PRM file. If you choose to use the
previous PRM file, note that it must correspond to the syntax used with the ELF/DWARF 2.0
format, notably the ELF syntax uses SECTION in place of SEGMENT. Also ensure that the
variables for the start07 routine are placed in a No.Init section.

If you have disabled the automatic generation of the parameter file, it will not be updated if
you make changes to your project, such as removing a source file. If you make such a
change you will have to edit the parameter file manually.

Modify the segment mapping and section assignments

You can add memory segments and delete or rename the segments that you have created.
Default segments cannot be deleted or renamed. However, you can modify their start and
end addresses.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Note:

You can also modify the memory type for any segment. Right-click on the Type cell for any
segment. The pull down menu in the Type cells of the mapping allows you to choose from:

e READ_ONLY - ROM memory that cannot be modified during execution.
e READ_WRITE - Any memory that can be read and modified during execution.
e NO_INIT - Specifies any memory that is not to be initialized upon startup.

When you apply your memory settings STVD will determine the compatibility of your entries
during build. Any incompatibilities will appear as errors in the Build tab of the Output
window.

Right-clicking on a cell in the mapping opens a contextual menu with the following
commands:

e Add Segment - Adds a row of empty fields to the mapping. Enter the name of the new
segment and press the Enter key. If you do not enter a segment name, but click on
enter, the new segment is removed from the mapping. You cannot use the same
segment name twice. Naming is case sensitive.

e Add Section - Adds a new code section to the mapping. The interface only allows you
to enter the name of the section (not an address range for it). You cannot use the same
section name twice in the mapping. Upon link, the code sections are assigned to the
memory segment (address range) in the order in which they appear in the mapping.

e Change - Allows you to change the value or entry in the selected cell of the mapping.
Address values can be entered in decimal or hexadecimal (use “0x " notation)
formats. You can change the names of the default memory segments, however you
cannot change the names of the default code sections.

e Delete - Deletes the selected entry. You cannot delete the default memory segments or
code sections.

e Add Segment - Adds a row of empty fields to the mapping. Enter the name of the new
segment and press the Enter key. If you do not enter a segment name, but click on
enter, the new segment is removed from the mapping. You cannot use the same
segment name twice. Naming is case sensitive.

e Add Section - Adds a new code section to the mapping. If you do not enter a section
name, but click on enter, the new section is removed from the mapping. You cannot use
the same section name twice. Naming is case sensitive. The interface only allows you
to enter the name of the section (not an address range for it). Upon link, the code
sections are assigned to the memory segment in the order in which they appear in the

mapping.

Vector file name field

This field allows you to enter the path name for the file that contains the vector definitions for
your application. You can either type the file’s path name or use the browse button to locate
it. STVD will not allow you to continue if this field is empty.

Doc ID 7705 Rev 11 155/385

Project creation and build

UMO0036

4.10

Note:

4.10.1

156/385

Configuring folder and file settings

STVD's folder and file settings allow you to configure a subset of project settings that are
specific to certain folders and files in your project. Some files, such as header files in the
dependencies folder do not have configurable settings.

When the Project Settings window is open, access the settings for a file or folder by
selecting it in the directory tree on the left side of the window. The view will change to show
you the tabs that are available for the file or folder.

If the Project Settings window is closed, access settings for a file or folder by right-clicking
on it to get the Contextual menu. Then select Settings, and the Project Settings window
will open with the tabs that are available for the file or folder you have selected.

From this window, you can configure the settings that are specific to the selected file or
folder. Only those tabs containing settings that apply to the selected file/folder are displayed.
The settings you make here, override the settings made at the project level for the selected
file or folder. This section provides information about settings that are specific to folders and
files, including:

e General settings for files and folders

e Custom build tab

e Build commands
Otherwise, these tabs contain the same settings and options that are available at the project

level. For detailed descriptions of these tabs and their options refer to the Project Settings
section for your toolset. The appropriate sections are summarized in Table 56.

Table 56. Toolchain specific tabs
Toolset Settings tab Available for...
ST Assembler/Linker ST ASM tab folders, source files
Cosmic C compiler tab folders, C source files
Cosmic C
Cosmic C Assembler tab folders, ASM source files
Raisonance C compiler tab folders, C source files
Raisonance
Raisonance Assembler tab folders, ASM source files
Metrowerks C Compiler tab folders, C source files
Metrowerks
Metrowerks Assembler tab folders, ASM source files

No settings tabs are available for the Dependencies folder.

General settings for files and folders

The General tab is common to all toolsets and all files or folders.

If no settings can be configured for the selected file or folder, the Project Settings window
will open to the General tab, which will contain the message “No settings”

When no options are checked, the tabs that are specific to your toolset and the selected file
or folder will be visible (see Table 56).

Doc ID 7705 Rev 11

UMO0036

Project creation and build

Note:

4.10.2

Note:

When settings are available you can configure the following:

e Always use custom build step: Checking this box allows you to access the Custom
Build tab, where you can enter your own commands and options for building this file
(see Section 4.10.2: Custom build tab on page 157).

e Exclude file from build: Checking this box will exclude this file or folder when you build
your project. When you check this box, all other tabs disappear.Only the General tab is
available.

e Intermediate directory: This field allows you to specify the path name for the folder
where intermediate files from the compiler or assembler will be stored. If you do not
specify an intermediate directory to use for a file or folder, then intermediate files are
stored in your project’s Output Directory by default (see Section 4.5.1: General
settings tab on page 85). You can type the path name of a directory you have created,
or use the browse button to locate it.

Specifying an intermediate directory may be necessary if you have two or more source files
in different directories with the same name. In this case, the default mechanism for naming
intermediate files results in identical flenames. When output to the same default directory,
the last intermediate file generated will replace any previously generated file with the same
name.

Custom build tab

The custom build feature allows you to specify your own commands (based on your toolset)
to build your application. Custom build commands override any standard settings that you
may have applied using the standard project settings interface. Only those custom
commands which you have specified are performed during the build.

This file provides the following features:

Description field: Here you can enter a description that will appear in the Build tab of the
Output window, to help you identify when your custom build command is being executed
and view any related messages or errors.

Commands field: Here you enter the commands to be executed during the build using the
syntax and options specific to your toolset.

Directory button: Click on this button for a list of commonly used macros to help you identify
directories and path name to use during the build. Select the macro from the list and it is
automatically added at the cursor’s position in the Commands field.

Files button: Click on this button for a list of commonly used macros to help define filenames
and extensions to use during the build. Select the macro from the list and it is automatically
added at the cursor’s position in the Commands field.

Dependencies button: Click on this button to open the User Defined Dependencies
window. In this window, you can specify the dependencies for custom building of the
selected source file. To add files as dependencies, click on the file icon and type the path
name, or browse to find the file. Change the order of the files in the list by using the up and
down arrow buttons. Once you have entered the dependencies click on OK.

This option is only available in the Custom Build tab for files, not folders.

Doc ID 7705 Rev 11 157/385

Project creation and build UMO0036

411

4.12

158/385

Specifying dependencies between projects

Because a project may use an element or object generated during the build of another
project, STVD provides a Dependencies window that allows you to identify projects that are
the source of dependencies for other projects. To define dependencies between two
projects, both must be included in the workspace.

To define project dependencies:
1. Select Project > Dependencies.
The Project Dependencies window opens.

2. Click in the Select project to modify field, to view the drop-down list of all other
projects in the workspace.

3. Select the project that you want to make dependent from the drop-down list.

The view in the Dependent on the following project(s) field will change to show all of
the other projects in the workspace that it can depend on.

4. Check the box next to any projects that it depends on. Then click on OK to confirm the
setting.

STVD will not allow you to make projects mutually dependent. For example, if Projectl is
dependent on Project2, you cannot make Project2 dependent on Projectl. To avoid this,
Projectl does not appear in the Dependent on the following project(s) field for Project2,
as it is already dependent on Project2.

You can also define dependencies for specific files. This requires using the Custom Build
option in the file-level Settings window. For more information, refer to Section 4.10:
Configuring folder and file settings on page 156.

Build commands

From the Build menu you can choose from commands that allow you to build your entire
application, build parts of your application or just compile its source files.

You can only access the build commands after you have set up a project, and when you are
in the Build context. In the Debug context (Debug > Start Debugging), these commands
are not available. Therefore, if you make changes to your application source files or project
settings during a debugging session, you must end your debugging session (Debug > Stop
Debugging) to access the build commands and rebuild your application.

When you are ready to build your project, ensure that the project is set to active. To do this,
select Project > Set Active Project and then click on the project that you want to make
active. The checkmark is placed next to the project you select and the project name in the
Workspace window changes to bold type.

To build a project or compile selected files, go to the Build menu. Here you have access to
the commands listed in Table 57.

Doc ID 7705 Rev 11 KYI

UMO0036

Project creation and build

Table 57. Build commands

Command

Description

Compile

Compiles the C or Assembler source file that is in the active Editor window.
You can compile a file even though the project it belongs to is not set to active.
To compile a file, open the file in the Editor window. If it is already open, click
on the Editor window that contains the file you want compile to ensure that it is
active. The name of the selected source file will appear next to the Compile
command. Click on Compile.

Build

Starts the incremental build of the active project with the current configuration
or settings.

Rebuild

Cleans (removes intermediate files) and rebuilds the active project with the
current configuration or settings.

Batch build

Builds, cleans or rebuilds all the selected projects in a workspace for the
selected configuration(s). To do a batch build, select Build > Batch Build to
open the Batch Build window. This window displays all the projects in a
workspace and the applicable configurations. Select the projects that you
want to build and the configuration to use by clicking on the appropriate
checkbox. Once you have selected the projects, you can Build, Clean, or
Rebuild them by clicking on the appropriate button.

Clean

Removes all intermediate files that have been generated by previous builds of
the active project.

Once you have built your application for the selected microcontroller you are ready to select
your debug instrument and start debugging your application, or program your application to
your target microcontroller.

Doc ID 7705 Rev 11 159/385

Basic debugging features UMO0036

5

160/385

Basic debugging features

Once you have built your application for debugging, you can choose your debugging
instrument and enter the Debug context. In this context, STVD provides access to the
debugging features that are supported by your debugging hardware or instrument. Because
debugging instruments support different features, the commands and views that are
available during debugging will vary based on your hardware configuration. For this reason,
you must select your debug instrument before you can start debugging. For instructions, see
Section 5.1: Selecting the debug instrument.

Once you have selected your debug instrument, you are ready to start debugging. The
debugging features described in this section are available for all hardware configurations:
Simulator, DVP2, DVP3, EMU2B (HDS2), ICD and EMU3 emulators and STice. The
following sections tell you about:

e Section 5.1: Selecting the debug instrument
e Section 5.2: Configuring your target MCU

e Section 5.3: Running an application

e Section 5.4: Editor debug actions

e Section 5.5: Disassembly window

e Section 5.6: Online assembler

e Section 5.7: Memory window

e Section 5.8: Instruction breakpoints

e Section 5.9: Data breakpoints

e Section 5.12: Watch window

e Section 5.10: Call stack window

e Section 5.11: Local variables window

e Section 5.13: Core registers window

e Section 5.14: MSCI tools window

e Section 5.15: Symbols browser

e Section 5.16: Peripheral registers window
e Section 5.17: Memory trace window

e Section 5.18: Online commands

e Section 5.19: Limitations and discrepancies

For other features that are specific to your debug instrument refer to:

e Section 6: Simulator features on page 202 for software simulation without a debug
instrument

e Section 7: In-circuit debugging on page 223 for EMU3 with ICC add-on

e Section 8: DVP and EMU2 (HDS2) emulator features on page 237 for all DVP and
EMU2 emulators

e Section 10: EMU3 emulator features on page 284 — for EMU3 emulators
e Section 9: STice features on page 258 — for STice advanced emulation systems

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

5.1

5.1.1

Selecting the debug instrument

Your choice of target microcontroller and debugging hardware determine what features you
will have access to when debugging. In the Debug Instrument Settings window you can:

e Identify your debug instrument and the port it is connected to
e and Add communication ports

Identify your debug instrument

To identify your debug instrument for STVD:
1. Select Debug Instrument>Target Settings from the main menu bar.

Figure 103. Identify debug instrument and connection

Debug Instrument Settings gj

Target]

Debug Instrument Selection;

Select the T arget you want . _
to use for debug session . |SW|m 3Tice ﬂ

¥ Hat Flug Start Debug [only when no application is loadded)

Target Port Selection:

Select the connection port for
the Target selected above. |usb:Afush ﬂ

Add Remove |

[Show the selected target notification at start of debugging session

(i) | Cancel | Apply |

2. Select the appropriate option for your debugging hardware in the Debug Instrument
Selection list box. Table 58 describes the available options.

Table 58. Debug instrument types

Selection in STVD Applicable development tools
DVP2 If you have an ST7-DVP2 series emulator
DVP3 If you have an ST7-DVP3 series emulator
EMU3 If you have an ST7-EMU3 series emulator
EMU2B (HDS2) If you have an ST7-EMU2 (also known as HDS2) series emulator.
ICD (ST Micro Connect or If you are using an ST7-ICD (STMC) debugger, the EMU3 emulator
DVP3) with ICC add-on, or the DVP3 emulator for in-circuit debugging.
ICD RLINK If you are using the Raisonance RLink for in-circuit debugging over

ICC.

ICD STICK If you are using the ST7 STICK for in-circuit debugging over ICC.
SIMULATOR If you are not using any debugging hardware.

Doc ID 7705 Rev 11 161/385

Basic debugging features UMO0036

Note:

5.1.2

162/385

Table 58. Debug instrument types (continued)

Selection in STVD Applicable development tools
STice If you are using the STice as a plain emulator.
SWIM RLink If you are using the Raisonance RLink for in-circuit debugging over
SWIM.
SWIM STice If you are using the STice advanced emulation system in ICD
configuration.
3. If the selected debug instrument is SWIM RLink or SWIM STice, then you can

optionally enable the Hot Plug Start Debug checkbox to start a debug session in hot
plug mode.

Note that this option is disabled when you start a debug session from an open
workspace in STVD.

When you start a debug session in hot plug mode, a connection to the MCU is
established while it is running, allowing you to see the state of the memory. For more
information on debugging in hot plug mode, refer to Section 7.4: In-circuit debugging in
hot plug mode (SWIM only) on page 233.

In the Target Port Selection list box, select the communication port (parallel, USB or
Ethernet) that your debugging hardware is connected to.

The option usb://usb is the automatic USB search option, whereas usb://htil, hti2,...,
hti128, are used to indicate a specific USB port. Ethernet connections are listed by the
IP address for the device. If the connection that you want to use is not in the list, you

can add it by clicking on the Add button. (see Section 5.1.2: Add communication ports).

When Simulator (SIM) is selected as the target, Port Selection is not available because
Simulator is a software debugging tool.

5.

Click on OK, to confirm your settings and close the Debug Instrument Settings
window.

Add communication ports

To access the window for adding hardware connections:

1.

3.

Select Debug Instrument>Target Settings, then click on the Add button in the Debug
Instrument Settings window.

This will open the Add Connection dialog box where you can specify USB or Ethernet
connections to add to the list of options in the Debug Instrument Settings window.

Select the type of connection (USB or Ethernet) that you would like to add from the
Connection Type list box.

Enter the necessary information in the appropriate fields.

For Ethernet connections:

Type the IP address (four sets of three numbers) that is assigned to your debug
instrument in the IP Address field (see Figure 104). Information about assigning an IP
address to your debug instrument is provided in the Connectivity section of your
hardware user manual for the debug instruments that support Ethernet connections.

Type a description (up to 40 characters) in the Comments field.

Doc ID 7705 Rev 11 KYI

Basic debugging feat

ures

Figure 104. Add an Ethernet connection

Debug Instrument Settings
Tanpet |

Diebusg Instiumert 5elaction

X

Select the Tangst pou want
b s for debug session .

Target Pait Selechon

W Show the seldectad § | 5

|5wimSTice

[# Hot Flug Start Diebug (onky when no applicastion i loadded)

Ethemet - I Connection lype

E thsireal Corifigue ston
214

[ST MicroConnec]

Sielect the conneclion p ;

LERE LR elL B Add conneclion

A2 12 1P addess

. Comment

For USB connections, either:

a connection option that automatically searches all USB ports for your debug

instrument (ushb://usb).

Figure 105. Add a USB connection

Enter the number for the USB port (an integer between 1 and 128) in the Please Insert
STMC ID field, to create an option that identifies a specific USB port (see Figure 105),

or place a checkmark in the Automatic USB Connection Search checkbox to create

Debug Instrument Settings

Tanget

Diabuag Instiument Selaction

Select the Targesl pou want

b wipe for dsbug session . | S STice

T argedt Poit Selechion

Select the connection poil for
the Tapat sedactad abowe. |u;b Fhuzh

[Hot Flug Start Diebug [ork when no appiication & loadded)

-|
—

Add Add conneciion E
P Shew the selacted lasget notiication &t slart of | SR - | corerection yre
LISE Configuration
o Ples insant STME 1D
Automatc USHE connechion seach
4. Once you have entered the appropriate information, click on OK.
163/385

Doc ID 7705 Rev 11

Basic debugging features UMO0036

5.2

5.2.1

164/385

This returns you to the Debug Instrument Settings window. The new connection option
has been added to those in the Target Port Selection list box and the new option is
selected automatically.

Configuring your target MCU

From STVD, you can specify the configuration of your microcontroller's memory and the
behavior of its peripherals. The MCU Configuration window provides interfaces for
configuring:

e Memory map

e On-chip peripherals

The options presented in the MCU Configuration interface are specific to your
microcontroller. For more information about your microcontroller's memory map and
supported peripheral features, refer to your microcontroller’s datasheet.

Memory map

The default memory settings depend on the microcontroller selected. However, you can
configure the memory settings as you want if your application requires non-default settings.

This feature enables you, for example, to temporarily decrease the RAM zone, and increase
the size of the ROM (to exceed what is available on the real microcontroller) during the first
stages of development. Once your program is functional, you can start to optimize its size by
reducing your code and returning these zones to their original size. There are two different

actions you can perform on the memory configuration:

e change the type of an entire existing zone

e define a new zone of any type wherever possible

Depending on your target MCU, the available memory types may be: Peripherals, RAM,
ROM, Stack, System, EEPROM, Reserved, Vectors, Application, NEM. Some of these

zones can have their type and size modified, others cannot be modified. Their definitions
and properties are explained in Table 59.

Table 59. Memory types

Type Description

Microcontroller internal or rebuilt peripherals registers. Their properties are

Peripherals defined as in the microcontroller datasheet. This memory cannot be modified.

RAM Random-Access-Memory of the microcontroller. This memory type can be

modified.

ROM Read-Only Memory of the microcontroller. Write protected. This memory type
can be modified.

Stack Stack of the microcontroller. This memory type cannot be modified.

System The emulator uses this space for emulation management. This memory type

cannot be modified.

This memory is internal to the microcontroller and is located inside the
EEPROM emulation device. The programming of this zone is done according to an
automaton found in the datasheet. This memory type cannot be modified.

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

Table 59. Memory types (continued)

Type Description

This memory zone is reserved as on the microcontroller. It is not allocated to

Reserved any use and is write protected. This memory type can be modified.

This memory zone contains the user interrupt vectors zone. It is write

Vectors protected. This memory type cannot be modified.

This memory type is microcontroller-specific. You can add memory or
peripheral resources on its hardware. It is not available on every emulator.
Properties are linked to the user hardware. This memory type can be
modified.

Application

NEM (Non-Existent | This is a memory zone that is inaccessible or masked from use. This memory
Memory) type can be modified.

For most target MCUs, you may modify the following types of memory zone: RAM, ROM,
Reserved and Application.

Modifying an entire memory zone

You can modify an entire zone of memory from its default type. Memory zones which cannot
be modified are grayed and not accessible.

Figure 106. Memory mapping

MCU configuration x|
tap I Optionz |
From To Type I

0x0000 | 0x007£ | PERIPHERALS
0x0080 | Ox00EE | RAN
0x0100 | Ox01EE | STACE

0x0200 | 0x047f | RAN Modifyhrea..l
0x0480 | Ox7EEE | RESERVED
DefauItMapl

0x8000 | OxE£df
Oxffel | Oxf£EL

ROk
FLASH
RESERVED
EFR

EEP

Ok | Cancel | Help |

The left and center columns of the Memory Configuration tab indicate the address range
of each memory zone. The right column indicates the memory type of each zone.

Defining new zones in the memory mapping
1. To designate a new zone in the memory mapping, click on Modify Area in the MCU
Configuration window.

2. Inthe New MCU Memory Range pop-up, enter the address for the new memory zone,
and its type, then click on OK.

The new zone and its type will appear in the map displayed in the MCU Configuration
window.

You can restore the original mapping by clicking on Default.

Doc ID 7705 Rev 11 165/385

Basic debugging features UMO0036

5.2.2

Note:

Caution:

166/385

Figure 107. Specifying a new memory zone

Mev MCU memony range
From : IDHDEBD To: ID:-:3ffﬂ
Type: |ROM hd

On-chip peripherals

The Options tab of the MCU Configuration window, allows you to configure your target
device’s options and on-chip peripherals. All of the configurable options for your target
microcontroller are listed in the Options column. Depending on the microcontroller
selected, the configurable options and the default settings displayed in the Option column
will change.

Beside each option, a default value is displayed. To change the value for an option, double-
click in the Value field associated with the option. Then select the new value from the pull
down list.

Figure 108. On-chip peripherals

MCU configuration

Map Options |

Option Walue I
dd B0V

Fosc AMHz -]
INTERRUPT
Wi TCHDOG
WwWOG_HALT

QK. | Cancel | Help |

For more information about the configurable options available on your target hardware
device, refer to your microcontroller datasheet.

When in-circuit debugging, if you have the wrong option settings, your microcontroller might
fail to start up. For more information, refer to Section 7.1.4: Configuring option byte settings
on page 226 under Section 7: In-circuit debugging on page 223.

Doc ID 7705 Rev 11 IYI

UMO0036 Basic debugging features

5.3 Running an application
An application loaded into the STVD may be run using the commands available in the
Debug menu. In the debugging process, commands in the Edit menu and the Editor's
contextual menu are also frequently used.
Typically, the source code for the loaded program will be viewed in an Editor window during
debugging. Breakpoints may be set and removed, and run commands issued from within the
Editor window.
For this reason, most commands associated with the debugging process are available in the
Edit menu and/or the Editor's contextual menu (to obtain the contextual menu, right-click
anywhere within an Editor window). Use of the Editor during debugging is detailed in
Section 5.4: Editor debug actions on page 169.
This section provides information about running your application in the debug context,
including:
e Run commands
e Stepping modes
e Program and STVD status bar display
e Monitoring execution in source windows

5.3.1 Run commands
The commands available in the Debug menu and on the Debug toolbar are listed in
Table 60.

Table 60. Debug menu run commands

Command Description
Start a debugging session. In order to start a debug session, you must have built your
Start Debugging application into an executable, specified a debug instrument that supports the application’s

target MCU and specified the connection port for the debug instrument.

Stop Debugging

End the debugging session. You cannot build your application or change the target MCU
while a debugging session is open.

Go to PC (Program | environment and values as they should be at the current source code statement pointed to

The program information displayed in the STVD windows is modified to show the program

Counter) by the PC. This command may be used to retrieve the current source code statements after
having scrolled in the source file, or after changing source file viewing.

Run Resets the microcontroller and executes the application.
Resets the PC to first instruction of the main function for applications in C language. For

Restart applications in Assembly, the PC is set to the first instruction of the function labelled main, if
one exists.

Chip Reset Resets the microcontroller. The PC is reset to the beginning of the startup routine.
Continues execution of the application from the position at which it is halted. When execution

Continue has stopped at a breakpoint, it will be continued from the following instruction (as if no break
occurred).

Stop Stops program execution.

Step Into, Step Over, Step Out: These three commands permit enhanced control of single-stepping. Each
provides a different single-step operation.

574

Doc ID 7705 Rev 11 167/385

Basic debugging features UMO0036

Table 60. Debug menu run commands (continued)

Command

Description

Step Over:

To avoid single-stepping through functions that are not relevant to the debug operation.
When a function call occurs, the command Step Over will cause the program to execute the
function, update the program data displayed by STVD and stop at the next instruction line in
the main program. This avoids having to single-step line by line through a function call which
is not of current interest (for example already debugged).

Step Into:

This command single-steps each time it is employed, so at a function call it will single step
line by line through the function which has been called. It is equivalent to, and replaces, a
Single Step command.

Step Out:

When used inside a function, the Step Out command runs the executable to the point of
return from the function call and then updates program data.

In all three cases, the program data is updated to reflect the new PC location after execution
of the step command. This corresponds to the values which would exist at that PC location if
the program were running normally.

Run to Cursor

This command runs the program from the current Program Counter location to the
executable code corresponding to the cursor's current position in the program text. If a
breakpoint is encountered before the cursor position, the execution stops at the breakpoint,
but if restarted will not stop at the cursor position unless this option is again selected.

Set PC

Set a new value for the Program Counter: move PC from its current location to a new
location. This is done without running the program (unlike the Run to Cursor command,
described above). Debug actions can then be carried out with the new PC value.

The commands Go To PC, Run to Cursor and Set PC are also available in the Editor
contextual menu for ease of access when using the Editor during debugging.

5.3.2 Stepping modes

For the Step Over and Step Into commands, you can choose one of two modes of
execution. To change the modes, select Debug Instrument>Stepping Mode, the resulting
dialog box will allow you to select either:

168/385

Enter Interrupts When Stepping Into: This is the default mode. In this mode, STVD
uses the debug instrument’s primitive single step to execute one assembler step at a
time. When Stepping Into, STVD will stop at the entry of any interrupts that occur
during the stepping process.

Don’t Enter Interrupts When Stepping Into: In this mode, to step through a single
assembler instruction, STVD sets an instruction breakpoint on the next instruction to be
executed if no interrupt occurs. It then runs the application up to this breakpoint. When
Stepping Into, STVD will not stop at any interrupts that occur during this stepping
process, unless you have placed a breakpoint there prior to executing the step
command.

Limitations:

— Cannot handle an instruction that jumps to itself only once. In this case, the
instruction is executed again and again. As a result stepping into or over such an
instruction (Step Into ASM or Step Over ASM) does not work as expected.

Doc ID 7705 Rev 11 KYI

UMO0036 Basic debugging features

5.3.3 Program and STVD status bar display

Figure 109. Debugger status on status bar

loaded
program

il Stoo_fi_Feacy [P
v

)
- Debugger

Wl D ebugger |

REIEEY O etugger

Status Bar

|
| STVD
|

e The left panel of the status bar shows the state of the loaded program.

Run/Stop indicates whether the loaded program is running or has been stopped.
Halted the microcontroller is executing the "Halt" instruction.

WFI the microcontroller is executing the "WFI" instruction.

No Access (SWIM only) the microcontroller is either executing "Halt", "WFI",
"WFE" instructions or protected code. In this state no core resource is accessible
for the debugger.

e The right panel of the status bar shows the state of the STVD debugger software.

— Ready indicates the Core Debugger is available and will accept all user
commands.

— Debugger indicates the Core Debugger is working. Only the user command Stop
Debug is accepted by the Core Debugger when working.

534 Monitoring execution in source windows

Program execution is followed in the source windows—meaning the Editor window(s) and
the Disassembly window. Whenever execution stops (for example at a breakpoint or after a
step command has been completed) the Editor and Disassembly windows are updated
automatically so that the new Program Counter (PC) location is visible.

Other STVD windows are also automatically updated to show the current values of variables
or register values for example.

54 Editor debug actions

To complement its Editing features the Editor’s debug actions provide a rapid graphic
method for controlling application execution and viewing the parameters resulting from
execution during the debugging phase of application development. Changes in variable
values can be traced with ease and related directly to their originating lines in the Assembler
or C-language source files.

IYI Doc ID 7705 Rev 11 169/385

Basic debugging features UMO0036

For debugging, the Editor's active window may contain either a C-language or an Assembly
language source file that constitutes a part of the application (and containing debug
information).

Debug icons are placed in the Editor debug margin. When the application is run, the
Program Counter (PC) indicator is visible in the Editor window, indicating the current
program line. You can set breakpoints at selected lines to halt program execution wherever
you want.

Run options are accessed from the Debug menu. Program controls include a selection of
run and single step actions. The results of these actions, for example the Program Counter
position, the real values of program variables at that location, the Stack contents and other
debug data, are available in the Editor and the various view windows.

In addition, a Call Stack Frame indicator may be displayed relative to the Program Counter
(PC) indicator. The values of program variables at the position marked by the Call Stack
Frame indicator are available, whatever the location of the PC.

Editor contextual menu

In addition to editing features, the Editor contextual menu (available by right-clicking with the
mouse in the Editor window) gives you direct access to the debugging features described in
Table 61.

Table 61. Editor contextual menu commands

Command Description

Insert Read/Change Data Breakpoint | Refer to Section 5.9: Data breakpoints on page 186.

QuickWatch Refer to Section 5.4.2: QuickWatch window on page 174.

Go to... Move to the line specified.

Move to the corresponding line in the disassembly window.

Go to Disassembly Refer to Section 5.5: Disassembly window on page 175.

Reposition the text cursor on the next line containing

Go to Next Line With Code
program code or data.

When the cursor is on a symbol representing a program
Go to Definition Of “ " element, this command moves the cursor to the location in
the code where the symbol is defined.

The program information displayed in the STVD windows
is modified to show the program environment and values
as they should be for the PC located at the current source
Go to PC (Program Counter) code statement. This command may be used to redisplay
the current program values at the PC location, after other
values have been shown as a result of using one of the
other ‘Go To’ commands.

Allow you to insert breakpoints, and enable/disable them.
These commands affect the line of code where the cursor
is located regardless of the cursor’s position in the line.

Insert/Remove Breakpoint,
Enable/Disable Breakpoint

170/385 Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

Table 61. Editor contextual menu commands (continued)

Command

Description

Run to cursor

Runs the program from the current Program Counter
location to the executable code corresponding to the
cursor's current position in the program text. If a breakpoint
is encountered before the cursor position, the execution
stops at the breakpoint.

Set next PC (Program Counter)

When the cursor is positioned on a source-code statement
in an Editor window, or on a line in the Disassembly
window, the command Set Next PC moves the Program
Counter from its current location to this new location. This
is done without running the program (unlike the Run to
Cursor command, described above). Debug actions can
then be carried out with the new PC value.

Watch pop-up

When a variable is selected in the active Editor window (the mouse pointer paused on a
variable identifier-string delimited by white space or other usual separators, or on any
highlighted variable identifier), a tool-tip banner is activated, displaying the current numeric
value of the variable at this program location, if known.

This feature can be enabled/disabled from in the Edit/Debug tab of the Options window
(accessible by selecting Tools>Options from the main menu).

Figure 110. Watch pop-up for variables

&8 timer.c

100
101
10z

103
104
105
106

wvoid waiting loop(const unsigned long co

i

unzigned long i:

[0 x|

107 o for(i=0; i<foupt: i++)
108 { s
109 ssm_nop i) :
110 H
111 ¥ J
timer.c wechor.c |
Doc ID 7705 Rev 11 171/385

Basic debugging features UMO0036

5.4.1 Editor debug margin

The left margin of an Editor window is a special area for placing debugging icons.

Figure 111. Editor window margin icons and contextual menu

=i timer.c M=k
66 -~
67
b = $ cu
[» Program Counter o switch({currentStal ° e
el RN = Copy
[» Bookmark] case RED: B paste
e next3tate=GRE])
.Y 73 hreak: #Find..
+ Enabled Breakpaoint * case OFF:
) Insert Data Breakpoint
75 next3tcate=0FF, .
: : =g i Insert Read Data Breakpoink
+ Disabled Breakpoint default: Insert Change Data Breakpaint
78 next3tate=cur:
; & Quickiatch. ..
« Enabled Breakpaint @ break; % 5 ;
& Bookmark 80 } nanbmanEn
51
a2 k'E| G0 To....
83 if{ state[nextitcal 50 Ta Disassembly
54 = G0 To Mext Line With Code
85 currentState=ne: (Ga ta Definition COF "-"
56 state[currentic: o> Go To PC
857 ¥
P I | M Insert/Remave Breakpoint
w Enable/Disable Breakpoint
* } Bun To Cursor
« Contextual menu
Set PC
Advanced »

The illustration shows several margin icons in place (breakpoints—active and disabled,
bookmarks and the Program Counter) and shows the Editor's contextual menu open (right-
click on mouse to open the contextual menu).

The Program Counter location is visible, showing the line at which the program has halted.
Bookmarks are enabled/disabled in the Edit menu (Edit>Toggle Bookmark). Instruction
Breakpoints are inserted/disabled/removed in the Editor contextual menu or in the Edit
menu (Edit>Insert/Remove or Enable/Disable Breakpoint).

Debug symbols in other windows

The Editor debug functionality is reciprocal. Breakpoint symbols placed in the Editor window
also appear in a corresponding position in other windows.

The Program Counter indicator and the Call Stack indicator are also shown in the
Disassembler window together with breakpoint symbols. The debug margin of the
Disassembler window may be used to place breakpoints, which also appear in the
corresponding Editor window.

Margin icons

Debugging icons are placed in the Editor's debug margin at the same level as the line of
code to which they apply.

172/385 Doc ID 7705 Rev 11 KYI

UMO0036 Basic debugging features

Note: A breakpoint and a bookmark may be placed together at the same position.

e Breakpointicon @: a round red dot symbol. Changes in a breakpoint icon's color
indicate the following:

— Ared breakpoint dot means that breakpoint is enabled.
— A grey breakpoint dot means that breakpoint is disabled.

— A brown breakpoint dot (shown in Figure 112) means that STVD is uncertain
about the position of the breakpoint. The position of the brown dot indicates where
STVD believes the breakpoint is, but cannot verify its position. This situation can
occur if the application you are debugging is missing debug information.

Figure 112. Brown breakpoint icon in Disassembly window

Disassembly B

timer.c: 69 switch(current3tate) ;I
& 0xf000 <traplsk > OXE&S0 LD A, 0xE0 LD L, currentitate

Oxf002 <trapI3F+Z > OxA00Z 3UE A, #0x0Z 3UB A, #0x02
Oxfodd <trapIsB+4 > Ox2704 JREQ Oxfolo JREQ Oxf010
Oxf00a <trapI3R+o F Ox4h LEC AL DEC i
Oxf007 <trapIl3R+7 > Oxz270EB JEREQ Oxfol4 JREQ OxfOol4
timer.c: 77 default:
Oxf009 <trapIl3R+9 > OxE&S0 LD A, 0Ox50 LD L, currentitate
Oxf00kh <trapISR+11 = Ox4C INC A INC A
Oxf00c <trapISR+12 > OxET7ES LD OxhS, 4 LD nextitate, i
timer.c:79 hreak;
Oxflde <trapI3FR+14 > Ox2005 JRT Ox£fols JRT Oxf015 —J

timer.c:71 case RED: -
< | 3

Breakpoints may be inserted, removed, enabled or disabled from the Edit menu or
toolbar, or by simply clicking on the breakpoint itself—this toggles the breakpoint
between the disabled state (dot becomes grey), removed, then back to the enabled
state. The Editor's Contextual menu also permits these actions.

If you exit debug mode, the breakpoints you have placed remain visible in the margin of
the Editor window. Editing your source code does not perturb the placement of the
breakpoint—it follows the source code line at which it has been placed, even it you add
or delete other source code lines before and after it.

e Program Counter =: yellow arrow and yellow highlighting. The Program Counter (PC)
indicator automatically marks the current position of the program counter. It highlights
the line in the source program which is the origin of the next machine instruction to be
executed by the processor.

e When a program is run (using the run commands) and halts at an active Breakpoint,
the program line corresponding to the Program Counter is highlighted in the Editor
window. The program text is adjusted in the window so that the section containing the
PC indicator is displayed.

e Call Stack Frame Indicator [i=: a green triangular symbol and green highlighting. The
Call Stack window lists the addresses contained in the Stack; the value of the Program
Counter followed by the most recent Call value are at the top of the stack list. If a value
in the Call Stack other than the PC is selected (by double-clicking on it), the Call Stack
Frame indicator is set to this value. In the Editor window, the corresponding line of the
source program is highlighted. (If the Disassembly window is open, the selected stack
address is also highlighted.)

IYI Doc ID 7705 Rev 11 173/385

Basic debugging features UMO0036

5.4.2

174/385

Figure 113. Call Stack frame indicator

zzz = teststructret(lz,34):;
[glop (zzz.u + ZZE.¥T);

This highlighted line is the source for the instruction found at the chosen call address
(this means that the instruction pointed to by the value in the Call Stack, is indicated by
the highlighted source line). The Program Counter indicator remains unchanged, as the
program is still halted at the PC value.

e Bookmark icon: a blue rectangular symbol. Bookmarks are an Editor function
provided as an aid to text viewing.

QuickWatch window

The QuickWatch window provides rapid access to the most commonly used Watch functions
by displaying the current value of a variable selected in the Editor window. It may be opened
in three ways:

e From the Editor contextual menu

e From the main menu, by selecting Edit>QuickWatch,

e By clicking on the QuickWatch icon @ in the Edit toolbar.

The QuickWatch window is opened in front of the active Editor window. If the text cursor is
positioned within an expression string, or the expression highlighted, then the expression

appears in the Expression field of the QuickWatch window. The main display area of the
QuickWatch window contains a list of identifiers and their current values.

Commands in the window allow you to select the display base (Hexadecimal, Decimal or
Binary), to recalculate the program values shown in the window, and to add selected
variables to the list in the Watch window.

Alternatively, it searches for a corresponding variable name when a string is entered directly
in the Expression field at the top of the QuickWatch window (shown below), and displays
the variable name, its current value, variable type and address.

The ‘+' sign before a variable name in the left hand Variable column, indicates that the
variable is expandable (see Section 5.12: Watch window on page 191).

Doc ID 7705 Rev 11 KYI

UMO0036 Basic debugging features

Figure 114. QuickWatch window

=i timer.c =] B3
13 Al
67
65
69 o switch(currentState)
70 S
'?1C] case RED:
7e nextState=GREEN;
73 hraat-.
e | coo IR (]
75] .
75 H Expression: Becalculate I
77 i
75 1 Add watch |
gi@ } B Wariable | Walue | Type | Addr.. Lloze |
= (I nextState | RED | enum {GREEN... | 0xb3
52 IStandard j
83 if(s
54 S
85 cur
86 sta
87 ¥

KN —

QuickWatch functions are:

e Recalculate: Recalculates the value of the variable in the current context.

e Add Watch: This button adds the QuickWatch variable to the current page of the
Watch window.

e Close: Closes the QuickWatch window.

e Display selection menu: The pull-down menu on the right of the window sets the
display option; you can choose between Standard, Decimal, Hexadecimal,
Unsigned, or Binary formats.

5.5 Disassembly window

To open the Disassembly window, either click on the Disassembly window icon in the

View toolbar or, from the main menu, select View>Disassembly. Figure 115 shows the

program counter in the Disassembly window when execution has stopped at a breakpoint.

Figure 115. Disassembly window

Disassembly B

timer.c: 69 switch(current3tate) ;I
€:0x£000 <trapIsE > OxEGSO0 LD h,Ox30 LD A, currentitate

Oxf00Z <trapI3R+: > 0xi00z SUE L, #0x0Z 3IUB L, #Ox0Z
Oxf004 <traplSE+4 > Ox2704 JREEQ 0Oxf010 JREQ Ox£010
Oxf006 <trapl3BE+o F Ox4d LEC L DEC A
Ox£007 <trapI3R+7 > OxZ70E JREQ 0Oxf014 JREQ Ox£foild
Limer.c: 77 default:
Oxf005 <trapI3R4+9 > OxE&S0 LD L, 0x80 LD h,currentitate
Oxf00k <trapISRE+11 r Ox4C INC A INC A
Oxf00z <trapI3R+12 > OxB7ES LD OxbhS,4 LD nextitate, i
timer.c:79 hreak:
OxfO0e <trapI3R+14 > Ox2005 JRET Oxf015 JRT Oxfo15 —I

timer.c:71 case RED:

il

S

Figure 116 shows the corresponding source view (in the Editor window) for the same
Disassembly window.

Doc ID 7705 Rev 11

175/385

Basic debugging features

UMO0036

176/385

Figure 116. PC in editor window

&3 =h AI

a4 color next3tate;

a5

=13 /% Further interrupts are masked by hardware at this

a7

65 /% Determine next state */

=] switchicurrent3tate)

70 o _J

71 case RED:

TZ nextitate=FREEN;

73 hreak:;

Td case OFF:

75 nextitate=0FF;

T hreak:;

77 default:

75 nextitate=current3tate+l;

79 hreak:; i
K 1

The Disassembly window provides a disassembly of the selected object file. Information
given in the Disassembly window includes the source filename and source line number.
These appear on a line by themselves in the Disassembly window, preceding the line of

disassembled code.

The line of disassembled source code includes the physical address, the corresponding
section of source code, the value in memory at that address, the assembly mnemonic,
and the operand(s).

For example, when a program halts at a breakpoint, the correct region of disassembled code
appears in the Disassembly window as shown in Figure 117.

Doc ID 7705 Rev 11 KYI

UMO0036 Basic debugging features
Figure 117. Program halted at breakpoint
81 5T72521(A)R9 EMU3 - tutorial.stw* - [Debug] - cosmic.elf - [timer.c]
@Eﬂe Edit Wiew Project Buld Debug Debuginstrument Tools SWindow Help _|ﬂ 1[
3B @S o Flbew F|emie X @ |menem||ne 2@ |
EOREE AEE Bk (00! HEE | aoanéu|3
Sc|sm@EE 0 CE (W0 ea s n|E|S L= |Be
Workspace - x| Memory - x
tukorial. sty 63 =8 :I
T _ 53 color nextitate;
=8 cosmic
B2 Saurce Files - . .
T urcher interrupts are masked by hardware = is
e [#] timer.c :: /% Furth T T ked by hard t th
E \ntsrrupt_vs:tu
" &8 /% Determine next state ¥/
(23 Include Files 60 € Ao =
i -] External Dependenc - 4 {smu.c: (EuEEenCILare)
st7_asm 71 case RED:
72 next3tate=GREEN:
73 hreak;
T4 case OFF:
Al D 75 next3tate=0FF;
= Te hreak;
Iulkspace I 77 default:
i nexti3tate=current3tate+l;
Instruction Breakpoints s x 79 break;
Lacation | Co | Co. 80 ¥
@ timer B9, in <t | 1 [&1 . N
& tmerc3l, in .. |1 | 82 /% Go to next state and update traced varishles +/ -
0 [—| v
& timerc |@ C:\Docume...l
X d x| timer.c: 68 switchicurrent3tate)
| - Run... ‘| €0x£000 <trapIsR > OxB&30 LD A,0x80 LD
#% Application stopped: Breakpoint 13, trapISR Oxf002 <traplSR+2 > Oxi0oz SUE L, #0x02 51
Oxf004 <traplSR+4 > Ox270h JREQ Ox£010 JRI
-»> Run... 0xf008 <trapIl3R+6 > Ox4d DEC L DEC i
—> Stop... DxfO07 <trapISR+7 > Ox270E JREQ Oxf0l4 JRE
#% Application stopped: warning: User stop at timer.c:77 default:
= 0x£009 <trapISR+2 > OxB&30 LD A,0x30 LD
i | | ~l €] oxfoon <crapIsReil > Ox4C INC A INC A
=l » 3 =
S PIHT, Buid i Taok J» Findin Files 1 Findin Fiks 2, Debug . Corm |2 4 »
[For Help. press F1 [Ln. Cal [MODIFIED [READ [CaF [NUM [SCAL [OvF I A
Note: The information appearing in the Disassembly window is the result of direct disassembly of

the object file, therefore the location of the program counter in the Disassembly window is
not necessarily a reflection of its location in the current Edit window program.

When a program halts at a breakpoint, the correct region of disassembled code appears in
the Disassembly window, and the breakpoint appears at the beginning of the appropriate
instruction.

However, if you manually modify the value of the PC (using the Set PC command or by
changing the PC value in a Registers window), you may find that the PC symbol turns from
yellow to grey, as shown in Figure 118.

Figure 118. “Grayed” breakpoint

Disassembly B
titer.c:e9 switch(currentstate) ﬂ
crO0xf000 <trapl3k > OxXEES0 LD A, 0x30 LD L, currentitate
O0xf002 <trapI3R+2 = OxA00Z aUE A, #0x0Z 3IVE AL, #0x02Z
Oxfo0d <crapIsR+4 > Ox270R JEEQ 0Oxfolo JREQ Oxfo010
Oxf00e <crapI3R+6 > Oxdh DEC 4 DEC L
O0x£007 <trapl3R+7 = Ox270B JREQ 0Oxf0l4 JREQ Oxf014
timer.c: 7?7 default:
OxfO09 <trapI3R+2 » OxERSO LD L, 0xE0 LD L, currentitate
Oxf00kh <trapI3R+11 = Ox4C INC A TINC L
Oxfole <trapIsSR+12 > OxBYES LD Oxkb9, 4 LD nextitate, b
timer.c: 79 hreak:
Oxfl0e <trapl3R+14 = Ox2005 JET 0xf015 JRT Ox£015 J
timer.c: 7l case RED: -
4 | ;IJ

Doc ID 7705 Rev 11 177/385

Basic debugging features

UMO0036

5.6

178/385

This simply means that the PC is placed in the middle of an instruction, rather than at the
beginning of the instruction, and so warns you that the PC location is not exactly where it
appears in the Disassembly window.

Similarly, a brown shaded circle, as shown below, indicates that a breakpoint has been
placed, but that there is no way to associate this breakpoint with a particular instruction. This
can occur if your project does not have any debug information related to it, such as when
you load and work on a binary file directly.

Figure 119. “Brown” breakpoint

Disassembly

timer.c: 69
Ox£000
Ox£00z2
Oxfo0g

<trapI3R
<trapI3R+Z
<trapIsR+4
Ox£f006 <trapI3R+6
O0x£f007 <trapI3R+7
timer.c: 7?7
0x£00% <trapI3R+2
Oxf00kh <trapIsR+11
Oxfo0e <crapIsR+1:2
timer.c:79

Oxflle <trapI3R+14

switch(currentitate)

default:

hreak;

)
=
> OxEBGSS0 LD A, 0x50 LD L, currentitate
> OxA002 SUB b, #0x02 ZIUEB L, #0x02
» Ox270R JREEQ Oxfolo JREQ Oxfol0
= Ox4d LEC A DEC L
> Ox270B JEEQ 0Oxf0l14 JREQ O=xfol4
> OxEBGSS0 LD A, 0x50 LD L, currentitate
> Ox4C INC A TNC L
» O®BYEZ LD OxkbS, 4 LD nextitate, L
> Oxz2005 JET O=xfo015 JRT Ox£f015

timer.c: 7l

4

case RED:

-
-

Online assembler

From the Disassembly window you can modify an instruction at a particular address by
selecting the address and right-clicking the mouse. A contextual menu (as shown in

Figure 120) will appear, with the option Online Assembler.

Figure 120. Disassembly window contextual menu

A

Insert/Remove Breakpoint
Enable/Disable Breakpnint

Disassembly B
timer.c:74 case OFF: d
pxf014 <rranTsR+zn wAG03 LD L, #0%03 LD 4, #0
[a'EsakR] Crilin ®EBE7ES LD Oxho, 4 LD nexts
timer Help O Instruction P‘S ate] .stateboocurence < MAX OCCURENCE EE
Oxfo1f) L, 0xkS LD b, nex
OxE0ls ST7 Inskruckion Set Contents. .. %, #0%06 LD %, 40
0X£01(o » Select the address for %4 MUL %,

Copy the instructionto change
OxE01e) inthe Disassembly iLrLD L
Oxfole Quickiwatch.., window L, (Ox82, %) LD L
Oxf02(oo < L0F] L, HOxEE SUE A, #0
Ox£02i ol 'Eélq;‘;}gtgﬁﬂmgnejfhe i, (0x83, %) LD A_I
Oxf0z: = . . L, #0x£f SBC L, #0
Ox£0z (G0 ToDefinition OFOXOL ANC Oxf03a JENC Ox£03 +
Go To PC LIJ

Fun To Cursor

Set PC

Display Options

Refresh

Allow Docking
Hide

Doc ID 7705 Rev 11

UMO0036 Basic debugging features

1. Select the address (so that it is highlighted in blue) at which you want to begin your
assembler instruction. Right-click the mouse.

The contextual menu will open.
2. Select the Online Assembler option.

A dialog box allowing you to change the assembly instruction at the selected address
will open as shown in Figure 121.

Figure 121. Online assembler dialog box

Disassembly E
timer.c:74 cazse OFF: d
Oxf0l4 <trapISR+z0 > OxAG03 LD &, #0x03 LD L, #0
Oxf0le <trapl3F Online Assembler] LD nexts
timer.c:53 i OCCURENCE EE
O0xf015 <trapI3F - LD L, nex
UxfOla <trapISE| MO [& LD X, #0
Oxfllc <trapISE L X4
Ox£01ld <traplSE Azzemble I Help onlnstructionl Cloze | X, L
Oxflle <trapl3F @, &) LD A
Oxf0z0 <trapl3FFs OXEOF T oUE I FORrf 3UE L, #0
Oxf0zz <traplSR+34 > OxEGE9 LD &, (Ox82,X) LD n._l
Oxf024 <trapI3R+36 > OxdiFF 3EBC A, #0x£f ZEC L, #0
OxflzZe <traplSR438 > Oxz41z JRMC Oxf03a JRNC DXfD_SILI

4| | »

3. Typein the new assembly instruction you want for the selected address (in the example
above, the selected address is 0xf014).

If you want information on an assembiler instruction (for example, the correct syntax),
click Help on Instruction. A contextual help screen will appear that explains the
instruction typed in the field.

Note: You should follow the same assembly syntax rules that appear in the disassembly window.
You may also use symbol hames as operands.

Figure 122. Online ST7 instruction set
Qontentsl §earch| Back | FErint | E<s | 23 |
JRxxx Conditional Jump Relative

Contents Previous Next Print Search Addr

Modes

Function: j

Performs a conditional relative jump (adds an offset to the contents of the PC register and
stores the result in the PC register). Note that before the jump takes place, the PC register
points to the op-code of the instruction that follows the jump instruction.

Syntax:

YWhere x3xx is a string depending on the conditions for the jump, and dst points to an offset
{within a range of -127 to +128 bytes around the instruction immediately following the jump
instruction).

Instruction Dest. byte Addressing Instruction | Req'd |Length
location mode structure cycles | [bytes]
|jrxxx label Memary relative 0F XX 3 2 |
jriomx [ptr] Fointed to by relative, indirect 0P 0C XX a 3
value in 8-hit ptr
||| H 4

IYI Doc ID 7705 Rev 11 179/385

Basic debugging features UMO0036

Note:

5.7

5.7.1

180/385

4. Click Assemble. The disassembly window will be refreshed as the new instruction is
loaded into the memory, allowing you to modify the assembler instructions online while
debugging. (Note that the application will not be permanently modified.)

The Online Assembler dialog box will then show the next address (Oxf016, in our
example) and by default enter the same instruction in the field.

5. You can continue modifying instructions, address by address, by entering the
instruction you want and clicking Assemble.

Figure 123. Online assembler dialog box

Disassembly E
timer.c:74 case OFF: ;I
Oxf014 <trapIaR+z20 > Oxials3 LD L,#0x03 LD L, HO
El:-.cftllﬁ <trapIal Online Assembler B LD nextd
timer.c:53 : OCCURENCE EE
O0x£f015 <trapIsl LD L, nex
Oxf0la <traprgi| DHO014 = Z, 80
Oxf0lz <trapIsl L X, 4
Oxfold <trapIsl Azzemble I Help onlnstructionl Close | i, A
Oxf0le <trapIsl a,Z) LD A
Ox£f020 <trapIakEss TRAOrr puy o o, eoxift SUB L, HO
0xf022 <trapISR+34 > OxE6SO LD L, (0x59,%) LD AJ
Oxf0z4 <trapIaBR+36 > OxMLZFF SEC L,H#0xff SEC L, HO
Oxflze <trapIaR+35 > Oxz412 JRMC Oxf03a JRNC EleEI_SIj

4| | 3

Because the current PC address is always highlighted in blue in the Disassembly window,
you may be mistaken in thinking that you are modifying the instruction at the PC address.
However the address for which you are changing the assembler instruction is always shown
in the Online Assembler dialog box, so be sure to check that the address in the dialog box is
the right one.

6. Click Close when you have finished.

Memory window

To open a Memory window, either click on the Memory window icon in the View toolbar
or from the main menu select View>Memory. Up to 4 Memory windows can be opened
concurrently; functionalities and description are exactly the same for each window.This
section provides information about:

e Viewing memory contents
e Viewing features

Viewing memory contents

To view an area of memory, enter the starting address into the field at the top of the window
and press the Return key on your keyboard to display the memory locations starting at that
address. An error message will appear if the address is not valid.

At the left of the memory window is displayed the starting address of each block of memory.
A block of 16 bytes of memory is displayed as one line of data in the main window area. The
content of each byte (16 bits) is represented as a two-digit hexadecimal value. To the right of
the window, the same memory location contents are expressed as ASCII characters.

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

The search and edit options Find, Find Next and Replace may be used in the Memory
window, to locate either hexadecimal or ASCII strings.

Figure 124. Memory window

Memory

-

[alu}
oo
F3
&
7D
21
44
52
22
55

[alu}
o1
14
EE
Co
c7
0z
ad
(a4
ac

[alu}
F3
oo
FC
44
1B
38
9F
()3
3

00 FF FF
14 00 01
03 00 oo
5z 01 EB
CCZ Bl 48
1F LD EE
16 LS 07
34 94 ALY
11 CC OF
20 24 CD

FF
41
aF
OE
ZA
bz
gD
44
43
43

FF
Cia
30
EO
os
BO
4E
14
1F
LD

oo
[alu}
4E
os
72
=]
21
Al
L3
L3
C1

oo
[alu}
ab
=38
0
ca
32
ESQ
T
ca
04

aD
[alu}
oo
4F
LE
aiZ
31
=l
aF
oo
14

oo
[alu}
oo
Ch
41
OE
o1
EF
[a]]
56
o7

oo -
[alu}
oo
96
&
A
D5
D4
F&
48

1z -
»

5.7.2 Viewing features

The contents of the Memory window can be refreshed, reformatted, reloaded or modified

using the options in the Memory contextual menu. This menu also provides window
configuration options (Allow Docking, Hide, Float in Main Window).

Right-click on either a selected memory area, or anywhere in the Memory window to open
the Memory contextual menu shown in Figure 125.

Figure 125. Memory contextual menu

ao
ao
ao
ao
ao
ao
ao
ao
ao
ao
ao
ao
an

o o e e e o o o

ao
ao
ao
ao
ao
ao
ao
ao
ao
ao
ao
ao
aju}

ao

Z0 00 00 80 00 00 06 00

N0 Nn. n&s nn

Copy

oa
e

ao
ao

Format
Base

ao
ao

Eill Mermary. ..

ao

File

ao
ao

Refresh

ao
ao
ao

v Allow Docking
Hide

ao
oo

a0 o0 o0 oo oo
a0 o0 o0 oo oo

ao
ao

The options available in this contextual menu are:
e Copy: Copy selected string to clipboard.

e Format: Arrange the memory display as Byte, Word or DWord.
e Base: display memory contents using the base Hex, Decimal, Binary, or Unsigned

(unsigned decimal integer).

e Refresh: Reload current data values from the memory region displayed.

e Fill memory: Fill a specified region of memory with a specified value. The starting
address and final address may be selected, or the starting address and block length.
The data format Byte, Word or DWord must be specified, and affects the absolute block
length. Display units are those selected in the Format option.

IYI Doc ID 7705 Rev 11

181/385

Basic debugging features UMO0036

Note:

182/385

Figure 126. Fill Memory dialog box

Fill Memory

—Address Range

Fram — [n.0 & Toaddess: (0120

" Length:

—Walue

Walue ID"‘D

Format:

ak Lancel |

Memory may also be modified directly by typing over the values required. Care should be
taken in this operation as the replacement values are written directly to memory.

e File: Allows access to two options: Save layout and Restore layout. Using these
options, the contents of the Memory window can be saved to a file, or previously saved
layouts can be restored from a file.

