
   
   

   

July 2009 Doc ID 13742 Rev 4 1/488

RM0006
Reference manual

STR91xFA ARM9®- based microcontroller family

Introduction
This reference manual provides complete information for application developers on how to
use the STR91xFA microcontroller memory and peripherals. 

The STR91xFA is a family of microcontrollers with different memory sizes, packages and
peripherals.

For ordering information, pin description, mechanical and electrical device characteristics
please refer to the STR91xFA datasheet.  

For information on programming, erasing and protection of the internal Flash memory please
refer to the STR9 Flash programming manual.

For information on the ARM966E-S core, please refer to the ARM966E-S Rev. 2 technical
reference manual.

Related documents
■ Available from www.arm.com: ARM966E-S Rev. 2 technical reference manual

■ Available from www.st.com:
– STR91xFA datasheet
– STR9 Flash programming manual (PM0020)

www.st.com

http://www.st.com
http://www.st.com


   
   

   

Contents RM0006

2/488  Doc ID 13742 Rev 4

Contents

1 Memory and bus architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 ARM9 TCM memories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Burst Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Memory accelerator: Pre-Fetch Queue (PFQ) and Branch Cache (BC) 23

1.2.3 Main SRAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Memory map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Boot configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 OTP sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7 External memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.8 Peripheral access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.9 Peripheral memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.10 FMI register description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10.1 Boot bank size register (FMI_BBSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.2 Non-boot bank size register (FMI_NBBSR) . . . . . . . . . . . . . . . . . . . . . . 40

1.10.3 Boot Bank base address register (FMI_BBADR) . . . . . . . . . . . . . . . . . . 40

1.10.4 Non-boot bank base address register (FMI_NBBADR) . . . . . . . . . . . . . 41

1.10.5 FMI Control register (FMI_CR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.10.6 FMI Status register (FMI_SR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.10.7 BC 16th Entry Target Address register (FMI_BCE16ADDR) . . . . . . . . . 44

1.11 FMI register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.12 External memory interface (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.12.1 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.12.2 Summary of bus configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.12.3 External memory interface (EMI) configuration/control  . . . . . . . . . . . . . 49

1.12.4 External memory interface clock (BCLK) . . . . . . . . . . . . . . . . . . . . . . . . 49

1.12.5 EMI bus timing configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.12.6 Timing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.12.7 Bus mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.12.8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.12.9 EMI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



RM0006 Contents

Doc ID 13742 Rev 4 3/488

   
   

   

2 Power, reset and clocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1 Power supply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1.1 Main operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1.2 Independent A/D converter supply and reference voltage . . . . . . . . . . . 67

2.1.3 Battery backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.1.4 Power-up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2 Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.1 System reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.2 Global reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.3 Reset flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.4 Reset peripherals (software reset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2.5 Reset output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3 Low voltage detector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.1 External clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.2 Master clock (fMSTR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.3 Flash memory interface clock (FMICLK)  . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.4 UART and SSP clock (BRCLK)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.5 External memory interface clock (BCLK) . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.6 USBCLK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.7 External RTC calibration clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.8 PHY clock output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.9 PLL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.10 Changing the PLL configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.11 Clock dividers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.12 Peripheral clock gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5 Low power modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.1 Normal run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.5.2 Special interrupt run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.5.3 Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.4 Sleep mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.5.5 Sleep mode and Idle mode configuration considerations  . . . . . . . . . . . 79

2.6 System control unit (SCU)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6.1 SCU interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6.2 SRAM configuration/control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.6.3 PFQ/BC configuration/control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



   
   

   

Contents RM0006

4/488  Doc ID 13742 Rev 4

2.6.4 External memory interface (EMI) configuration/control  . . . . . . . . . . . . . 84

2.6.5 UART configuration/control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.6.6 Port 3.0 ETM trigger or external debug request selection . . . . . . . . . . . 84

2.6.7 System control unit GPIO registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6.8 ADC Fast trigger conversion in single mode  . . . . . . . . . . . . . . . . . . . . . 85

2.6.9 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6.10 SCU register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3 General purpose I/O ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.1 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2 I/O operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2.1 GPIO_DATA register read/write masking . . . . . . . . . . . . . . . . . . . . . . . 116

3.2.2 Reset state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.3 System control unit GPIO registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.1 GPIO data register (GPIO_DATA)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.2 GPIO data direction register (GPIO_DIR)  . . . . . . . . . . . . . . . . . . . . . . 120

3.4.3 GPIO mode control register (GPIO_SEL)  . . . . . . . . . . . . . . . . . . . . . . 120

3.4.4 GPIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Interrupts (VIC and WIU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Interrupt inputs to the CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Vectored interrupt controller (VIC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 FIQ handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5 IRQ handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 VIC register address mapping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.7 Interrupt priority  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Software interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.9 Enabling interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.10 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.10.1 IRQ status register (VICx_ISR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.10.2 FIQ status register (VICx_FSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.10.3 Raw interrupt status register (VICx_RINTSR) . . . . . . . . . . . . . . . . . . . 129

4.10.4 Interrupt select register (VICx_INTSR)  . . . . . . . . . . . . . . . . . . . . . . . . 130

4.10.5 Interrupt enable register (VICx_INTER) . . . . . . . . . . . . . . . . . . . . . . . . 130



RM0006 Contents

Doc ID 13742 Rev 4 5/488

   
   

   

4.10.6 Interrupt enable clear register (VICx_INTECR) . . . . . . . . . . . . . . . . . . 131

4.10.7 Software interrupt register (VICx_SWINTR)  . . . . . . . . . . . . . . . . . . . . 131

4.10.8 Software interrupt clear register (VICx_SWINTCR) . . . . . . . . . . . . . . . 132

4.10.9 Protection enable register (VICx_PER) . . . . . . . . . . . . . . . . . . . . . . . . 132

4.10.10 Current vector address register (VICx_VAR) . . . . . . . . . . . . . . . . . . . . 133

4.10.11 Default vector address register (VICx_DVAR) . . . . . . . . . . . . . . . . . . . 133

4.10.12 Vector address i registers (VICx_VAiR) . . . . . . . . . . . . . . . . . . . . . . . . 134

4.10.13 Vector control i registers (VICx_VCiR) . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.11 VIC register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.12 Wakeup/Interrupt Unit (WIU)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.12.2 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.12.3 WIU register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Real time clock (RTC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.1 RTC clock control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.2 Battery backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4 Clock calibration output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Time of day clock / calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Tamper detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7 Alarm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.8 Periodic interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.9 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.9.1 RTC time register (RTC_TR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.9.2 RTC date register (RTC_DTR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.9.3 RTC alarm time register (RTC_ATR) . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.9.4 RTC control register (RTC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.9.5 RTC status register (RTC_SR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.9.6 RTC millisecond register (RTC_MILR)  . . . . . . . . . . . . . . . . . . . . . . . . 153

5.10 RTC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



   
   

   

Contents RM0006

6/488  Doc ID 13742 Rev 4

6.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.1 Free-running timer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.2 Watchdog mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3.3 Programming considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4.1 WDG control register (WDG_CR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4.2 WDG prescaler register (WDG_PR)  . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.3 WDG preload value register (WDG_VR) . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.4 WDG counter register (WDG_CNT)  . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4.5 WDG status register (WDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4.6 WDG mask register (WDG_MR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4.7 WDG key register (WDG_KR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5 Watchdog timer register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 16-bit timer (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.1 Counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.2 External clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.3 Input capture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.3.4 Output compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.3.5 Forced compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3.6 One pulse mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3.7 Pulse width modulation mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3.8 Pulse width modulation input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 Interrupt management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.6.1 Input capture register 1 (TIM_IC1R)  . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.6.2 Input capture register 2 (TIM_IC2R)  . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.6.3 Output compare register 1 (TIM_OC1R) . . . . . . . . . . . . . . . . . . . . . . . 176

7.6.4 Output compare register 2 (TIM_OC2R) . . . . . . . . . . . . . . . . . . . . . . . 176

7.6.5 Counter register (TIM_CNTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.6.6 Control register 1 (TIM_CR1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



RM0006 Contents

Doc ID 13742 Rev 4 7/488

   
   

   

7.6.7 Control register 2 (TIM_CR2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6.8 Status register (TIM_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.7 TIM register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8 MAC/DMA controller with DMA (ENET) . . . . . . . . . . . . . . . . . . . . . . . . 182

8.1 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.1 MAC 802.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.2 MII  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.3 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2 MAC 802.3 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.1 MAC 802.3 frame format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.2 MAC frame reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.2.3 Frame reception errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2.4 MAC frame transmission  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2.5 Frame transmission errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.2.6 Loopback mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3 DMA controller operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3.1 RX DMA configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3.2 RX DMA descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3.3 RX error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.3.4 RX packet status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.3.5 TX DMA configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.3.6 TX DMA descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.3.7 TX packet status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.4.1 DMA status/control register (ENET_SCR) . . . . . . . . . . . . . . . . . . . . . . 202

8.4.2 DMA interrupt enable register (ENET_IER) . . . . . . . . . . . . . . . . . . . . . 204

8.4.3 DMA interrupt status register (ENET_ISR)  . . . . . . . . . . . . . . . . . . . . . 206

8.4.4 Clock configuration register (ENET_CCR) . . . . . . . . . . . . . . . . . . . . . . 208

8.4.5 RX start register (ENET_RXSTR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.4.6 RX control register (ENET_RXCR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.4.7 RX start address register (ENET_RXSAR)  . . . . . . . . . . . . . . . . . . . . . 212

8.4.8 RX next descriptor address register (ENET_RXNDAR)  . . . . . . . . . . . 213

8.4.9 RX current address register (ENET_RXCAR) . . . . . . . . . . . . . . . . . . . 214

8.4.10 RX current transfer count register (ENET_RXCTCR)  . . . . . . . . . . . . . 214

8.4.11 RX time-out register (ENET_RXTOR) . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.4.12 RX status register (ENET_RXSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



   
   

   

Contents RM0006

8/488  Doc ID 13742 Rev 4

8.4.13 TX start register (ENET_TXSTR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.4.14 TX control register (ENET_TXCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.4.15 TX start address register (ENET_TXSAR)  . . . . . . . . . . . . . . . . . . . . . 220

8.4.16 TX next descriptor address register (ENET_TXNDAR) . . . . . . . . . . . . 221

8.4.17 TX current address register (ENET_TXCAR)  . . . . . . . . . . . . . . . . . . . 222

8.4.18 TX current transfer count register (ENET_TXCTCR) . . . . . . . . . . . . . . 222

8.4.19 TX time-out register (ENET_TXTOR)  . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.4.20 TX status register (ENET_TXSR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.4.21 MAC control register (ENET_MCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.4.22 MAC address high register (ENET_MAH) . . . . . . . . . . . . . . . . . . . . . . 229

8.4.23 MAC address low register (ENET_MAL) . . . . . . . . . . . . . . . . . . . . . . . 229

8.4.24 Multicast address high register (ENET_MCHA)  . . . . . . . . . . . . . . . . . 230

8.4.25 Multicast address low register (ENET_MCLA) . . . . . . . . . . . . . . . . . . . 231

8.4.26 MII address register (ENET_MIIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.4.27 MII data register (ENET_MIID)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.4.28 MII control frame register (ENET_MCF)  . . . . . . . . . . . . . . . . . . . . . . . 234

8.4.29 VLAN1 register (ENET_VL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.4.30 VLAN2 register (ENET_VL2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.4.31 MAC transmission status register (ENET_MTS)  . . . . . . . . . . . . . . . . . 237

8.4.32 MAC reception status register (ENET_MRS) . . . . . . . . . . . . . . . . . . . . 239

8.5 Ethernet controller register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9 DMA controller (DMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

9.3 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9.3.1 DMA request priority  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9.3.2 Protection control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.3.3 Lock control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.3.4 Bus width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.3.5 Interrupt generation logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.4 Software considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.4.1 Error conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

9.4.2 Programming the DMAC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

9.4.3 Address generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.4.4 Scatter/gather  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.4.5 Linked list items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251



RM0006 Contents

Doc ID 13742 Rev 4 9/488

   
   

   

9.4.6 Programming the DMAC for scatter/gather DMA . . . . . . . . . . . . . . . . . 252

9.4.7 Interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

9.4.8 Combined terminal count and error interrupt sequence flow . . . . . . . . 253

9.4.9 Interrupt polling sequence flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9.4.10 DMAC data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9.5 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

9.5.1 Common registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

9.5.2 Channel registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9.6 DMA register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

10 Synchronous serial peripheral (SSP)  . . . . . . . . . . . . . . . . . . . . . . . . . 275

10.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10.3 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

10.3.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.3.2 Master mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

10.3.3 Slave mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

10.3.4 Slave Select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

10.4 SSP operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

10.4.1 Configuring the SSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

10.4.2 Enabling SSP operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

10.4.3 Programming the SSP_CR0 control register . . . . . . . . . . . . . . . . . . . . 279

10.4.4 Programming the SSP_CR1 control register . . . . . . . . . . . . . . . . . . . . 279

10.4.5 Clock ratios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

10.4.6 Bit rate generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

10.4.7 Frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

10.4.8 Transmit FIFO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

10.4.9 Receive FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

10.4.10 Interrupt control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

10.5 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

10.5.1 Control register 0 (SSP_CR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

10.5.2 Control register 1 (SSP_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

10.5.3 Data register (SSP_DR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

10.5.4 Status register (SSP_SR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

10.5.5 Clock prescaler register (SSP_PR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

10.5.6 Interrupt mask set and clear register (SSP_IMSCR) . . . . . . . . . . . . . . 291



   
   

   

Contents RM0006

10/488  Doc ID 13742 Rev 4

10.5.7 Raw interrupt status register (SSP_RISR) . . . . . . . . . . . . . . . . . . . . . . 292

10.5.8 Masked interrupt status register (SSP_MISR) . . . . . . . . . . . . . . . . . . . 292

10.5.9 Interrupt clear register (SSP_ICR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

10.5.10 DMA control register (SSP_DMACR)  . . . . . . . . . . . . . . . . . . . . . . . . . 293

10.6 SSP register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

11 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . 295

11.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

11.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

11.3 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

11.3.1 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

11.3.2 Fractional baud rate divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

11.3.3 Data transmission or reception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

11.3.4 UART hardware flow control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

11.3.5 IrDA mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

11.3.6 Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

11.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

11.4.1 Data register (UART_DR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

11.4.2 Receive status register/error clear register(UART_RSECR) . . . . . . . . 306

11.4.3 Flag register (UART_FR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

11.4.4 IrDA low power counter divisor register (UART_ILPR)  . . . . . . . . . . . . 308

11.4.5 Integer baud rate register (UART_IBRD) . . . . . . . . . . . . . . . . . . . . . . . 309

11.4.6 Fractional baud rate register (UART_FBRD) . . . . . . . . . . . . . . . . . . . . 310

11.4.7 Line control register (UART_LCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

11.4.8 Control register (UART_CR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

11.4.9 Interrupt FIFO level select register (UART_IFLS)  . . . . . . . . . . . . . . . . 315

11.4.10 Interrupt mask set/clear register (UART_IMSC)  . . . . . . . . . . . . . . . . . 316

11.4.11 Raw interrupt status register (UART_RIS) . . . . . . . . . . . . . . . . . . . . . . 317

11.4.12 Masked interrupt status register (UART_MIS) . . . . . . . . . . . . . . . . . . . 319

11.4.13 Interrupt clear register (UART_ICR)  . . . . . . . . . . . . . . . . . . . . . . . . . . 320

11.4.14 DMA control register (UART_DMACR)  . . . . . . . . . . . . . . . . . . . . . . . . 321

11.5 UART register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

12 I2C interface module (I2C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

12.1 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

12.2 General description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324



RM0006 Contents

Doc ID 13742 Rev 4 11/488

   
   

   

12.2.1 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

12.2.2 Communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

12.2.3 SDA/SCL line control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

12.3 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

12.3.1 Slave mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

12.3.2 Master mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

12.4 Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

12.5 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

12.5.1 I2C control register (I2C_CR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

12.5.2 I2C status register 1 (I2C_SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

12.5.3 I2C status register 2 (I2C_SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

12.5.4 I2C clock control register (I2C_CCR) . . . . . . . . . . . . . . . . . . . . . . . . . . 337

12.5.5 I2C extended clock control register (I2C_ECCR)  . . . . . . . . . . . . . . . . 338

12.5.6 I2C own address register 1 (I2C_OAR1) . . . . . . . . . . . . . . . . . . . . . . . 338

12.5.7 I2C own address register 2 (I2C_OAR2) . . . . . . . . . . . . . . . . . . . . . . . 339

12.5.8 I2C data register (I2C_DR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

12.6 I2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

13 3-phase induction motor controller (MC)  . . . . . . . . . . . . . . . . . . . . . . 341

13.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

13.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

13.3 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

13.3.1 Tacho counter operating modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

13.3.2 MC operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

13.3.3 MC output selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

13.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

13.4.1 Tacho capture register (MC_TCPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

13.4.2 Tacho compare register (MC_TCMP)  . . . . . . . . . . . . . . . . . . . . . . . . . 354

13.4.3 Interrupt pending register (MC_IPR)  . . . . . . . . . . . . . . . . . . . . . . . . . . 355

13.4.4 Tacho prescaler register (MC_TPRS)  . . . . . . . . . . . . . . . . . . . . . . . . . 356

13.4.5 PWM counter prescaler register (MC_CPRS) . . . . . . . . . . . . . . . . . . . 357

13.4.6 Repetition counter register (MC_REP)  . . . . . . . . . . . . . . . . . . . . . . . . 357

13.4.7 Compare phase W preload register (MC_CMPW)  . . . . . . . . . . . . . . . 358

13.4.8 Compare phase V preload register (MC_CMPV)  . . . . . . . . . . . . . . . . 359

13.4.9 Compare phase U preload register (MC_CMPU)  . . . . . . . . . . . . . . . . 360

13.4.10 Compare 0 preload register (MC_CMP0)  . . . . . . . . . . . . . . . . . . . . . . 360



   
   

   

Contents RM0006

12/488  Doc ID 13742 Rev 4

13.4.11 Peripheral control register 0 (MC_PCR0)  . . . . . . . . . . . . . . . . . . . . . . 361

13.4.12 Peripheral control register 1 (MC_PCR1)  . . . . . . . . . . . . . . . . . . . . . . 362

13.4.13 Peripheral control register 2 (MC_PCR2)  . . . . . . . . . . . . . . . . . . . . . . 363

13.4.14 Polarity selection register (MC_PSR)  . . . . . . . . . . . . . . . . . . . . . . . . . 364

13.4.15 Output peripheral register (MC_OPR) . . . . . . . . . . . . . . . . . . . . . . . . . 365

13.4.16 Interrupt mask register (MC_IMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

13.4.17 Dead time generator register (MC_DTG)  . . . . . . . . . . . . . . . . . . . . . . 367

13.4.18 Emergency stop clear register (MC_ESC) . . . . . . . . . . . . . . . . . . . . . . 368

13.4.19 Enhanced control register (MC_ECR) . . . . . . . . . . . . . . . . . . . . . . . . . 369

13.4.20 Lock register (MC_LOK)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

13.5 MC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

14 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

14.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

14.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

14.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

14.4 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

14.4.1 Software initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

14.4.2 CAN message transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

14.4.3 Disabled automatic re-transmission mode . . . . . . . . . . . . . . . . . . . . . . 376

14.4.4 Test mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

14.5 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

14.5.1 CAN interface reset state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

14.5.2 CAN protocol related registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

14.5.3 Message interface register sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

14.5.4 Message handler registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

14.6 Can register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

14.7 CAN communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

14.7.1 Managing message objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

14.7.2 Message handler state machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

14.7.3 Configuring a transmit object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

14.7.4 Updating a transmit object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

14.7.5 Configuring a receive object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

14.7.6 Handling received messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

14.7.7 Configuring a FIFO buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

14.7.8 Receiving messages with FIFO buffers . . . . . . . . . . . . . . . . . . . . . . . . 409



RM0006 Contents

Doc ID 13742 Rev 4 13/488

   
   

   

14.7.9 Handling interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

14.7.10 Configuring the bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

15 USB slave interface (USB)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

15.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

15.2 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

15.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

15.4 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

15.4.1 Description of USB blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

15.5 Programming considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

15.5.1 Generic USB device programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

15.5.2 System and power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

15.5.3 Double-buffered endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

15.5.4 Isochronous transfers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

15.5.5 Suspend/Resume events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

15.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

15.6.1 Common registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

15.6.2 Endpoint-specific registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

15.6.3 DMA registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

15.6.4 Buffer descriptor table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

15.6.5 USB peripheral register page maping  . . . . . . . . . . . . . . . . . . . . . . . . . 461

16 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

16.1 Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

16.2 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

16.2.1 Clock prescaler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

16.2.2 Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

16.2.3 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

16.3 External pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

16.4 Functional description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

16.4.1 Conversion modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

16.4.2 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

16.4.3 Starting conversion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

16.4.4 Fast trigger conversion in single mode  . . . . . . . . . . . . . . . . . . . . . . . . 469

16.4.5 Analog watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

16.5 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471



   
   

   

Contents RM0006

14/488  Doc ID 13742 Rev 4

16.5.1 ADC control register (ADC_CR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

16.5.2 Channel configuration register (ADC_CCR)  . . . . . . . . . . . . . . . . . . . . 473

16.5.3 High threshold register (ADC_HTR)  . . . . . . . . . . . . . . . . . . . . . . . . . . 473

16.5.4 Low threshold register (ADC_LTR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

16.5.5 Compare result register (ADC_CRR)  . . . . . . . . . . . . . . . . . . . . . . . . . 474

16.5.6 ADC data register (ADC_DRx)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

16.5.7 ADC prescaler register (ADC_PRS)  . . . . . . . . . . . . . . . . . . . . . . . . . . 475

16.5.8 ADC DMA data register (ADC_DDR)  . . . . . . . . . . . . . . . . . . . . . . . . . 476

16.5.9 ADC control register 2 (ADC_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

16.6 ADC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

17 AHB/APB bridges (APB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

17.1 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

17.2 Split transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

17.3 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

17.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

17.4.1 Bridge status register (APB_BSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

17.4.2 Bridge configuration register (APB_BCR)  . . . . . . . . . . . . . . . . . . . . . . 481

17.4.3 Peripheral address register (APB_PAER)  . . . . . . . . . . . . . . . . . . . . . . 482

17.5 AHB/APB bridge register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

18 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483



RM0006 List of tables

Doc ID 13742 Rev 4 15/488

   
   

   

List of tables

Table 1. STR91xFAx32 Flash module organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 2. STR91xFAx44 Flash module organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 3. STR91xFAx46 Flash module organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 4. STR91xFAx47 Flash module organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 5. Peripheral memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 6. FMI register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 7. EMI register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 8. Reset flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 9. Sleep mode wakeup time for PLL, Flash and crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 10. CCU output clocks that determine the entry time (tSLEEP) . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 11. SCU register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 12. GPIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 13. VIC interrupt channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 14. VICx register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 15. WIU register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 16. RTC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 17. Watchdog timer register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 18. TIM register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 19. TX interface signals encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 20. RX interface signals encoding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 21. Management frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 22. Ethernet controller register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Table 23. DMA request signal mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Table 24. DMA register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Table 25. SSP pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Table 26. SSP register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Table 27. Typical baud rates and their corresponding integer and fractional

(dividers (BRCLK = 96 MHz)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Table 28. Typical baud rates and their corresponding integer and fractional

dividers (BRCLK = 48 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Table 29. Typical baud rates and their corresponding integer and fractional

dividers (BRCLK = 24 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Table 30. Receive FIFO bit functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Table 31. Control bits to enable and disable hardware flow control . . . . . . . . . . . . . . . . . . . . . . . . . 302
Table 32. Status of individual interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Table 33. SPS, EPS and PEN bits truth table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Table 34. Trigger points for DMA burst requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Table 35. UART register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Table 36. 7-bit addressing mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Table 37. 10-bit Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Table 38. I2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Table 39. MC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Table 40. CAN registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Table 41. Error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Table 42. IF1 and IF2 message interface register set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Table 43. Structure of a message object in the message memory. . . . . . . . . . . . . . . . . . . . . . . . . . 394
Table 44. Source of interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Table 45. CAN register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402



   
   

   

List of tables RM0006

16/488  Doc ID 13742 Rev 4

Table 46. Initialization of a Transmit Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Table 47. Initialization of a Receive Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Table 48. CAN bit time parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Table 49. Double-buffering buffer flag definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Table 50. Double-buffering memory buffers usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Table 51. Isochronous memory buffers usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Table 52. Resume event detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Table 53. Reception status encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Table 54. Endpoint type encoding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Table 55. Endpoint kind meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Table 56. Transmission status encoding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Table 57. Definition of allocated buffer memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Table 58. USB peripheral register page mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Table 59. ADC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Table 60. Bridge register map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Table 61. Document revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483



RM0006 List of figures

Doc ID 13742 Rev 4 17/488

   
   

   

List of figures

Figure 1. Memory and bus architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2. ARM966E TCM interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. Burst Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4. Memory accelerator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 5. 16th cache entry for instruction at address 0x0018  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. STR91xFA system memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. Typical memory map with device configured to boot from Bank 0 . . . . . . . . . . . . . . . . . . . 32
Figure 8. EMI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 9. EMI memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 10. Mux mode with 16-bit data, 20-bit address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 11. Mux mode with 16-bit data, 24-bit address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 12. Non-mux mode with 8-bit data, 16-bit address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 13. Mux mode with 8-bit data, 16-bit address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 14. Asynchronous read bus cycle (mux mode, with WSTOE = 2, WSTRD = 3). . . . . . . . . . . . 51
Figure 15. Asynchronous write bus cycle (mux mode, with WSTWE = 2, WSTWR = 3) . . . . . . . . . . . 52
Figure 16. Asynchronous page mode read bus cycle 

(with WSTOE = 1, WSTRD = 2, WSTBRD = 0, BRLEN = 4) . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 17. EMI Bus "glue-less" interface to PSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 18. PSRAM synchronous burst read bus cycle  (with WSTOE = 4, WSTRD = 5,

WSTBRD = 0 for 70ns PSRAM at 96 MHz BCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 19. PSRAM synchronous burst write bus cycle

(with WSTWEN = 0, WSTWR = 5 for 70 ns PSRAM at 96 MHz BCLK) . . . . . . . . . . . . . . . 56
Figure 20. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 21. Reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 22. Clock control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 23. Comparison of power control modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 24. Low power mode state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 25. Clock management during Sleep Mode with crystal connected . . . . . . . . . . . . . . . . . . . . . 80
Figure 26. Clock management during Sleep mode with crystal and PLL. . . . . . . . . . . . . . . . . . . . . . . 81
Figure 27. SCU Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 28. Example Write to address 098h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 29. Example Read from address 0C4h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 30. I/O Control block diagram P0 - P7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 31. Interrupt control block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 32. VIC interrupt request logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 33. WIU block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 34. RTC simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 35. Watchdog timer functional block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 36. Timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 37. Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 38. Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 39. Counter timing diagram, internal clock divided by n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 40. Input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 41. Input capture timing diagram, internal clock divided by 8 . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 42. Output compare block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 43. Output compare timing diagram, Internal Clock Divided by 2. . . . . . . . . . . . . . . . . . . . . . 168
Figure 44. One pulse mode flowchart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 45. One pulse mode timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



   
   

   

List of figures RM0006

18/488  Doc ID 13742 Rev 4

Figure 46. PWM mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 47. Pulse width modulation mode timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 48. Pulse width modulation input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 49. MAC/DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 50. Transmission with no collision  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 51. Transmission with collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 52. Reception with no errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 53. Reception with errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 54. Reception with false carrier indication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 55. MII TX interface: output timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 56. MII RX interface: input timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 57. MII management interface: input timing requirements (PHY device) . . . . . . . . . . . . . . . . 187
Figure 58. MII management interface: output timing requirements (PHY device) . . . . . . . . . . . . . . . 188
Figure 59. Address field format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 60. MAC frame format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 61. Tagged MAC frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 62. RX Packet status word modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 63. TX Packet Status word modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 64. DMA Descriptor in main memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 65. DMA block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Figure 66. LLI example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Figure 67. SSP block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Figure 68. Interconnection example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Figure 69. Generic NSS Timing Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Figure 70. TI synchronous serial frame format (single transfer)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Figure 71. TI synchronous serial frame format (continuous transfer)  . . . . . . . . . . . . . . . . . . . . . . . . 282
Figure 72. Motorola SPI frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Figure 73. Microwire frame format (single transfer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Figure 74. Microwire frame format (continuous transfers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Figure 75. 8-bit data frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Figure 76. 8-bit data frames with PEN = 1 and STP2 = 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Figure 77. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Figure 78. Baud rate divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Figure 79. Calculating the divider value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Figure 80. Hardware flow control between two similar devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Figure 81. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Figure 82. I2C interface block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Figure 83. Transfer sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Figure 84. Event flags and interrupt generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Figure 85.  MC controller block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Figure 86. Counting sequence in zerocentered and classical mode . . . . . . . . . . . . . . . . . . . . . . . . . 344
Figure 87. Zerocentered PWM waveforms (Compare 0 register = 8)  . . . . . . . . . . . . . . . . . . . . . . . . 344
Figure 88. Normal zerocentered mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Figure 89. Double update zerocentered mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Figure 90. Classical PWM Waveforms (Compare 0 Register = 8). . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Figure 91. Dead Time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Figure 92. Dead time waveforms with delay greater than the negative PWM pulse . . . . . . . . . . . . . 349
Figure 93. Dead time waveforms with delay greater than the positive PWM pulse . . . . . . . . . . . . . . 349
Figure 94. MC output selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Figure 95. Block diagram of the CAN Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Figure 96. CAN core in silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Figure 97. CAN core in loop back mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377



RM0006 List of figures

Doc ID 13742 Rev 4 19/488

   
   

   

Figure 98. CAN core in loop back mode combined with silent mode. . . . . . . . . . . . . . . . . . . . . . . . . 378
Figure 99. Data transfer between IFn Registers and Message RAM. . . . . . . . . . . . . . . . . . . . . . . . . 405
Figure 100. CPU handling of a FIFO buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Figure 101. Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Figure 102. Propagation time segment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Figure 103. Synchronization on “late” and “early” Edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Figure 104. Filtering of short dominant spikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Figure 105. Structure of the CAN core’s CAN protocol controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Figure 106. USB Peripheral block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Figure 107. Packet buffer areas with examples of buffer description table locations  . . . . . . . . . . . . . 428
Figure 108. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Figure 109. ADC operation flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Figure 110. ADC clock gated in Fast trigger conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Figure 111. Analog watchdog guarded area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470



   
   

   

Memory and bus architecture RM0006

20/488  Doc ID 13742 Rev 4

1 Memory and bus architecture

1.1 Introduction

Figure 1. Memory and bus architecture

AHB Bus

ARM Core

External Memory Bus (8 or 16 bit data width)

EMI APB 0 
Bridge

APB 0 Bus

USB

I-TCM

APB 1
Bridge

APB 1 Bus

Peripherals Peripherals 

D
-T

C
M

- High speed Burst Operation

- Bank 0 256K/512K/1024K/2048 Kbytes
- Bank 1 32K/128 Kbytes

- 64/96 Kbytes
- 0 wait states up 96 MHz

- Optional Write Buffer
- Shared D-TCM/AHB access
- Optional Battery Backup

- 32-bit access, 128-bit internal width

- High Speed SRAM
- 32-bit access

- Prefetch Queue (PFQ)
- Branch cache (BC)

SRAM

FLASH MEMORY

VIC

Arbiter 8-channel
DMA

Controller

MAC

DMA

AMBA

SRAM/FLASH/EEPROM/ROM/PSRAM



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 21/488

   
   

   

1.2 ARM9 TCM memories
The ARM9 Tightly Coupled Memories are designed to store real-time code and 
performance critical code/data in dedicated memory blocks close to the processor core for 
quick access.

In the STR91xFA, the D-TCM and I-TCM are used as the main memory interfaces for data 
and instruction memory.  The TCMs are enabled automatically after power on and contain 
the SRAM and Burst Flash memory. Refer to Figure 2.

The ARM966 TCM interface has the following features: 

● Ability to stall the ARM966 core using the wait signal

● Signal to indicate if an access is sequential

● Signal to indicate if TCM access is Instruction or Data

Figure 2. ARM966E TCM interfaces

1. Legend: F = Fetch; D = Decode; E = execute; M = Memory read; W = Register write back

F D E M W F D E M

F D E M W F D E

F D E M W F D

F D E M W F

F D E M W

32-bit wide 
Burst Flash

(up to 544 Kbytes)

32-bit wide 
SRAM

(up to 96 Kbytes)

I-TCM

D-TCM WRITE
BUFFER

ARBITER

CPU

CORE

AHB Bus

ARM966E

PFQ/
BC

BURST

INTERFACE

5-stage Instruction Pipeline
t0 t1 t2 t3 t4 ......



   
   

   

Memory and bus architecture RM0006

22/488  Doc ID 13742 Rev 4

1.2.1 Burst Flash

● Dual Flash memory banks

● MCU can write/erase one while reading the other

● Either Flash bank can reside at boot location (address 0x00000000)

● Bank order is user defined

Refer to Table 1 and Table 2 for the bank and sector address mapping. Refer to the STR9 
Flash Programming Manual for information on how to erase/program/protect the Flash. 

The Low Power, Dual Bank, Burst Flash (32 bits wide) is connected to the I-TCM on a 
private Flash Bus. The two banks contain 256/512/1024/2028 Kb Main Flash and 
32 Kb/128 Kb Secondary Flash.

Internally, burst Flash memories are 128-bits wide (4 words), which feed a 4-stage burst 
buffer capable of pipelining 4 words, as shown in Figure 3. The output of the burst buffer 
feeds a memory accelerator consisting of a Pre-Fetch Queue and a Branch Cache 
(explained in Section 1.2.2). In addition to storing instructions, Flash memory can store data 
constants, also known as literals.

When the CPU requests to read the burst Flash memory with sequential addresses, the 
burst buffer can supply a steady stream of 32-bit words to the CPU at a sustained rate of 
96 MHz (10.4 ns access time). Anytime the CPU requests to read burst Flash memory with 
a non-sequential address, the 4-word burst buffer is flushed (emptied) and a new block of 
128-bits is accumulated and loaded into the 4-word burst buffer. In this case, when the 
requested address is non-sequential, the access time for the first word coming out of the 
burst buffer is 50-ns. However, access time immediately returns to 10.4 ns when subsequent 
CPU fetches have sequential addresses, and the burst Flash again can sustain a rate of 
96 MHz operation.

Figure 3. Burst Flash memory

ARM
966E
CPU

ITCM
MEM

ACCEL
INSTRUCTIONS

32
 b

its

32
 b

its

32
 b

its

32
 b

its

12
8 

bi
ts

12
8 

bi
ts

FLASH
MEMORY

BURST BUFFER

50
 n

s

10
 n

s

10
 n

s

10
 n

s

First non-sequential 
instruction takes 50 ns All following sequential instructions

take only 10ns (96 MHz)

12
8 

bi
ts

12
8 

bi
ts



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 23/488

   
   

   

1.2.2 Memory accelerator: Pre-Fetch Queue (PFQ) and Branch Cache (BC)

To minimize the effect of the 50 ns "penalty" in access time of a non-sequential address 
fetch, a memory accelerator (Figure 4) is employed to maintain a steady flow of instructions 
or literals with minimum "gaps" to the CPU. 

Figure 4. Memory accelerator

Simply put, these "gaps" are caused by either idle bus cycles, or non-sequential 
instructions. The Pre-Fetch Queue (PFQ) minimizes gaps caused by idle bus cycles, and 
the Branch Cache (BC) minimizes gaps cause by non-sequential addresses resulting from 
branches in instruction flow.

Pre-fetch queue (PFQ)

Even though the ARM9E is a RISC processor, there are still 2 and 4-cycle instructions in 
addition to traditional 1-cycle RISC instructions. During 2 and 4-cycle instructions there are 
idle bus cycles when the CPU core consumes less than one word per clock. The 8-word 
deep PFQ has a chance to fill, or "catch-up" by prefetching instruction elements during 
these idle bus cycles. The resulting benefit is that there are minimum gaps in instruction flow 
to the CPU during sequential access to burst Flash memory, even during multi-cycle 
instructions.

Special design consideration was given to the PFQ to avoid a PFQ flush when the CPU 
fetches data constants, or literals, from the burst Flash through the ITCM. The ARM 
compiler allows the storage of such data literals (a look-up table for example) in the same 
non-volatile memory as the instructions. The PFQ logic can recognize when data literals are 
being fetched by the CPU and will preserve the instructions in the PFQ until the literals have 
been fetched, then instructions will be resumed from the PFQ.

 1
5

 1
4

 1
3

 1
2

 1
1

 1
0

 9
 8

 7
 6

 5
 4

 2

E
X

E
C

U
T

E

D
E

C
O

D
E

F
E

T
C

H

IN
S

T

A
LU

ARM966E CPU

10ns10ns10ns BC

PFQ

MUX

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

IN
S

T

32
 b

its

32
 b

its

32
 b

its

32
 b

its

10
ns

10
ns

10
ns

10
ns

12
8-

bi
t w

id
e 

ar
ra

y

BURST FLASH
PRE-FETCH QUEUE

HIT

SEQ
OR
MISS

 1
B

R
 A

D
D

R
 0

BRANCH CACHE

 3



   
   

   

Memory and bus architecture RM0006

24/488  Doc ID 13742 Rev 4

Branch cache (BC)

When instruction addresses requested from burst Flash memory are non-sequential (from a 
branch in instruction flow), the PFQ must be flushed and there is a time penalty while the 
PFQ refills itself again from burst Flash memory, causing the CPU to stall. 

To minimize this situation, the BC remembers the destination address of the most recent 
previous 15 branches that the CPU has taken, and the BC stores up to 8 instructions 
associated with each one of those 15 branch addresses. 

Branch cache hit: Each time the CPU makes an instruction branch, the BC will 
immediately compare the current branch destination address to all 15 BC entries 
simultaneously. If the current branch address matches one of the 15 stored addresses, then 
the BC will supply up to 8 instructions of that branch immediately, minimizing time penalty or 
CPU stall. While the CPU is consuming up to 8 instructions provided by the BC, the PFQ 
has time to load itself. By the time the CPU has consumed the 8th instruction from the BC 
for this branch, the PFQ is ready to take over and provide the subsequent instructions (9th, 
10th, and so on) without delay.

Branch cache miss: If the comparison of the current branch destination address does not 
match any of the 15 BC entries, then the PFQ must provide the instructions, and the CPU 
will stall while the PFQ begins to reload itself. However, this new branch destination address 
and the initial 8 instructions associated with this branch are loaded into the BC for next time. 
The least recently used branch entry is removed from the BC to make room for this new BC 
entry.

The STR91xFA also makes use of the 16th entry in the BC to hold the instruction at address 
0x0018 when an interrupt (IRQ) occurs. This significantly reduces the stall time when 
servicing interrupts.

Figure 5. 16th cache entry for instruction at address 0x0018

IRQ 
Core jumps to 
0x0018

Executes
intruction from
cache to 
read interrupt
vector from VIC
and branch to it

Core jumps to 
vector

This address and
instruction is held 
in the 16th reserved
cache entry

This address will
most likely not
be cached



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 25/488

   
   

   

1.2.3 Main SRAM

The main SRAM is 32-bit wide and supports byte, half word and word data. It has zero wait 
state access for CPU clock frequency up to 96 MHz. A battery backup supply can optionally 
be connected to the VBATT pin to preserve the SRAM contents when the main power is 
switched off.

Shared access

SRAM Access is required by both the ARM966 core and the DMA units located on the AHB 
bus. A a simple “ping-pong” arbiter is implemented between the two requesters. It arbitrates 
access to the SRAM from the ARM Core (DTCM) and AHB Bus.

It supports Zero Wait state access to the SRAM when no contention takes place between 
the ARM966 DTCM and AHB bus.

When both the DTCM and the AHB are requesting access to the SRAM,  it interleaves 
access to the SRAM adding a single wait  cycle to each requestor’s data access.

1.3 Memory map
● Single linear address range

● Four Gigabyte range

● Harvard busses transparent to firmware

● Code and data separated in silicon



   
   

   

Memory and bus architecture RM0006

26/488  Doc ID 13742 Rev 4

Figure 6. STR91xFA system memory map

0x0000.0000
FLASH, I-TCM

SRAM, D-TCM
0x0400.0000

0x2000.0000

Using 288 KB, 544 KB,
1.1 MB or 2.1 MB

Using  64 KB or 96
KB

0x0800.0000

RESERVED

Ext. MEM, CS3

Ext. MEM, CS2

Ext. MEM, CS1

Ext. MEM, CS0

64 MB

64 MB

64 MB

64 MB

0x2400.0000

0x2800.0000

0x2C00.0000

AHB
BUFFERED

0x3000.0000
Ext. MEM, CS3

Ext. MEM, CS2

Ext. MEM, CS1

Ext. MEM, CS0

64 MB

64 MB

64 MB

64 MB

0x3400.0000

0x3800.0000

0x3C00.0000
AHB
NON-

BUFFERED

0x4000.0000
SRAM, AHB

FMI

APB0

APB1

64 MB

64 MB

64 MB

64 MB

0x4400.0000

0x4800.0000

0x4C00.0000

AHB
BUFFERED

0x5000.0000
SRAM, AHB

FMI

APB0

APB1

64 MB

64 MB

64 MB

64 MB

0x5400.0000

0x5800.0000

0x5C00.0000
AHB
NON-

BUFFERED

0x6000.0000
USB

EMI

8-CH DMA

ENET

64 MB

64 MB

64 MB

64 MB

0x6400.0000

0x6800.0000

0x6C00.0000

AHB
BUFFERED

0x7000.0000
USB

EMI

8-CH DMA

ENET

64 MB

64 MB

64 MB

64 MB

0x7400.0000

0x7800.0000

0x7C00.0000

RESERVED

VIC1

VIC0

0x8000.0000

0xFC00.0000

0xFC01.0000

0xFFFF.F000

0xFFFF.FFFF
4 KB

64 KB

AHB
NON-

BUFFERED

AHB
NON-

BUFFERED

4 KBI2C1

4 KBAPB0 CONFIG

4 KBWAKE-UP UNIT

4 KB

GPIO PORT P0

4 KB

GPIO PORT P1

4 KB

GPIO PORT P2

4 KB

GPIO PORT P3

4 KB

GPIO PORT P4

4 KB

GPIO PORT P5

4 KB

GPIO PORT P6

4 KB

GPIO PORT P7

4 KB

GPIO PORT P8

4 KB

GPIO PORT P9

4 KB

TIM0

4 KB

TIM1

4 KB

TIM2

4 KB

TIM3

4 KBAPB1 CONFIG

4 KBRTC

4 KBSCU

4 KBIMC

4 KBUART0

4 KBUART1

4 KBUART2

4 KBSSP0

4 KBSSP1

4 KBCAN

4 KBADC

4 KBWATCHDOG

4 KBI2C0

RESERVED

APB0+0x0000.0000

PERIPHERAL BUS
MEMORY SPACE

RESERVED

APB0+0x0000.1000

APB0+0x0000.2000

APB0+0x0000.3000

APB0+0x0000.4000

APB0+0x0000.5000

APB0+0x0000.6000

APB0+0x0000.7000

APB0+0x0000.8000

APB0+0x0000.9000

APB0+0x0000.A000

APB0+0x0000.B000

APB0+0x0000.C000

APB0+0x0000.D000

APB0+0x0000.E000

APB0+0x0000.F000

APB1+0x0000.1000

APB1+0x0000.2000

APB1+0x0000.3000

APB1+0x0000.4000

APB1+0x0000.5000

APB1+0x0000.6000

APB1+0x0000.7000

APB1+0x0000.8000

APB1+0x0000.9000

APB1+0x0000.A000

APB1+0x0000.B000

APB1+0x0000.C000

APB1+0x0000.D000

APB1+0x0000.E000

APB1+0x03FF.FFFF

RESERVED

PERIPHERAL BUS,
NON- BUFFERED

ACCESS

PERIPHERAL BUS,
BUFFERED ACCESS

TOTAL 4 GB CPU
MEMORY SPACE

0x0000.0000

MAIN FLASH
(BANK 0),

256KB, 512KB,
1024KB or 2028KB

SECONDARY
FLASH (BANK 1),

32KB or 128KB

MAIN FLASH
(BANK 0),

256KB, 512KB,
1024KB or 2048KB

SECONDARY
FLASH (BANK 1),

32KB or 128KB

Order of the two Flash memories is user defined.

DEFAULT  ORDER OPTIONAL  ORDER

APB1+0x0000.0000

APB0+0x0001.0000

APB0+0x03FF.FFFF

APB BASE +
OFFSET

APB1,
AHB-
to-APB
Bridge

APB0,
AHB-
to-APB
Bridge



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 27/488

   
   

   

The Flash program memory is organized in 32-bit wide memory cells which can be used for 
storing both code and data constants. 

You can Program Bank 0 and Bank 1 independently, i.e. you can read from one bank while 
writing to the other.

The on-chip Flash is divided in 2 banks that can mapped independently in the 64 Mbyte 
address space 0x0000-0000 - 0x03FF.FFF by programming the FMI registers.

The STR91xFAx32 embedded Flash Module is organized as shown in Table 1. 

         

Table 1. STR91xFAx32 Flash module organization 

Bank Sector Address offset Size (bytes)

Bank 0
256 Kbytes

Bank 0 Sector 0 0x0000.0000 - 0x0000.FFFF 64K 

Bank 0 Sector 1 0x0001.0000 - 0x0001.FFFF 64K 

Bank 0 Sector 2 0x0002.0000 - 0x0002.FFFF 64K 

Bank 0 Sector 3 0x0003.0000 - 0x0003.FFFF 64K 

Bank 1
32 Kbytes

Bank 1 Sector 0 0x0000.0000 - 0x0000.1FFF 8K

Bank 1 Sector 1 0x0000.2000 - 0x0000.3FFF 8K

Bank 1 Sector 2 0x0000.4000 - 0x0000.5FFF 8K

Bank 1 Sector 3 0x0000.6000 - 0x0000.7FFF 8K

Bank 1

User Configuration Sector 
(OTP and Electronic 

Signature, Configuration 
and Protection Registers)

Access via CUI or JTAG 32



   
   

   

Memory and bus architecture RM0006

28/488  Doc ID 13742 Rev 4

The STR91xFAx44 embedded Flash Module is organized as shown in Table 2. 

         

Table 2. STR91xFAx44 Flash module organization

Bank Sector Address offset Size (bytes)

Bank 0
512 Kbytes

Bank 0 Sector 0 0x0000.0000 - 0x0000.FFFF 64K 

Bank 0 Sector 1 0x0001.0000 - 0x0001.FFFF 64K 

Bank 0 Sector 2 0x0002.0000 - 0x0002.FFFF 64K 

Bank 0 Sector 3 0x0003.0000 - 0x0003.FFFF 64K 

Bank 0 Sector 4 0x0004.0000 - 0x0004.FFFF 64K 

Bank 0 Sector 5 0x0005.0000 - 0x0005.FFFF 64K 

Bank 0 Sector 6 0x0006.0000 - 0x0006.FFFF 64K 

Bank 0 Sector 7 0x0007.0000 - 0x0007.FFFF 64K 

Bank 1
32 Kbytes

Bank 1 Sector 0 0x0000.0000 - 0x0000.1FFF 8K

Bank 1 Sector 1 0x0000.2000 - 0x0000.3FFF 8K

Bank 1 Sector 2 0x0000.4000 - 0x0000.5FFF 8K

Bank 1 Sector 3 0x0000.6000 - 0x0000.7FFF 8K

Bank 1

User Configuration Sector 
(OTP and Electronic 

Signature, Configuration 
and Protection Registers)

Access via CUI or JTAG 32



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 29/488

   
   

   

The STR91xFAx46 embedded Flash Module is organized as shown in Table 3. 

         

Table 3. STR91xFAx46 Flash module organization 

Bank Sector Address offset Size (bytes)

Bank 0
1024 Kbytes

Bank 0 Sector 0 0x0000.0000 - 0x0000.FFFF 64K 

Bank 0 Sector 1 0x0001.0000 - 0x0001.FFFF 64K 

Bank 0 Sector 2 0x0002.0000 - 0x0002.FFFF 64K 

Bank 0 Sector 3 0x0003.0000 - 0x0003.FFFF 64K 

Bank 0 Sector 4 0x0004.0000 - 0x0004.FFFF 64K 

Bank 0 Sector 5 0x0005.0000 - 0x0005.FFFF 64K 

Bank 0 Sector 6 0x0006.0000 - 0x0006.FFFF 64K 

Bank 0 Sector 7 0x0007.0000 - 0x0007.FFFF 64K 

Bank 0 Sector 8 0x0008.0000 - 0x0008.FFFF 64K 

Bank 0 Sector 9 0x0009.0000 - 0x0009.FFFF 64K 

Bank 0 Sector 10 0x000A.0000 - 0x000A.FFFF 64K 

Bank 0 Sector 11 0x000B.0000 - 0x000B.FFFF 64K 

Bank 0 Sector 12 0x000C.0000 - 0x000C.FFFF 64K 

Bank 0 Sector 13 0x000D.0000 - 0x000D.FFFF 64K 

Bank 0 Sector 14 0x000E.0000 - 0x000E.FFFF 64K 

Bank 0 Sector 15 0x000F.0000 - 0x000F.FFFF 64K 

Bank 1
128 Kbytes

Bank 1 Sector 0 0x0000.0000 - 0x0000.3FFF 16K

Bank 1 Sector 1 0x0000.4000 - 0x0000.7FFF 16K

Bank 1 Sector 2 0x0000.8000 - 0x0000.BFFF 16K

Bank 1 Sector 3 0x0000.C000 - 0x0000.FFFF 16K

Bank 1 Sector 4 0x0001.0000 - 0x0001.3FFF 16K

Bank 1 Sector 5 0x0001.4000 - 0x0000.7FFF 16K

Bank 1 Sector 6 0x0001.8000 - 0x0001.BFFF 16K

Bank 1 Sector 7 0x0001.C000 - 0x0001.FFFF 16K

Bank 1

User Configuration Sector 
(OTP and Electronic 

Signature, Configuration 
and Protection Registers)

Access via CUI or JTAG 32



   
   

   

Memory and bus architecture RM0006

30/488  Doc ID 13742 Rev 4

The STR91xFAx47 embedded Flash Module is organized as shown in Table 3. 

         

Table 4. STR91xFAx47 Flash module organization

Bank Sector Address offset Size (bytes)

Bank 0
2048 Kbytes

Bank 0 Sector 0 0x0000.0000 - 0x0000.FFFF 64K 

Bank 0 Sector 1 0x0001.0000 - 0x0001.FFFF 64K 

Bank 0 Sector 2 0x0002.0000 - 0x0002.FFFF 64K 

Bank 0 Sector 3 0x0003.0000 - 0x0003.FFFF 64K 

Bank 0 Sector 4 0x0004.0000 - 0x0004.FFFF 64K 

Bank 0 Sector 5 0x0005.0000 - 0x0005.FFFF 64K 

Bank 0 Sector 6 0x0006.0000 - 0x0006.FFFF 64K 

Bank 0 Sector 7 0x0007.0000 - 0x0007.FFFF 64K 

Bank 0 Sector 8 0x0008.0000 - 0x0008.FFFF 64K 

Bank 0 Sector 9 0x0009.0000 - 0x0009.FFFF 64K 

Bank 0 Sector 10 0x000A.0000 - 0x000A.FFFF 64K 

Bank 0 Sector 11 0x000B.0000 - 0x000B.FFFF 64K 

Bank 0 Sector 12 0x000C.0000 - 0x000C.FFFF 64K 

Bank 0 Sector 13 0x000D.0000 - 0x000D.FFFF 64K 

Bank 0 Sector 14 0x000E.0000 - 0x000E.FFFF 64K 

Bank 0 Sector 15 0x000F.0000 - 0x000F.FFFF 64K 

Bank 0 Sector 16 0x0010.0000 - 0x0010.FFFF 64K 

Bank 0 Sector 17 0x0011.0000 - 0x0011.FFFF 64K 

Bank 0 Sector 18 0x0012.0000 - 0x0012.FFFF 64K 

Bank 0 Sector 19 0x0013.0000 - 0x0013.FFFF 64K 

Bank 0 Sector 20 0x0014.0000 - 0x0014.FFFF 64K 

Bank 0 Sector 21 0x0015.0000 - 0x0015.FFFF 64K 

Bank 0 Sector 22 0x0016.0000 - 0x0016.FFFF 64K 

Bank 0 Sector 23 0x0017.0000 - 0x0017.FFFF 64K 

Bank 0 Sector 24 0x0018.0000 - 0x0018.FFFF 64K 

Bank 0 Sector 25 0x0019.0000 - 0x0019.FFFF 64K 

Bank 0 Sector 26 0x001A.0000 - 0x001A.FFFF 64K 

Bank 0 Sector 27 0x001B.0000 - 0x001B.FFFF 64K 

Bank 0 Sector 28 0x001C.0000 - 0x001C.FFFF 64K 

Bank 0 Sector 29 0x001D.0000 - 0x001D.FFFF 64K 

Bank 0 Sector 30 0x001E.0000 - 0x001E.FFFF 64K 

Bank 0 Sector 31 0x001F.0000 - 0x001F.FFFF 64K 



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 31/488

   
   

   

The write operations of the two banks are managed by an embedded Flash Program/Erase 
Controller (FPEC). The high voltage needed for Program/Erase operations is internally 
generated.