To save a memory layout, perform the following steps:

a) Select File>Save layout from the contextual menu. The Save Memory to File
dialog box opens as shown in Figure 127.

Figure 127. Save Memory to File dialog box

Save Memory to File

—dddress range:

Fram: |0x0 ' Toaddess: |0x100

" Length: IDM91

— File:

Filenarne: Irn_l,l_rnernory

Browse. . | Type:
QK I Cancel -

b) Enter the memory Address Range that you want to save to file.

You can either specify the range between two addresses, or simply specify the
starting address and the length of the memory range.

c) Enter the name of the file and the type of the file that you want to save your
memory layout to.

Memory contents can be saved as either *.s19 or * . hex files. Alternatively, you
may browse for an existing file of either type (*.s19 or * . hex).

d) Click OK to save your memory layout.

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

5.8

Note:

5.8.1

To restore a previously saved memory layout:

a) Select File>Restore layout from the contextual menu. The Restore memory
configuration dialog box opens as shown in Figure 128.

Figure 128. Restore memory configuration dialog box

HRestore memory configuration HE

Laak in: Ia COFMIC j il z

my_memory. hex

File name: Imy_memol_l,l.hex Open I
Files of type: IInteI farmat [* hes) j % Cancel |

Motorola format [*.519)

b) Browse for the memory file that you want to restore. Click Open.

Instruction breakpoints

Instruction breakpoints are markers that stop program execution when a specific instruction
is reached. Instruction breakpoints may be set on any C or assembler instruction. If a
condition and/or a counter is set on an instruction breakpoint, program execution is always
stopped to evaluate the condition/counter. If the evaluation returns the Boolean value
FALSE, execution is resumed after a brief suspension. An instruction breakpoint halts the
program just before the specified instruction is executed.

When you impose conditions or a counter condition on an instruction breakpoint, the
program will not run in real-time.

This section provides information about using instruction breakpoints, including:

e Setting an instruction breakpoint

e Viewing the instruction breakpoints

e Setting counters and conditions

e Showing breakpoints

Setting an instruction breakpoint

Instruction breakpoints are set in the Editor or Disassembler windows by selecting
File>Insert/Remove Breakpoint from the main menu bar.

The Editor window displays source code and enables a breakpoint to be set on a chosen
source-code line. The Disassembly window permits a breakpoint to be set on a line of
disassembled code.

You can see the markers for the instruction breakpoint that you have set in the Instruction
Breakpoints window (see Section 5.8.2: Viewing the instruction breakpoints) and in the
Debug Margin of the Editor window (see Section 5.4.1: Editor debug margin on page 172).

Doc ID 7705 Rev 11 183/385

Basic debugging features UMO0036

5.8.2

Note:

5.8.3

184/385

Viewing the instruction breakpoints

To open the Instruction Breakpoints window, either click on the Instruction Breakpoints
window icon T3 in the View toolbar or from the main menu select View>Instruction
Breakpoints.

Figure 129. Instruction breakpoints window

Inztruction Breakpaints

| Location Counter Conditian

@ =cdlibfsample3e: 37, intsthd)

@ :cisamplel o 163, i testint)
sredzamplel.c: 134, in main]

[a}

=

teftrS = 40

When a breakpoint is positioned, its specification appears in the Instruction Breakpoints
window. From here, the breakpoint may be disabled/enabled or removed.

In addition, breakpoint counters and breakpoint conditions may be set in this window
(double-click in the Counter or the Condition column to open a box for value entry).

The Instruction Breakpoints window contains three fields:

e Location: Information on the breakpoint location, plus an icon indicating the breakpoint
is active/inactive.

e Counter: A counter may be set in this field, to be decremented each time the
Breakpoint Condition is TRUE when the breakpoint position is passed during program
execution. (If there is no condition, TRUE is returned at each pass of the breakpoint.)
When the counter reaches zero, the program will stop at the subsequent pass:

— With no condition set, and counter = n, the program will stop on the (n+1)th
iteration.

— With condition set and counter = n, the program will stop after the breakpoint is
passed and its condition is found to be true n times.

e Condition: Breakpoint conditions may be set in this field. A condition is a C expression
which returns a Boolean value. For example: (i == 28) && (j> = 0xCO0).

For the EMU2 emulator and DVP versions only: When using the Counter and Condition

features, be aware that STVD will stop the running of the application on the emulator each

time it needs to evaluate the counter and/or the condition, which means that the application
is not executing in real time, although it appears to be in Run mode. If the evaluation returns
the Boolean value FALSE, execution is resumed after a brief suspension.

Setting counters and conditions

If a breakpoint depends on a counter and a condition together, the condition is first taken
into account and secondly the counter. The counter is only decremented when the
condition is TRUE.

For example, consider debugging the following function:

void f(int i) {x += i;}

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

5.8.4

If a breakpoint is set at the beginning of function f, such that:
e The breakpoint condition is set as i<0
e The breakpoint counter is set to 3

The counter will not be decremented until the condition becomes TRUE.
The first time that i<0 is TRUE, the counter will be decremented from 3 to 2

The third time that i<0 is TRUE, the counter is decremented from 1 to O, therefore the
counter returns TRUE and the breakpoint is activated at the following iteration.

The value Counter = 3 is taken to mean 'ignore condition =TRUE for 3 iterations'.

In the example given, the executable will stop on the fourth pass in which the argument (i) is
negative.

Argument values:

1 B w N
U WN R -

***x first stop is here ***

Fh rh Hh Fh Fh Fh o FhoFhoHh
I

Showing breakpoints

Right-click on an instruction breakpoint listed in this window to open the Instruction
Breakpoint contextual menu.

Figure 130. Instructions breakpoints contextual menu

Counter Condition

8. in <majp o K |
@ timerc:127. in<mz ™ Go To Source/Disassembly
Enable/Dizable Breakpoint

Remaove Breakpaint
Remove All Breakpointz

Refresh

v Allow Docking
Hide

4| | i

The contextual menu command Show Breakpoints will bring up an Editor window showing
the section of source file containing the selected breakpoint. This will also appear in the
Disassembler window (and in the Disassembler window alone if the source contains no
debug information).

Doc ID 7705 Rev 11 185/385

Basic debugging features UMO0036

5.9

Note:

Note:

5.9.1

186/385

Data breakpoints

Data breakpoints are not available on the STVD EMU3 version. However, the equivalent
functionality is provided using Advanced Breakpoints (see Section 10.2: Using advanced
breakpoints on page 291).

While instruction breakpoints allow you to stop the running of the application at a specific
instruction line, data breakpoints interrupt the run when a data variable is either read or
written.

Each data variable has a fixed address, and by placing a data breakpoint on a particular
variable, you can effectively interrupt the program when that address is either read or written
to.

For the Simulator and DVP versions of STVD, there are two types of data breakpoint: a
read data breakpoint which stops the program when the flagged variable is read, and a write
data breakpoint, which stops the program when the flagged variable is written.

This section provides information about using data breakpoints, including:

e Inserting data breakpoints

e Using the Data Breakpoints window

Inserting data breakpoints

To insert a data breakpoint:

1. Inthe Editor, select a variable in the source code file. Be sure to select the entire
variable name (highlight it with the mouse).

2. While the variable is selected, you may either:

— Right-click the mouse. A contextual pop-up menu will appear as shown in
Figure 131. Select either Insert Read Data Breakpoint or Insert Change Data
Breakpoint from the contextual menu. For EMU2 emulators only Insert Change
Data Breakpoint is available in the contextual menu.

In the example shown in Figure 131, we are inserting a data breakpoint for the
variable nbOfTransitions++.

— orlnsert a data breakpoint by dragging and dropping the selected variable into the
Data Breakpoints window (described in Section 5.9.2: Using the Data
Breakpoints window).

Doc ID 7705 Rev 11 KYI

UMO0036 Basic debugging features
Figure 131. Inserting write data breakpoint
=i timer.c [=] B3
=1l AI
&0 T
61
62 Binterrupt @Bnostack void trapISRE (wvoid |
63 (=K
64 color next3tate;
55
66
67
=15}
69 o switch(currentState! I
700 B¢ & cue
g1 Copy
g2 ~ IR Paste
53 if| state[next3tat
g4 B¢ @4 Eind...
S5 else
59 H Insert Data Ereakpoint
a3 Insert Read Data Breakpoint R
94 i Insett Change Data Breakpaoint
95 nhofTransitionst+:
as & éf* Quickitdatch...
a7 return; Qpen Document
95 H
< | Y| Go To...
Go To Disassembly
Go To Mext Line With Code
Go ko Definition OF "nbOFTransitions++"
o» GoToPC
ﬂ’] InsertfRemove Breakpoint
ﬂ Emable/Disable Breakpoint
*{ } Bun To Cursor
& et pC
Advanced L4
Note: Only read data breakpoints can be inserted this way for the Simulator and DVP versions.
5.9.2 Using the Data Breakpoints window

You can track and control your data breakpoints using the Data Breakpoint window. To
open this window, from the main menu, select View>Data Breakpoints.

The data breakpoints window shows:

A list of the variables for which a breakpoint has been assigned.

The lettered red dot identifies whether the data breakpoint is a read data breakpoint
(“R") or a write data breakpoint, (“W"). For the EMU2 emulator version, where there is
no distinction between read and write data breakpoints, all data breakpoints show a
read dot with "RW".

The Counter field allows you to enter the number of times that the variable is accessed
before the run is halted. In the example shown in Figure 133, the application will be
halted once the variable RR200L has been read 5 times. In the EMU2 emulator
example shown in Figure 132, the application run will be halted once the variable
RR200L has been read or written to 5 times.

The Condition field allows you to enter a specific value of the variable as the condition
upon which the application will be halted. In the example shown in Figure 133, when
the value 256 is written to st0, the application is halted. In the example shown in
Figure 132, if stO has a value of 256, the application is halted.

Doc ID 7705 Rev 11 187/385

Basic debugging features UMO0036

Note:

5.10

188/385

Figure 132. Data breakpoints window (EMU2)

Al Dt break pairt | Cariber | Caditicr
T RR200L

K

ot == 256

Figure 133. Data breakpoints window (DVP and Simulator)

ST7 Data Breakpoints

[ata breakpoint Counter Condition
& =0 3t == 256
(3 RRz00L h

Below, we see the result when the program is run—the first breakpoint reached is when
st0 equals 256.

For the EMU2 emulator and DVP only—When using the Counter and Condition features,
be aware that STVD will stop the running of the application on the emulator each time it
needs to evaluate the counter and/or the condition, which means that the application is not
executing in real time, although it appears to be in Run mode.

Call stack window

To open the Call Stack window, either click on the Call Stack window icon & in the View
toolbar or from the main menu select View>Call Stack.

The Call Stack window shows the function calls stored on the microcontroller’s Call Stack
from the most recent function call, traced back to the earliest call. For example, the Program
Counter <= is always placed at the most recent entry in the Call Stack window (#0).

The stack keeps track of all the variables and parameters local to the part of the program
where the function call is made at the moment of the function call.

If an entry in the call stack is selected and double-clicked, the source code corresponding to
that address appears highlighted in the Editor window. Program variables and parameters
are shown in the Local Variables window with the values they had when the function call
was made.

Being able to move backwards in the stack permits program states corresponding to specific
entries in the call stack to be examined in detail without moving the Program Counter.

For example, Figure 134 shows a snapshot of the program at the current Program Counter
position. The Local Variables window shows the value of the parameter “i”, and the location
of the PC is shown both in terms of the instruction line in the Editor window, and in terms of
the address in the Disassembly window.

Doc ID 7705 Rev 11 IYI

UMO0036

Basic debugging features

Figure 134. Call stack window and interaction with other debug windows

|Disassemb|y - x |
93 -l Ox£042 <trapISR+66 =]
94 timer.c:97 return;
a5 nbOfTransitions++; Oxf045 <trapI3IR+69
=13 timer.c: 107 for (i=0; i<
a7 return; ©0xf046 <waiting loop
a5 + Ox£048 <waiting loop+2
Q9 Oxf04a <waiting loop+d
100 Oxf04e <waiting loop+e
101 T Oxf04e <waiting loop+8
102 e OB ermd e danes T A
103 woid waiting loop (const unsigned long count)
o ansigued long i: b #0_wailing_loop [couri=1 95608) a tmer c:107
H1 0=f0a5 in main_loop] at timer.c:132
106 - - -
107 & P — H2 Owf0bE |r1 maln. [] at timer.c:157
1T . H3 0xF130 in _exit (]
1039 asm_nop () :
.
jLIJ.Z | #0 waiting_loop [count=196608] at timer.c:107 I~ |
L Wariable | Walue | Tvpe | Address -
& tmee [BCWor [i [127764 [unsigned long [Dbl L|_I

AL e o Locals £ Pararmneters [

Now, if you want to step backwards through the call stack, entry by entry, simply double-click
on the each entry of interest. Remember that they are numbered backwards in time,
meaning that the larger the number, the farther back in the stack you are.

In Figure 135, we decided to step backward in the call stack to look at the function call made
just before we reached the current PC position. By double-clicking on entry #1, a Call Stack
Indicator will appear in the Editor window to indicate where the call was made in the source
code. If the Disassembly window is open, a Call Stack Indicator will highlight the address of
the instruction after the call. The Local Variables window shows the values of the variables
as they were at the moment the selected function call was performed.

Doc ID 7705 Rev 11 189/385

Basic debugging features UMO0036
Figure 135. Stepping backwards in call stack
| Disassembly - x
125 void main_loop (void) -] timer.c:135 if (enabl 4|
126 = [-0xf0a5 <main_ loop+32
127 unsigned char *pData = (unsigned char *)&nkhOfTr: Oxf0a7? <mwain loop+34
128 timer.c:137 if (bug
129 while (1) Oxf0a% <main_loop+36
130 IS Oxflab <main loop+38
131 Cimer.c:139 phata
132 [waiting loop(state[currentState] .timecutValue|] Oxf0ad <main loop+20
133 Oxf0af <mwain loop+d4z
131’1 Mar £ 1 e v_‘f-\f—\v\lﬂl"
135 if {enshleBug) Call Stack 7
136 { — - i
137 if (bugCountDown == 0) o H waltlng_.loop.[c:ount=1SBB.DB] at timer.c:107
13 1 ‘ = #1 04035 in main_laop (] at timer.c:132
- pData[1] = Oxas; ﬁ; g:-::?gfuln maln.t[] at timer.c:157
193 o in _exit]
141 reset_bug count_downi):
142 ¥ =
143 L ocal variables |
144 i . . .
T | #1 0xf0ab in main_loop] at timer.c:132 J
I Yariable | Walue | Tupe ;I
= tiner. |@ ChDor [plata | [ursighed ch.. | unsigned char near el O
[4 | B ¥ Locals 4 Parameters

5.11 Local variables window
The Local Variables window shows a listing of program variables that are local to the
functions that are active at any given time, as well as their values at particular points (such
as enabled breakpoints) in the running of the program.
To open the Local Variables window, either click on the Local Variables window icon
in the View toolbar or, from the main menu, select View>Local Variables.
In the example shown below, the value of the variable i is equal to zero when the program
is halted at a particular breakpoint. By scrolling in the list at the top of the Local Variables
window, you can display current call stack in the Call Stack window, and the list of variables
in the current call stack. The current call stack frame can be modified from this list.
Figure 136. Local Variables and Call Stack windows
%l #0 glop [i=52] at sample1.c:99 = %l o= HO glop [i=52] at samplel.c:99
= — = #1 0=f253 in _tstir? [] at sample?.s:21
Ve [Value [Tope [Address H#2 04260 in _tsth7 [) at sample2.s:26
"""" i |52 | int | 0¢b3 H#3 Oxfb% in main) at sampled.c:133
#4 0=f1aein _ stest (]
Local Variables window Call Stack window
[A[A]E [P, Locas p, Parameters /7
190/385 Doc ID 7705 Rev 11 17

UMO0036

Basic debugging features

5.12

Watch window

In addition to the Watch window description, this section provides information about:
e Expanding the display

e Modifying values

e Watch contextual menu

To open the Watch window, select View>Watch.

The Watch window displays the current value of selected program variables when the
executable is stopped. Enter the variables that you want to monitor in the left-hand column
of the window. The information is updated each time the executable stops, or by means of
the Refresh All option in the Watch contextual menu.

The values displayed are those in the context of the current Program Counter (PC) position.
You can change this context by setting the Call Stack Frame indicator in the Call Stack
window (see Section 5.10: Call stack window). The Watch window is refreshed to display
variable values at the position of the Frame indicator.

You can add program symbols from the source files to the Watch window in several ways:

e The variable name may be typed directly into the left column (double-click on the first
empty row in the table to open it for keyboard entry).

e Alternatively, a variable may be selected in the Editor window and dragged and
dropped into the Watch window.

e The QuickWatch window also provides the button option Add to Watch, to include the
QuickWatch variable in the current Watch window.

Figure 137. Watch window

Wariable Walue Type Address I
"""" bugCaountD own 5 w00s unzigned char Ouaz
"""" enableBug 0 w000 unzigned char 0«94
"""" reset_bug_count_down | {woid [} 0071 . | woid[) Oxf071
"""" nbOFfTransitions++ 16 unsigned long 081
"""" cunmentstate GREEM enum {GREEM, ORA. . | 080
"""" nextState 143 enum {GREEM, ORA. . | Oxb3

A4 0w e watch 1 4 wiatch2 b wiatch 3 A watch4

Four pages (accessible by tabs) are provided in the Watch window to permit grouping of
variables in particular contexts (for example, function_x in Watch 1, function_y in Watch 2).

Expanding the display

A structure, bitfield, array or pointer listed in the Watch window can be expanded. The
sign '+' before the variable indicates that it is expandable. Click on the + sign to open the
next level of display:

e Structure, bitfield: The + symbol displays each member of a structure or bitfield.
e Array: In an array, the + symbol opens only the first member.
e Pointer: The + symbol opens a second line displaying the variable pointed to.

Doc ID 7705 Rev 11 191/385

Basic debugging features UMO0036

Modifying values

Note:

Variable values can be modified directly in the Watch window. Double-click in the right-hand
(Value) column to open the value for keyboard entry. The new value can be entered in
Decimal or Hexadecimal.

Modifying values is only possible in the case of simple numerical values. Hence it is
necessary to expand any expandable variable (described above) to the ultimate level where
each element is represented by a simple numerical value, before modifying this value.

Watch contextual menu

5.13

192/385

Figure 138. Watch contextual menu

Go Ta Mermary
Dizplay Item [d v Standard
Dizplay Al ¥ Heradecimal
Decimal
Remove ltem .
Unzigned
Remove All ltems .
Binary
[View PR
Refresh Al v Addiess

v Allaw Docking
Hide

Right-click within the Watch window to open the Watch contextual menu providing the
following options (plus standard docking options):

e Refresh all: Refreshes all displayed variables.

e Display Item: Sets the display format for the selected item to Standard, Hexadecimal,
Decimal, Unsigned, or Binary.

e Display All: Sets the display format for all variables to Standard, Hexadecimal,
Decimal, Unsigned, or Binary.

e Remove Item: Removes the selected (highlighted) variable.

e Remove all: Removes all displayed variables.

e View: You can choose to show or hide the Type and Address columns in the Watch
window by checking or unchecking (respectively) these two options.

A QuickWatch window is also available via the Editor's contextual menu. This provides rapid
contextual access to the most commonly used Watch functions. Values are easily
transferred from QuickWatch window to the Watch window as described above.

Core registers window

To open the Core Registers window, either click on the Core Registers window icon [gg in
the View toolbar or from the main menu select View>Core Register.

The Core Registers window shows the contents of all registers used by the application,
with the values they contain at the current program counter (PC) location. The register
window is paged to show the different registers, accessible via the view tabs at the bottom of
the window. These provide details of content for the Concurrent Interrupts (IT) and Nested

Doc ID 7705 Rev 11 KYI

UMO0036 Basic debugging features

Interrupts (IT), and for the Simulator version only, the Simulator Time registers and the
Simulator Instruction counter. An example of each is shown in the figures below.

Figure 139. Concurrent IT registers

[EE

— Program Counter Stack: Index register
FC [0xi142 {sp [0 7t {x 0x00 v [0x00

A|nx00 cc IDxeS CH MI N CZWC

Concurrent IT I Nested IT I

— Accumulator " Condition Flag:

Figure 140. Nested IT registers

2ol 01 42| 5P 0s017F % |0x00 v [0x00

— Acocumnulator

A IDxDD
Concurrent | T NesteleI

x|
Al Program Counter "Stack "Index register

Condition Flag:

ILeveIIDxDS MBilCHMBIOCNITCZ ML

Figure 141. Simulator time registers (Simulator only)

x|
[

Swstem clock: IUHUUUUUUUU cpu ticks Systemm Hme: IU.UUUUUU 5
Stop after: Im Feset | Lzer time: IU.DDDDDD 5

Frequency: IUUDDDDD‘I Hz
Uszer clock: IUHDDDDDDDD H Hexa v

Concurrent | T I Mested IT ~ Time I Instruction counterl

Figure 142. Simulator instruction counter (Simulator only)

L= I

Inst clock: IUHDDDDDDDD Hesa [
Stop after: IUxffffffff Feset |

Concurrent T | Mested IT | Time |nstruction counter

IYI Doc ID 7705 Rev 11 193/385

Basic debugging features UMO0036

5.14 MSCI tools window

When developing applications that use the ST7 Mass Storage Communication Interface
(MSCI), STVD provides special views for EMU3 and ICD that display of the contents of the
memory space and dissassembled code associated with this ST7 system.

Caution: The memory space and registers for the MSCI peripheral are visible in the Memory window
and the Core Registers window. However, the viewed values for the MSCI memory and
register in these windows may not be accurate. To view the actual values by MSCI routines,
always use the the MSCI Tools window.

To access the MSCI Tools window, select View>MSCI Tools.

Figure 143. MSCI Tools

bres pzZdro, #3
nop

nop

nop

1d [dp0]+/-,pldri
hzet pzZdro, #3
dec ro

jpnz §zZad
not ri

or p2dro,rl
=le ril

ine r2

cpe r2,dpl
jpncond $2&3
call §028 _J
clr paddr
sStop

nop

nop

nop

nop

i/ : nop =
4 3

[4[4 [>[I, MSTI Memory £ WSCI Registers }, Codec RAM 4 USE Rkt f

The PC showing the state of execution is represented by a yellow highlighted line.

MSCI memory tab

This provides a disassembly view of the MSCI application code contained in the MSCI
memory space. When display is set to Dissassembly in the contextual menu, the line of
disassembled source code includes the physical address, the value in memory at that
address and the assembly instruction.

To change the display, right-click to get the contextual menu and select Dissassembly or
Hexadecimal.

In addition, the contextual menu allows you to Set/Clear breakpoints and to navigate from
one break to another (Next Break). When a program halts at a breakpoint, the PC indicates
the next MSCI instruction to execute in the MSCI Memory tab.

194/385 Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

MSCI registers tab

The MSCI Registers tab displays the MSCI internal registers memeory and the actual
values of MSCI registers during application execution. Values of registers can be modified
by selecting a bit and typing a new value. Symbolic display allows you to view the names of
the various MSCI registers and their associated values in word format.

To change the display, right-click to get the contextual menu and select Symbolic or
Hexadecimal.

Codec RAM tab

Displays the contents of the RAM for the MSCI's Code Decompressor (CODEC). Memory
contents are displayed in hexadecimal in byte format. You can change the values in RAM by
highlighting the bit to change and typing the new value.

To view a specific address, right-click to get the contextual menu and select Go to. Then
enter the address you want to display and click on OK.

USB RAM tab

5.15

The USB RAM tab displays the contents of the RAM for the MSClI's USB buffer. Memory
contents are displayed in hexadecimal in byte format. You can change the values in RAM by
highlighting the bit to change and typing the new value.

To view a specific address, right-click to get the contextual menu and select Go to. Then
enter the address you want to display and click on OK.

Symbols browser

To open the Symbols Browser window, either click on the Symbols Browser window icon
== in the View toolbar or, from the main menu, select View>Symbols Browser.

In the Symbols Browser window, you can select program symbols, first by specifying the
type of symbol and the type of file in the Type and Files fields respectively, then clicking on
Query to instigate a search of the specified files. If you want to further narrow your search,
the Expression field can be used to define a search string (wildcards are accepted).

Figure 144. Symbols Browser — variables

i Symbols Browser HE
— Query

Type: IVariabIes j File[s]: IAII zource files j O

Expression: I_" vl Help |
— Symbal

File [Symbal [Tupe Al | Gelo |

data.c tempo_main road unsigned char

data.c tempo_secondary road unsigned char

data.c TL_main road struct

data.c TL_secondary_road struct

register... nh_left unsigned char

register... nh_total wvehicles unsigned char —

register... nh_wvehicles unsigned char =

1 »

i
Doc ID 7705 Rev 11 195/385

Basic debugging features UMO0036

5.16

196/385

In the resulting listing, there are three fields: File, which is the filename in which the symbol
was found; Symbol, which gives the name of the symbol (either function or variable); and
Type, which specifies the type of the function or variable.

Selecting a symbol from the list (using the GoTo button or by double-clicking on the symbol
name in the table) will open an Editor window displaying the corresponding source file at
that symbol's location, and will also open the Disassembly window at the symbol's address.

The Watch button will copy the found symbol to the watch window.

Note that if you perform a query of all Types (by selecting Types in the Type drop-down list
when defining your query), the result will be a listing of all variable or function types present
in each of the specified file(s). However, you will be unable to Go To any of the entries in the
list, as these entries do not correspond to a particular occurrence of a symbol, but indicate

the presence of a given symbol type in a given file. This sort of query allows you to quickly

check whether a certain symbol type is present in a particular file or group of files.

Figure 145. Symbols browser—types

i Symbols Browser EHE

— Cuemy

Type: ITypes 'I Filefz]: I.&Ilsourcefiles j ﬂl
e | T

— Symbols
File [Symbal [Tvpe G To |
data.c TL struct
data.c TL color 1 ateh |
func.c TL struct
func.c TL color ernum

main.c

main. o TL Struct
main.c TL_color enum

Peripheral registers window

To open the Peripheral Registers window, either click on the Peripheral Registers window
icon in the View toolbar or, from the main menu, select View>Peripheral Registers.

In addition to the description of the Peripheral Registers window, this section contains
information about:

e Peripheral registers contextual menu
e Peripheral registers display options
e Forced read of status registers

The Peripheral Registers window shows a list of the peripherals available on the target

MCU, as well as the value of each peripheral's register at a particular value of the program
counter (PC).

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

This allows you to check the value of the peripheral registers at any breakpoint in the
debugging of the program.

Figure 146. Peripheral registers window

ST7 Peripheral Registers

Peripheral reqisters Walue I;I
= Part F
"""" [0=000fF] PFOR - Data Register 000
"""" [0=000] PFDDR - Data Direction Re... | 0=00
"""" [0=00171] PFOR - Option Register 000
[+ 120
[=1-+ Senal Peripheral Interface [SPI)
"""" [0=0021] SPIDR - Data 1/0 Register Intrusive read
[+ [0x0022] SPICR - Control Register 000
[+ [0x0023] SPICSR - Contal/Status Re. . | Intusive read
[+ Imberrupt Software Priority [1TC)
[Flazsh
=l wwiatchDog Timer
[[0x002a] WDGECR - Control Registar 0 7F
e wDGA, - Activation Bit 0 - Dizabled v|
o TIB:0] - 7-bit Timer [
[+ Main Clock Control/Statuzs Register [MCC)
(= 16-Bit Timer A
[+ [0x0031] TACR2 - Contral B egister 2 000
[+ [0x0032] TACR1 - Cantrol Register 1 000
[+ [0x0033] TACSR - Contral/Status Re. . | Intusive read
[+ [0x0034] TAICIR - Input Capture 1 R | Intusive read -

Peripheral registers contextual menu

Using the Peripheral Registers contextual menu, you can access options for the window.
Right-click the mouse while the cursor is in the window and the contextual menu shown in
Figure 147 will appear.

Figure 147. Peripheral registers contextual menu

5T7 Peripheral Registers

Peripheral registers Yalue I;|
= Part F
"""" [0#000F] PFDR - Data Register 000
"""" [Ox0010] PFODR - Data Direction Re... | 0«00
"""" [0x0011] PFOR - Option Register 000
[+ 12C
=l Serial Peripheral Interface [SPI)
"""" [0=0021] SF'IDH Data |.-"D Fiegmter Intrusive read
[:l
[+ [040023] SF'ICS Intluswe re:ad
[+ Intermupt Software P
(- Flash : Display Al » Unsigred Eg
) WatchDog Timer Display Address » Binary
= [Ox002a] WG =
"""" WDGA-AC allow Docking | 0-Disabled
COTED- B Hide 0= 7f
[+ Main Clack Control/stameregrerer ey —
=1 1B-Bit Timer A
""" [020031] TACRZ - Control Register 2 0x00
H- [0x0032] TACRT - Control Register 1 0x00

H [0x0033] TACSE - Control/Status Re. .

Intrusive read

[+]
[
[
[+ [0x0034] TAICIR - Input Capture 1 ...

Intrusive read hd

Doc ID 7705 Rev 11

197/385

Basic debugging features UMO0036

Peripheral registers display options

Using the display options in the contextual menu, you can customize the display format of
information shown in the Peripheral Registers window:

e Display Iltem: You can choose to display the value of the selected Peripheral Register
item in either hexadecimal, unsigned integer or binary format.

e Display All: You can choose to display all values of all Peripheral Register items in
either hexadecimal, unsigned integer or binary format.

e Display Address: You can choose to display the address of the peripheral or of each
individual register within the peripheral, or both for all items in the Peripheral Registers
window.

Forced read of status registers

Note:

5.17

198/385

Values of status register items in the Peripheral Registers window are not normally
available—beside each item, you will see the message "Intrusive read" indicating that
reading the value of these registers could intrude upon the normal running of the program,
and give rise to unpredictable results.

However, if you absolutely must know the value of a particular status register item, select the
item with the mouse and right-click to bring up the contextual menu, as shown above. You
will then have access to an additional option -- the Forced Read option. Choosing this
option will allow an intrusive read of the status register. A dialog box will appear as shown in
Figure 148, warning you of the possibility of unpredictable consequences, and giving the
value of the status register.

Figure 148. Forced read warning

ST7 Visual Debug

Reading intruzsive reqgister may provide unpredictable erars!
Intruzive read regizter value iz 0«00,

The value of the status register is only valid at the moment of the forced read.

Memory trace window

The Trace window allows you to view recorded hardware cycles that have occurred during
the execution of your application. In addition, different trace recording modes allow you to
control what information is viewed and when.

You can open the Trace window either by clicking on (the Trace window icon) in the View
toolbar, or from the main menu by selecting View>Trace.

The memory trace is implemented differently for the debug instruments that support this
feature. For more information on the trace capabilities, refer to the section specific to your
debug instrument:

e Section 8.3: Trace recording on page 242 for DVP/EMU2
e Section 10.1: Trace recording on page 284 for EMU3
e Section 9.1: Trace recording on page 258 for STice

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

5.18

5.18.1

5.18.2

5.18.3

Online commands

An online command is a single line of input that you can use to control the debugger (GDB)
via the Console tab of the Output window. There is no limit on how long it can be. It starts
with a command name, which is followed by arguments whose meaning depends on the
command name. For example, the command step accepts an argument which is the
number of times to step, as in 'step 5'. You can also use the step command with no
arguments. Some command names do not allow any arguments.

Online command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual
commands. In some cases, even ambiguous abbreviations are allowed; for example, s is
specially defined as equivalent to step even though there are other commands whose
names start with s. You can test abbreviations by using them as arguments to the help
command.

A blank line as input to the debugger (typing just RET) means to repeat the previous
command. Certain commands (for example, run) will not repeat this way; these are
commands whose unintentional repetition might cause trouble and which you are unlikely to
want to repeat.

The 1ist and x commands, when you repeat them with RET, construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

The following section describe some of the most useful online commands.

The load command

load filename

The 1oad command makes a r£ilename (an executable) available for debugging on the
remote system—by downloading, or dynamic linking, for example. The 1o0ad command also
records the filename symbol table in GDB, like the add-symbol-file command.

The file is loaded at whatever address is specified in the executable. For some object file
formats, you can specify the load address when you link the program; for other formats, like
a.out, the object file format specifies a fixed address.

load does not repeat if you press RET again after using it.

The output file command
pin -output file <yes/no>

The output file command sends the input/output values on pins to a text file port . out
in your project directory. This text file reports pin names and there input/output values at
intervals of 1 cpu cycle. To disable the output, enter gdi -output_file nointhe
Console tab.

The stimuli command
pin -stimuli

The -stimuli command allows you to see the input stimuli commands that are being used
by the simulator in the Console tab of the Output window.

Doc ID 7705 Rev 11 199/385

Basic debugging features UMO0036

5.18.4

5.18.5

5.18.6

5.19

200/385

The symbol-£file command

symbol-file filename [-readnow] [-mapped]

You can override the GDB two-stage strategy for reading symbol tables by using the
-readnow option with any of the commands that load symbol table information, if you want
to be sure GDB has the entire symbol table available.

If memory-mapped files are available on your system through the mmap system call, you can
use another option, -mapped, to make GDB write the symbols for your program to a
reusable file. Future GDB debugging sessions map in symbol information from this auxiliary
symbol file, rather than spending time reading the symbol table from the executable
program. Using the -mapped option has the same effect as starting GDB with the -mapped
command-line option.

You can use both options together, to make sure the auxiliary symbol file has all the symbol
information for your program.

The auxiliary symbol file for a program called myprog is called myprog. syms. Once this file
exists (providing it is newer than the corresponding executable), GDB always attempts to
use it when you debug myprog; no special options or commands are needed.

The .syms file is specific to the host machine where you run GDB. It holds an exact image of
the internal GDB symbol table. It cannot be shared across multiple host platforms.

The save memory command

save_memory from_address count filename [format]
Saves the contents of a range of memory to a file.

from_address is the start address of the memory block to save.

count is the size of the memory block to save.

filename is the name of the file to create.

format is the file format extension: *. srec for Motorola Srecord format, *. ihex for Intel
Hexa format (the default format is *. srec).

The help command

help command

GDB contains its own online help facility giving definitions of all GDB commands. To access
it, at the GDB prompt, enter the command help followed by the name of the command you
want usage information on.

cd directory

Set the GDB working directory to directory.

Limitations and discrepancies

STVD may be subject to limitations or discrepancies (differences between emulation and
actual MCU behavior). This section provides information about General debug limitations
that are common to all debug instruments and the simulator. It also provides information on
where to find out about limitations and discrepancies that are specific to your debug
instrument and your microcontroller.

Doc ID 7705 Rev 11 KYI

UMO0036

Basic debugging features

Limitations are documented in the current STVD Release Notes. When possible,
workaround procedures are provided to help minimize their impact on your project. The
release notes will also inform you of the resolution of known limitations.

Discrepancies between emulation hardware and your MCU'’s behavior are provided in
STVD'’s Debugging discrepancies window.

General debug limitations

In-Application Programming (IAP) limitation

STVD cannot debug IAP applications (user code that reprograms Flash memory), as the
Flash programming algorithm is not emulated nor simulated.

Debugging discrepancies window

You will find a complete list of discrepancies for your emulation hardware and target devices
in the Debugging Discrepancies window (see Figure 149). To access this window, start a
debugging session, then select Debug Instrument>Emulation Discrepancies.

Figure 149. ST7 Emulation Discrepancies window

ST7 Emulation Discrepancies)

- Flazh reqizsters are not supported, Bead w/Tite access to FCSA will stop your &
pragram running. and an "access denied" message will appear.

- A& ztabilization time of 20 vz iz required when changing the channel or starting a
conversion when uzsing ADC peripheral.

For TEE WERSIOM %2 ar below, the fallowing Discrepancy exists:

Discrepancy information for your particular MCU and emulation hardware is uploaded at the
same time as the rest of your MCU configuration information.

Doc ID 7705 Rev 11 201/385

Simulator features UMO0036

6

6.1

202/385

Simulator features

In addition to debugging with emulation hardware and in-circuit debugging devices, STVD
also allows you to debug your application while it runs on a software simulation of your
target microcontroller. The Simulator is part of STVD and requires no additional emulation or
in-circuit debugging hardware.

Once you have set your debug instrument to Simulator and entered the debug context
(Debug>Start Debugging), the Debug Instrument and View menus change to display the
commands that are specific to the Simulator.

This section explains how to use the debugging features that are specific to the STVD
Simulator:

e Section 6.1: Using the stack control features

e Section 6.2: Using the input pin stimulator

e Section 6.3: Using the simulation plotter

e Section 6.4: Using read/write on-the-fly

e Section 6.5: Forcing interrupts

Using the stack control features

The Stack Control window allows you to set a specific stack address as the stack overflow
point. This means that if, during the course of debugging, the current stack pointer (SP)
value is exceeded, the application will be halted (provided that you check the Enable stop
box in the Stack Control window).

Figure 150. Stack control window

Stack Control

™
SF Underflow: ID;.;m ff
Current SP: ID:-:D'I ff

SP Dverflow: IEI:-:D1 an
ak. I Cancel | Conf... |
00

This effectively allows you to specify a breakpoint at the SP address level.

To set the stack control:

1. Open the Stack Control window by clicking on = (the Stack Control window icon) on
the Tools toolbar, or by selecting, Tools>Stack Control...from the main menu.

2. To enable a break in the running of the application when the specified conditions are
met, check the Enable stop box.

3. Type the overflow address in the SP Overflow field.

Doc ID 7705 Rev 11 KYI

UMO0036

Simulator features

6.2

4. To view/change the configuration settings, click on the Conf... button.

The configuration setup window shown in Figure 151 is displayed. Here you can enable
or disable the stack pointer control.

Figure 151. Configuration setup window

Configuration setup

Select actionz to perform when loading
programs of configuration files.

[V Restore stack pointer contral,

Cancel |

5. Click on OK when you have set up the stack control parameters as you want.

Using the input pin stimulator

The input pin stimulator allows you to simulate an analog or digital signal on a selected
input pin of your target microcontroller. This allows you to test the application software’s
response to an input as if the signal were coming from your application hardware.

During a debugging session, you can generate input signals on-the-fly or with a time delay

using the 1/0 Stimulation window. You can also create a script of signal inputs in a text file

called a stimuli file that you import prior to running your simulation, which tells the simulator
when and on what pins to generate input signals.

You can view and define input signals from the 1/0 Stimulation window. This window shows
all I/0 pins for your selected MCU. In this window, the input pins for your target
microcontroller are listed in the Name column. The current input signal is displayed in the
Current Value field. When you define an input signal, the value that you have specified for
the signal appears in the New Value field.

From this window you can:

e Trigger an analog or digital signal with a delay

e Trigger a periodic binary signal with or without a time delay

e Trigger a binary signal on-the-fly

e Create and load a stimuli file

When defining the signal, digital signals can have a value of 1 (VDD) or 0 (GND). Analog

signals have any value between 0 and 6.5V TTL. Times for delay and periodicity are
specified in CPU cycles.

If you enter an input signal while your application is running, the signal is sent, or the count
down for the delay begins once you have defined the signal to send. If you enter an input

Doc ID 7705 Rev 11 203/385

Simulator features UMO0036

signal while your application is not running, the signal is taken into account, or the
countdown for the delay begins as soon as you start running your application (Debug>Run).

Signals are reset to their defaults when the application is restarted or when the MCU is
reset.

Trigger an analog or digital signal with a delay

204/385

1.

7.

Select View>1/O Stimulation from the main menu bar.
The I/O Stimulation window opens, showing all 1/0O pins for your selected MCU.
Click on the pin name to select it.

Double-click in the value field corresponding to the pin that you want to simulate a
signal on.

The I/0O Stimulation dialog box opens.
Select the signal type: Digital or Analog.

For a digital signal, click on the radio button for VDD (1) or GND (0).

For an analog signal, enter a value (0 - 6.5V TTL) in the Analog Value field.
To specify a time delay, enter a value in the Delay Time field. Time delays are
measured in CPU cycles.

Click on OK.

Figure 152. Define a value and delay for an input signal

|
Mame Current Walue nesws Y alue =
RESET 1
I
I
0 o .
u x
I
0 Pad Current Walue: 0
I
0 Signalz Walue——— Delay time
i & Digital & DD [10
" Analog GND
x
Fal Current Yalue: 0
Ok, I Cancel
Signalz Walue Drelay time
' Digital 33 10
' Analog
' Periodic

ak. I Cancel

Doc ID 7705 Rev 11 KYI

UMO0036

Simulator features

Trigger a periodic binary signal with or without a time delay

1.

8.

Select View>l/O Stimulation from the main menu bar.
The I/O Stimulation window opens, showing all 1/0O pins for your selected MCU.
Click on the pin name to select it.

Double-click in the value field corresponding to the pin that you want to simulate a
signal on.

The I/O Stimulation dialog box opens.

Select Periodic.

Click on the radio button for VDD (1) or GND (0).

To specify a time delay, enter a value in the Delay Time field.
Time delays are measured in CPU cycles.

Enter a value in the Period field.

The period is defined in CPU cycles. It defines the duration of the specified signal and
the duration between occurrences of the signal.

Click on OK.

Figure 153. Define a periodic signal

|
M arme Current W alue e W alue I;
RESET 1
0 —
I
I
I
g x
I
0 Pad Current Walue: 0
n Signalz Walue Start time
" Digital & DD I 10
" Analog & GHD Period
¥ Periodic |—1
ak I Cahicel |

Periodic signal example

Pi,= PAL, Value= VDD, Delay= 10, Period= 1

The application runs for 10 CPU cycles before starting the periodic signal. After 10 CPU
cycles, PA1 receives a signal at VDD (1) that lasts one CPU cycle then returns to GND (0)
for one CPU cycle. This pattern of signals at one CPU cycle continues as long as the
application runs or until you define a new signal on PA1.

Doc ID 7705 Rev 11 205/385

Simulator features

UMO0036

Trigger a binary signal on-the-fly

1. Select View>1/O Stimulation from the main menu bar.

The I/O Stimulation window opens, showing all 1/0O pins for your selected MCU.
2. Click on the pin name to select it.
3. Right-click in the value field corresponding to the pin that you want to simulate a signal

on.

A pop-up box appears.

4. Select one of the values (GND = 0, VDD = 1) from the pop-up box.

Because no delay can be specified, the signal is sent instantly to the input pin you selected.

Figure 154. Trigger an input signal on-the-fly

|
M ame Current ¥ alue new Walue -
RESET 1
PA0 0
N 0
P2 i Ml:
Pa3 0 GO
Pid i [
] 0 |
Ei? g M ame Current ¥ alue new Walue I;
= 0 RESET 1
PA0 0 o
N 0 1
Paz 0
Pa3 0
Pad 0
PAS 0
PAE 0
PAT 0
PR n hd

Create and load a stimuli file

A stimuli file is a text file using the .in extension that provides the simulator with a script of
input signals to generate on pins during the simulation. A stimuli file can be created using
any text editor (such as the STVD Editor) and the syntax described in Table 62. It must be
saved with the file extension .in.

The stimuli file syntax allows you to define digital signals, periodic digital signals or analog

signals.

206/385

Doc ID 7705 Rev 11

UMO0036 Simulator features
Table 62. Stimuli file syntax
Signal Description

Digital input signal

Syntax |pin pin name -i digital value time

Example | PIN PA1 -i 1 100
- Input the value 1 on PA1, 100 CPU cycles after the start of the simulation. Because the
Description | . o .
signal is digital, the input value must be 1 or 0.

Analog input signal

Syntax |pin pin name -a analog value time

Example | PIN PB1 -a 3.3 1020

Input the analog value 3.3 on PB1, 1020 CPU cycles after the start of the simulation.

Description Analog values must be between 0 and 6.55.

Periodic digi

tal input signal

Pin pin name -c start digital value start time half period

Syntax [-cycle cycle number | -end end_time]
Example |[PIN PAl1 -c 1 143 20
_ Beginning 143 CPU cycles after the start of simulation with an input value of 1,
Description

alternate between input of 0 and 1, every 20 CPU cycles.

6.3

In the same stimuli file you can script inputs for multiple pins and different types of inputs (for
example, you can define both analog and digital inputs on different pins).

Using your stimuli file

To use a stimuli file, simply load it prior to running your simulation by selecting File>Load
Stimuli File.

During debugging, if you want to see the input stimuli commands that are being used by the
simulator, at the command prompt in the Console tab of the Output window, enter the
command:

gdi pin -stimuli
The text commands for the current stimuli are displayed using the syntax described above.
If you no longer want to use the stimuli file that you have loaded for the simulation, stop
using the file by ending the debug session (Debug>Stop Debugging), or loading a different

stimuli file. Alternatively, on the command line in the Console window, enter the following
command:

gdi pin -clear

Using the simulation plotter

You can view a graphical display of your simulation in the Plotter window. This display
shows the values for selected items (such as registers, variables, signals) as they evolve
during the simulation. The plotted information for any item that interests you can be printed
as it is represented in graphic form by the plotter, or exported in Value Change Dump (VCD)

Doc ID 7705 Rev 11 207/385

Simulator features UMO0036

format. Exported items can be quickly and easily imported into later simulations, facilitating
comparison between different simulations of the running of your application.

The Plotter selection window (Debug Instrument>Plotter Selection) provides the
interface for choosing the simulated items for plotting.

6.3.1 Plotter selection window

When you are in the debug context, access this window by selecting Debug
Instrument>Plotter Selection. The Plotter Selection window opens (see Figure 155).

Figure 155. Select elements for plotting

— Selectable [tem — Selected ltem
=-[## ariables -] Hame I
----- V¥ ADCAMP R ADCAMP
----- ¥ ADCCSR R ADCCSR
----- ¥ ADCDR R ADCDR
R CC
----- ¥ ARTH an PAT
----- ¥ ARTL an PAd
----- ¥ ATCSR an pPag
----- ¥ CNTRH an PA3
----- ¥ CMTRL an Pag
----- ¥ DCROH -~ PB3
..... Y DCROL PB4
----- ¥ EECSR R PC
..... v EICR
..... Y FCSRE
----- ¥ LTCSR LI

Add ltem > L\\\J < Del ltem

"Manage unknown data bype as:

' Unsigned " Signed

ok I Cancel | Help

From this interface you can select multiple items that you want to monitor from the
Registers, Variables and I/O pins folders in the Selectable Iltems field. To see the full
name of a register for an MCU peripheral, use your mouse to place the pointer over the
register abbreviation in the list. A pop-up description will appear with the full name of the
register.

To add items for plotting:

208/385 Doc ID 7705 Rev 11 [‘II

UMO0036 Simulator features

1. Click on an item to select it.

2. Click on Add Item, or double-click on the item that you want to add.
The item is added to the Selected Item field. Items are listed in alphabetical order. To
delete items, select an item or multiple items (use the SHIFT or CTRL keys) and click
on Del Item, or drag the item(s) back to the Selectable Items field using your mouse.

3. Specify the treatment for unknown data types (Signed or Unsigned) by clicking on the
appropriate radio button.
Your selection is applied to all unknown data types.

4. Click on OK, to confirm the list of items for plotting.

The items that you have selected for plotting are saved when you save your workspace, and

restored when you open the workspace.

The value changes for the items that you have selected are plotted in the Plotter window

when you run the simulation. The different commands that allow you to execute your

application during simulation have different effects on your plot:

e Run —restarts the application from initialization and the plot is also restarted. Any
plotted information from a previous simulation is lost.

e Restart — starts your application from the initialization. Any plotted information from a
previous simulation is lost.

e Continue — allows you to continue application execution, after a breakpoint for
example, and the information plotted prior to the breakpoint is retained in the display.

e Stepping commands — the plot continues with each step. The plotted information for
preceding steps is retained in the display.

e Chip reset—resets the application but does not execute code. The plot is reset, plotted
information from the previous simulation is lost.

See Exporting and importing plotted items on page 218 for information about saving and

reloading the plotted information for a given simulation.

Go to Plotter window for more information about viewing, navigating and modifying the plot.

6.3.2 Plotter window

To open the Plotter window, select View>Plotter. While your simulation runs, the Plotter
window graphically represents the evolution of values for the items that you have selected in
the Plotter selection window against the application run time.

Doc ID 7705 Rev 11 209/385

Simulator features UMO0036

Figure 156. View plotted elements

R STTFLITEOY Simulator - ADC.stw* - [Debug] - adc_cosmic.elf - ADC_Stimuliin - [main.c]
File Edit Yiew Project Tools Help

DS iR nE cic L ELEIQRQAQIE |« >[4 3|2

Narne W Maintarker Signals | =]

E4143

4.0000

RARARE RARRARRARR NAASRARARA NANARARRAR A RRARRN SRR ARRARR AR
466,000 ~ |
|active Marker Time: 256,962 [Tirne: [Max Sim: 466,000

The following sections explain in greater detail how to use the plotter window including:
e Understanding the plotter display

e Navigating in the plot

e Adding and removing markers in the display

e Creating and deleting display tabs and items

e Modifying item display characteristics

e Printing a plot

e Exporting and importing plotted items

Understanding the plotter display

The plotter is composed of the following major elements:

e Display tabs showing the plotted values for selected and imported items
e Name column displaying selected items

e Value column displaying item’s value at the selected marker position

e Time axis, with scrolling and integrated time scaling

Display tabs

A main view tab named Signals (default name) displays the plotted information from your

simulation. When your simulation runs, the items being plotted are updated on this tab and
any other tabs that you have added to your project (see Creating and deleting display tabs
and items on page 215).

210/385 Doc ID 7705 Rev 11 K‘YI

UMO0036

Simulator features

Table 63. Tab contextual menu

Tab Description

Adds a new empty tab (no information is plotted) in the plotter window with a

Add New Tab default name.

Removes the active tab from the plotter window. The active tab is the tab

whose contents are currently displayed in the Plotter window. Any tab can
be removed, however one tab must always remain in the window. It is not
possible to delete all of the tabs.

Remove Active Tab

Allows you to rename the active tab. You cannot rename a tab to have the

Rename Active Tab : -
same name as another tab in your project.

In the display area, value changes for selected items are displayed as:
e Bus — a bar containing the integer value of an item and/or sub-item.
e Digital — a continuous line that indicates the item value as high or low.

The default color for plotted items is green, but the color can be configured to improve
visibility of selected items. A darkened plot indicates that the simulation did not provide
information to plot the item and the value is unknown. You can modify the display properties
of all items to improve the readability of your plot (see Modifying item display characteristics
on page 217).

In addition to the Main Marker (blue), you can add markers to your display. Markers are
visible in all tabs. Add, delete and show markers using the commands in the tab contextual
menu, which provides access to the commands listed in Table 64.

Table 64. Display area contextual menu

Marker Description

Adds a marker, which will be visible in all tabs. Opens a dialog box that

Add New Marker allows you to specify the color and name of the marker.

Removes the marker that you have right-clicked on in the tab. This

Remove Marker command cannot be used to remove the blue Main Marker.

Removes all the markers from the display except the blue Main Marker. It is

Remove All Markers . . .
impossible to remove this marker.

Show Markers When checked, the vertical line for each marker is visible in the display.

Name column

This column shows the names of the items that you have selected for plotting, the sub-items
that compose them and the names of any items that you have imported. Here you can select
items, reorder them, change their display properties (see Modifying item display
characteristics on page 217) and cut/copy and paste items (see Creating and deleting
display tabs and items on page 215).

To expand items in order to view the sub-items that they include, click on the “+” next to the
item icon. For example, the AdcValue variable has been expanded in Figure 156 to view the
values of each of the eight bits that it is composed of.

To change the order of first-level items, click on them and drag them to a new position. To
sort them in ascending or descending order, click on a sort button, or select
Tools>Sort>Ascending/Descending from the menu bar. Sub-items (second-level items)

Doc ID 7705 Rev 11 211/385

Simulator features UMO0036

cannot be sorted or moved. They remain in their initial order with the first level item that
contains them.

You can also right-click to get the contextual menu, which provides access to the commands
listed in Table 65.

Table 65. Name column contextual menu

Command Description

Changes the name of the selected item. You cannot rename an item to have

Rename the same name as another item in the tab.

Changes the characteristics of the selected item, including the start time of
Change Expression |the plotted item, the time scale and the expression to use to plot the item.
See Modifying expressions on page 217.

Deletes the selected item from the plot. The deleted item is also removed
Delete from the list of selected items in the Section 6.3.1: Plotter selection window
on page 208.

Changes the display properties of the selected item, including alias, format,

Properties height, and color. See Modifying item display characteristics on page 217.

Default Properties Sets display properties for the selected item back to the default properties.

Determines the item display type:
Show as — Bus — a bar containing the integer value of an item.
— Digital — a continuous line that indicates the item value as high or low.

Value column

The Value column displays the values of the plotted items at the selected Marker. You can
place markers to display the plotted values at any time interval in the plot.

The main marker (blue) and any markers that you create, can be selected in the Value
column drop-down menu. To access this menu, click on the heading of the Value column.
The name and color of the selected marker are shown in the header.

The value column drop-down menu also provides commands for adding markers, removing
markers and viewing/changing marker properties (See Table 67 on page 215).

In some cases, the plotter does not have information about the values for an item. In this
case, the plot color for the item is darkened and the value is shown as N/A (Figure 157). For
example, this occurs when the start point (B) for plotting an imported or copied item is after
the start of the simulation (A). In this case, the plotter has no information about the values
prior to the time interval B. As a result, the plot color is darker and N/A appears in the Value
column for the value of the items before time interval B.

212/385 Doc ID 7705 Rev 11 KYI

UMO0036

Simulator features

Figure 157. No information to plot

File Edit Yiew Project Tools Help
DG BR[O OE ey dEE Q| Q QEfEle 2
W tainkiaker

FE1
Fa3
P2
Fal
FAD

o I [) s) [s Y (o |

my_importSignal M

iy ariable R
255
CC 236

| Ready |Aictive Marker Time: 8,350 .

You can also right-click in the row for an item to get the contextual menu, which allows you to
determine the display format for the value of the selected item. For integer values, you can
select to display in Signed or Unsigned Decimal, Binary, Octal or Hexadecimal format.
For float values, you can choose to display in Standard or Scientific format. The current
display format is indicated with a check and the default format is indicated in bold.

Time axis

Your items are plotted against a time scale that can be modified, allowing you to zoom in or
out and view the plot in more or less detail. Depending on the scaling, you may not be able
to view all the value changes if the values change frequently in short time increments.

To change the time scaling of the display, use your mouse to select and drag either of the
triangles on the scroll bar, or use the zoom controls on the tool bar (see also Navigating in
the plot).

Navigating in the plot

Zoom controls allow you to zoom in on any part of the plot. You can access these
commands in the Tools menu, or by using the icons on the tool bar.

Table 66. Zoom commands

Command Description
Zoom in/out Enlarges or decreases the display by one step.
Zoom max Enlarges the display to the maximum plot resolution.
Doc ID 7705 Rev 11 213/385

Simulator features

UMO0036

214/385

Table 66. Zoom commands

Command Description
Fit to Window Decreases the plot to fit into the display tab.
Zoom in or out on an area that you select. When you select Zoom Mode,
the mouse pointer changes to a magnifying glass.
— Zoom In — (“+” in the magnifying glass) click and drag to define the area
to enlarge. Zooms in to view the selected area.
— Zoom Out — (“-" in the magnifying glass) Hold down CTRL, then click and
Zoom mode drag to define the area. The display decreases when you release the

mouse button. The size of the area that you define affects the magnitude
of the zoom out (smaller area = smaller zoom out, larger area = larger
zoom out).
To disable this mode and return to the pointer icon, click a second time on
the Zoom Mode Icon on the tool bar.

Scroll features include a scroll bar with integrated scaling control, precision scrolling and

fast scroll.

Scroll controls for the time axis include (Figure 158):

1. Scroll bar - click and drag the scroll bar to scroll left or right on the time axis. Clicking
and dragging on the arrows at either end of the scroll bar changes the time scale of the

plot.