Bank 1
128 Kbytes

Bank 1 Sector 0 0x0000.0000 - 0x0000.3FFF 16K

Bank 1 Sector 1 0x0000.4000 - 0x0000.7FFF 16K

Bank 1 Sector 2 0x0000.8000 - 0x0000.BFFF 16K

Bank 1 Sector 3 0x0000.C000 - 0x0000.FFFF 16K

Bank 1 Sector 4 0x0001.0000 - 0x0001.3FFF 16K

Bank 1 Sector 5 0x0001.4000 - 0x0000.7FFF 16K

Bank 1 Sector 6 0x0001.8000 - 0x0001.BFFF 16K

Bank 1 Sector 7 0x0001.C000 - 0x0001.FFFF 16K

Bank 1

User Configuration Sector 
(OTP and Electronic 

Signature, Configuration 
and Protection Registers)

Access via CUI or JTAG 32

Table 4. STR91xFAx47 Flash module organization (continued)

Bank Sector Address offset Size (bytes)



   
   

   

Memory and bus architecture RM0006

32/488  Doc ID 13742 Rev 4

Figure 7. Typical memory map with device configured to boot from Bank 0

1. Bank 1 also contains the user configuration sector with OTP memory, Electronic Signature and Protection 
Registers.

1.4 Initialization
After reset, to define the mapping of the Flash memory banks, the user firmware has to write 
the start address and memory size of Bank 0 and Bank 1 in the FMI registers (see 
Section 1.10). 

You must write the start address and the memory size of the bank configured as boot 
memory first and then the start address and the memory size of the other (non-boot) bank. 

0007.0000h

0008.0000h

0007.FFFFh

Sector 0 (8 Kbytes)

Bank 0

Bank 1
32 Kbytes User Flash Memory(1) 

Sector 1 (8 Kbytes)

Sector 2 (8 Kbytes)
Sector 3 (8 Kbytes)0008.7FFFh

Sector 7 (64 Kbytes)

0006.0000h
Sector 6 (64 Kbytes)

0005.0000h
Sector 5 (64 Kbytes)

0004.0000h
Sector 4 (64 Kbytes)

0003.0000h
Sector 3 (64 Kbytes)

0002.0000h
Sector 2 (64 Kbytes)

0001.0000h
Sector 1 (64 Kbytes)

0000.0000h
Sector 0 (64 Kbytes)

0000.0000h

03FF.FFFFh

Flash address space

0003.FFFFh

Bank 0

0003.0000h
Sector 3 (64 Kbytes)

0002.0000h
Sector 2 (64 Kbytes)

0001.0000h
Sector 1 (64 Kbytes)

0000.0000h
Sector 0 (64 Kbytes)

512 Kbytes User Flash Memory 256 Kbytes User Flash Memor
(in STR91xFAx44 devices) (in STR91xFAx32 devices)



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 33/488

   
   

   

1.5 Boot configuration 
The STR91xFA always boots from internal Flash address 0x0000.0000h.

In the default configuration, after reset the first sector of Bank 0 is enabled and resides at 
0x0000.0000h so that the device boots from Bank 0, and Bank 1 is disabled. 

The application then has to write to the FMI Registers configure the size and base address 
of Bank 0 and Bank 1. Refer to Section 1.10: FMI register description on page 38.

Using the JTAG interface, you can configure the device to boot from Bank 1. The selection of 
which Flash memory is at the boot location is programmed in a non-volatile Flash-based 
configuration bit. The firmware cannot change this configuration bit, only the JTAG interface 
has access. Refer to the STR9 Flash Programming Manual.

1.6 OTP sector
This device provides 30 One Time Programmable (OTP) bytes that can be read or written by 
the CPU, or the JTAG interface. These bytes can be used to store calibration contents, serial 
numbers, security codes, Ethernet MAC address, etc. 

Each byte can be written only one time, and it is not possible to modify that byte ever again 
once written. Erasing an OTP byte is never possible. There is a lock bit available that can be 
set to prevent the writing of OTP bytes. For example, the lock bit can be set after writing 5 
OTP bytes, and the remaining 25 bytes cannot be written. 

The 31st and 32nd OTP bytes are reserved and are programmed at the factory to contain 
the revision number of the STR91xFA silicon. This information can be read by the CPU or 
JTAG interface but can never be modified or erased. 

It is recommended to use the 25th through 30th OTP bytes to store an Ethernet MAC 
address.

Refer to the STR9 Flash Programming manual details on programming the OTP sector.



   
   

   

Memory and bus architecture RM0006

34/488  Doc ID 13742 Rev 4

1.7 External memory
Refer to Section 1.12 for a description of the external memory interface (EMI).

Figure 8. EMI Memory Map

0x3000.0000

0x3400.0000

0x3800.0000

0x3C00.0000

External Memory Bank 3 (CS3)

External Memory Bank 2 (CS2)

 External Memory Bank 1 (CS1)

External Memory Bank 0 (CS0)

0x2000.0000

0x2400.0000

0x2800.0000

0x2C00.0000

External Memory Bank 3 (CS3)

External Memory Bank 2 (CS2)

External Memory Bank 1 (CS1)

External Memory Bank 0 (CS0)

AHB Buffered

AHB Non-buffered

0x3FFF.FFFF
64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 35/488

   
   

   

1.8 Peripheral access
● High Speed Peripherals on AHB

● Lower Speed Peripherals on APB

● Firmware accesses APB through a bridge

● Separate Ranges for AHB Write Buffer

● Peripherals have two address ranges, one for buffered writes and another for non-
buffered writes

– Buffered writes increase overall performance

– Non-buffered writes guarantee data coherency

The CPU makes use of write buffers on the AHB and the D-TCM to decouple the CPU from 
any wait states associated with a write operation. The user may choose to use write with 
buffers on the AHB by setting bit 3 in control register CP15 and selecting the appropriate 
AHB address range when writing. By default at reset, buffered writes are disabled (bit 3 of 
CP15 is clear) and all AHB writes are non-buffered until enabled. Figure 6 shows that most 
addressable items on the AHB are aliased at two address ranges, one for buffered writes 
and another for non-buffered writes. A buffered write will allow the CPU to continue program 
execution while the write-back is performed through a FIFO to the final destination on the 
AHB. If the FIFO is full, the CPU is stalled until FIFO space is available. A non-buffered write 
will impose an immediate delay to the CPU, but results in a direct write to the final AHB 
destination, ensuring data coherency. Read operations from AHB locations are always direct 
and never buffered.

Note: It is recommended to use non-buffered writes when writing to configuration registers.

1.9 Peripheral memory map
         3

Table 5. Peripheral memory map 

Peripheral name Bus

Peripheral boundary
addresses Peripheral register map

Buffered Non-Buffered 

Vectored Interrupt Controller 0 
(VIC0)

AHB N/A
0x FFFF F23F

Section 4.11 on page 
135

0xFFFF F000

Vectored Interrupt Controller 1 
(VIC1)

AHB N/A
0x FC00 023F

0xFC00 0000

802.3 MAC/DMA (ENET) AHB
0x6C00 042F 0x7C00 042F

Section 8.5 on page 242
0x6C00 0000 0x7C00 0000

8-Channel DMA Controller 
(DMAC)

AHB
0x6800 01F3 0x7800 01F3

Section 9.6 on page 273
0x6800 0000 0x7800 0000

External Memory Interface 
(EMI)

AHB
0x6400 00F7 0x7400 00F7 Section 1.12.9 on page 

640x6400 0000 0x7400 0000

Universal Serial Bus (USB) AHB
0x6000 0867 0x7000 0867 Section 15.6.5 on page 

4610x6000 0000 0x7000 0000



   
   

   

Memory and bus architecture RM0006

36/488  Doc ID 13742 Rev 4

I2C bus interface 1 (I2C1) APB1
0x4C00 D01F 0x5C00 D01F

Section 12.6 on page 
340

0x4C00 D000 0x5C00 D000

I2C bus interface 0 (I2C0) APB1
0x4C00 C01F 0x5C00 C01F

0x4C00 C000 0x5C00 C000

Watchdog Timer (WDG) APB1
0x4C00 B01B 0x5C00 B01B

Section 6.5 on page 161
0x4C00 B000 0x5C00 B000

Analog/Digital converter (ADC) APB1
0x4C00 A037 0x5C00 A037 Section 16.6 on page 

4780x4C00 A000 0x5C00 A000

Controller Area Network (CAN) APB1
0x4C00 9167 0x5C00 9167 Section 14.6 on page 

4020x4C00 9000 0x5C00 9000

Synchronous Serial Peripheral 
(SSP1)

APB1
0x4C00 8027 0x5C00 8027

Section 10.6 on page 
294

0x4C00 8000 0x5C00 8000

Synchronous Serial Peripheral 
(SSP0)

APB1
0x4C00 7027 0x5C00 7027

0x4C00 7000 0x5C00 7000

UART 2 APB1
0x4C00 604B 0x5C00 604B

Section 11.5 on page 
322

0x4C00 6000 0x5C00 6000

UART 1 APB1
0x4C00 504B 0x5C00 504B

0x4C00 5000 0x5C00 5000

UART 0 APB1
0x4C00 404B 0x5C00 404B

0x4C00 4000 0x5C00 4000

Induction Motor Control (MC) APB1
0x4C00 3047 0x5C00 3047 Section 13.5 on page 

3720x4C00 3000 0x5C00 3000

System Control Unit (SCU) APB1
0x4C00 20BF 0x5C00 20BF Section 2.6.10 on page 

1140x4C00 2000 0x5C00 2000

Real Time Clock (RTC) APB1
0x4C00 1017 0x5C00 1017 Section 5.10 on page 

1540x4C00 1000 0x5C00 1000

AHB/APB1 bridge (APB1)
AHB/AP

B1

0x4C00 000B 0x5C00 000B Section 17.5 on page 
4820x4C00 0000 0x5C00 0000

Table 5. Peripheral memory map  (continued)

Peripheral name Bus

Peripheral boundary
addresses Peripheral register map

Buffered Non-Buffered 



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 37/488

   
   

   

GPIO Port 9 APB0
0x4800 F423 0x5800 F423

Section 3.4.4 on page 
121

0x4800 F000 0x5800 F000

GPIO Port 8 APB0
0x4800 E423 0x5800 E423

0x4800 E000 0x5800 E000

GPIO Port 7 APB0
0x4800 D423 0x5800 D423

0x4800 D000 0x5800 D000

GPIO Port 6 APB0
0x4800 C423 0x5800 C423

0x4800 C000 0x5800 C000

GPIO Port 5 APB0
0x4800 B423 0x5800 B423

0x4800 B000 0x5800 B000

GPIO Port 4 APB0
0x4800 A423 0x5800 A423

Section 3.4.4 on page 
121

0x4800 A000 0x5800 A000

GPIO Port 3 APB0
0x4800 9423 0x5800 9423

0x4800 9000 0x5800 9000

GPIO Port 2 APB0
0x4800 8423 0x5800 8423

0x4800 8000 0x5800 8000

GPIO Port 1 APB0
0x4800 7423 0x5800 7423

0x4800 7000 0x5800 7000

GPIO Port 0 APB0
0x4800 6423 0x5800 6423

0x4800 6000 0x5800 6000

Timer 3 (TIM3) APB0
0x4800 501F 0x5800 501F

Section 7.7 on page 181

0x4800 5000 0x5800 5000

Timer 2 (TIM2) APB0
0x4800 401F 0x5800 401F

0x4800 4000 0x5800 4000

Timer 1 (TIM1) APB0
0x4800 301F 0x5800 301F

0x4800 3000 0x5800 3000

Timer 0 (TIM0) APB0
0x4800 201F 0x5800 201F

0x4800 2000 0x5800 2000

Wakeup/Interrupt Unit (WUI) APB0
0x4800 1013 0x5800 1013 Section 4.12.3 on page 

1420x4800 1000 0x5800 1000

AHB/APB0 bridge (APB0)
AHB/AP

B0

0x4800 000B 0x5800 000B Section 17.5 on page 
4820x4800 0000 0x5800 0000

Table 5. Peripheral memory map  (continued)

Peripheral name Bus

Peripheral boundary
addresses Peripheral register map

Buffered Non-Buffered 



   
   

   

Memory and bus architecture RM0006

38/488  Doc ID 13742 Rev 4

1.10 FMI register description
The FMI Registers configure the size and base address of the Bank 0 and Bank 1. The 
address ranges of Bank 0 and Bank 1 must not overlap each other.

The microcontroller boots from Bank 0 by default:

In the default configuration:

● Bank 0 is the Boot Bank, after reset the application program has to write the size and 
base address of Bank 0 in the FMI_BBSR and FMI_BBADR registers

● Bank 1 is the Non-Boot Bank, after reset the application program has to write the size 
and base address of Bank 1 in the FMI_NBBSR and FMI_NBBADR registers

Booting from Bank 1 

The microcontroller can also boot from Bank 1. The selection of the Boot Bank can be 
modified using the "CAP" Software Tool.

If Bank 1 is the Boot bank, after reset, the application program has to write the size and start 
address of Bank 1 in the FMI_BBSR and FMI_BBADR registers and the size and start 
address of Bank 0 in the FMI_NBBSR and FMI_NBBADR registers.

Flash Memory Interface (FMI) AHB
0x4400 0013 0x5400 0013

Section 1.11 on page 44
0x4400 0000 0x5400 0000

Table 5. Peripheral memory map  (continued)

Peripheral name Bus

Peripheral boundary
addresses Peripheral register map

Buffered Non-Buffered 



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 39/488

   
   

   

1.10.1 Boot bank size register (FMI_BBSR)

Address offset: 00h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BBSIZE[3:0]

rw rw rw rw

Bits 31:4 Reserved, always read as 0

Bits 3:0 

BBSIZE[3:0]: Boot bank size 

These bits are set and cleared by software. They define the address space for the 
boot bank.
0000: 32 Kbytes.
0001: 64 Kbytes
....
1011: 64 Mbytes
Other values are reserved.



   
   

   

Memory and bus architecture RM0006

40/488  Doc ID 13742 Rev 4

1.10.2 Non-boot bank size register (FMI_NBBSR)

Address offset: 04h

Reset value: 0000 0000h

         

         

1.10.3 Boot Bank base address register (FMI_BBADR)

Address offset: 0Ch

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved NBBSIZE[3:0]

rw rw rw rw

Bits 31:4 Reserved, always read as 0

Bits 3:0 

NBBSIZE[3:0]: Non-boot bank size 

These bits are set and cleared by software. They define the address space for the non 
booting memory bank.
0000: 8 Kbytes.
0001: 16 Kbytes
....
1101: 64 Mbytes
Other values are reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved B0ADDR[23:16]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B0ADDR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, always read as 0

Bits 23:0 
BBADDR[23:0]: Boot bank base address 

These bits are set and cleared by software. They define the base address of the 
boot bank. The address must be word-aligned.



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 41/488

   
   

   

1.10.4 Non-boot bank base address register (FMI_NBBADR)

Address offset: 10h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved NBBADDR[23:16]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NBBADDR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, always read as 0

Bits 23:0 
NBBADDR[23:0]: Non-boot bank base address 

These bits are set and cleared by software. They define the base address of the 
non-boot bank. The address must be word-aligned.



   
   

   

Memory and bus architecture RM0006

42/488  Doc ID 13742 Rev 4

1.10.5 FMI Control register (FMI_CR)

Address offset: 18h

Reset value: 0000 0009h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved WWS OMIE BEIE Res. NBB EN BBEN Reserved

rw rw rw rw rw rw

Bits 31:9 Reserved, always read as 0

Bit 8

WWS: Write Wait States 
This bit is set and cleared by software. It defines the number of wait states in Flash 
write access.
0: Flash write is active for 1 clock cycle (Recommended setting)
1: Flash write is active for 2 clock cycles (Reserved for future use)

Bit 7

OMIE: Out of Memory interrupt enable 
This bit is set and cleared by software. It enables/disables the Out of Memory 
interrupts.
0: Disabled
1: Enabled. An interrupt is generated when the OM bit in the FMI_SR register is set.

Bit 6

BERRIE: Flash Bank Error interrupt enable 
This bit is set and cleared by software. It enables/disables Flash bank error interrupts.
0: Disabled
1: Enabled. An interrupt is generated when the B1ERR or B0ERR bit in the FMI_SR 
register are set.

Bit 5 Reserved, always read as 0

Bit 4

NBBEN: Flash Non Boot Bank enable 

This bit is set and cleared by software. It enables/disables the Non Boot Bank.
0: Disabled
1: Enabled. 

Bit 3

BBEN: Flash Boot Bank enable 
This bit is set and cleared by software. It enables/disables Flash Boot Bank.
0: Disabled
1: Enabled 

Bits 2:0 Reserved, always read as 01



RM0006 Memory and bus architecture

Doc ID 13742 Rev 4 43/488

   
   

   

1.10.6 FMI Status register (FMI_SR)

Address offset: 1Ch

Reset value: 0000 0010h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PFQ 

BCEN
OM Res. B1ERR B0ERR

r rc_w1 rc_w1 rc_w1

Bits 31:5 Reserved, always read as 0

Bit 4

PFQBCEN: PFQBCEN Status

This bit is set and cleared by harware.
0: PFQ/BC disabled (bypassed)
1: PFQ/BC enabled

Bit 3

OM: Out of Memory error

This bit is set by hardware and cleared by software writing 1. It indicates that an 
access was made outside the configured memory area. An interrupt is generated if 
the OMIE bit in the FMI_CR register is set.
0: No OM error
1: An Out of Memory error occurred

Bit 2 Reserved, always read as 0

Bit 1

B1ERR: Flash Bank 1 error

This bit is set by hardware and cleared by software writing 1. It indicates that an 
access was made to Bank 1 while it was disabled. An interrupt is generated if the 
BERRIE bit in the FMI_CR register is set.
0: No B1ERR error
1: A Flash Bank 1 error occurred

Bit 0

B0ERR: Flash Bank 0 error

This bit is set by hardware and cleared by software writing 1. It indicates that an 
access was made to Bank 0 while it was disabled. An interrupt is generated if the 
BERRIE bit in the FMI_CR register is set.
0: No B0ERR error
1: A Flash Bank 0 error occurred



   
   

   

Memory and bus architecture RM0006

44/488  Doc ID 13742 Rev 4

1.10.7 BC 16th Entry Target Address register (FMI_BCE16ADDR)

Address offset: 20h

Reset value: 0000 0006h

         

         

1.11 FMI register map
         

Refer to Table 5 on page 35 for the base addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved BCE16ADDR[23:16]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BCE16ADDR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, always read as 0

Bits 23:0 

BCE16ADDR[23:0]: Branch Cache 16th Entry Target Address 
These bits are set and cleared by software. They define the target address of the BC 
16th entry, provided to implement interrupt (IRQ) mode or any “special” branch not 
subject to the LRU algorithm. The address written to the register is the target address 
divided by 4. For example, IRQ address at 0x18 divided by 4 = 0x06.
Defaults to 0x00000006 at reset i.e. IRQ exception).

Table 6. FMI register map

Addr.
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h FMI_BBSR BBSIZE

04h FMI_NBBSR NBBSIZE

0Ch FMI_BBADR BBADDR[23:0]

10h FMI_NBBADR NBBADDR[23:0]

18h FMI_CR

W
W

S

O
M

IE

B
E

IE

N
B

B
E

N

B
B

E
N

1Ch FMI_SR

P
F

Q
 B

C
E

N

O
M

B
1E

R
R

20h
FMI_BCE16AD

DR
BCE16ADDR[23:0]



RM0006

Doc ID 13742 Rev 4 45/488

   
   

   

1.12 External memory interface (EMI)

1.12.1 Functional description

The EMI provides an interface between the AHB system bus and external (off-chip) memory 
devices, supporting up to four memory banks that you can configure independently. Each 
memory bank supports:

● SRAM

● ROM

● Flash EPROM

● PSRAM

You can configure each memory bank to use 8- or 16-bit data paths. 

You can configure the EMI memory banks to support:

● Asynchronous read and write accesses 

● Asynchronous page mode read accesses supported in 8-bit non-multiplexed EMI 
configuration.

● Synchronous burst read and write accesses to PSRAM

● Up to 24 address lines in multiplexed EMI configuration.

Figure 9. EMI memory map

0x3000.0000

0x3400.0000

0x3800.0000

0x3C00.0000

External memory bank 3 (CS3)

External memory bank 2 (CS2)

 External memory bank 1 (CS1)

External memory bank 0 (CS0)

0x2000.0000

0x2400.0000

0x2800.0000

0x2C00.0000

External memory bank 3 (CS3)

External memory bank 2 (CS2)

External memory bank 1 (CS1)

External memory bank 0 (CS0)

AHB Buffered

AHB Non-buffered

0x3FFF.FFFF
64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte

64 Mbyte



   
   

   

RM0006

46/488  Doc ID 13742 Rev 4

1.12.2 Summary of bus configurations

Non-Mux mode

1. 8-bit only

2. Control Signals: EMI_Rdn, EMI_WRn

3. Port Config: 

a) Port 8 EMI_D[7:0]

b) Port 7 EMI_A[7:0]

c) Port 9 EMI_A[15:8]

Mux mode

1. 8- or 16-bit

When configured as a 16-bit data bus, the address output on the EMI bus is shifted by 
1 so as to address 16-bit memory devices. For example, writing a half word to location 
0x0042 will generate an EMI address of 0x0021

2. Control Signals: EMI_Rdn, EMI_WRHn, EMI_WRLn, EMI_ALE

3. Port Config: 

a) Port 8 EMI_AD[7:0]

b) Port 9 EMI_AD[15:8]

c) Port 7 EMI_A[23:16]

PSRAM mode

1. A subset of 16-bit mux mode (LFBGA package only). This mode allows the EMI bus 
interface directly to PSRAM for synchronous access (burst read and write). 

2. Control Signals: EMI_Rdn, EMI_WEn, EMI_UBn, EMI_LBn, EMI_ALE, EMI_WAITn, 
CRE (a GPIO pin output, not an EMI bus signal)

3. Port Config:

a) Port 8 EMI_AD[7:0]

b) Port 9 EMI_AD[15:8]

c) Port 7 EMI_A[23:16]



RM0006

Doc ID 13742 Rev 4 47/488

   
   

   

Figure 10. Mux mode with 16-bit data, 20-bit address

Figure 11. Mux mode with 16-bit data, 24-bit address

EMI 

 A
H

B
 B

us
EXTERNAL
MEMORY BANK 0

E

A[19:0]

Q[15:0]

[Control pins]

D[15:0]

A[19:0]

CS0

fHCLK

/ 2

& CONTROL
DATA PROCESSING

 RATIO

EXTERNAL
MEMORY BANK 3

E

A[19:0]

Q[15:0]

[Control pins]

D[15:0]

A[19:0]

CS3

EXTERNAL
MEMORY BANK 2

E

A[19:0]

Q[15:0]

[Control pins]

D[15:0]

A[19:0]

CS2

EXTERNAL
MEMORY BANK 1

E

A[19:0]

Q[15:0]

[Control pins]

D[15:0]

A[19:0]

CS1

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

STR91xFA

EMI_AD[15:8]

EMI_A[19:16]

EMI_WRLn

EMI_WRHn

EMI_ALE

EMI_RDn

fBCLK

fBCLK

EMI CLOCK

GPIO 
Port 7

GPIO 
Port 9

GPIO 
Port 8

EMI_AD[7:0]

EMI_CS[3:0]

EMI 

 A
H

B
 B

us

EXTERNAL
MEMORY BANK 0

E

A[23:0]

Q[15:0]

[Control pins]

D[15:0]

A[23:0]

CS0

fHCLK

/ 2

& CONTROL
DATA PROCESSING

 RATIO

EXTERNAL
MEMORY BANK 3

E

A[23:0]

Q[15:0]

[Control pins]

D[15:0]

A[23:0]

CS3

EXTERNAL
MEMORY BANK 2

E

A[23:0]

Q[15:0]

[Control pins]

D[15:0]

A[23:0]

CS2

EXTERNAL
MEMORY BANK 1

E

A[23:0]

Q[15:0]

[Control pins]

D[15:0]

A[23:0]

CS1

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

STR91xFA

EMI_AD[15:8]

EMI_A[23:16]

EMI_CS[3:0]

EMI_WRLn

EMI_WRHn

EMI_ALE

EMI_RDn

fBCLK

fBCLK

EMI CLOCK

GPIO 
Port 5

GPIO 
Port 7

GPIO 
Port 9

GPIO 
Port 8

EMI_AD[7:0]



   
   

   

RM0006

48/488  Doc ID 13742 Rev 4

Figure 12. Non-mux mode with 8-bit data, 16-bit address

Figure 13. Mux mode with 8-bit data, 16-bit address

EMI 

 A
H

B
 B

us
EXTERNAL
MEMORY BANK 0

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS0

fHCLK

/ 2

& CONTROL
DATA PROCESSING

 RATIO

EXTERNAL
MEMORY BANK 3

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS3

EXTERNAL
MEMORY BANK 2

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS2

EXTERNAL
MEMORY BANK 1

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS1

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

STR91xFA

EMI_D[7:0]

EMI_A[7:0]

EMI_CS[3:0]

EMI_WRLn

EMI_RDn

fBCLK

fBCLK

EMI CLOCK

GPIO 
Port 5

GPIO 
Port 7

GPIO 
Port 8

GPIO 
Port 9

EMI_A[15:8]

EMI 

 A
H

B
 B

us

fHCLK

/ 2

& CONTROL
DATA PROCESSING

 RATIO

STR91xFA

EMI_AD[7:0]

EMI_CS[3:0]

EMI_WRLn

EMI_ALE

EMI_RDn

fBCLK

fBCLK

EMI CLOCK

GPIO 
Port 7 

GPIO 
Port 8

EMI_A[15:8]GPIO 
Port 9

EXTERNAL
MEMORY BANK 0

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS0

EXTERNAL
MEMORY BANK 3

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS3

EXTERNAL
MEMORY BANK 2

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS2

EXTERNAL
MEMORY BANK 1

E

A[15:0]

Q[7:0]

[Control pins]

D[7:0]

A[15:0]

CS1

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM

EEPROM/FLASH/SRAM



RM0006

Doc ID 13742 Rev 4 49/488

   
   

   

1.12.3 External memory interface (EMI) configuration/control 

Mux/demux mode

Using the EMI_MUX bit in the System configuration register 0 (SCU_SCR0) on page 108, 
you can select EMI Mux/Demux mode or demux mode. 

ALE length

Using the EMI_ALE_LENGTH bit in the System configuration register 0 (SCU_SCR0) on 
page 108, you can select EMI ALE length to be 1 or 2 BCLK periods. (Note: 0.5 or 1.5 BCLK 
periods when in synchronous mode).

ALE polarity

Using the EMI_ALE_POL bit in the System configuration register 0 (SCU_SCR0) on 
page 108, you can select EMI ALE polarity to be active high or low.

GPIO port 8, 9 and 7

You have to set up set up bits 0 to 1 in the GPIO external memory interface register 
(SCU_EMI) on page 111 to enable ports 8 and 9 for the EMI bus function.