2. Scroll with time scale bar- place the mouse pointer on the time scale. When a hand
appears, click and drag left or right to scroll.

3. Precision scroll arrows - move the mouse pointer to the right or left end of the time
scale (depending on the direction that you want to scroll) when an arrow icon appears,
click and hold to scroll in the selected direction.

Figure 158. Scroll controls

L] 0]

(1]

ue[2]

ue[3]

ue[4]

ue[5]

ug[E]

ue[7]

U lsie [Pres T loza T [fzen T lisae | [i7ez b
a.00) T 1 466.000 ¥ |
[Active Wibker Time: 172.040 [Time: Mz Sim: 466.0 4

If your plot is long, contains a lot of plotted items and value changes, scrolling may seem
slow because the plot is refreshed as you scroll. The Fast Scroll setting (Tools>Fast
Scroll) allows you to scroll rapidly when a large amount of data is plotted. When fast scroll is
selected, the value changes in the plot are not refreshed until you stop scrolling.

Doc ID 7705 Rev 11 K‘YI

UMO0036

Simulator features

The Previous / Next Change buttons allow you to navigate from one value change to
another for the selected item. To use these commands, select an item and click on the
Previous or Next change button on the tool bar. The blue Main Marker moves to the next or
previous value change for the selected item. The Previous or Next button is not available (it
is gray) if there isn’'t a change in the value to go to.

Adding and removing markers in the display

In addition to the Main

Marker, you can specify an unlimited number of your own markers. To

help you manage these markers you can specify name, color and position. The tab display

area contextual menu,

the Project menu and the Value column drop-down menu offer the

marker controls listed in Table 67.

Table 67.

Marker commands

Command

Description

Tab display area contextual menu...

Add New Marker

Adds a marker, which will be visible in all tabs. In the dialog box, specify the
marker Name, Color and Time position in the plot. If you do not specify the
Time, by default the marker is placed at the point where you right-clicked in
the plot in order to access the contextual menu.

Remove Marker

Removes a marker that you select from a list of markers near the point
where you right-clicked in order to access the contextual menu. Select the
marker that you want to delete and click on the Remove button.

Remove All Markers

Removes all the markers that you have created. You cannot remove the
default Main marker (blue).

Show Markers

When checked, the vertical line for each marker is visible in the display.

Project menu or Value

column drop-down menu...

Add New Marker

Adds a marker, which will be visible in all tabs. In the dialog box, specify the
marker Name, Color and Time position in the plot. If you do not specify the
Time, by default the marker at the current position of the Main Marker.

Remove Marker

Removes a marker that you select from a list of all markers. A dialog box
opens listing the markers that you can remove. The Main Marker cannot be
deleted and therefore is not listed. In the dialog box, select the marker you
want to delete and click on the Remove button.

Marker Properties

Opens the Marker Properties dialog box, which allows you to select from the
markers you have created and modify marker properties including color,
name and time.

Remove All Markers

Removes all the markers that you have created. You cannot remove the
default Main marker (blue).

Show Markers

When checked, the vertical line for each marker is visible in the display.

Creating and deleting display tabs and items

You can add tabs (my_

Signals in Figure 156, for example) and place items in tabs in order to

have different views of the same simulation. You can manage tabs using the commands

listed in Table 68.

Doc ID 7705 Rev 11 215/385

Simulator features

UMO0036

216/385

Table 68.

Plotter tab management commands

Command

Description

In the Project Menu

Add New Tab

Adds a new empty tab (no items plotted) in the plotter window with a default
name.

Remove Active Tab

Removes the active tab from the plotter window. The active tab is the tab

whose contents are currently displayed in the Plotter window. Any tab can
be removed, however one tab must always remain in the window. It is not
possible to delete all of the tabs.

Rename Active Tab

Allows you to rename the active tab. You cannot rename a tab to have the
same name as another tab in your project.

Add New Item

Adds an item to the active display tab from the list of plotted or imported
items in all the tabs. To add an item, you must select an Expression to use
from the expandable list of plotted items. If you want to use an item that has
been exported from another simulation plot, you must import it first, see
Exporting and importing plotted items on page 218.

In addition, you can specify:

— Name — Specifies the name that will appear in the name column. Name
must start with a character of “_".

— Expandable - Specifies if the item will include sub-items.

— Value type — (Signed, Unsigned, Float) Specifies the value type for the
plotter display. The default value for the selected expression is Unsigned.

— Show as — (Bus, Digital) specifies the display format for the item as a bar
containing a value (Bus), or a wave form indicating the value as high or
low (Digital).

— Time Translation — Specifies in nanoseconds, the point in the simulation
plot where the plotter will start drawing the specified item. Default is zero:
start at time=0. Entering a value less than zero shifts the start point for the
specified item to the left of the start of the simulation (time=0). Entering a
value a value greater than zero shifts the start point to the right of the start
of the simulation (time=0).

— Time Scale — Allows the re-scaling of the expression for an item. The
default value is 1: no re-scaling. Entering a value less that 1 compresses
the time scale so that the item’s value changes occur more rapidly.
Entering a value greater than 1 extends the time scale so that the item’s
value changes occur more slowly.

In the Edit menu

Cut, Copy and Paste

Allows you to cut or copy a selected item and paste a copy of it into a tab.
You can modify the expressions of items that have been copied in this
manner. See Modifying expressions on page 217.

Delete Selected Item

Removes the item that you have selected in the item column from the
display in the active tab. If an item is no longer present in at least one of the
display tabs, then it is removed from the list of selected items to plot in the
Plotter selection window.

Delete All Items of
Group

Removes all items from the active tab from the display. If items are no
longer present in at least one of the display tabs, then they are removed
from the list of selected items to plot in the Plotter selection window.

Doc ID 7705 Rev 11

UMO0036

Simulator features

Modifying item display characteristics

To improve the readability of your plot, you can modify the display characteristics including
the item name, color, and size. If you have copied an item to another tab, the changes to the
display properties of this item are only applied to it on the active display tab.

Table 69. Item display controls

Command

Description

Edit menu

Rename

Changes the name of the selected item. You cannot rename an item to have
the same name as another item in the tab. Name must start with a character
or underscore ().

Properties

Changes the display properties of the selected item, including:

— Name — Specifies the display name found in the Name column. Name
must start with a character or underscore (). This can also be changed
by selecting Edit>Rename.

— Visualization format — Specifies the format for the display of values in
the plot and the Value column as Signed or Unsigned Decimal, Binary,
Octal, Hexadecimal, or ASCII.

— Height — Sets the height of the bar or wave form.

— Color - Defines the color of the bar or wave form.

— Apply to all check box allows you to apply the properties to all the items
in the plot.

Default properties

Sets display properties for the selected item back to the default properties.

View menu

Signals>Show as

Determines the item display type:
— Bus — a bar containing the integer or float value of an item.
— Digital — a continuous line that indicates the item value as high or low.

Modifying expressions

The plotter’s graphical representations of items and values are based on “expressions”,
which are text descriptions of the information to be plotted. This use of expressions makes it
possible to create new items based on existing expressions (see Creating and deleting
display tabs and items on page 215) and export expressions to a text file for import into a
later simulation in STVD or into another software (see Exporting and importing plotted items

on page 218).

The time translation (start point), time scale and expression can be changed for copied or
imported items. It is not possible to modify the expressions for items that are updated during
simulation or for sub-items.

To change the expression for the selected item, select Edit>Change Expression. In the
Change Expression dialog box, you can modify the expression for an item by specifying:

e Time Translation — specifies in nanoseconds, the point in the simulation plot where the
plotter will start drawing the specified item. Default is zero: start at time=0. Entering a
value less than zero shifts the start point for the specified item to the left of the start of

Doc ID 7705 Rev 11 217/385

Simulator features UMO0036

the simulation (time=0). Entering a value a value greater than zero shifts the start point
to the right of the start of the simulation (time=0).

e Time Scale — allows the re-scaling of the expression for an item. The default value is 1:
no re-scaling. Entering a value less that 1 compresses the time scale so that the item’s
value changes occur more rapidly. Entering a value greater than 1 extends the time
scale so that the item’s value changes occur more slowly.

e New Expression — specifies an expression to use for the selected item from the list of
expressions used in the current plot. If you want to use an expression from another
simulation plot, you must first import the expression into your current plot (see
Exporting and importing plotted items).

Exporting and importing plotted items

The plotter display is a graphical representation of value changes for a set of items. Value
changes for items can be saved to a text file in value change dump (VCD) format (* . vcd)
for use in later STVD simulation plots. VCD files can be opened and edited in a text editor.
They can also be exported to and imported from other software that use this format.

You can easily select only the items that you want to export and import.

To Export plotted information for selected items:
1. Select File>Export to open the Simulation Data Export dialog box.

The Selectable field, displays an expandable list of all the items in the current plot. The
different display tabs are represented by folders.

Figure 159. Select items for export in VCD format

Simulation Data Export
— Signals Selection
Selectable: Selected:
=043 Signals ~| | _Signal Hame | Group Name |
-] PE1 Bre1 Signals
O PAZ B adcvalue[0] Signals
Adcalue =) adcvalue[1] Signals
- F\gc\-'a:ueED} B adcvalue[2] Signals
calue(1)
=2 adcYalue(s Signals
v dcialue(2] = 3] d
- B adcvalue3] |
—Expatt Time
From Time: 1 ns * I 51200 To Time: 1 ns * I 204800
—Export File
File Path I Ciimy_adcSignals, wed Browse. .. |
Max File Size (KB): I d { ME: 0 means unlimited }
OF ,E I Cancel | Help |

218/385 Doc ID 7705 Rev 11 [‘II

UMO0036

Simulator features

4.
5.
6.

Select the items you want to export. To select all the items in a display tab, place a
checkmark next to the corresponding folder. Otherwise, place a checkmark next to
each item or sub-item that you want to export.

The items that you select are placed in the Selected field. The checkbox next to a
folder or item is blue if any items or sub-items that they contain are selected for
exporting.

Enter the time range that you want to export (optional). By default, the start time is 0,
and the end time is the end of the current plot.

Select the file that you want to export to.

Enter a size limit (optional). The default setting is 0 for “no size limit.”

Click on OK.

To Import plot information for selected items:

1.
2.
3.

4.

Select File>Import to open the Simulation Data Export dialog box.
In the Open dialog box, select the file that you want to import from and click on Open.

In the Select Signals to Import dialog box, select the items that you want to import
from the list.

You may need to specify a Time Translation (start point where the plotter with start
drawing the imported item in the current plot) and/or change the time scaling if the time
scale is a unit other than ns. To do this:

a) Place a checkmark in the Define X Translation and/or Scale checkbox.

b) Then enter:
Time Translation (in ns) specifying the point in the simulation plot where the
plotter will start drawing the specified item. Default is zero. Entering a value less
than zero shifts the start point for the specified item to the left of the start of the
simulation (time=0). Entering a value a value greater than zero shifts the start
point to the right of the start of the simulation (time=0).
and/or the Time Scale. The default value is 1: no re-scaling of the original
expression. Entering a value less that 1 compresses the time scale so that the
item’s value changes occur more rapidly. Entering a value greater than 1 extends
the time scale so that the item’s value changes occur more slowly.

Click on OK.

The imported items are added to the default tab, Signals.

Printing a plot

You can easily select only the items that you want to print, even if the items are on different
display tabs.

To Print plotted information for selected items:

1.

Select File>Print to open the Print Selection dialog box.

The Selectable field, displays an expandable list of all the items in the current plot. The
different display tabs are represented by folders.

Doc ID 7705 Rev 11 219/385

Simulator features UMO0036

6.4

220/385

Figure 160. Select items for printing

Print Selection

—Signals Selection

Selectable: Selecked:

- Signal Mame | Group Marme &

Ere1 Signals

Eran Signals
B adcvalue Signals b

B adevalus[0] Signals

B adcvaluel1] Signals
Adcialuel 2] Sianals -
B AdcValue[0] d %l | _pl_l

r—Print Inkeryval

Al Document Page: 2

' From From Time: 1 ns |512DD To Time: 1 ns * |25f5DDD

 Current view

—Printer

Mame: 1ignbprintd1.gnb. sk comiEMBEE00409

Park: GMNEEO0409 Print Setup, .. |

Driver: winspool

Print I Cancel | Help |

2. Select the items that you want to print. To select all the items in a display tab, place a
checkmark next to the corresponding folder. Otherwise, place a checkmark next to
each item or sub-item that you want to print.

The items that you select are placed in the Selected field. The checkbox next to a
folder or item is blue if any items or sub-items that they contain are selected for
exporting.

3. Enter the time range that you want to print. Three options are available:
— All: prints the selected items for the full interval of the plotted simulation.

— Fromtime to time . prints the selected items within the interval that
you specify. Times are specified in nanoseconds.

— Current view: prints the selected items within the interval that is displayed in the
current view.

4. Select your printer.
5. Click on Print.

Using read/write on-the-fly

The Read/Write on the Fly option permits you to non-intrusively read or write a value in the
RAM memory of the simulated microcontroller while the application is executing.

When this option is selected in either the Memory window or the Watch window, all of the
memory entries shown in the window are constantly refreshed while the program is running.
In these windows, the background turns yellow if the Read/Write on the Fly option is active.

Doc ID 7705 Rev 11 KYI

UMO0036

Simulator features

6.5

Figure 161. Memory and Watch windows with Read/Write on the fly

Yariable WValue Type Address I
"""" currentState 0ORANGE enum {G... | 0x80
----- rb0fTransitions | 4 urisigned .. | 0x81

Al [ri wateh 1 £ watchz b wiateh 3} watch 4

[

04000300 00000200 00A00000 -
000001FF FFFFFFOO 00000000
002C0500 0Z41Ce4E &DOO0O0O
060000A0 OOQD1FFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF _Iﬂ
L3

Note that when you scroll in the Memory Window, the newly visible memory entries turn
bold, to show that they are being updated, then change back to normal, indicating that they
are current and valid.

When the Read/Write on the Fly option is active, the only time that the values shown in the
Memory window may not be valid is during the direct editing of a memory value during the
running of a program. In this event, the edited value appears in red, indicating that it has not
yet been taken into account by the program, it then turns to bold black, to indicate that the
program is adjusting accordingly, and then finally, all entries are in normal weight black,
indicating that the window is valid and updated.

Forcing interrupts

In the Simulator, you can generate interrupt requests using pseudo pins named IRQX,
where x is the interrupt number. This is done by changing the value of the IRQx pseudo pin,
either from the from the 1/0O Stimulation window or in the stimuli file.

This feature is useful because it allows you to debug code for peripherals that are not

supported by the Simulator. And in the case of supported peripherals, it allows you to trigger

an interrupt whenever you want, without waiting for the interrupt conditions to be met.

The prerequisites for using this feature are:

e Interrupts must be globally enabled in the condition code register.

e The interrupt handler corresponding to the IRQ number must be defined, and its
address correctly set in the interrupt vector.

Note that if there is no interrupt handler at the address pointed by the interupt vector
corresponding to the interrupt request number, the program will crash.

You can use any kind of signal (digital, analog or periodic), with a delay if you want, to
generate an interrupt. Refer to Section 6.2: Using the input pin stimulator on page 203 or

Doc ID 7705 Rev 11 221/385

Simulator features UMO0036

Create and load a stimuli file on page 206 to trigger a signal on an interrupt request pseudo
pin.

The IRQx pseudo pin corresponds to the interrupt request number x. Refer to the interrupt
mapping table in the datasheet for your simulated microcontroller, to find the interrupt
request number for the interrupt that you want to generate. As an example, Table 70
provides the interrupt mapping for the ST7LITE1xB family.

Table 70. Interrupt mapping

Source Register Priorit Exit from
N° block Description Igbel ordery HALT or Address vector
AWUFH
RESET Reset Highest yes FFFEh-FFFFh
N/A priority
TRAP Software interrupt no FFFCh-FFFDh
0 AWU Auto wake up interrupt AWUCSR yes FFFAh-FFFBh
1 ei0 External interrupt O FFF8h-FFF9h
2 eil External interrupt 1 FFE6h-FFF7h
N/A yes
3 ei2 External interrupt 2 FFF4h-FFF5h
4 ei3 External Interrupt 3 FFF2h-FFF3h
5 LITE TIMER |LITE TIMER RTC2 interrupt LTCSR2 no FFFOh-FFF1h
6 Comparator | Comparator interrupt CMPCR no FFEEh-FFEFh
7 Sl AVD interrupt SICSR no FFECh-FFEDhQ
AT TIMER output compare
8 interrupt or input capture PWMXCSR no FFEAh-EFEBh
AT TIMER interrupt or ATCSR
9 AT TIMER overflow interrupt ATCSR yes FFE8h-FFE9h
10 LITE TIMER input capture LTCSR no FFE6h-FFE7h
LITE TIMER | Interrupt
11 LITE TIMER RTC1 interrupt LTCSR yes FFE4h-FFE5h
12 SPI SPI peripheral interrupts SPICSR yes FFE2h-FFE3h
13 AT TIMER | AT TIMER overflow interrupt ATCSR2 v no FFEOh-FFE1h
Lowest
priority

For example, for ST7LITELB to generate an auto-reload timer counter 2 overflow interrupt,
you must change the value of pin IRQ13. If the interrupts are globally enabled, the program
will jJump to the counter 2 overflow interrupt handler after the value on the interrupt pin has
changed (after execution of the current instruction, if the change is requested without delay).

222/385 Doc ID 7705 Rev 11 K‘YI

UMO0036 In-circuit debugging

7 In-circuit debugging

In-circuit debugging (ICD) allows you to debug an application in its final environment by
communicating with the microcontroller. There are two protocols for in-circuit debugging:

e ICC (in-circuit communication) for ST7 microcontroller families

e SWIM (single wire interface module) for STM8 microcontroller families

With the necessary connection hardware, these protocols enable STVD to program and
read your microcontroller's Flash memory, and control the running of your application on

your microcontroller. Once you have configured and programmed your microcontroller, you
can debug your application using the microcontroller’s on-chip debug modules.

Available in-circuit debugging features depend on your MCU’s memory type (HDFlash,
XFlash, RAM or ROM) and its debugging resources, notably the number of debug modules.
In this section, you will find information about:

e Section 7.1: Connecting to and configuring the microcontroller
e Section 7.2: Using breakpoints

e Section 7.3: Creating a break on trigger input (TRIGIN)

e Section 7.4: In-circuit debugging in hot plug mode (SWIM only)
e Section 7.5: In-circuit debugging limitations

Overview of in-circuit debugging with ICC

ST7 microcontrollers include a dedicated hardware cell (the debug module) for in-circuit
debugging, and also a software monitor that manages ICC communications.

When you enter a debugging session, STVD resets your microcontroller in ICC mode. The
entry into ICC Mode starts the ICC monitor — an on-chip firmware that is located in the
system memory and manages the ICC protocol. STVD, interfacing via the ICC monitor,
programs your microcontroller and allows you to configure it by setting the values of the
option bytes.

To debug your application, STVD then resets your microcontroller in User mode. However,
your microcontroller continues to run the ICC monitor, thereby allowing you to:

e control the running of your application

e set breakpoints by using TRAP instructions or debug modules

e read and write variables, memory contents and core registers when the application is
stopped

Overview of in-circuit debugging with SWIM

STM8 microcontrollers include a debug module for in-circuit debugging, and also a SWIM
hardware cell that manages communications with the host.

IYI Doc ID 7705 Rev 11 223/385

In-circuit debugging UMO0036

7.1

7.1.1

224/385

When you enter a debugging session, the SWIM entry sequence activates the
communication channel on a single pin. You can then:

e control execution of your application through the debug module (step, break, abort)
e set software breakpoints by using a dedicated instruction
e use the advanced breakpoints offered by the debug module

In-circuit debugging with SWIM offers the following advantages:

e Non-intrusive access to the CPU bus: no dedicated interrupt vector, no software
monitor, read/write access on-the-fly to RAM and peripheral registers, and to the Flash
memory when the application is stopped.

e Possibility to freeze peripherals when the application is stopped (depending on your
MCU, refer to datasheet).

e Possibility of starting a debug session in hot plug mode (without resetting the
microcontroller).

Connecting to and configuring the microcontroller

To connect to your MCU for ICD, you must:
1. Make sure that you have the correct hardware configuration.
2. Correctly identify your MCU in the ICD MCU configuration window in STVD.

3. Choose to establish the connection with the MCU while ignoring the current option byte
values, or to take them into account.

Connecting the hardware for in-circuit debugging

Hardware connection for ICC protocol

For STVD to connect to the ST7 microcontroller on your application board, you must install
an ICC connector on your application board, which relays the necessary signals to your
microcontroller. You must then connect the ICC cable between your application board and
one of the following devices:

e The ICC add-on of an ST Micro Connect box (ST7-EMU3 emulator)

e The ICC connector of an ST7-DVP3 emulator

e A Raisonance RLink in-circuit debugger/programmer

For more information about setting up this hardware connection, refer to your hardware user
manual:

e ST7-EMU3 Emulator User Manual (for ST Micro Connect with ICC add-on)

e ST7-DVP3 Emulator User Manual

Hardware connection for SWIM protocol

For STVD to connect to the STM8 microcontroller on your application board, you must install
a SWIM cable which relays the signals between your microcontroller on your application
board and your hardware (STice box, STLink or RLink).

The SWIM cable is connected at one end to your application board through an ERNI
connector, and at the other end, to the STice box via the SWIM connector board, or directly
to the STLink or RLink.

Doc ID 7705 Rev 11 KYI

UMO0036 In-circuit debugging
For more information about setting up this hardware connection for STice, refer to the STice
advanced emulation system for ST microcontrollers User Manual (UM0406).

7.1.2 Selecting your MCU

The ICD MCU configuration dialog box provides the interface for selecting your MCU and
for configuring your MCU'’s option bytes.

If you have an open workspace, when you start a debugging session, this dialog box is
displayed only if STVD cannot connect to the microcontroller defined in your project settings.
If the connection is established, the dialog box is not displayed, but you can access it by
selecting Tools>MCU Configuration.

If you do not have an open workspace, when you start a debugging session by selecting
Debug>Start Debugging, this dialog box is automatically displayed.

The ICD MCU configuration window (shown in Figure 162), offers two tabs:
e MCU Selection tab
e Options tab

Figure 162. MCU configuration window

ICD MCU configuration E2

MCU Selection | Optians |

Stark with extermal elock (ianoe aption bytes] 2

STTFLITE2 |

Cancel |

MCU selection tab

When you have a project loaded in your STVD workspace, the MCU selection is determined
by your projects settings (see Section 4.5: Configuring project settings on page 84). In this
case, when you open the ICD configuration window, the MCU for your project is displayed in
the MCU selection field as shown in Figure 162. The field is gray and you cannot access the
list of MCUs.

If you do not have a project loaded, you have access to the list of microcontrollers that
support in-circuit debugging. Select Debug>Start Debugging without creating or loading a
workspace or project. Once the session has started, select Debug Instrument>MCU
Configuration from the main menu bar.

In the ICD MCU configuration window, you must select a microcontroller that corresponds
to the one present on your application board. When you highlight a microcontroller in the list,

Doc ID 7705 Rev 11 225/385

In-circuit debugging UMO0036

Caution:

Note:

7.1.3

Note:

7.1.4

Note:

226/385

1

STVD attempts to connect to the microcontroller on your application board. If the connection
fails, an error message is displayed, and you must change your MCU selection.

The MCU selection in the ICD MCU configuration window must match the MCU selected in
your project settings. If it doesn’t, you must open the Project Settings window, select the
appropriate MCU, and rebuild your application.

When the dialog box opens for the first time, only the MCU selection tab is available.

Options tab

This interface lists the option bytes and their current values, and allows you to configure the
values from a list of available settings for your MCU (see Section 7.1.4: Configuring option
byte settings).

Ignoring option bytes (ICC only)

When establishing the initial connection with your microcontroller, option bytes may present
a problem if some settings are not consistent with your application. Inconsistent settings can
result in an MCU failure. For example, the clock source option byte must identify the correct
clock source. If the option byte is set to identify an external clock that is not in your
application, then your MCU won't start for lack of a clock signal.

As a security, to avoid this kind of failure, STVD can start your microcontroller using the
external clock signal provided via the ICC add-on. This allows STVD to establish
communication with your microcontroller without taking into account the current values of
the MCU’s option bytes.

To do this, check the Start with external clock (ignore option bytes) checkbox in the ICD
MCU configuration dialog box (see Figure 162). Once STVD has established
communications with your MCU, you can confirm and reconfigure the option byte settings in
the Options tab of the ICD MCU Configuration dialog box, if necessary.

In order to provide an external clock signal to start your MCU, the MCU'’s clock pin must be
relayed to the OSC_CLK pin of the HE10 connector on your application board. For
information about this connection, refer to your hardware user manual.

If this option is not supported by your microcontroller, it is grayed out as shown in
Figure 162, and you cannot check the check box.

Configuring option byte settings

Option bytes give you control of a range of ST microcontroller features such as low voltage
detection, oscillator source and range, watchdog behavior and memory read/write
protection. Option byte features vary from one microprocessor to another. For more
information about these features for your target MCU, refer to the corresponding datasheet.

You can only configure option byte settings once STVD has established the connection to
your microcontroller.

Option bytes and ICD compatibility

Some option byte settings are not compatible with in-circuit debugging and, therefore, must
be configured to be consistent with ICD requirements. Option byte settings that are not
compatible with ICD are listed in Table 71.

Doc ID 7705 Rev 11 KYI

UMO0036

In-circuit debugging

Caution:

Table 71.

ICD-incompatible option byte settings

Product memory type

STM8 MCU / SWIM protocol

ST7 MCU / ICC protocol

All memory types

Global readout protection enabled
Hardware watchdog enabled

Flash memory write protection
enabled

Hardware watchdog (WDG_HW)
enabled

XFlash, HDFlash

Flash memory read-out protection
(FMP_R) enabled

XFlash

— Flash memory write protection
(FMP_W) enabled

— Sector 0 (SEC [1:0]) other than
minimum

For XFlash devices, if write protection is enabled, the XFlash memory behaves like ROM
memory. You will not be able to debug your application and it is impossible to rewrite the

XFlash memory.

Handling incompatible option byte settings

When STVD establishes communication with your target MCU, it first reads the option byte
values from your MCU and detects settings that are incompatible with ICD. Detection of
incompatible option byte settings results in an error message. If this occurs:

1. Click on OK in the error message window.
The ICD MCU configuration window opens automatically, so you can reconfigure the

option bytes.

2. Select the Options tab to view the current option byte settings (see Figure 163).

The current settings (including ICD-incompatible settings) are in the Value field
corresponding to each option byte.

3. Click in the Value field to see possible settings for any option byte. Select a new setting
for any ICD-incompatible settings, then click on OK to accept the configuration and
close the window (see Figure 163). If you press Cancel at this point, any changes you
have made are ignored.

Doc ID 7705 Rev 11

227/385

In-circuit debugging UMO0036

Note:

7.2

7.2.1

228/385

Figure 163. Setting the option byte values

ICD MCU configuration

MCU Selection Options |

Option | Yalue -
FMP_R |F|ead-out ratection dizabled =
FMP_w/ i
WD LD Off

asc RC Oscillator On

OSCRAMGE PB4

PLL320FF PLL32 disabled

PLLOFF PLL disabled

PLLx4x8 PLLx8 -

ok | Cancel |

After changing an option byte setting that is not compatible with ICD, the original setting is
no longer visible in the Value field. Only settings that are compatible with ICD can be viewed
and selected. You will have to use a programming tool if you need to change option byte
settings to an ICD-incompatible setting.

Using breakpoints

When doing in-circuit debugging with STVD, you can use advanced breakpoints (see
Section 7.2.3: Setting advanced breakpoints), in addition to simple instruction breakpoints.
Advanced breakpoints stop the application when the conditions that you specify are met
whereas instruction breakpoints simply stop the application when it reaches a specified line
of code.

Breakpoints are generated in two ways:

e Software breakpoints rely on trap instructions to create instruction breakpoints with
ICC, and on a dedicated instruction with SWIM

e Hardware breakpoints rely on the MCU’s debug module(s) for instruction and
advanced breakpoints

The number of instruction or advanced breakpoints allowed at the same time depends upon
the type of microcontroller you are emulating, the number of debug modules it has and the
type of memory used (see Example).

Software breakpoints

By default, when you set an instruction breakpoint, STVD uses software breakpoints. An
unlimited number of software breakpoints can be used in address ranges corresponding to
memory that is writable byte-by-byte (such as RAM and XFlash memory).

However, software breakpoints cannot be used in memory areas that are not writable byte-
by-byte (such as HDFlash, XFlash sector 0 and ROM memory areas). Therefore, instruction
breakpoints in those memory areas rely on the MCU’s debug modules and hardware
breakpoint technology.

Doc ID 7705 Rev 11 KYI

UMO0036

In-circuit debugging

Note:

71.2.2

ST7 MCUs with XFlash memory do not allow software breakpoints in memory sector 0. This
sector cannot be written to when the microcontroller is in USER mode. In some cases, the
size of sector 0 can be configured. If this is the case, STVD requires sector 0 to be
programmed to its minimum size.

With the ICC protocol, software breakpoints are created by introducing a TRAP instruction,
which causes the application to stop running. For this reason, STVD cannot be used for in-
circuit debugging of ST7 applications that contain TRAP instructions in the code.

With the SWIM protocol, there is a dedicated software break instruction. This instruction
stalls the core, and the peripherals that you previously specified on the Options tab in the
MCU configuration window are frozen by the debug module.

For in-circuit debugging with SWIM, there is no restriction on using TRAP instructions in
your code. However, you must not use software breakpoints on the BOOT area (write
protected pages), and it is not possible to debug the protected code area (readout protected

pages).

Hardware breakpoints

All microcontrollers that support in-circuit debugging contain debug modules. The number of
debug modules determines how many hardware breakpoints you can place at any given
time. Each debug module allows you to place two instruction breakpoints, or one advanced
breakpoint.

Allocating hardware breakpoint resources

If you have placed an instruction breakpoint (as explained in Section 5.8.1: Setting an
instruction breakpoint on page 183), which uses up part of a debug module, it appears in
the Instruction Breakpoints field to the left of the Advanced Breakpoints window shown
in Figure 165. From this field, you can disable the instruction breakpoints, in order to place
an advanced breakpoint.

In addition, the stepping commands Step Over, Step Out and Run to Cursor, require the
use of a hardware-based instruction breakpoint when using an MCU with ROM or HDFlash
memory. If you do not have enough hardware breakpoints available when using these
commands, STVD will have to temporarily disable breakpoints to execute these commands.
STVD will warn you that it is disabling your instruction, or advanced breakpoints in order to
perform the command. Click on OK to continue. Once the command has been executed,
STVD automatically re-enables your breakpoints.

Example

Imagine that you are debugging your application on an ST7 microcontroller that has the
following characteristics:

e 1024 bytes of RAM memory in the address range 0080h to 047Fh,

e 32 Kbytes of program memory in the address range 8000h to FFDFh,

e 3 debug modules.

You will be able to place the following breakpoints:

e an unlimited number of software instruction breakpoints in the RAM memory address
range (0080h to 047Fh)

e up to six hardware instruction breakpoints in the program memory address range
(8000h to FFDFh), or up to 3 hardware advanced breakpoints in any address range.

Doc ID 7705 Rev 11 229/385

In-circuit debugging UMO0036

7.2.3

230/385

Setting advanced breakpoints

Depending on your target microcontroller and its debug modules, you can set advanced
breakpoints to stop the execution of your application when specific conditions are met.

To set an advanced breakpoint, open the Advanced Breakpoints window by selecting
Debug Instrument>Advanced Breakpoints, or click on the Advanced Breakpoints icon -
ﬁgﬁ\ - in the Emulator toolbar.

Figure 164. ST7-ICD emulator advanced breakpoints window

Advanced Breakpoints E2

Debug Module 0 # |

Hardware Instruction
breakpoints
Breakpoints zetting list

Dizable Advanced break -

[lin _Startup at gtartd7.c
Win _Startup at stant07.c

Break, on data value at a given address

Break on Opcode Fetch within address range

Break on data access within address range

Break on Opcode Fetch outside of an address range LI

Breakpoint conditions

Data access IF!ead vl
1] | | Address Ta150 Show Current Setting |

DataYalue Im
Cancel |

In the Advanced Breakpoints window, there is a tab for each debug module present on
your target microcontroller. Figure 164 shows the window for an ST7 MCU with one debug
module. The Hardware Instructions Breakpoints list on the left side of the window lists
any instruction breakpoints that are already placed and limits the number of advanced
breakpoints you can use.

When you open the Advanced Breakpoints window, if you have set instruction breakpoints
that use all of your MCU’s debug modules, STVD prompts you to disable these breakpoints
before you can activate an advanced breakpoint, as shown in Figure 165. The breakpoints
that you can disable are listed in the Hardware Instruction breakpoints field.

Doc ID 7705 Rev 11 KYI

UMO0036

In-circuit debugging

Figure 165. Disable instruction breakpoints prompt

Advanced Breakpoints

Hardware Ingtuction Debug Module 0 |

break points

(wlin _Startup at startd?.c
(wlin _Startup at startd?.c

breakpoints

Before setting an advanced breakpoint,
<=== wou should first disable some instructions

Disable instruction breakpoints by clicking on the checkboxes next to them. Once you have
disabled enough instruction breakpoints to free up a debug module, the advanced

breakpoint settings will become available, as shown in Figure 164.

Choose an advanced breakpoint from the list and define its settings in the Breakpoint
conditions field. Breakpoint settings are described in Section 7.2.4: Advanced breakpoint
options. Click on OK to activate the advanced breakpoint (see Figure 164). Once activated,
the symbols for any instruction breakpoints you have disabled will automatically change to

the disabled state (see Figure 166).

Figure 166. Disabled instruction breakpoints

=i ktimer.c M=] B3
122 .I
123
124
125 void main loop (void)
1z26 =4
127 | unsigned char *plhata = [(unsigned char *) &nbh0fTransitions
128 " o
124 Instruction Breakpoints)
15w = Symbols for disabled Location Counter | Condition
131 i :] P ;
instructian breakpaints nbOfT ransi
132 . .
timer,c:139....
133
134 B
135 if (enableBug)
136 = {
137 if [(bugCountDown == 0]
138 = {
139 phatal[l] = Oxasa;
140
141 reset_buy count dowr
142 i
143 bugCounthown—-;
144 i
a | 21|

The instruction breakpoints remain disabled until you reactivate them manually. For more

information, refer to Section 5.8: Instruction breakpoints on page 183.

Doc ID 7705 Rev 11

231/385

In-circuit debugging UMO0036

7.2.4 Advanced breakpoint options

In each debug module tab, you can program the following breakpoints settings:

232/385

Disable Advanced break. Advanced break function is off.
Break on data value at a given address. You must specify:
— the type of data access (Write, Read, Read/Write)

— the address

— the data value

Break on Opcode Fetch within address range. This option allows you to break on
the occurrence of any Opcode Fetch within a specified address range. You must

specify:
— the address at the beginning of the range
— the address at the end of the range.

Break on data access within address range. This option allows you to break on the
occurrence of a data access within a specified address range. You must specify:

— the type of data access (Write, Read, Read/Write)
— the address at the beginning of the range
— the address at the end of the range.

Break on Opcode Fetch outside of an address range. This option allows you to
break on an Opcode Fetch that occurs outside of a specified address range. You must

specify:
— the address at the beginning of the range
— the address at the end of the range

Break on data access outside of an address range. This option allows you to break
on a specified data access type outside of a specified address range. You must specify:

— the type of data access (Write, Read, Read/Write)
— the address at the beginning of the range
— the address at the end of the range.

Break on two sequential Opcode Fetch’s. This option allows you to flag two Opcode
Fetch instructions at two addresses. A break will occur when the two flagged Opcode
Fetch’s have occurred in sequence; the occurrence of the first Opcode Fetch must
precede the occurrence of the second Opcode Fetch.

Break on data access at one of two addresses. This option allows you to break on
the occurrence of a data access at either of two addresses. You must specify:

— the type of data access (Write, Read, Read/Write)
— the first of the two addresses
— the second of the two addresses

Break on Opcode Fetch OR data access at given addresses. This option allows you
to break on either the occurrence of an Opcode Fetch at a specified address, or the

Doc ID 7705 Rev 11 KYI

UMO0036

In-circuit debugging

7.3

7.4

occurrence of a data access at a specified address. (The addresses specified for each
instance can be different.) You must specify:

— the type of data access (Write, Read, Read/Write)
— the address where the Opcode Fetch must occur
— the address where the data access must occur

e Break on conditional stack write OR Opcode Fetch at given address. This option
allows you to break on the occurrence of either a write operation to the stack below a
specified address, or an Opcode Fetch at a specified address. You must specify:

— the maximum stack address below which the write operation must occur
— the address where the Opcode Fetch must occur

e Break on conditional stack write OR data access at given address. This option
allows you to break on the occurrence of either a write operation to the stack below a
specified address, or a data access at a specified address. You must specify:

— the type of data access (Write, Read, Read/Write)
— the address where the data access must occur
— the maximum stack address below which the write operation must occur

Creating a break on trigger input (TRIGIN)

You can connect an input signal via the IN trigger connector on the front panel of the ST
Micro Connect box. The input signal must be between 0 and 5 volts. The input signal causes
a break in the application only upon reception of a rising edge signal at TTL level.

The input trigger signal is only supported for in-circuit debugging over ICC with the ST Micro
Connect box.

In-circuit debugging in hot plug mode (SWIM only)

In-circuit debugging in hot plug mode is intended to allow you to take control over the
microcontroller on your application board while your application is running, without resetting
the microcontroller.

To start a debug session in hot plug mode, you must choose this option when you select
your debug instrument. This option is available when you do not have a loaded workspace,
and only with the SWIM RLink, SWIM STLink and SWIM STice choices for the debug
instrument.

To start a debug session in hot plug mode, follow these steps:

Doc ID 7705 Rev 11 233/385

In-circuit debugging UMO0036

7.5

1. Power up the STice box/RLink/STLink, depending on the hardware that you are using.

2. Connect the SWIM cable between the STice box (or RLink or STLink) and the SWIM
connector on your application board.

3. Select Debug Instrument>Target Settings from the main menu bar.
The Debug Instrument Settings window is displayed.

4. From the Debug Instrument Selection list box select SWIM RLink, SWIM STLink or
SWIM STice depending on your hardware.

5. Enable the Hot Plug Start Debug checkbox.

6. Select the communication port (parallel, USB or Ethernet) that your hardware is
connected to.

7. Click on OK to dismiss the Debug Instrument Settings window.
8. Check your MCU selection.
See Section 7.1.2: Selecting your MCU on page 225.
9. From the Debug menu, select Start Debugging to start a debugging session.
STVD starts running the application, without debugging information, while offering the

following debugging features: abort, step, advanced breakpoints, memory dump, register
window, read/write on-the-fly on RAM and peripherals.

In hot plug mode, you cannot set software breaks, flash program your microcontroller or
perform symbolic debugging.

The constraints on the application are:

e The SWIM_DBG pin must be reserved for debugging (it cannot be used for 1/0)

e Onthe STice, there is no pull-up on the reset pin, therefore you must ensure that there
is a pull-up on reset in the application. Pull-up on the reset pin is provided in the
RLink/STLink hardware.

If your application includes a number of periodic resets (such as watchdog timers), you
might note a difficulty in establishing the connection to the microcontroller. Standard
debugging mode is more appropriate for this kind of application.

In-circuit debugging limitations

In-circuit debugging limitations that are specific to a microcontroller are listed in the
Discrepancies window. You can access it by selecting Debug Instrument>Emulation
Discrepancies.

The general limitations described in this section apply to all target microcontrollers when in-
circuit debugging.

Stack limitation (ICC only)

234/385

For in-circuit debugging, bytes must be reserved on the stack in addition to the memory
reserved for the application. When evaluating the stack size required for your application,
add 5 bytes. Add 5 more bytes (total of 10 bytes) for target MCUs that support software
breakpoints.

Doc ID 7705 Rev 11 KYI

UMO0036 In-circuit debugging

TRAP instruction limitation (ICC only)

The TRAP interrupt vector is reserved for the ICC monitor during debugging and TRAP
instructions must not be used in the application.

Peripheral limitation (ICC only)

On some old devices, when the execution of your application is stopped from STVD while in-
circuit debugging, the peripherals (notably, the timers) are not frozen.

Reset limitation

The reset is not real-time.

In ICC the microcontroller executes the ICC monitor after a reset until the host debugger
sends a “continue” command.

In SWIM the microcontroller remains stalled until the host debugger sends a “continue”
command.

External reset limitation

Hardware on the application board must not generate external resets when the application
is stopped. The effect is different depending on the debugging protocol.

When debugging over ICC, an external reset results in the loss of synchronization between
STVD and the application. If this occurs, select Debug>Stop Debugging and then
Debug>Start Debugging to restart your in-circuit debugging session.

When debugging over SWIM, an external reset may cause a SWIM communication error
(timeout). Communication is re-established when the reset is released.

Address 0x80-0x81 overwrite on reset (ICC only)

When starting the user application (Debug>Run) after a chip reset, the ICC monitor
automatically overwrites any values stored at 0x80-0x81 with values corresponding to the
microcontroller's die identifier.

HDFlash devices Flash memory limitation (ICC only)

On devices with HDFlash memory, the ICC Monitor must be copied to a sector of Flash
memory because the system memory does not contain the advanced ICC monitor that is
required for in-circuit debugging. This zone of Flash memory will not be available for your
application. If your application attempts to write to this memory zone you will receive an
error message indicating that the application has tried to write to a reserved memory
zone.The affected devices and memory zone are listed in Table 72.

Table 72. Flash memory limitation on HDFlash devices

Affected microcontrollers Address range of reserved memory zone
ST7FLCD1 FFOO - FFDF
ST7FMC2 FFOO - FFDF
ST72F325 FFOO - FFDF

IYI Doc ID 7705 Rev 11 235/385

In-circuit debugging UMO0036

Table 72. Flash memory limitation on HDFlash devices (continued)

Affected microcontrollers Address range of reserved memory zone
ST7FLITES2/5 FF12-FFDF
ST7FLITEQ2/5/9 FF12-FFDF

SWIM debugger limitation

While the microcontroller is executing either a "Halt", "WFI" or "WFE" instruction, or
protected code, no core resource is accessible for the debugger. As a result, the debugger
looses any control over the core while it remains in this state (especially, no possibility to
stop it or make it leave this state), and read/write on the fly is no longer possible during this
period.

236/385 Doc ID 7705 Rev 11 KYI

UMO0036

DVP and EMU2 (HDS2) emulator features

8

8.1

8.2

DVP and EMU2 (HDS2) emulator features

This section explains how to use the features that are specific to the ST7 DVP or EMU2
emulator, including:

e Section 8.1: Working with output triggers

e Section 8.2: Using hardware events

e Section 8.3: Trace recording

e Section 8.4: Using hardware testing

e Section 8.5: Logical analyser (EMU2 emulators only)
e Section 8.6: Stack control window (DVP emulators)
e Section 8.7: Trigger/trace settings (DVP emulators)

Working with output triggers

Triggers are output signals from the EMU2 Emulator or Development Kit (DVP) that can be
connected to an external resource.

Two triggers, OUT1 and OUT2 are available on the ST7 EMU2 emulator. These signals can
be used to synchronize an external measurement instrument, such as an oscilloscope.
When a user-defined OUT1 or OUT2 event occurs, an impulse (TTL level) is emitted at the
Trigger OUT1 or OUT2 outlets on the emulator front panel, where a one-clock cycle pulse is
emitted.

For the Development Kits, when a user-defined event occurs, an impulse (TTL level) is

emitted or the level of a signal is changed at a special outlet (TRIGOUT pin) on the DVP

evaluation board. A special dialog box lets you choose the waveform mode for the external

signal.

You can set Trigger events so that signals are sent under the following circumstances:

e when a variable or constant is accessed,

e when a data memory address or range of addresses are accessed,

e when a program memory address or range of addresses are accessed, or its contents
are executed.

When, and under what circumstances, a signal is output from a Trigger can be controlled
using Hardware Events, described in Section 8.2: Using hardware events.

Using hardware events

A hardware event is used to control when you want to filter the trace or to trigger output
signals from your EMU2 Emulator or Development Kit.

Doc ID 7705 Rev 11 237/385

DVP and EMU2 (HDS2) emulator features UMO0036

8.2.1

238/385

The EMU2 Emulator version and the DVP versions are slightly different in the way they use
hardware events:

e For the EMU2 emulators, hardware events are used to control the trigger outputs
(OUT1 or OUT2).

e Forthe DVP2 and DVP3 emulators, there are three types of hardware events that can
be used to control either the trace recording or the trigger output:

— Event On (EVT_ON): The address where the event begins.
— Event Off (EVT_OFF): The address where the event ends.

— Event Hit (EVT_HIT): The event is active for the cycle in which one particular
address is accessed.

e For the DVP1 emulators, there are only two types of hardware event, and these
always control the output trigger:

— FORCE_HIGH: Forces the output trigger signal to one.
— FORCE_LOW: Forces the output trigger signal to zero.
This section provides hardware event information that is common to DVP and EMU2
emulators, including:
e The hardware event window and contextual menu
e Adding a hardware event

For more information about how to control the triggers and trace on your DVP emulator, refer
to Section 8.7 on page 255.

The hardware event window and contextual menu

1. Openthe Hardware Events window either by clicking on [(the Hardware Events
window icon) in the View toolbar, or from the main menu by selecting View>Hardware
Events.

2. With the mouse pointer in the Hardware Events window, right-click the mouse to bring
up the Hardware Events contextual menu.

Figure 167 shows the Hardware Events window as it appears for the STVD EMU2
Emulator version.

Figure 167. Hardware events window for EMU2 emulator

Enabled Hardware Disabled Hardware
Event Event

/

rFd Pl
ﬁ Harghfare event e Size Type |
(- 00002 auTt
=Tx0100 00001 ouT
[X 00d3 [y [

Mew Hardware Event...

Enable/Dizable Selected Hardware Event
Enable/Dizable &1l Hardware Events

Remave Selected Hardware Event
Remave All Hardware Events

v Allow Docking
Hide

Doc ID 7705 Rev 11 KYI

UMO0036

DVP and EMU2 (HDS2) emulator features

8.2.2

From this contextual menu, you can:

Refresh: Updates the window.
New Hardware Event: Adds a new hardware event.

Enable/Disable Selected Hardware Event: If you select a specific hardware event,
and then right-click to obtain the contextual menu, choosing this option disables the
event. A disabled event is signaled by a gray circle in the Hardware event column.

Enable/Disable All Hardware Events: A toggle switch to enable or disable all
hardware events.

Remove Selected Hardware Event: If you select a specific hardware event, and then
right-click to obtain the contextual menu, choosing this option removes that event.

Remove All Hardware Events: Erases all hardware events.

Adding a hardware event

You can add a hardware event from the Hardware Events window or from the Editor
window (if you want to set a hardware event on a specific symbol in your application
program).

To add a hardware event from the Hardware Events window

1.

Right-click the mouse while the mouse pointer is anywhere in the Hardware Events
window.

Choose New Hardware Event from the contextual menu.
The Hardware event settings dialog box opens as shown in Figure 168 or Figure 169.

Figure 168. Hardware event settings window for EMU2 emulator

Hardware events setting

IIIILIT‘I "'I v Enabled
From: IEI:-:EIEIEIEI

" wihale vaniable

@+ T 00000 + [0

Cahicel |

If you are using an EMU2 Emulator, in the Hardware event setting dialog box, choose
the trigger output that you want the signal to be sent to (either OUT1 or OUT2) and
check the Enabled box.

Doc ID 7705 Rev 11 239/385

DVP and EMU2 (HDS2) emulator features UMO0036

Figure 169. Hardware event settings window for DVP2

Hardware events setting

I EVT_HIT < I ¥ Enabled

From: st
" wihale vaniable

LG 1 : S Y1 + [0

Cancel |

6.

If you are using a Development Kit, in the Hardware event setting dialog box, choose
the kind of hardware event you want to set (either EVT_ON, EVT_OFF or EVT_HIT for
DVP2 and DVP3, or FORCE_HIGH or FORCE_LOW for DVP1) and check the Enabled
box. For more information, see Section 8.7 on page 255.

In the From field, type the begin address of the memory range on which the event is
set, or the name of the symbol on which address you want the event to be set.

Select Whole variable if you want the hardware event to be activated on the whole
variable range which is directly linked to the symbol type specified in the From field (for
example, on whole fields of data symbols for a C structure data type).

Select To to enter the end address of the memory range on which the event is set.

This can be expressed either as a symbolic name or as an address. By default, the
symbol name entered is the same as the symbol name in the From field. In the + field
you may also enter an offset if required.

When you have finished setting the hardware event, click OK.

To add a hardware event on a specific symbol from the Editor window

Open the Hardware Events window.
Open the relevant source file in the Editor.

Select the symbol for which you want to add a hardware event by highlighting it with the
mouse (it is highlighted in blue).
Either:
— Drag and drop the highlighted symbol into the Hardware Events window.
By default, the size is the whole variable, and the type isOUT1 (for the EMU2

Emulator version) or EVT_ON (for the DVP version), but you may modify these
parameters from within the Hardware Events window if you want.

Figure 170. Hardware events window (EMU2 emulators)

Hardware event

[=lx

240/385

Doc ID 7705 Rev 11 KYI

UMO0036 DVP and EMU2 (HDS2) emulator features

Figure 171. Hardware events window (DVP2 emulators)

Hardware event Size Type

[=1x

— Right-click the mouse. The Editor contextual menu opens. Select Add Hardware
Event. The Hardware events setting dialog box opens.

Figure 172. Hardware events settings dialog box (EMU2 emulators)

woid *zpt;

(=53 for (3=0;;j++)
i

Hardware ever

B+
R0 IDUT1 ~] ¥ Enabled

|
R0l = |
REZ00 =
REZ00L :

Fram: 3t

Zpt = &

Figure 173. Hardware events settings dialog box (DVP2 emulators)

wold *zpt;

(=53 for (j=0;;]++)

n Hardware e thing
=AN++ ; Iﬁ I_
-
RzOO = EWT_HIT v Enabled
Rz01 = Fram: 3t
RRZ00 =
REZ00L i i
 Ta IstD + I
zpt = &

Cancel |

You can change the event type using the drop down list.

The name of the symbol you highlighted in the editor appears in the From field (in
our example, st0). Proceed as described in To add a hardware event from the
Hardware Events window.

IYI Doc ID 7705 Rev 11 241/385

DVP and EMU2 (HDS2) emulator features UMO0036

Note:

8.3

Note:

8.3.1

242/385

To set a hardware event on aline of code

1. Open the Hardware Events window.
2. Open the relevant source file in the Editor and place the cursor in the line of code.
3. Right-click the mouse.
The Editor contextual menu opens.
4. Select Go to Disassembly.

The Disassembly window opens and the code address of the source code line is
selected.

5. Drag and drop the code address from the Disassembly window to the Hardware
Event window.

When you open the Hardware Events window, the hardware event that you have just
added appears. The symbol or code line, as well as the size (the range over which the
event is defined) is shown in the hardware event window in terms of the corresponding
memory address.

You cannot modify the address of existing hardware events, however you can modify their
size or their type.

Trace recording

The ST7-DVP3, EMU2, and DVP2 series emulators have a trace buffer for recording
hardware cycles. The trace buffer has a limited physical size (512 cycles for DVP3, 1024
cycles for EMU2 and 256 cycles for DVP2). STVD’s Trace window allows you to view
recorded hardware cycles that have occurred during the execution of your application. In
addition, different trace recording modes allow you to control what information is viewed and
when.

The Trace window is not available for use with the DVPL1 (first generation MDT1/MDT2
Development Kits).

You can open the Trace window either by clicking on (the Trace window icon) in the
View toolbar, or from the main menu by selecting View>Trace.

Trace recording is activated from the Trace contextual menu. When activated, the Run,
Continue and Step commands prompt the trace buffer to save trace information until a
breakpoint is reached.

You can either view all of the trace buffer contents or filter those that you want to view (see
Line filter).

You can also use the Logical analyser (EMU2 emulators only) to define conditions whereby
you can filter those cycles you want to record in the trace buffer. For example:

e you can stop or start trace buffer recording after a specific event, or,

e you can cause each access made to the specified area to be recorded a specific

number of times.
Trace contextual menu

The Trace window contextual menu contains commands for trace operations plus several
trace window configuration options. Right-click anywhere within the Trace window to open
the Trace contextual menu.

Doc ID 7705 Rev 11 KYI

UMO0036

DVP and EMU2 (HDS2) emulator features

Figure 174. Trace contextual menu

BEefresh

LColurn Display...
Filter Lines...

[ate saurce
[Gote dizassembly

Previous Source

Mext Source

—ﬂl Record Addressl Dat,al Symwholic Dis
0l Z62138 Ox00£f0cE Ox0f
oxoofoes [oxoe] |
Z62140 Ox00£0d6 0x53
Z62141 Ox00£0d7 Ox20 JRT Oxf0akb
Z62142 O0x00£0ds Oxdz
Z62143 O0x00£0ds Oxdz
Z62144 Ox00£0ab Oxkbé

Previous Code fetch
Mext Code fetch

Bookmarks

Copy to Clipboard
Copy ta File...

Emulator commands

| v Allow Docking
Hide

3

5o | Event

Discarded

Discarded

Discarded

Discarded

LClear Trace buffer
v Trace On
Set Timestamp Clock. ..

Operand fetch

Operation code fete
Operand fetch

Show/hide columns

Columns may be disabled if they not required and/or do not display any trace information for
the particular trace situation. To activate/disable a column, select Column Display in the
Trace contextual menu. This opens a list of all the columns available in the trace record.

Figure 175 shows the Columns dialog box for the DVP version.

Figure 175. Columns dialog box for DVP emulators

Columns

[w]Fecord
[wlAddress
[w|Data

[w]Symbolic
[w] b rniary
W TRIGIM
[w|Frobe

[w|Hexadecimal
[w|Dizazzembly

|

Figure 176 shows the Columns dialog box for the EMU2 version.

Figure 176. Columns dialog box for EMU2 emulators

[w]Fecord
[wlAddress
[w|Data

[w]Surbaolic
[w] b rniary
vl Sig
[w]52

[w]E wvent

[w|Hexadecimal
[w|Dizazzembly

j Cancel |

Doc ID 7705 Rev 11

243/385

DVP and EMU2 (HDS2) emulator features UMO0036

244/385

Move columns

Columns may be also shifted right or left for convenience of use. Pick up the column header
with the left mouse button and drag to the location required.

Line filter

Trace records may be filtered using the Trace Display Filter dialog box (see Figure 177).To
open this window, select Filter Lines from the Trace window contextual menu.

The line filter is used to restrict the trace display to the operation that you are interested in.
Only the selected trace entries appear in the Trace window (all others are hidden). The
record number and timestamp are not recalculated when lines are removed from the display.

Display Source Lines: This option includes the source line in the Trace information. The
Address column contains the name of the source file and the source line content is
displayed in the Disassembly window.

Display event type cycles: Includes the recorded cycles in the trace information. When
enabled, the microprocessor actions selected in the Trace Display Filter dialog box are
included. When disabled, only the source lines are shown in the Trace window.

Figure 177. Trace display filter dialog box

Trace Display Filter

W Display Source Lines

— Ewent types

v Dizplay event wpe cycles

|realid
(W] Fetch
[wFead
L

Check all | Uncheck aII|
(]9 I Cancel |

Saving trace to file

The trace record may be copied to the clipboard or copied to file via options in the Trace
contextual menu. The command Copy to File opens the Save Trace Contents dialog box
(Figure 178), with details of saved trace files and user options for save parameters.

Doc ID 7705 Rev 11 KYI

UMO0036

DVP and EMU2 (HDS2) emulator features

8.3.2

Figure 178. Save Trace Contents dialog box

Save Trace Contents

— Curmrent Status

Total number of records; |43
Murnber of new records: I“3 © Last

Browsze... |

— Save Condition

% whole contents
ID =1
L=
~
~File name Lazt records I
I € From record I
Torecord I

Cancel |

Viewing trace contents

The Trace window presents a table of nine or ten fields (plus the Symbol Bar) which
together form a single trace record.