Port 7 is the address port and is configured as Alternative 2 output function for pins P7.0 to 
P7.6 and as Alternative 3 output function for pin P7.7 (refer to GPIO chapter). Address lines 
on Port 7 are pin selectable, where only the address lines that are needed are enabled.

Chip selects CS0-3

The 4 chip selects are available on Ports 0, 5 or 7. Configure the pins P5.4 to P5.7 and P7.4 
to P7.6 as GPIO Alternate function 3 and pins P0.4 to P0.7 and P7.7 as GPIO Alternate 
function 2 (refer to GPIO chapter) to enable the chip selects. It is recommended that the 
CS0-3 signals have external pull up resistors as they are not driven by the MCU before the 
bus is configured.

Byte select signal configuration

In the LFBGA package, the upper byte and lower byte enable signals (EMI_UBn, EMI_LBn) 
share the same pins as the EMI_WRHn and EMI_WRLn and are user configurable. The 
byte select signals are enabled by setting bit 2 (PSRAM mode) in the GPIO external 
memory interface register (SCU_EMI) on page 111 and bit 1 in the EMI_BCRx register. The 
EMI_WEn signal is needed to work with the byte enable signals to write to a 16 bit PSRAM 
memory device.

1.12.4 External memory interface clock (BCLK)

You can select the frequency of the EMI bus clock (BCLK) to be HCLK or HCLK/2 using the 
EMIRATIO bit in the Clock control register (SCU_CLKCNTR). By default the frequency is 
HCLK/2.

In the LFBGA package, the BCLK can be brought out to the pin by setting bit 1 to 0 in the 
GPIO external memory interface register (SCU_EMI) on page 111 and bit 0 in the 
EMI_CCR register to 1. All bus timings and parameters are reference to the BCLK.



   
   

   

RM0006

50/488  Doc ID 13742 Rev 4

1.12.5 EMI bus timing configuration

The EMI bus timing is not configured at Power Up. You need to set up the bus timing 
configuration registers for each of the banks before you enable the EMI bus. The key timing 
parameters that you have to define to match your external memory device requirements are:

● WSTOEN: Read Enable. It specifies the delay between the assertion of the chip select 
and the EMI_RDn signal. The delay is defined in terms of BCLK clock periods.

● WSTRD: Read wait state. It specifies the pulse width of the EMI_RDn signal. The pulse 
width is defined in terms of BLCK periods and is = (WSTRD-WSTOEN+1)

● WSTWEN: Write Enable. It specifies the delay period between the assertion of the chip 
select and the EMI_WRn signal. The delay is defined in terms of BCLK clock periods 
and is = (WSTWEN + 1/2) for asynchronous write cycles and is = WSTWEN for 
synchronous access.

● WSTWR: Write wait state. It specifies the pulse width of the EMI_WRn signal. The 
pulse width is defined in terms of BLCK periods and is = (WSTWR-WSTWEN+1) for 
asynchronous write cycles. For synchronized write accesses, the width is= (WSTWR-
WSTWEN + 2).

Example: A read bus cycle with WSTRD = 4, WSTOEN = 2. The resulting EMI_RDn signal 
is asserted 2 BLCK clock periods after CS. The pulse width is = 4 - 2 + 1 = 3 BCLK periods. 

1.12.6 Timing rules

It is important to enter the correct read and write wait state values in the configuration 
registers. Furthermore, the EMI bus wait states must meet the following timing rules to be 
functional: 

1. The number of Read wait states must be greater than or equal to the Output Enable 
wait states (WSTRD => WSTOEN) (See Bank x read wait state control register 
(EMI_RCRx) and Bank x output enable control register (EMI_OECRx)

2. The number of Output Enable wait states must be greater than the Address Latch 
Enable time in mux mode (WSTOEN> ALE) (See Bank x output enable control register 
(EMI_OECRx) and System configuration register 0 (SCU_SCR0)

3. The number of Write wait states must be greater than or equal to the Write Enable wait 
states (WSTWR=>WSTWEN) (See Bank x write wait state control register 
(EMI_WCRx) and Bank x write enable control register (EMI_WECRx)

4. The number of Write Enable wait states must be greater than the Address Latch Enable 
time in mux mode (WSTWEN> ALE) (see Bank x output enable control register 
(EMI_OECRx) and System configuration register 0 (SCU_SCR0). 
Exception: WSTWEN can have a value of zero in PSRAM mode where the signals 
EMI_ WEn, EMI_UBn and EMI_LBn are enabled by setting bit 2 in the GPIO external 
memory interface register (SCU_EMI) on page 111.



RM0006

Doc ID 13742 Rev 4 51/488

   
   

   

1.12.7 Bus mode configuration

Standard asynchronous read/write bus mode

The EMI bus uses the same read and write timing to access standard SRAM and Flash 
devices. Each bus cycle starts with the assertion of the memory bank chip select signal 
(CS0-3) and memory address. When in mux bus mode, the address stays on the bus for 
another half BCLK clock after the EMI_ALE signal is terminated. The read or write access 
time is determined by the number of wait states programmed in the WSTRD or WSTWR 
fields of the Bank Read/Write Wait State Control Registers (EMI_RCRx, EMI_WCRx). The 
IDCY field in the Idle Cycle Control Register, EMI_ICRx, determines the number of bus 
turnaround wait states added between the read and write transfers.

The read and write bus timing diagrams in Figure 14 and Figure 15 are referenced to the 
BCLK clock. Since these are asynchronous bus accesses, the BCLK clock is not required by 
the memory devices. The basic configuration bits from the EMI registers that are required for 
the asynchronous bus mode include:

● Read Wait State (WSTRD, EMI_RCRx register)

● Write Wait State (WSTWR, EMI_WCRx register)

● Output Enable Assertion Delay (WSTOEN, EMI_OECRx register)

● Write Enable Assertion Delay (WSTWEN, EMI_WECRx register)

● Memory width (MW, EMI_BCRx register bits 5:4)

● Asynchronous access (EMI_BCRx register bits 17 and 9)

Figure 14. Asynchronous read bus cycle (mux mode, with WSTOE = 2, WSTRD = 3)

EMI_BCLK

EMI_ALE

AD0-AD15

A16-A23

EMI_CSxn

EMI_RDn

A0-A15 D0-D15

A16-A23



   
   

   

RM0006

52/488  Doc ID 13742 Rev 4

Figure 15. Asynchronous write bus cycle (mux mode, with WSTWE = 2, WSTWR = 3)

Page read mode for non-mux bus

The Non-mux EMI bus supports asynchronous page reads to four or eight consecutive 
locations. Page mode is enabled by setting the mode bits in the EMI_BCRx register. This 
feature increases the bus bandwidth by using a reduced access time for the sequential 
reads after the initial asynchronous read. The chip select lines CSx and EMI_RDn are held 
low during the page access, and only the low address changes between subsequent 
accesses. At the end of the page read, the CSx chip select and EMI_RDn lines are 
terminated at the same time. A page read takes one BCLK clock period to complete, the 
BCLK clock frequency must be adjusted so as to meet the page access time of the memory 
device. 

The basic configuration bits that are required for the asynchronous page mode include:

● Read Wait State (WSTRD, EMI_RCRx register)

● Output Enable Assertion Delay (WSTOEN, EMI_OECRx register)

● Burst Wait State (WSTBRD, EMI_BRDCRx register)

● Page mode selection (BPM, EMI_BCRx register bits 8)

● Memory width (MW, 8-bit, EMI_BCRx register bits 5:4)

● Asynchronous Read access (SyncReadDev, EMI_BCRx register bit 9)

● Page Read transfer length (BRLEN, EMI_BCRx register bits 11:10)

EMI_BCLK

EMI_ALE

AD0-AD15

EMI_CSxn

EMI_WRn

A0-A15 D0-D15

A16-A23A16-A23



RM0006

Doc ID 13742 Rev 4 53/488

   
   

   

Figure 16. Asynchronous page mode read bus cycle 
(with WSTOE = 1, WSTRD = 2, WSTBRD = 0, BRLEN = 4)

PSRAM mode  (LFBGA 144 pin package only)

Figure 17 shows a "glue-less" bus interface between a STR91xFA and a Micron 64 Mb 
PSRAM (MT45W4MW16BCGB. In PSRAM mode, the EMI bus is configured as a 16 bit, 
multiplexed bus. The EMI_ALEn signal is programmed with a negative polarity and a 2 clock 
wide pulse width to meet the PSRAM's ADV# (address valid) timing requirement. The EMI 
address is latched by the PSRAM at the rising edge of the BCLK while the EMI_ALEn is low. 
In a read bus cycle, the EMI bus is tri-stated half clock after the trailing edge of the EMI_ALE 
signal. The PSRAM can then drives the bus when EMI_RDn becomes active. The PSRAM 
mode bit (bit 2) in the GPIO external memory interface register (SCU_EMI) on page 111 
must be set to 1 to enable the EMI_UBn and EMI_LBn signals.

The EMI bus can access the PSRAM memory array in asynchronous mode or in burst 
mode. However, the EMI bus must be in asynchronous mode when writing to the PSRAM 
bus configuration register. The CRE signal, which is required to be high when writing to the 
PSRAM configuration register, can be connected to any GPIO output pin and the signal 
logic level is controlled by the firmware.

EMI_BCLK

CSxn

1 3 4

Data 0

2

EMI_RDn

Data 1 Data 2

Addr 1 Addr 2A1-A0

D0-D7

Addr 3Addr 0

Data 3

A15-A2 A15-A2



   
   

   

RM0006

54/488  Doc ID 13742 Rev 4

Figure 17. EMI Bus "glue-less" interface to PSRAM 

PSRAM mode control signals  

The EMI bus supports synchronized burst read and write bus cycle in "PSRAM mode". The 
additional EMI signals provided in the LFBGA package that support the burst mode are:

● EMI_BCLK : the bus clock output. The EMI_BCLK has the same frequency or half of 
that of the HCLK. By default the clock is enabled after an EMI bus cycle but can be 
disabled by the user.

● EMI_WAITn : the not ready or wait input signal for synchronous access only

● EMI_BAAn : burst address advance or burst enable signal 

● EMI_WEn : write enable signal

● EMI_UBn, EMI_LBn : upper byte and lower byte enable signals. These two signals 
share the same pins as the EMI_WRHn and EMI_WRLn and are user configurable 
through bit 2 in the GPIO external memory interface register (SCU_EMI) on page 111. 
In typical application, the EMI_WEn signal is needed to work with the byte enable 
signals to write to a 16 bit memory device.

By defining the bus parameters such as burst length, burst type, read and write wait states 
in the bus control registers, the multiplexed EMI bus is able to interface directly to standard 
PSRAM memory device

A16-A21

CLK

DQ8-15

CE#

OE#

WE#

LB#

ADV#
WAIT

CS0n

EMI_WEn

EMI_ALEn

EMI_RDn

EMI_BCLK

EMI_LBN

EMI_WAITn

Port 7

Port 8

Port 9

STR91XFA

AD0-AD7

AD8-AD15

A16-21

A0-A7

A8-A15

UB#
EMI_UBn

CRE CRE

PSRAM

DQ0-7



RM0006

Doc ID 13742 Rev 4 55/488

   
   

   

PSRAM burst read mode  

PSRAM mode supports synchronous burst read. The burst length can be specified by the 
user to be 4, 8, 16 or continuous transfer. Burst Read mode is enabled by setting the mode 
bits in the EMI_BCRx Register. This burst feature increases the bus bandwidth by reading 
one memory location per BCLK clock. The burst mode cycle consists of a first read access 
followed by synchronized burst reads. The read wait state (WSTRD) defines the first read 
access time and the subsequent burst is defined by the burst wait state (WSTBRD). The 
EMI bus can achieve one transfer per BCLK clock with WSTBRD set to 0.The chip select 
CSx and EMI_RDn are held low during the burst access. The burst address advance 
(EMI_BAA) is asserted once the bus starts burst transfer. For some devices, the EMI_BAA 
signal is not needed. At the end of the burst read the CSx chip select and EMI_RDn lines 
are terminated at the same time.

Note: The EMI control signals in the synchronous PSRAM mode are activated on the falling edge 
of the EMI_BCLK and the EMI_ALE signal width is truncated by half BCLK period.

The basic configuration bits that are required for the PSRAM synchronous burst read mode 
include:

● Read Wait State (WSTRD, EMI_RCRx register)

● Output Enable Assertion Delay (WSTOEN, EMI_OECRx register)

● Burst Wait State (WSTBRD, EMI_BRDCRx register)

● Burst mode selection (BPM, EMI_BCRx register bits 8)

● Memory width (EMI_BCRx register bits 5:4)

● Synchronous Read access (SyncReadDev, EMI_BCRx register bit 9)

● Burst Read transfer length (BRLEN, EMI_BCRx register bits 11:10)

Figure 18. PSRAM synchronous burst read bus cycle  (with WSTOE = 4, WSTRD = 5,
WSTBRD = 0 for 70ns PSRAM at 96 MHz BCLK)

EMI_BCLK

CSxn

Data 0

EMI_RDn

AD15-0

EMI_ALE

EMI_BAAn

A15:0

EMI_WAITn

Data 1 Data 2 Data 3 Data n



   
   

   

RM0006

56/488  Doc ID 13742 Rev 4

PSRAM burst write mode 

In PSRAM mode, the EMI bus support synchronous burst writes; burst length can be 4, 8, or 
continuous transfer. Burst Write mode is enabled by setting the mode bits in the EMI_BCRx 
Register. This feature increases the bus bandwidth by writing one memory location per 
BCLK clock. The burst mode access consists of an initial first access followed by 
synchronized burst writes. The write wait state (WSTWR) defines the first access time and 
the subsequent write is one per each BCLK clock. The chip select CSx and EMI_WEn are 
held low during the burst access. The burst address advance (EMI_BAA) is active once the 
bus starts burst transfer. For some memory devices, the EMI_BAA signal is not needed to 
advance the address internally. At the end of the burst write the CSx chip select and 
EMI_WEn lines are terminated at the same time.

Note: The EMI control signals in the synchronous PSRAM mode are activated on the falling edge 
of the EMI_BCLK and the EMI_ALE signal width is truncated by half BCLK period.

The EMI_WEn write enable signal timing in burst mode is synchronized with the rising edge 
of the BCLK clock, while in asynchronous mode it is synchronized with the falling edge of 
BCLK clock.

The basic configuration bits that are required for the synchronous burst write mode include:

● Write Wait State (WSTWR, EMI_WCRx register)

● Write Enable Assertion Delay (WSTWEN, EMI_WECRx register)

● Burst Write mode selection (BMWrite, EMI_BCRx register bits 16)

● Memory width (EMI_BCRx register bits 5:4)

● Synchronous Write access (SyncWriteDev, EMI_BCRx register bit 17)

● Burst Write transfer length (BWLEN, EMI_BCRx register bits 19:18)

Figure 19. PSRAM synchronous burst write bus cycle
(with WSTWEN = 0, WSTWR = 5 for 70 ns PSRAM at 96 MHz BCLK)

EMI_BCLK

CSxn

Data 0

EMI_WEn

AD15-0

EMI_ALE

EMI_BAAn

A15:0

EMI_WAITn

Data 1 Data 2 Data 3 Data n

EMI_UBn
EMI_LBN



RM0006

Doc ID 13742 Rev 4 57/488

   
   

   

Synchronous external wait control

Burst transfers can be delayed by the EMI_Waitn input signal which is connected to the 
PSRAM device's Wait or Ready pin. The memory device must be programmed such that the 
EMI_Waitn is asserted in the cycle before the delay is to apply.

The PSRAM device can use the EMI_Waitn signal to indicate that the current burst read 
transfer is delayed, for example when crossing an address boundary. You can assert the 
EMI_Waitn input synchronously at any time, but the signal must be de-asserted a cycle 
before the read data is valid.



   
   

   

RM0006

58/488  Doc ID 13742 Rev 4

1.12.8 Register description

In this section, the following abbreviations are used:

         

Bank x idle cycle control register (EMI_ICRx)

Address offset: 00h (Bank 1), 20h (Bank 2), 40h (Bank 3), E0h (Bank 0)

Reset value: 0000 000Fh

         

         

Bank x read wait state control register (EMI_RCRx)

Address offset: 04h (Bank 1), 24h (Bank 2), 44h (Bank 3), E4h (Bank 0) 

Reset value: 0000 001Fh

         

         

Read/write (rw) Software can read and write to these bits

7 6 5 4 3 2 1 0

Reserved IDCY[3:0]

rw rw rw rw

Bits 31:4 Reserved, must be kept at zero

Bits 3:0

IDCY[3:0]: Idle Cycles

The value written in this field defines the number of idle or bus 
turnaround cycles added between read and write accesses to prevent 
bus contention on the external memory bus. Turnaround time = 2+IDCY 
x tBCLK . The valid IDCY range is from 3 to Fh, and the reset value is Fh 
(15).

7 6 5 4 3 2 1 0

Reserved WSTRD[4:0]

rw rw rw rw rw

Bits 31:5 Reserved, must be kept at zero

Bits 4:0

WSTRD[4:0]: Read Wait states
The value written in this field defines the number of wait states for read 
accesses to SRAM and ROM. The reset value is 1Fh (31).
Wait state time = WSTRD x tBCLK. 



RM0006

Doc ID 13742 Rev 4 59/488

   
   

   

Bank x write wait state control register (EMI_WCRx)

Address offset: 08h (Bank 1), 28h (Bank 2), 48h (Bank 3), E8h (Bank 0)

Reset value: 0000 001Fh

         

         

Bank x output enable control register (EMI_OECRx)

Address offset: 0Ch (Bank 1), 2Ch (Bank 2), 4Ch (Bank 3), ECh (Bank 0)

Reset value: Banks 1, 2 and 3 = 0000 0000h

Reset value: Bank 0 = 0000 0003h

         

         

7 6 5 4 3 2 1 0

Reserved WSTWR[4:0]

rw rw rw rw rw

Bits 31:5 Reserved, must be kept at zero

Bits 4:0

WSTWR[4:0]: Write Wait states
The value written in this field defines the number of wait states for write 
accesses. The reset value is 1Fh (31). 
Wait state time = WSTWR x tBCLK. 

7 6 5 4 3 2 1 0

Reserved WSTOEN[3:0]

rw rw rw rw

Bits 31:4 Reserved, must be kept at zero

Bits 3:0
WSTOEN[3:0]: Output Enable Assertion Delay

The value written in this field defines the Output Enable assertion delay 
from chip select assertion. The reset value is 1.



   
   

   

RM0006

60/488  Doc ID 13742 Rev 4

Bank x write enable control register (EMI_WECRx)

Address offset: 10h (Bank 1), 30h (Bank 2), 50h (Bank 3), F0h (Bank 0) 

Reset value: 0000 0001h

         

         

7 6 5 4 3 2 1 0

Reserved WSTWEN[3:0]

rw rw rw rw

Bits 31:4 Reserved, must be kept at zero

Bits 3:0
WSTWEN[3:0]: Write Enable Assertion Delay

The value written in this field defines the Write Enable assertion delay 
from chip select assertion. The reset value is 1.



RM0006

Doc ID 13742 Rev 4 61/488

   
   

   

Bank x control register (EMI_BCRx)

Address offset: 14h (Bank 1), 34h (Bank 2), 54h (Bank 3), F4h (Bank 0)

         

         

         

Reset value: 0030 3010h - Bank 0

0030 3020h - Bank 1

0030 3000h - Bank 2

0030 3010h - Bank 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved 1 1 BWLEN
SYNC
WRITE

DEV

BM 
WRITE

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 BRLEN[1:0]
SYNC
READ
DEV

BPM Reserved MW[1:0] WP Reserved BLE

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22 Reserved, must be kept at reset value

Bits 21:20 Reserved, do not modify, read as 1

Bits 19:18

BWLEN[1:0]: Burst write transfer length

These bits are used to set the number of sequential transfers supported 
by the burst device for a write:
00: 4-transfer burst write (default)
01: 8-transfer burst write
10: Reserved
11: Continuous burst (synchronous only)

Bit 17

SYNCWRITEDEV: Synchronous write access device
This bit must be set to access the device using synchronous accesses 
for writes:
0: Asynchronous device (default)
1: Synchronous device

Bit 16

BMWRITE: Burst mode write
This bit is set and cleared by software to select burst or non-burst write to 
memory.
0: Non-burst writes to memory devices (default at reset)
1: Burst mode writes to memory devices

Bit 15:14 Reserved, do not modify, read as 0, write as 0

Bits 13:12 Reserved, do not modify, read as 1



   
   

   

RM0006

62/488  Doc ID 13742 Rev 4

Bits 11:10

BRLEN[1:0]: Burst Read Transfer Length

These bits are written by software to define the transfer length for burst 
or  page mode read cycle. Page mode is limited to 4 or 8 transfer.
00: 4-transfer burst read
01: 8-transfer burst read
10: 16-transfer burst read
11:  Continuous (synchronous only)

Bit 9

SYNCREADDEV: Synchronous read access device
Access the device using synchronous accesses for reads:
0: Asynchronous device (default).
1: Synchronous device.

Bit 8

BPM: Burst and Page Mode Read Selection

This bit is set and cleared by software to select/deselect Burst or Page 
Mode read.
0: Normal mode
1: Burst or Page Mode Read. (Page Mode is supported only when the 
EMI bus is configured as an 8-bit non-mux bus)

Bits 7:6 Reserved, must be kept at reset value.

Bits 5:4

MW[1:0]: Memory width

These bits are written by software to define the memory width of the 
bank. The bits must be set to match the EMI data bus width 
configuration.
00: 8-bit
01: 16-bit
10: Reserved
11: Reserved 

Bit 3

WP: Write protect

This bit is set and cleared by software to protect/unprotect the bank from 
write access.
0: Bank not write protected
1: Bank write protected

Bits 2:1 Reserved, must be kept at reset value

Bit 0

BLE: Byte Lane Enable
This bit enables the byte select signals in 16-bit PSRAM bus mode. 
0: Byte Select signals are not enabled
1: Byte Select signals (EMI_UBn and EMI_LBn) are enabled. Bit 2 in the 
GPIO EMI register (SCU_EMI) must also be set to 1.



RM0006

Doc ID 13742 Rev 4 63/488

   
   

   

Bank x burst read wait delay register (EMI_BRDCRx)

Address offset: 1Ch (Bank 1), 3Ch (Bank 2), 5Ch (Bank 3), FCh (Bank 0) 

         

         

         

Clock control register (EMI_CCR)

Address offset: 204h 

         

         

         

Reset value: 0000 001Fh - Bank 0

7 6 5 4 3 2 1 0

Reserved WSTBRD[4:0]

rw rw rw rw rw

Bits 31:5 Reserved, must be kept at reset value

Bits 4:0

WSTBRD[4:0]: Burst read wait states

These bits are written by software to define the number of wait states for 
burst read accesses after the first read. They do not apply to non-burst 
devices. The value defaults to 1Fh at reset.
Wait state time = WSTBRD x tBCLK.

Reset value: 0000 0001h 

7 6 5 4 3 2 1 0

Reserved BCLKEN

rw

Bits 31:1 Reserved, do not modify, read as zero, write as zero

Bit 0

BCLKEN BCLK enable

This bit is set and cleared by software to configure the activation of BCLK 
(available in LBGA package). This setting affects all banks.
0: BCLK clock only active during bus access
1: BCLK clock always running (activated by first bus access). Requires 
bit 1 in the GPIO EMI register (SCU_EMI) to be 0. 



   
   

   

RM0006

64/488  Doc ID 13742 Rev 4

1.12.9 EMI register map

The following table summarizes the EMI registers.

         

Table 7. EMI register map

Addr.
offset

Register 
name 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 EMI_ICR1 Reserved IDCY

04 EMI_RCR1 Reserved WSTRD

08 EMI_WCR1 Reserved WSTWR

0C EMI_OECR1 Reserved WSTOEN

10 EMI_WECR1 Reserved WSTWEN

14 EMI_BCR1

R
es

er
ve

d

B
W

LE
N

S
Y

N
C

W
R

IT
E

D
E

V

B
M

 W
R

IT
E

0

W
R

A
P

R
E

A
D

1 1

B
R

LE
N

[1
:0

]

S
Y

N
C

R
E

A
D

D
E

V

B
P

M

R
es

er
ve

d

M
W

[1
:0

]

W
P

R
es

er
ve

d

B
LE

18 Reserved

1C EMI_BRDCR
1 Reserved WSTBRD

20 EMI_ICR2 Reserved IDCY

24 EMI_RCR2 Reserved WSTRD

28 EMI_WCR2 Reserved WSTWR

2C EMI_OECR2 Reserved WSTOEN

30 EMI_WECR2 Reserved WSTWEN

34 EMI_BCR2

R
es

er
ve

d

B
W

LE
N

S
Y

N
C

W
R

IT
E

D
E

V

B
M

 W
R

IT
E

0

W
R

A
P

R
E

A
D

1 1

B
R

LE
N

[1
:0

]

S
Y

N
C

R
E

A
D

D
E

V

B
P

M

R
es

er
ve

d

M
W

[1
:0

]

W
P

R
es

er
ve

d

B
LE

38 Reserved

3C EMI_BRDCR
2 Reserved WSTBRD

40 EMI_ICR3 Reserved IDCY

44 EMI_RCR3 Reserved WSTRD

48 EMI_WCR3 Reserved WSTWR

4C EMI_OECR3 Reserved WSTOEN

50 EMI_WECR3 Reserved WSTWEN

54 EMI_BCR3

R
es

er
ve

d

B
W

LE
N

S
Y

N
C

W
R

IT
E

D
E

V

B
M

 W
R

IT
E

0

W
R

A
P

R
E

A
D

1 1

B
R

LE
N

[1
:0

]

S
Y

N
C

R
E

A
D

D
E

V

B
P

M

R
es

er
ve

d

M
W

[1
:0

]

W
P

R
es

er
ve

d

B
LE

58 Reserved

5C EMI_BRDCR
3 Reserved WSTBRD

60-DF Reserved



RM0006

Doc ID 13742 Rev 4 65/488

   
   

   

Refer to Table 5 on page 35 for the register base addresses. 

Refer to the System Controller Unit chapter for the EMI control bits in the SCU Configuration 
register description.

E0 EMI_ICR0 Reserved IDCY

E4 EMI_RCR0 Reserved WSTRD

E8 EMI_WCR0 Reserved WSTWR

EC EMI_OECR0 Reserved WSTOEN

F0 EMI_WECR0 Reserved WSTWEN

F4 EMI_BCR0

R
es

er
ve

d

B
W

LE
N

S
Y

N
C

W
R

IT
E

D
E

V

B
M

 W
R

IT
E

0

W
R

A
P

R
E

A
D

1 1

B
R

LE
N

[1
:0

]

S
Y

N
C

R
E

A
D

D
E

V

B
P

M

R
es

er
ve

d

M
W

[1
:0

]

W
P

R
es

er
ve

d

B
LE

F8 Reserved

FC EMI_BRDCR
0 Reserved WSTBRD

100-203 Reserved

204 EMI_CCR Reserved BCLK 
EN

Table 7. EMI register map (continued)

Addr.
offset

Register 
name 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



   
   

   

Power, reset and clocks RM0006

66/488  Doc ID 13742 Rev 4

2 Power, reset and clocks

2.1 Power supply

2.1.1 Main operating voltages

The STR91xFA requires two separate operating voltage supplies. The CPU and memories 
operate from a 1.65 V to 2.0 V on the VDD pins, and the I/O ring operates at 2.7 V to 3.6 V 
on the VDDQ pins.

Figure 20. Power supply overview

A/D converter
AVDD

VDDQ

VDD

AVSS

Core

(3
 V

 o
r 

3.
3 

V
)

SRAM 

AVREF

RTC VBATT

VSSQ
I/O Ring

VSS(1
.8

 V
)

(V
D

D
Q

)
(V

D
D

Q
)

VDD Core

SRAM 

RTC VBATT

VSS(1
.8

 V
)

(V
D

D
Q

)

A/D converter
AVREF_AVDD

VDDQ

AVSS_VSSQ
(3

 V
 o

r 
3.

3 
V

)

VSSQ
I/O Ring

(V
D

D
Q

)

80-pin devices128-pin and 144-ball devices



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 67/488

   
   

   

2.1.2 Independent A/D converter supply and reference voltage

To improve conversion accuracy, the ADC has an independent power supply which you can 
separately filter and shield from noise in the PCB.

On 128-pin, 144-ball packages: 

● The ADC voltage supply input is on a separate AVDD pin

● An isolated supply ground connection is provided on pin AVSS 

● You can connect a separate external reference voltage input for the ADC on the AVREF 
pin for better accuracy on low voltage inputs. 

On 80-pin packages 

The ADC voltage supply is tied internally to the ADC reference voltage pin AVCC_AVREF 
and the analog ground is shared with the digital ground at a single point, on pin 
AVSS_VSSQ. 

2.1.3 Battery backup 

An optional stand-by voltage from a battery or other source may be connected to pin VBATT 
to retain the contents of SRAM in the event of a loss of the main digital supplies (VDD and 
VDDQ). The SRAM will automatically switch its supply from the internal VDD source to the 
VBATT pin when the VDD and VDDQ voltage drops below the LVD threshold  (and VBAT 
remains above the threshold).

Note: In order to use the battery supply, the LVD must be enabled

The VBATT pin also supplies power to the RTC unit, allowing the RTC to function even when 
the main digital supplies (VDD and VDDQ) are switched off. By programming the device 
configuration via JTAG, you can select to power only the RTC or both the RTC and the 
SRAM from VBATT.

2.1.4 Power-up

The LVD circuitry will always generate a global reset when the STR91xFA powers up, 
meaning internal reset is active until VDDQ and VDD are both above the LVD thresholds. This 
POR condition has a duration of tPOR, after which the CPU will fetch its first instruction from 
address 0x0000.0000.

Figure 21 shows the reset timing.



   
   

   

Power, reset and clocks RM0006

68/488  Doc ID 13742 Rev 4

Figure 21. Reset timing

2.2 Reset
There are two types of reset generated internally, defined as System Reset and Global 
Reset.

2.2.1 System reset

A system reset is generated when one of the following events occurs:

1. A low level on the RESET_INn pin (External Reset)

2. Watchdog end of count condition (WDG Reset)

3. JTAG Reset Command (JTAG reset).

A system reset sets all registers to their reset values except the Clock control register 
(SCU_CLKCNTR), PLL configuration register (SCU_PLLCONF), System status register 
(SCU_SYSSTATUS) and some RTC registers.

Note: In earlier silicon revisions, prior to Rev H, the FMI Bank address and Bank size registers are 
also set by a system reset.

2.2.2 Global reset

A global reset is generated when one of the following events occurs: 

1. A voltage drop below internal LVD threshold (LVD Reset)

2. Power On Reset (POR reset), which has the same behavior as the LVD Reset

A global reset sets all the registers to their reset values (except some RTC registers).

2.2.3 Reset flags

An LVD or Watchdog reset is flagged in the System status register (SCU_SYSSTATUS) and 
an interrupt request to the VIC is generated when either flag is set. You can read these flags 
to determine the source of the last reset as shown in Table 8.

RESET_IN

Internal RESET0

Internal RESET1

fOSC
...

POR reset time ~10ms Minimum 100ns

(Flash signal)

(CPU and peripherals)

pin

POR reset Flash memory
 initialization phase



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 69/488

   
   

   

         

2.2.4 Reset peripherals (software reset)

Through the Peripheral reset register 0 (SCU_PRR0) and Peripheral reset register 1 
(SCU_PRR1), it is possible to force the reset for each peripheral.

2.2.5 Reset output

The RESET_OUT pin can be used to reset other application components when a system or 
global reset occurs. It is an ORed output of all reset sources: system resets and global 
resets. Each of the reset has its own time duration, refer to the data sheet on their timings. 
The RESET_OUT pin is a push-pull pin with 4mA drive.

2.3 Low voltage detector
Voltage dropout: The LVD circuit monitors VDD (1.8 V), and VDDQ 3.0 V (or 3.3 V) supplies 
and generates a global reset whenever either voltage drops below the configured VDD_LVD 
and VDDQ_LVD levels. If the MCU was reset by the LVD, this is flagged in the System status 
register (SCU_SYSSTATUS) and an interrupt request to the VIC is generated if enabled.

Voltage brownout: You can also program the LVD to generate an Early Warning interrupt 
when either voltage drops below the VDD_BRN and VDDQ_BRN thresholds. The Early Warning 
event signal is connected to the VIC1.7 interrupt channel. Software can manage the Early 
Warning interrupt using the VIC1.7 channel bits in the VIC registers.

Configuration

You can configure the LVD by programming the non-volatile configuration bits via JTAG as 
described in the STR91xFA JTAG/ISP programming specification. There are three bits:

● The LVD_th bit selects the LVD threshold. Configure the 2.4 V threshold for 
applications with 3 V VDDQ 3 V or a 2.7 V threshold if VDDQ is 3.3 V.

● The LVD_RESET_SELECT bit selects if an LVD reset is triggered on the VDD threshold 
only or on both VDD and VDDQ.

● The LVD RESET WARNING bit selects if an Early Warning interrupt is triggered on the 
VDD threshold only or on both VDD and VDDQ.

The LVD circuit consumes current in power down mode. In certain low power applications 
this may not be desirable. The LVDEN bit in the Flash Configuration Register allows you to 
turn off the LVD circuit before power down mode and turn it back on later. This is a volatile 
bit and is cleared (LVD enabled) after reset. You can configure it by software via the Flash 
Memory CUI (Command user interface). Refer to the Flash memory interface (FMI) section 
for details of this register.

Note: When the LVD is turned off, the VBAT feature is not supported.

Table 8. Reset flags

WDG_RST bit LVD_RST bit Meaning

0 0 An External Reset or JTAG Reset occurred (system reset)

0 1 An LVD reset or POR occurred (Global reset)

1 0 A watchdog reset occurred (System reset)



   
   

   

Power, reset and clocks RM0006

70/488  Doc ID 13742 Rev 4

The LVD logic consists of a lower power voltage band gap that provide an accurate voltage 
reference. This voltage reference is used to create the voltage threshold levels that are 
compared with the supply voltages.

When either voltage supply falls below the threshold for that supply, the LVD generates a 
global reset. 

2.4 Clocks

2.4.1 External clock sources

The system controller has the following four external clock sources:

1. fOSC: A 4 to 25 MHz oscillator provides the main operating clock for all on-chip 
functional blocks.

2. fRTC: The RTC has an independent 32.768 kHz crystal. The RTC keeps on running 
even when the CPU is in power down or power off mode. This slow RTC clock can also 
be used in power management.

3. fUSB: You can optionally configure this as a 48 MHz input clock to the USB. It is needed 
when the PLL is configured to generate a clock that cannot be shared by the USB. The 
PLL is able to generate a 48 or 96 MHz clock from the 25 MHz input crystal for internal 
use by selecting the appropriate multiplier and divider.

4. fTIMEXT: The TIM Timer/counters can run on the internal peripheral clock or the 
external input clock. You select this by programming the TIM01SEL and TIM23SEL bits 
in the Clock control register (SCU_CLKCNTR). These clock can be gated through the 
Peripheral Clock Gating Registers (see Section 2.4.12). When these pins are not used 
as clock inputs, they can be configured as GPIO.



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 71/488

   
   

   

Figure 22. Clock control

1/2

1/2

(1,2,4)
AHBDIV

RCLKDIV
(1,2,4,8,16,1024)

fPLL fMSTR

RCLK

HCLK

(1,2,4,8)
APBDIV

Peripheral 
Clock 
Gating

HCLK
to AHB
peripherals

PCLKPeripheral 
Clock 
Gating

PCLK
to APB
peripherals

X1_CPU

X2_CPU

MII_PHYCLK

X1_RTC

X2_RTC

MAIN
OSC

OSC
RTC

PHYSEL fOSC

fRTC

PLL

EXTCLK_T0T1

EXTCLK_T2T3

USB_CLK48M
to USB block

FMICLK

to Flash Memory

Peripheral 
Clock 
Gating

FMICLK

Interface

External clock to TIM0 & TIM1

TIM01CLK

External clock to TIM2 & TIM3

TIM23CLK

Peripheral 
Clock 
Gating

48 MHz USBCLK

 

1/2

MCLKSEL25 MHz

4 to 25 MHz

32.768 

 to CPU
CPUCLK

Special interrupt 
 mode control

to RTC

fOSC

to WDG (software
selectable in WDG
register)

kHz

JRTCLK

RTCSEL

32.768 kHz

1/2

EMI_BCLK

to External
memory
interface

Peripheral 
Clock 
Gating

BRCLK
to SSPs

and UARTs

fOSC

fRTC



   
   

   

Power, reset and clocks RM0006

72/488  Doc ID 13742 Rev 4

2.4.2 Master clock (fMSTR)

The master clock (fMSTR) has three clock sources that you select using the MCLKSEL[1:0] 
bits in the Clock control register (SCU_CLKCNTR). The clock sources are the PLL output, 
the oscillator input pin and the RTC clock: 

● The fPLL output frequency is programmable, typical frequency is 48 MHz, 66 MHz or 
96 MHz (maximum). When power consumption is critical, you can disable the PLL and 
run the microcontroller directly from the external clock (RTC clock or Oscillator).

● The fOSC oscillator input clock has a frequency of 4 to 25 MHz. This input clock can be 
sourced by a crystal or an oscillator.

● fRTC is a 32.768 kHz input. You can program the application to run from this slow clock 
when you want to save power.

You can choose the source to match the CPU performance and the power management 
requirements of your application. Transitions from one clock to another are glitch-free and 
do not disrupt any on-going activities.

2.4.3 Flash memory interface clock (FMICLK)

The FMICLK clock is an internal clock derived from RCLK and with the same frequency. You 
can optionally divide it by 2 by setting the FMI_SEL bit in the Clock control register 
(SCU_CLKCNTR). FMICLK can be gated through the Peripheral Clock Gating Registers 
(see Section 2.4.12).

2.4.4 UART and SSP clock (BRCLK)

BRCLK is an internal clock derived from fMSTR that is used to drive the two SSP peripherals 
and to generate the baud rate for the three on-chip UART peripherals. You can optionally 
divide the frequency by 2 by setting the BR_SEL bit in the Clock control register 
(SCU_CLKCNTR). BRCLK can be gated through the Peripheral Clock Gating Registers 
(see Section 2.4.12).

2.4.5 External memory interface clock (BCLK)

You can select the frequency of the EMI bus clock (BCLK) to be HCLK or HCLK/2 using the 
EMIRATIO bit in the Clock control register (SCU_CLKCNTR). By default the frequency is 
HCLK/2. The BCLK clock is available on the LFBGA package as an output pin. You can 
disable the BCLK output by setting the BCLK_EN bit in the EMI register (SCU_GPIOEMI).

2.4.6 USBCLK

The USB clock can be derived from fMSTR when the frequency is 48 MHz or 96 MHz. If you 
use another fMSTR frequency, the 48 MHz USBCLK must be sourced from the external pin 
(GPIO pin). You select this using the USB_SEL[1:0] bits in the Clock control register 
(SCU_CLKCNTR). USBCLK can be gated through the Peripheral Clock Gating Registers 
(see Section 2.4.12).

2.4.7 External RTC calibration clock

The RTC_CLK can be enabled as an output on the JRTCK pin by setting the Calibration 
Clock Output Enable bit in the RTC_CR register. The RTC_CLK is used for RTC oscillator 
calibration. The RTC_CLK is active in Sleep mode and can be used as a system wakeup 
control clock.



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 73/488

   
   

   

2.4.8 PHY clock output 

MII_PHYCLK: This pin can be configured as a 25 MHz output clock for the Ethernet PHY 
interface. You enable the output clock using the MAC_SEL bit in the Clock control register 
(SCU_CLKCNTR). This configuration requires fOSC to be 25 MHz.

2.4.9 PLL

As shown in Figure 22, the oscillator input clock (fOSC) is the input clock to the 
programmable PLL frequency multiplier. 

When the PLL is active, it generates an output frequency (fPLL)according to the following 
equation: 

fPLL = (2 x N x fOSC)/(M x 2P) 

Where the values of M, N and P must satisfy the following constraints:

1 ≤ M ≤ 255 

1 ≤ N ≤ 255

0 ≤ P ≤ 5

1 MHz ≤ fOSC/M ≤ 2 MHz 

200 MHz ≤ (2 x N x fOSC) / M ≤ 622 MHz 

4 MHz ≤ fOSC ≤ 25 MHz 

You program the M, N and P values by writing to the PLL configuration register 
(SCU_PLLCONF).

Care is required when programming the PLL multiplier and divider factors, not to exceed the 
maximum allowed operation frequency (96 MHz).

At power up, the CPU defaults to run on the oscillator clock, as the PLL is not ready (locked). 
The CPU can switch to the PLL clock only after the LOCK bit in the System status register 
(SCU_SYSSTATUS) is set. In Sleep mode, the PLL is turned off. When waking up from 
sleep mode if the fMSTR is selected to run off the PLL, the CPU will wait until the LOCK bit is 
set before it starts to run. 

The LOCK bit is set when the PLL clock has stabilized (locked status) and maintains this 
value as long as the PLL is locked. You can select the PLL clock as fMSTR clock source only 
when the LOCK bit is 1. If the LOCK bit goes to 0 if for any reason, the PLL loses the 
programmed frequency in which it was locked. In this case, the LOCK_LOST bit is set and 
fMSTR automatically switches back to fOSC. fPLL is restored as the fMSTR source when the 
LOCK bit becomes 1 again. 

The LOCK and LOCK_LOST events can be configured to generate interrupt requests to the 
VIC. See Section 2.6.1: SCU interrupts.



   
   

   

Power, reset and clocks RM0006

74/488  Doc ID 13742 Rev 4

2.4.10 Changing the PLL configuration 

While the CPU is running on the PLL clock, the PLL clock frequency can be changed by 
updating the SCU_PLLCONF register. You need to follow the steps below to change the 
clock:

1. Switch the CPU Master clock source to the OSC by setting bits [1:0] in the 
SCU_CLKCNTR register to “10”.

2. Write the new configuration to the SCU_PLLCONF register (write the new P, N and M 
values with the PLL_EN  enable bit set to “0”).

3. The SCU_PLLCONF register will be updated after the clock has been switched to the 
OSC. 

4. If you need the CPU to run at the new PLL clock frequency, write to the 
SCU_PLLCONF register again with the new P, N and M values AND the PLL_EN bit set 
to “1”.

5. Switch the CPU clock source back to the PLL clock by setting bit[1:0] in the 
SCU_CLKCNTR register to “00”. 

6. The CPU Master clock will switch automatically from the OSC to the PLL once the 
LOCK bit is set. Do not initiate another SCU_PLLCONF register change before the 
LOCK bit is set. 

2.4.11 Clock dividers

The main clock (fMSTR) can be divided to operate at a slower frequency reference clock 
(RCLK) for the ARM core and all the peripherals. The RCLK provide the divided clock for the 
ARM core, and feeds the dividers for the AHB, APB, External Memory Interface, and FMI 
units.

You program the RCLK divider using the RCLKDIV[2:0] bits in the Clock control register 
(SCU_CLKCNTR).

The AHB clock can be divided by 1, 2 or 4. The APB clock can be divided by 1, 2, 4, or 8. 
You program the PCLK and HCLK dividers using the APBDIV[1:0] and AHBDIV[1:0]bits in 
the Clock control register (SCU_CLKCNTR).

2.4.12 Peripheral clock gating

After reset, only the CPU, the Flash memory, the SRAM and a small subset (see default 
values of Peripheral clock gating register 0 (SCU_PCGR0) and Peripheral clock gating 
register 1 (SCU_PCGR1) registers) of the peripherals start operating. The other parts of the 
system remain stopped. because the related PCGR bits are reset. To start them, you have 
to write 1 to the related register bit. You can stop the peripheral again, by writing 0 to the 
related bit. 

This allows you to dynamically control the number of peripherals that are running which 
allows you to optimize the power used in a very flexible way. 

The Idle mode gating mask register 0 (SCU_MGR0) Idle mode gating mask register 1 
(SCU_MGR1) allow you to define a set of peripherals that are kept running when the 
microcontroller goes into Idle mode. In Sleep mode all peripherals except the RTC are 
turned off.



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 75/488

   
   

   

Clock gating in emulation mode

During the emulation mode (debug state of the ARM966E-S processor) the System 
Controller allows gating the clock of a peripheral or a group of peripherals. The software 
application can choose to stop the desired peripheral when ARM966E-S enters emulation 
mode. When you clear the related bit in the Peripheral emulation clock gating register 0 
(SCU_PECGR0), or Peripheral emulation clock gating register 1 (SCU_PECGR1), the 
peripheral clock is gated in emulation mode.

2.5 Low power modes
The STR91xFA implements a configurable and flexible power management control that 
allows you to choose the best power option to fit your application. You can dynamically 
manage the power consumption or hardware to match the system's requirements.

Power management is provided via clock control for the CPU and individual clock control for 
the various peripherals. 

The STR91xFA supports the following 4 global power control modes:

● Normal Run Mode

● Special Interrupt Run Mode

● Idle Mode

● Sleep Mode

Note: In the application development environment, a special mode (Debug state) is active during 
in-circuit emulation (ICE). In this mode, the clocks are never switched off when the ICE is in 
use even if the CPU enters Idle or Sleep Mode. In Idle Mode the CPU stops fetching 
instructions, but the ICE can override this state in order to run the debugger code.

Using the Flash_PD_DBG bit in the Power management register (SCU_PWRMNG) you can 
configure the Flash to enter power down mode when debug mode is active.



   
   

   

Power, reset and clocks RM0006

76/488  Doc ID 13742 Rev 4

         

Figure 23. Comparison of power control modes

Power State Clocks Wakeup event Description

Normal Run 
Mode

– All clocks are on
– CPU is clocked by 

RCLK (divided by 
RCLKDIV)

– Peripherals active if enabled by 
the Peripheral Clock Gating 
Registers

 Special Interrupt 
Run mode

– CPU is clocked by 
RCLK 

– While executing 
interrupt service 
routines, CPU is 
clocked by fMSTR 
(RCLKDIV is 
bypassed) 

Idle Mode

– ARMCLK = Off

– FMICLK = Off(1)

– HCLK = On(1)

– PCLK = On(1)

– External reset
– WDG reset

– Interrupts

– RTC alarm

– External wakeup

– CPU off 

– Peripherals active if enabled by 
the Peripheral Clock Gating 
Registers AND the 
corresponding bit is set in the 
Idle Mode Gating Mask 
Registers.

Sleep Mode

– ARMCLK = Off

– FMICLK = Off
– HCLK = Off

– PCLK = Off

– External reset

– External wakeup

– RTC Alarm

– All clocks off except RTC 

– Flash memory in power down 
mode

– PLL off

– Oscillator pin (4-25 MHz) off

(1) The OFF and ON state must be configured in Idle mode gating mask register 0 (SCU_MGR0) and 
Idle mode gating mask register 1 (SCU_MGR1) 



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 77/488

   
   

   

Figure 24 shows the power management state diagram (core not in Debug state).

Figure 24. Low power mode state diagram

2.5.1 Normal run mode

This is the default run mode. The CPU executes instructions and any or all of the on-chip 
peripherals are in active state. You can turn-on or turn-off the clock of any of the peripherals 
writing to Peripheral clock gating register 0 (SCU_PCGR0) or Peripheral clock gating 
register 1 (SCU_PCGR1). You can also reduce the frequency (by means of clock dividers) 
of the various clocks in order to optimize power usage while operating in normal run mode.

2.5.2 Special interrupt run mode

Special Interrupt mode FIQ

The special interrupt mode using FIQ causes the CPU to temporarily operate at full speed 
(fMSTR as clock frequency) while servicing one or more interrupts and return back to normal 
run mode with the speed selected by the clock RCLKDIV divider (see Figure 22) when the 
interrupt routine is complete. You enable/disable this mode using the CPU_INTR bit in the 
Power management register (SCU_PWRMNG).

Special Interrupt mode IRQ

The special interrupt mode using IRQ causes the CPU to operate at full speed (fMSTR as 
clock frequency) when the IRQ service routine reads the vector address register in the VIC 
and jumps then to the specified interrupt routine with the speed selected by the RCLKDIV 
clock divider. You enable/disable this mode using the CPU_INTR bit in the Power 
management register (SCU_PWRMNG).

Idle 

mode

Interru
pt o

r R
ese

t

Set Idle mode

Power up reset
Interrupt

Special

Return fro
m in

terru
pt 

Set sleep mode
W

akeup or Reset

Sleep mode

Normal 

Run 

mode

Run Mode
Interrupt



   
   

   

Power, reset and clocks RM0006

78/488  Doc ID 13742 Rev 4

2.5.3 Idle mode

Idle Mode is entered under software control, by writing the value ‘001b’ to the 
PWR_MODE[2:0] bits in the Power management register (SCU_PWRMNG). 

In this mode, the CPU suspends code execution. The CPU and FMI clocks are turned off. 
The various peripherals still continue to operate with their programmed clock rate if they are 
enabled by the related bits of the SCU_PCGRx and the SCU_MGRx registers. If the 
SCU_MGRx register bit is 0, when the system enters Idle mode, the related clock will be 
gated, otherwise the peripheral will continue to receive the clock if the PCGR bit is set. 

To exit from Idle Mode, an interrupt must be generated by one of the active peripherals or 
from an external source: 

● External reset or watchdog reset

● External or internal peripheral interrupt

● RTC alarm event

● Input from EXTINT pins (GPIO pins) via wakeup unit (WIU)

Idle Mode entry timing

The time required to enter Idle mode depends both on the oscillator clock, on the CPUCLK 
clock and on the slowest clock set for the peripherals coming out of the Clock Control Unit 
(see Table 10 and Figure 22) according to the following equation:

tIDLE = 17 * (tOSC) + 14 * (tSLOWEST_PERIPH_CLK) + 6 * (tCPUCLK)

If the WDG clock is RTC then tSLOWEST_PERIPH_CLK= tRTC

Idle Mode exit timing

On Idle Mode wake-up, all the clock sources, in particular the oscillator pad (4-25 MHz), 
automatically turn on. This procedure is controlled by the same State Machine inside the 
Power Management Unit (PMU). From Idle Mode, an internal temporization is used for Flash 
recovery (1250 Oscillator clock cycle) before the CPU fetch. When the clock oscillators are 
enabled, all peripherals have to send an acknowledgement back to the PMU that the clock is 
enabled. However, as soon as the CPU clock is enabled, the code starts.

For this reason, it is recommend that the PMU state machine is turned back to its READY 
state, before selecting a new Low Power Mode entry.

To ensure this time recovery, Equation 1 should be used.

Equation 1

tRECOVERY 17 tOSC( )× 14 tSLOWEST_PERIPH_CLK( ) 6 tCPUCLK( )×+×+=



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 79/488

   
   

   

2.5.4 Sleep mode

Sleep mode is entered under software control, by writing the value ‘010b’ to the 
PWR_MODE[2:0] bits in the Power management register (SCU_PWRMNG).

This is the lowest power mode of MCU. In this mode, all clock circuits (except RTC) and the 
oscillator pin (4-25 MHz) are turned off. In this mode, the CPU does not continue to execute 
any instructions. All peripherals except the RTC have their clocks stopped. The ARM Flash 
Memory is put in power down mode at the same time as the ARM MCU. The ARM MCU 
when enters into the Power Down mode, generates a PD signal to the Flash Memory. The 
Flash memory take at minimum 50µs of recovery time to resume operation on wakeup from 
sleep mode. The system clock is switched on only after the recovery time is over.

To exit from Sleep mode, one of the following events must occur:

● External reset (RESET_INn pin

● External interrupt via wakeup unit (WIU)

● RTC alarm

When a wakeup interrupt occurs, the MCU will start up all the clocks, respond to the 
interrupt and then continue normal execution. 

Sleep Mode exit timing

Refer to Idle Mode exit timing.

2.5.5 Sleep mode and Idle mode configuration considerations

When enabling Sleep or Idle mode, certain requirements must be met to ensure the proper 
operation of the low power modes. The following sections describe these requirements 
when entering or exiting Sleep or Idle mode. 

Code execution after entering Sleep mode and Idle mode

Once Idle mode or Sleep Mode are entered by writing the PWR_MODE[2:0] bits in the 
Power management register (SCU_PWRMNG) it takes about 12 crystal oscillator cycles 
(X1_CPU input frequency) for the device before stopping the execution.

In order to avoid executing any valid instructions after the Idle or Sleep bit setting and before 
entering the mode, it is mandatory to execute a certain number of dummy instructions after 
the Power management register setting.

The number of dummy instructions to be executed depends on the ratio between the CPU 
clock frequency and the oscillator input frequency according to the following:

N_dummy_Instr = (fcpuclk/fosc_x1)*12 if (fcpuclk/fosc_x1)>=1

N_dummy_Instr = 3 if( fcpuclk/fosc_x1)<1

The worst case is represented by the core working out of the PLL maximum frequency 
(96 MHz) with an 4 MHz crystal or oscillator on the X1 inputs. In that case 288 dummy 
instructions would be needed.



   
   

   

Power, reset and clocks RM0006

80/488  Doc ID 13742 Rev 4

Sleep Mode with a crystal connected to X1_CPU input

In order to cut the power consumption due to oscillation, the crystal inputs are disabled 
during Sleep Mode. During recovery from Sleep Mode the oscillator will take a start-up time 
to re-start the oscillation (refer to the data sheet on the start-up time). For this reason, when 
a crystal is connected to the crystal inputs, the system clock source must be switched to the 
RTC clock before entering Sleep Mode. After waking up, the CPU runs on the RTC clock 
and needs to wait until the crystal start-up time elapses before switching back to the 
oscillator or PLL clock. 