At the left is the Symbol Bar (which has no column heading) followed in default order by
Record / Address / Data / Hexadecimal / Disassembly / Symbolic / Memory, then the
hardware-specific categories.

For EMU2 emulator: Sig / S2 / Event.

Figure 179. EMU2 emulator trace window

i

I Hecordl Addiess I Datal Hexadecimal I Dizaszembly I Syumbolic I Memary I Sig I 52 I Event ~
1 | Ox00F2fd Ox9c | 0x9C RSP RSP Fetch 111 0
startl?.c 24 RSP =
2 | Ou00f2fe Oucd Irealid 111 0
3 | Ow00F2fe Owcd | OxCDFZ2C Call Osf22c CaLl Init Fetch 111 0
startd?.c a3 It []:
4 | Ou00F2Ef =f2 Read 111 0
5 | 0400F300 OuZc Read 111 0
B | 0400F22c | Ouck Irealid 111 0
7| 000071 ff 001 Wit 111 0
8 | 040001 fe (0=f3 Wit 111 0
9| 0400f22c | Owck | OxCEFOT1 LD A0sf011 LD A startuoData+13 | Fetch 1111 0

1

or”

For DVP2: TRIGIN / Probe.

Figure 180. DVP2/DVP3 trace window

ill | Flecu:urdl Address | Datal Hexadecimal | Dizazzembly | Syrnbolic | Memoryl TRIGIM | Probe [2,1,0] *
start07.c a4 RSP
1 Ow00F26d 0«8z O=3C RSP RSP Fetzh 0 0
2 O«00f2fe Owcd Iwalid | 0 011
startly. o a8 Init [1;
3 Ow00F2fe Owcd | ORCDFZ22C Call Oxf22c CALL Init Fetch 0 0
4 Ow00F2E 0uf2 Read 0 01
5 Ow00300 O Read 0 01 ;I
l |]
Doc ID 7705 Rev 11 245/385

DVP and EMU2 (HDS2) emulator features UMO0036

Note:

8.4

Caution:

246/385

Figure 179 and Figure 180 show all of the trace columns for each STVD version. You can
preselect which of these columns are displayed (see Show/hide columns).

The trace fields contain the following information:
e Symbol Bar: This column contains icons such as source line markers =k and/or
bookmarks mm.

When a source line marker occurs, the fields described hereafter are used to display source
line information such as the name of the source file, the line of source code, and the
instruction call.

e Record: Trace record numbering starts at 1, which corresponds to the earliest cycle to
be recorded, and ends at the latest cycle recorded (for the EMU2 emulator, the
maximum is generally 1024 cycles, for the DVP2 the maximum is 256, and for DVP3
the maximum is 512).

Take, for example, the case of the EMU2 emulator’s trace. If you have an application
that runs for 2048 cycles before there is a break, and the maximum size of the trace
buffer is 1024 cycles, cycles 1024 to 2048 are recorded in the trace buffer, but they will
be numbered 1 to 1024 in the Record column.

e Address: The memory location accessed.

e Data: The hexadecimal value on the data bus

e Hexadecimal: The instruction in hexadecimal format, if this is a Fetch instruction cycle.

e Disassembly: The instruction in assembly language mnemonics, if this is a Fetch
instruction cycle.

e Symbolic: The instruction in assembly language mnemonics with symbolic operands,
if this is a Fetch instruction cycle.

e Memory: The type of memory access (either read/write/fetch or invalid).
e Sig: The value of the EMU2 emulator front panel input signals (Analyser probe).
e S2: The value of the EMU2 emulator S2 input signal (see emulator documentation).

e Event: The name of the Logical Analyser event that has been matched on this cycle
(Event 1, Event 2, Event 3 or blank for none).

e TRIGIN: The value of the TRIGIN signal (input pin located on the DVP).
e Probe: The values of the signals output from the probe pins located on the DVP.

Using hardware testing

The hardware test function enables you to check that the emulator is still working online and
has not suffered a hardware problem. If problems occur during debugging (such as bad
debugger responses and unexpected behavior), you should check for hardware problems
using the Hardware Test function, and if any are detected, contact your STMicroelectronics
sales representative.

Be careful when performing a hardware test while an application is open. The opened
application may be corrupted by the hardware testing process. If you find that your
application has been corrupted, simply close the application, and reopen it.

The Hardware Test dialog box is accessible either by clicking on (the Hardware Test
icon) in the Emulator toolbar, or from the main menu by selecting Debug
Instrument>Hardware Test.

Doc ID 7705 Rev 11 KYI

UMO0036 DVP and EMU2 (HDS2) emulator features
Figure 181. Hardware Test dialog box (DVP version)
syztemn Rak memary check v ﬂ
aystem ROM memon check v
emulation RakM memon check v
control Bak memong check v
EPLD load check. I
break on opcode fetch check v
<]
=
< ;IJ
Apply Select Al | Unzelect All i LCancel
The Hardware Test dialog box shows a list of different tests that can be performed. Check
the box for each test that you want to perform (they are all checked by default) and click
Apply to start the hardware test.
The hardware tests are performed one by one, and the results summarized in the dialog
boxes. For example, the hardware test for the EMU2 Emulator appears as shown in
Figure 182.
Figure 182. Hardware test underway (EMU2 emulator version)
Development Board test i TestOK j
HALT and RESET emulator test [v TestOK
wirite protect request test v TestOK
Mest request test ¥ TestOE
5S4 breakpaint request test v Test OF
Laogical analyser request check [¥ OnGoing..
B
Test started .. ;I
< ;IJ
Sefect il I rzelect Al [Eatice] |
Note: Some MCU options and memory mappings will stop the launching of a Hardware Test. To

run the hardware test, you will have to reset the MCU configuration to the default settings.
Do this by closing your debug session (Debug>Stop Debugging) and changing the MCU
selection in the MCU tab of the Project Settings window (Project>Settings). Once you have
changed the MCU selection you can restart your debug session and run the hardware test.

Doc ID 7705 Rev 11 247/385

DVP and EMU2 (HDS2) emulator features UMO0036

8.5

8.5.1

248/385

Logical analyser (EMU2 emulators only)

You can access the Logical Analyser window either by clicking on @l (the Logical
Analyser icon) in the Tools toolbar, or from the main menu by selecting Tools>Logical
Analyser.

The Logical Analyser allows additional control over advanced breakpoints or the trace
buffer. In the drop-down list at the top of the window, choose between:
e Advanced Breaks to set conditional breakpoints in the execution of the application,

e Trace Filtering to conditionally filter the cycle events in the trace buffer that you want to
view.

Figure 183. Logical Analyser mode selection

Logical Analpser E3

Advanced Breaks j
Trace Filtering

Because the Logical Analyser uses separate hardware to “spy” on the running of the
program on the emulator, the inclusion of advanced breakpoints does not interfere with the
real-time running of the program. However, there is a short delay between the time the “spy”
identifies a breakpoint condition has occurred and the moment the program execution
actually stops. Typically, a few additional instruction lines are executed during this delay.

This behavior contrasts with that of Instruction Breakpoints and Data Breakpoints,
where, because breakpoint conditions (set using the Counter and Condition options) are
evaluated internally as if the evaluation were part of the program execution, the use of these
breakpoints means that the program cannot run in real-time. However, Instruction and Data
breakpoints cause the program to stop exactly at the instruction line that satisfies the break
condition.

This section provides information about:

e Defining logical analyser events

e Advanced breaks using the logical analyser
e Trace filtering using the logical analyser

Defining logical analyser events

Using the Logical Analyser, you can define conditions to control either the filling of the trace
buffer or the occurrence of a breakpoint. Conditions are defined using a combination of
events. The Logical Analyser enables you to define up to three events, named Event 1,
Event 2 and Event 3.

Defining an event is equivalent to flagging either a specific address or symbol and/or a
specific data value on the data bus, and/or a specific binary signal value. Each event is
defined from the Logical Analyser window as described below. The debugger compares
the hardware values you specify (such as the accessing of the memory address 0xOff or the
sending of the signal “1” to a probe pin AL2) to what the current hardware values are in the
emulator, and when they correspond, the event is flagged as having occurred.

Doc ID 7705 Rev 11 KYI

UMO0036

DVP and EMU2 (HDS2) emulator features

If the condition you define with the Logical Analyser consists of a single event, when this
event is met, the Logical Analyser either imposes a breakpoint, or stops recording the trace
(depending on which functionality you activated). However, if your condition was made up of
several events, the Logical Analyser notes that the first event occurred, and keeps checking
for the occurrence of the other events. When all of the events that make up the condition
have occurred as specified, the breakpoint condition is filled and the Logical Analyser
performs its task (i.e. imposing a breakpoint).

The sequence of events must follow a certain order: Event 1 followed by Event 2 and finally
Event 3. However, the events can be combined in such a way that your condition involves
the occurrence of an event followed by a specified number of cycles, and/or several
occurrences of the same event (in other words, you can specify the number of times that an
event must occur before the condition is met).

To define an event:

1. Openthe Logical Analyser window by selecting Tools>Logical Analyser from the
main menu.
Each Event number has its own tab in the window.

2. Click on the tab of the Event you want to define.

Figure 184. Logical analyser window

Logical Analyzer E
Trace Filtering ﬂ
—Event&ddress—————— ~EwentData

Addrezs iy Address Data I,-’.\ny Data |= I
tazk I M azk I

— Signals

AL3 ALZ a1 ALD 52 WMA RAw LIR

Oy BE BEE B BB QB

[A] 4> [#I[, Trace A Ereaks 4 Eventd A Ewert® A Ewverts /
ak. I Cahicel |

3. If you want to define the event by flagging an address or a symbol access in the
memory space, enter the address or the symbol name in the Event Address fields.
Specify whether you want the access to be Read or Write by choosing R or W in the
R/W checkbox located under the Signals heading. You may request that the access is
a valid access by choosing “1” in the VMA checkbox.

4. If you want to define the event as the occurrence of a specific value on the data bus,
enter the value in the Event Data fields. If you specified an address or symbol in the
Event Address fields, the definition of the event is the reading and/or writing (you
define which in the R/W signal checkbox) of a specific value to that address.

5. Finally, the event you define can be simply the detection of a specific signal. Under the
Signals heading is a list of signals each having a tristate checkbox activated by clicking
on the signal's box with the mouse. Some signals are pin signals, and others give
information on the memory operation being undertaken. “X” means that the signal
value is unspecified and its value has no impact on the event. Each signal can also be

Doc ID 7705 Rev 11 249/385

DVP and EMU2 (HDS2) emulator features UMO0036

Note:

250/385

set to 0 or 1 except in the case of the Read/Write signal, where for clarity's sake, you
can choose between “R” or “W".

You may flag values on the following pins/signals:

Four Analyser probe pins (located on the probe port on the front of the EMU2
emulator): ALO, AL1, AL2 and AL3.

A supplementary input/output pin, S2, located next to the probe cables on the front
of the EMU2 emulator.

The VMA signal indicates whether a memory cycle is valid or invalid. For example,
during processing, cycles are often used as computation time without significant
values on addresses and data buses. In these circumstances, the VMA signal for
that address is “0”. However, when a validated value is being read from or written
to an address, the VMA signal is “1”.

The R/W signal indicates whether a memory address is being read from (R) or
written to (W).

The LIR signal indicates whether there is a fetch cycle occurring (“1”) or not (“0”).

6. When you have finished defining the event(s), you must choose either the Advanced
Breaks or Trace Filtering mode (described in detail below). Click OK.

This action closes the Logical Analyser window, saving your event definition(s).

Figure 185. Defining an event

Advanced Breaks j
~Event&ddress ——— EwentData
Address 0 hd Data 10 -
Mask ID— Mask ID—
— Signals
AL3 ALZ ALl ALD 52 WMA RAw LIR
On E El E E E [5]

[A] A e [#IP, Trace A, Bresks A Event1 A Event2 3 Eventd f
QK I Cancel |

As an example, to set an event in the execution of the program when the value of the symbol
st0 is written as 10, the Event tab would appear as in Figure 185.

If you exit the Logical Analyser window by clicking OK, and reopen the Logical Analyser,
you will find that the symbol value that you entered in the Event tab has been translated to
its hexadecimal bus address. This has no impact on the event definition itself, and occurs
because events defined in the Logical Analyser are based on the hardware data. As soon as
you enter a symbol (which is a programmed entity rather than a hardware address), it is
immediately translated in terms of where the symbol occurs in the memory address. For
example, the event we defined in Figure 185 appears as shown in Figure 186.

Doc ID 7705 Rev 11 KYI

UMO0036

DVP and EMU2 (HDS2) emulator features

8.5.2

Note:

Figure 186. Event 1 as programmed

Logical Analyzer E3

Advanced Breaks j

~Eventdddrezzs———————————— EventData

Address IDHDDbE vI Data IDHD& vl
hazk Im Mazk IDHDD

— Sighalz

AL3 ALZ ALT ALD 52 wMA RAw LIR

On FE E E E E O M E

[A] A e [#IP, Trace A, Bresks A Event1 A Event2 3 Eventd f
QK I Cancel |

Advanced breaks using the logical analyser

You can use Events as conditions by which to insert a break in the running of an application,
by choosing the Advanced Break functionality from the drop-down list at the top of the
window.

A break specified using the logical analyser is different from inserting an instruction
breakpoint or a data breakpoint, because the break in the execution of the application is
triggered by the Analyser hardware. Consequently, you may find that there is a delay
between the time the hardware condition specified by the event(s) is flagged and the time
that the application is actually stopped. In general, you will probably find that a few more
lines of the program have been executed before the program is halted.

To define an advanced break:

1. Open the Logical Analyser window.
2. Choose Advanced Break from the drop-down list at the top of the window.
3. Inthe Break After field, you can choose between three options:

— No Break: No breaks are specified.

— Event 1+ n1lcycles: The break occurs after Event 1 has occurred and n1l cycles
have subsequently elapsed. This requires you to define Event 1 and to enter a
specified number of cycles in the n1 field.

— n2 Occurrences of Event 2: The break occurs after Event 2 has occurred n2
times. This requires you to define Event 2 and to enter a specified number of
occurrences in the n2 field.

Doc ID 7705 Rev 11 251/385

DVP and EMU2 (HDS2) emulator features UMO0036

8.5.3

252/385

Figure 187. Defining an advanced breakpoint

Logical Analpser E

Advanced Breaks ﬂ

Break, After

nl = |1

Ewent 1+l |::I,l|::|E=:E:

And

INnne ﬂ Mot applicable

And

I j MHat applicable

[4] 4] » [#]4 Trace 4 Breaks 4 Ewert1 p EventZ & Event3 f
oK I Cancel |

N

You can continue to apply break conditions using up to three events by way of the And
fields. In the example shown in Figure 188, after Event 1 plus n1 cycles have occurred,
followed by n2 occurrences of Event 2, a break in the execution of the application
occurs.

Figure 188. Defining an advanced breakpoint (continued)

Logical Analyzer E3

Advanced Breaks j

Break After

Ewvent 1 +nl cycles j nl =

And

n2 Occurrences of Event 2

And

17]

INone ﬂ Mot applicable

[A[A » ¥, Trace , Breaks & Euent1 } Ewert® A Evertd f
QK I Cancel |

Trace filtering using the logical analyser

Choose the Trace Filtering functionality of the logical analyser by selecting this option from
the drop-down list at the top of the window.

As described above, the logical analyser enables you to define up to three events, named
Event 1, Event 2 and Event 3. Event 1 and Event 3 cause trace buffer recording to be
stopped after a specified number of cycles. Event 2 causes each access made to a
specified area associated with the event to be recorded a specified number of times.

This enables you, for example, to count the occurrence of a complex event, or trace all
accesses to an address or an address range. If several conditions are set together (for
example, Event 1 and Event 2), recording for an event condition is only triggered when all

Doc ID 7705 Rev 11 K‘YI

UMO0036

DVP and EMU2 (HDS2) emulator features

Note:

previous event condition recordings are completed (for example, Event 2 condition recording
only starts when Event 1 condition recording is completed).

To define conditions for trace buffer recording:

1. Open the Logical Analyser window.

2. Choose Trace Filtering from the drop-down list at the top of the window.

3. Inthe Record field, choose one of the three options (as shown in Figure 189):

Figure 189. Trace filtering options

Logical Analyzer E

Trace Filtering ﬂ

Record

And then ISt':'F' trace R applicablel
And then I j Mot applicablel

1 ol exeles o
Go Eventl i

[A] 4> [#/], Trace £ Ereaks A Ewert1 A Ewerd® A Ewert /
ak. I Cahicel |

— Record Everything until Event 1 + n1 cycles: The condition being defined is that
the trace is recorded until Event 1 occurs and then n1 cycles elapse. This requires
you to define Event 1 and to enter a specified number of cycles in the n1 field.

— Record n2 occurrences of Event 2: The trace does not begin recording until
Event 2 occurs, and then it records everything until Event 2 has occurred n2
times. This requires you to define Event 2 and to enter a specified number of
occurrences in the n2 field.

— Permanent recording: The trace buffer records unconditionally.

For each case, a small schematic shows how long the trace is recorded. In the example
shown above, the trace starts to be recorded at Go (symbolized by the bold line) when the
application is run. It continues to be recorded until Event 1 occurs, and continues during the
execution of n1 cycles. Once the nl cycles have elapsed, trace recording is halted.

4. If necessary, continue to apply trace filtering conditions using up to three events by way
of the And then fields.

In the example shown in Figure 190, the trace recording starts from Go and continues
until Event 1 plus n1 cycles have occurred. Then recording stops (as indicated by the
finely dotted line), and only restarts when Event 2 occurs, and continues recording
event cycles (bold dotted line) until Event 2 has occurred n2 times.

Doc ID 7705 Rev 11 253/385

DVP and EMU2 (HDS2) emulator features UMO0036

8.6

254/385

Figure 190. Trace filtering event schematics

Logical Analyzer E

Trace Filtering ﬂ

Record IEver_l,Jthing until Event 1 + n1 cyclej nl = |'|

LR 2 cocurences of Event 2

And then | Stop trace j Mot applicablel

1 yonl cyeles 5 (< n2 Event? >,
Go Eventl § Event?2 ’

[A] 4> [#/], Trace £ Ereaks A Ewert1 A Ewerd® A Ewert /
ak. I Cahicel |

Stack control window (DVP emulators)

The Stack Control window command allows you to set a specific stack address as either
the stack overflow point or the stack underflow point. This means that if, during the course of
debugging, the current SP value exceeds or falls beneath this address, the application is
halted (provided that you check the Enable stop box in the Stack Control window).

Figure 191. Stack Control window

Stack Cantrol

5P Underflow: IDHD‘I f
Cument SP: IUHD'I ft

SP Owerflow: IEIHD1 oo
QK I Cancel | Conf... |
(=0

This effectively allows you to specify a breakpoint at the SP address level.

Setting the stack control

1.

Open the Stack Control window either by clicking on m (the Stack Control Window
icon) on the Tools toolbar, or by selecting Tools>Stack Control...from the main menu.

To enable a break in the running of the application when the specified conditions are
met, check the Enable stop box.

If you want to specify a new stack overflow point, type the overflow address in the
SP Overflow field.

To view/change the configuration settings, click on the Conf... button. Here you can
enable or disable the stack pointer control:

Doc ID 7705 Rev 11 KYI

UMO0036 DVP and EMU2 (HDS2) emulator features

Figure 192. Configuration setup window

Configuration zetup

Select actions to perform when loading
pragrams of configuration files.

™ Festore stack pointer control,

Cancel |

5. Click on OK when you have set up the Stack Control parameters as you want.

Note: If you do not want your Stack Control information to be saved in the workspace file, you must
modify the default Configuration Setup options by clicking on the Conf... button.

8.7 Trigger/trace settings (DVP emulators)

You can access the Trigger/Trace Settings window either by clicking on £ (the
Trigger/Trace Settings icon) in the Tools toolbar, or from the main menu by selecting
Tools>Trigger/Trace Settings.

The Trigger/Trace Settings window allows you to set the following modes:
e TRIGIN modes

In the Trigger/Trace Settings window, you may choose the option to Break on
TRIGIN. The TRIGIN port is an input signal port on the DVP board to which you can
connect an external input signal. The Break on TRIGIN option imposes a break in the
running of the program upon reception of a signal rising edge at the TRIGIN pin.

e Trace overflow break mode (DVP2 and DVP3 only)

When the Break on Trace Overflow option is enabled, the program is stopped as soon
as the trace buffer is full (256 records for DVP2 and 512 records for DVP3), otherwise,
the program is not stopped, and only the 256/512 last recorded triggers are kept in the
trace buffer.

e Hardware event mode

For DVP2 and DVP3, there are two hardware event modes: a mode that only influences
the trigger output signal (trace filtering disabled), and a mode where the trace is filtered
using the same hardware events that the trigger acts on.

For DVP1, hardware events only affect the output trigger signals - there is no trace
function available for DVP1. You can either send an output trigger signal in pulse mode,
or you can send a trigger signal in window mode using two event settings:
FORCE_HIGH or FORCE_LOW. For more information, refer to Working with output
triggers (DVP).

8.7.1 Working with output triggers (DVP)

Triggers are output signals that can be connected to an external resource. On the DVP, there
is one output signal pin available called TRIGOUT. This signal can be used to synchronize

IYI Doc ID 7705 Rev 11 255/385

DVP and EMU2 (HDS2) emulator features UMO0036

an external measurement instrument, such as an oscilloscope. When a user-defined
hardware event occurs, an impulse (TTL level) is emitted or the level of the signal is
changed, depending on the type of hardware event.

For information on how to define hardware events, see Section 8.2: Using hardware events
on page 237.

Controlling the output trigger on the DVP2 and DVP3

There are three types of hardware events for the DVP2 and DVP3 and they have the
following effect on the trigger signal:

e EVT_ON hardware events make the TRIGOUT signal rise from 0 to 1,
e EVT_OFF hardware events make the TRIGOUT signal fall from 1 to O,

e EVT_HIT hardware events cause a signal pulse to be emitted. The pulse consists of a
positive signal rise from 0 to 1 for the duration of one cycle, after which, the signal falls
to 0.

If you only want your hardware events to affect the output triggers, in the Trigger/Trace
Settings window, click on the Trace filtering disable option as shown in Figure 193.

Figure 193. Trigger/Trace Settings window

Trigger/Trace Settingz

— Hardware Events Mode

Trace filtering enable

EWT OM EVWT, OFF EVT HIT
| :—‘

& — ' i
TRIGOUT Rize TRIGOUT Fall TRIGOUT Pulse

Break on TRIGIN j I Break on Trace Overflow I

— TRIGIN "Trace Owerflow

Ok LCancel |

Controlling the DVP1 output trigger

You can set the output trigger to function in either Pulse mode (by selecting the Pulse Mode
option in the Trigger Settings window shown in Figure 194) or in Window mode. Pulse
mode emits a single pulsed signal. Window mode lets you control the output signal using
hardware events.

There are two hardware event settings for DVP1.:

e FORCE_HIGH hardware events make the TRIGOUT signal rise from 0 to 1.

e FORCE_LOW hardware events make the TRIGOUT signal fall from 1 to O.

256/385 Doc ID 7705 Rev 11 KYI

UMO0036 DVP and EMU2 (HDS2) emulator features

Figure 194. DVP1 trigger settings

Trigger Settings
~ TRIGOUT
Pulse Mode Force EIGE Force LOW
____________________________________ —
Mw/indow Mode: TRIGOT—{ —
— TRIGIM
Breakon TRIGN 4 [
Ok LCancel

Working with trace filtering (DVP2 and DVP3 only)

In the Trigger/Trace Settings window, if you click the Trace filtering enable option, the
trace is filtered using the same hardware events that affect the trigger output, so that the
trace recording mirrors the trigger output:

e EVT_ON hardware events start the trace recording. If the program encounters more
than one EVT_ON during program execution, the number of EVT_ON events are
counted.

e EVT_OFF hardware events stop the trace recording. However, the number of
EVT_OFF hardware events must equal the number of EVT_ON hardware events
before the trace recording is stopped (each EVT_OFF decrements the EVT_ON
counter).

e EVT_HIT hardware events cause the trace to be recorded for one address cycle. (The
address corresponds to that defined in the hardware event).

The schematic drawing in the window shows how the trace and trigger act synchronously
(see Figure 195).

Figure 195. DVP2 trigger/trace settings

Trigger/Trac
— Hardware Events Mode
EWT,0OM E'T, OFF EWTHIT
I | :—‘
Trace fitering disable © Tei 7 pie TRIGOUT Fall TRIGOUT Pulse
Trace On Trace QOff Trace on address

— TRIGIN Trace Owerflow

Break on TRIGIN j I ’7 Break on Trace Overflow I

Ok LCancel |

IYI Doc ID 7705 Rev 11 257/385

STice features UMO0036

9

9.1

9.11

258/385

STice features

The STice advanced emulation tool used in conjunction with STVD supports all of the
features supported by the EMU3 emulator, except advanced breakpoints and performance
analysis. Instead of performance analysis, it offers support for a comprehensive set of
coverage and profiling features.

In the STice features, there is a trace recording section dedicated to STM8 which is not
supported by EMU3.

For other emulator features, refer to the corresponding part in Section 10: EMU3 emulator
features:

e Section 10.7: Read/write on the fly

e Section 10.8: Performing automatic firmware updates

Trace recording

The STice advanced emulation system can hold 131072 hardware cycle records in a
physical memory module called the trace buffer. STVD’s Trace window allows you to view
recorded hardware cycles that have occurred during the execution of your application.

You can open the Trace window either by clicking on (the Trace window icon) in the View
toolbar, or from the main menu by selecting View > Trace.

Trace recording is activated from the Trace contextual menu. When activated, the Run,
Continue and Step commands prompt the trace buffer to save trace information until a
breakpoint is reached.

Only information obtained up until the occurrence of the last breakpoint is visible in the
Trace window.

The following sections provide information about:

e Trace buffer fields

e The commands in the Trace contextual menu

e Emulator commands

Trace buffer fields

The Trace window presents a table of 19 fields (plus the Symbol Bar) which together form a
single trace record.

At the left is the Symbol Bar (which has no column heading) followed in default order by
Record / PC / Instr event (instruction event) / Irg (interrupt request) / Hexa code
(hexadecimal code) / Disassembly / Symb Disass (symbolic disassembly) / R addr (read
address) / R value (read value) / R event (read event) / W addr (write address) / W value
(write value) / W event (write event) / Time (timestamp) / Time event (timestamp event) /
Trace event / Trig (trigger input) / Al (analyzer input) / BEM events.

Each is described individually hereafter.

Doc ID 7705 Rev 11 KYI

UMO0036

STice features

Figure 196. STice trace window

x

| Record| PC | Instr event | 1E | Hexa code Disaosembly ‘ S| B addr ‘ 2 rn | B ewvent W addr | W ‘ W evd
103 0x0030f4 Decoding start Ox5501030102 MOV Ox0102,0x0103 M
main.asm 52 mow ward,wvarh
104 0Ox0080£9 Decoding start 0x5501040103 MOV 0x0103,0x0104 M Ox000103 Ox66 Data read 0x000102 0Ox66 Data
105 0Ox0O030£2 Processing Ox000104 Bead stall
main.asm 54 1d a,wvarl
106 0Ox0O080fe Decoding start OxCe0100 LD A,0x0100 L 0Ox000104 0Ox66 Data read 0x000103 0Ox66 Data
107 0Ox0030fe Processing Ox000100 Read stall
rmain. asm 56 jrne loop
108 0x008101 Decoding start OxZ601 JENE 0Ox3104 J Ox000100 0x01 Data read
109 0Ox003104 Processing
main.asm &0 nop
110 0Ox003104 Decoding start Ox9D NOFP N
o 111 0Ox003105 Discarded
Zlz

Note:

Figure 196 shows most of the trace columns. You can preselect which of these columns are
displayed (see Column display: Columns may be disabled if they not required and/or do not
display any trace information for the particular trace situation. To activate/disable a column,
select Column Display in the Trace contextual menu. This opens a list of all the columns
available in the trace record.).

e Symbol Bar: This column contains icons such as source line markers (=) and/or
bookmarks.

When a source line marker occurs, the fields described hereafter are used to display source
line information such as the name of the source file, the line of source code, and the
instruction call.

e Record: Trace record numbering starts at 1, which corresponds to the earliest cycle to
be recorded, and ends at the latest cycle recorded (up to a maximum of 131072
cycles). This means that if you have an application that runs for 150000 cycles before
there is a break, and you record the trace continuously, cycles 18929 to 150000 stay
recorded in the trace buffer, but they are numbered 1 to 131072 in the Record column.
Record numbers are not recalculated when you remove events from the display by
filtering (see Filter lines: Trace records can be filtered using the Trace Display Filter
dialog box (Figure 198). To open this window, select Filter Lines from the Trace window
contextual menu. The line filter is used to restrict the trace display to the operation that
you are interested in. Only the selected trace entries appear in the Trace window (all
others are hidden). The record number and timestamp are not recalculated when lines
are removed from the display.).

e PC: Itis the 24-bit address of the instruction being decoded.

e Instr event (Instruction event): It is the type of instruction event: Decoding start,
Interrupt handler, Interrupted, Discarded, Processing.

In addition, some hardware cycles that are automatically recorded to trace have a
special identifier in this field that allows you to filter them out if you want, such as Extra
record. These hardware cycles exist but do not correspond to either a specific
instruction or operand. The Instr event column serves chiefly to allow you to filter out
the hardware cycles of interest using the Filter Lines option in the Trace contextual
menu, described in Filter lines: Trace records can be filtered using the Trace Display
Filter dialog box (Figure 198). To open this window, select Filter Lines from the Trace
window contextual menu. The line filter is used to restrict the trace display to the
operation that you are interested in. Only the selected trace entries appear in the Trace

Doc ID 7705 Rev 11 259/385

STice features

UMO0036

260/385

window (all others are hidden). The record number and timestamp are not recalculated
when lines are removed from the display..

— Decoding start: Indicates that the displayed instruction starts being decoded.

— Interrupt handler: is displayed at the start of an interrupt handler. At the same
time, the interrupt name is displayed in the Irq column.

— Interrupted: is displayed when an instruction is interrupted.

— Discarded: is displayed for the last cycle recorded before the program stops
(breakpoint, execution step by step or user abort).

— Extrarecord: is displayed when a record has been added to indicate a time stamp
event while the trace is off. This information is necessary to know if the time stamp
difference between two records is meaningful.

— Processing: is displayed in all other cases, indicating that the instruction is being
processed. There is no information on instruction fetch or instruction execution.

Irq (interrupt request): If an interrupt is starting, the interrupt name is displayed: reset,

trap or irgn where n is the number of the interrupt request.

Hexa code (hexadecimal code): The code of the instruction in hexadecimal format, if

this is an instruction decoding start cycle.

Disassembly: The instruction in assembly language mnemonics, if this is an

instruction decoding start cycle.

Symb disass (symbolic disassembly): The instruction in assembly language
mnemonics with symbolic operands, if this is an instruction decoding start cycle.

R addr (Read address): It is the 24-bit address of the read data.

R value (Read value): The read data is the contents of the data read bus or the DMA
read bus. The data read bus is a 32-bit data bus but the data is usually 8-bit wide.
However when accessing a pointer in EEPROM, the read data can be 16-bit or 24-bit

Doc ID 7705 Rev 11 KYI

UMO0036

STice features

wide. As a result, the read value may be 1, 2 or 3-bytes long. These data bytes are
constants or part of constants accessed by the program.

To simplify the data display, when data is read, the value of the data is shown only
when it is valid, that is one cycle after the data request was made (if there is no stall).

R event (Read event): It is the type of read event. The following values can be
displayed:

— Dataread

— Stack read

— Read stall

— DMAread

This field can be used to filter the disassembled trace records which are displayed.
W addr (Write address): It is the 24-bit address of the data being written.

W value (Write value): It is the contents of the 8-bit data write bus or the DMA write
bus. These data bytes are variables or part of variables written by the program.

W event (Write event): It is the type of write event. The following values can be
displayed:

— Data write

— Stack write

— Write stall

— DMA write

This field can be used to filter the trace records which are displayed.

Time (Timestamp): The value in nanoseconds of the time marker at this event. The
time stamp is not recalculated when you remove events from the display by filtering
(see Filter lines: Trace records can be filtered using the Trace Display Filter dialog box
(Figure 198). To open this window, select Filter Lines from the Trace window contextual
menu. The line filter is used to restrict the trace display to the operation that you are
interested in. Only the selected trace entries appear in the Trace window (all others are
hidden). The record number and timestamp are not recalculated when lines are
removed from the display.).

Time event (timestamp event): Signals the occurrence of events that affect the validity
of the value in the Time column, in particular:

— Restart: An automatic restart of the 38-bit timestamp counter. This means that the
38-bit Timestamp counter has reached its maximum and has started counting
from 0 again, and the fact has been registered by the trace. Note that a trace
recording is forced each time a timestamp counter restart occurs. This allows you
to be able to calculate the absolute amount of time passed between the beginning
of the run and any given trace record. However, after a Restart message is shown,
remember that the value in the timestamp column is only relative to the last
Restart message, not absolute. To obtain the true value of time passed, it is
necessary to take into account all the restart events between two records. The
frequency of the time stamp counter is 100 Mhz. The counter overflows every
2381108 that is around 46 minutes (45 minutes and 49 seconds).

— Discontinuity: Interruption of the timestamp counter's ability to write to the trace,

due to the emulator's processor being in energy-saving mode, such as after a halt
instruction. While the timestamp counter continues, there is no way to force the
trace to record any restart messages that occur when the counter restarts.
Because of this, there is no way to determine the time elapsed between two

Doc ID 7705 Rev 11 261/385

STice features UMO0036

9.1.2

262/385

events when a Discontinuity message occurs between them. However, the relative
time elapsed between two events occurring before the discontinuity, or two events
occurring after the discontinuity can still be calculated and is valid.

e Trace event: Start indicates that this is the first trace record after the trace has been
switched on or after the program has stopped. It is not the case when the Trace display
has been filtered using the Filter Lines option, because the record in the buffer is
unaffected.

e Trig (trigger input): External trigger input.
e Al (analyzer input): Input from the analyzer input connector on the STice probe.
e BEM (advanced breakpoints) events: Currently, there are no advanced breakpoints and

this field is empty.
Trace contextual menu

The Trace window contextual menu contains commands for trace operations plus several
trace window configuration options.

Right-click anywhere within the Trace window to open the Trace contextual menu and
access the following options and commands (see Figure 197).

Figure 197. Trace contextual menu

. | Hexa code | Disassembly | S| R addr
Ox009000
[| e R
45
0x55900107 Column Display... ®x9001 M
Filker Lines. .. | Ox002001
45 Seleck Timestamp unic + JVEH
0x55900307 i i us M 0Ox002001
ms Ox003003
H | Ox009003
Previous Source
47 Mexk Source
i;c SO0 Previous Instruckion 5
Mext Instruckion
OxCE0101 L 0Ox000100
49 Bookmarks Toggle Bookmark,
Ox55010107] i Clear All Bookmarks
Copy to Clipboard o N
Copy to File... e
a0 PRV _ Mext Bookmark.
Ox550 1020 I e =t Clear Trace buffer
v Trace on |2
v Allows Docking !
51 Hide
O0x5501030102 MOV 0x010Z,0x0103 M
52 mow wvard,wvars
Doc ID 7705 Rev 11 17

UMO0036

STice features

Figure 198. Trace Display Filter dialog box

Trace Display Filter

Iv Dizplay Source Lines

Ewvent tupes

[v Dizplay event type cycles

[w]Decoding start s
[w]Intermpt handler
[w]Intermpted

[w] Proceszing
[w]Estra record
[w]Diata read

e

Check all Urickeck al
QK. | Cancel |

b

Filter lines: Trace records can be filtered using the Trace Display Filter dialog box
(Figure 198). To open this window, select Filter Lines from the Trace window
contextual menu. The line filter is used to restrict the trace display to the operation that
you are interested in. Only the selected trace entries appear in the Trace window (all
others are hidden). The record number and timestamp are not recalculated when lines
are removed from the display.
— Display Source Lines: This option includes the source line in the Trace
information. The Address column contains the name of the source file and the
source line content is displayed in the Disassembly window.

— Display event type cycles: Includes the recorded cycles in the trace information.
When enabled, the microprocessor actions selected in the Trace Display Filter
dialog box are included. When disabled, only the source lines are shown in the
Trace window.

Note that some of these events can occur in parallel. There is always an event in the

instruction event column. There may be an event in the read event column and/or in the

write event column. As a result, a cycle is displayed if at least one of its three possible
events (instruction event, read event if present, write event if present) is selected.

In the above example, the Discarded event type is unchecked, so that no trace record
with a "Discarded" event type is displayed. The last recorded cycle after the emulator's
execution of a debugging break action (breakpoint, stepping, user abort) is flagged as
discarded. By filtering these cycles out, you can see the true trace of instruction
execution. However you may miss some data read or write operations that occur in
parallel with the discarded instruction. Note also that breakpoints have an impact on the
trace as the normal flow of execution is stopped.

Selecting the Timestamp unit: By clicking on the Select Timestamp unit option, you
can choose to have the Timestamp value shown in nanoseconds (ns), microseconds
(us), milliseconds (ms) or seconds (S).

Doc ID 7705 Rev 11 263/385

STice features

UMO0036

264/385

Goto Source, Goto Disassembly: You may use these commands in the contextual
menu to jump to either an editor window or the Disassembly window under the
following conditions:

— If you highlight an entry in the trace where the address is a line of source code,
you can use the Goto Source command to jump to that line of code in the Editor
window.

— If you highlight a trace record where the event is an opcode fetch, you can use the
Goto Disassembly command to jump to the appropriate address in the
Disassembly window.

Previous Source, Next Source commands: If you highlight an entry in the trace
where the address is a line of source code, you can use the Previous Source and
Next Source commands in the contextual menu to jump to, respectively, the previous
or next source code entries in the trace recording.

Previous Instruction, Next Instruction commands: If you highlight a trace record of

a decoding start event, you can use the Previous Instruction and Next Instruction

commands in the contextual menu to jump to the previous or next decoding start

records in the trace recording.

Bookmarks: Clicking on the Bookmarks commands lets you access the following

commands:

— Toggle Bookmark: Allows you to place or remove a bookmark at any trace
recording entry.

— Clear All Bookmarks: Clears all bookmarks in the Trace window.

— Previous Bookmark: Allows you to jump to the previous bookmark in the Trace
window.

— Next Bookmark: Allows you to jump to the next bookmark in the Trace window.

Copying and saving the trace contents: The trace record may be copied to the

clipboard or copied to file via options in the Trace contextual menu.

— The Copy to Clipboard command copies the highlighted trace record(s) to the
clipboard.

— The command Copy to File opens the Save Trace Contents dialog box, with
details of saved trace files and user options for save parameters.

Figure 199. Saving trace contents

Save Trace Contents E

r— Current Status — Save Condition

Tatal number of records: |43 % Wwhale contents
s I =
Number of new records: I"“3 O Lastx L =l

-
— File name Lazt records I
I From record I

Browsze... | Torecord I
Cancel |

Column display: Columns may be disabled if they not required and/or do not display
any trace information for the particular trace situation. To activate/disable a column,

Doc ID 7705 Rev 11 KYI

UMO0036 STice features

select Column Display in the Trace contextual menu. This opens a list of all the
columns available in the trace record.

Figure 200. Show/hide columns

Show/Hide Columns @

[wFecord ~
w|PC

]Ity event Check all
[wilirg

w|Hexa code
v Dizaszembly
w]Symb dizass

i

Cancel

Columns may also be shifted right or left for convenience of use. Pick up the column
header with the left mouse button and drag to the location required.

The Trace window in Figure 201 has been set up to show only the Record, PC, Instr
event, Hexa code, Disassembly, R addr, R value, R event, W addr, W value and W
event columns.

Uncheck all

Figure 201. Customized trace window

& ‘ Record| PC | Instr ewvent |Hexa code ‘Disassembly R addr B walue | R event W addr W walue | W event
51 0x0080da Processing 0x005001 Read stall
main.asm 46 mov vard, romd
92 0Ox0080df Decoding start O0x5590030102 MOV Ox0102,0x5003 0Ox00%001 0Ox01 Data read Ox000101 Ox01 Data write
93 0x0050d4f Processing 0x008003 Read =tall
54 0x0080e4 Processing 0x005003 0Ox01 Data read Ox000102 0Ox01 Data write
95 0x0080ed Processing
main.asm 47 1d a,varl
S6 0x0050e4 Decoding start O0OxC60100 LD A, 0x0100
main.asm 45 1d a,varz
97 0x0080e7 Decoding start O0xCe0101 LD A, Ox0101 Ox000100 Oxas Data read
main.asm 49 mov varl,varz
58 0x0080ea Decoding start 0x5501010100 MOV 0Ox0100,0x0101 Ox000101 Ox01 Data read
99 0x0080ef Processing Ox000101 0Ox01 Data read 0Ox000100 0Ox01 Data write
main.asm 50 WOV VArZ , Varsd
100 0Ox0D0&80ef Decoding start Ox5501020101 MOV 0x0101, 0x0102
101 0Ox00G0f4 Processing 0Ox000102 0Ox01 Data read Ox000101 0Ox01 Data write
102 0Ox0080£4 Processing
main.asm 51 mov vari,vard
103 0Ox0050f£4 Decoding start 0Ox5501030102Z MOV 0x010Z, 0x0103
main.asm 52 mov vard,wvars
104 0Ox0080f9 Decoding start 0x5501040103 MOV O0x0103,0x0104 0Ox000103 OxX66 Data read 0Ox000102 Ox66 Data write
105 0x0080f9 Processing 0x000104 Read stall
main.asm 54 1d &a,wvarl
106 Ox0080fe Decoding start O0xCe0100 LD A, Ox0100 Ox000104 Oxe6 Data read Ox000103 Ox66 Data write
s 107 0x0050fe Processing 0Ox000100 Read =tall
§ main.asm 56 jrne loop

9.1.3

Emulator commands

This option in the Trace contextual menu gives access to the following commands:

Clear Trace buffer: This option erases all information currently contained in the Trace
buffer.

Trace On: When the trace function in on, records are numbered sequentially and
stored in memory. The Trace window is automatically updated when the program is
stopped. This option turns the Trace function on—re-clicking the option toggles the
trace off. Note that you may also activate the Trace using the Advanced Breakpoints

Doc ID 7705 Rev 11 265/385

STice features UMO0036

9.2

266/385

window (via the BEM)—Dbut doing so disables the Trace On/Off command in the Trace
Contextual menu.

Coverage and profiling

Coverage and profiling provides insight into what portions of code are executed, what areas
of memory are accessed, what functions are executed most often and how much time is
spent in each function, thus helping you to:

e Obtain reliable data to decide the division of tasks between hardware and software,
and select the appropriate MCU during the planning phase.

e Improve critical code and detect unexpected events in the coding and debugging
phase.

e Improve time performance, reduce consumption, code size, and RAM size during the
optimization phase.

e Detect holes in the test plan and obtain internal metrics during the validation phase.

A major advantage of running coverage and profiling on your application is that it does not
require any code modification and has no impact on performance.

This section first explains the concepts of coverage and profiling, and provides detailed
information on using the STVD graphical user interface to configure these features, to run a
coverage and profiling session, and to understand and use the results:

e Section 9.2: Coverage and profiling

e Section 9.2.1: Configuring the coverage and profiling settings

e Section 9.2.2: Running a coverage and profiling session

e Section 9.2.3: Reading coverage and profiling results

e Section 9.2.4: Typical examples of use

The code coverage feature helps you identify which parts of code and data are used when

the microcontroller runs your application. The STVD graphical user interface distinguishes
between:

e Code coverage: indicates whether an instruction in the source code has been executed
e Data coverage: indicates whether a memory area for a variable or data has been
accessed (for read or write)

The code profiling feature helps you identify which parts of code or data are used most
often or least often during execution of your application. The STVD graphical user interface
distinguishes between:

e Occurrence profiling: indicates the number of times an instruction is executed or data is
accessed

e Time profiling: indicates the instructions on which the processor spends the most time
The coverage and profiling feature in STVD uses counters to gather information from the
application execution. There are two types of counter:

e Occurrence counters for instructions and for variables (no unit)

e Time counters (in nano-seconds)

Doc ID 7705 Rev 11 KYI

UMO0036

STice features

9.2.1

Note:

There are three counter sizes:

e Small 15-bit occurrence counters with a maximum value of 32767

e Large 30-bit occurrence counters with a maximum value of 1,073,741,823

e 36-bit time counters enabling to record 22.9 minutes of execution with a 50 MHz time
base

Data occurrence counters are enabled when you select Data coverage and occurrence

profiling.

Code occurrence and time counters are enabled when you select Code coverage and

profiling (see Section 9.2.1: Configuring the coverage and profiling settings, step 2.)

The counters record information during a coverage and profiling session as long as your
application is running. If you start execution of your application after having started your
profiling session, the counters remain at zero until the application starts running. When the
application execution stops at a breakpoint, or at the end of the program, the counters are
frozen. (They are unfrozen when the application resumes. When you stop the application,
they are frozen definitively for the current session.)

When an occurrence counter reaches its maximum value, it remains at that value for the rest
of the profiling session. In the results window, it is displayed with a greater than symbol (for
example, > 32767). This is the default behavior. However, because the results of occurrence
profiling are less meaningful if many occurrence counters reach the maximum value, you
have the option to stop the application when any one of the counters reaches the maximum
value (see Section 9.2.1: Configuring the coverage and profiling settings, step 4.)

Configuring the coverage and profiling settings

Before you configure the coverage and profiling settings, you must ensure that:

e Your STice advanced emulation system is properly connected to your PC and to your
application board.

e You have an open debugging session in STVD (see Section 5.3 on page 167).

e Your application is stopped, either because you have not started execution, or because
execution is stopped at a breakpoint.

To configure coverage and profiling settings:

1. Inthe main window, from the Debug Instrument menu, select Profiling Settings.

The Coverage and Profiling Settings window is displayed, as shown in Figure 202
and Figure 203.

2. Inthe General section, select the mode:
— Data coverage and occurrence profiling

Indicates whether data has been accessed, and the number of times data is
accessed. See Section 9.2.4 on page 276 for information on reading the results
obtained when you run a profiling session in this mode.

— Code coverage and profiling (default)

Provides time profiling information, and the number of times an instruction is
executed. Indicates how much processor time is spent on each instruction. See
Section on page 272 for information on reading the results obtained in this mode.

Coverage and profiling is incompatible with the trace analysis feature described in
Section 9.1: Trace recording.

Doc ID 7705 Rev 11 267/385

STice features

UMO0036

Coverage and Profilings Settings

General
tode
|Data coverage and occunence profiling j
d C Jde ar
Code coverage and prafiling E max

[~ Stop after application reset

Time Prafiling

Time recarding mode:

Time base [MHz):

[soMhz]

-

Data Occurrence Profiling

Data access mode:

|Head and write [bwo small counters] ﬂ

g | Cancel |

Figure 202. Data coverage and occurrence profiling settings window

Coverage and Profilings Settings r'$_<|

General
tode

|Data coverage and occunence profiing -

[Stop when an occumence counter reaches max

[~ Stop after application reset

Time Prafiling

Time recarding mode:

| -
ETT

Time basze [MHz]:

-

Drata Occurence Profiling

Data access mode:
|Head + write [one large counter) ﬂ
A

Read [ohe large counter)
Wike [one large counter]
Read and write [hwo zmall counters) ¥

Figure 203. Code coverage and profiling settings window

Coverage and Profilings Settings

Coverage and Profilings Settings

General
Mode

|E|:|de coverage and prafiling j

and ocournence

0 max

I+ Stop after application reset

Time Prafiling

Time recording mode:
|subr0utine and interrpt j

50 thz -

[Stop when time counter reaches max

Time baze [MHz):

Data Oecunence Profiling

[ata access mode:

| =l
oK | Cancel |

General
Mode

|Eu:u:|e coverage and profiling ﬂ

W Stop when an occurence counter reaches max

Iv Stop after application reset

Time Prafiling

Time recording mode:
|subloutine and intermpt j
irstruction

zubroutine
Jbrouting and interrupt

[Stop when time counter reaches max

Data Occunence Profiling

Data access mode:

| =l
oK | Cancel |

Doc ID 7705 Rev 11

UMO0036

STice features

If you have selected Code coverage and profiling in the Time Profiling section,
select the Time recording mode:

Instruction: Measures the time from the beginning of an instruction to the
beginning of the next instruction, regardless of the time spent in subroutines. In
the profiling results, all instructions are presented at the same level.

Subroutine and interrupt (default): Measures the time from the beginning of an
instruction to the beginning of the next instruction, including the time spent in
subroutine calls and in interrupt handler routines when an external interrupt stops
the subroutine flow.

Subroutine: Measures the time from the beginning of an instruction to the
beginning of the next instruction, including the time spent in subroutine calls. If an
interrupt occurs during subroutine execution, the duration of the interrupt is not
added to the duration of the call instruction.

In the two subroutine modes, the call instructions are handled in a special way. The
number of occurrences of a call instruction only takes into account complete calls
where the subroutine is executed from start to end. In the same way, the time spent at a
subroutine call only takes into account complete calls. For example if a function "f" is
called only once and the program is stopped within "f*, the number of occurrences of
"call f* will be 0. Its time will also be O.

Doc ID 7705 Rev 11 269/385

STice features UMO0036

Figure 204. Code coverage and profiling settings window

Coverage and Profilings Settings

General
tode

|En:u:|e coverage and profiling j

D ats coverage and ocounence

e max

[v Stop after application reset

Time Profiling

Time recording mode:;
|$u|:|r|:|utine and interrupt j

Time base [MHz]: |5EI thz -

[Stop when time counter reaches mas

Drata Occurrence Profiling

D ata access mode:

| =l
ok | Cancel |

You can select the frequency of the profiler time counter from the following values:
- 12.5MHz

25 MHz

50 MHz (default)

— 100 MHz

It is advised to use a profiler frequency which is at least 3 times higher than the
frequency of the microcontroller.

To have more precision, increase the frequency of the profiler time counter. Conversely,
to have a longer recording time of program execution, decrease the frequency of the
profiler time counter.

Note: This section is disabled if you have selected Data coverage and occurrence profiling in
the previous step.

4. Decide whether you want to stop the application execution and profiling session when a
counter reaches the maximum value or when the application is reset. When all options
are enabled, the profiling session stops when any one of the conditions is met.

— Place a checkmark in the Stop when an occurrence counter reaches max
checkbox in the General section, to stop the execution when any one of the
occurrence counters reaches the maximum value. Instruction execution
occurrences are recorded in a large counter. You can configure the data read/write
occurrence counters as described in step 5. Once the application is stopped, the
user has to click on Profiling Session Stop to stop the session. Note that if you

270/385 Doc ID 7705 Rev 11 [‘II

UMO0036

STice features

Note:

Note:

9.2.2

have chosen two small counters to record read and write operations separately,
the maximum value may be reached very quickly.

Place a checkmark in the Stop after application reset checkbox in the General
section, to stop the execution when a reset has occurred (due to watchdog, for
example). In fact this option should always be checked unless your application
should not be stopped, otherwise the time profiling results in the two subroutine
modes will become erroneous. Once the application is stopped, the user must
click on Profiling Session Stop to stop the session.

Place a checkmark in the Stop when time counter reaches max checkbox in the
Time profiling section, to stop the execution when the global profiler time counter
reaches the maximum value. All time counters are recorded in 36-bit large
counters. In fact this option should always be checked unless your application
shouldn't be stopped as otherwise the time profiling results will become
erroneous. Once the application is stopped, the user must click on Profiling
Session Stop to stop the session.

This option is disabled if you selected Data coverage and occurrence profiling.
In the Data Occurrence Profiling section, select the data access mode:

5.

Read and write (two small counters) - default

Records the number of read and write operations in two separate 15-bit counters.
The maximum value each counter can reach is 32767.

Read (one large counter)

Records the number of read operations only in one 30-bit counter. The maximum
value the counter can reach is 1,073,741,823.

Write (one large counter)

Records the number of write operations only in one 30-bit counter. The maximum
value the counter can reach is 1,073,741,823.

Read + write (one large counter)

Records the number of read and write operations in the same 30-bit counter. The
maximum value the counter can reach is 1,073,741,823.

This section is disabled if you selected Code coverage and profiling.

The occurrence counter for code execution is a large 30-bit counter.

Click OK. The settings that you configured will be used the next time you start a
coverage and profiling session.

6.

Running a coverage and profiling session

To run coverage and profiling on your application, you must first ensure that:

Your STice advanced emulation system is properly connected to your PC and to your
application board.

You have an open debugging session in STVD (see Section 5.3: Running an
application on page 167).

Your application is stopped, either because you have not started execution, or because
execution is stopped at a breakpoint.

If you have not configured the coverage and profiling settings, either the ones from the last
session or the default ones will be used.

To start and stop a coverage and profiling session:

Doc ID 7705 Rev 11 271/385

STice features UMO0036

Note:

9.2.3

2721385

1. In the main window, from the Debug Instrument menu, select Profiling Session
Start.

2. Start execution of your application or continue execution if it is stopped at a breakpoint.

3. Continue application execution until it reaches the next breakpoint, or until the end of
the program. You can have as many breakpoints as you like, and they should be placed
anywhere that you wish to examine further in the program.

4. In the main window, from the Debug Instrument menu, select Profiling Session
Stop.
The results are displayed in the Coverage and Profiling Analysis window.

In the lapse of time between starting the profiling session and starting your application, the
coverage and profiling counters remain at zero. Each time application execution stops at a
breakpoint, or at the end of the program, the counters are frozen.

The results displayed are dependent on the coverage and profiling settings. Configuration
settings are described in Section 9.2.1. For information on interpreting the results, refer to
Section 9.2.3: Reading coverage and profiling results.

Reading coverage and profiling results

When you run a coverage and profiling session during the execution of your application, the
test results depend on the profiling mode you select:

e Code coverage and profiling on page 272

e Data coverage and occurrence profiling on page 274

The STVD graphical user interface presents the coverage and profiling analysis results as
shown in Figure 205, and Figure 207.

Code coverage and profiling

To obtain the coverage and profiling results such as those shown in the Coverage and
Profiling Analysis window in Figure 205, you must run a profiling session with the option
Code coverage and profiling selected in the Mode field (see Section 9.2.1, step 2.) For
information on running a profiling session, see Section 9.2.2.

When you stop the profiling session, the Coverage and Profiling Analysis window is
displayed. It contains two tabs:

e A Functions/Instructions View

e A Source View, which is displayed optionally

Functions/Instructions View

On the Functions/Instructions view, the test results are displayed by function or
instruction, with the following fields for each function or instruction:

e Function

Indicates the name of the function in the application source files; function names
expand to show source lines and instructions.

e Location
Indicates the start address in memory in hexadecimal format.

e Time (ns)
Indicates the total time spent executing code in the selected component (function, or C
line or Assembler instruction) in nanoseconds.

Doc ID 7705 Rev 11 KYI

UMO0036 STice features

e Contextual percentage

Indicates the time spent executing code in the function as a percentage of the total
processing time for the containing object in the hierarchy of elements in your program.
It may be a percentage of C lines, or functions, or the total.

e Percentage of total

For a function, indicates the lines that are executed as a percentage of the total number
of lines in the function. A value of zero indicates that the line was not executed.

For a line, indicates the instructions that are executed as a percentage of the total
instructions in the line. A value of zero indicates that the instruction was not executed.

e Average time (ns)

Indicates the average time spent executing the selected component (function, or C line
or assembler instruction) in nanoseconds.

e Interrupt (Yes/No)

Indicates whether an interrupt occurred during execution of the instruction, line, or
function.

e Percentage covered

For a function, indicates the lines that are executed as a percentage of the total number
of lines in the function. A value of zero indicates that the line was not executed.

For a line, indicates the instructions that are executed as a percentage of the total
instructions in the line. A value of zero indicates that the instruction was not executed.

° Calls

Indicates the number of external calls to the function, line of code or instruction
(occurrences).

e Source file
Indicates the source file (C or Assembler) that contains the function.
Figure 205 shows the coverage and profiling test results organized by function. You can

obtain greater detail for each function, by clicking on the plus (+) sign to expand it to display
the list of lines and instructions within the function as shown in Figure 205.

Figure 205. Code coverage and profiling analysis: functions/instructions view

B Coverage and Profiling Analysis

Tee 1m]| % Conftont ¥ Cowvarned Sowco Fle
b U incr_ien Ol 25,087 820 1.23% 1.23 % 1, 28000 Ho 10000 % 19511 cuwimd applish
+-] iner_init2 COlaiilisf 23,555,500 146% 146 % 1.500000 Mo 100000 % 19511 ceim® apolishag
[5 incr_mit3 Ox2061 24,623,400 1.0 % 149 % 1240000 He 10000% 19910 c'aim applisha
[5 iner_vad]l] 24,6E5.400 121% 121% 1.240000 He 10000 % 19910 e:\simB apnlishad
+ [incr_nt (0 24653400 121 % 1.21 % 1.240000 M 10000 % 19910 cim applitsd
SR} inei_long ! 1
¥ ofE B9 koaginer_longliong 1) OuB0E7 4,778,400 18- 4 QX 24000 Mo 19510
= ool 72 gl miei; OuBlis 323 7600 ES04 % 1588 % 16280000 M 19,910
A LW X 5P (=B 5,176,600 160% 5% 260000 HNo 19,910
2 ADDW ¥ #0007 (ilEn 3.555.000 308% 049% S0000 Ho 1940
B CALL o lhew Osiilid 14,283,400 BAE SED X 574000 M 194910
& LD A EBOwOl OuB100 5.17EEDD 10X a25% ZE000 Mo 19,510
o CALL o ladc 08102 59,720,000 1845 % 293 % 300000 Mo 19,910
3 LDV 5P 2105 4. 778400 148 % Qa3 240000 Ho 19910
& ADDW X R0=0007 OB 06 9,955,000 ImeE 043 % 50000 He 19910
< CALL o il Q8108 114 681 60 B42E SE2% 5./E0L00 Mo 19910
+-uiy 73 tetanll; Q10 169,235,000 0% 829 % £.50000 Mo 19910
I+ % iner_long? 02116 2135050 108 % 1048 % 107383 No 10000 % 19510 cwim applishad
+] ingr_stalcha OuBildd 29 BEE, 500 146 % I [1.500.00 Me 10000 % 198911 ex\simE applisho
Ll
14 Functions /Instructions Yiew |

IYI Doc ID 7705 Rev 11 273/385

STice features UMO0036

It is possible to sort the columns according to alphabetical order for Function, Interrupt and
Source file columns, and in numerical order for the other columns. The simplest way is to
click on the header of the column you wish to sort. For example if you click on Time (ns), the
lines will be sorted in ascending order according to the execution time. If you click again on
Time (ns), the lines will be sorted in descending order. In this manner it is quite easy to spot
the functions which take a long time to be executed. By default, the functions are sorted in
ascending alphabetical order according to their names.

Another way to sort the lines is to use the contextual menu which appears when you right-
click on the column header.

This contextual menu can also be used to remove a column: click on Hide Column. To add
it again, just click on Unhide all Columns.

Figure 206. Sort results

M Coverage and Profiling Analysis

Timefns) | % Cortet | % Total| Awg Timefna)

CRIR] main iz ISl Sort dscending

v E| nci_lrg Cei0I7 ENERRENITY Sort Descending 5000000 Ko 100,00 % 2547 ehamB app
- E nei_leeg2 EME 4573 342 50 o Colamm N 507 B0 Mo 100,00 % A543 s app
=[] ner_stachars DsE0da 75404000 S0 _f'l o 350000 Mo 100,00 % 548 chsmE app—
< fE] incr_statchard w0 75 402,561 2 Sowrmng 349303 Ma 100.00 % 21548 et ape

) E nei_ikstchai (e 54,632,000 146 % 146% 200000 Ha 100,00 % 21548 esionB apn
* [ner_statchar? (w7 64632000 L% 146 200000 Ko 100,00 % 21542 chaimB apo
*- s mer_rk2 Dol 64 623,000 146% 146% 3000 00 Mo 10000 & A543 ehsimB app
-I 18] mer_statchars Deiflel) B4 ET000 16T 146% 200000 Mo | 100,00 % A543 e app -
4 "
(T TH T Functions/Instructions view |

Data coverage and occurrence profiling

When you run a coverage and profiling session with the option Data coverage and
occurrence profiling selected in the Mode field (see Section 9.2.1, step 2.), you obtain
coverage and profiling information on the data.

For information on configuring a profiling session, see Section 9.2.1.

The results of the analysis are displayed in the Coverage and Profiling Analysis window,
in the Data View tab, see description on page 274.

Data View

On the Data View, two kinds of line are displayed depending on the size of the data: single
byte data or multiple byte data. If the variable spans more than one byte, a summarized view
is shown with the address range and the maximum number(s) of accesses over the range.

The analysis results are displayed with the following fields for each variable or data item:

e Memory location

If the data occupies more than one byte, it indicates the address range in memory
where the data is stored (in hexadecimal format) otherwise if the data is just a byte, it
indicates the address of this byte.
A multiple byte variable can be expanded to show each address of the variable address
ranges by clicking on the plus (+) sign.

e \Variable name
Indicates the name of the variable in the C or assembler source, possibly suffixed with
the ‘+’ sign followed by the offset relative to the start address of the variable, if the
current line results from a multiple byte variable expansion.

274/385 Doc ID 7705 Rev 11 KYI

UMO0036

STice features

Read (Yes/No)

Indicates whether the variable was read or not.
Write (Yes/No)

Indicates whether the variable was written to or not.
Read accesses

Indicates the maximum number of byte accesses from the application for reading the
variable or just the number of read accesses for a single byte.

Write accesses

Indicates the maximum number of byte accesses from the application for writing to the
variable or just the number of write accesses for a single byte.

Reads or Write accesses

Indicates the number of accesses from the application to read or write the variable for a
single data byte, otherwise indicates the maximum number of byte accesses.
Depending on the data access mode, you may get one of these 4 cases:

— Read access only

— Write access only

— Read or Write access
— Read and Write access

Figure 207 shows coverage and profiling analysis results organized by memory location and
variable. Right-click anywhere in the data results window to display the contextual menu.

Figure 207. Data coverage and profiling analysis: data view

Bl Coverage and Profiling Analysis

Memomn location YWariable name Read it | Fead Accesses | Write Acceszes

-4 0 nerctie ‘feg es 8524 8825

A Owl-Ond 1 ez 'es 3448 3450

- O5Okb i ‘eg Yes 8620 £h622

4 s i+l A fes 8620 e

& sk i+ ey s 8820 £ex

4 w7 ‘main.chie ez Tes 10,350 10,353

I e Stack mernary Yes Yes 32,765 32 766

= g O E000-0x 207 _wactah Ma Mo 0 | 0

4 k
] T\ pata view [/

Source View

The Source View displays the source file containing a selected function in the text editor. It
opens the file at the location where the function appears.

To display the Source View, you must highlight the function that you want to look at in the
Functions/Instructions View, then from the contextual menu, select Go to Source View.
Alternatively, you can double-click on the function or instruction that you want to examine in
the source code.

Doc ID 7705 Rev 11 275/385

STice features UMO0036

Note:

9.24

276/385

Figure 208. Data coverage and profiling analysis: source view

B Coverage and Profiling Analysis

Lime Source

53 s
54 @long incr_longilong 1)

55 {

56 51|® long 11 =1+ 1:

57 26 |® recurn 11;

58 }

B0 long incr_long2(long 1)

B1 {

52 B |® recurn 1+1;

63 »

64 g
B5 wain ()

ok {

O CLE CEKDIVE=3: //ZMH:z

68 ® c-0: w
< 2 £ 3 b
Falel ooy Functionsiinstructions View) Source Viewmain.c |/

The green spot in the margin identifies the lines of code that are executed. The left-hand
side of the window displays the Functions/Instructions View. You can resize this part of
the window or make it disappear completely by clicking on the partition and dragging it to a
new position.

The Source View tab is not present at the bottom of the Coverage and Profiling Analysis
window until you have displayed source code for the first time.

Typical examples of use

This section explains how to use the coverage and profiling feature to improve the efficiency
and speed of execution of applications that you develop with STVD for ST microcontrollers.
Coverage and profiling analysis is an iterative process, where at each new iteration, you can
identify and measure the performance gains obtained from your successive code
optimizations.

Coverage information has the following practical purposes:

e Detection of holes in the validation test plan by showing that some events are not
processed, see Detecting holes in the validation plan on page 277

e Detection of dead code by showing that some areas of code are never executed and
never can be, see Detecting dead code on page 279

e Detection of global variables that are never used, see Optimizing variables on
page 280

e Detection of global variables that are read but never written to, see Optimizing variables
on page 280

e Checking that non-handled interrupts are never called, see Processing interrupts more
efficiently on page 280.

Doc ID 7705 Rev 11 KYI

UMO0036 STice features

Caution: Code that is not executed because it is not properly covered in the validation test plan can
be mistaken for dead code. Therefore, when you are running coverage tests to detect dead
code, make sure that the lines that are not executed are not due to an oversight in the test
plan before deleting them.

Data occurrence information can be used to:

e Optimize stack usage, see Monitoring stack space usage on page 279

e Detect that a global variable is located in the wrong memory section, see Optimizing
variables on page 280

Code occurrence information is useful for determining the number of occurrences of an
interrupt routine, see Processing interrupts more efficiently on page 280.
Time profiling is the best method for:

e Detecting and investigating bottlenecks, see Detecting and investigating bottlenecks on
page 280

e Assessing the performance of time-critical code, see Assessing the performance of
time-critical code on page 283

e Evaluate the time required to process an interrupt, see Processing interrupts more
efficiently on page 280

Detecting holes in the validation plan

When you run a test suite to validate an application, you must ensure that it covers all areas
of code. In the results displayed in the Coverage and Profiling Analysis window, the
functions that are not called appear in gray, as shown in Figure 209.

Figure 209. Lines not covered by test suite

B Coverage and Profiling Analysis

Functian | Lozaton Twe [ns]| % Contest| % Tobal| Awo Tenelel | Intespt | % Coversd Calls | Source |
= [computedutputy sl 0B 75 B4GE0500 SOM2% 9072k G40S0000 Mo 100.00 % 0 chend
= [B inkhppization OxE125 4000 0dxE omi 400100 Mo 100.00 % 1 chemd

= 4f 55 woid main [void| 06156 500 000 oo = 500.00 Ho 1

+ iy B1 initpplication]): IxE157 000 0o oo & £.000.00 Ho 1

= 4 BB event=waitFaEvenll 04E159 5,413,000 316% 815% 56.,330.20 Ho 10

= 48E B9 awich [event] 0xE15d 306,020 043% 043 % 3.000.20 Ho 10

= 4 70 czee EVEMTI oulpu.. O4E167 B4 353,500 %% EINE Y E43.500.00 Ho m

= yf 71 bieak; xE16c 107,000 0idx 014 % 1.000.00 Ho m

g8l 73 case EVEMTZ oulpu.. OuE16e 1] 000 oo & 0.0 Ho]

=y T4 bieak; I«E171 1] 000 oo & 0.0 Ho]
= HonHendedlrenup! 0xERId 1] 000 oo & 0.0 Ho IRL T 0 chatmd
£ [wailFuEvent xE123 5,553,000 Tk) 308170 Ho 100000 % B12 cihatmd

BOom] |
L] L Funclions/ Insbruckions “'iznl,lr

In this example, EVENT2 is not processed. The possible causes are:
e EVENT2 is not called by the test suite because it was omitted

e EVENT2 did not occur during the lapse of time during which the test suite was
executed.

By looking at the source code for the test suite, shown in Figure 210, it is obvious that
EVENT2 is taken into account in the test suite. Therefore, the test suite has not been
executed long enough for EVENT2 to occur.

Figure 211 shows the data Coverage and Profiling Analysis window after a longer wait.
The EVENT?2 function appears in green.

I‘YI Doc ID 7705 Rev 11 277/385

STice features UMO0036

Figure 210. Source view of test suite

M Coverage and Profiling Analysis

Line | Source I
:Id _'-ZHS-'."HHT-T“NT-?HFT-ZHST‘ZHH‘T“HT-?HFT-THK".'-ZHS-.-TH:T-'.'JI" F.Y
55 D void main (void) 7
FE)

57 eventT event:

he

15

B0 /% initimlization phase */

51 @ dinitkpplication();:

b2

62 while (1]

B4 1

E5 /* wait until an event ofcurs and then manadge ie =/

GE 4 | event = waitForEvent():

B7

R2 2| awiteh {ewvent)

63 i

70 463 Ii]l case EVENT1: outputValue = computefutputValue (] :

Fal ¢ break:

i2

72 @ case EVENTZ: outputValue = O: =
74 @ bhreak:

5 ¥

'6 b

77) e
70 w
< 3¢ | >

4_]< | 4 [Hf-., _Fur-:iunsﬂrﬁtructiarﬁ Wiew }'\EDI.I‘I.'E Yiewmain.c ,l"

Figure 211. Coverage and Profiling Analysis of test suite after a longer wait

M Coverage and Profiling Analysis

Furction | Locatan Time [ns] | % Conteat % Total| Avg Teelns) | Irteinpt | % Covered
[] compurelutpud/slus 175 ZBSEFIEED EIR 20EIX 640,458 25 Mo 10000 %
+ & inktpplcation [l 25 4000 0uD0 % 000 % 4,000000 Mo 100000 %
[= &) main MBIES F1ZZENA060 10000% 10000 % B9E.30200 Mo 10000 %
¥ o S5 veld main [vald) (Bl 56 E00 0.00 % 000% 500,00 Mo
+ vl 61 mldpphication() (8157 6,000 000 % 000 00000 Hi
#-ofl B6 evenl = waiF b vent) D159 255,659,000 g6 % 816% 56,590 42 Mo
¥ i B8 switch [event) Bl 5d 13473.500 043 % 043X 3004 73 Mo
- ﬂ, 70 cate EVENTY: outpulvaue = conpuleDutpatialug]. D<EIET 2E58.919.5:0 MNBXE .28 % B43, 46808 Mo
t § 71 bieak; il B 4,442,000 D14 % 014 % 1.000.00 Mo
& CLRwW [B £1.500 nXIX 000 % samog Mo
<o LDWF DeD0 DBl 41000 GGET X 0.00% 100000 Mo
ot 74 beedk Bl 1 43000 0,00 % 0,00 % 1,000 00 Mo
+ MowH arcled riteanapt MBsrd o 000 % 000 % oo Mo oo
[= vpailF cuE vt D29 244,444 000 780% 7E0% 2,060 74 Mo 100000 %
v gt 34 evenl] walFoeE ven|void) DBl 28 4486000 184 % 014% 1.000.00 Mo
wogll 39 for bl i€ Briee) (ke 24 1A My 523k 7.25000 Mo
¥ oty 41 ¥ (EveniTick » 100 [l 2 13436 500 550 % 043 % 29952 Mo
o 43 EventTick = 0 DBl 45 E4.500 003 % 000 % 1.500.00 Mo
-l 44 teban EVENT2: il 44 B4.500 0.03 X 000 % 1.500.00 Mo
¥ gih 4% Evenilickss; L 13229000 545 % 043% 3.000.00 Mo
- of 49 sohen EVENTT; D153 17452 500 T 05ty 350 He
L] | 3

1[4 [H Ty Functions / Instructions Yiew |

278/385 Doc ID 7705 Rev 11

4

UMO0036

STice features

Figure 212.

Detecting dead code

When you run a coverage and profiling session, the areas of code that are not executed are
associated with a gray icon on the Functions/Instructions View tab in the Coverage and
Profiling Analysis window. There are two complementary methods for detecting dead
code:

e By building the code. During the build, the linker removes any unused functions. This is
a static analysis.

e By running a coverage and profiling session. This dynamic coverage analysis shows
the functions or logical blocks of code that are dependent upon conditions that never
occur.

Monitoring stack space usage

Run a coverage and profiling session with the option Data coverage and occurrence
profiling. In the Data View tab of the Coverage and Profiling Analysis window, click on
the Stack memory item and expand it to see detailed information on stack usage.

Stack memory in Data View tab of the Coverage and Profiling Analysis

M Coverage and Prafiling Analysis

skl name Read it Road Ascarses Wi AGoaties =

Moty location -
4 (bes Stackrd95 Mo [[1] 1]
& e Slack+136 Mo Mo 0 o
4, [Slack-437 Mo Mo 0 0
4 han Slack 498 o R 5172 2172
& 02 Slackrdd et ‘e BB GB%E
R Siack+ 500 et et i GAE
& w518 Stack+501 s et 1,724 1,724
& 058 Stacks502 ez ez 248 T
& 06 Slack+503 Vet et CA P 5172
A st Slacks 504 es Tes a2 5172
4 S Slack+505 ez e 245 1A
& s Stnci 506 ‘et kL] XL 4
ERLEEE Slack 507 Vet Vet .46 3443
4 OuSih Slack+508 “fon i E.B3S BB
& Dfic Stacke 509 e R LTS R
A (x5 Slacks510 or e e o] G
A DuSle Stack+511 Ko fag 1} 1
A DS Stack+512 Ho Yes 1] 1

& 0S0c0 CLE_CEDNVR Mo Mo a a

oW GEIODGEIT _vectdh Ho teo a 0 =i

[T hoata view /

——

By moving to the bottom of the stack, you can see how many bytes of stack have been used.
If you are sure you have executed your application in the case of maximum stack use, you
can decide to allocate some of your variables to the unused stack zone should the data
memory dedicated to variables be full.

This can also help you to know if your function nesting level can be increased or not.

Doc ID 7705 Rev 11 279/385

STice features UMO0036

280/385

Optimizing variables

Unused variables: The results of a coverage and profiling session can help you examine
how you use variables in your code. First, it shows which variables are simply not used at all,
and therefore can be removed. Unused variables are shown in gray on the Data View tab in
the Coverage and Profiling Analysis window.

Inadequate variable type: It also shows where you can more effectively replace a variable
by another structure. For example, you might be able to simplify a structure type variable
(such as the date), by deleting unused fields (day, or month, or year).

In particular, global variables that are only read and never written to can be more efficiently
replaced by a constant or a define. The compiler can thus optimize the code and save a
RAM variable and one or two bytes of Flash memory.

Location in memory: At last, when a variable is indeed useful, data occurrence counting
can help you optimize its placement in memory. In some cases, a variable that appears only
once in the code can actually be accessed very often (if it is in a loop for example). By
moving this variable to page zero, you will optimize execution speed and save memory.

Processing interrupts more efficiently

Coverage and profiling analysis can help you identify:
e Handled interrupts never called

e Interrupts that occur very often, where optimization of processing time can have a big
impact
e The gain obtained from your code optimizations

Detecting and investigating bottlenecks

Detecting bottlenecks in the execution of your code is a prime example of how profiling
information helps you make very big gains in efficiency in a small number of key areas of
your code. This is a very different approach from the compiler optimizations where the
efficiency gain is small throughout the code. These approaches are, therefore,
complementary.

This section uses an illustrated example to guide you through the main steps of the process
of detecting and investigating bottlenecks

1. Configure the Code coverage and profiling option.

Bottleneck detection is based on time profiling information. Therefore, when you start
your profiling session, make sure you have selected the Code coverage and Profiling
option in the Coverage and Profiling settings window (see Section 9.2.1: Configuring
the coverage and profiling settings on page 267).

2. Start a profiling session, and run the application from beginning to end.

For information on running a profiling session, refer to Section 9.2.2 on page 271.
When the application has executed to the end, you can stop the profiling session. The
Coverage and Profiling Analysis window is displayed.

3. ldentify the most time consuming code block.

On the Functions/Instructions View tab, you can identify the code block that is the
most time consuming in the Percentage of Focus column. Expand the block and look at
the most time-consuming function or instruction. In Figure 214, the most time-
consuming function is ComputeOutputValue with 90.83% of the total processing
time.

Doc ID 7705 Rev 11 KYI

UMO0036 STice features

4. Expand each code block in turn.

Expand successively the most time-consuming functions and instructions to determine
on which lines of code the most time is spent. Figure 214 shows how to expand the
main function to locate the ComputeOutputValue call. This call accounts for
approximately 91.12% of the processing time of the main function and 99.84% of the
processing time of line 70.

Figure 214. Bottleneck detection: top level

M Coverage and Prafiling Analysis

Function | Locaion | Tireinsl| %Contest| %Toid| dwgTimeing)| bntemupt | % Covered | Cals | Soures e
- B computelutpu¥ sk 175 LFIESEEE] S083% W% LB Ho 100,00 % TS o'aind spch
i sl ation % e &000 o0 % o0 E & 00303 Ho 100 00 & 1 et apok
= & man D56 SHEMSIED 000 IM0E FENHATS Ho 100000 7373 chveind spp
i wdn S5 il i [veid] TA15R s 0oy nomE S0 Mo 1
o2 B inbpploation) 157 B0 000k Q0% EOOODD Mo 1
-o8% E6 avant = wedFoEverd]]: 159 A4EE00 BEE ANEX SRS Mo 7374
. 12 B svalch Jirand] A1Ed Z1 BR2E00 n43% 043% 300482 Mo ;23
=radE I caze EVENTY: cutpufsue = computeDulpulvsisl, w167 LEENAKE) SIIEE WMIE 543480081 Ha 73068
& LD a0l (hil1Ea TARD 016 0% 100000 Ho BETH
wradE T bamak: Tl Ge THRO 0idx 0 100003 He 77
Ww8% T3 cans EVENTZ cusdpudyals = 0; e 1En WEEDD 0o0% Qo0 150 Me H
#adE A beeak; D17 MO QWE QM 100000 Mo 7
[E MorHandednizingt efEed LN 1 E S [£ am Mo 0o 0 &haind sppk
E i POl E vl k129 k= e L] rE0E rTENE 9.081.51 Mo 100 00 43674 otalnd appk

|\ Funections /Instractions Yiew |

Figure 215 shows that when you expand the ComputeOutputValue function, the most
time-consuming instruction (highlighted in the illustration), is the one that computes the
result. By expanding this instruction, you can view the most time-consuming calls, shown in
Figure 216.

Figure 215. Bottleneck detection: intermediate level

o
M Coyerape and Profiling Analysis

Function Lozation T sl | % Conlet: % Total| Awg Tivalral | Int=oupt | % Cowesad Calis | £ =
= f computeDupulyshs G175 4516585650 Lk 90R % BN 34 Ha 1o X T8«
v B unsgeeed il conputelluput puehod) (8175 7202000 0I5k 014 % 1, 00000 Ho e i}
R 410wt s (unsigned ind] [Ha_PaH_VALUER * [e sinfndes PLAD[L
owag 14 [eudesg e 2] Drnchins = I D=Bla3 250 n8sx (LR zanon Ha T
% 16 euan el IE 20,822 000 nE2% 057 % 400000 Ho 207
- B inihpplcation B125 4.000 ooz oz 4,000 Ha 10000 = 1«
= 15 man (E155 BELHBIED 10000% 10000% BERIIATE Ho 1M E 79
ok E5 woid main [void] i 55 500 PRI nodx 0000 Mo 1
+wae B inidppbcstionl]: =B157 5000 onax o E.onon Ha 1
v T BB event = walFoEvent]l: B153 418532000 215% 215% BE RS Ho 121
#oail B owitch |sveni] 1154 1 Br2500 ndix a3 B ER Ho 1.2
i T cas EVEMTY casonsabon = compra il pdyaius]]: D=B1ET 4 RZRETA R MR NEE Bz 420 21 Ha T T
A CALL compiteld wputy sk =867 4,631,002 620 o8 X fnizx B2 a0 2 Ho T2
o LD 00 Bl Bs AT nIEx 4% 1o Ha .07
£ 42 T beeak; (B Bz 7207 000 aldx al4x 1,000 60 Ho Ay
! - - P e a nnm i e - e R o o
LT o] | Functions Trstrsctions Wiew |

5. Determine the cause of the bottleneck.

Examine the most time-consuming lines of code to determine whether you can fulfill the
same task with a more efficient structure or method. Thus, by successively zooming in
on the code down to the call level, you can identify very precisely the cause of a
bottleneck. In Figure 216, the most time-consuming calls are highlighted:

— Acallto a sinus function (CALL _sin)

— Acallto a float function (CALL ¢_fmul)
Therefore, an effective way of saving processing time, would be to replace the dynamic call
to the sinus function by a static table of computed sinus values, as shown in the code

example that follows. You could also decide to compute the result as an integer to avoid
calculating a float.

IYI Doc ID 7705 Rev 11 281/385

STice features

UMO0036

Figure 216. Bottleneck detection: bottom level

M Coyerage and Profiling Analysis

Function Locaizn Time)| %Corimt| % Totel| v Timedral| Ine Feckbiional ki
= [compueupushs mElTs ARIGEBEGS) WOA3E MIA3E GAOGNE4 -
v ﬂ & unsapeed nil conpitelluputah el OsB1 75 2208 000 sk 4% 1,000 00 -"-ll
=R 10 remt = umvigned in MAX_PWH_VALLIER * (1 DesindrdesPLA0I0: D7 AFEEIEIE0 ORETH DAEIE G0E S acad
& LDW 3 Irdens 175 WEZM OMX 0N 150000 B, ,ﬁ ® Diess
A CALL oo sl 72 £7 £G4, 000 127 % 112% £ 0000 e
A LD W Hike0RE il T TAEMN Q6% 0 100000
& CALL = _bind 151 43753 000 [ul: nEsx Emnon ————————
& LD W a0 e THEN 0i5% Q4% 100000 Corest Taner. 4575, 326.150ns
& CALL o v M8l EASEDN T1E 0EaE 700000 Acp.time: 52395 140ns
A LD 00 8187 208 000 a8 49 [1RF -3 1,000 00
o PUSHW b i TN OdE% 0d4% 100000 Cebeched 2
B LIW H_keg MlAs AN oM anE 1,500 00 i
A PUSHW % e RN 015k Q4% 10000 o T R
FETERI] Imteiupt e

A AL SF HDY
A LD 3 HeB00:
& CALL o _ladd

A LD 3 #8080

[ER] AED4.000 oonrx T
st 2 7 202,000 i 4% 1,000.00
195 129.744.000 255 % 1E000.00

B 52

7212 000

014 %

1,000.00

HnConled BRI

; T IMEINGE) 1905%
& CALL _bei Ml3s FEEAEEN0 SArE SO3E FGso0O0
A LD (0 521 Osf1al AT O1EE 014% 1,000.00
o 1 F [rebens o 200 Inces = 1: il a3 mIMEN 0SE 08 AB00.00
s qﬂ TE iihan bl (15T FRERS O ORZ % [1 LT 4.m0on -
1 | P
L] T F Iy Functions, Testructions Vies |
static unsigned int result=0;
unsigned int Speed = 100;
unsigned int computeOutputValue (void)
static const unsigned int SinTab[] = {

(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+1.
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+O0.
(unsigned int) (MIN_SINUS VALUE+O0.
(unsigned int) (MIN_SINUS VALUE+O0.
(unsigned int) (MIN_SINUS VALUE+O0.
(unsigned int) (MIN_SINUS VALUE+O0.
(unsigned int) (MIN_SINUS VALUE+0
(unsigned int) (MIN_SINUS VALUE+0
bi

#define SIN TAB SIZE (sizeof (
static unsigned int Index = 0;
Index++;

if (Index >= SIN TAB SIZE) Index

return SinTab [Index] ;

}

282/385

.500000*SINUS_AMPLITUDE
.654508*SINUS AMPLITUDE
.793893*SINUS AMPLITUDE
.904508*SINUS_ AMPLITUDE
.975528*SINUS AMPLITUDE

000000*SINUS_ AMPLITUDE

.975528*SINUS AMPLITUDE
.904508*SINUS_ AMPLITUDE
.793893*SINUS AMPLITUDE
.654508*SINUS AMPLITUDE
.500000*SINUS_ AMPLITUDE
.345492*SINUS_AMPLITUDE
.206107*SINUS_ AMPLITUDE

095492*SINUS AMPLITUDE
024472*SINUS_ AMPLITUDE
000000*SINUS_ AMPLITUDE
024472*SINUS_ AMPLITUDE
095492*SINUS AMPLITUDE

.206107*SINUS_AMPLITUDE
.345492*SINUS_ AMPLITUDE

SinTab) /sizeof (SinTab[0]))

0;

Doc ID 7705 Rev 11

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

1

1

1

1

’

’

’

’

1

1

1

1

’

’

’

’

’

’

1

UMO0036

STice features

Assessing the performance of time-critical code

Time-critical sections of code are those that are executed most often. Because interrupts
occur frequently, they are a good example of time-critical code.

Using the profiling feature, you can identify in your code the areas that are executed most
frequently. Gains in these areas will lead to significant performance improvements.

Doc ID 7705 Rev 11 283/385

EMU3 emulator features UMO0036

10

10.1

10.1.1

284/385

EMU3 emulator features

This section explains how to use the features that are specific to the ST7-EMU3 emulator,
including:

e Section 10.1: Trace recording

e Section 10.2: Using advanced breakpoints

e Section 10.3: Programming trace recording

e Section 10.4: Using output triggers

e Section 10.5: Using analyzer input signals

e Section 10.6: Performance analysis

e Section 10.7: Read/write on the fly

e Section 10.8: Performing automatic firmware updates

Trace recording

The EMU3 emulator can hold 256000 hardware cycle records in a physical memory module
called the trace buffer. STVD’s Trace window allows you to view recorded hardware cycles
that have occurred during the execution of your application.

You can open the Trace window either by clicking on (the Trace window icon) in the View
toolbar, or from the main menu by selecting View>Trace.

Trace recording is activated from the Trace contextual menu. When activated, the Run,
Continue and Step commands prompt the trace buffer to save trace information until a
breakpoint is reached.

Only information obtained up until the occurrence of the last breakpoint is visible in the
Trace window.

You can use advanced breakpoints (see Section 10.2: Using advanced breakpoints on
page 291) to define conditions whereby you can filter out those cycles you want recorded in
the trace buffer. A number of examples are provided in Section 10.3: Programming trace
recording on page 309, showing you how to control the trace recording using advanced
breakpoints.

The following sections provide information about:
e Trace buffer fields

e The commands in the Trace contextual menu
e Emulator commands

Trace buffer fields

The Trace window presents a table of fourteen fields (plus the Symbol Bar) which together
form a single trace record.

At the left is the Symbol Bar (which has no column heading) followed in default order by
Record / Address / Memory Location / Data / Event / Hexadecimal / Disassembly /
Symbolic Disassembly / Timestamp / (TEv) Timestamp Event / Trace Discontinuity /
TIN (Trigger Input) / Al (Analyzer Input) / BEM (Advanced Breakpoints). Each is
described individually below.

Doc ID 7705 Rev 11 KYI

UMO0036 EMUS emulator features
Figure 217. EMUS3 trace window
5!' I Recordl Addressl M... I Datal Event Hexad. .. I Disassenbly I Svmbolic ... Timestarnpl Toon I TES. .« I Toon | AT =
T 262134 Ox00£060 DEE Oxfe Operand fetch 25326053600
262135 Ox00£f0&60 DEB Oxfe Discarded 25326054350 [u]
gamplel.c 106 while (1)
262136 Ox00f05f DEE 0xz0 Operation ... 0x0020fe JRT Oxf0sf JRT OxfO0sf 25326055100 a
262137 Ox00f060 DEE Oxfe oOperand fetch 25326055550 a
262136 Ox00£f080 DEE Oxfe Discarded 25326056600 [u]
samplel.c 106 while (1] ;
262139 Ox00£05f DEB Ox20 Operation ... 0Ox0020fe JRT Oxf05f JRT Ox£05£ 25326057350 [u]
262140 Ox00£0&60 DEE Oxfe Operand fetch 25326053100 [u]
262141 Ox00£060 DEE Oxfe Discarded 25326058850 a
262142 Ox00f05E DEE 0xz0 Discarded 25326059600 a j
« | 0

Note:

Figure 217 shows most of the trace columns. You can preselect which of these columns are
displayed (see Column display).

e Symbol Bar: This column contains icons such as source line markers (=) and/or
bookmarks.

When a source line marker occurs, the fields described hereafter are used to display source
line information such as the name of the source file, the line of source code, and the
instruction call.

e Record: Trace record numbering starts at 1, which corresponds to the earliest cycle to
be recorded, and ends at the latest cycle recorded (to a maximum of 256000 cycles).
This means that if you have an application that runs for 264000 cycles before there is a
break, and you record the trace continuously, cycles 8000 to 264000 stay recorded in
the trace buffer, but they are numbered 1 to 256000 in the Record column. Record
numbers are not recalculated when you remove events from the display by filtering (see
Filter lines).

e Address: The memory location accessed.
e Data: The hexadecimal value on the data bus.

e Memory Location: The physical memory in which this address is located. There are
four kinds of memory:

— EMU = Dedicated Emulation Board memory (emulator)
— TARGET = Target Emulation Board memory (emulator)
— In MCU= Internal (microcontroller) memory

— USER = User (on-application board) memory

e Event: The type of microprocessor event—for example, stack read, stack write, direct
memory read, direct memory write. In addition, some hardware cycles that are
automatically recorded to trace have a special identifier in this field that allows you to
filter them out if you want—such as Extra timestamp record or Discarded. These
hardware cycles exist but do not correspond to either a specific instruction or operand.

Doc ID 7705 Rev 11 285/385

EMU3 emulator features UMO0036

10.1.2

286/385

The event column serves chiefly to allow you to filter out the hardware cycles of interest
using the Filter Lines option in the Trace contextual menu, described in Filter lines.

e Hexadecimal: The instruction in hexadecimal format, if this is a Fetch instruction cycle.

e Disassembly: The instruction in assembly language mnemonics, if this is a Fetch
instruction cycle.

e Symbolic Disassembly: The instruction in assembly language mnemonics with
symbolic operands, if this is a Fetch instruction cycle.

e Time Stamp: The value in nanoseconds of the time marker at this event. The time
stamp is not recalculated when you remove events from the display by filtering (see
Filter lines).

e (TEv) Timestamp Event: Signals the occurrence of events that affect the validity of the
value in the Timestamp column—in particular:

— Restart: An automatic restart of the 30-bit Timestamp counter. This means that
the 30-bit Timestamp counter register has been filled and has started counting
again, and the fact has been registered by the trace. Note that a trace recording
is forced each time a Timestamp counter restart occurs. This allows you to be
able to calculate the absolute amount of time passed between the beginning of the
run and any given trace record. However, after a Restart message is shown,
remember that the value in the Time Stamp column is only relative to the last
Restart message, not absolute. To obtain the true value of time passed, refer to
Example 5—Measuring long time periods between events for an example of how
to measure the time passed between events, even when the Time Stamp counter
has been restarted.

— Discontinuity: Interruption of the timestamp counter’s ability to write to the trace,
due to the emulator’s processor being in energy-saving mode, such as after a halt
or a wait for instruction. While the timestamp counter continues, there is no way to
force the trace to record any restart messages that occur when the counter
restarts. Because of this, there is no way to determine the time elapsed between
two events when a Discontinuity message occurs between them. However, the
relative time elapsed between two events occurring before the discontinuity, or two
events occurring after the discontinuity can still be calculated and is valid.

e Trace discontinuity: Indicates that the trace record in the buffer is not continuous. This
is the case when the trace is turned on or off from the BEM or from the stand-alone
viewer, to record only certain events. It is not the case when the Trace display has
been filtered using the Filter Lines option, as the record in the buffer is unaffected.

e TIN (Trigger IN): External Trigger input.
e Al (Analyzer Input): Input from the Analyzer input connector on the EMUS3 probe.

e BEM (Advanced Breakpoints): Shows the level and the logic states of the Bus Event
Machine (BEM) as they become TRUE. These are reported in the form BEM I[1-4] [e1
/e2/if/ e3/e4d/else]. For example: BEM I2 el if indicates that on Level 2 of the
sequencer, Event 1 is TRUE and at the same time the condition IF is TRUE (only one
event is necessary to fulfill the IF condition in this case).

Trace contextual menu

The Trace window contextual menu contains commands for trace operations plus several
trace window configuration options.

Right-click anywhere within the Trace window to open the Trace contextual menu and
access the following options and commands (see Figure 218).

Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

Figure 218. Trace contextual menu

RBefresh |

Calunin Dizplay...
Filter Lines.

[5obE sourze
) ms
Goto dizaszembly

Frevious Source
Mext Source

Freviouz Code fetch
Mext Code fetch

Bookmarks Toggle Bookmark
[EleansllBonkmarks
Erevious Boolmar
Hext Bankmark:

Copy to Clipboard
Copy ta File....

Emulatar commands k] Clear Trace buffer

v Trace On

Set Timestamp Clock...
T

v Allaw Docking
Hide

Filter lines

Trace records can be filtered using the Trace Display Filter dialog box (Figure 219). To
open this window, select Filter Lines from the Trace window contextual menu. The line filter
is used to restrict the trace display to the operation that you are interested in. Only the
selected trace entries appear in the Trace window (all others are hidden). The record
number and timestamp are not recalculated when lines are removed from the display.

Doc ID 7705 Rev 11 287/385

EMU3 emulator features UMO0036

288/385

Figure 219. Trace Display Filter dialog box

Trace Digplay Filter E

¥ Display Source Lines

—Ewent types

¥ Display event type cycles

Stack read
Stack write
(w]Interrupt contest save

=
(w|Direct memary read
[w|Direct menmary wirite
(w|E stra timestamp recard -

Check al | Uncheck a|||
ak. I Cancel |

e Display Source Lines: This option includes the source line in the Trace information.
The Address column contains the name of the source file and the source line content
is displayed in the Disassembly window.

e Display event type cycles: Includes the recorded cycles in the trace information.
When enabled, the microprocessor actions selected in the Trace Display Filter dialog
box are included. When disabled, only the source lines are shown in the Trace window.

In the above example, the Discarded event type is unchecked, so that no trace record with
a “Discarded” event type is displayed. Discarded events are additional cycles that result
from the normal functioning of the microcontroller, or from the emulator’'s execution of
certain debugging actions (break of execution, stepping). By filtering these out, you can see
the true trace of memory operations. Keep in mind, however, that the timestamps (execution
times) are not recalculated when events are filtered out of the display.

Selecting the Timestamp unit

By clicking on the Select Timestamp unit option, you can choose to have the Timestamp
value shown in nanoseconds (ns), microseconds (us), milliseconds (ms) or seconds (S).

Goto Source, Goto Disassembly
You may use these commands in the contextual menu to jump to either an editor window or
the Disassembly window under the following conditions:

e If you highlight an entry in the trace where the address is a line of source code, you can
use the Goto Source command to jump to that line of code in the Editor window.

e If you highlight a trace record where the event is an opcode fetch, you can use the
Goto Disassembly command to jump to the appropriate address in the Disassembly
window.

Previous Source, Next Source commands

If you highlight an entry in the trace where the address is a line of source code, you can use
the Previous Source and Next Source commands in the contextual menu to jump to,
respectively, the previous or next source code entries in the trace recording.

Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

Previous Code Fetch, Next Code Fetch commands

If you highlight a trace record of an opcode fetch, you can use the Previous Code Fetch
and Next Code Fetch commands in the contextual menu to jump to, respectively, the
previous or next opcode fetch records in the trace recording.

Bookmarks

Clicking on the Bookmarks commands lets you access the following commands:

e Toggle Bookmark: Allows you to place or remove a bookmark at any trace recording
entry.

e Clear All Bookmarks: Clears all bookmarks in the Trace window.

e Previous Bookmark: Allows you to jump to the previous bookmark in the Trace
window.

e Next Bookmark: Allows you to jump to the next bookmark in the Trace window.
Copying and saving the trace contents

The trace record may be copied to the clipboard or copied to file via options in the Trace
contextual menu.

The Copy to Clipboard command copies the highlighted trace record(s) to the clipboard.
The command Copy to File opens the Save Trace Contents dialog box, with details of
saved trace files and user options for save parameters.

Figure 220. Saving trace contents

Save Trace Contents E

r— Current Status — Save Condition

Tatal number of records: |43 % Wwhale contents
s I =
Number of new records: I"“3 O Lastx L =l

-
— File name Lazt records I
I From record I

Browsze... | Torecord I
Cancel |

Column display

Columns may be disabled if they not required and/or do not display any trace information for
the particular trace situation. To activate/disable a column, select Column Display in the
Trace contextual menu. This opens a list of all the columns available in the trace record.

Doc ID 7705 Rev 11 289/385

EMU3 emulator features

UMO0036

10.1.3

290/385

Figure 221. Show/hide columns

Show/Hide Columns E
[w]Fecord -
[w]Address
[w]temom Location Check al |
[w]lrata
v[E vent . Uncheck &l |
[w]Heradecimal
[w] Dizazzembly LI
Cancel |

Columns may also be shifted right or left for convenience of use. Pick up the column header
with the left mouse button and drag to the location required.

The Trace window in Figure 222 has been set up to show only the Record, Address, Data,
Event, Disassembly and Hexadecimal columns.

Figure 222. Customized trace window

Record Addiezs | Data | Event 4 Digazzembly | Hewxadecimal -

Ba477 0=00029a | 0O«fa Operand fetch ’

E5478 040002306 0«86 Discarded

B5479 0=000295 | OxBb Operation code fetch it Ox0233 0008602
srcfzamplel.c | 183

B5480 0=000296 | Ox02 Operand fetch J

BE481 04000237 Ox8b Discarded

B5482 0=000293 | OxBb Operation code fetch | it w0235 O«008bfa

£R433 0:000292 Oxfa Operand fetch

B5454 04000296 0«86 Discarded

£R435 0:000295 Ox8b Operation code fetech gt 00299 0x008b02
srodzamplel.c - 183

£5436 0000256 | 0<02 | Operand fetch ;I

Emulator commands

This option in the Trace contextual menu gives access to the following commands:
e Clear Trace buffer: This option erases all information currently contained in the Trace

buffer.

e Trace On: When the trace function in on, records are numbered sequentially and
stored in memory. The Trace window is automatically updated when the program is
stopped. This option turns the Trace function on—re-clicking the option toggles the
trace off. Note that you may also activate the Trace using the Advanced Breakpoints
window (via the BEM)—but doing so disables the Trace On/Off command in the Trace

Contextual menu.

e Set Timestamp Clock...: This option opens the Timestamp Clock dialog box shown in

Figure 223.

Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

Figure 223. Setting timestamp clock

Timestamp Clock

Timeztamp clock zource

& |ntemal

" External I 4653
Cancel |

The timestamp clock frequency determines the granularity of the timer—the inverse of
the clock frequency (1/f) equals the period of each timer tick. In this dialog box, you can
choose the timestamp clock you want to use.

— Internal: Selects the emulator's internal 20 MHz timestamp clock (therefore the
period of each timer tick equals 50 ns).

— External: Selects a timestamp clock external to the MCU. An external clock
frequency must be input via the MCU's OSCIN pin, and provided by either the
probe or a TTL clock on the application. (Note that the XTAL clock source on the
probe may not be used as the external timestamp clock.)

If the external option is selected, the clock frequency in MHz must be given.

Note: You must ensure the accuracy of this frequency, as it is not verified by the debugger.

10.2 Using advanced breakpoints

The advanced breakpoint functionality provides great flexibility of use. You can set simple or
multi-level breakpoint conditions, control the recording of the trace and send signals from
the emulator output triggers. A four-level logical sequencer allows you to perform specific
actions upon the occurrence of a specific event or series of events.

Events can be defined using any of the following parameters:

a specific address or range of addresses,

a specific data value with bit mask,

a read, write or read/write access,

an opcode fetch,

external event(s) monitored using one or all of the nine input triggers,
trace full information,

a DMA memory access,

an interruption,

a stack operation access,

any combination of the above.

Doc ID 7705 Rev 11 291/385

EMU3 emulator features UMO0036

10.2.1

292/385

Actions that may be performed upon the occurrence of the defined event or sequence of
events can be defined as:

e a break in the execution of the program (a breakpoint),

e the outputting of a waveform to one or both of the two output triggers,

e the enabling, or disabling of trace recording,

e the recording of a snapshot in the trace,

e continuing to another level of conditions, defined by another event or series of events,
e aset of the above actions.

When the conditions you have programmed are met, the sequencer carries out the preset
actions. Up to four levels of conditional terms can be linked to construct logical functions that
define precisely the event to be tracked and the action to be carried out, within even the

most convoluted of program sequences. It is this adaptability which makes the sequencer
such a valuable real-time tool (see Section 10.2.1: Defining advanced breakpoints).

The heart of the Advanced Breakpoints sequencer is the bus event machine (BEM). This
hardware system is user-transparent and equipped with its own memory and bus
connections. The BEM functions in parallel with the emulation hardware system controlling
the program under test. In this way, the EMU3 emulator is able to carry out real-time
debugging actions.

Because the Advanced Breakpoints features uses separate BEM hardware to “spy” on the
running of the program on the emulator, the inclusion of advanced breakpoints does not
interfere with the real-time running of the program. However, there is a short delay between
the time the “spy” identifies a breakpoint condition has occurred and the moment the
program execution actually stops. Typically, a few additional instruction lines are executed
during this delay.

This behavior contrasts with that of Instruction Breakpoints where, because breakpoint
conditions (set using the Counter and Condition options) are evaluated internally as if the
evaluation were part of the program execution, the use of these breakpoints means that the
program cannot run in real-time. However, Instruction breakpoints cause the program to
stop exactly at the instruction line that satisfies the break condition.

This section provides information to help you use your EMU3 emulators’s advanced
breakpoint features, including:

e Defining advanced breakpoints

e Memory access events

e Other types of events

e Enabling advanced breakpoints

e Starting with trace ON

e The configuration summary

e Synoptic representation of advanced breakpoints
e Saving and loading advanced breakpoints

e Advanced breakpoint examples

Defining advanced breakpoints

Advanced breakpoints use logic levels to structure a sequence of conditions that will trigger
a response from STVD, such as stopping your application or starting a trace recording.

Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

Each level can incorporate up to four events. The level defines the relationship between
these events (specific user-defined conditions) and the actions to be carried out by the
debugger. A counter may also be set.

Up to four levels can be combined to structure advanced breakpoint definitions.

Each of the four levels has the structure (IF.. THEN) (ELSE IF.THEN). Accordingly, there are
four vertically-aligned buttons in the Programming Level area that, when clicked with the
mouse, give access to each statement in the logical sequence.

Combination operators: AND, OR, NAND, NOR, XAND and XOR can also be used.

Therefore, the definition of each level has the following structure:

IF [NOT] <I[counter]
THEN actions

ELSE IF [NOT]
THEN actions

eventls>

< [counter]

event3>

[<combination>

[NOT]

[<combination>

[NOT]

<event2s>]

<event4s]

Open the Advanced Breakpoints window by selecting Debug Instrument > Advanced

Breakpoints from the main menu, or by clicking on

the Emulator toolbar.

ﬁsﬁ (the Advanced Breakpoints icon) in

In the Advanced Breakpoints window, click on the Level 1 tab located towards the bottom
of the window. (You can also access Levels, Events and Combination windows using the

Configuration Summary).

Figure 224. Advanced breakpoints window—level 1 programming

Advanced Breakpoints E2

— Configuration Summary
¥ Enable Configuration

....... S_','nDpliC

; event]
~THEN
~ELSEIF

- Level 3
- Level 4

[™ Start with Trace On

|

THEM
ELSE IF

THEM

Feset Level 1 |

Frogrammable Level

Firzt Event

[EVENTT

[Counter asked I

I

oR i

Second Event

MOT EVENTZ

Combination £ Eventl f

Synopfic), Level 1 4 Level2 & Level 3 3 Leweld 7

ok LCancel |

Help |

Beszet Al Levelsl

Save. . | Load... I

The sequencer level being programmed is indicated at the top of the Programming Level
area, and a reset button for the level is located at the bottom. This is useful if you want to
completely erase the programming level.

Four buttons, IF, THEN, ELSE IF and the final THEN allow access to these four portions of

the level definition.

Doc ID 7705 Rev 11

293/385

EMU3 emulator features UMO0036

When you click on the IF button in the Programmable Level portion of the window, as
shown in Figure 224, you are presented with the Combination window. It contains fields
that allow you to define the conditions upon which you want certain action(s) to be taken.
Proceed as follows:

1.

First ask yourself: “What type of condition results in an action?”. Is it a single
occurrence of an event, a number of occurrences of the same event, the non-
occurrence of an event or a combination of dissimilar events that trigger the action?

In the field, First Event, choose either EVENT 1 or NOT EVENT 1. If you choose
EVENT 1, the condition is satisfied when this event is true. When you choose NOT
EVENT 1, the condition is satisfied when this event is false. (If you leave the First
Event as DISABLED, no event is defined and the Level remains void. Choosing
anything other than DISABLED causes an Eventl tab to appear in the window.)

If you want the same event to occur more than once before an action is taken, choose
EVENT 1, and check the Counter asked option, then set the number of times you want
the event to occur before an action is taken. Once these fields are completed, you can
choose between the following options (as shown in Figure 225):

— If counter [event] >=n is selected, then an action is taken when the event has
occurred n or more times (six or more times in the example).

— If counter [event] < n is selected, then an action is taken (the condition is TRUE)
while the event has occurred less than n times and then the action ceases (the
condition becomes FALSE). Use of the counter in this way is useful when you want
to control trace recording, or the sending of signals to an output trigger, but has no
meaning when applied to breakpoints.

Figure 225. Defining a counter

Firzt Event

COUNTER [EWEMT1) =6 j _I

DISABLED
COLMTER JEVENT] 3= kb
COUMTER [EVENT1]< 6

¥ Counter asked IE

294/385

If you want to combine the occurrence (or non-occurrence) of eventl with another
event (event2) using a logical operator (OR, XOR, NOR, AND, NAND) choose the
operator from the field in the middle of the window. Choosing anything other than
NONE causes an Event2 tab to appear in the window.

If you chose a logical operator in the previous step, you can choose between EVENT 2
and NOT EVENT 2 in the Second Event field. Note that no counter is available in this
field. Only two counters per level are available, associated with eventl and event3 of
each level.

The next step is to define eventl and event2 (if present). Click on the Eventl tab.

The Event tabs allow you to define each event, as shown in Figure 226.

Doc ID 7705 Rev 11 KYI

UMO0036 EMU3 emulator features
Figure 226. Defining Level 1, Event 1
- R 8 — r~=| Lewel1
Configuration Summary | {o:::ur] Frogrammable Level
¥ Enable Configuration h
- Synoptic] i r— Memaony Events
- Level 1
B IF
Bl eventl U2
= temany Access O ELSE IF
e OR definition of
o r Other events - Evgnt1 on
B THE;VBH THEN [~ Trace Full ignored this Level
b Set Trace On — [Trigger IN ighored
Emé&?iﬂ;nw [~ Analyzer probe I ‘*I
""" Memony Scocess (& First ¥ alue I Last W alue I
o Trigger [N =1
- THEM - Reset Level 1 | 1
| ; | LIJ Combination # Frentd # Event this tab is hidden
) until a Combination
™ Start with Trace On Synopic) Level 1 £ Level2 Ji Lewel3 Ji Leveld J | operatoris set
ok | LCancel | Help | Reset &l Levelsl Save.. | Load... I

An event may incorporate any of the following:

— A Memory Event. You may set an event on any of the following memory events:
Any Memory Access, Memory Access with Data, Opcode Fetch, Opcode
Fetch with Data, Stack Memory Access, DMA Memory access, IT Memory
Access. A Memory Access event would be, for example, a read access of
memory address 0xfd00.

— One or more Other events. Events can be set on the detection of specific values
of signals or other parameter. You can choose one or any combination of the
following: trace buffer (full or not full), input trigger signal value (0 or 1), and
Analyzer probe (enter a specific value or range of values).

— A combination of a memory event and signal events.

Note: All values can be entered either in unsigned integer format, or in hexadecimal format. All

entries in unsigned integer format will be automatically converted into hexadecimal format.

Once you have defined eventl and event2 (if present), the next step is to click THEN to
define the actions to take if the defined conditions occur during the running of your
program.

The THEN window allows you to define an action as any of the following:

8.

Program Execution Break: Stops the execution of the program.

Trace: Start or stop trace recording, or take a snapshot of the trace (a trace
snapshot is a trace recording of one full program loop). You may opt to start
running your program with the trace ON using the Start with Trace ON option.
Examples of how to control the trace recording using Advanced Breakpoints are
given in Section 10.3 on page 309.

External Trigger 1 and External Trigger 2: Send a signal to one or both of the
two external triggers (OUT1 and OUT2). Examples of how to control the trigger
output using Advanced Breakpoints are given in Trigger programming examples.

Goto Level: Jump to another Level of event/action definitions.

Doc ID 7705 Rev 11 295/385

EMU3 emulator features UMO0036

Note:

10.2.2

296/385

Figure 227. Then window

Programmable Lewel

IF

| THEN
— Trace

ELSE IF ¥ Trace ISnapshot "I

— Program execution

THEM r— External trigger
™ External tigger 1 Low -
[External tigger 2 Lo -

— Gota

Feset Level 1 | [T Goto Level ILeveI 2 'I

Synopic) Level 1 A Level 2) Level &) Leveld f

10.

11.

Continue defining the level using the remaining Else If and Then commands in the
same manner as described above. Remember that:

— Else If conditions are only considered when the If conditions are not true at the
end of one memory cycle.

— If any of your Then actions include a Goto Level command, you must also define
this level.

Once you have defined all levels required, remember to enable the advanced
breakpoints by checking the Enable Configuration box in the top left corner of the
window.

Click OK to validate your Advanced Breakpoints settings, and exit the dialog box.

The current Advanced Breakpoints settings are saved as part of the workspace
settings. If you have made any errors in programming, a warning message is shown.
For example, a warning message would arise if you have asked for two incompatible
actions simultaneously, such as a Break and a Goto Level. The warning allows you to
go back and edit your sequencer programming.

By default, your Advanced Breakpoints configuration is enabled every time you create, load
or modify a configuration. This means that the next time you run your application, the
Advanced Breakpoints program you have just validated (by clicking OK) will be active.

You can enable and disable your Advanced Breakpoints configuration by checking or
unchecking the Enable Configuration box at the top left-hand side of the Configuration
Summary. Additionally, the status of the configuration (enabled, modified or disabled) is
displayed in a message in the Synoptic view.

Memory access events

Memory access options are selected from the pull-down menu in the Memory Access
dialog box as shown in Figure 228.

Doc ID 7705 Rev 11 KYI

UMO0036 EMU3 emulator features

Figure 228. Memory events

— kMemormy Events
Ay Memony Access j Add | Hem-:u'-.-'el

kMemom Access with Data
Opcode Fetch
Opcode Fetch with Data

Stack Memaon Access _I*I
Db, bMemony Access i
IT Memony Access =

An event may be defined as one of the following types of memory access:
e Any Memory Access: A specified memory address or range of addresses is accessed
by a read or a write command.

In the dialog box shown in Figure 229, you must specify two of the following fields: a
start address (for the start of a range of addresses), an end address (the end of a
range of addresses) or the length of the address range. If you want to monitor a specific
address, enter the address in the From Address field, and enter a Length of zero
(“0x1” in hexadecimal format). You may also specify the access mode: a read access, a
write access, or either a read or write access.

Figure 229. Memory Access dialog box

M Any Memory Access E

Address Setting
From Address 0454 Ta |Ox5d

Length |01

Access mode |Readfwrite j

Read
WATite

e Memory Access with Data: A specified data value or range (or specified bit mask) is
accessed (read/written) at a specified memory address or specified address range.

IYI Doc ID 7705 Rev 11 297/385

EMU3 emulator features UMO0036

Figure 230. Memory Access with Data dialog box

Il Memory Access with Data E

Addresz Setting
From Address |0FDO Ta |0FDO

Length |0x1

Access mode IFIeau:IfWrite ﬂ

— D'ata Setting
First data value IDHED|

ISeIected bt "I
Selected bits El D El D m m E E

Set | Rezet |

oK I Cancel |

The dialog box at right is the same as for the Memory Access dialog box with the
addition of a field to specify a data value or range.