Figure 25. Clock management during Sleep Mode with crystal connected

Sleep mode with an oscillator connected to X1_CPU input

In this case the oscillation will restart right away after the X1 inputs are re-enabled and it is 
not necessary to switch to RTC clock before entering Sleep Mode

Sleep mode with the PLL used as system clock source

If the oscillation on the X1_CPU inputs is generated by a crystal the software has to 
explicitly switch the system clock source to the RTC clock before entering Sleep Mode and, 
when exiting Sleep Mode, switch back to the PLL only after the crystal start-up time.

During Sleep Mode the PLL is automatically turned off and the system clock is automatically 
switched to the oscillator input. On exit from Sleep Mode, the system clock will go back to 
the PLL clock only after the PLL is locked.

If the oscillation on the X1_CPU input is generated by an oscillator no action needs to be 
taken since the PLL is automatically turned off, the system clock is automatically connected 
to the oscillator clock and changed back to the PLL clock after exiting from Sleep Mode once 
the PLL is locked.

tCR

PWDOWN

RTC CLOCK

X1_CPU

CPUCLK

Switch the system clock
to the RTC clock before entering

Sleep mode

Switch the system clock back
to the fOSC source after the

crystal startup time

(OSC)

tFR



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 81/488

   
   

   

Figure 26. Clock management during Sleep mode with crystal and PLL

         

Sleep Mode entry timing

When Sleep mode is selected, all the clock circuits and the oscillator pad (4-25 MHz) are 
turned off. This procedure is controlled by a dedicated State Machine inside the Power 
Management Unit (PMU), in order to switch off the clocks safely.

During the Sleep Mode sequence there are many interactions between the Power 
Management Unit (PMU) and the Clock Control Unit (CCU). In particular, when the low 
power mode is set, a signal is asserted to gate the peripheral clocks. As response to this 
signal, all the peripherals have to send back to the PMU the acknowledgement that the clock 
was shut-off.

The setting or enabling of the peripheral clocks depends on the Clock Control register 
(SCU_CLKCNTR) configuration and on the EE bit setting in the the Watchdog clock control 
register (selecting APB or RTC clock as the Watchdog clock source).

tCR

PWDOWN

RTC CLOCK

X1_CPU

Switch the system clock source

to the RTC clock before

entering Sleep mode

Switch  the system clock source to back to

PLLCLK  after the crystal startup time has elapsed

The system clock will operate at  OSC frequency
 till the PLL is locked

PLL LOCK

CPUCLK

(OSC)

PLL CLOCK

t
PLLR

t
FR

Table 9. Sleep mode wakeup time for PLL, Flash and crystal

Parameter Description Min Typ Max

tCR Crystal start-up time 1.5 ms

tFL Flash memory recovery time 50 µs

tPLLR Lock-in time from PLL enable 0.3 ms 1.5 ms



   
   

   

Power, reset and clocks RM0006

82/488  Doc ID 13742 Rev 4

         

As a result the time required to enter Sleep mode depends both on the oscillator clock, on 
the CPUCLK clock and on the slowest clock set for the peripherals coming out of the Clock 
Control Unit (see Table 10 and Figure 22) according to the following equation:

tSLEEP = 17 * (tOSC) + 14 *  (tSLOWEST_PERIPH_CLK)+ 6 * (tCPUCLK)

During this tSLEEP time a wakeup input will be ignored.

If the WDG clock is RTC then tSLOWEST_PERIPH_CLK= tRTC

Example 1

tOSC =40ns   (@ 25 MHz)

tCPUCLK =20.83ns   (@48 MHz)

All clock dividers in the default state except APB clock divided by 
4 ' (tSLOWEST_PERIPH_CLK)=4* tCPUCLK 

tSLEEP = 17 * 40 ns + 14 * (4 * 20.83 ns)+ 6 * 20.83 ns = 1971.46 ns 

Example 2

tOSC = 40 ns   (@ 25 MHz)

tCPUCLK = tRTC = 31,250 ns  (@ 32 kHz)

All clock dividers in the default state except APB clock divided by 

2 ' (tSLOWEST_PERIPH_CLK) = 2 * tCPUCLK 

tSLEEP = 17 * 40 ns + 14 * 2 * 31,250 ns + 6 * 31,250 ns ~ 1.06 ms

Example 3

tOSC = 40 ns   (@ 25 MHz)

tCPUCLK =20.83 ns   (@ 48 MHz)

All clock dividers in the default state except APB clock divided by 4 'PCLK=4* tCPUCLK 

WDG working out of the RTC clock  '(tSLOWEST_PERIPH_CLK)=tRTC 

tSLEEP = 17 * 40 ns + 14 * (31,250 ns) + 6 * 20.83 ns ~ 0.43 ms

Table 10. CCU output clocks that determine the entry time (tSLEEP) 

CCU_OUT Description Control Register

BRCLK Baud Rate Clock to the UART SCU_CLKCNTR

TIMO1CLK Timer 0-1 clock SCU_CLKCNTR

TIM23CLK Timer 2-3 clock SCU_CLKCNTR

EMICLK EMI clock SCU_CLKCNTR

FMICLK FMI clock SCU_CLKCNTR

WDG Watchdog clock WDG_CR (EE)

HCLK AHB clock SCU_CLKCNTR

PCLK APB clock SCU_CLKCNTR

CPUCLK ARM core clock SCU_CLKCNTR

USBCLK USB Clock SCU_CLKCNTR



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 83/488

   
   

   

2.6 System control unit (SCU)
The System Control Unit (SCU) provides the control logic for the STR91xFA power, reset 
and clocks as described in the previous Section 2. The SCU also controls a large number of 
other miscellaneous features described in Section 2.6.2 to Section 2.6.7

2.6.1 SCU interrupts

The SCU interrupt sources are mapped on two channels of the vectored interrupt controller 
VIC as shown in Figure 27.

Figure 27. SCU Interrupts

LVD RESET STATUS

PLL LOCK

PLL LOCK LOST

BROWNOUT EARLY WARNING

Vectored Interrupt Controller

Wakeup /interrupt Unit
(WIU)

Wakeup

System Control Unit (SCU)

VIC0.10

VIC1.7

(VIC)

SLEEP MODE CONTROL

POWER MANAGEMENT

SCU_SYSTATUS Register

LVD

IRQ to CPU

External Wakeup pins/

 USB Resume events

SRAM ERROR

ACK PFQBC

RTC Alarm/Tamper/Periodic/

SCU_ITCMSK
Register 



   
   

   

Power, reset and clocks RM0006

84/488  Doc ID 13742 Rev 4

2.6.2 SRAM configuration/control 

AHB/DTCM arbiter wait states

Using the WSR_DTCM bit in the System configuration register 0 (SCU_SCR0), you can 
select the number of wait states inserted when reading the SRAM through the DTCM.

Using the WSR_AHB bit in the System configuration register 0 (SCU_SCR0), you can select 
the number of wait states inserted when reading the SRAM through the AHB.

Size selection

Using the SRAM_SIZE bit in the System configuration register 0 (SCU_SCR0), you can 
select the size of the SRAM (32 Kb, 64 Kb, 96 Kb).

Lock transfer enable

Using the SRAM_LK_EN bit in the System configuration register 0 (SCU_SCR0), you can 
enable AHB Lock transfer for SRAM arbiter.

2.6.3 PFQ/BC configuration/control

Using the EN_PFQBC bit in the System configuration register 0 (SCU_SCR0), you can 
enable/disable the PFQ/BC unit

2.6.4 External memory interface (EMI) configuration/control 

Mux/Demux mode

Using the EMI_MUX bit in the System configuration register 0 (SCU_SCR0), you can select 
EMI Mux mode or Demux mode. 

ALE length

Using the EMI_ALE_LENGTH bit in the System configuration register 0 (SCU_SCR0), you 
can select EMI ALE length to be 1 or 2 cycles.

ALE Polarity

Using the EMI_ALE_POL bit in the System configuration register 0 (SCU_SCR0), you can 
select EMI ALE polarity to be active high or active low.

Refer to Section 1.12 for more information.

2.6.5 UART configuration/control 

Using the UART_IRDA[2:0] bits in the System configuration register 0 (SCU_SCR0), you 
can configure the three UART peripherals individually in UART or IrDA mode.

2.6.6 Port 3.0 ETM trigger or external debug request selection

Using the P30_SEL_EDBG and the EXT_EMT_EDBGR bits in the System configuration 
register 0 (SCU_SCR0), you can set up GPIO port 3.0 as the ETM trigger or External debug 
request input.



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 85/488

   
   

   

2.6.7 System control unit GPIO registers

GPIO Pins on P0 thru P7 have multiple input and output alternate functions. You select 
these using the System Control Unit (SCU) registers. SCU registers are also used to select 
open collector or Push-Pull operation and to configure Port 4 pins for use as analog inputs. 

GPIO Pins on P8 thru P9 are only multiplexed with EMI and have no SCU output or input 
control registers. 

All ports have SCU_GPIOTYPE registers for selecting Open Collector or Push/Pull 
configuration.

2.6.8 ADC Fast trigger conversion in single mode

Using the ACG bits in the GPIO analog mode register (SCU_GPIOANA), you can configure 
the ADC in automatic clock gating mode between each trigger start command.

Refer to Section 16.4.5 for more information.

Note: This feature is not available in silicon Rev G and earlier revs (see datasheet for silicon 
revision information).

2.6.9 Register description

In this section, the following abbreviations are used:

         

Note: In the register description, n = 0 to 7 and m = 0 to 9.

Read/write (rw) Software can read and write to these bits.

Read-only (r) Software can only read these bits. 

Read/clear (rc_w1)
Software can read as well as clear this bit by writing 1. Writing ‘0’ has no 
effect on the bit value.

Read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on the bit 
value.

Write only (wo) Software can only write to this bit. Reading the bit returns the reset value.



   
   

   

Power, reset and clocks RM0006

86/488  Doc ID 13742 Rev 4

Clock control register (SCU_CLKCNTR)

Address offset: 00h

Reset value: 0002 0002h (see note)

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.
EMIRATIO

[1:0]
FMI 
SEL

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TIM23
SEL

TIM01
SEL

PHY 
SEL

USBSEL
[1:0]

BR 
SEL

APBDIV
[1:0]

AHBDIV
[1:0]

RCLKDIV[2:0]
MCLK

SEL[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, always read as 0

Bits 18:17

 EMIRATIO[1:0]: External Memory Interface ratio

These bits are written by software to define the ratio of EMI bus clock (fBCLK) and 
HCLK (default 0h)
00: fBCLK=HCLK 
01: fBCLK=HCLK/2 (default)
10: Reserved
11: Reserved

Bit 16

 FMISEL: Flash Memory Interface Clock Divider
This bit is set and cleared by software. It enables/disables the FMICLK divider.
0: FMICLK=RCLK
1: FMICLK=RCLK/2 

Bit 15 Reserved, always read as 0

Bit 14

 TIM23SEL: Timers 2 and 3 external clock enable
This bit is set and cleared by software. It enables the TIM23 external clock source 
for TIM2 and TIM3.
0: External clock disabled
1: TIM23 external clock enabled (from EXTCLK_T2T3 pin GPIO P2.5)

Bit 13

 TIM01SEL: Timers 0 and 1 external clock enable
This bit is set and cleared by software. It enables the TIM01 external clock source 
for TIM0 and TIM1.
0: External clock disabled
1: TIM01 external clock enabled (from EXTCLK_T0T1 pin GPIO P2.4) 

Bit 12

 PHYSEL: MII_PHYCLK Enable
This bit is set and cleared by software. It enables the 25 MHz PHY output clock
0: MII_PHYCLK output disabled (default)
1: fOSC output on MII_PHYCLK pin GPIO P5.2



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 87/488

   
   

   

Note: This register is set to reset value only after a Power on Reset. A system reset does not reset 
the register.

Bits 11:10

 USBSEL[1:0]: USB 48 MHz Clock Selection

These bits are written by software to select the source of the 48 MHz clock input 
to the USB block
00: fMSTR (default)
01: fMSTR divided by 2
10: External Clock from USB_CLK48M pin GPIO P2.7
11: Reserved

Bit 9

 BRSEL: Baud Rate Clock Selection
This bit is set and cleared by software. It selects the clock source for BRCLK
0: fMSTR divided by 2
1: fMSTR 

Bits 8:7

 APBDIV[1:0]: PCLK divider

These bits are written by software to define the PCLK divider
00: PCLK=RCLK (default)
01: PCLK=RCLK divided by 2
10: PCLK=RCLK divided by 4
11: PCLK=RCLK divided by 8

Bits 6:5

 AHBDIV[1:0]: HCLK divider

These bits are written by software to define the HCLK divider
00: HCLK=RCLK (default)
01: HCLK=RCLK divided by 2
10: HCLK=RCLK divided by 4
11: Reserved

Bits 4:2

 RCLKDIV[2:0]: RCLK divider

These bits are written by software to define the RCLK divider
000: RCLK=fMSTR (default)
001: RCLK=fMSTR divided by 2
010: RCLK=fMSTR divided by 4
011: RCLK=fMSTR divided by 8
100: RCLK=fMSTR divided by 16
101: RCLK=fMSTR divided by 1024
Note: Other values are reserved.

Bits 1:0

 MCLKSEL[1:0]: Main Clock Source 

These bits are written by software to select the source of fMSTR. Refer to 
00: fMSTR=fPLL 
01: fMSTR=fRTC
10: fMSTR=fOSC(default)
11: Reserved



   
   

   

Power, reset and clocks RM0006

88/488  Doc ID 13742 Rev 4

PLL configuration register (SCU_PLLCONF)

Address offset: 04h

Reset value: 0003 C019h (see note)

         

         

Note: 1 With the default value the PLL generates an output frequency after reset of 48 MHz when 
the input frequency is 25 MHz.

2 This register is set to the reset value only after a Power on Reset. A system reset does not 
reset the register.

3 Writing to the SCU_PLLCONF register while the CPU clock is running on the PLL clock will 
not be updated and will be ignored.

4 The PLL_EN bit in the SCU_PLLCONF register must be cleared (disabled) when the N, M 
and P dividers are being updated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved PLL_ EN PLL_PDIV[2:0]

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PLL_NDIV[7:0] PLL_MDIV[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:20 Reserved, always read as 0

Bit 19

 PLL_EN: PLL enable

This bit is set and cleared by software.
0: PLL disabled (default)
1: PLL enabled 

Bits 18:16
 PLL_PDIV[2:0]: PLL Post-divider 

These bits are written by software to define the PLL Post-divider (default 3h). 
Refer to Section 2.4.9 on page 73 for more details

Bit 15:8
 PLL_NDIV[7:0]: PLL Feedback divider 

These bits are written by software to define the PLL Feedback divider (default 
C0h). Refer to Section 2.4.9 on page 73 for more details.

Bit 7:0
 PLL_MDIV[7:0]: PLL Pre-divider 
These bits are written by software to define the PLL Pre-divider (default 19h). Refer 
to Section 2.4.9 on page 73 for more details



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 89/488

   
   

   

System status register (SCU_SYSSTATUS)

Address offset: 08h

Reset value: 0000 0018h (after an LVD reset)
This register is set to reset value only after a power on. A system reset does not reset the 
register.

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
SRAM_

ERR
ACK_

PFQBC
LVD_
RST

WDG_
RST

LOCK_
LOST

LOCK

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:6 Reserved, always read as 0

Bit 5

SRAM_ERR: SRAM Error event flag

This bit is set by hardware when a write error occurs (i.e. the ARM tries 
to write to an invalid location). This flag is used for debug purposes. If the 
related mask bit in the SCU_ITCMSK register is 0, an interrupt request is 
sent to the interrupt controller (VIC). Write 1 in order to clear this flag.
0: No SRAM_ERR event 
1: An SRAM_ERR event occurred 

Bit 4

ACK_PFQBC: ACK PFQBC event flag

This bit is set by hardware when an acknowledge is received in response 
to software setting the EN_PFQBC bit in the SCU_SCR0 register. If the 
related mask bit in the SCU_ITCMSK register is 0, an interrupt request is 
sent to the interrupt controller (VIC). Write 1 in order to clear this flag.
0: No ACK_PFQBC event
1: An ACK_PFQBC event occurred

Bit 3

LVD_RST: LVD Reset event flag
This bit is set by hardware when the system comes out of reset after an 
LVD reset has occurred. Write 1 in order to clear this flag.
0: No event 
1: An LVD reset event occurred

Bit 2

WDG_RST: WDG Reset event flag
This bit is set by hardware when the system comes out of reset after an 
WDG reset event has occurred. Write 1 in order to clear this flag.
0: No event 
1: An WDG reset event occurred

Bit 1

LOCK_LOST: LOCK LOST event flag
This bit is set by hardware when the PLL has lost the lock with the 
reference clock. If the related mask bit in the SCU_ITCMSK register is 0, 
an interrupt request is sent to the interrupt controller (VIC). Write 1 in 
order to clear this flag.
0: No LOCK_LOST event 
1: An LOCK_LOST event occurred



   
   

   

Power, reset and clocks RM0006

90/488  Doc ID 13742 Rev 4

Power management register (SCU_PWRMNG)

Address offset: 0Ch

Reset value: 0000 0000h

         

         

Bit 0

LOCK: LOCK event flag

This bit is set by hardware when the PLL is locked. If the related mask bit 
in the SCU_ITCMSK register is 0, an interrupt request is sent to the 
interrupt controller (VIC). Write 1 in order to clear this flag.
0: PLL not locked 
1: PLL locked

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FLAS_PD_DBG CPU_INTR PWR_MODE[2:0]

rw rw rw rw rw

Bits 31:5 Reserved, always read as 0

Bit 4

FLASH_PD_DBG: Flash Power Down in Debug Mode

This bit is set and cleared by software to select if the Flash goes into 
power down mode in debug mode.
0: The Flash is not to enter power down mode during debug mode 
(default)
1: The Flash is set to enter power down mode during debug mode

Bit 3

CPU_INTR: Special Interrupt mode

This bit is set and cleared by software to select the clock speed in 
interrupt mode.
0: Interrupt code executes at the speed defined by the RCLKDIV[2:0] bits 
in the SCU_CLKCNTR register (default)
1: Interrupt code executes at full speed (bypassing RCLKDIV)

Bit 2:0

PWR_MODE[2:0]: Power Mode control bits
These bits are written by software to put the microcontroller in the 
selected power mode.
000: Run mode (default)
001: Idle mode
010: Sleep mode
Note: Other values are reserved.



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 91/488

   
   

   

Interrupt mask register (SCU_ITCMSK)

Address offset: 10h

Reset value: 0000 001Fh

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MSK_LVD

_RST
MSK_SRAM

_ERR
MSK_ACK
_PFQBC

MSK_LOCK
_LOST

MSK
_LOCK

rw rw rw rw rw

Bits 31:5 Reserved, always read as 0

Bit 4

MSK_LVD_RST: LVD Reset interrupt mask

This bit is set and cleared by software to enable or disable the LVD reset 
interrupt (refer to SCU_SYSSTATUS register). 
0: LVD reset not masked
1: LVD reset masked (default)

Bit 3

MSK_SRAM_ERR: SRAM Error interrupt mask

This bit is set and cleared by software to enable or disable the SRAM 
error interrupt (refer to SCU_SYSSTATUS register).
0: SRAM_ERR interrupt not masked
1: SRAM_ERR interrupt masked (default)

Bit 2

MSK_ACK_PFQBC: ACK PFQBC interrupt mask

This bit is set and cleared by software to enable or disable the 
ACK_PFQBC interrupt (refer to SCU_SYSSTATUS register).
0: ACK_PFQBC interrupt not masked
1: ACK_PFQBC interrupt masked (default)

Bit 1

MSK_LOCK_LOST: LOCK LOST interrupt mask

This bit is set and cleared by software to enable or disable the 
LOCK_LOST interrupt (refer to SCU_SYSSTATUS register).
0: LOCK_LOST interrupt not masked
1: LOCK_LOST interrupt masked (default)

Bit 0

MSK_LOCK: LOCK interrupt mask

This bit is set and cleared by software to enable or disable the LOCK 
interrupt (refer to SCU_SYSSTATUS register).
0: LOCK interrupt not masked
1: LOCK interrupt masked (default)



   
   

   

Power, reset and clocks RM0006

92/488  Doc ID 13742 Rev 4

Peripheral clock gating register 0 (SCU_PCGR0)

Address offset: 14h 

Reset value: 0000 00DBh

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved MAC
USB 
48M

USB DMA
EXT_MEM

_CLK
EMI VIC

SRAM
_ARBITER

SRAM Res.
PFQ
BC

FMI

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, always read as 0

Bit 11

 MAC: Ethernet peripheral clock gating
This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the Ethernet peripheral clock.
0: Ethernet peripheral clock stopped
1: Ethernet peripheral clock running 

Bit 10

 USB48M: USB 48 MHz clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the 48 MHz USB clock.
0: 48 MHz USB clock stopped
1: 48 MHz USB clock running 

Bit 9

 USB: USB peripheral clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the USB peripheral.
0: USB peripheral clock stopped
1: USB peripheral clock running 

Bit 8

 DMA: DMA peripheral clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the DMA peripheral.
0: DMA peripheral clock stopped
1: DMA peripheral clock running 

Bit 7

 EXT_MEM_CLK: External memory clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the external memory clock.
0: External memory clock stopped
1: External memory clock running 

Bit 6

 EMI: EMI peripheral clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the EMI peripheral.
0: EMI peripheral clock stopped
1: EMI peripheral clock running 

Bit 5

 VIC: VIC peripheral clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the Vectored Interrupt Controller.
0: VIC peripheral clock stopped
1: VIC peripheral clock running 



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 93/488

   
   

   

Bit 4

 SRAM_ARBITER: SRAM arbiter clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the SRAM arbiter clock.
0: SRAM arbiter clock stopped
1: SRAM arbiter clock running 

Bit 3

 SRAM: SRAM clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the SRAM clock.
0: SRAM clock stopped
1: SRAM clock running 

Bit 2 Reserved, always read as 0

Bit 1

 PQFBC: PQFBC clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the Prefetch Queue/Branch Cache clock.
0: PQFBC clock stopped
1: PQFBC clock running 

Bit 0

 FMI: FMI clock gating
This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the Flash memory interface clock.
0: FMI clock stopped
1: FMI clock running 



   
   

   

Power, reset and clocks RM0006

94/488  Doc ID 13742 Rev 4

Peripheral clock gating register 1 (SCU_PCGR1)

Address offset: 18h 

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved RTC
GPIO

9
GPIO

8
GPIO

7
GPIO

6
GPIO

5
GPIO

4
GPIO

3
GPIO

2

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GPIO
1

GPIO
0

WIU Res. ADC CAN
SSP

1
SSP

0
I2C
1

I2C
0

UAR
T2

UAR
T1

UAR
T0

MC
TIM2

3
TIM0

1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, always read as 0

Bit 24

 RTC: RTC clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the RTC clock.
0: RTC clock stopped
1: RTC clock running 

Bits 23:14

 GPIO[9:0]: GPIO Port clock gating

These bits are set and cleared by software. They allow you to reduce power 
consumption by turning off the clock to the corresponding GPIO port.
0: GPIO Port clock stopped
1: GPIO Port clock running 

Bit 13

 WIU: WIU peripheral clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the WIU peripheral.
0: WIU peripheral clock stopped
1: WIU peripheral clock running 

Bit 12  Reserved, must be kept at reset value 0

Bit 11

 ADC: ADC clock gating
This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the ADC clock.
0: ADC clock stopped
1: ADC clock running 

Bit 10

 CAN: CAN peripheral clock gating
This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the CAN peripheral.
0: CAN peripheral clock stopped
1: CAN peripheral clock running 

Bit 9:8

 SSP[1:0]: SSP peripheral clock gating
These bits are set and cleared by software. They allow you to reduce power 
consumption by turning off the corresponding SSP peripheral.
0: SSP peripheral clock stopped
1: SSP peripheral clock running 



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 95/488

   
   

   

Bit 7:6

 I2C[1:0]: I2C peripheral clock gating

These bits are set and cleared by software. They allow you to reduce power 
consumption by turning off the corresponding I2C peripheral.
0: I2C peripheral clock stopped
1: I2C peripheral clock running 

Bit 5:3

 UART[2:0]: UART peripheral clock gating

These bits are set and cleared by software. They allow you to reduce power 
consumption by turning off the corresponding UART peripheral.
0: UART peripheral clock stopped
1: UART peripheral clock running 

Bit 2

 MC: Motor Control peripheral clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the MC clock.
0: MC clock stopped
1: MC clock running 

Bit 1

 TIM23: Timers 2 and 3 clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the Timer 2 and 3 peripherals.
0: TIM23CLK stopped
1: TIM23CLK running 

Bit 0

 TIM01: Timers 0 and 1 clock gating

This bit is set and cleared by software. It allows you to reduce power 
consumption by turning off the Timer 0 and 1 peripherals.
0: TIM01CLK stopped
1: TIM01CLK running 



   
   

   

Power, reset and clocks RM0006

96/488  Doc ID 13742 Rev 4

Peripheral reset register 0 (SCU_PRR0)

Address offset: 1Ch 

Reset value: 0000 1053h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RST_

PFQBC_
AHB

RST_
MAC

Res.
RST_
USB

RST_
DMA

Res.
RST_
EMI

RST_
VIC

RST_
SRAM_

ARBITER
Res.