You must enter a First data value and then, in the drop-down box, specify whether you
want to give a Data range, or specify Selected bits.

If you select Data range, you will have to enter a Last data value (to complete the
range).

If you select Selected bits, the 8-bit data register appears, and you can choose to
ignore the value of certain bits in the particular data register you specified.

In the example shown in Figure 230, the first data value given is CD (or 205 in decimal
format). By masking the second and fourth bits as shown, we are actually specifying
any of the following values:.8D (or 141), 9D (or 157), DD (or 221), and of course, the
original value, CD (or 205).

e Opcode Fetch: An opcode fetch is carried out from a specified memory address or
range of addresses. In the dialog box shown in Figure 231, you must define a first
address under First Opcode fetch.

The address can be entered directly, or if you have placed a bookmark at the address
of interest, you can simply choose the bookmark (and the file in which it occurs) and
the address field is automatically calculated.

If you only specify one address, the Opcode Fetch must occur at this address. If you
want to specify a range of addresses which are monitored for opcode fetches, fill in the
2nd Opcode fetch section of the dialog box. Note that you can also enter the name of
the symbol in the Address field, and the address will be identified by STVD.

298/385 Doc ID 7705 Rev 11 K‘YI

UMO0036

EMU3 emulator features

Figure 231. Opcode Fetch dialog box

B Opcode Fetch Ed

— First Opcode fetch

B ookmark |main.c;94

=~

File Imain.u:

Address IDHEDBB

7] Line [a

—2nd Opcode fetch

Bookmark

File [mair. ¢ x| Line 100

Address [0,£ 03D Clear_|
ak. I Cancel |

e Opcode Fetch with Data: An opcode fetch of a specified value or range (or specified
bit mask) is carried out at a specified address, or within a specified range of addresses.

The dialog box shown in Figure 232 is the same as for the Opcode Fetch dialog box
with the addition of a field to specify a data value or range. You must enter a First data
value and then, in the drop-down box, specify whether you want to give a Data range,

or specify Selected bits.

If you select Data range, you will have to enter a Last data value (to complete the
range). If you select Selected bits, the 8-bit data register appears, and you can choose
to ignore the value of certain bits in the particular data register you have specified.

Doc ID 7705 Rev 11

299/385

EMU3 emulator features UMO0036

Note:

10.2.3

300/385

Figure 232. Opcode Fetch with Data dialog box

Il Opcode Fetch with Data
— First Opcode fetch
Eookmark: Isamphﬂ 164 j
File [samplel =] Line [154

Address IUHFUEB

—2nd Opcode fetch

B oakmark, Isample1.u:;‘l?1 j

File ISampIe'I.c j Line |'l.'-"1

Address I— - |
—Data

First data value IDHED IData range j

Lazt Data value IDHDD

OF. I Cahcel |

When Any Memory Access or Opcode Fetch is selected as the type of access, then any
number of access events may be included in the list for that event. If Opcode Fetch with
Data or Memory Access with Data are selected as the type of Memory Access, then only a
single entry is allowed in the list for that event. (This limitation applies only to the current
event, and not between different events in the same or different Levels.)

Other types of events

Other events can be selected in the lower half of the event definition area in each Event
window. Each event type has a tristate checkbox, which allows you to choose between
particular states or signal values, and ignoring the signals.

Figure 233. Other events

Other events
[~ Trace Full ignored

™ Trigger IN ighared
™ Analyzer probe I j

Firzt % alue I Lazt Value I

Combination A Ewent1 /

e Trace Full: Values True, False or Ignored may be selected.
e Trigger In: Values 1, 0, or Ignored may be selected.

e Analyzer Input: Signals from the Analyzer Input connector (located on the EMU3
Probe) can be used as conditions (for more information, see Section 10.5 on page
317). A single value, a range of values, or selected bits may be defined. An example

Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

Note:

10.2.4

10.2.5

10.2.6

that shows how to specify a value with selected bits masked, is given in Section 10.5.1
on page 318.

Ignored means that the signal is not monitored as part of the event.

Enabling advanced breakpoints

There is an Enable Configuration checkbox at the top left of the Advanced Breakpoints
window, above the user configuration summary. This must be checked to activate the
breakpoint program.

When breakpoint information is restored at the beginning of a new emulation session, this
checkbox is disabled (unchecked), it must be set to active again for the current breakpoint
program to run.

Starting with trace ON

The checkbox Start with Trace ON, is located at the bottom left of the Advanced
Breakpoints window below the user program summary. This checkbox corresponds to the
Trace On option which is available in the Trace contextual menu under Emulator
Commands (refer to Section 10.1.2 on page 286).

If Advanced Breakpoints is enabled, then control of the trace is via the Advanced
Breakpoints sequencer and the Trace On/Off command in the Trace contextual menu is
disabled.

Figure 234. Emulator commands in trace contextual menu

A EIGIEL = e Clzar Trace buffer
v Trace On

Set Timestamp Clock. ..
|

v Allow Docking
Hide

When this option is active, the trace is turned on when the application program runs. When
inactive, the trace is off until turned on explicitly by an Advanced Breakpoints programmed
event (set in a THEN section of one of the Program Levels).

The configuration summary

On the left of the Advanced Breakpoints window, the Configuration Summary shows the
logic structure, event definitions and actions to take for all the levels. As you complete the
definition of each level, the information that you entered appears in the Configuration
Summary.

You can use the Configuration Summary to jump to your definitions—any element may be
selected by a single mouse click on the corresponding identifier. The text is highlighted, and
information on this single level and the particular element within it, appears in the
Programming Level area to the right of the Window.

For example, in Figure 235 you can see a structured view of Level 1 in the Configuration
Summary and Event 2 of Level 1 has been highlighted by clicking on it, thus opening the
Level 1, Event 2 programming area on the right-hand side of the window.

Doc ID 7705 Rev 11 301/385

EMU3 emulator features UMO0036

Figure 235. Advanced breakpoints configuration summary

Advanced Breakpoints

— Configuration Summary

Proarammable Level
¥ Enable Configuration

- Synoptic - F — Program execution

S Level 1

= IF THEN
E """ [counter [event]] »=1 Trace

“ From main.c: 3 ELSE IF I Trace On i

THEM — Esternal trigger
Trigger IN =1

i (T -
Mot a stack acces I™ Extemal tigger 1
EI THEN b [Esternal trigger 2 Low -
. et Trace On
= ELSEIF Goto

B [hot [counter [event3
. Lewvel 2 .
b Glack aocess = Reset Level 1| " Goto Level I e j
i | v
[Start with Trace On Synoplic A Level 1 £ LewelZ J Level 3}, Leveld /

ok | LCancel | Help | Eeset.ﬁ.llLevelsl Save... | Load... I

10.2.7 Synoptic representation of advanced breakpoints

The Synoptic window may be viewed by clicking on the Synoptic tab at the bottom of the
window, or by clicking on “Synoptic” in the Configuration Summary. It illustrates the logical
links programmed into the levels.

The Synoptic graphic for a typical sequence is shown in Figure 236.

Figure 236. Graphical synoptic sequence

Advanced Breakpoints E2

— Configuration Summary

£ Spnoplic 1= Configuration is enabled
“Level1
E IF
2
Level 1 Level 2 Level 3 Level 4
- Trigger IM =1
Mot a stack acces
E THEN
. Get Trace On
L:_l
ELSEIF Current level:
=l [not [counter [event3 ..
‘oo Stack access e Defined level: IF Goto Action:
< [o] Empty level: ELSE IF Goto Action; s———
I” Start with Trace On Synoptic A Level1 A Level2 A Level 2 A Leweld £

ok | LCancel | Help | BesetAllLeveIsl Save. . | Load... I

302/385 Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

Programmed and unused levels are differentiated by color coding. The currently active Level
is color-coded and indicated by an arrow. Links between levels are color-coded to
differentiate between IF and ELSE IF logic.

The Synoptic view is a block diagram of the four levels with the programmed logical links
displayed graphically. When the configuration is enabled (using the Enable Configuration
checkbox at the top left of the Advanced Breakpoints window), programmed and unused
levels are differentiated by color coding as shown in Figure 236. The currently active level is
color-coded and indicated by an arrow. Links between levels are color-coded to differentiate
between IF and ELSE IF logic.

In addition to summarizing the logic of your Advanced Breakpoints configuration, the
Synoptic view also tells you the current status of your configuration. If you have programmed
your Advanced Breakpoints configuration, but have not yet validated it (by clicking on the
OK button), the Synoptic view appears with the message “Configuration is enabled
(modified)” as shown in Figure 237.

Figure 237. Configuration enabled

Advanced Breakpoints

r— Configuration Sunimary

¥ Enable Configuration

¢ Synaphic =] Configuration is enabled [modified)
- Level 1
I
& counter [gventl] »=5
"""" Trigger IM =1
= THEN
- Set Trace On
b Break Lewvel 1 Level 2 Lewvel 3 Lewvel 4
= ELSEIF
& event3
& Analyser probe
& Range of valu__
:;;innicd? Current level:
------- THEN - Defined level: IF Goto Action:
1| | El Empty level: ELSE IF Goto Action: s————
[Start with Trace On synoptic £ Level 1} Level 2 A Level 3/ Level 4 7

ok | LCancel | Help | Eeset.ﬁ.llLevelsl Save... | Load... I

If you disable your configuration, the Synoptic view shows the message “Configuration is
disabled”, and the levels are shown in gray to indicate that while the configuration has been
saved, it is currently disabled (Figure 238).

Doc ID 7705 Rev 11 303/385

EMU3 emulator features UMO0036

10.2.8

10.2.9

304/385

Figure 238. Configuration disabled

Advanced Breakpoints

= Configuration is disabled

Level 1 Level 2 Level 3 Level 4

I -
1| | B

[Start with Trace On synoptic £ Level 1} Level 2 A Level 3/ Level 4 7

ok | LCancel | Help | Eeset.ﬁ.llLevelsl Save... | Load... I

Saving and loading advanced breakpoints

You can store the definition for your advanced breakpoint to a file (* . bem), which can be
reloaded by any STVD project, providing that you are using the EMU3 emulator to debug the
application. This will allow you to save time if you have to switch between advanced
breakpoints while debugging your application.

To save your advanced breakpoint, click on the Save button at the bottom of the Advanced
Breakpoint window. In the next window, select the folder where you will save your advanced
breakpoint, type a name for the .bem file and then click on Save.

To load an advanced breakpoint that you have already saved, click on the Load button in the
Advanced Breakpoint window. In the next window, browse to locate the .bem file that you
want, select it and then click on Open.

Advanced breakpoint examples

Example 1—Break on memory access without data masking

This example sets a breakpoint on memory access (either a read or a write) within a specific
range of addresses. This sort of breakpoint is very useful if you want to ensure that certain
memory zones are never read or written to.

Imagine that we want to make sure that there are no memory accesses in the memory
address zone from 0x40 to 0x47. We'll program the Advanced Breakpoints window so that
if a memory access in this address range occurs, the program is halted at the instruction
that provoked the access. Proceed as follows:

Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

1. From the main menu, select Debug Instrument > Advanced Breakpoints.

2. Inthe Advanced Breakpoints window, click on the Levell tab, then on the Eventl
tab.

3. Inthe Memory Events area, select Any Memory Access from the drop down menu as
shown in Figure 239.

Figure 239. Programming the memory access

Programmable Lewvel

Memary Events
I IF IAn_l,l temany Access j Add | Hemu:uvel

THEM kemany Access with Data

Opcode Fetch

Opcode Fetch with Data

ELSE IF Stack Memory Access _PI
DA Mermary Access —_

IT Memon Access b

THEM Other events

[Trace Full ignored

[Trigger IN ignaored
[Analyzer probe I ﬂ

Firzt % alue I Lazt Value I

Combination A Event1 /

Rezet Level 1 |

Synoptic A Level 1 4 Level 2 & Lewvel 2 J Leveld F

The Memory Access dialog box opens. To define the memory zone, enter the starting
address, 0x40, in the From Address field, and the end address, 0x47, in the To field.
The length of the zone is automatically calculated and entered in the Length field. In

the Access mode drop-down list, select Read/Write, so that either type of access
triggers a breakpoint.

Figure 240. Memory access dialog box

M Any Memory Access

Addresz Setting

From Address [0x40 To 047

Length [0=2

Access mode IHeada’Wlite j

0k, I

4. Click OK.

5. Click on the first THEN button to open the tab to define the action to take if the memory
event defined is TRUE. Check the Break option as shown in Figure 241.

Doc ID 7705 Rev 11 305/385

EMU3 emulator features

UMO0036

306/385

Figure 241. Programming Then

IF

ELSE IF

THEM

Frogrammable Level

— Program execution

| THEM

Feset Level 1 |

Synopfic), Level 1 £ Level 2 Level 3 j Leweld

— Trace

[Trace On -
— External trigger

" External trigger 1 Lo s
[External tigger 2 Lot i
—Goto

[Goto Level ILeveI 2 'I

6.

Check the Enable Configuration box at the top left corner of the Advanced
Breakpoints window (as shown in Figure 242) to enable the program. Click OK.

Figure 242. Enabling the configuration

Advanced Breakpoints

— Configuration Summary
¥ Enable Configuration

event]
=l Memony Access
= From (@0x28 b

[

[

IF
¥ Ereak
| THEN
— Trace
o ELSE IF I_ Trace On s
THEM — External trigger

Frogrammable Level

— Program execution

" External trigger 1
[External tigger 2

~Goto
Feset Level 1 | [T Goto Level ILeveI 2 'I
4| | i
I™ Start with Trace On Synoptic , Level 1 £ LevelZ f, Level 3 j Leweld f
ok | Cancel | Help | Beszet Al Levelsl

Save. . | Load... I

Doc ID 7705 Rev 11

Advanced breakpoint programming is now enabled. Table 73 provides a summary of steps.

UMO0036

EMU3 emulator features

Table 73. Advanced breakpoint programming summary

Step

Description

START with TRACE

ON or OFF

LEVEL 1

IF (access at memory location [0x40-0x47])
THEN break;

LEVEL 2-4

(empty)

Example 2—Break on memory access with data masking

This example is an elaboration of the previous example. In this case, we set a breakpoint on
the reading or writing of a particular data value to a particular memory address or range of

memory addresses.

Imagine that you want to be alerted if a null value is written to the memory address 0x40.

The programming of the Advanced Breakpoints window is summarized in Table 74.

Table 74. Advanced breakpoints summary

Step

Description

START with TRACE

ON or OFF

IF (access at memory location [0x40]

LEVEL 1: with data=0x00)
THEN break;
LEVEL 2-4: (empty)

1. Inthe Advanced Breakpoints window, click on the Levell tab, then on the Eventl

tab.

2. Inthe Memory Event field, choose Memory Access with Data.
3. Set the memory event as shown in Figure 243.

Doc ID 7705 Rev 11 307/385

EMU3 emulator features UMO0036

Figure 243. Programming memory access with data

Addrezs Setting

From Addess [Oxdll To |Oxdi
Length |0x1

Access mode m

[ata Setting

First data vale =0

IData range 'I
Last Data value ID”E'

ak I Cahizel |

4. Inthe Level 1 tab, click Then and set the defined action as a breakpoint, as shown in
Figure 244. Note the program is summarized in the Configuration Summary window
on the left.

Figure 244. Configuration summary of program

Advanced Breakpoints | x| I

— Configuration Summary

Frogrammable Level
¥ Enable Configuration

— Synoptic F r— Program execution

- Level1

el :
lF THEM
. B eventl —Trace

El Memory Access with D

-t @Od0wie, D | | ELSEIF | | Trace On i
E-THEN ——
= Break THEM — Esternal tigger
" External trigger 1 Lo s
[+ [External tigger 2 Lot i

[+l

—Goto

Reset Level 1 | [Goto Level ILEVEI 2 vI

K1 — *
" Start with Trace On Synopfic), Level 1 4 Level 2 J Level 3 i Leweld

ok | Cancel | Help | BesetAllLeveIsl Save. . | Load... I

Example 3—Break on Condition after function call

In the example below, a breakpoint must be set on a Read within a given block of memory
but the break should not take place until after a specified function is called. Use is made of
the starting address of the function. An opcode fetch at that address indicates the opening
of the function.

Program the Advanced Breakpoints window as summarized in Table 75.

308/385 Doc ID 7705 Rev 11 K‘YI

UMO0036 EMU3 emulator features
Table 75. Advanced breakpoints summary
Step Description
START with TRACE |ON or OFF
. IF (opcode fetch at main.c*57)
LEVEL L THEN Goto Level 2;
. IF (read at memory address 0x004014-0x004019)
LEVEL 2: THEN break;
LEVEL 3-4: (empty)
The Configuration Summary of the Advanced Breakpoints window should appear as
shown in Figure 245.
Figure 245. Configuration summary
—Configuration Summary
B THEM
- Goto Lewel 2
------- ELSEIF
------- THEM
B Level 2
B IF | |
B event]
B Memory Access (Addres
“|Fram @0x4014 to @0x4019, Read/\Write]
B THEM
o Fraal il
4| | »
v Startwith Trace On
Note: There are more examples on how to use advanced breakpoints to control the output triggers
and the trace recording in Trigger programming examples and Programming trace recording
respectively.
10.3 Programming trace recording

While you can simply turn the trace recording on and off from the Trace contextual menu,
you can also program the trace recording so that you record those hardware cycles which
interest you most. This is done using the Advanced Breakpoints window (for general
information on the Advanced Breakpoints feature, refer to Section 10.2 on page 291). The
following examples show you how to program the recording of the trace using advanced

breakpoints.

Doc ID 7705 Rev 11

309/385

EMU3 emulator features UMO0036

310/385

Example 1—Trace ON inside a function

This example shows you how to program the Advanced Breakpoints window so that the
trace is recorded only during the running of a particular program function.

Imagine that you have a program called samplel . ¢, which calls the functionmy 1ib atline
170 (as shown in Figure 246) and that you want to have the trace recorded while the
program is executing that function.

Figure 246. Calling function my_lib

=i ktimer.c _ |O0)
j=1=] AI

100
101
10z

103 void waiting loop (const unsigned long count)

104 {

105 unsigned long i:

106

107 for (i=0; i<count; i++) [
108 {

109 asm nop () ;

110 i

111"

112 -
1] | 2

Proceed as follows:
1. Openthe Advanced Breakpoints window.

2. You must start application execution with the trace OFF, to do this remove the
checkmark next to the Start with Trace On option.

3. Program your Advanced Breakpoint as described in the table below.

Table 76. Advanced breakpoints summary

Step Description

START with TRACE | OFF

IF (opcode fetch at samplel.c:107)
THEN trace ON

LEVEL 1. ELSE IF (opcode fetch at sample3.c:111)
THEN trace OFF;
LEVEL 2-4: (empty)

4. Set Event 1 to first instruction of function (), and set Event 2 to last instruction of
function (). Trace recording takes place only within the function.

In the Trace window, the discontinuity event in the Trace Event column allows you to
distinguish each pass inside the function.

Example 2—Programmable trigger position in trace

In this example, we will program the recording of the trace to begin when a specific condition
is met, then record the trace for 128 cycles, then stop the program.

Proceed as follows:

Doc ID 7705 Rev 11 KYI

UMO0036 EMU3 emulator features

1. Open the Advanced Breakpoints window.
2. Configure your Advanced Breakpoints window as summarized in the table below.

Table 77. Advanced breakpoints summary

Step Description

START with TRACE |ON

IF (opcode fetch at sample.c:164)

LEVEL 1: THEN (Goto Level 2);
. IF (Counter (Trigger IN == 0) >= 128)
LEVEL 2: THEN Break;
LEVEL 3-4: (empty)
Note: The input trigger is used here to provide an event which is always true. For an unconnected

trigger the statement trigger input = 0 is always TRUE.

Example 3—Measure frequency of interruptions

This Advanced Breakpoint program records a snapshot each time the event occurs (such as
an interrupt). Then, by calculation from the timing mark of the trace, the frequency of the
event can be determined. It may be useful to export the trace record as a text file. The file
can then be manipulated using any convenient spreadsheet software, to be presented in
graph form.

Program the Advanced Breakpoints window as summarized in the table below.

Table 78. Advanced breakpoints summary

Step Description

START with TRACE |OFF

IF (opcode fetch at main.c:57)
THEN (Trace snapshot);

LEVEL 2-4: (empty)

LEVEL 1:

You must start with the Trace OFF so that snapshots are the only records in the trace buffer.

Example 4—Run until trace full

This simple program allows you to start recording the trace at the start of the program,
running until the trace buffer is full, and then stopping the program.

Table 79. Advanced breakpoints summary

Step Description

START with TRACE |ON

IF (Trace buffer is full)
THEN Break;

LEVEL 2-4: (empty)

LEVEL 1:

IVI Doc ID 7705 Rev 11 311/385

EMU3 emulator features UMO0036

Example 5—Measuring long time periods between events

The trace recording includes a Timestamp field, but the Timestamp's counter is only 30-

bits, while the maximum trace recording length is 256 Kbytes. This means that if you fill the
trace buffer, the Timestamp counter is filled and automatically reset many, many times, and
the Restart message appears in the Timestamp Event field each time the counter is reset.

50 seconds is the approximate time, using the internal 20 MHz clock, that the 30-bit
Timestamp counter can count before the counter is filled and it is reset. Therefore, if you
want to measure the time passed between two events and this time is longer than 50
seconds, the best thing to do is to set up an Advanced Breakpoint so that the trace is only
recorded between the two events of interest. ()

Note: This is almost true - in addition to the trace records that result from your Advanced
Breakpoints program, you may also have some forced trace recordings that occur every
time a Restart message occurs. This is because the timestamp counter is started at the
same time the program run is started. If the time passed between the start of the run and
the occurrence of the first event of interest is longer than about 50 s, there will be a trace
record that is blank except for the Restart message in the Timestamp Event column.

For this example, let's assume that we are interested in the time passed between the
reception of a certain input trigger signal and the outputting of a certain output signal. We
expect these two events to take place within the space of 256 Kbyte cycles.

We will program our Advanced Breakpoints window as described in the table below.

Table 80. Advanced breakpoints summary

Step Description
START with TRACE |OFF
. IF (input_probe value == 0xF)
LEVEL 1: THEN (Trace ON), GoTo Level 2
IF (output_probe value == OxF)
THEN (Trace OFF), Break
LEVEL 2:
ELSE IF (trace_full = 1)
THEN Break;
LEVEL 3-4: (empty)
Note: It is necessary to start with Trace OFF so that the trace starts to be recorded after the

required event occurs and continues either until the second event occurs or the trace is full.

Once the two events of interest have occurred and you have a trace record spanning the
entire time between the events, proceed as follows:

312/385 Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

10.4

Open the Trace window.

Right-click the mouse in the Trace window and select Show/Hide Columns from the
contextual menu. Ensure that you are able to view the Record, Event, Timestamp,
Timestamp Event and TIN (Trigger Input) fields.

Go to the record in the Trace window that corresponds to the first event. This record
should have Event 1 in the Event field and a value of OxF in the TIN field. Note the
value (a) in the Timestamp column for this record on a piece of paper.

Go to the last record in the Trace window (that corresponds to the second event). This
record should have Event 2 in the Event field. Note the value (b) in the Timestamp
column for this record.

Next, you can search your trace record and count the number of times (n) that the
Restart message was found.

Each time the Restart message occurs, it means that the 30-bit timestamp counter was
filled and automatically reset. A 30-bit counter can measure up to (230 - 1) time periods.

Each time period is equal to the inverse of your Time Stamp Clock frequency. For
example, using an internal 20 MHz Time Stamp clock results in a period of 50 ns. So
the 30-bit Time Stamp counter is capable of measuring (230 - 1) time periods x 50 ns =
approximately 53.687 seconds. If you are using an external Timestamp clock, you
must recalculate this according to the clock frequency.

So, to have an absolute measurement of the time passed between the two events of
interest, perform this calculation:

a) Multiply n (the number of times the Restart message was found) by 53.687
seconds (or whatever you have calculated as the maximum time measurable by
the 30-bit counter if you are using an external timestamp clock with a frequency
other than 20 MHz).

b) Then add b (the value found in the Timestamp column of the trace record
corresponding to event 2).

¢) Finally, subtract c (the value found in the Timestamp column of the trace record
corresponding to event 1).

Then you will have the true time between the two events of interest.

Using output triggers

Your ST7 EMU3 emulator has two output triggers, OUT1 and OUT2. You can program the
output signals to these triggers using Advanced Breakpoints in STVD.

From within Advanced Breakpoints, you can set a trigger output action with the following
options (schematically represented in Figure 247):

output a pulse—where a signal of value 1 is sent during exactly one memory cycle.
toggle—where the signal value is changed from 0 to 1 or from 1 to O.

set the output high—where the output signal is set equal to 1.

set the output low—where the output signal is set equal to O.

The following sections provide Trigger programming examples to help you learn to use
Advanced Breakpoints to control the sending of signals to the output triggers.

Doc ID 7705 Rev 11 313/385

EMU3 emulator features

UMO0036

10.4.1

314/385

Figure 247. Output trigger action modes

provoking pulse action

Pulse output

Period of time between event

trigger

L1
Pulse lasting one
processor cycle

Toggle output + +

2nd toggle 4th toggle
action action

6th toggle
action

v

trigger
1st toggle 3rd toggle
action action
Set output
low
Set output +
high/low

_

}

5th toggle
action

Set output
low

v

} }

Set output

Set output low
high (no action as output
already low)

Set output
high

Trigger programming examples

The following examples show you how to control the trigger output signals by programming

the Advanced Breakpoints window.

Example 1: Sending a pulsed signal to synchronize an oscilloscope

Sometimes it is useful to send a pulsed signal from one of the output triggers to synchronize
an external device upon the occurrence of a particular event. For example, say that you want
to synchronize an oscilloscope upon the occurrence of an entry into an interrupt loop.

Program your Advanced Breakpoints window as summarized in the table below.

Doc ID 7705 Rev 11

UMO0036

EMU3 emulator features

Table 81. Advanced breakpoints summary

Step Description

START with TRACE |ON or OFF

IF (Enter IT)

LEVEL 1. THEN (Trigger 1 Pulse);

LEVEL 2-4: (empty)

The Advanced Breakpoints window should appear as shown in Figure 248.

Figure 248. Programmed window

Advanced Breakpoints

r— Configuration Sunimary Programmable Level

¥ Enable Configuration

— Program execution

£ Synaphc IF
=l Level 1 [T Break
B IF THEN
E evanitl — T
b Enter T
=--ITHEN ELSE IF [Trace On -
s Trigger 1 Pulze _—
ELSE IF THEM — External trigger
THEM .
H Lewal 2 ¥ External trigger 1
H Level 3 [Extemnal tigger 2 Low _
B Level 4
—Goto
Reset Level 1 | " Goto Level ILEVEI 2 jv
[Start with Trace On Synoplic), Level 1 £ Level2 i Level3 jy Leweld f

ok | LCancel | Help | Eeset.ﬁ.llLevelsl Save... | Load... I

Example 2: Toggling a trigger output signal

Suppose that you want the output trigger signal to be toggled (go from 0 to 1 or from 1 to 0)
upon a certain conditional event.

In this example, the event is the detection of an opcode fetch at a specific address
corresponding to a function call at line 170 in sample.c.

We need to program the Advanced Breakpoints window as summarized in Table 82.

Table 82. Advanced breakpoints summary

Step Description

START with TRACE |ON or OFF

IF (opcode fetch at sample.c:170)

LEVEL L. THEN (Trigger 1 Toggle);

LEVEL 2-4: (empty)

The programmed Advanced Breakpoints window should appear as shown in Figure 249.

Doc ID 7705 Rev 11 315/385

EMU3 emulator features UMO0036

Figure 249. Programming level 1

Advanced Breakpoints E
— Configuration Summary

¥ Enable Configuration

Frogrammable Level

- Gunophic r — Program execution

El-- Level 1 [Bresk

B
) THEM
El eventt — Trace

B Opeade Fetch (Adde

=/ THEN ELsElR || T Trace |on il

“--Trigger 1 Toggle —

- ELSE IF THEM — External tigger

- THEN _ -
B Level 2 [External trigger 1 ITDQQIE =
B Level 3 [Esternal trigger 2 I'—UW j
- Level 4

—Gaoto
Rezet Level 1 | : ILEVEI 2 j
1| | ™
I Start with Trace On Synapic) Level 1 £ Level 2 J, Levels J, Level 4 /

(1] | LCancel | Help | Beset Al Levelsl Save.. | Load... I

Example 3: Setting the trigger output high or low

In the previous example, upon each occurrence of a specific event (an opcode fetch at
sample.c, line 170) the trigger is toggled—meaning that the new trigger value is the
opposite of the old trigger value. Toggling changes the relative value of the trigger.

In this example, we show that we can also effectively toggle the trigger high or low using the
set high and set low options. The advantage of toggling in this way is that you can set a
specific trigger value upon the occurrence of a particular event.

This is advantageous if you are not sure of the order in which events occur during the
running of your application.

Imagine that we have an external device attached to our input probe and we want to make
certain that an output signal of value “1” is sent from Output Trigger 1 every time we receive
a positive signal value from the input trigger.

However, at the same time, if our application enters an interrupt loop, we want this event to
override all else and send a signal of value “0” from Output Trigger 1.

While neither of these events has occurred, we would also like to send a signal of value “0”
from Output Trigger 1.

Program your Advanced Breakpoints window as summarized in Table 83.

Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

10.5

Table 83. Advanced breakpoints summary

Step Description

START with TRACE | ON or OFF

IF (event 1: Probe input = Range of values, first=0x1, last=0xff) AND (not
event 2: Opcode Fetch (Address) at sample.c:170)
THEN (Trigger 1 High) AND (GoTo Level 2);

LEVEL 1: ELSE IF (event 3: Input probe = 0x0) OR (event 4: Opcode Fetch (Address) at
sample.c:170)
THEN (Trigger 1 Low)
LEVEL 2: IF (event 1: Opcode Fetch (Address) at sample.c:170)
’ THEN (Trigger 1 Low) AND (GoTo Level 1)
LEVEL 3-4: (empty)

Your Advanced Breakpoints window should appear as shown in Figure 250.

Figure 250. Programming Advanced Breakpoints window

Advanced Breakpoints E2
— Configuration Summary
¥ Enable Configuration

| evel 1 ﬂ F — Program execution
H- IF -~=

- event | :
8- Input probe - Trace

Frogrammable Level

sty ELsEIF || T Trace On =
e andsulf — |
"""" AMD THEM — Esternal tigger
B I
IE[IT-?tUE\;EEEgetCh [Address’ T || W Estemaltigger1 Hioh =
= gt zamplel.c:170 ™ Estemal igger 2 (I ¥
H--THEM
= Trigger 1 High — Goto

- Giot Level 2 ez =]
. ELSETFD e F!esetLeveHl ¥ Goto Level Level 2 -

-

< | >
" Start with Trace On Synopfic), Level 1 4 Level2 & Level 3 3 Leweld 7

ok | LCancel | Help | BesetAllLeveIsl Save. . | Load... I

Using analyzer input signals

The ST7 EMU3 emulator allows you to use eight external input signals (TTL level). These
input signals can be used as other events (see Section 10.2.3 on page 300) in the
programming of Advanced Breakpoints.

You can view the value of the Analyzer probe input at any time, using STVD. From the main
menu, select View>Trace. The input signal value is listed in the Analyzer Probe column.

STVD’s Advanced Breakpoints allows you to use these input signals to define an event.
From the main menu, select Debug Instrument > Advanced Breakpoints to open the
dialog box.

Doc ID 7705 Rev 11 317/385

EMU3 emulator features UMO0036

Figure 251. Defining events using Analyzer probe signals

— Other events
[~ DA ignored [~ IT ignared
[~ Trace Full ignared [~ Stack ignared
™ Trigger IM ignored
[V &nalyzer Input | Selected bits =l
Walug |Oxd Selected bits W

Combination %, Event1 A Evertz

As shown in Figure 251, you can provide a specific value (with or without bit masking) or a
range of values (see Analyzer input examples).

10.5.1 Analyzer input examples

Example 1- Specifying an Analyzer probe value with selected bits masked

The Analyzer probe has an 8-bit input. Imagine that you want to specify an input value of 91
(5B in hexadecimal format). You can simply specify the value “91”". A value of “91” received
on an 8-bit input looks like:

0 1 0 1 1 0 1 1

However, suppose that you want to specify the value “91” but mask certain bits. These bits
are shaded in the figure below:

3 KRR R

The selected bit mask is therefore represented by:

1 0 1 1 1 0 1 1

which corresponds to the value “BB” in hexadecimal format, or “187” in decimal format.

So, to specify a value of “91” with the second and sixth bits masked, you would complete the
Advanced Breakpoints window as shown in Figure 252.

Figure 252. Specifying an Analyzer probe value with bit mask

— Other events
[~ DA ignored [IT igraored
[~ Trace Full ignared [~ Stack ignared
™ Trigger IM ighaored
[Anatyzer Input | Sslected bits =]
Value [045B | Selectedbits [0488 |

Combinatan #, Event1 £ Evert® [

318/385 Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

Note:

10.6

10.6.1

Example 2—Setting an advanced breakpoint on an input probe value

This program allows you to make the trace recording conditional on a specific input probe
signal, and then record the trace until the trace buffer is full. Program the Advanced
Breakpoints window as summarized below:

Table 84. Advanced breakpoints summary

Step Description

START with TRACE |OFF

IF (input_probe value == 0xF)

LEVEL 1: THEN (Trace ON)

_ IF (trace_full = 1)
LEVEL 2: THEN Break;
LEVEL 3-4: (empty)

You must start with Trace OFF so that the trace starts to be filled after the required event
occurs and until the trace is full.

Performance analysis

You can open the Performance Analysis window by clicking on] (the Performance
Analysis icon) from the Menu Bar, or by selecting Debug Instrument > Performance
Analysis.

The Performance Analysis window allows you to measure the time spent in a given portion
of your code in order to evaluate the efficiency of your application.

In the Performance Analysis window, you select a section of code (for example, a function)
by choosing a start and end bookmark, or by defining the start and end addresses.

Enter the number of passes to be analyzed. The program is run and timed. The Total time
for the number of passes is recorded. The percentage time inside the defined start and end
points (% time in code) is calculated, as is the Maximum time, Minimum time, and
Average time for a single pass.

The results are displayed in the Statistics tab of the Performance Analysis window. They
may also be viewed in graphical form on the Graphic tab, and a number of graphical
manipulations carried out to facilitate analysis.

This section provides information about:

e Running a performance analysis

e Using the Run/Stop/Continue commands
e Viewing results

Running a performance analysis

The Performance Analysis dialog box appears as shown in Figure 253.

Doc ID 7705 Rev 11 319/385

EMU3 emulator features UMO0036

Figure 253. Performance Analysis dialog box

Performance Analysis E3

— Performance analpsiz zettingz
Al |

Mumber of pazse: [fTT ¥ Digable breakpoints

— Starting address Eun
Bookmark I j Continue |
File: Isample1.c j Line IF Stop |
Address IW

— Ending address
Biookmark I j
File Isample1.c j Line IF
Address IW

Settings f Stafisfics A Graphic £

LCloze I Help |

In this dialog box, you must specify the following:
e Disable breakpoints: this checkbox disables all current breakpoints during the test.

e Number of passes: the number of times that the specified sequence of code will be
run for the test.

e Starting address: specifies the start address of the sample and the name of the
module in which it is located. The start address may be specified as a bookmark
location in a specific file, or an address. If any Bookmark, Line, or Address field is
completed, the remaining fields are specified automatically.

— Bookmark: current bookmarks are listed in the Bookmark pull-down menu and
may be selected to define the start point for the program sample (click on a
bookmark definition to set it as the start address).

— File: project executable files are listed in this pull-down menu, or may be entered
by hand.

— Line: the line number may be entered here.
— Address: the address may be entered in decimal or hexadecimal format.

e Ending address: as for the Starting address (above), but specifying the final address
of the program section to be tested.

10.6.2 Using the Run/Stop/Continue commands

When the definition is complete, use the Run, Stop and Continue buttons at the top right of
the window to execute/stop the program:

e Run:runs the executable. This command carries out a chip reset and runs the program
from the reset vector.

e Continue: restarts the program from the current Program Counter location. When this
command is used, the performance analysis is also restarted. The elapsed time and

320/385 Doc ID 7705 Rev 11 KYI

UMO0036

EMU3 emulator features

10.6.3

number of passes executed are reset to zero and a new record is made, starting from
the Program Counter location.

e Stop: stops program execution and shows performance analysis results to this point.

When the program execution terminates, the Statistics tab opens automatically to display

the results of the analysis.

Viewing results

The Statistics tab (shown in Figure 254) sets out the numerical data resulting from the
performance analysis. The results on this page are expressed in unit that varies depending
on the duration of the events analyzed. The results may be expressed in seconds (s),

milliseconds (ms), microseconds (us), or nanoseconds (ns).

Figure 254. Statistics compiled by performance analysis

Performance Analysis E
— Initial zettings
Starting Address : Ox24D
Pazzes specitied: 100
Ending Address ;. 0«2E8

Avwerage time

imiriuimn tinie

b E=irmLr tirme:

1.0850
1.0850

1.0850

Standard deviation 0.0000

— Statistic:s for one pass through portion of code

mz

ms

ms

mz

Statiztics for elapsed test time

MHumber of executed paszes

Total time 19531675
% time incode 555922

100

ms

it

Sefings) Statistics /£ Graphic /7
I LClose I

Help |

section of code under examination.

Doc ID 7705 Rev 11

Initial settings: The initial settings that you entered are summarized here, defining the

EMU3 emulator features UMO0036

322/385

Statistics for one pass through portion of code: These values concern timing data
for the selected portion of code (between the chosen start-point and end-point).

Average time: Average time for a single passage between start- and end-points.
Minimum time: The most rapid timing recorded between the two points.
Maximum time: The slowest pass between the two points.

Standard deviation: Standard deviation for the range of timings obtained over the
number of passes carried out, expressed as a deviation from the average time for
a single passage.

Statistics for elapsed test time: These results express overall timing values:

Number of executed passes: The total number of passes through the selected
code carried out during the analysis.

Total time: The runtime, from start (Run/Continue) to the occurrence of the last
significant event.

% time in code: The percentage of the total time which is passed executing the
selected code (between the user-defined start-point and end-point).

Figure 255. Graphical representation of performance analysis

Clows I Helb |

zepudz Y gpspepce Y pusbpicy

apoml | (iR soow |
K L 1
| ETebasg LTms = 43" 274 W2 || pERcEwcgds O £TWS = TOO # | me
33 200 2T 200 27 200 ez&;

30
F0

20

20
J | pemds = 5-gegs wa |

| [

TODA —
Y
LELOIIOUGCE Yuajhziz E3

The Graphics tab sets out the graphical data resulting from the performance analysis, as
shown in Figure 255. The graphical display has the following features:

Horizontal axis shows the elapsed time measured from the start of runtime.
Vertical axis shows the percentage of time (within the defined section of code).

Units of time on the graph are selected automatically depending on the duration of the
events analyzed; values may be expressed in seconds (s), milliseconds (ms),
microseconds (us), or nanoseconds (ns).

The cross-hair pointer: The current location of the pointer on the graph is interpreted
at the bottom of the graph in the boxes Elapsed Time and Percentage of time.

Doc ID 7705 Rev 11 KYI

UMO0036 EMU3 emulator features

e Show All modifies the scale of the graph to include the whole record in the visible area.

e Previous View restores the previous graph view (for example to zoom out after a
Zoom In).

e Zoom In: left-click on the mouse to position a vertical marker on the graph. Two of
these markers may be positioned (left-click in each case) and the view zoomed to the
region between them using the Zoom In button.

10.7 Read/write on the fly

The Read/Write on the Fly option permits you to non-intrusively read or write a value in the
RAM memory of the emulation chip while the application is executing.

When this option is selected in either the Memory window or the Watch window (indicated
by a checkmark beside the option in the contextual menu), all of the memory entries shown
in the window are continuously refreshed at one-second intervals while the program is
running. In these windows, the background turns yellow if the Read/Write on the Fly option
is active.

Figure 256. Memory and Watch windows with read/write on the fly

Yariable Walue Tupe Address |
"""" currentState ORAMGE enum {G... | 0x80
------ nbOfTransitions | 4 ursighed ... | 0x31

04000300 00000Z00 00AQOQOOO -~
Q00001FF FFFFFFOO 0OO0OQOQOOO0
002C0500 D:Z41Ce4E &DOOOOOO
060000A0 DOO1FFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF _ILI
L3

Note that when you scroll in the Memory Window, the newly visible memory entries turn
bold, to show that they are being updated, then change back to normal, indicating that they
are current and valid.

When the Read/Write on the Fly option is active, the only time that the values shown in the
Memory window may not be valid is during the direct editing of a memory value during the
running of a program. In this event, the edited value appears in red, indicating that it has not
yet been taken into account by the program, it then turns to bold black, to indicate that the
program is adjusting accordingly, and then finally, all entries are in normal weight black,
indicating that the window is valid and updated.

Doc ID 7705 Rev 11 323/385

EMU3 emulator features UMO0036

10.8

324/385

Performing automatic firmware updates

Your emulation hardware contains programmable logic devices for the emulation of specific
MCUs or families of MCUs. This firmware may need to be updated if you have changed the
Target Emulation Board in your EMU3 probe, or if you have updated your version of STVD.
STVD checks your emulator’s firmware each time you start a debug session, and updates
them if older versions are detected.

After launching STVD, the software automatically checks the firmware versions when you
start a debugging session by selecting Debug > Start Debugging. If STVD detects an old
firmware version, you will receive the following prompt:

Your emulator needs to be updated, would you like to proceed
now?

To proceed with the update, click Yes. The Emulator update window will open on your
screen (see Figure 257). This window provides you with the status of the firmware update. It
also tells you what firmware is being updated and the new versions, and indicates how much
time the update took. The update will take up to two minutes, depending on your host PC
and connection type.

If you choose not to update your firmware and click No when prompted to update, you will
receive an error message indicating that your emulator’s firmware needs to be updated. If
you do not want to update its firmware, you must use an older version of STVD.

During the update, you must not disconnect your emulator. Disturbing the connection
between the emulator and the host PC will result in an incomplete update of the firmware,
which will affect the integrity of your emulator.

Figure 257. Emulator update window

ST7 Emulator update

“ deb_pld_ver 126 -]
“teb_pld_wer 3

Froceeding to the update, duration is about two minutes,
Dan't switch off the STMicraConnect during the operation.

programming the device(s)...
werifping the device(z)...

DEE firmware update.................. PASSED

ME™W firnware wersions ane:
*deb_pld_wver (126
*teb_pld_wer 12

v'our emulatar has been successfully updated
-

Elapzed time T4 zeconds

While STVD is capable of detecting and updating out-of-date firmware, it is also possible to
have a previous version of STVD that does not support more recent firmware versions. If
this is the case, you will receive a message indicating that your emulator is too recent to be
managed by the STVD version you are using.

To avoid this problem, be sure to install the most recent version of STVD when you begin
using a new emulator or TEB. The most recent version of STVD is provided with your
emulator and can also be downloaded from the ST web site www.st.com.

Doc ID 7705 Rev 11 KYI

UMO0036

Program

11

11.1

Program

Once you have finished debugging your application and have built the final version, you can
program it to your target microcontroller using STVD’s Programmer.

This feature is based on ST Visual Programmer (STVP). It offers basic programming
features and allows you to program your target microcontroller using a programming board
or in-circuit programming (ICP) hardware.

To access the Programmer, select Tools > Programmer from the main menu bar. The
Programmer window opens.

The following sections provide information about this programming interface, including:
e Section 11.1: Configuring general programming settings

e Section 11.2: Assigning files to memory areas

e Section 11.3: Configuring option byte settings

e Section 11.4: Starting the programming sequence

Configuring general programming settings

When you access the Programmer (Tools>Programmer), the window opens to the
Settings tab (Figure 258). In this tab you can configure the general settings for
programming your microcontroller.

Figure 258. Programmer settings view

#® Light Programmer E

&b Settings |@ M ermary Areasl [# OPTIOM B¥TE I Gt F'ru:ugraml

— Target Device
STFFLITEDS

—Hardware
Ports: Programming b ode;

x| Pt]l |IcPOPT Disable =]

Protections

[C1Protect RC Calibration walues on Program temorng ILLEGSIHB... .
[1Protect RC Calibration walues on Data Memony Erase before Programming
& Blank Check before Program.

[Unlock Device

Run STWF |

ok I Cancel | Help |

The options in the list boxes will vary according to the target MCU that you identified for your
project when you built your application (for more information, refer to the section about the
Selecting your MCU of the Project Settings window). When programming your MCU, the
target microcontroller is displayed in the Target Device field of the Settings tab.

Doc ID 7705 Rev 11 325/385

Program

UMO0036

Depending on your target microcontroller you will be able to configure the following:

e The programming hardware and connection port

e The programming mode

e Protections

e Erase before programming option

e Unlock device

In addition to these settings, the Run STVP button allows you to launch STVP, instead of
using STVD’s Programmer. To exit the Programmer, click on Run STVP. STVD prompts you

to confirm that you want to close the Programmer window and start an STVP session. Click
on OK to confirm.

The programming hardware and connection port

Note:

The fields in the hardware section of the Settings tab allow you to specify the programming
hardware and the connection port to use. To configure these settings:

1. Identify your programming hardware from the Board list box.
Only the programming hardware that supports your target MCU is listed.

2. Identify the port that you will use to connect to your programming hardware in the Ports
list box.

Only the ports for the connection types supported by your programming hardware are
listed.

While some emulators may support Parallel, USB and Ethernet connections for emulation,
not all connection types are supported for programming. When programming, you will have
to use a supported port listed in the Ports list box.

The programming mode

Caution:

326/385

The Programmer supports multiple programming modes depending on your target MCU and
your programming hardware. Select the programming mode from the list of options in the
Programming Mode list box. Only the modes supported by your MCU and programming
hardware are listed. The available modes can include:

e Socket mode: This programming mode is used when you are programming a device in
an EPB or DVP socket. If there are several sockets, take care to insert only one device
at a time.

e ISP mode: In-situ programming mode can be used when your device is soldered on
your application board. The application board must be designed with the necessary
connection hardware.

For more information about connection requirements, refer to the user manual for your
programming hardware.

e ICP modes: In-circuit programming modes are used to program XFlash and HDFlash
devices. For ICP modes, you have the choice of starting with option bytes disabled (ICP
OPT disable) or enabled (ICP OPT enable).

Before selecting one of the in-circuit programming modes, you should determine whether or
not the device has come directly from the factory. Devices delivered directly from the factory
are programmed with factory default options. If you are not certain of the option byte
settings, or you know the settings are not consistent with your application board
configuration, choose ICP OPT Disable to avoid MCU start-up failures. For option byte
descriptions and default settings, refer to your microcontroller's datasheet.

Doc ID 7705 Rev 11 KYI

UMO0036

Program

ICP mode with Option Bytes Disabled is a safe programming mode that allows you to
start your MCU while ignoring the current option byte values. This is to avoid start-up
failures that result from option byte settings that are not compatible with the application
configuration. For example, you can use it when the clock on your application board doesn't
match the oscillator type specified by the MCU's option byte.

To use this mode you must connect your MCU to either the ICCOSC clock signal from the
ICC connector, or a clock signal from your application board that has a square wave form
between 0V and VDD. For more information about these connections, refer to the user
manual for your programming hardware.

When using ICP mode or ICP mode with Option Bytes Enabled, the MCU's option byte
settings are taken into account upon startup. Use this programming mode if your MCU has
the factory default settings, and if you are certain that the clock source on your application
board matches the oscillator type specified by the MCU's option bytes.

In this mode, the ICCOSC clock from the ICC connector is not required.

Protections

Some devices allow you to protect specific values that may already be loaded in a register in
your MCU’s memory when programming. These types of values are specific to one of your
MCU's features, such as RC calibration values. If your MCU supports a feature with that can
be protected, a protection option will appear the Protections field. You can enable the
option by clicking to place a checkmark in the box next to it.

RC Calibration values

Caution:

Some microcontrollers store values for calibrating the internal RC oscillator in the RC
Control Register. To avoid erasing these values, the option “Protect RC calibration values in
Program Memory/Data Memory” appears in the Protections field.

Any program or data in the memory are lost when Read Out Protection is disabled.

Restoring the default RC calibration values in the microcontroller’'s Data and Program
memory can be done by enabling and disabling Read Out Protection. If Read Out Protection
is already disabled, set it to ON in the option byte settings and program the option byte.
Then set Read Out Protection back to OFF and reprogram the option byte. The default RC
calibration values are written to the appropriate addresses in Program and Data memory.
Refer to your microcontroller’s datasheet for the default values and addresses.

Erase before programming option

Note:

This option is only available when programming Flash devices. If you check this box, the
programmer will erase the memory areas that you have identified for programming, before
starting the programming sequence. When you erase the Flash device, the memory area
being erased is set to FFh.

For information about selecting memory areas for programming, refer to Section 11.2:
Assigning files to memory areas.

If you enable this option, Erase replaces the Blank Check step in the programming
sequence (see Section 11.4: Starting the programming sequence). In this case, the Blank
Check is not performed.

Doc ID 7705 Rev 11 327/385

Program

UMO0036

Unlock device

The Unlock Device option is only available for specific Flash devices. If you check this
option, the programmer will unlock the microcontroller before starting any other
programming activities (such as Erase, Blank check, Program, Verify).

11.2 Assigning files to memory areas
When you program your microcontroller, only the memory areas that you select are
programmed. All areas, except those dedicated to option bytes, are selected for
programming by associating them with one, or more files. Files contain the values to be
programmed to a memory area.
With the Programmer window open (Tools>Programmer), select the Memory Areas tab.
In this tab you can associate the files with your microcontroller's memory areas for
programming (Figure 259).
Figure 259. Programmer, memory areas view
b Setings) Menow Arezs | [OPTION BYTE | 52 Progren| + Select the memary area in
Memory frea: the Memory Area list box
1 PROGRAM MEMORY = * ThenclickonAdd
£| © DATAMEMORY | I Program even has empty fle st
J i I [See | LasiModiicalion Dale
PROGAAM MEMODRY
Lockin: [/ Release
4 » Select the file to program
to the selected memory area
Add.. Remave | * Then click an Open
\L
Filepame: [realims19 Dpen |
Files of tpe: [41 Suppoited Format Files ["he”s13) =] Carcel
T Setiings | Memou Areas | 7 0PTION BYTE | 59 Progeam |
f_ Memony drea
[PROGRAM MEMORY =l
* The file is added to the Filas:
Files list Fie [Sizz= | Last Modiicalion Date
«You canselect other files D samplel zmmieakim' Releazetreakin s13 A0d byt 21 Mov 2003 14:13:08
farthe curentmemory area
ar.
» Change the memory area
and select the files to
programto it < 1]
\- Rgset I
S =
The memory areas that are available may vary according to the target microcontroller that
you specified when you built your application.
To assign a file for programming to a memory area:
328/385 Doc ID 7705 Rev 11 17

UMO0036

Program

1. Select a memory area from the Memory Area list box.
2. Click on the Add button to open a browse window.

3. Select the file to be programmed to this memory area, then click on Open.

The file is added to the Files field.

“Program even if has empty file list” option

11.3

Note:

If you don’t have a file to program to a memory area, you can still select it for programming
by checking the Program even if has empty file list checkbox. This checkbox is only

visible when the Files field is empty.

This option can be useful when programming a device that has already been programmed

(when the memory contains values other than default values). In the Memory Area tab, you
can select the file to use when programming the Program Area. Then, to ensure that no data
remains in the Data Area, you can check the Program even if has empty file list option for
that area. As a result your application will be programmed to the Program Area and the Data

Area will be programmed with the default value, FF

Configuring option byte settings

h.

Option bytes control a variety of configurable features for ST7 Flash devices such as
memory write protection, clock source, watchdog and low voltage detection. The option byte
settings that you want to program to your target MCU are configured in the OPTION BYTE

tab.

With the Programmer window open (Tools>Programmer), select the OPTION BYTE tab
(Figure 260). The tab is divided into a Name field, which contains the abbreviated name for

each option byte, and Description field, which contains the settings that will be

programmed to your target MCU.

Figure 260. Programmer, option byte view

[Eh Settmgsl L) Memom sreas £ OPTION BYTE |@

Fields:

+* Light Programmer | x|

Program I

™ Program even if Diefault

Mame | Description

SEC Sector 0 Size = 1.5k
Fead-out Protection OFF
‘w/HITE Protection OFF

 WRITE Protection OFF

PLL=4x5 8

PLL OFF WRITE Protection OM
asc R oscillator OM

LD LVD off

WG 5w Software

WG HALT Feset when Halt

* Right click in the
Description field for
the option byte

* Then click on a setting

o]

Cancel | Help |

The values shown are the factory default settings for your microcontroller. These settings

may not be the same as the settings in your actual

To change the setting for an option byte:

Doc ID 7705 Rev 11

target microcontroller.

329/385

Program UMO0036

1. Right-click in the option byte's Description field to see the pop-up list of possible
settings.

2. Click on the new setting in the pop-up list.

The new setting for the option byte is displayed in the Description field.

“Program even if default” option

The Programmer only programs the Option Byte Area of memory if the settings indicated in
the Option Bytes tab are different from the factory default settings. However, you can check
the Program even if default option and the Programmer will program the default option
byte settings shown in the OPTION BYTE tab.

This option is useful when you are programming to a microcontroller that has already been
programmed. By using this option, you can ensure that the option bytes are set to the
factory defaults.

11.4 Starting the programming sequence

With the Programmer window open (Tools>Programmer), select the Program tab. In this
tab, you can confirm the programming settings, start the programming sequence and
monitor the programmers progress (Figure 261).

Figure 261. Programmer program view

+* Light Programmer %]

@ Settingsl @ bdemony Areasl & OPTION BYTE G Frogram |

Surnrnany & Outputs
Device: STFFLITEDS
Board: ST7-DVF3
Port: LSE
Programming Mode: ICF OFT Enable
Protection(z]):
Frotect RC Calibration values on Program bMemaory

Tasks:
Blank Check [if feaszible]
Pragrarm
Werify

ak. | Cancel | Help I

Before your begin the programming sequence, the Summary and Outputs field contains
information about the settings you have applied. This information includes:

e Device (the target MCU)

e Board (your programming hardware)

e Port

e Programming Mode

e Tasks (the sequence of tasks that the programmer will execute)

330/385 Doc ID 7705 Rev 11 KYI

UMO0036

Program

To start the programing sequence, click on the Start button. The Programmer connects to
your target MCU and begins the programming sequence.

During programming, the Summary and Outputs field displays any status messages and
errors that result from the execution of the programming tasks.

Doc ID 7705 Rev 11 331/385

STM8 C tutorial UMO0036

12

Note:

332/385

STM8 C tutorial

The STM8 tutorial illustrates some of the main features of STVD by guiding you through the
process of building and debugging a sample application in C language.

Each procedure presented in this tutorial focuses on a functional aspect of the build and
debug processes. Steps should be performed in the sequence in which they are presented;
failure to do so can result in errors in the steps that follow.

After the successful completion of a procedure, you should save your workspace by
selecting File>Save Workspace As... from the main menu. By doing so, you will be able to
return to a previous, successfully completed stage if necessary.

The tutorial example is based on an application for a traffic signal. It is designed to be built
using the Raisonance or Cosmic C toolset for STM8. You can download limited versions of
these toolsets for free from st.mcu.com.

This application uses features that are common to all STM8 microcontroller families
(STM8L, STM8A, STM8S) so that emulator users can choose a microcontroller that is
supported by their emulator to follow most of the tutorial. The following files are provided to
build the application:

1. Setup: only minimum source files are provided.

e timer.c: application source file written in C language. This is an application for a traffic
signal. A bug is generated during the execution of the application.

e mcuregs.h: generic include file for microcontroller-specific constants.

e st.toolset/include/<mcuname>.h: microcontroller-specific constants.

e Raisonance/R_stm8_interrupt_vector.c: file containing the interrupt vector table.
e Cosmic/stm8_interrupt_vector.c: file containing the interrupt vector table.

2. Build.

e tutorial.stw, tutorial.wed: workspace information files.

e cosmic/cosmic.stp, cosmic/cosmic.dep: cosmic project information files.

e raisonance/raisonance.stp, raisonance/raisonance.dep: raisonance project information
files.

These files are created during step 1, but are provided in the directory step2_build, so
that you may start the tutorial from step 2.

For standard installations of STVD, the files listed above are saved under:
C:\Program Files\STMicroelectronics\st toolset\stvd\Examples\
tutorial STM8

Some lessons of the debug tutorial relate to features that are specific to a debug instrument,
while others relate to all debug instruments.

Table 85. Tutorial sections and applicable debug instrument

Section Debug instrument
Setup All
Build All
Start debugging All
Instruction breakpoints All

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

12.1

12.1.1

Table 85. Tutorial sections and applicable debug instrument
Section Debug instrument

View execution All

Perform memory mapping All

View program execution history EMUS3, STice

Use read/write on-the-fly

EMU3, STice, SWIM

Set an advanced breakpoint

EMU3 (and STice in the near future)

Run a coverage and profiling session

STice

Setup

In this lesson you will learn how to setup the workspace environment so that you can build,
debug and program the application to a microcontroller. Here, you will:

e Create a workspace
e Create a project
e Add the source files

e Create a folder to organize files in the project

Install the toolset and configure the STVD

It is recommended to install your toolset (Cosmic or Raisonance) before you install STVD,
so that STVD is automatically configured with your environment. If you install STVD first,
you must configure it manually through the menu Tools>Options>Toolset (Figure 262).

Figure 262. Options menus

Options
Toalbars] Commands] Edit/Debug]
‘Workspace] Directories
Toalset | Raisonance =]
Root path |C:\Program FilestRaizonance’Ride .

Toolzet sub-paths [relative ta the Roat path]

@@romiom

i

Styles/Languages

Bin path |b|n
Include path |‘NE\ST?:|NE
Libwary path |L|B\ST?

Toolbars] Commands] Edit/Debug]
‘workspace] Directaries /
Toolset |STME Cosmic j
Foot path |E:\Program Files"\COSMICAWCKSTME_ 1T .

Toolzet sub-paths (relative ta the Root path]

2)X]

Styles/Languages]

Bin path |
Include path |Hstm8
Lib path |Lib

o]

Cancel |

Apply

o]

Cancel |

Apply ‘

Information is common to all workspace (especially paths, which have priority over
workspace-defined paths, we will see an example later using the Raisonance toolset).

Doc ID 7705 Rev 11

333/385

STM8 C tutorial UMO0036

12.1.2

12.1.3

334/385

Create a workspace

Before you can build or debug an application with STVD, you must create a workspace to
contain your project and its source files. A workspace can contain several projects.
1. Inthe main menu bar select File>New Workspace.

2. Inthe New Workspace window, click on the Create Empty Workspace icon and then
OK.

Figure 263. Workspace information

New Workspace E|

Wiorkzpace filename

|tuh:|ria[

Wiorkepace location

|E:-campIe'\tutarial_stmﬂ'\step'l _=zetup J ﬂ

3. Enter a name in the Workspace filename field.

4. Enter the pathname where you want to store the workspace in the Workspace
location field, then click on OK.
You may choose <st_toolset>/stvd/Example/Tutorial_stm8/stepl_setup for this
example, but for future work you should use a destination reserved for user data (not
Program Files).

5. Save your workspace, select File>Save Workspace.
RESULT:
STVD’s Workspace window contains a workspace icon.

The working directory that you have identified now contains the files, <workspace
names>.stw and <workspace names.wed.

However, you do not have access to the commands in the Build menu, because your
workspace does not contain a project and source files, yet.

Create a project

The source files for your application are contained in a project. The Project Settings
interface gives you access to the options for building your application with a specific toolset.

If you expect to use both Cosmic and Raisonance toolsets in an evaluation phase you must
create one project for each, but you may have a single workspace.

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

1. Inthe main menu bar, select Project>Add New Project to Workspace.

2. Inthe New Project window, click on the New Project icon and then OK.

3. Enter the name cosmic or raisonance in the Project Filename field, depending on
your toolset. In future, if you have only one toolset you can choose a name more
pertinent to your project application.

4. Enter the pathname where you want to store the project and the resulting files in the
Project Location field. The path for the workspace is used by default. Choose the
Raisonance or Cosmic subdirectory (eventually, after having created it) for better disk
organization.

5. Next, select STM8 Cosmic or Raisonance from the Toolchain list box.

6. Enter the path for the toolset in the Toolchain Root field. The toolchain root is by
default the path defined in the STVD option-toolset (Section 12.1.1). You can define a
project-specific toolset path here. It can also be changed later, through the Project
Settings window. Then click on OK.

7. Inthe MCU Selection window, select the MCU that you will build your application for
and click on Select, then on OK. We have selected the STM8L101G2P. Later we will
see how you can change the MCU selection in the Project Settings window. You can
use the Filter field to reduce the MCU selection list size.

Figure 264. Project parameters
New Project [Zl New Project [5?|

N Project filename \ Project filenanme

|raisonance |cosmic

Project location

|\tutorial_sth\stem_setup\cosmic J ﬂ

Project location

|tonal_sth\step]_setup\raisonanca J ﬂ i "

Toolchain P I
|Halsonance j T%?
I
[

Toolchain

®
T%:“? |STM8 Cosric: j
f Al
. : '
'f o P Toolchain root 'f y 1 '. A Toolchain root
A ; [C:\Program Files\Fiaisonance’Fide rk ¥ [C:\Program Filesh\COSMICACKS TME_16
Ok Lancel | Ok Lancel |
Doc ID 7705 Rev 11 335/385

STMS8 C tutorial

UMO0036

Figure 265. MCU selection

MCU Selection

Filker

Show MCUs containing... o

MCU s

STHMELI0TFZR
STMEL10F2U
STWEL101F3
STMEL101G2P

STMELI01G2U
STMEL101G3P
STMEL101G3U
STMELT10K3U

COOOOOOUPeEeEC

Select

Selected MCL

|STMEL10MG 2P

OF.

8.

Save your workspace; select File>Save Workspace.
RESULT:

<toolset>.stp has been added to the workspace in the STVD Workspace window. By
default the project contains folders called Source Files, Include Files and External
Dependencies. These folders are used to organize your project within STVD. They do not
exist in the working directory. The file main.c is added to the Source Files folder by default.
With Cosmic the file modsO0.h is added to the External Dependencies folder and
/stm8_interrupt_vector is added to the Source Files folder by default

Figure 266. Default project contents

workspace [%]

=] tutorial. shee
= raisonance
-1 23 Source Files
main.c
3 Include Files
(23 External Dependencies
= cosmic
=24 Source Files

main.c

3 Include Files
=423 External Dependencies
mods0.h

stmB_interrupt_vector.c

Workspace

336/385

Doc ID 7705 Rev 11

UMO0036

STM8 C tutorial

Note:

12.1.4

The working directory contains the following:
e three files: main.c, and
— for Cosmic: cosmic.stp, stm8_interrupt_vector.c
— for Raisonance: raisonance.stp, R_stm8_interrupt_vector.c

e andtwo folders: Debug and Release. These folders are the default locations for storing
your application and any intermediate files depending on whether you build using the
Debug or Release configuration.

The workspace view tree does not necessarily reflect the directory tree on the disk.

Now that the workspace contains a project, you will notice that the build commands in the
Build menu are available (they are no longer gray). STVD automatically adds a minimal
main.c to allow a project to be built immediately after creation.

Add the source files

To build the application, you must identify the source files for STVD. The source files can be
written in either C or Assembler language. For standard installations of STVD these files are
located in C:\ProgramFiles\STMicroelectronics\st_toolset\stvd\Example\tutorial_stm8.

For this tutorial, the source files required are:

e src/timer.c, src/mcuregs.h

e cosmic/stm8_interrupt_vector.c, raisonance/R_stm8_interrupt_vector.c.

You can add files into your STVD project using one of the following methods:

e Select Project>Insert Files Into Project from the main menu bar, then browse the file
to add. The file will be added at project's level; you may then move it into Source Files
or Include Files folder, or

e Gointo the STVD workspace window, right click on a folder (Source Files or Include
Files), then select Add file to folder and browse the file to add. It will directly be added
into the folder, or

e Drag and drop files from an explorer window into the STVD workspace window.

You should add all required files into the workspace, in order to reach the state as depicted
below:

Doc ID 7705 Rev 11 337/385

STMS8 C tutorial

UMO0036

12.1.5

338/385

Figure 267. Project with source file and dependencies

Workspace [X]

tLitorial, st
- raisonance
-3 Source Files
timer.c
main.c
r_stm3_interrupt_wector.c
-3 Include Files
mcuregs.h
+--[_] External Dependencies
- 28 cosmic
-3 Source Files
timer.c
main.c
stmB_interrupt_vector.c
-3 Include Files

mcuregs.h
+--[_] External Dependencies

Workzpace |

RESULT:

Your project workspace now contains the application source code file. Any dependencies
specified in the source code are displayed in the External Dependencies folder. The list of
external dependencies is built by a dedicated call of the compiling toolset, after each
modification of the project files list.

The file main.c, which was automatically added by STVD, will be removed later.

Create a folder to organize files in the project

The default main.c created by STVD does not fit our needs. The main function is defined in
timer.c.

1.

S S A

Right-click on the project and select New Folder from the contextual menu.
Enter the name “Obsolete” in the Name of the New Folder field.

Click on OK to create the folder and close the window.

Drag and drop main.c from Source Files folder to Obsolete folder.

Both main.c and timer.c are still part of the project, as a result any build attempt at this
stage fails because of multiple main function definitions.

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

12.2

12.2.1

Build

In this lesson you will learn how to configure project settings and build the application for
debugging. Here, you will:

e Specify the target STM8

e Customize the C compiler options

e Change build settings for a specific file
e Build the application

Specify the target STM8

The choice of the target microcontroller affects the building, debugging and programming
phases of development, including:

e The assignment of application code to specific addresses in the MCU's memory

e The choice of debug instrument

e The choice of programming hardware and protocol

We have already associated the project with a target MCU. In this step change the target
MCU selection in the Project Settings window, to an MCU that is supported by your debug
instrument. Keep in mind that, whenever you change the target device in the Project

Settings window, you must build/rebuild your application for the memory mapping and
peripheral specification of the new target device.

For this tutorial we will specify the STM8S208MB and give an overview of the impact that a
change in MCU family would have on the user application.

To specify the MCU:

1. Inthe main menu bar, select Project>Settings.

2. Inthe Project Settings window, click on the MCU Selection tab

3. Place the cursor in the Filter field and type S20. The list of target microcontrollers is
reduced to those that match what you have typed.

Doc ID 7705 Rev 11 339/385

STM8 C tutorial UMO0036

Figure 268. Select the MCU

Project Settings

S ettings for: |Del:uug ﬂ General] Debug MCU Selection l C Eu:umpiler] Azzembler

Filter

+-E8 raisonance .
Show MCUz containing... |stm83

+-28 cosmic

MCL =

STMBS1055E -
STMBS207CE W
STMB5207CE
STMBS207CE
STMES207EE
STMB5207ME
STMB5207RE
STMB5207R 3
STMB5207RE
STMBS207SE
STMBS20758

[

COOOOOOUPOeeE

STMB5903K3

Select

Selected MCU
STMBLI0IG2

Ok | Cs
4. Click on the name of the MCU (STM8S208MB), then click on the Select button. The
name of the MCU now appears in the Selected MCU field.

5. Edit the file mcuregs.h. As we changed to the STM8S MCU family, activate the
definition of the STM8S_FAMILY constant and change the definition of the
STM8L_FAMILY constant into a comment.

6. Changing the MCU part number may introduce differences in some peripheral register
addresses. To limit your effort, ST provides Include files for all part numbers, defining
at least register addresses. These files are available in <st_toolset>\include. To adapt
the tutorial to your microcontroller you must just modify the file to include in mcuregs.h.

RESULT:

Your project is now associated with a specific microcontroller. STVD only allows you to
connect to hardware that supports the target MCU. If you change the MCU, you must rebuild
the application for the change to be valid.

12.2.2 Customize the C compiler options

In this step we will change the options used by the C compiler, to add the path to
STMicroelectronic’s include files.

1. Inthe Project Settings window, C Compiler tab, select Preprocessor in the
Category list box.

340/385 Doc ID 7705 Rev 11 I‘!I

UMO0036 STM8 C tutorial

Note that STVD automatically fills in the Additional include directories when you add
files to your project.

2. Use the button on the right to browse <st_toolset>/include.
Note that the change only applies to the current build configuration (Debug in this
case). When you make these changes do not forget to repeat them for all build
configurations. Select Release build configuration and repeat the operation.

Caution: TRAP: The user defined paths come after the toolset paths in the general command line.
Before adding any include files, ensure they do not already exist at toolset level. If they do,
you may either change the filename, modify the toolset paths as explained in Section 12.1.1
(impacting all projects), or modify the toolset path only for the project (Project specific
toolset path in General tab of Project Settings).

Figure 269. C compiler options for Raisonance

Project Settings FZ
S ettings for; |Debug ﬂ General] Debug] MCL Selection C Compiler lf—'-.ssembler] M LS
+- 28l raisonance Category: |F'[E|:|[|:|CESSD[j Defaults
+- 28 cosmic

Preproceszor definitions

Additional include directaories

| Asres b Sinclude |

lzer Defined Options

Cormnmand line

rcatm ${InputFile]
OBJECT [#IntermmPath]$ (| nputh ame). $[0 bjectE =t])

[|

Cancel

IYI Doc ID 7705 Rev 11 341/385

STMS8 C tutorial

UMO0036

12.2.3

342/385

Figure 270. C compiler options for Cosmic

Project Settings

Settings for: | Debug

=l

General] Debug] MCL Selection C Compiler lf—'-.ssembler] M LS

+- {28 raisonance
+ -5 cosmic

%

Categary: | Preprocessor ﬂ Defalts

Preprocesszor definitions

Additional include directories

| ez bbb Sinclude]

Ilzer Defined Optionz

Cormnmand line

cuetmE +maodz0 +debug -prp -pp -l -l e -0 U Ainclude A

$(T oolzetlncOpts] -clfIntermPath] -cod(intermPath) ;

0k | Cancel

Change build settings for a specific file

In addition to applying settings at the project level, you can also specify settings for a file. As
described in an earlier step, we have included the file main. c as a reference for
understanding STVD's Project Settings interface. However, we do not want to include this
file in the build. In this step we will exclude this file from the build, by applying a file level

setting.

1. Right-click on main.c, then select Settings from the contextual menu.
2. Inthe resulting Project Settings window, place a checkmark in the box for Exclude file

from build.

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

Note:

12.2.4

Figure 271. Exclude the makefile from build
Project Settings 5

Settings for: |Del:uug ﬂ General l

— raisonance [Abways use custom build step Defaults

-5 Ohsalete [+ Exchude file from build

+-_7] Source Files

+-[27 Include Files

+-[_1] External Dependencies
+ cosmic

At the file level the Project Settings window only displays the tabs that pertain to the
selected file. For example, the tabs for a selected C source file are General and C compiler.

3. Click on OK.
RESULT:

Project information file (*.stp) is updated.

Build the application

Now, you can see the final result of the settings that we applied in the Project Settings
window. To build the application:

1. Ifthe Output window is not already open, select View>Output Window from the main
menu bar.

2. Inthe Output window click on the Build tab
3. To generate your application, select Build>Build from the main menu bar

RESULT:

The commands invoked, error messages and warnings that occured during the build are
displayed in the Build tab of the Output window.

The C compiler is invoked for each of the source files in the project. It is not invoked for the
file that we excluded from the build.

The Linker is invoked once, to link the object files.

All generated files are located in the projects Debug subdirectory.

Doc ID 7705 Rev 11 343/385

STM8 C tutorial UMO0036

12.3

Note:

12.3.1

344/385

Start debugging

In this lesson you will learn how to start a debugging session and run the application. Here,
you will:

e Start the debugging session

e Run and stop the application

e Step through the application

If you are already familiar with these basic features, feel free to go to the next lesson,
Instruction breakpoints.

Start the debugging session

Select the debug Instrument

You must select a debug instrument before you can start debugging. For this part of the
tutorial we use the STice (you should select your own tool).

1. From the main menu bar, select Debug Instrument>Target Settings.

2. Select STice from the Debug Instrument Selection list box.

3. Click on OK.

Figure 272. Select the debug instrument

Debug Instrument Settings E

Target l

Debug Instrument Selection:

Select the Target you want

ta uze for debug session . iTice hd
Simulator
-
Swirn Rlink,
I Swiirn S Tice —
Sy ST-Link, 8
Target Port Selection:
Select the connection port for
the Target selected above. | ysbAfush ﬂ
Add Bemove |

[~ Show the selected target naotification at start of debugging session

ak. | Cancel

Start the debugging session

1. From the main menu bar, select Debug>Start Debugging.
2. Confirm the debug instrument by clicking OK in the Target Selection pop-up window.

3. STVD restores the debug context. The MCU configuration window may open at this
point, simply click OK to close it. We will learn more about this feature later.

Doc ID 7705 Rev 11 KYI

UMO0036 STM8 C tutorial
Activate a feature
You can enable and disable some debug options. For this session we want to use the Watch
Pop-up feature that allows us to see the current value of a variable in our source file.
1. From the main menu bar, select Tools>Options.
2. Click on the Edit/Debug tab in the Options window.
3. Place a checkmark in the box next to Enable watch pop-up, then click on OK.
Figure 273. Activate the Watch Pop-up feature
Options 2]
Workzpace] Directories] Toalzet]
Toolbars] Commands Edit/Debug l Styles/Languages]
Edit and Frint: Debug
Iv Lirne Numbers W Autornatically open dizassembly
Iv Left Margin [Margin selection B i vl cussuien diegs
I¥ Enable Faolding .
v Auto-indent [v Indentation Guides [Read-anly source files
Tab zize: |2 " Inzert Spaces v Enable watch pop-up
Indent size: |2 * Keeptabs ‘Watch arraps: expand |10 items]
Iv Auto Brace Match Highlight -
- Long Line — Enabled by Default v
Limit: |80
wiord Wirap iE !
- i+ Show edae line
Initial indent: |0 i~ Change background calar
Show wrap Sumbol v before wrap))
B = e Line Endings Show [
R Style: |'windows [CR+LF] |
File Saving Option on Build and Start Debug
* Prompt Befare Filez Saving " Autarmatic Files Saving
Ok | Cancel
RESULT:
The debug session has started. Double-click on timer . c to open the source file in an
Editor window. Scroll to line 75, then hover your cursor over the variable currentState. A
pop-up will appear with the variable’s current value.
12.3.2 Run and stop the application

You can run and stop the application using the commands in the Debug menu. You can use
Debug>Run and Debug>Stop Program to start and stop the execution of your application.
However, to stop the application there are many more accurate ways of controlling where
and when the application stops. For Example:

Doc ID 7705 Rev 11 345/385

STMS8 C tutorial

UMO0036

1. Ifitis not already open, double-click on timer . c to open the source file in an Editor

window.

2. Scroll to line 242 of the source code (timer.c) and click to place your cursor at the
beginning of this line. You may use the Go to function of the contextual menu in the
editor (right click) in order to navigate easily.

3. Select Debug>Run to Cursor. The application executes up to line 242 of the code.

The Program Counter (yellow arrow and highlighting) shows the next instruction to be
executed in the source code and the corresponding position in the disassembled code.

Figure 274. Application is stopped at the cursor position

224
525
226
227
228
232
230
231
232
233
234
235
236
237
238
232
240
241
24z
243
44
245
246
247

£

2

I

}

& fimer.c

{
phatal[l] = Oxasz;

reset_bug_count_down();
}
bugCounthown--;
}

asm_trap();
H

wold main(woid)

{

i

reset_bug_count_down();
initTimer () ;

enshle interrupts():
main loop():

return;

Ox&lal <main loop+3Z> Ox3Ald

timer.c:233 asm_trapl(];

OxSlaZ <main_ loop+34> Ox83

Ox&lad <main loop+35: 0x20E1

timer.c:242 reset_bug count_down();
S0x81a5 <main> 0xADCE

timer.c:243 initTimer () ;

OxS1la? <mwaintix> OxADBL

timer.c:244 enshle interrupts():

OxSla% <mwaintdr OxSh

|~

timer.c:z46 return;

LEC Oxla

TRALFP
JRT Ox5186

CALLE Ox8172

CALLE OxS143

RIN

=

Disassembly E3]

[
|

hd

e

12.3.3 Step through the application

Stepping instructions allow you to execute the application one instruction at a time and to
step into or over functions as required. For example, we are currently on line 242 of the

source code.

346/385

Doc ID 7705 Rev 11

UMO0036

STM8 C tutorial

Figure 275. Step over line 242 to line 243

Debug Debug instrument Tools Window
o Stark Debugging
@ Stop Debugaing
o G0 To PO Alt+bum *
! Run Chrl+FS
Chip Reset Chrl+Shift+F5
@Rgstart
Qantinue
| Skop Pragranm 224 T ;
Tl} Step Into 225 phatal[l] = Oxaz; /% This will overwrite the variaskhle <nhd
E - 226 /% Reset the count down */
T W 227 reset bug count downi):
{*}; Step Into 238 } - - -
{3 step Ower ASM 220 bugtount Down——:
£ step out Z30 '
*{} Run to Cursor 231
232 /% generate an interrupt %/
% Set PC 233 aswm_trapl];
234 i
235 H
236
237 e e e e
Z38 User application entrvy point
239]
240 void mwaini wvoid)
241 i
24z reset bug count down():
243 o initTimer () ;
244 enable interrupts();:
245 main loop ()
246 returmn;
247 +
<

1. Select Debug>Step Over to step over the reset _bug count_down function. To view
the current line of assembly code to be executed, see the Disassembly window

2. Select Debug>Step Into to step into main_loop.
3. Select Debug>Step Out to step out of init timer (back to line 244).

12.4 Instruction breakpoints

An instruction breakpoint stops program execution when a specific instruction is reached. If
a condition and/or a counter is set on an instruction breakpoint, program execution is
stopped to evaluate the condition/counter.

In this lesson you will learn how to set instruction breakpoints with counters and conditions.

Here, you will:

e Set an instruction breakpoint
e Set a counter on an instruction breakpoint
e Set a condition on an instruction breakpoint

Doc ID 7705 Rev 11

347/385

STM8 C tutorial UMO0036

12.4.1 Set an instruction breakpoint

1. Ifitis not already open, double-click on timer.c to open the source file in an Editor
window.

2. Select View>Instruction Breakpoints to open the Instruction breakpoints window.

3. Inthe Editor window, place the cursor on the nbOfTransitions variable (line 133) to
view its current value. A pop-up box is displayed with the value.

Figure 276. View the value of nbOfTransitions

125
129 CcUurrentItate=oFF;
130 }

131
13z
133 & nbhOfTransitions++;

134 r%

135 return; [(b0t Transitions==0
136 o

137
135 =
139
140

4

gtmB_interrupt_...| C:\Frogram File. .. rcuregs. h timer. c:

4. Click in the margin of the editor window next to line 133 of the source code. The
instruction breakpoint is indicated by a red dot in the margin. It is also displayed in the
Instruction Breakpoints window.

348/385 Doc ID 7705 Rev 11 K‘YI

UMO0036 STM8 C tutorial
Figure 277. Instruction breakpoints
& STMBS208MB STice - tutorial.stw - [Debug] - cosmic.elf
Eile Edit “iew Project Build Debug Debug instrument Tools Window Help
dEd H & T REUR U NS SMNE=G L
© 2> ! EEHEH BPHBE0 8 ome clDbw] P
Warkspaca “x
tumrial.stw “ timer.c
- [E8 cosmic
¥ (0 Cbsolete 115 defaulr:
= {3 Source Flles 11a nextitate=currentitate+l;
tirmer.c 117 break;
stmB_interrupt_vectar.d 115 ¥
(20 Include Files 119
(11 External Dependencies 1zo
5] ralsonance 121 if(state[nextitate] .statelcourence < MAX OCCURENCE BEFORE_SWITCH_C
122 B {
< > 123 currentState=nextitate;
’ 12‘5{ , state[currentitate] .statedocurence++;
126 else
Instruction Breakpoints - x o .
Lacation | Enunter| Candi 128
@ timerc:133,in <haplSA> | 1 129 current3tate=0FF;
130 ¥
131
132
133 @ nhOfTransitions++:
134
135 return;
136 i
137 v
4 2
4 | | » limer.c
For Help, press F1 Ln 133, Cal 1 MODIFIED (READ [CAP [NUM |SCRL |OWR
Select Debug>Continue to run the application from line 107 to the breakpoint.
Check the nbOofTransitions value in the pop-up. The variable nbOfTransitions
=0.
12.4.2 Set a counter on an instruction breakpoint

In the Instruction Breakpoints window double-click on the Counter field and enter
50.

Figure 278. Setting counter

Instruction Breakpoints

Location
[N timer.c:133, in <trapl SR>

Click on Debug>Continue.

When the application stops, check the new value of the nbOfTransitions variable.
The program has stopped at the breakpoint after 50 passes (1...50).

Doc ID 7705 Rev 11 349/385

STM8 C tutorial UMO0036

12.4.3

350/385

Set a condition on an instruction breakpoint

1. Inthe Instruction Breakpoints window double-click on the Condition field and enter
nbOfTransitions ==60 at the flashing cursor.

Figure 279. Setting condition

Instruction Breakpoints

Location Counter Condition
[N timer.c:133, in <trapl SR> nbOfT ranzitiong==60

2. Click on Debug>Continue to continue execution of the application.

3. Inthe Editor window place the cursor over the nbOfTransitions variable. Its value is
now 60. The program stopped after the condition was found to be true, that is
nbOfTransitions ==60.

Figure 280. Condition met

125 ¥

126 else

127 I

125

129 currentitate=0FF;

130 b

131

132

133 & nhOfTransitions++:

134 Y%

L5 return; | nhOf Transtions= 60

136 o

137

135 =

139

140

141 Cl#ifdef CSMC

142 Finterrupt woid timerZcomparel3R (wvoid)
143 “fHendif

144 #ifdef RAISONANCE

145 - #ifdef STMB3Z FAMILY

146 wold timerZcompareI3R (wvoid | interrupt 14
147 Hendif

145 Ll #ifdef STMSL FAMILY

149 wold timerZcompareI3R (wvoid | interrupt 20
150 Hendif

151 “fHendif

152 =1

153

154 if({ TIMz SR1 & STHMS TIMx 3R1 CC1IF |
155 =

< I

gt _interrupt_... | C:A\Program File... mcuregs.h timer.c

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

12.5

1251

12.5.2

View execution

In this lesson you will learn the STVD features that allow you to view the application
instructions that have been executed by the debugger. Here, you will:

e View calls to the stack
e View and change local variables
e View variables using the Watch, QuickWatch and Memory windows

View calls to the stack

1. Select View>Call Stack to display the Call stack window. This window shows the
function calls stored in the microcontroller call stack from the most recent function calls,
traced back to the earliest call.

Figure 281. Call Stack window

Call Stack

o> HO braplSRE () at timer.c:133
#1 Ox81a3 in main_loop [] at timer. c:233
H2 OxB0F3 in _exit [)

2. Double-click on entry #1. A call stack frame indicator p= appears in the Disassembly
window to indicate where the call was made in the disassembled source code. You can
return to any previous stack call in this manner.

3. Select View>Local Variables to view the Local variables window, this shows the
values of the variables as they were at the moment the selected function call was
performed.

4. Inthe Call Stack window, double-click on entry #0 to return to the current Program
Counter position.

5. Before going on, remove the breakpoint at line 133 by selecting Edit>Remove All
Breakpoints.

View and change local variables

1. Select Debug>Step Out to step out of trapISR and into main loop.

Set an instruction breakpoint on the call to waiting loop function (line 218).
Select Debug>Continue.

Select Debug>Step Into to step into the waiting loop function.

Place the cursor on the count variable (line 186), select Edit>QuickWatch to open
the QuickWatch window.

The QuickWatch window is opened in front of the active Editor window. The main
display area displays the count variable and its current values.

6. Double-click in the Value field of the count variable, change its value to 3. and click on
Close.

a s~ DN

Doc ID 7705 Rev 11 351/385

STM8 C tutorial UMO0036

12.5.3

352/385

Figure 282. QuickWatch window

QuickWatch
E wpressior; | Becalcuate |
Jooun = AddWatch |
Ve [Value Type | Address s |

couk 3 | unzign... | Ox178

| Standard ﬂ

7. Inthe Editor window place the cursor over the count variable, a pop-up should appear
indicating that its value is 3.

View variables using the Watch, QuickWatch and Memory windows

In this procedure you will learn how to use the Watch window, QuickWatch window and
Memory window to inspect variables.

The Watch window displays the current value of selected program variables when the
executable is stopped.

The QuickWatch window provides rapid contextual access to the most commonly used
Watch functions. Values are easily transferred from the QuickWatch window to the Watch
window.

The Memory window provides views of selected areas of memory contents.

1. Set a breakpoint at the beginning of the trapIsr function (line 107).

2. Click on Debug>Continue to continue execution of the application up to this
breakpoint.

3. Click to place the cursor on the currentState variable, select Edit>QuickWatch to
open the QuickWatch window.

Figure 283. QuickWatch window

QuickWatch
E spreszion: | Becalculate |
— =~ Addwatch |
W ariable Walle Type | Address Cloze |

currentState | RED enum §... | Ox0

| Standard j

4. Inthe QuickWatch window select Standard from the drop down menu and click on the
Add Watch button.

5. The QuickWatch window closes and the Watch window appears with currentState
displayed.

Doc ID 7705 Rev 11 KYI

UMO0036 STM8 C tutorial

Figure 284. Watch window

= STMBS5208MB STice - tutorial.stw - [Debug] - cosmic.elf - [timer.c]

& File Edit Yiew Project Build Debug Debug instrument Tools Window Help - X
Sl == = ¥ By o =R REUR U S El |[&SH =L
Q= | ELER BMPHTOP0| 8 | [ome = |[Debug 4| B e
Workspace x
27 l#endif -~
el wtorial st 98 #ifdef _ RATSOMANCE 0
< cusmlc 99 Tvold trapISR (void) trap
-1 Obsolete 100 #endif
=24 Source Files 101 8¢
timer.c 102 color nextState;
stmis_interrupt_vector.d 103
=4 Include Files 104
mecuregs.h 132
= (0 External DEpendenc‘es 107 €& switch{current3tate)
-8 raisonance 08 o ¢
=3 Chsalete 109 case RED:
[:] main.c 110 nextState=GREEN; . b
=423 Source Files 111 break:
timer.c 112 case OFF:
r_stma_interrupt_vecto 113 nextitate=0FF;
[0 Include Files 114 preak:
[L1 External Dependencies t1s fezault:
* H 116 nextitate=currentState+l;
117 break:
118 i
118
120
1z1 if{ state[next3tate] .stateCccurence < MAYX OCCURENCE_BEFORE_SWITCH OFF)
122 S
123 E‘] current3tatesnextitate; R
dma s [Srreml e A as
3 | | * < >
timer.c: | C:\Pragran File:
* [0 trapISR [at timer.c:107 x| | % [variabie [value [Type Address
Variable |Value | Type |Address | cunentState RED enum {GREEM, ORANG... | 0x0
nextState GREEN enum {G... | Ox17(2
= "
=]
E ‘ | | I\Ll:l(als A Parameters f £ | | ‘ [\Wat(h 1 AWat[h 2)\Watth 3 }\Wat[h4 /
For Help, press F1 Ln 107, Col 22 MODIFED FEAD [CaF [WUM [SCRL [O0vA [IEET I |

In the Editor window, click to place the cursor on line 123.
Click on Debug>Run To Cursor.
Select View>Memory to display the Memory window.

In the Memory window, set the start address to the address of the currentState
variable (this address is displayed in the Watch window as shown above). Note that the
display format is set to double-word — this is controlled by right-clicking the mouse in
the Memory window and selecting Format>DWord from the contextual menu that
appears.

10. Select Debug>Step Over to step over the current line of code.

11. Inthe Watch window and Memory window you can see the values that have just
changed, they are displayed in bold type.

© ® N o

IYI Doc ID 7705 Rev 11 353/385

STM8 C tutorial UMO0036

354/385

Figure 285. Memory and Watch windows

MMemory #1

=]
X
=]
4

00 00 00 oo 3E 4C CC 0o
15 FF FF 00 00 00 41 Céa
00 o0 0dd oo 00 82 96 4D
Zh 08 31 49 DC AF 9E 31
ALE &F 81 V& Z9 44 ES 7D
19 5D 42 F9 52 1C 44 40
13 B3 Z1 BEE OA DO S5E 93

B T S R R S R, R
¥

£

Yatch

W ariable | Walue | Type | Address
current5tate GREEN enum {GREE... | Ox0

| [\ watch 1 { watch2 j watch 3 }, watch 4 [

12. Inthe Watch window right-click to display the Watch window contextual menu, select
Display All>Decimal to see the decimal value of currentState, this should
correspond to the value displayed in the Memory window.

13. Select Debug>Step Over to step to line 133.

14. In the Editor window highlight nbOfTransitions with the cursor and use the left
mouse button to drag and drop it to the Watch window. It now appears in the Watch
window as shown below:

Figure 286. Watch window

Watch E]
W ariable | Walle | Type | Addresz |i
currentState 1] enum {GREEM, ... | 00 =
nbOfTranzitions B2 unzighed long (1 —
| Watch 1} Watch 2), Watch 3), watch 4 /

15. Remove all breakpoints by right clicking in the Instruction breakpoints window and
selecting Remove All Breakpoints.

16. Click on Debug>Continue to continue execution of the application. The Status bar
should indicate the debugger status as Running.

17. After a period of 5to 10 seconds stop the program by selecting Debug>Stop Program.
The status bar should indicate the debugger status as Stopped.

18. Use the Watch window to view the values of the nbOfTransitions and
currentState variables. The value of nbOfTransitions should have increased
and the value of currentState may have changed.

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

12.6

Perform memory mapping

Memory mapping is the process of defining which areas of memory can be accessed by the
application and the type of access permitted, (for example, read only or read/write). This
allows verification of the application’s use of memory, ensuring that only memory locations
which will exist in the target controller are addressed.

In this lesson you will learn how modify the default memory mapping. Specifically, we are
going to create a new range of ROM within an existing RAM memory range.

To do this:

1.

A owbn

© N o »

Select Debug Instrument>MCU Configuration.
Select the range of RAM that contains the address 0x00.
Click on the Modify Area button.

In the New MCU Memory Range dialog box type the address 0x00 in both the From
and To fields, and change the memory type to ROM for the single address range.

Click on OK in the New MCU Memory Range dialog box.
Click on OK in the MCU Configuration window.
From the main menu select Debug>Run.

A memory access error is displayed, because the address 0x00 corresponds to the
address of the currentState variable in our tutorial program. When we ran our
program, the error occurred when the program tried to write the new value of
currentState to its address 0x0000, which we mapped as a read only section of
memory.

Doc ID 7705 Rev 11 355/385

STM8 C tutorial UMO0036

12.7

356/385

Figure 287. MCU configuration
MCU configuration |

Map | Optionz I

From | To I Type |
Cx0000 | 0x007£ | PERIPHERALS

I0E£f | B4

0x0100 | 0x01EE | STACK

00200 | 0x067E | BAM Modify Area..
Ox0680 | Ox3fEf | RESERVED 23
0x4000 | OxEEAE | ROM Default Map
OxEfel | OXEEEE | VECTORS

Mew MCL memony range

FrDm:IDHBU To IEI:-:EEI
D Twpe: [iiEl ~

Cancel |

9. Click on OK in the error message box. In the MCU Configuration window reset the
memory area selected above to type: RAM.

Advanced emulator features for EMU3 (ST7) and STice
(STM8)

In this lesson you will learn about using some of the STice emulators advanced features
while debugging the sample application that you build in previous lessons. The advanced
features covered here include how to:

e View program execution history
e Use read/write on-the-fly

e Setan advanced breakpoint

e Run a performance analysis

For this lesson use the cosmic2. stw that is provided upon installation of STVD. For
standard installations of STVD, this file is saved at the directory location:

C:\Program Files\STMicroelectronics\st_ toolset\stvd\examples
\tutorial cosmic\

If you are not already in the debug context, select Debug>Start Debugging from the main
menu. The application file is loaded into the emulator and the previously saved settings are
restored.

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

12.7.1

Note:

View program execution history

The Trace window is used to view the contents of the trace buffer. The Trace Buffer is a
physical memory module in the emulator that records the hardware cycles that occur when
a program is executed.

1. Select View>Trace to display the Trace window.
2. Right-click in the Trace window to open the contextual menu.

Figure 288. Trace contextual menu

Befrezh |

Calurnn Dizplay. ..
Filter Lines...

Select Timeztamp unit » RN

Lz
[Fofo souice

) ms
Goto dizaszembly

Prewvious Source
Mext Source

Frevious Code fetch
Mext Code fetch

Bookmarks Toggle Bookmark.

[Elear &l Bockmarks
Erevious Bookmarl:
[ext Baokmark

Copy to Clipboard
Copy ta File. .

Ermulator commands Clear Trace buffer

v Trace On

Set Timestamp Clock...
T

v Allow Docking
Hide

3. Select Emulator commands>Clear Trace buffer.
4. Click on Debug>Step Over a few times in order to generate trace record.
If you have executed a Chip Reset (debug>Chip Reset) prior to Step Over, STVD may not

be able to terminate the exectuion of the step command. To regain control, select
Debug>Stop Program form the main menu bar.

5. From the Trace Contextual menu select Column Display....

6. Click on Uncheck all and then check the following: Record, Address, Data, Symbolic
Disassembly. Click on OK to view the results.

7. From the Trace Contextual menu select Copy to File....

8. Inthe Save Trace Contents window click on the Last records button and enter 100 as
the number of records to save. Enter a filename in the File name field. Click on OK to
save the records.

Doc ID 7705 Rev 11 357/385

STM8 C tutorial UMO0036

Figure 289. Saving trace contents

Save Trace Contents
— Curment Status — Save Condition
Tatal number of records; |2521 44 " whole contents

o I =
Mumber of new records: I4 © Lastx y =
o 100
~ File name Last records I
Irecu:urds € From record I
Browse. . | To record I

Cancel |

The last 100 records are saved to file where they can be read using a text editor.

12.7.2 Use read/write on-the-fly

When the Read/write on the fly option is selected, the Watch window and Memory window
are continuously refreshed at one-second intervals and any changing values are displayed
in bold type.

This procedure describes how to enable the read/write on the fly option and how it may be
used to watch variable values being read or written to while your program is running on the
emulator. Here, we also show how our program has a bug which we will use later to
demonstrate advanced breakpoints.

1. Use the View menu to open the Watch window and Memory window if they are not
already displayed.

2. In both the Watch and Memory windows, right-click to open the contextual menu and
enable the Read/Write on the Fly option.

3. When the Read/Write on the Fly option is enabled, the window’s background changes
to yellow.

4. Select Debug>Run from the main menu.

5. You can now see memory entries in the Watch window and variable values in the
Memory windows being updated periodically (values are shown in bold when updated).

358/385 Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

Figure 290. Memory and Watch windows

Yariable Walue Type Address |

- current5tate

ORANGE

enum {G... | 0x80

4

unzigned 1. | O=E1

= b0 ranzitions

A4 [oi] wateh 1 A wiateh 2} wvatch 3 f wiatch 4/

04000300
O00O01FF
002C0500
06000040
FFFFFFFF
FFFFFFFF
FFFFFFFF

ooooozZoo
FFFFFFOO
0241C64E
O001FFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

ooaCOOon -
ooooooon
aDooo0on
FFFFFFFF
FFFFFFFF
FFFFFFFF

FFFFFFFF
-
_’|_I

6. Inthe Editor window, locate the bugCountDown variable, select it and drag and drop it

to the Watch window.

7. Inthe Editor window, locate the enableBug variable, select it and drag and drop it to

the Watch window.

8. In the Watch window, double-click in the Value field of the enableBug variable and
enter 1 at the flashing cursor. The bug is now enabled and the bug countdown begins.

9. Inthe Watch window watch the value of bugCountDown decrease, after it has reached
0 the variable nbOfTransitions is overwritten—we have a bug! This is described in
more detail in the next procedure.

Figure 291. Evolution of variables in Watch window

nbOfTransitions has
been overwntien

aniable Walue Type Address
N cunentSiate GREEN enum {G... | 0x80
bugCountDownhas L nbOfTransiti... | 11141126 unsigne... | 0x81
DESSEd Zero “bugCountDo._.. | 7 "\a unzigne... | Oxa2
- enableBug 1001 unzigned c... | 0x9d
-

enableBug was setto 1,
triggering the bug

LA n e watch 1 4 wiatch2 A wiatch = A watch4 /

10. Stop the program by selecting Debug>Stop Program.

IYI Doc ID 7705 Rev 11

359/385

STM8 C tutorial UMO0036

12.7.3

360/385

Set an advanced breakpoint

The Advanced Breakpoints window gives access to a powerful function based on a
programmable multi-level logic Sequencer. Advanced breakpoints allow you to set simple or
multi-level breakpoint conditions, in addition to controlling trace recording and trigger output.

In this lesson, you will learn how to set a two level advanced breakpoint. If this program did
not have the bug described in the previous procedure then write access to the
nbOfTransitions variable would only be possible from inside the trapISR function.
However, because of the bug, write access to the nbOfTransitions variable is possible
from outside of the trapISR function. In this procedure we use the advanced breakpoint
feature to detect write access to the nbOfTransitions variable by an instruction located
outside of the trapISR function.

The advanced breakpoint you will set has two levels. When the application executes code
outside of trapISR and write access to nbOfTransitions, “Level 1” of the advanced
breakpoint stops the application. When executing code inside trapISR, the write accesses
are not tracked. This is defined by “Level 2" of the advanced breakpoint.

The advanced breakpoint program must be activated when the program counter is outside
of the trapISR function. We do this by setting a breakpoint outside of the trapISR
function and running the program up to this breakpoint.

1. Setan instruction breakpoint in the waiting_loop function (line 107).
2. Select Debug>Continue from the main menu.

3. When the program stops, remove the instruction breakpoint.

4

Set bookmarks on the first and last instruction of trapISR (line 69 and line 97
respectively) by placing the cursor on the instruction line and selecting Edit>Toggle
Bookmark from the main menu.

Figure 292. Location of bookmarks

a7 ‘I
68
69[:] switch(current3tate)
7o M1
g1
g2
83 if | state[next3tate] .statelccurence < 1
54 M1
=11 else J
g9 M1
93
94
95 nhofTransitions++;
=1
9'?[:] I return;

98 i
ag -

I 4

tirne. | wecharc |

5. Select Debug Instrument>Advanced Breakpoints... to open the Advanced
Breakpoints window.

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

The Configuration Summary field shows the logic structure, event definitions and
actions to take for all the levels, this can be navigated using the navigation buttons ([+]).
Use the tabs at the bottom of the right-hand window to switch between the Synoptic
and any of the four programmable levels: Level 1 to Level 4. The following diagram
shows the settings for level 1.

Figure 293. Setting advanced breakpoints

Advanced Breakpoints x|
— Configuration Summary Programmable Level
" Enable Configuration
- F — Memary Event
=
B THEM
= —_—
| ELSE IF
— Other events
THEM [~ DM ignored [~ IT ignaored
o [Trace Full ignored ™ Stack ignaored
[~ Trigger IN ighored
[~ Analyzer probe I 'l
First Value I Last Yalue I
= Reset Lewvel 1 |
- - —
i'l I LIJ Combination)\ Event:if
[Start with Trace On Synoptic A Level 1 4 Level 2) Level 3 , Leval 4 F
Ok | LCancel | Help | Reset Al Levelsl Save... | Load... I

The Advanced Breakpoints window is configured as summarized below.

Table 86. Advanced breakpoint configuration

Level Configuration summary How to configure it...

LEVEL 1 1. Click on ELSE IF.

1. Click on Level 1 tab and IF.

2. In First Event, select Event1 then click on the
button [...]

IF (opcode fetch at timer.c:69 | 3. In Memory Events, select Opcode Fetch then
click on Add

4. In Opcode Fetch, select Bookmark, timer.c;69
then click OK.

THEN (Goto Level 2); 1. Click on THEN and check Goto Level 2.

2. In First Event, select Event3 then click on the

ELSE IF (data memory access button [...]

from nbOfTransitions, length = 31N M e | M A ith
4 bytes, access = write, data . In Memory Event, select Memory Access wit

value from 0 to FF (for each Data then Set
byte)) 4. Enter address range (0x81-0x84), length in bytes,

select access mode (Read/Write), enter data value 0
to FF with Data Range option selected, then click OK.

1. Click on THEN and check Break.

THEN Break

Doc ID 7705 Rev 11 361/385

STM8 C tutorial

UMO0036

362/385

Table 86. Advanced breakpoint configuration (continued)

Level Configuration summary How to configure it...

LEVEL 2 3. In Memory Event, select Opcode Fetch then click

1. Select Level 2 tab.
2. In First Event, select Eventl then click on the

butt
IF (opcode fetch at timer.c:97) utton [...

on Add
4. In Opcode Fetch, select timer.c;97 then click OK.

THEN (Goto Level 1); 1. Click on THEN and check Goto Level 1.

LEVEL 3-4 | (empty)

8.

10.

In the Advanced Breakpoints window click on the Synoptic tab. This tab displays a
block diagram of the four levels with the programmed logical links.

Check the Enable Configuration checkbox, to activate the breakpoint.

Check the Start with Trace On checkbox, this ensures that the trace is turned on when
the application starts.

Figure 294. Synoptic view of advanced breakpoint configuration

Advanced Breakpoints E2

— Configuration Summary

¥ Enable Configuration

¢ Synoptic (= Configuration is enabled [modified)
E LEVEI ‘I
E IF
E Event‘l
=l Opcode Fetch
A @O0
E THEN
L b Gato Level 2 Level 1 Level 2 Level 3 Level 4
= ELSEIF
E EVEntS
=l Memomy Access w—
o From @081 ¢
Current level:
Defined level: IF Goto Action:
Empty level: ELSE IF Goto Action:)

Synoptic £ Level 13 Level 2 A Level 3 f Level 4 7

| |EesetAIILeveIsl| Save. . I| Load... I

11.
12.
13.

14.

Click on OK and select Debug>Continue from the main menu.
Select View>Watch to display the Watch window if it is not already displayed.

In the Watch window watch the value of bugCountDown decrease, after it reaches 0
the variable nbOfTransitions is overwritten. The status bar indicates that a break
has occurred—the advanced breakpoint has worked.

Select View>Trace to display the Trace window if it is not already displayed.

Doc ID 7705 Rev 11 KYI

UMO0036

STM8 C tutorial

15.

16.

From the Trace contextual menu select Column Display... Click on Uncheck all, then
check the following: Record, Address, Data, Event, Symbolic Disassembly, BEM.
Click on OK.

Starting from the last record, find the record for which the BEM (Advanced breakpoints)
description is “BEM I1 e3 else”. Select this record and select Previous Source from
the Trace Contextual menu.

Figure 295. Advanced breakpoint info in trace

RBefresh
Calunin Dizplay...
& Filter Lines...
3 I Record Address Data | Ewvel lic Di=sasse... I BEEM |[Adwvance... -
262133 | 0Ox0000&f Ox00 | Dat: g”m Z_DL”CE .
262134 0x0000BO Ox51 | Dar e
262135 Ox0000k0 Ox51 Disc
ZBZ2136 Ox00o0sz2 Oxaa Dist Ne:.;tSnu[ce
0000067 | . BEH 11
timer.c 141 Freviouz Code fetch
262136 Ox00£0d2 Oxad | Ope; Wext Code fetch _reset_bug...
262139 Ox00£0d3 Oxbe | Opel Bookmarks » j
Copy ta Clipboard
Copy to File...
Emulator commands ¥
v fillow Docking
Hide
17. From the Trace Contextual menu select Goto source to jump to the line of source code
that sets off the bug in the Editor window.
18. Select Debug Instrument>Advanced Breakpoints... and uncheck the Enable
Configuration checkbox. Click on OK.
12.7.4 Run a coverage and profiling session
12.7.5 Run a performance analysis

The

Performance analysis feature displays statistics on certain performance criteria

regarding the running of the application program. It measures the time spent in a section of
code, defined by its start and end addresses. Data such as the minimum execution time,
maximum execution time and the execution time as a percentage of the total overall
execution of all code is provided.

In this procedure you will learn how to use the Performance Analysis feature to measure the

time

spent in a function (the traplSR function).

To run the performance analysis:

1.
2.

Select Debug Instrument>Performance Analysis.
In the Performance Analysis window enter 5 in the Number of passes field, check
the Disable breakpoints checkbox.

Select timer.c;69 and timer.c;97 from the Bookmarks fields for Starting Address
and Ending Address, respectively. These mark the first and last instruction of
trapISR function.

Doc ID 7705 Rev 11 363/385

STM8 C tutorial

UMO0036

364/385

Figure 296. Setting up a performance analysis

Performance Analysiz

Perfarmance analysis settings

MNumber of passes [5

Starting address

¥ Dizable breakpoints

&pply

:

Run

Bookmark | timer_10.c£9 ﬂ Continue
File |timer_1 0c ﬂ Line |53
Address O=4082
Ending address
Bookmark | timer_10.c;97 ﬂ
File [timer_10.c x| Lne |97
Address 04005
Settings /4 Stafisics A, Graphic /
Cloze | Help

6.

Click on Apply and then Run.

When the program execution terminates, the Statistics tab opens automatically to
display the results of the analysis. In addition, the Graphic tab provides a display of the

results.

After viewing the performance analysis results click on Close.

Figure 297. Performance analysis results

Performance Analysiz

Initial zettings
Starting Address : Ox4082
Ending Addrezs . Oxd40D5

Average time 44.7
ke irirnurn tirme: 425
b amirLnn time 453

Standard dewiation 1.10

Statiztics for ohe pazs through portion of code

(B3

s

s

(B3

Pazses zpecified: 5

Statiztics for elapzed test time

Mumber of executed passes

Tatal tirme: 3E3
% time in code 0.0062

5

o

Seflings), Statistics /4 Graphic /

Cloze |

Help

Doc ID 7705 Rev 11

UMO0036

STM8 C tutorial

To make the trap interrupt occur more frequently:

1. Restart the application.

2. Locate the state variable in the Editor window (line 132).

3. Place the cursor on the state variable.

4. Select Edit>QuickWatch to view it in the QuickWatch window.

In the QuickWatch window change the timeoutVvalue value for elements 0, 1 and 2 of
this array to a lower value (for example 200).

Figure 298. QuickWatch
QuickWatch HE

Erpression: Becalculate I
state -
I J Addwatch |

Yariable | Yalue | Type | Address I; Cloze |
[state Htimeoutyalue.. | struct ... | Ox8
[IStandard 'l

unzigne... | Ox85

4 uhsigne... | 0x839

{timeoutvalue .. | struct{ .. | 0x8b

200 unzigne... | Ox8h

4 uhsigne... | 0=8F
{timeoutvalue .. | struct{... | 0x91 o

200 unzigne... | 0x91
g | uhsigne... | 0x95 -

Then select Debug Instrument>Performance Analysis and click on Continue to execute
the program (do not click on Run because you would reset the chip and lose the values
previously set). The results of the performance analysis appear much more quickly.

1. Select Debug>Stop Debugging from the main menu.

2. Select File>Close Workspace to close the workspace. The current workspace is
closed and automatically saved.

Figure 299. New performance analysis results

Performance Analysis
 Initial zettings
Starting Address : 0x4082
Pazzes specified; 5
Ending Address : Ox4005
— Statiztics for one pazs through portion of code| — Statistics for elapged test ime
AvErage time 447 Lz Murber of executed pazses 5
Finimum tirme: 425 Uz
I ainnuinn tirme 453 Uz Tatal time 59.4 i
Standard dewiation 1.10 uz ¥ time in code 0.3764 %
Sefings A, Statistics £ Graphic £

Close I Help

Doc ID 7705 Rev 11 365/385

ST Assembler/Linker build tutorial UMO0036

13

Note:

13.1

366/385

ST Assembler/Linker build tutorial

This build tutorial takes you through the steps of setting up workspaces, creating projects
and building assembler source code into an application that can be debugged with STVD.

Your objective in this tutorial is to build the provided source code in assembler language into
an executable in Motorola S format for the ST72311N4.
To do this, we have provided you with the following files:

e tim_rtc.asm — the application source file in assembler language. This is a Real Time
Clock application that uses the Output Compare Interrupt software driver of the
ST72311xx Timer. With this application, a timer interrupt is generated every 100mS
when fCPU = 4MHz.

e tim_rtc.bat — this is the .bat file that is typically used when building with the ST
Assembler Linker.

e st72311n4.asm — a source file in assembler language that specifies the memory
mapping of the ST72311n4 peripheral registers, which is required for the application.

e st72311n4.inc — an include file that defines the addresses of the ST72311n4
peripheral registers, which is required for the application.
For standard installations of STVD, the files listed above are saved at the directory location:

C:\Program Files\STMicroelectronics\st toolset\stvd\Examples\tutorial asm

The st72311n4.asm and st72311n4.inc have been copied to the examples directory,
however these included files are also provided in the directory ...\st_toolset\asm\include
for supported ST7 devices. For typical use you should use the provided ST7 include files
from their original location unless you want to modify them. If you want to modify an include
file for a specific application, first copy it to your working directory so as to preserve an
unmodified version of the original include file.

Create a new workspace with the New Workspace wizard

Before you can build or debug an application with STVD, you must create a workspace to
contain any projects and their source files.

1. Inthe main menu bar select File>New Workspace.

2. Inthe New Workspace window, click on the Create an Empty Workspace icon.
3. Click on OK, the view in the New Workspace window changes.

In the resulting view of the New Workspace window, you must enter a name for your
workspace and identify the directory pathname.

1. Enter the name my workspace in the Workspace Filename field.

2. Enter the pathname to identify the directory where you want STVD to store your
workspace.

3. You can use the browse button to find the location

4. You can create a folder for your new workspace by clicking on the Create folder icon.
Enter the folder name my workspace in the Create Folder window and click on OK.

5. Click on OK to create the workspace (. stw).

6. Before going any further, save your workspace. In the main menu bar, File>Save
Workspace.

Doc ID 7705 Rev 11 KYI

UMO0036

ST Assembler/Linker build tutorial

13.2

RESULT:

The Workspace window now contains the workspace my workspace . stw. Note, however,
that in the Build menu, you do not have access to the build commands, because your
workspace does not contain a project, yet.

The working directory that you have identified now contains the file my workspace.stw.

Create a project using Add New Project to Workspace
command
Before you can access build and debug commands, you must create a project or insert an

existing project in your workspace. As we have only provided you with the source files for the
application (not a project), you must create a project from scratch.

1. Inthe main menu bar, select Project>Add New Project to Workspace.
2. Inthe New Project window, click on the New Project icon.
3. Click on OK, the view in the New Project window changes.

Figure 300. Create a new project

Mew Project H

L'y
\ Froject filename

Ilealtime

Froject location

Ic:'\stvd?\my_workspace\realtime _I BI

Toolchain
IST Azzembler Linker ;’

Toolchair root
lC:\F‘rogram FilessS T Microelectronickhst? _l

ak. LCancel |

In the resulting New Project window, you must enter a name for your project and associate
the project with the toolchain that you will use to build your application. For this tutorial, you
will use the ST Assembler Linker, which was installed along with STVD.

Doc ID 7705 Rev 11 367/385

ST Assembler/Linker build tutorial UMO0036

13.3

368/385

To do this:
1. First, enter the name realtime in the Project Filename field

2. Enter the pathname to identify the directory where you want STVD to store your project
in the Project Location field. By default, this will be the same as the working directory
that you identified when you created your workspace.

You can use the browse button to find a location if necessary.

You can create a folder for your new project by clicking on the Create folder icon. Enter
the folder name realtime in the Create Folder window and click on OK.