RST_
PFQBC

RST_
FMI

rw rw rw rw rw rw rw rw rw

Bits 31:13 Reserved, always read as 0

Bit 12

 RST_PFQBC_AHB: PFQBC AHB reset

This bit is set and cleared by software. It allows you to force a reset of the 
Prefetch Queue/Branch Cache AHB interface.
0: Module held in reset 
1: Module not held in reset (default)

Bit 11

 RST_MAC: Ethernet peripheral reset

This bit is set and cleared by software. It allows you to force a reset of the 
Ethernet peripheral.
0: Module held in reset (default)
1: Module not held in reset 

Bit 10 Reserved, always read as 0

Bit 9

 RST_USB: USB peripheral reset
This bit is set and cleared by software. It allows you to force a reset of the USB 
peripheral.
0: Module held in reset (default)
1: Module not held in reset 

Bit 8

 RST_DMA: DMA peripheral reset
This bit is set and cleared by software. It allows you to force a reset of the DMA 
peripheral.
0: Module held in reset (default)
1: Module not held in reset 

Bit 7 Reserved, always read as 0

Bit 6

 RST_EMI: EMI peripheral reset

This bit is set and cleared by software. It allows you to force a reset of the EMI 
peripheral.
0: Module held in reset 
1: Module not held in reset (default) 

Bit 5

 RST_VIC: VIC peripheral reset

It allows you to force a reset of the Vectored Interrupt Controller.
0: Module held in reset (default)
1: Module not held in reset 



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 97/488

   
   

   

Bit 4

 RST_SRAM_ARBITER: SRAM arbiter reset

This bit is set and cleared by software. It allows you to force a reset of the SRAM 
arbiter.
0: Module held in reset 
1: Module not held in reset (default) 

Bits 3:2 Reserved, always read as 0

Bit 1

 RST_PQFBC: PQFBC reset

This bit is set and cleared by software. It allows you to force a reset of the 
Prefetch Queue/Branch Cache.
0: Module held in reset 
1: Module not held in reset (default) 

Bit 0

 RST_FMI: FMI reset

This bit is set and cleared by software. It allows you to force a reset of the Flash 
memory interface.
0: Module held in reset 
1: Module not held in reset (default) 



   
   

   

Power, reset and clocks RM0006

98/488  Doc ID 13742 Rev 4

Peripheral reset register 1 (SCU_PRR1)

Address offset: 20h 

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

R
S

T
_R

T
C

R
S

T
_G

P
IO

9

R
S

T
_G

P
IO

8

R
S

T
_G

P
IO

7

R
S

T
_G

P
IO

6

R
S

T
_G

P
IO

5

R
S

T
_G

P
IO

4

R
S

T
_G

P
IO

3

R
S

T
_G

P
IO

2

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
S

T
_G

P
IO

1

R
S

T
_G

P
IO

0

R
S

T
_W

IU

R
es

er
ve

d

R
S

T
_A

D
C

R
S

T
_C

A
N

R
S

T
_S

S
P

1

R
S

T
_S

S
P

0

R
S

T
_I

2C
1

R
S

T
_I

2C
0

R
S

T
_U

A
R

T
2

R
S

T
_U

A
R

T
1

R
S

T
_U

A
R

T
0

R
S

T
_M

C

R
S

T
_T

IM
23

R
S

T
_T

IM
01

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, always read as 0

Bit 24

 RST_RTC: RTC reset
This bit is set and cleared by software. It allows you to force a reset of the RTC 
peripheral.
0: Module held in reset (default)
1: Module not held in reset 

Bits 23:14

 RST_GPIO[9:0]: GPIO Port reset
These bits are set and cleared by software. They allow you to force a reset of the 
corresponding GPIO port.
0: Module held in reset (default)
1: Module not held in reset

Bit 13

 RST_WIU: WIU peripheral reset
This bit is set and cleared by software. It allows you to force a reset of the WIU 
peripheral.
0: Module held in reset (default)
1: Module not held in reset 

Bit 12  Reserved, must be kept at reset value 0

Bit 11

 RST_ADC: ADC reset

This bit is set and cleared by software. It allows you to force a reset of the ADC 
clock.
0: Module held in reset (default)
1: Module not held in reset 

Bit 10

 RST_CAN: CAN peripheral reset

This bit is set and cleared by software. It allows you to force a reset of the CAN 
peripheral.
0: Module held in reset (default)
1: Module not held in reset 



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 99/488

   
   

   

Bit 9:8

 RST_SSP[1:0]: SSP peripheral reset

These bits are set and cleared by software. They allow you to force a reset of the 
corresponding SSP peripheral.
0: Module held in reset (default)
1: Module not held in reset 

Bit 7:6

 RST_I2C[1:0]: I2C peripheral reset

These bits are set and cleared by software. They allow you to force a reset of the 
corresponding I2C peripheral.
0: Module held in reset (default)
1: Module not held in reset

Bit 5:3

 RST_UART[2:0]: UART peripheral reset

These bits are set and cleared by software. They allow you to force a reset of the 
corresponding UART peripheral.
0: Module held in reset (default)
1: Module not held in reset 

Bit 2

 RST_MC: Motor Control peripheral reset

This bit is set and cleared by software. It allows you to force a reset of the MC 
clock.
0: Module held in reset (default)
1: Module not held in reset 

Bit 1

 RST_TIM23: Timers 2 and 3 reset

This bit is set and cleared by software. It allows you to force a reset of the Timer 
2 and 3 peripherals.
0: Module held in reset (default)
1: Module not held in reset 

Bit 0

 RST_TIM01: Timers 0 and 1 reset

This bit is set and cleared by software. It allows you to force a reset of the Timer 
0 and 1 peripherals.
0: Module held in reset (default)
1: Module not held in reset 



   
   

   

Power, reset and clocks RM0006

100/488  Doc ID 13742 Rev 4

Idle mode gating mask register 0 (SCU_MGR0)

Address offset: 24h 

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

M
S

K
_M

A
C

M
S

K
_U

S
B

 4
8M

M
S

K
_U

S
B

M
S

K
_D

M
A

M
S

K
_E

X
T

_M
E

M
_C

LK

M
S

K
_E

M
I

M
S

K
_V

IC

M
S

K
_S

R
A

M
_A

R
B

IT
E

R

M
S

K
_S

R
A

M

R
es

er
ve

d

M
S

K
_P

F
Q

B
C

R
es

er
ve

d

rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, always read as 0

Bit 11

 MSK_MAC: Ethernet peripheral gating mask 
This bit is set and cleared by software. It selects if the Ethernet peripheral is 
turned off when the MCU enters Idle mode.
0: Ethernet peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: Ethernet peripheral clock running in Idle mode if the corresponding PCGR bit 
is 1.

Bit 10

 MSK_USB48M: USB 48 MHz clock gating mask

This bit is set and cleared by software. It selects if the 48 MHz USB clock is 
turned off when the MCU enters Idle mode.
0: 48 MHz USB clock stopped in Idle mode (overrides PCGR bit setting)
1: 48 MHz USB clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 9

 MSK_USB: USB peripheral clock gating mask

This bit is set and cleared by software. It selects if the USB peripheral is turned 
off when the MCU enters Idle mode.
0: USB peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: USB peripheral clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 8

 MSK_DMA: DMA peripheral clock gating mask

This bit is set and cleared by software. It selects if the DMA peripheral is turned 
off when the MCU enters Idle mode.
0: DMA peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: DMA peripheral clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 7

 MSK_EXT_MEM_CLK: External memory clock gating mask

This bit is set and cleared by software. It selects if the external memory clock is 
turned off when the MCU enters Idle mode.
0: External memory clock stopped in Idle mode (overrides PCGR bit setting)
1: External memory clock running in Idle mode if the corresponding PCGR 
bit is 1.



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 101/488

   
   

   

Bit 6

 MSK_EMI: EMI peripheral clock gating mask

This bit is set and cleared by software. It selects if the EMI peripheral is turned off 
when the MCU enters Idle mode.
0: EMI peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: EMI peripheral clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 5

 MSK_VIC: VIC peripheral clock gating mask

This bit is set and cleared by software. It selects if the Vectored Interrupt 
Controller is turned off when the MCU enters Idle mode.
0: VIC peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: VIC peripheral clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 4

 MSK_SRAM_ARBITER: SRAM arbiter clock gating mask

This bit is set and cleared by software. It selects if the SRAM arbiter clock is 
turned off when the MCU enters Idle mode.
0: SRAM arbiter clock stopped in Idle mode (overrides PCGR bit setting)
1: SRAM arbiter clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 3

 MSK_SRAM: SRAM clock gating mask

This bit is set and cleared by software. It selects if the SRAM clock is turned off 
when the MCU enters Idle mode.
0: SRAM clock stopped in Idle mode (overrides PCGR bit setting)
1: SRAM clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 2 Reserved, always read as 0

Bit 1

MSK_ PQFBC: PQFBC clock gating mask
This bit is set and cleared by software. It selects if the Prefetch Queue/Branch 
Cache clock is turned off when the MCU enters Idle mode.
0: PQFBC clock stopped in Idle mode (overrides PCGR bit setting)
1: PQFBC clock running in Idle mode if the corresponding PCGR bit is 1.

Bit 0 Reserved, always read as 0



   
   

   

Power, reset and clocks RM0006

102/488  Doc ID 13742 Rev 4

Idle mode gating mask register 1 (SCU_MGR1)

Address offset: 28h 

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

M
S

K
_R

T
C

M
S

K
_G

P
IO

9

M
S

K
_G

P
IO

8

M
S

K
_G

P
IO

7

M
S

K
_G

P
IO

6

M
S

K
_G

P
IO

5

M
S

K
_G

P
IO

4

M
S

K
_G

P
IO

3

M
S

K
_G

P
IO

2

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M
S

K
_G

P
IO

1

M
S

K
_G

P
IO

0

M
S

K
_W

IU

M
S

K
_W

D
G

M
S

K
_A

D
C

M
S

K
_C

A
N

M
S

K
_S

S
P

1

M
S

K
_S

S
P

0

M
S

K
_I

2C
1

M
S

K
_I

2C
0

M
S

K
_U

A
R

T
2

M
S

K
_U

A
R

T
1

M
S

K
_U

A
R

T
0

M
S

K
_M

C

M
S

K
_T

IM
23

M
S

K
_T

IM
01

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, always read as 0

Bit 24

 MSK_RTC: RTC clock gating mask
This bit is set and cleared by software. It selects if the RTC peripheral is turned 
off when the MCU enters Idle mode.
0: RTC peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: RTC peripheral clock running in Idle mode if the corresponding PCGR bit is 1 

Bits 23:14

 MSK_GPIO[9:0]: GPIO Port clock gating mask
These bits are set and cleared by software. They allow you to force a reset of the 
corresponding GPIO port is turned off when the MCU enters Idle mode.
0: GPIO peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: GPIO peripheral clock running in Idle mode if the corresponding PCGR bit is 1

Bit 13

 MSK_WIU: WIU peripheral clock gating mask
This bit is set and cleared by software. It selects if the WIU peripheral is turned 
off when the MCU enters Idle mode.
0: WIU peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: WIU peripheral clock running in Idle mode if the corresponding PCGR bit is 1 

Bit 12

 MSK_WDG: WDG peripheral clock gating mask
This bit is set and cleared by software. It selects if the WDG peripheral is turned 
off when the MCU enters Idle mode.
0: WDG peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: WDG peripheral clock running in Idle mode if the corresponding PCGR bit is 1 

Bit 11

 MSK_ADC: ADC clock gating mask
This bit is set and cleared by software. It selects if the ADC clock is turned off 
when the MCU enters Idle mode.
0: ADC peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: ADC peripheral clock running in Idle mode if the corresponding PCGR bit is 1



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 103/488

   
   

   

Bit 10

 MSK_CAN: CAN peripheral clock gating mask

This bit is set and cleared by software. It selects if the CAN peripheral is turned 
off when the MCU enters Idle mode.
0: CAN peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: CAN peripheral clock running in Idle mode if the corresponding PCGR bit is 1

Bit 9:8

 MSK_SSP[1:0]: SSP peripheral clock gating mask

These bits are set and cleared by software. They select if the corresponding SSP 
peripheral is turned off when the MCU enters Idle mode.
0: SSP peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: SSP peripheral clock running in Idle mode if the corresponding PCGR bit is 1 

Bit 7:6

 MSK_I2C[1:0]: I2C peripheral clock gating mask

These bits are set and cleared by software. They select if the corresponding I2C 
peripheral is turned off when the MCU enters Idle mode.
0: I2C peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1:I2C peripheral clock running in Idle mode if the corresponding PCGR bit is 1

Bit 5:3

 MSK_UART[2:0]: UART peripheral clock gating mask

These bits are set and cleared by software. They select if the corresponding 
UART peripheral is turned off when the MCU enters Idle mode.
0: UART peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: UART peripheral clock running in Idle mode if the corresponding PCGR bit is 1 

Bit 2

 MSK_MC: Motor Control peripheral clock gating mask

This bit is set and cleared by software. It selects if the MC clock is turned off 
when the MCU enters Idle mode.
0: MC peripheral clock stopped in Idle mode (overrides PCGR bit setting)
1: MC peripheral clock running in Idle mode if the corresponding PCGR bit is 1 

Bit 1

 MSK_TIM23: Timers 2 and 3 clock gating mask

This bit is set and cleared by software. It selects if the Timer 2 and 3 peripherals 
are turned off when the MCU enters Idle mode.
0: TIM23CLK stopped in Idle mode (overrides PCGR bit setting)
1: TIM23CLK running in Idle mode if the corresponding PCGR bit is 1 

Bit 0

 MSK_TIM01: Timers 0 and 1 clock gating mask

This bit is set and cleared by software. It selects if the Timer 0 and 1 peripherals 
are turned off when the MCU enters Idle mode.
0: TIM01CLK stopped in Idle mode (overrides PCGR bit setting)
1: TIM01CLK running in Idle mode if the corresponding PCGR bit is 1 



   
   

   

Power, reset and clocks RM0006

104/488  Doc ID 13742 Rev 4

Peripheral emulation clock gating register 0 (SCU_PECGR0)

Address offset: 2Ch 

Reset value: 0000 0FFBh

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved MAC
USB 
48M

USB DMA
EXT_
MEM_
CLK

EMI VIC
SRAM_

ARBITER
SRAM Res. PFQBC FMI

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, always read as 0

Bit 11

 MAC: Ethernet peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the Ethernet 
peripheral clock when the core enters emulation mode.
0: Ethernet peripheral clock stopped in emulation mode
1: Ethernet peripheral clock running in emulation mode

Bit 10

 USB48M: USB 48 MHz clock gating

This bit is set and cleared by software. It allows you to turn off the 48 MHz USB 
clock when the core enters emulation mode.
0: 48 MHz USB clock stopped in emulation mode
1: 48 MHz USB clock running in emulation mode

Bit 9

 USB: USB peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the USB peripheral 
when the core enters emulation mode.
0: USB peripheral clock stopped in emulation mode
1: USB peripheral clock running in emulation mode

Bit 8

 DMA: DMA peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the DMA 
peripheral when the core enters emulation mode.
0: DMA peripheral clock stopped in emulation mode
1: DMA peripheral clock running in emulation mode

Bit 7

 EXT_MEM_CLK: External memory clock gating

This bit is set and cleared by software. It allows you to turn off the external 
memory clock when the core enters emulation mode.
0: External memory clock stopped in emulation mode
1: External memory clock running in emulation mode

Bit 6

 EMI: EMI peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the EMI peripheral 
when the core enters emulation mode.
0: EMI peripheral clock stopped in emulation mode
1: EMI peripheral clock running in emulation mode

Bit 5

 VIC: VIC peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the Vectored 
Interrupt Controller when the core enters emulation mode.
0: VIC peripheral clock stopped in emulation mode
1: VIC peripheral clock running in emulation mode



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 105/488

   
   

   

Bit 4

 SRAM_ARBITER: SRAM arbiter clock gating

This bit is set and cleared by software. It allows you to turn off the SRAM arbiter 
clock when the core enters emulation mode.
0: SRAM arbiter clock stopped in emulation mode
1: SRAM arbiter clock running in emulation mode

Bit 3

 SRAM: SRAM clock gating

This bit is set and cleared by software. It allows you to turn off the SRAM clock 
when the core enters emulation mode.
0: SRAM clock stopped in emulation mode
1: SRAM clock running in emulation mode

Bit 2 Reserved, always read as 0

Bit 1

 PQFBC: PQFBC clock gating

This bit is set and cleared by software. It allows you to turn off the Prefetch 
Queue/Branch Cache clock when the core enters emulation mode.
0: PQFBC clock stopped in emulation mode
1: PQFBC clock running in emulation mode

Bit 0

 FMI: FMI clock gating
This bit is set and cleared by software. It allows you to turn off the Flash memory 
interface clock when the core enters emulation mode.
0: FMI clock stopped in emulation mode
1: FMI clock running in emulation mode



   
   

   

Power, reset and clocks RM0006

106/488  Doc ID 13742 Rev 4

Peripheral emulation clock gating register 1 (SCU_PECGR1)

Address offset: 30h 

Reset value: 01FF FFFFh

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
GPIO

9
GPIO

8
GPIO

7
GPIO

6
GPIO

5
GPIO

4
GPIO

3
GPIO

2

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GPIO
1

GPIO
0

WIU WDG ADC CAN
SSP

1
SSP

0
I2C
1

I2C
0

UAR
T2

UAR
T1

UAR
T0

MC
TIM2

3
TIM0

1

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, always read as 0

Bits 23:14

 GPIO[9:0]: GPIO Port clock gating

These bits are set and cleared by software. They allow you to turn off the clock to 
the corresponding GPIO port when the core enters emulation mode.
0: GPIO Port clock stopped in emulation mode
1: GPIO Port clock running in emulation mode

Bit 13

 WIU: WIU peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the WIU peripheral 
when the core enters emulation mode.
0: WIU peripheral clock stopped in emulation mode
1: WIU peripheral clock running in emulation mode

Bit 12

 WDG: WDG Peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the WDG 
peripheral when the core enters emulation mode.
0: WDG peripheral clock stopped in emulation mode
1: WDG peripheral clock running in emulation mode

Bit 11

 ADC: ADC clock gating

This bit is set and cleared by software. It allows you to turn off the ADC clock 
when the core enters emulation mode.
0: ADC clock stopped in emulation mode
1: ADC clock running in emulation mode

Bit 10

 CAN: CAN peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the CAN peripheral 
when the core enters emulation mode.
0: CAN peripheral clock stopped in emulation mode
1: CAN peripheral clock running in emulation mode

Bit 9:8

 SSP[1:0]: SSP peripheral clock gating

These bits are set and cleared by software. They allow you to turn off the 
corresponding SSP peripheral when the core enters emulation mode.
0: SSP peripheral clock stopped in emulation mode
1: SSP peripheral clock running in emulation mode



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 107/488

   
   

   

Bit 7:6

 I2C[1:0]: I2C peripheral clock gating

These bits are set and cleared by software. They allow you to turn off the 
corresponding I2C peripheral when the core enters emulation mode.
0: I2C peripheral clock stopped in emulation mode
1: I2C peripheral clock running in emulation mode

Bit 5:3

 UART[2:0]: UART peripheral clock gating

These bits are set and cleared by software. They allow you to turn off the 
corresponding UART peripheral when the core enters emulation mode.
0: UART peripheral clock stopped in emulation mode
1: UART peripheral clock running in emulation mode

Bit 2

 MC: Motor Control peripheral clock gating

This bit is set and cleared by software. It allows you to turn off the MC clock when 
the core enters emulation mode.
0: MC clock stopped in emulation mode
1: MC clock running in emulation mode

Bit 1

 TIM23: Timers 2 and 3 clock gating

This bit is set and cleared by software. It allows you to turn off the Timer 2 and 3 
peripherals when the core enters emulation mode.
0: TIM23CLK clock stopped in emulation mode
1: TIM23CLK clock running in emulation mode

Bit 0

 TIM01: Timers 0 and 1 clock gating

This bit is set and cleared by software. It allows you to turn off the Timer 0 and 1 
peripherals when the core enters emulation mode.
0: TIM01CLK stopped in emulation mode
1: TIM01CLK clock running in emulation mode



   
   

   

Power, reset and clocks RM0006

108/488  Doc ID 13742 Rev 4

System configuration register 0 (SCU_SCR0)

Address offset: 34h

Reset value: 0000 0187h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

P
30

_S
E

LE
D

B
G

E
X

T
_E

T
M

T
_E

D
B

G
R

U
A

R
T

_I
R

D
A

[2
:0

]

R
es

.

E
M

I_
A

LE
_L

N
G

T

E
M

I_
A

LE
_P

O
LR

E
M

I_
M

U
X

S
R

A
M

_L
K

_E
N

S
R

A
M

_
S

IZ
E

[1
:0

]

W
S

R
_A

H
B

W
S

R
_D

T
C

M

E
N

_P
F

Q
B

C

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0

Bit 14

P30_SELEDBG: GPIO Port 3 External Debug Configuration
This bit is set and cleared by software to configure GPIO port 3.0 as 
input for ETM trigger or External Debug Request.
0: Port 3.0 not configured for External Debug Request / ETM trigger
1: Port 3.0 configured for External Debug Request / ETM trigger
Note: Port 3.0 can be used for other functions controlled by the 
SCU_GPIOIN3 register bit 0. Do not set the P30_SELEDBG bit and 
GPIOIN3(0) bit to 1 at the same time. This will cause unpredictable 
behavior.

Bit 13

EXT_ETMT_EDBGR: ETM Trigger/External Debug Selection
This bit is set and cleared by software to select ETM trigger or External 
Debug Request (refer to description of P30_SELEDBG).
0: External Debug request
1: External ETM trigger

Bits 12:10

UART_IRDA[2:0]: UARTx IrDA mode selection
These bits are set and cleared by software to select the mode of the 
corresponding UART peripheral.
0: UART mode 
1: IrDA mode

Bit 9 Reserved, must be kept at 0

Bit 8

EMI_ALE_LNGT: EMI Active Level Length

This bit is set and cleared by software to define the EMI ALE length 
(duration of the active level).
0: One clock cycle (half clock cycle in synchronous mode) 
1: Two clock cycles (default, one and a half clock cycles in synchronous 
mode).

Bit 7

EMI_ALE_POLR: EMI Active Level Polarity

This bit is set and cleared by software to define the polarity of the ALE 
used for EMI in Mux mode.
0: Active low
1: Active high (default)



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 109/488

   
   

   

Bit 6

EMI_MUX: EMI Mux/Demux 

This bit is set and cleared by software to select the EMI Mux or Demux 
Mode.
0: Multiplexed mode
1: Demultiplexed mode (default)

Bit 5

SRAM_LK_EN: SRAM Arbiter lock transfer enable

This bit is set and cleared by software to enable/disable lock transfer
0: AHB Lock transfer disabled (default)
1: AHB Lock transfer enabled 

Bits 4:3

SRAM_SIZE[1:0]: SRAM size
These bits are set and cleared by software to define the internal SRAM 
size.
00: 32 Kb (default)
01: 64 Kb
10: 96 Kb
11: reserved
Note: Each time the size of SRAM is changed, the new size value is 
active one AHB clock cycle later. In order to perform a safe size change, 
it is better to wait one AHB clock cycle before accessing the memory.

Bit 2

WSR_AHB: AHB Wait state enable
This bit is set and cleared by software to enable/disable the insertion of a 
wait state during an SRAM read access performed on the AHB bus
0: No wait state 
1: 1 wait state (default)

Bit 1

WSR_DTCM: DTCM Wait state enable
This bit is set and cleared by software to enable/disable the insertion of a 
wait state during an SRAM read access performed by the DTCM
0: No wait state 
1: 1 wait state (default)

Bit 0

EN_PFQBC: PFQBC Unit enable
This bit is set and cleared by software to enable/disable the PFQBC
0: PFQBC is disabled. The Flash memory access is performed with a by-
pass. 
1: PFQBC enabled (default)



   
   

   

Power, reset and clocks RM0006

110/488  Doc ID 13742 Rev 4

GPIO output register (SCU_GPIOOUTn)

Address offset: 44h + n*4 (n = 0 to 7)

Reset value: 0000 0000 0000 0000 

         

         

GPIO input register (SCU_GPIOINn)

Address offset: 64h + n*4 (n = 0 to 7)

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pn.7 
OUT

1

Pn.7 
OUT

0

Pn.6 
OUT

1

Pn.6 
OUT

0

Pn.5 
OUT

1

Pn.5 
OUT

0

Pn.4 
OUT

1

Pn.4 
OUT

0

Pn.3 
OUT

1

Pn.3 
OUT

0

Pn.2 
OUT

1

Pn.2 
OUT

0

Pn.1 
OUT

1

Pn.1 
OUT

0

Pn.0 
OUT

1

Pn.0 
OUT

0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0

Bits 15:0

Pn.[7:0]OUT[1:0]: GPIO Port Output Control bits

00: Input mode
01: Alternate Output 1 (general purpose output)
10: Alternate Output 2
11: Alternate Output 3
See also Section 2.6.7: System control unit GPIO registers on page 85

7 6 5 4 3 2 1 0

Pn.7IN Pn.6IN Pn.5IN Pn.4IN Pn.3IN Pn.2IN Pn.1IN Pn.0IN

rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0

Bits 15:0

Pn.[7:0]IN: GPIO Port Input Control bits
0: On-chip peripheral not connected to the input
1: On-chip peripheral connected to the input (Alternate input 1)
Note: If a peripheral has the same input on multiple pins, do not enable 
more than one pin.
See also Section 2.6.7: System control unit GPIO registers on page 85



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 111/488

   
   

   

GPIO type register (SCU_GPIOTYPEm)

Address offset: 84h + m*4 (m = 0 to 9)

Reset value: 0000 0000

         

         

GPIO external memory interface register (SCU_EMI)

Address offset: ACh

Reset value: 0000 0000h

         

         

7 6 5 4 3 2 1 0

TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

rw rw rw rw rw rw rw rw

Bits 7:0

TYPE[7:0]: GPIO output type register
These bits are set and cleared by software to configure the 
corresponding GPIO pin output type. All bits are cleared by a reset, so 
the GPIO pins are push-pull by default.
0: Push-pull
1: Open collector
See also Section 2.6.7: System control unit GPIO registers on page 85

7 6 5 4 3 2 1 0

Reserved BYTE_EN BCLK_EN GPIOEMI

rw rw rw

Bits 31:3 Reserved, always read as 0

Bit 2

BYTE_EN Byte Select control
This bit controls if the EMI_WRL/EMI_WRH pins behave as the write 
signals or as byte select signals. Available in LFBGA package only.
0: The pins function as the EMI_WRHn and EMI_WRLn signals. (default)
1. The pins function as the EMI_UBn 

Bit 1

BCLK_EN BCLK enable
This bit controls if the EMI_BCLK pin is enabled to drive the BCLK clock 
out. Available in LFBGA package only.
0: BCLK clock out is enabled (default) if the BCLKEN bit in the EMI_CCR 
register is also set.
1: BCLK clock is disabled

Bit 0

GPIOEMI: GPIO EMI selection

This bit is set and cleared by software to configure Port 8 and 9 to the 
EMI block. It is cleared by a reset. Therefore, the external memory bus is 
disabled by default.
0: Port 8 and 9 used for general purpose I/O
1: Port 8 and 9 connected to EMI block
See also Section 1.12: External memory interface (EMI) on page 45



   
   

   

Power, reset and clocks RM0006

112/488  Doc ID 13742 Rev 4

Wakeup selection register (SCU_WKUPSEL)

Address offset: B0h

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved WKUPSEL7.[2:0] WKUPSEL6.[2:0] WKUPSEL5.[2:0] WKUPSEL3.[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, always read as 0

Bits 11:9

WKUP_SEL7[2:0]: Wakeup/External Interrupt Port 7 selection

These bits are set and cleared by software. They are used to connect 
one of eight external wakeup/interrupt lines on GPIO Port 7 
(EXINT[31:24]) to the VIC1.13 interrupt channel.
Refer to the VIC and WIU chapters for more information.
000: Select EXINT24 line as VIC1.13 interrupt source (reset value)
001: Select EXINT25 line as VIC1.13 interrupt source
...
111: Select EXINT31 line as VIC1.13 interrupt source

Bits 8:6

WKUP_SEL6[2:0]: Wakeup/External Interrupt Port 6 selection

These bits are set and cleared by software. They are used to connect 
one of eight external wakeup/interrupt lines on GPIO Port 6 
(EXINT[23:16]) to the VIC1.12 interrupt channel.
Refer to the VIC and WIU chapters for more information.
000: Select EXINT16 line as VIC1.12 interrupt source (reset value)
001: Select EXINT17 line as VIC1.12 interrupt source
...
111: Select EXINT23 line as VIC1.12 interrupt source

Bits 5:3

WKUP_SEL5[2:0]: Wakeup/External Interrupt Port 5 selection
These bits are set and cleared by software. They are used to connect 
one of eight external wakeup/interrupt lines on GPIO Port 5 
(EXINT[15:8]) to the VIC1.11 interrupt channel.
Refer to the VIC and WIU chapters for more information.
000: Select EXINT8 line as VIC1.11 interrupt source (reset value)
001: Select EXINT9 line as VIC1.11 interrupt source
...
111: Select EXINT15 line as VIC1.11 interrupt source

Bits 2:0

WKUP_SEL3[2:0]: Wakeup/External Interrupt Port 3 selection

These bits are set and cleared by software. They are used to connect the 
RTC event, USB resume event or one of six external wakeup/interrupt 
lines on GPIO Port 3 (EXINT[7:2]) to the VIC1.10 interrupt channel.
Refer to the VIC and WIU chapters for more information.
000: Select RTC event as VIC1.10 interrupt source (reset value)
001: Select USB resume event as VIC1.10 interrupt source
010: Select EXINT2 line as VIC1.10 interrupt source
011: Select EXINT3 line as VIC1.10 interrupt source
...
111: Select EXINT7 line as VIC1.10 interrupt source



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 113/488

   
   

   

GPIO analog mode register (SCU_GPIOANA)

Address offset: BCh

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ACG P4.7A P4.6A P4.5A P4.4A P4.3A P4.2A P4.1A P4.0A

rw rw rw rw rw rw rw rw rw

Bits 31:9 Reserved, always read as 0

Bit 8

ACG: ADC automatic clock gated mode

This bit is set and cleared by software to configure the ADC in automatic 
clock gated mode. This mode should be used only if trigger mode is 
enable to Start ADC conversion. It provide faster conversion time and 
cycle accurate synchronous data available after each trigger.
0: ADC Automatic clock gated mode off
1: ADC Automatic clock gated mode on
See also Section 16 on page 463

Bits 7:0

P4[7:0]A: GPIO Port 4 Analog Control bits
These bits are set and cleared by software to configure the 
corresponding GPIO port 4 pin in analog mode. When you use analog 
mode, clear the corresponding bits in the SCU_GPIOINn and 
SCU_GPIOUTn registers.
0: Analog mode off
1: Analog mode on
See also Section 16 on page 463



   
   

   

Power, reset and clocks RM0006

114/488  Doc ID 13742 Rev 4

2.6.10 SCU register map

The following table summarizes the SCU registers.