3. Next, select ST Assembler-Linker from the Toolchain list box.

4. Enter the path for the toolchain in the Toolchain Root field. You can use the browse
button to find it if necessary.

For standard installations of STVD the toolchain root is:

C:\Program Files\STMicroelectronics\st toolset\asm
5. Click on OK to apply these settings.

6. The MCU Selection window opens. Select ST72311N4 from the list, click on Select,
then click OK.

7. Save the workspace again. In the main menu bar, File>Save Workspace.
RESULT:

The workspace contains the project, realtime.stp. By default this project contains folders
called Source Files, Include Files and External Dependencies. The folders that you see
in the Workspace window are used to organize your project within STVD. They do not exist
in the working directory.

However, the working directory that you have specified does contain the file realtime.stp
When you build the application this directory will also contain one or two folders (Debug

and/or Release) depending on the build configuration that you use. These folders are the
default locations for storing your application and any intermediate object files and listings.

You can now access the project settings. The project settings allow you to control the
building of your application using the options that are specific to your toolchain. From the
main menu bar select Project>Settings to open the Project Settings window. In the
General tab, you will see that the project realtime.stp is associated with the ST Assembler
Linker toolchain. The path for locating the toolchain is displayed in the Root Path field. Exit
this window by clicking on OK.

In addition the project is associated with an MCU: the ST72311N4. Your project will be built
for this MCU, taking into account its peripherals and memory mapping. When selecting your
debug instrument and programming hardware you will be limited to those tools that support
this MCU. You can always change the MCU selection later in the project settings interface,
but you must rebuild the application.

Inserting files in your project

To build your application, you must identify the source files for STVD. You will do this by
inserting the source files using the Insert Files into Project command. In addition, when
building with the ST Assembler Linker, your files may need to be built in a specific order.
Once placed in the correct order you can protect the order using the Add Sorted Elements
option.

Doc ID 7705 Rev 11 KYI

UMO0036 ST Assembler/Linker build tutorial

Adding source files to the project

1. Selecting Project>Insert Files Into Project from the main menu bar, this opens a
browse window.

2. Select the following files:
- st72311n4.asm
- st72311n4.inc
- tim rtc.asm
For standard installations of STVD these files are located at:

C:\Program Files\STMicroelectronics\st toolset\stvd\examples\tutorial asm\

3. Click on Open.

The files are added to the project in the Workspace window, however they have not been
placed in specific folders and they are not necessarily in the correct order. We will build the
files in the alphabetical order: st72311n4.asm, st72311n4.inc, tim rtc.asm.

To correct the ordering of the files:

1. Right-click on the project to open the contextual menu and click to remove the
checkmark next to the Add Sorted Elements option.

2. Drag the files into the required order, first to last from top to bottom (that is, the first file,
st72311n4.asm, on top, and the last file, tim_rtc.asm, on the bottom).

Figure 301. Arrange the files

-k space, zhy lDrag and erp

=--E5 realtime
timn_rtc.asm
11n4. asm;

st 23 1nd.ind

(] Source Files Build
w2 Include Files Elean
i]] Ewternal Dependencies

Hew Folder...

Add Files ta Project
Set az dctive Project
Remaove fram workspace

= Settings...
Workspace I

Properties

Shaow full path

ACtIVEtE Add SortEd v Add sorted elements
Elements to protect PR
the order. Hide

3. Right-click on the project to open the contextual menu and click to place the checkmark
next to the Add Sorted Elements option. Their order is now protected.

4. Now, drag the source files st72311n4.asmand tim_rtc.asm to place them in the
Source Files folder. Note that STVD maintains the ordering of the files if you move
them one at a time.

IYI Doc ID 7705 Rev 11 369/385

ST Assembler/Linker build tutorial UMO0036

13.4

13.5

5. Drag the file st72311n4. inc to the Include Files folder.
6. You can save your workspace by selecting, File>Save Workspace.

RESULT:

Open the Project Settings window by selecting Project>Settings in the main menu bar. In
the Project Settings window, select the Debug tab. The Source Directories field shows the
pathnames that the ST Assembler Linker will use to locate your source files, tim_rtc.asm
and st72311n4.asm.

Now select the ST7 ASM tab. The Include Paths field shows the pathname that the ST
Assembler Linker will use to locate the include file st72311n4.inc that you inserted in the
project.

Creating a folder to organize files in the project

You can also create folders within your project to help you organize files. To do so:
1. Right-click on the project to open the contextual menu and select New Folder.

2. Inthe New Folder window, enter the name “Obsolete” in the Name of the New Folder
field.

3. Click on OK to create the folder and close the window.

You can add files directly to the new folder using the Add Files to Folder command. To do
so:

1. Right-click on the Obsolete folder and select Add Files to Folder from the contextual
menu.

2. Inthe browse window, select the file, tim_rtc.bat to add to the folder and click on Open.
For standard installations of STVD this file is located at:

C:\Program Files\STMicroelectronics\st_ toolset\stvd\examples\tutorial asm\

RESULT:

The file tim_rtc.bat has been added to your project. This is the type of . bat file that was
used when building with previous versions, however this file is no longer necessary for
building with STVD7 3.0 and later versions. We have included this file, which contains the
command lines and build options used when building with a previous version so that you can
easily view it and compare the command lines and options that result from using STVD’s
Project Settings window. This file is only included as a reference and we will specify not to
use it in the build later in this tutorial.

Project settings

STVD's Project Settings window allows you to view the command lines and options that
will be used when building your application. From this window you can also change options
and apply user-defined options and commands that are supported by your toolset.

Changing build settings

370/385

Settings can be applied to the entire project or to specific files. In the following procedure we
will use the define (-d) option in order to activate a special instruction in the code for the
debug version of our application.

Doc ID 7705 Rev 11 KYI

UMO0036

ST Assembler/Linker build tutorial

The application source contains a routine under the #ifdef DEBUG_IT (lines 153-155 of
tim_rtc.asm). When activated, this routine generates an output signal on the pin PFDR
whenever a timer interrupt occurs. To activate this routine we will use the define option to
assign a value other than zero to DEBUG_IT (When DEBUG_IT is zero the routine is
ignored).

To do this:

1. Selectthe ST7 ASM tab.

2. Type DEBUG IT 1 inthe Defines field.

Figure 302. Define a value (-d)
Generall Debugl MCLU Selection ST7 ASH |F're-Link| 514 I 'I

Defaults |

Defines
|-d DEBUG_IT |

Include Paths
Ic:'\plogram fileghatmicroelectronicebat Floolzethatyd 7 hena |

Usger Defined Options

Command line

azm F[InputFile) $[T oolzetinc] -
-obj=${IntermPath)${Inputh ame). $(0bjectEx«t] -d DEBUG_IT
="z \program _I

RESULT:

When we build the application, the instruction INC PFDR, which is assembled if DEBUG IT
is a value other than zero, will be included in the final application. When we run the
application during a debug session the application will generate a signal on the PFDR pin
each time a timer interrupt occurs (every 100ms).

Changing settings for a specific file

In addition to applying settings at the project level, you can also specify settings for a file. As
describe in an earlier step, we included the tim rtc.bat as a reference for understanding
STVD'’s Project Settings interface. However, we do not want to include this file in the build
of our application. In this step we will exclude this file from the build, by applying a file level
setting via the Project Settings window.

Doc ID 7705 Rev 11 371/385

ST Assembler/Linker build tutorial UMO0036

Figure 303. Exclude file from build

General |

™ Abways use custom build step Diefaults |

Fntermediate directory

ID ebug _I

ak. | Cancel |

To do this:

1. Inthe field on the left side of the Project Settings window, click on the project to
display all the folders it contains.

2. Click on the Obsolete folder that we created earlier in order to view the folder's
contents

3. Select the tim_rtc.bat file, the Project Settings window changes to show only those
tabs with settings that apply specifically to this file.

4. Inthe General tab, click to place a checkmark in the Exclude File from Build

checkbox.
5. Click on OK to close the Project Settings window.
RESULT:

During the build the assembler will not be invoked for the tim rtc.bat file. Because we
have done this, it will have no impact on the building of the application.

13.6 Build a version for debugging

You will see the final result of the settings that we have applied in the Project Settings
window, now, when we build the application. To build the application:

1. If the Output window is not already open, select View>Output Window from the main
menu bar.

2. Inthe Output window, click on the Build tab
3. To generate your application, select Build>Build from the main menu bar.

372/385 Doc ID 7705 Rev 11 KYI

UMO0036 ST Assembler/Linker build tutorial
RESULT:
The commands invoked, error messages and warnings that occur during the build are
displayed in the Build tab of the Output window.
The Assembler is invoked for each of the . asm source files in the project. It is not invoked
for the file that we excluded from the build (tim_rtc.bat). The Assembler command line
is:
asm -gsym -1li=$ (IntermPath)$ (InputName) .lsr $(InputFile) $(ToolsetInc) -
obj=$ (IntermPath) $ (InputName) .$ (ObjectExt) -d DEBUG _IT 1 -I="C:\Program
Files\STMicroelectronics\st toolset\stvd\Example\tutorial asm"
The Linker is invoked once, to link the object files. The linker command line is:
lyn Debug\st72311ln4.obj+Debug\tim rtc.obj, Debug\realtime. cod, " "
OBSEND is invoked once to generate the final output realtime.s19 in Motorola S-Record
format. The OBSEND command line is:
obsend Debug\realtime.cod, f,Debug\realtime.sl9,s
The Post-Link Step is run in order to create the listing of absolute addresses required by
the debugger.
The following files have been generated in the Debug folder in the working directory:
e realtime.sl9
e realtime.map
e realtime.sym
e realtime.cod
o st72311n4.1lsr, tim rtc.lsr
e st72311ln4.1lst, tim rtc.lst
e st72311n4.0bj, tim rtc.obj
The application realtime.s19 includes the routine activated by the -d option, which will
generate a signal on the PFDR pin each time a timer interrupt occurs. You can confirm this
by running the application on the Simulator and plotting the output of the PFDR pin.

13.7 Building a version for programming

STVD is designed to allow you to customize and change project settings quickly and easily.
Build configurations allow you to save and change all the settings associated with a build.
For example the default configurations allow you to switch between settings for generating a
version for debugging or a final, optimized version of the application. In addition, the tabs in
the Project Settings window also allow you to enter user defined commands that are
supported by your toolchain.

Changing the build configuration

Project settings can be saved as configurations allowing you to quickly change and recall a
full range of settings. STVD has two preset configurations: Debug and Release. By default,
when you create a project in STVD, the configuration is set to Debug. Now we are going to
generate a final version using the Release configuration.

Doc ID 7705 Rev 11 373/385

ST Assembler/Linker build tutorial UMO0036

Figure 304. Change the build configuration

Project Configurations E3
Froject; Close

Ilealtime j

Configurations:

Debug Add
Bemove
Set Active
Rename...

To change the build configuration:
1. From the main menu bar, select Build>Configurations.

2. Inthe Project Configurations window, the active project name is in the Project field.
The current configuration is in bold type (Debug should be in bold type).

3. Select Release in the Configuration field and click on Set Active.
4. Click on Close.

RESULT:

FRE £

In the Project Settings window (Project>Settings...), the Settings For field is now set to
Release. In the General tab, the Output File specifies that output from the build be saved to
the Release folder in the working directory.

Note: Other toolchains allow you to apply a range of optimizations to improve the performance or
the size of your final application. Some of these optimizations have been applied by default
in the Release configuration, not the Debug configuration.

Applying project settings

The project settings that we applied in the debug configuration were not carried over into the
Release configuration. We must now go back and apply any necessary settings that were
not carried over.

1. Select Project>Settings from the main menu.

2. Click on the project realtime in the left hand field of the Project Settings window, in
order to view all of its folders.

3. Click on the Obsolete folder to view its contents.

4. Clickonthe tim rtc.bat file, to see the tabs that are specific to this file.

5. Click to place a checkmark in the Exclude File from Build checkbox in the General
tab.

You have now re-applied the project settings as they were for the Debug version of the
application, except for -d DEBUG_IT 1, which we used to illustrate the use of the -d option.

Before continuing, click on the realtime in the left hand field of the Project Settings window,
so that we can see all the settings tabs for the project. You can now go to the next step,
Entering a user-defined command.

374/385 Doc ID 7705 Rev 11 KYI

UMO0036

ST Assembler/Linker build tutorial

Entering a user-defined command

User-defined commands such as those applied in the Post-Build tab, can allow you to
specify tasks to accomplish in addition to the typical build process. Such a task could be to
copy a version of the final application to another directory.

Figure 305. Enter a post build copy command

ST745M | Pre-Link | ST7 Link | 577 PostLink PostBuild <] v |

CDlescription: IHunning Fozt-Build step
Caommands:
cmd.exe /T copp $[0utputPath)

Directary > | Files >

Target bazename I

Project b%name J Cancel |

Praject filename
Input bazename
Input filename

EIquut I?asename EAD I_IWF

| LnS.C Object files
Input extenzion
Ohject extension
QOutput extengion

To do this:

1. Create a new folder on your hard drive. For the purposes of this example, | created a
file with the pathname C:\final.

2. Inthe Project Settings window (Project>Settings...), click on the Post-Build tab

3. Click to place the cursor in the Commands field.

4. Type cmd.exe /C copy followed by a space.

5. Click on the Directory button and select Output Folder. This macro ($OutputPath)
tells STVD to look in the project’s output folder (Release) for the file to copy.

6. Click on the File button and select Target File Name. This macro $ (TargetFName)

tells STVD to look for the target application file that is specified during linking.

Doc ID 7705 Rev 11 375/385

ST Assembler/Linker build tutorial UMO0036

7. Type a space then the pathname for the folder where you want to save the copy of the
application file.

The resulting command should be:
cmd.exe /C copy $(OutputPath)s$ (TargetFName) c:\final
In this command c:\final is the pathname for the folder to which the file will be copied.
8. Click on OK to apply the new settings and close the Project Settings window.
9. Now to build the release version of your application, select Build>Build from the main
menu bar.

The Assembler is invoked for each of the . asm source files in the project. However this time
the executable for the application is generated in the Release folder of the working directory.
This folder is created automatically by STVD, as with the Debug folder.

After the Linker and OBSEND are invoked, STVD runs the command you entered in the
post-build step.

cmd.exe /C copy $(OutputPath)$ (TargetFName) c:\final

As aresult, the file realtime. s19 has been copied to the folder ¢: \final. The following
files are regenerated in the Release folder:

. realtime.sl9

° realtime.map

e realtime.sym

e realtime.cod

e st73211n4.0bj, tim rtc.obj

e st73211n4.lst,tim rtc.lst

376/385 Doc ID 7705 Rev 11 KYI

UMO0036

Product support

Appendix A Product support

Al

A.2

A21

A.2.2

If you experience any problems with this product, or if you need spare parts or repairs,
contact the distributor or the STMicroelectronics sales office where you purchased the
product. Phone numbers for major sales regions are provided on the www.st.com web site.

From the www.st.com site, select Products > Microcontrollers to obtain a complete online
selection guide, as well as documentation, software downloads and user discussion groups
to help you answer questions and stay up to date with our latest product developments.

Software updates

All our latest software and related documentation are available for download from the
STMicroelectronics microcontrollers support site at www.st.com.

If you are using software from a third-party tool provider, please refer to the third-party for
software product support and downloads.

Hardware spare parts

Your development tool comes with the hardware you need to set it up, connect it to your PC
and connect to your application. However, some components can be bought separately if
you need additional ones. You can order extra components, such as sockets and adapters,
from STMicroelectronics, from the component manufacturer or from a distributor.

To help you find what you need, a listing of accessories for STMicroelectronics development
tools is available on the STMicroelectronics Internet site, www.st.com.

Sockets

Complete documentation and ordering information for P/LQFP sockets from Yamaichi,
Ironwood, CAB and Enplas are provided at their respective Internet sites.

Connectors

Complete documentation and ordering information for SAMTEC connectors is provided at
their Internet site.

Doc ID 7705 Rev 11 377/385

Product support UMO0036

A.3 Getting prepared before you call

Collect the following information about the product before contacting STMicroelectronics or
your distributor:

1. Name of the company where you purchased the product.

2. Date of purchase.

3. Order Code: Refer to the side your emulators box. The order code will depend on the
region in which is was ordered (for example, the UK, Continental Europe or the USA).

4. Serial Number: The serial number is found located on the rear panel of the
ST Micro Connect box and is also listed on the Global Reference card provided with
the emulator.

5. TEB (Target Emulation Board) hardware and firmware versions: The hardware and
firmware versions can be found by opening an STVD7 session, entering the debug
context and selecting Help > About from the main menu. The TEB version numbers
are given in the Target box — scroll downwards until you find the TEB version
(hardware) and TEB PLD version (firmware).

6. Target Device: The sales type of the ST microcontroller you are using in your
application.

378/385 Doc ID 7705 Rev 11 KYI

UMO0036 Revision history

Revision history

Table 87. Document revision history

Date Revision Changes
1 Initial release.
1- Feb-2001 2 Added support of EMUS3.
1-Aug-2001 23 Updated for improved version of Simulator.
1-Oct-2001 2.4 Updated for release of new emulators.
Updated for simplified USB connection.
1-Sep-2002 25 o . .
Updated for In-Circuit Debugging with ST7-ICD (STMC).
Updated with In-Circuit Debugging with EMU3.
1-Dec-2003 254

Added device Discrepancies window.

One user manual for all debug instruments.

Added “What’s New” section.

1-Apr-2004 3.0 Added migration procedure for users of STVD7 2.x.
Added “Build” section.

Added Build tutorials.

Added Table 65 — Document revision history table.
1-Nov-2004 3.1 Added Section 2.9 — Help and support features.
Added Section 6— In-Circuit Debugging with DVP3.

Updated Host PC system requirements on page 8 — host PC
requirements.

Updated Section 2.5 — with new editor features.

Updated Find features on page 61 — with description of Regular
Expressions.

Updated Section 2.7 — with descriptions of new Edit/Debug and

15-Jun-2005 4.0 Languages tabs in Tools Options window.
Updated Section 3.5.1 — descriptions of Output and Intermediate
directories.
Added Section 4.14 — description of MSCI Tools window.
Updated Section 10.2.4 — tutorial procedure for Cosmic linker
options.
What's new with STVD7 3.3 Patchl with new feature information.
Updated Section 6.3: Using the simulation plotter — descriptions of
new Plotter interface and features.
Updated Section 3.6.2: ST7 Link tab, Section 3.7.3: Cosmic C linker
tab, Section 4.9.3: Metrowerks linker tab, with descriptions of
24-Jan-2006 5.0 segment and section customization.

Updated MCU selection tab on page 225 — changes to LED colors,
update screenshots.

Updated Introduction on page 1 and Selecting the debug instrument
on page 161 — for support of RLink in-circuit debugger/programmer.
Updated Section 6.4: Trace recording — description of discarded
events, description of filtering function.

IYI Doc ID 7705 Rev 11 379/385

Revision history UMO0036

Table 87. Document revision history (continued)

Date Revision Changes

Added section What's new with STVD 4.0.1 on page 24.
Deleted Section 6.4: Trace recording, now obsolete.

22-Nov-2007 6 Included information on Raisonance C compiler now supported by
STVD?7.

Updated document format.

Updated introduction to include information on STice and STM8
support.

06-Mar-2008 7 Updated Section 4: Project creation and build to include information
on STM8 support.

Added Section 9: STice features on page 258.

Updated Section 7: In-circuit debugging with information on the

13-May-2008 8 SWIM protocol.
22-Sep-2008 9 Added Section 9.2: Coverage and profiling.
Removed section What's new with STVD 4.0.1 on page 24.
Updated Section 4: Project creation and build.
10-Aug-2009 10

Updated Section 9.2: Coverage and profiling.
Updated Section 12: STM8 C tutorial.

Updated Section 4.7.3: Cosmic C linker tab in
subsectionCustomizing linker input settings.

01-Apr-2010 11 Updated Section 4.6: Customizing build settings for ST
Assembler/Linker toolset.

Updated Section 13.6: Build a version for debugging.

380/385 Doc ID 7705 Rev 11 [‘II

Index UMO0036
Index
A C
advanced breakpoints 19 call stack frame indicator 173
EMU3 configurations 83
analyzer inputsignals 317 build projectsettings 83
configuration summary 301 contextualmenu 40
creating 292 allow docking option 34
defininglevels 292 editordebug actions 170
enabling 301 editorwindow 49
examples 304 EMU3trace, 286
memory accessevent 296 file 42
otherevents 300 folder 42
programming triggers 314 hardware eventwindow 238
synoptic representation 302 peripheral registers 197
ICD .. 230 Project 42
allocating resourcesfor 229 workspace window 42
settings 232 CosmicC ... 93
assembler L 107
B compiler 95
linker 110
bookmarks 47 project settings _______________________ 93
ICON Lo 47 SCHPtLKE . oo 112
insert, remove, navigate 36
breakpoints L 19 D
advanced breakpoints (EMU2) 248
advanced breakpoints (ICD) 230 data breakpoints 19
break on TRIGIN(ICD) 233 window 186
data breakpoints 186 debuginstrument 161
Setting 186 add connectionports 162
window 187 portselection 162
with conditions 187 selection 30
withcounters 187 debugging L 160
ICON 173 advanced features 19
instruction breakpoints 183 call stack window 188
Setting 183 common features 160
with conditions 184 console 58
withcounters 184 data breakpoints 186
software vs. hardware (ICD) 228 editordebug actions 169
building 75 hardware configurations 18
commands 158 instruction breakpoints 183
configurations 83 output triggers 237
debugsettings L 86 DVP .. 255
generalsettings 85 outputwindow 58
microcontroller selection 86 peripheral registers window 196
outputwindow 57 simulator 202
projectsettings 84 symbols 172
settings forfiles 156 symbols browser window 195
settings forfolders 156 watchwindow 191
dependencies 158
381/385 Doc ID 7705 Rev 11 Ky_l

Index UMO0036
betweenfiles 157 regular expressions 55
between projects 158 replace 53

directory 85 status bar information 48
intermediate 85, 157 syntax highlighting 50, 64
output 85, 157 tabs,indents 62

documentation textselection 52
conventions 22 undo/redo 36
for hardware configurations 21 watch pop-up 63

DVPemulator 237 window position 48
debugging features 237 wrappingoptions, 62
hardwareevents 237 editorwindow 43
hardwaretest 246 customizing ... 61
in-circuitdebugging 223 EMU2 (HDS2) emulator 237
stackcontrol L. 254 debugging features 237

hardwareevents 237

E hardwaretest 246

Logical Analyser 248

editor 43 EMU3 emulatoro 284
auto Completion 50 ana|yzer input _______________________ 317
auto-completion 37 debuggmg features 284
auto-indent 51 in-circuit debuggmg __________________ 223
blockindent 51 performance ana|ysi5 _________________ 319
bookmarks 36, 47 read/write onthefly 323
brace matching 52,62 endoflinecharacters 63
completeword 37,50 errorlogs 70
contextualmenu 49 eva|uating your app"cation (EMU3) _______ 319
Ccut,copy,paste 36
debugicons 172
debugoption 63 F
debuggingactions 169 files 41, 44
draganddrop 52 addingtoproject 83
enablefolding 62 dependencies 157
end of line characters 63 settingsfor 156
filefolding 46 sortedelements 88
findinfiles 36, 54 toolset specific 75
findtextstring 52 types supported by editor 44
find,replace 36 find......... 52
goto ... 36, 55 regular expressions 55
indentation 51 findinfiles 58
inserting breakpoints 36 folders 41
instructionsyntax 37, 50 addingtoproject 83
linelength 63 settingsfor 156
linenumbering 46
lineselection 46 G
Margin i 46
margin selection 62 GDB ...l 58, 199
matchbrace 36 commands 199
parameterinfo 37 help ... 200
parameter information 50 load filename, 199
PrNt OPtIONS . . . o\ 62 pin -output_file 199
quickwatchooooiii.. 36 pin-stimuli 199
refresh 36 save_memory 200

symbol-file, 200

382/385 Doc ID 7705 Rev 11 Ky_l

Index UMO0036
console 58 ICD limitations 235
OO0 ..o 55 MEMOIY MAP .+« v v e e e e e e e e e e 164
programcounter 170 Memory types 165
on-chip peripherals 166
H selection 86
migration 71
hardwareevents 237 fullvs. partial, 71
hardwaretest 246 procedure ___________________________ 72
MSCI tools (EMU,ICD) 194
I
ICD o\ oo 19 O
features ...l 223 online assembler function 178
functional limitations/discrepancies 234 OUtpUL trigQersccvuee.... 237, 255
in-circuit debugging 223 outpUtWINAOWo 56
consoletab L 58
L debugtab 58
) findinfiles 58
Logical Analyser for EMU2 248
P
M . .
i path information 76
makefile . RO 77 performance anaIySiS (EMU3) ____________ 319
create projectfrom 82 peripherals
create workspace from 9 configuring target 166
MIgrationoovninn 71 value of peripheral registers 196
MCU .. Tt 86 programcounter 173
debug instrument support 87 TG00 170
MEMOTY MAP ...« 164 programming ... 325
on-chip peripherals 166 hardware configurations 19
selection 86 PIOJECE o oo 41
MENUS ... 36 COMMON SELNGS .+ v v v v oo 84
adding custom commands 67 create 80
buldmenu............. 38 debug Settings _______________________ 86
contextualmenus 40 dependencies, 158
debug instrument ... 38 general settings 85
debugmenu ... 38 microcontroller selection 86
editmenu 36
flemenu 36
helpmenu 39 Q
projectmenu ... 37 quickwatch 174
toolsmenu 38
VIBWMENU ..ttt ettt 37 R
window menun. 39
Metrowerks C 131 read/writeonthefly 19
assembler L 143 simulator L 220
compiler 133 read/write on the fly (EMU3) 323
linker 148 running applications 167
linker PRMfile 153 runcommands 167
projectsettings 131 TUNTOCUISOr ..o i i 171
microcontroller 86 status bar indications 169
configure peripherals 166 stepcommands 167
debug instrument support 87 steppingmodes 168
383/385 Doc ID 7705 Rev 11 17

Index UMO0036
S triggers
simulator 202 hardwar_e BVENLS ..o 237
read/write on the fly 220 output tr!ggers (EMU2/DVP) 237, 255
"""""""""" output triggers(EMU3)313
softwareupdates 377 TRIGIN (ICD) 233
ST Assembler Linker g8g T Mmoo rrrrrrrmmammrrrrrrny
assembler 89
NKer .o 90 \
project settings 88 variables
stack RO 188 intrusive read/write 220, 323
call stack window 188 viewing local variables 190
stack control (DVP) 254 iewing variableso, 191
statusbar 34, 169 Symbols brOWSer 195
stepcommands 167
Modes 168
STice W
emulator ... 258 WINAOWS . .. oo e e e 40
STice emulator call stack window 188
debugging features 258 disassembly window 175
STVD docking . ..o 34, 41
supported hardware 18 instruction breakpoints 183
supporting documentation 21 local variables window 190
user options and preferences 39 memory Window 180
support 21 output WINAOW . . . o 56
informationfile 70 periphera| registers window 196
STregisters, 192
T symbols browser 195
. texteditor 43
text_ editor R 43 trace Window . . .+ oo 198
clipboard operations 52 watch window -+« o 191
toolbar_s 65 workspace Window, 41
creating Customoovevvnen, 66 Workspace 41
customizing 65 WSP -+ e 77
MOVING ... 66 CrEALE . oottt 78
POPUP LIPS v 67 MIgrationovv e 71
rearranging 67 new workspace wizard 23
toolset R R R 75-76 workspace environment 34
CosmICC ... 93 CUSIOMIZING .« . ooee e oo 60, 75
filetypes ... 75 status bar 34
Metrowerks C 131
path information 23
project specificpaths 85
ST Assembler Linker 88
tooltips ... 69
trace 19
hardwareevents 237
recording EMU3trace 284
view in trace window 198
tracerecording, 19
DVP .. 242
EMU2(HDS2) i 242
EMU3 ... 284
start withtraceon 301
384/385 Doc ID 7705 Rev 11 Ky_l

UMO0036

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

IYI Doc ID 7705 Rev 11 385/385

	1 Introduction
	1.1 Building and debugging applications
	Table 1. Debugging configurations and supported hardware

	1.2 Programming your microcontroller
	Table 2. Programming configurations and supported hardware

	1.3 Advanced debugging features
	Table 3. Advanced debugging features

	1.4 Getting assistance
	1.5 Associated documentation
	Table 4. Associated documentation

	1.6 Conventions

	2 Getting started with STVD
	2.1 Set the toolset and path information
	2.2 Create a workspace with a new project
	2.2.1 Create a new workspace
	Figure 1. New Workspace window

	2.2.2 Create a project in your workspace
	Figure 2. New project window

	2.2.3 Specify a target MCU for your project
	Figure 3. MCU selection dialog box
	Figure 4. Workspace window
	Table 5. Default files and folders for projects

	2.3 Add source files (.asm, .c, .s) to your project
	Figure 5. Open window
	Figure 6. Workspace window

	2.4 Build your application
	2.4.1 Configuring project settings for Debug or Release
	Figure 7. Project configurations window

	2.4.2 Build commands and output
	Figure 8. Output window Build tab

	2.5 Select and connect to your debug instrument
	Figure 9. Debug instrument selection
	Figure 10. Debug instrument target port selection
	Figure 11. Hot Plug start debug option
	Figure 12. Restart with SWIM off option

	2.6 Debug your application
	2.7 Program your application to your microcontroller
	Figure 13. Programmer window

	3 Your STVD graphical environment
	3.1 The main application window
	Figure 14. Main application window
	Status bar
	Figure 15. Status bar

	3.2 The main menus and their commands
	File menu
	Edit menu
	Table 6. Edit menu commands

	View menu
	Project menu
	Table 7. Project menu commands

	Build menu
	Debug menu
	Debug instrument menu
	Table 8. Debug Instrument menu commands

	Tools menu
	Table 9. Tools menu commands

	Window menu
	Table 10. Window menu commands

	Help menu
	Table 11. Help menu commands

	Contextual menus

	3.3 View windows
	Table 12. View windows
	Docking view windows

	3.4 Workspace window
	Figure 16. Workspace window tabs
	Workspace contextual menus
	Table 13. Common contextual menu commands
	Table 14. Window-specific contextual menu commands

	3.5 Editor windows
	Figure 17. Scintilla text editor copyright notice

	Supported file types
	Table 15. Editor supported file formats

	File display and editing features
	Figure 18. Editor window file display and editing features
	File folding
	Figure 19. File folding display and controls

	Margin features
	Figure 20. Left margin features
	Figure 21. Bookmark icons

	Editor status bar information
	Figure 22. Status bar elements

	Editor window positioning
	Figure 23. Window controls

	3.5.1 Editor window contextual menu
	Figure 24. Contextual menu edit commands

	3.5.2 Editing features
	Syntax highlighting
	Auto-completion
	Figure 25. Auto completion pop-up list

	Parameter information
	Figure 26. Parameter information tip

	Indentation
	Figure 27. Auto indentation

	Brace matching
	Figure 28. Brace matching

	Text selection and clipboard operations
	Find features
	Figure 29. Find dialog box
	Figure 30. Quick find for strings or variables in a source file
	Figure 31. Find/replace window
	Figure 32. Find in Files dialog box
	Figure 33. Look in additional folders
	Figure 34. Find in Files tabs
	Figure 35. Go To window
	Table 16. Regular expressions

	3.6 Output window
	Figure 36. Output window
	Figure 37. Output window contextual menu
	3.6.1 Build tab and Tools tab
	Figure 38. Output window Build tab
	Figure 39. Parser error selection options

	3.6.2 Find in Files 1 & Find in Files 2 tabs
	Figure 40. Output window Find in Files tab

	3.6.3 Debug tab
	3.6.4 Console tab
	Figure 41. Output window, Console tab
	Figure 42. Console tab contextual menu

	3.7 Customizing your work environment
	Figure 43. Options and Customize windows
	Table 17. Options window tabs
	3.7.1 Customizing editor features
	Figure 44. Edit/Debug and Styles/Languages tabs

	Edit/Debug tab
	Table 18. Edit and print options
	Table 19. Word wrap options
	Table 20. Debug options
	Table 21. Long line indicator options
	Table 22. Line endings options

	Styles/Languages tab
	Table 23. Syntax highlighting options

	3.7.2 Customizing toolbars
	Figure 45. Standard toolbars
	Table 24. Toolbar options

	Moving toolbars
	Creating user-defined toolbars
	Figure 46. Adding new custom toolbars

	Rearranging toolbar icons
	Figure 47. Options window, Commands tab

	3.7.3 Adding custom commands
	Figure 48. Customize option
	Figure 49. Adding custom commands
	Figure 50. Customized command in Tools menu

	3.8 Tooltips
	Figure 51. Tooltips
	Figure 52. Tool description

	3.9 Help and support features
	Figure 53. Generate Information File for Support window

	3.10 Migrating old workspaces (STVD7 2.5.4 and prior versions)
	Table 25. Migration strategy advantages and disadvantages

	4 Project creation and build
	4.1 Specifying a toolset
	Table 29. Supported toolsets and file formats
	Toolset path information
	Figure 54. Toolset options

	4.2 Loading and creating workspaces (.stw)
	4.2.1 Loading an existing workspace
	Figure 55. Workspace window

	4.2.2 Creating a new workspace

	4.3 Creating and loading projects in a workspace
	4.3.1 Loading an existing project
	4.3.2 Creating new projects
	Figure 56. Project parameters
	Figure 57. Default project contents

	4.3.3 Adding and removing folders and files

	4.4 Project build configurations
	4.5 Configuring project settings
	4.5.1 General settings tab
	4.5.2 Debug settings tab
	4.5.3 MCU selection tab
	Figure 58. MCU selection tab

	4.5.4 Pre-link settings tab
	4.5.5 Post-build settings tab

	4.6 Customizing build settings for ST Assembler/Linker toolset
	Ordering source files before assembly
	Provided ASM include files for ST Assembler/Linker
	Project settings for ST Assembler/Linker
	4.6.1 ST ASM tab
	Figure 59. ST ASM tab

	4.6.2 ST Link tab
	Figure 60. ST Link tab
	Table 30. Formats for OBSEND output

	4.6.3 ST Post-Link tab
	Figure 61. ST Post-Link tab

	4.7 Customizing build settings for Cosmic C toolsets
	Provided microcontroller-specific C header files for Cosmic
	Using the Project Settings interface
	Figure 62. Standard options
	Figure 63. Customizing options

	4.7.1 Cosmic C compiler tab
	Figure 64. Cosmic C compiler general view
	Table 31. Cosmic C compiler memory models for ST7
	Table 32. Cosmic C compiler memory models for STM8
	Figure 65. Cosmic C debug information view
	Table 33. Cosmic C compiler debug information options
	Figure 66. Cosmic C compiler optimizations view
	Table 34. Cosmic C compiler optimization options
	Figure 67. Cosmic C language view
	Table 35. Cosmic C compiler language options
	Figure 68. Cosmic C compiler listing view
	Table 36. Cosmic C compiler listing options
	Figure 69. Cosmic C compiler preprocessor view
	Figure 70. Cosmic C compiler input view
	Figure 71. Cosmic C compiler output view for ST7(left) and STM8 (right)
	Table 37. Cosmic C compiler output options

	4.7.2 Cosmic C Assembler tab
	Figure 72. Cosmic Assembler general view
	Figure 73. Cosmic Assembler debug view
	Table 38. Cosmic Assembler debug options
	Table 39. Cosmic Assembler language options
	Table 40. Cosmic Assembler listing options

	4.7.3 Cosmic C linker tab
	Figure 74. Cosmic linker general view
	Figure 75. Cosmic linker input view
	Figure 76. Cosmic linker output view
	Table 41. Cosmic linker output options

	4.8 Customizing build settings for Raisonance C toolset
	Provided C header files for Raisonance
	Using the Project Settings interface
	Figure 77. Standard options
	Figure 78. Customizing options

	4.8.1 Raisonance C compiler tab
	Figure 79. Raisonance C compiler general view for ST7 (left) and STM8 (right)
	Figure 80. Raisonance C compiler optimizations view
	Table 42. Raisonance C compiler optimization options
	Figure 81. Raisonance C compiler language view
	Table 43. Raisonance C compiler language options
	Figure 82. Raisonance C compiler listings view
	Table 44. Raisonance C compiler listing options
	Figure 83. Raisonance C compiler preprocessor view

	4.8.2 Raisonance Assembler tab
	Figure 84. Raisonance Assembler general view

	General settings for Raisonance Assembler
	Table 45. Raisonance assembler listing options

	4.8.3 Raisonance C linker tab
	Figure 85. Raisonance linker general view
	Figure 86. Raisonance linker input view
	Figure 87. Raisonance linker output view
	Table 46. Raisonance linker output options

	4.9 Customizing build settings for Metrowerks C toolset
	Provided ST7 C header files for Metrowerks
	Using the Project Settings interface
	Figure 88. Standard options
	Figure 89. Customizing options

	4.9.1 Metrowerks C Compiler tab
	Figure 90. General category view
	Table 47. Metrowerks C compiler memory models
	Figure 91. Metrowerks C compiler optimizations view
	Table 48. Metrowerks C compiler optimization options
	Figure 92. Metrowerks C compiler input view
	Table 49. Metrowerks C compiler input options
	Figure 93. Metrowerks C compiler output view
	Table 50. Metrowerks C compiler output options
	Figure 94. Metrowerks C compiler listing view
	Table 51. Metrowerks C compiler listing options
	Figure 95. Customizing C language view
	Table 52. Metrowerks C compiler language options

	4.9.2 Metrowerks Assembler tab
	Figure 96. Metrowerks Assembler general view
	Figure 97. Metrowerks Assembler language view
	Table 53. Metrowerks assembler language options
	Figure 98. Metrowerks Assembler listings view

	4.9.3 Metrowerks linker tab
	Figure 99. Metrowerks linker general view
	Figure 100. Metrowerks linker optimizations view
	Table 54. Metrowerks linker optimization options
	Figure 101. Customizing Metrowerks linker output view
	Table 55. Metrowerks linker output options
	Figure 102. Metrowerks linker PRM view

	4.10 Configuring folder and file settings
	Table 56. Toolchain specific tabs
	4.10.1 General settings for files and folders
	4.10.2 Custom build tab

	4.11 Specifying dependencies between projects
	4.12 Build commands
	Table 57. Build commands

	5 Basic debugging features
	5.1 Selecting the debug instrument
	5.1.1 Identify your debug instrument
	Figure 103. Identify debug instrument and connection
	Table 58. Debug instrument types

	5.1.2 Add communication ports
	Figure 104. Add an Ethernet connection
	Figure 105. Add a USB connection

	5.2 Configuring your target MCU
	5.2.1 Memory map
	Table 59. Memory types
	Figure 106. Memory mapping
	Figure 107. Specifying a new memory zone

	5.2.2 On-chip peripherals
	Figure 108. On-chip peripherals

	5.3 Running an application
	5.3.1 Run commands
	Table 60. Debug menu run commands

	5.3.2 Stepping modes
	5.3.3 Program and STVD status bar display
	Figure 109. Debugger status on status bar

	5.3.4 Monitoring execution in source windows

	5.4 Editor debug actions
	Editor contextual menu
	Table 61. Editor contextual menu commands

	Watch pop-up
	Figure 110. Watch pop-up for variables

	5.4.1 Editor debug margin
	Figure 111. Editor window margin icons and contextual menu

	Debug symbols in other windows
	Margin icons
	Figure 112. Brown breakpoint icon in Disassembly window
	Figure 113. Call Stack frame indicator

	5.4.2 QuickWatch window
	Figure 114. QuickWatch window

	5.5 Disassembly window
	Figure 115. Disassembly window
	Figure 116. PC in editor window
	Figure 117. Program halted at breakpoint
	Figure 118. “Grayed” breakpoint
	Figure 119. “Brown” breakpoint

	5.6 Online assembler
	Figure 120. Disassembly window contextual menu
	Figure 121. Online assembler dialog box
	Figure 122. Online ST7 instruction set
	Figure 123. Online assembler dialog box

	5.7 Memory window
	5.7.1 Viewing memory contents
	Figure 124. Memory window

	5.7.2 Viewing features
	Figure 125. Memory contextual menu
	Figure 126. Fill Memory dialog box
	Figure 127. Save Memory to File dialog box
	Figure 128. Restore memory configuration dialog box

	5.8 Instruction breakpoints
	5.8.1 Setting an instruction breakpoint
	5.8.2 Viewing the instruction breakpoints
	Figure 129. Instruction breakpoints window

	5.8.3 Setting counters and conditions
	5.8.4 Showing breakpoints
	Figure 130. Instructions breakpoints contextual menu

	5.9 Data breakpoints
	5.9.1 Inserting data breakpoints
	Figure 131. Inserting write data breakpoint

	5.9.2 Using the Data Breakpoints window
	Figure 132. Data breakpoints window (EMU2)
	Figure 133. Data breakpoints window (DVP and Simulator)

	5.10 Call stack window
	Figure 134. Call stack window and interaction with other debug windows
	Figure 135. Stepping backwards in call stack

	5.11 Local variables window
	Figure 136. Local Variables and Call Stack windows

	5.12 Watch window
	Figure 137. Watch window
	Expanding the display
	Modifying values
	Watch contextual menu
	Figure 138. Watch contextual menu

	5.13 Core registers window
	Figure 139. Concurrent IT registers
	Figure 140. Nested IT registers
	Figure 141. Simulator time registers (Simulator only)
	Figure 142. Simulator instruction counter (Simulator only)

	5.14 MSCI tools window
	Figure 143. MSCI Tools
	MSCI memory tab
	MSCI registers tab
	Codec RAM tab
	USB RAM tab

	5.15 Symbols browser
	Figure 144. Symbols Browser - variables
	Figure 145. Symbols browser-types

	5.16 Peripheral registers window
	Figure 146. Peripheral registers window
	Peripheral registers contextual menu
	Figure 147. Peripheral registers contextual menu

	Peripheral registers display options
	Forced read of status registers
	Figure 148. Forced read warning

	5.17 Memory trace window
	5.18 Online commands
	5.18.1 The load command
	5.18.2 The output_file command
	5.18.3 The stimuli command
	5.18.4 The symbol-file command
	5.18.5 The save_memory command
	5.18.6 The help command

	5.19 Limitations and discrepancies
	General debug limitations
	Debugging discrepancies window
	Figure 149. ST7 Emulation Discrepancies window

	6 Simulator features
	6.1 Using the stack control features
	Figure 150. Stack control window
	Figure 151. Configuration setup window

	6.2 Using the input pin stimulator
	Trigger an analog or digital signal with a delay
	Figure 152. Define a value and delay for an input signal

	Trigger a periodic binary signal with or without a time delay
	Figure 153. Define a periodic signal

	Trigger a binary signal on-the-fly
	Figure 154. Trigger an input signal on-the-fly

	Create and load a stimuli file
	Table 62. Stimuli file syntax

	6.3 Using the simulation plotter
	6.3.1 Plotter selection window
	Figure 155. Select elements for plotting

	6.3.2 Plotter window
	Figure 156. View plotted elements
	Table 63. Tab contextual menu
	Table 64. Display area contextual menu
	Table 65. Name column contextual menu
	Figure 157. No information to plot
	Table 66. Zoom commands
	Figure 158. Scroll controls
	Table 67. Marker commands
	Table 68. Plotter tab management commands
	Table 69. Item display controls
	Figure 159. Select items for export in VCD format
	Figure 160. Select items for printing

	6.4 Using read/write on-the-fly
	Figure 161. Memory and Watch windows with Read/Write on the fly

	6.5 Forcing interrupts
	Table 70. Interrupt mapping

	7 In-circuit debugging
	Overview of in-circuit debugging with ICC
	Overview of in-circuit debugging with SWIM
	7.1 Connecting to and configuring the microcontroller
	7.1.1 Connecting the hardware for in-circuit debugging
	7.1.2 Selecting your MCU
	Figure 162. MCU configuration window

	7.1.3 Ignoring option bytes (ICC only)
	7.1.4 Configuring option byte settings
	Table 71. ICD-incompatible option byte settings
	Figure 163. Setting the option byte values

	7.2 Using breakpoints
	7.2.1 Software breakpoints
	7.2.2 Hardware breakpoints
	7.2.3 Setting advanced breakpoints
	Figure 164. ST7-ICD emulator advanced breakpoints window
	Figure 165. Disable instruction breakpoints prompt
	Figure 166. Disabled instruction breakpoints

	7.2.4 Advanced breakpoint options

	7.3 Creating a break on trigger input (TRIGIN)
	7.4 In-circuit debugging in hot plug mode (SWIM only)
	7.5 In-circuit debugging limitations
	Stack limitation (ICC only)
	TRAP instruction limitation (ICC only)
	Peripheral limitation (ICC only)
	Reset limitation
	External reset limitation
	Address 0x80-0x81 overwrite on reset (ICC only)
	HDFlash devices Flash memory limitation (ICC only)
	Table 72. Flash memory limitation on HDFlash devices

	SWIM debugger limitation

	8 DVP and EMU2 (HDS2) emulator features
	8.1 Working with output triggers
	8.2 Using hardware events
	8.2.1 The hardware event window and contextual menu
	Figure 167. Hardware events window for EMU2 emulator

	8.2.2 Adding a hardware event
	Figure 168. Hardware event settings window for EMU2 emulator
	Figure 169. Hardware event settings window for DVP2
	Figure 170. Hardware events window (EMU2 emulators)
	Figure 171. Hardware events window (DVP2 emulators)
	Figure 172. Hardware events settings dialog box (EMU2 emulators)
	Figure 173. Hardware events settings dialog box (DVP2 emulators)

	8.3 Trace recording
	8.3.1 Trace contextual menu
	Figure 174. Trace contextual menu
	Figure 175. Columns dialog box for DVP emulators
	Figure 176. Columns dialog box for EMU2 emulators
	Figure 177. Trace display filter dialog box
	Figure 178. Save Trace Contents dialog box

	8.3.2 Viewing trace contents
	Figure 179. EMU2 emulator trace window
	Figure 180. DVP2/DVP3 trace window

	8.4 Using hardware testing
	Figure 181. Hardware Test dialog box (DVP version)
	Figure 182. Hardware test underway (EMU2 emulator version)

	8.5 Logical analyser (EMU2 emulators only)
	Figure 183. Logical Analyser mode selection
	8.5.1 Defining logical analyser events
	Figure 184. Logical analyser window
	Figure 185. Defining an event
	Figure 186. Event 1 as programmed

	8.5.2 Advanced breaks using the logical analyser
	Figure 187. Defining an advanced breakpoint
	Figure 188. Defining an advanced breakpoint (continued)

	8.5.3 Trace filtering using the logical analyser
	Figure 189. Trace filtering options
	Figure 190. Trace filtering event schematics

	8.6 Stack control window (DVP emulators)
	Figure 191. Stack Control window
	Figure 192. Configuration setup window

	8.7 Trigger/trace settings (DVP emulators)
	8.7.1 Working with output triggers (DVP)
	Controlling the output trigger on the DVP2 and DVP3
	Figure 193. Trigger/Trace Settings window

	Controlling the DVP1 output trigger
	Figure 194. DVP1 trigger settings

	Working with trace filtering (DVP2 and DVP3 only)
	Figure 195. DVP2 trigger/trace settings

	9 STice features
	9.1 Trace recording
	9.1.1 Trace buffer fields
	Figure 196. STice trace window

	9.1.2 Trace contextual menu
	Figure 197. Trace contextual menu
	Figure 198. Trace Display Filter dialog box
	Figure 199. Saving trace contents
	Figure 200. Show/hide columns
	Figure 201. Customized trace window

	9.1.3 Emulator commands

	9.2 Coverage and profiling
	9.2.1 Configuring the coverage and profiling settings
	Figure 202. Data coverage and occurrence profiling settings window
	Figure 203. Code coverage and profiling settings window
	Figure 204. Code coverage and profiling settings window

	9.2.2 Running a coverage and profiling session
	9.2.3 Reading coverage and profiling results
	Figure 205. Code coverage and profiling analysis: functions/instructions view
	Figure 206. Sort results
	Figure 207. Data coverage and profiling analysis: data view
	Figure 208. Data coverage and profiling analysis: source view

	9.2.4 Typical examples of use
	Figure 209. Lines not covered by test suite
	Figure 210. Source view of test suite
	Figure 211. Coverage and Profiling Analysis of test suite after a longer wait
	Figure 212. Stack memory in Data View tab of the Coverage and Profiling Analysis
	Figure 213. Stack space details
	Figure 214. Bottleneck detection: top level
	Figure 215. Bottleneck detection: intermediate level
	Figure 216. Bottleneck detection: bottom level

	10 EMU3 emulator features
	10.1 Trace recording
	10.1.1 Trace buffer fields
	Figure 217. EMU3 trace window

	10.1.2 Trace contextual menu
	Figure 218. Trace contextual menu
	Figure 219. Trace Display Filter dialog box
	Figure 220. Saving trace contents
	Figure 221. Show/hide columns
	Figure 222. Customized trace window

	10.1.3 Emulator commands
	Figure 223. Setting timestamp clock

	10.2 Using advanced breakpoints
	10.2.1 Defining advanced breakpoints
	Figure 224. Advanced breakpoints window-level 1 programming
	Figure 225. Defining a counter
	Figure 226. Defining Level 1, Event 1
	Figure 227. Then window

	10.2.2 Memory access events
	Figure 228. Memory events
	Figure 229. Memory Access dialog box
	Figure 230. Memory Access with Data dialog box
	Figure 231. Opcode Fetch dialog box
	Figure 232. Opcode Fetch with Data dialog box

	10.2.3 Other types of events
	Figure 233. Other events

	10.2.4 Enabling advanced breakpoints
	10.2.5 Starting with trace ON
	Figure 234. Emulator commands in trace contextual menu

	10.2.6 The configuration summary
	Figure 235. Advanced breakpoints configuration summary

	10.2.7 Synoptic representation of advanced breakpoints
	Figure 236. Graphical synoptic sequence
	Figure 237. Configuration enabled
	Figure 238. Configuration disabled

	10.2.8 Saving and loading advanced breakpoints
	10.2.9 Advanced breakpoint examples
	Figure 239. Programming the memory access
	Figure 240. Memory access dialog box
	Figure 241. Programming Then
	Figure 242. Enabling the configuration
	Table 73. Advanced breakpoint programming summary
	Table 74. Advanced breakpoints summary
	Figure 243. Programming memory access with data
	Figure 244. Configuration summary of program
	Table 75. Advanced breakpoints summary
	Figure 245. Configuration summary

	10.3 Programming trace recording
	Figure 246. Calling function my_lib
	Table 76. Advanced breakpoints summary
	Table 77. Advanced breakpoints summary
	Table 78. Advanced breakpoints summary
	Table 79. Advanced breakpoints summary
	Table 80. Advanced breakpoints summary

	10.4 Using output triggers
	Figure 247. Output trigger action modes
	10.4.1 Trigger programming examples
	Table 81. Advanced breakpoints summary
	Figure 248. Programmed window
	Table 82. Advanced breakpoints summary
	Figure 249. Programming level 1
	Table 83. Advanced breakpoints summary
	Figure 250. Programming Advanced Breakpoints window

	10.5 Using analyzer input signals
	Figure 251. Defining events using Analyzer probe signals
	10.5.1 Analyzer input examples
	Figure 252. Specifying an Analyzer probe value with bit mask
	Table 84. Advanced breakpoints summary

	10.6 Performance analysis
	10.6.1 Running a performance analysis
	Figure 253. Performance Analysis dialog box

	10.6.2 Using the Run/Stop/Continue commands
	10.6.3 Viewing results
	Figure 254. Statistics compiled by performance analysis
	Figure 255. Graphical representation of performance analysis

	10.7 Read/write on the fly
	Figure 256. Memory and Watch windows with read/write on the fly

	10.8 Performing automatic firmware updates
	Figure 257. Emulator update window

	11 Program
	11.1 Configuring general programming settings
	Figure 258. Programmer settings view
	The programming hardware and connection port
	The programming mode
	Protections
	RC Calibration values
	Erase before programming option
	Unlock device

	11.2 Assigning files to memory areas
	Figure 259. Programmer, memory areas view
	“Program even if has empty file list” option

	11.3 Configuring option byte settings
	Figure 260. Programmer, option byte view
	“Program even if default” option

	11.4 Starting the programming sequence
	Figure 261. Programmer program view

	12 STM8 C tutorial
	Table 85. Tutorial sections and applicable debug instrument
	12.1 Setup
	12.1.1 Install the toolset and configure the STVD
	Figure 262. Options menus

	12.1.2 Create a workspace
	Figure 263. Workspace information

	12.1.3 Create a project
	Figure 264. Project parameters
	Figure 265. MCU selection
	Figure 266. Default project contents

	12.1.4 Add the source files
	Figure 267. Project with source file and dependencies

	12.1.5 Create a folder to organize files in the project

	12.2 Build
	12.2.1 Specify the target STM8
	Figure 268. Select the MCU

	12.2.2 Customize the C compiler options
	Figure 269. C compiler options for Raisonance
	Figure 270. C compiler options for Cosmic

	12.2.3 Change build settings for a specific file
	Figure 271. Exclude the makefile from build

	12.2.4 Build the application

	12.3 Start debugging
	12.3.1 Start the debugging session
	Figure 272. Select the debug instrument
	Figure 273. Activate the Watch Pop-up feature

	12.3.2 Run and stop the application
	Figure 274. Application is stopped at the cursor position

	12.3.3 Step through the application
	Figure 275. Step over line 242 to line 243

	12.4 Instruction breakpoints
	12.4.1 Set an instruction breakpoint
	Figure 276. View the value of nbOfTransitions
	Figure 277. Instruction breakpoints

	12.4.2 Set a counter on an instruction breakpoint
	Figure 278. Setting counter

	12.4.3 Set a condition on an instruction breakpoint
	Figure 279. Setting condition
	Figure 280. Condition met

	12.5 View execution
	12.5.1 View calls to the stack
	Figure 281. Call Stack window

	12.5.2 View and change local variables
	Figure 282. QuickWatch window

	12.5.3 View variables using the Watch, QuickWatch and Memory windows
	Figure 283. QuickWatch window
	Figure 284. Watch window
	Figure 285. Memory and Watch windows
	Figure 286. Watch window

	12.6 Perform memory mapping
	Figure 287. MCU configuration

	12.7 Advanced emulator features for EMU3 (ST7) and STice (STM8)
	12.7.1 View program execution history
	Figure 288. Trace contextual menu
	Figure 289. Saving trace contents

	12.7.2 Use read/write on-the-fly
	Figure 290. Memory and Watch windows
	Figure 291. Evolution of variables in Watch window

	12.7.3 Set an advanced breakpoint
	Figure 292. Location of bookmarks
	Figure 293. Setting advanced breakpoints
	Table 86. Advanced breakpoint configuration
	Figure 294. Synoptic view of advanced breakpoint configuration
	Figure 295. Advanced breakpoint info in trace

	12.7.4 Run a coverage and profiling session
	12.7.5 Run a performance analysis
	Figure 296. Setting up a performance analysis
	Figure 297. Performance analysis results
	Figure 298. QuickWatch
	Figure 299. New performance analysis results

	13 ST Assembler/Linker build tutorial
	13.1 Create a new workspace with the New Workspace wizard
	13.2 Create a project using Add New Project to Workspace command
	Figure 300. Create a new project

	13.3 Inserting files in your project
	Adding source files to the project
	Figure 301. Arrange the files

	13.4 Creating a folder to organize files in the project
	13.5 Project settings
	Changing build settings
	Figure 302. Define a value (-d)

	Changing settings for a specific file
	Figure 303. Exclude file from build

	13.6 Build a version for debugging
	13.7 Building a version for programming
	Changing the build configuration
	Figure 304. Change the build configuration

	Applying project settings
	Entering a user-defined command
	Figure 305. Enter a post build copy command

	Appendix A Product support
	A.1 Software updates
	A.2 Hardware spare parts
	A.2.1 Sockets
	A.2.2 Connectors

	A.3 Getting prepared before you call

	Revision history
	Table 87. Document revision history