         

Table 11. SCU register map

Addr. 
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00
SCU_CLKC

NTR
Reserved Clock Control Register

04
SCU_PLLC

ONF
Reserved PLL configuration Register

08
SCU_SYSS

TATUS
Reserved System Status 

0C
SCU_PWR

MNG
Reserved Power Mgt 

10
SCU_ITCM

SK
Reserved Interrupt Mask

14
SCU_PCG

R0
Reserved Peripheral Clock Gating Reg. 0

18
SCU_PCG

R1
Reserved Peripheral clock Gating Register 1

1C SCU_PRR0 Reserved Peripheral Reset Reg. 0

20 SCU_PRR1 Reserved Peripheral Reset Register 1

24
SCU_MGR

0
Reserved Mask Gating Reg. 0

28
SCU_MGR

1
Reserved Mask Gating Register 1

2C
SCU_PEC

GR0
Reserved Peripheral Emulation Clock Gating Register 0

30
SCU_PEC

GR1
Reserved Peripheral Emulation Clock Gating Register 1

34 SCU_SCR0 Reserved System Configuration Reg. 0

38-43 Reserved

44
SCU_GPIO

OUT0
Reserved GPIO Output Register 0

48
SCU_GPIO

OUT1
Reserved GPIO Output Register 1

4C
SCU_GPIO

OUT2
Reserved GPIO Output Register 2

50
SCU_GPIO

OUT3
Reserved GPIO Output Register 3

54
SCU_GPIO

OUT4
Reserved GPIO Output Register 4

58
SCU_GPIO

OUT5
Reserved GPIO Output Register 5

5C
SCU_GPIO

OUT6
Reserved GPIO Output Register 6

60
SCU_GPIO

OUT7
Reserved GPIO Output Register 7

64
SCU_GPIO

IN0
Reserved GPIO Input Reg. 0

68
SCU_GPIO

IN1
Reserved GPIO Input Reg. 1

6C
SCU_GPIO

IN2
Reserved GPIO Input Reg. 2

70
SCU_GPIO

IN3
Reserved GPIO Input Reg. 3



RM0006 Power, reset and clocks

Doc ID 13742 Rev 4 115/488

   
   

   

Refer to Table 5 on page 35 for the register base addresses.

74
SCU_GPIO

IN4
Reserved GPIO Input Reg. 4

78
SCU_GPIO

IN5
Reserved GPIO Input Reg. 5

7C
SCU_GPIO

IN6
Reserved GPIO Input Reg. 6

80
SCU_GPIO

IN7
Reserved GPIO Input Reg.; 7

84
SCU_GPIO

TYPE0
Reserved GPIO Type Reg. 0

88
SCU_GPIO

TYPE1
Reserved GPIO Type Reg. 1

8C
SCU_GPIO

TYPE2
Reserved GPIO Type Reg. 2

90
SCU_GPIO

TYPE3
Reserved GPIO Type Reg. 3

94
SCU_GPIO

TYPE4
Reserved GPIO Type Reg. 4

98
SCU_GPIO

TYPE5
Reserved GPIO Type Reg. 5

9C
SCU_GPIO

TYPE6
Reserved GPIO Type Reg. 6

A0
SCU_GPIO

TYPE7
Reserved GPIO Type Reg. 7

A4
SCU_GPIO

TYPE8
Reserved GPIO Type Reg. 8

A8
SCU_GPIO

TYPE9
Reserved GPIO Type Reg. 9

AC
SCU_GPIO

EMI
Reserved

G
P

IO
E

M
I

B0
SCU_WKU

PSEL
Reserved Wakeup selection register

B4-BB Reserved Reserved

BC
SCU_GPIO

ANA
Reserved

A
C

G

GPIO Analog Mode

Table 11. SCU register map (continued)

Addr. 
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



   
   

   

General purpose I/O ports (GPIO) RM0006

116/488  Doc ID 13742 Rev 4

3 General purpose I/O ports (GPIO)

3.1 Functional description
The I/O pins have the following characteristics:

● All GPIO pins are 5V tolerant.

● I/O port drivers may be configured as push-pull or as open collector.

● Some peripheral functions have bi-directional functionality such as I2C data and clock 
lines. In these configurations, the I/O driver must be configured as open collector.

● Only Port 4 bits 0..7 have an ADC input. 

● All ports when configured for Input mode are in high impedance.

● Alternate Input functions default to open (i.e. the driver output to the IP is disabled) and 
on P0 - P7 are controlled by SCU_GPIOIN control registers.

● Alternate Output functions on P0 - P7 are configured via SCU_GPIOOUT control 
registers that select from one of 3 output functions.

● The GPIO ports have no internal or programmable pull-up resistors. 

Note: Refer to the STR91xFA datasheet for the device pin description and electrical 
characteristics.

3.2 I/O operation 
Each GPIO port comprises eight programmable input/output lines. Data and control for 
these lines are provided by a data register and a data direction register. On reads, the data 
register contains the current status of the GPIO pins, whether they are configured as input 
or output. Writing to the data register only affects the pins that are configured as outputs.

3.2.1 GPIO_DATA register read/write masking

So that independent software drivers can set their GPIO bits in a single write operation, 
without affecting any other pins, the address bus is used as a mask on read/write 
operations. The data register effectively covers 256 locations in the address space. The 
eight address lines used as for masking are PADDR[9:2].

Write example

During a write, if the address bit associated with that data bit is HIGH, the value of the 
GPIO_DATA register is altered. If it is LOW, it is left unchanged. For example:

Writing to address GPIO_DATA base address + 098h = 000010011000b

PADDR[9:2] = 0000100110b. When a value of FBh is written to the address 098h then:

● Bits 5, and 1 of the GPIO pins are set to 1, and bit 2 is set to 0

● The other bits are not changed. Figure 28. shows the above effect of the address value 
of 0x098 operating on the data value of 0xFB.



RM0006 General purpose I/O ports (GPIO)

Doc ID 13742 Rev 4 117/488

   
   

   

Figure 28. Example Write to address 098h

So following this principle, to change all the port bits at the same time, write the data to 
address offset 001111111100b (3FCh), if you want to change just port bit 0, then write the 
data to address offset 000000000100b (004h) and so on.

Read example

During a read if an address bit associated with data is HIGH the value is read, if it is LOW it 
is read as zero. For example:

Read from address GPIO_DATA base address + 0x0C4 = 000011000100b

PADDR[9:2] = 0000110001b. When reading from 0x0C4 then:

● Bits 5, 4, and 0 of the GPIO pins are returned

● the value of bits 7, 6, 3, 2, and 1 are returned as zero, regardless of their state.

Figure 29. Example Read from address 0C4h

3.2.2 Reset state

● All registers are cleared to zero

● Input and output pins are configured as inputs

Port address bits PADDR[9:2] 

Resulting GPIO_DATA register value

0 0 1 0 0 1 1 0

1 1 1 1 1 0 1 1

u u 1 u u 0 1 u

9 8 7 6 5 4 3 2

7 6 5 4 3 2 1 0

0 0

Write data FBh to address
offset 098h

098h

FBh

(u = unchanged)
Bit 5 and 1 are set, bit 2 is cleared. 
Other bits are unchanged.

Port address bits PADDR[9:2] 

Returned data value

0 0 1 1 0 0 0 1

1 1 1 1 1 1 1 0

0 0 1 1 0 0 0 0

9 8 7 6 5 4 3 2

7 6 5 4 3 2 1 0

0 0

Read GPIO pin data from address
offset 0C4h

0C4h

Bit 5, 4 and 0 are returned. 
Other bits are 0.

GPIO port pin logic levels

030h



   
   

   

General purpose I/O ports (GPIO) RM0006

118/488  Doc ID 13742 Rev 4

3.3 System control unit GPIO registers
GPIO pins on P0 thru P7 have multiple input and output alternate functions. You select 
these using the System Control Unit (SCU) registers. SCU registers are also used to select 
open collector or Push-Pull operation and to configure Port 4 pins for use as analog inputs. 

GPIO pins on P8 thru P9 are only multiplexed with EMI and have no SCU output or input 
control registers. 

All ports have SCU_GPIOTYPE registers for selecting Open Collector or Push/Pull 
configuration.

Refer to following register desriptions for more details:

● GPIO output register (SCU_GPIOOUTn) on page 110

● GPIO input register (SCU_GPIOINn) on page 110

● GPIO type register (SCU_GPIOTYPEm) on page 111

Figure 30. I/O Control block diagram P0 - P7

GPIO pin

SCU_GPIOTYPE[9:0]SCU_GPIOOUT[7:0]

Alternate Function 3 output from 

on-chip peripheral
Alternate Function 2 output from 

on-chip peripheral

Alternate Function 1 output from 
GPIO_DATA register

GPIO_DIR register

 Input Data 

Open Collector
Push-Pull

Alternate Function input to
on-chip peripheral SCU_GPIOIN register

register

High impedance input buffer

To A/D converter
Analog input 

2

A
P

B
 b

us

APB interface

Default Input Function to
on-chip peripheral 

GPIO Read logic



RM0006 General purpose I/O ports (GPIO)

Doc ID 13742 Rev 4 119/488

   
   

   

3.4 Register description
In this section, the following abbreviations are used:

         

3.4.1 GPIO data register (GPIO_DATA)

Address offset: 00h to 3FCh 

Reset value: 0000 0000

         

         

Read/write (rw) Software can read and write to these bits

Read only (r) Software can only read these bits

Write only (wo) Software can only write to this bit. Reading the bit returns the reset value

7 6 5 4 3 2 1 0

rw rw rw rw rw rw rw rw

Bits 7:0

DATA[7:0]: GPIO data register

Values written in the GPIO_DATA register are transferred onto the GPIO 
pins if the respective pins have been configured as outputs through the 
GPIO_DIR register and Alternate Function 1 is configured in the 
SCU_GPIOOUT register.
In order to write to GPIO_DATA, the corresponding bits in the mask, 
resulting from bits [9:2] of the address offset, must be HIGH. Otherwise 
the bit values remain unchanged by the write.
Similarly, the values read from this register are determined for each bit, 
by the mask bit derived from bits [9:2] of the address offset used to 
access the data register. 
Refer to Figure 28. and Figure 29. for write and read examples. 
Bits that are 1 in the address mask cause the corresponding bits in 
GPIO_DATA to be read, and bits that are 0 in the address mask cause 
the corresponding bits in GPIO_DATA to be read as 0, regardless of their 
value.
A read from GPIO_DATA returns the last bit value written if the respective 
pins are configured as output, or it returns the value on the 
corresponding input pin when these are configured as inputs. All bits are 
cleared by a reset.



   
   

   

General purpose I/O ports (GPIO) RM0006

120/488  Doc ID 13742 Rev 4

3.4.2 GPIO data direction register (GPIO_DIR)

Address offset: 400h

Reset value: 0000 0000

         

         

3.4.3 GPIO mode control register (GPIO_SEL)

Address offset: 420h

Reset value: 0000 0000

         

         

7 6 5 4 3 2 1 0

rw rw rw rw rw rw rw rw

Bits 7:0

DIR[7:0]: GPIO data direction register

These bits are set and cleared by software to configure the 
corresponding GPIO pin to be an input or an output. All bits are cleared 
by a reset. Therefore, the GPIO pins are input by default.
0: Input
1: Output

7 6 5 4 3 2 1 0

rw rw rw rw rw rw rw rw

Bits 7:0

GPIOSEL[7:0]: GPIO mode control register

These bits are set an cleared by software. All bits are cleared by a reset. 
0: GPIO mode (for general purpose I/O)
1: Reserved
Note: This bit must be ‘0’ when GPIO is used.



RM0006 General purpose I/O ports (GPIO)

Doc ID 13742 Rev 4 121/488

   
   

   

3.4.4 GPIO register map

The following table summarizes the registers implemented in each I/O port.

         

Refer to the Section 2.6.10 on page 114 for the SCU GPIO register description.

Table 12. GPIO register map

Address 
offset

Register 
name

7 6 5 4 3 2 1 0

000-03FC GPIO_DATA GPIO Data Register

400 GPIO_DIR GPIO Data Direction Register

404-41C Reserved

420 GPIO_SEL GPIO Mode Control Register



   
   

   

Interrupts (VIC and WIU) RM0006

122/488  Doc ID 13742 Rev 4

4 Interrupts (VIC and WIU)

4.1 Overview
The STR91xFA has a flexible Interrupt structure that is composed of two interrupt control 
blocks. The first interrupt control block is the Wakeup/Interrupt Unit (WIU). The wakeup unit 
monitors up to 30 external interrupt sources that are optionally shared with the GPIO inputs 
and the interrupt from the RTC and USB. Any of these interrupt sources may be used to 
wakeup the MCU and/or generate an interrupt to the VIC.   The Wakeup unit has 5 interrupt 
outputs. One is the Wakeup interrupt which is the logical OR of all the 30 external (pin) 
interrupts. The other four are one of eight groups of interrupt sources (mapped to the VIC 
interrupt inputs as shown in Figure 31. Any of these external interrupt sources can be used 
to generate a IRQ or FIQ interrupt to the core. Any of the 30 GPIO inputs can be configured 
either as interrupt or wakeup inputs.

The second interrupt control block consists of two Vectored Interrupt Controllers, based on 
ARM primecell 190, connected in a daisy chain. The VICs (VIC0 and VIC1) are responsible 
for accepting up to 32 interrupt sources and assigning them to the IRQ or FIQ interrupt 
signals in the ARM core. The VICs support up to 32 vectored interrupt addresses. One of 
the 32 sources may be assigned as a FIQ source. In addition, the RTC and USB interrupts 
may also be used to wakeup the system and are also connected to the VIC so they may be 
assigned to vectored interrupts.

Figure 31. Interrupt control block diagram

ARM9
CORE

27 VIC
Channels

30 I/O Port 
 Interrupts

USB Resume Interrupt

Other On-Chip 
Interrupt
Sources

FIQ

IRQ

VICx.x 

(WIU)

RTC Interrupt
VIC1.9 

VIC1.10 

VIC1.11 

VIC1.12 

VIC1.13 

All WIU sources

USB, RTC, Port 3.[7:2]

Port 5.[7:0] interrupts

Port 6.[7:0] interrupts

Port 7.[7:0] interrupts

8

32

8

8

8

interrupts

Wakeup Interrupt Unit Vectored Interrupt Controllers
 (VIC0 & VIC1)

WKUPSEL



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 123/488

   
   

   

4.2 Interrupt inputs to the CPU
The VICs are connected to the AHB bus for fast interrupt response. VIC0 generates two 
interrupt signals to the CPU: the FIQ and IRQ. The fast interrupt FIQ is a non-vectored 
interrupt and is dedicated to a user specified interrupt source. The CPU can execute the 
interrupt service routine directly without determining the interrupt source.

The IRQ is an ORed output of up to 32 vectored interrupts. The CPU fetches the current 
vector address in the VIC0_VAR register and jumps to the specified address. The 32 
vectored interrupt sources come from the on-chip peripherals, refer to Table 13 on 
page 124. The VIC interrupt inputs are active high, level sensitive and are held high until the 
interrupt is cleared in the peripheral registers by the interrupt service routine.

4.3 Vectored interrupt controller (VIC)
The STR91xFA has two daisy-chained VICs supporting up to 32 vectored interrupt sources.

The VIC interrupt request logic is shown in Figure 32. Interrupt sources [15:0] are connected 
to VIC0 and Interrupt sources [31:16] are connected to VIC1. The interrupt requests (IRQ, 
FIQ) from VIC1 are daisy chained to VIC0. The vector address output from VIC1 is 
connected to VIC0 to be passed on to the CPU. VIC0 is responsible for generating the FIQ 
and IRQ to the CPU when any one of the 32 interrupt inputs is active.

When serving an IRQ, the vector address of the interrupt is returned when the CPU reads 
the VIC0 Current Vector Address Register (VIC0_VAR). If the interrupt comes from VIC0, 
VIC0 drives the vector address from one of the 16 Vector Address registers (VIC0_VAiR) to 
the CPU. If the interrupt comes from VIC1, VIC0 will pass the vector address that is 
originated from VIC1.

Reading the VIC0 Current Vector Address Register (VIC0_VAR) also updates the priority 
hardware that masks out the current and any lower priority interrupt requests. When the 
interrupt source is from VIC1, the interrupt subroutine has to read the VIC1_VAR register as 
well, to update the priority hardware. Writing to the VIC0_VAR and VIC1_VAR registers 
before exiting the interrupt subroutine indicates to the priority hardware that the current 
interrupt is served, allowing lower priority interrupt to go active. 

However, a higher priority can preempt the execution of the current interrupt subroutine 
immediately without the need to write in the VIC0_VAR

4.4 FIQ handling
FIQ (Fast Interrupt Request) is a non-vectored interrupt, allowing the CPU to execute an 
interrupt service routine directly without having to determine/prioritize the interrupt source, 
minimizing interrupt latency. Typically only one interrupt source is assigned to FIQ. An FIQ 
interrupt has its own set of banked registers to minimize the time to make a context switch. 
Any of the 32 VIC input channels can be assigned to FIQ using the Interrupt Select register 
(VICx_INTSR).



   
   

   

Interrupts (VIC and WIU) RM0006

124/488  Doc ID 13742 Rev 4

4.5 IRQ handling
Any of the 32 VIC interrupt channels can be assigned as an IRQ source using the Interrupt 
Select registers (VICx_INTSR). The IRQ sent to the CPU is the logical OR of all these 
channels. The priority of each VIC channel is fixed by hardware. Interrupt sources can be 
assigned using the Vector Control registers (VICx_VCiR).

When an interrupt occurs on an interrupt channel, the VIC hardware will resolve the interrupt 
priority and generate an IRQ. The global interrupt service routine then reads the VIC0 
Current Vector Address register (VIC0_VAR) and jumps to the interrupt service routine for 
the specific interrupt channel. 

The STR91xFA has a feature to reduce ISR response time for IRQ interrupts. Typically, it 
requires two memory accesses to read the interrupt vector address from the VIC, but the 
STR91xFA reduces this to a single access by adding a 16th entry in the instruction branch 
cache, dedicated for interrupts. This 16th cache entry always holds the instruction that reads 
the interrupt vector address from the VIC, eliminating one of the memory accesses typically 
required in traditional ARM implementations.

See Table 13 for the list of VIC interrupt channels.

         

Table 13. VIC interrupt channels

VIC input 
channel

Logic block Interrupt source

VIC0.0 Watchdog Timeout in WDG mode, End of Count in Counter Mode

VIC0.1 Software interrupt

VIC0.2 CPU Core Debug Receive Command

VIC0.3 CPU Core Debug Transmit Command

VIC0.4 TIM Timer 0
Logic OR of ICI0_0, ICI0_1, OCI0_0, OCI0_1, Timer 
overflow

VIC0.5 TIM Timer 1
Logic OR of ICI1_0, ICI1_1, OCI1_0, OCI1_1, Timer 
overflow

VIC0.6 TIM Timer 2
Logic OR of ICI2_0, ICI2_1, OCI2_0, OCI2_1, Timer 
overflow

VIC0.7 TIM Timer 3
Logic OR of ICI3_0, ICI3_1, OCI3_0, OCI3_1, Timer 
overflow

VIC0.8 USB Logic OR of high priority USB interrupts

VIC0.9 USB Logic OR of low priority USB interrupts

VIC0.10 SCU
Logic OR of all interrupts from System Control Unit (SCU) 
except Early warning

VIC0.11 Ethernet MAC
Logic OR of Ethernet MAC interrupts via its own dedicated 
DMA channel.

VIC0.12 DMA
Logic OR of interrupts from each of the 8 individual DMA 
channels

VIC0.13 CAN Logic OR of all CAN interface interrupt sources

VIC0.14 MC Logic OR of 8 Induction Motor Control Unit interrupts

VIC0.15 ADC End of A/D conversion or analog watchdog interrupt



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 125/488

   
   

   

VIC1.0 UART0 Logic OR of 5 interrupts from UART channel 0

VIC1.1 UART1 Logic OR of 5 interrupts from UART channel 1

VIC1.2 UART2 Logic OR of 5 interrupts from UART channel 2

VIC1.3 I2C0
Logic OR of transmit, receive, and error interrupts of I2C 
channel 0

VIC1.4 I2C1
Logic OR of transmit, receive, and error interrupts of I2C 
channel 1

VIC1.5 SSP0 Logic OR of all interrupts from SSP0

VIC1.6 SSP1 Logic OR of all interrupts from SSP1

VIC1.7 SCU LVD early warning interrupt (Brownout)

VIC1.8 RTC Logic OR of Alarm, Tamper, or Periodic Timer interrupts

VIC1.9 WIU (all)
Logic OR of all 32 inputs of Wakeup unit (30 pins, RTC, and 
USB Resume)

VIC1.10 WIU Group 0
One of 8 interrupt sources: RTC, USB Resume, pins P3.2 to 
P3.7 selected by SCU_WKUPSEL register

VIC1.11 WIU Group 1
One of 8 interrupt sources from pins P5.0 to P5.7 selected 
by SCU_WKUPSEL register

VIC1.12 WIU Group 2
One of 8 interrupt sources from pins P6.0 to P6.7 selected 
by SCU_WKUPSEL register

VIC1.13 WIU Group 3
One of 8 interrupt sources from pins P7.0 to P7.7 selected 
by SCU_WKUPSEL register

VIC1.14 USB USB Bus Resume Wakeup (also input to wakeup unit)

VIC1.15 PFQ-BC
Special use of interrupts from Prefetch Queue and Branch 
Cache

Table 13. VIC interrupt channels (continued)

VIC input 
channel

Logic block Interrupt source



   
   

   

Interrupts (VIC and WIU) RM0006

126/488  Doc ID 13742 Rev 4

Figure 32. VIC interrupt request logic

4.6 VIC register address mapping
The CPU reads or writes to the VIC registers through the AHB bus. For the CPU to read the 
Vector Address Register in VIC0 in one instruction (LDR PC), VIC0 is located in the upper 
4 Kb of the memory (0XFFFFF000). 

VICx.x

VIC0_SWINTR Register
[15:0]

VIC1_ISR Register
[15:0]

VIC0_INTSR Register
[15:0]

VIC0_FSR Register
[15:0]

VIC1_INTER Register
[15:0]

FIQ to core

Hardware 
priority
 logic

IRQ to core

VIC0_VCiR Register
[5:0]

Source Enable

VIC0_VAR Register

VIC0_VA0R Register

VIC1_VA0R Register

VIC0_VA15R Register

VIC0_VA15R Register

Input Source Channel

IRQ
Vector

A
H

B
 B

us

VIC1_VCiR Register
[5:0]

VIC0_INTER Register
[15:0]

VIC1_SWINTR Register
[15:0]

VIC1_INTSR Register
[15:0]

VIC1_FSR Register
[15:0]

VIC0_ISR Register
[15:0]

High
Priority

Low
Priority

VIC1_RINTSR Register
[15:0]

VIC0_RINTSR Register
[15:0]

(32 inputs)

Raw Interrupt Status Registers Interrupt Enable Registers

Software Interrupt Registers
Interrupt Select Registers

FIQ Status Registers

IRQ Status Registers

Vector Address Registers

Current Vector Address Register

Vector Control Registers



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 127/488

   
   

   

4.7 Interrupt priority
The FIQ interrupt has the highest priority and is followed by the 32 vectored interrupts. The 
interrupt priority is based on the position of the vectored interrupt, where VIC0 Vectored 
Interrupt 0 has the highest priority and VIC1 Vectored Interrupt 15 has the lowest priority. 
The priority is hardwired and can not be changed.

This means that interrupts mapped on VIC0 will always have higher priority than interrupts 
mapped on VIC1 (hardwired priority).

Each of the Vectored Interrupts has a Control Register which specifies the input source of 
the interrupt. Depending on your application requirement, inside the same VIC (VIC0 or 
VIC1), you can assign an interrupt source/input to a low or high priority Vectored Interrupt by 
writing to the Control Register. The Vectored Interrupt priority is fixed by hardware, but the 
interrupt input source to the Vectored Interrupt is software programmable (selectable). 

4.8 Software interrupts
VIC0 and VIC1 each have a Software Interrupt Register (VICx_SWINTR). Setting a bit in 
this register will generate an interrupt to the CPU. The software interrupt can be assigned to 
any one of the 32 vectored interrupt inputs. Software interrupts are cleared by writing to the 
Software Interrupt Clear register (VICx_SWINTCR).

4.9 Enabling interrupts 
Enabling an interrupt requires the following VIC register configuration:

● Enable interrupt input line by setting the enable bit in the Interrupt Enable register 
(VICx_INTER).

● Clear the corresponding bit in the Interrupt Select register (VICx_INTSR) to configure 
the input as vectored interrupt (IRQ) or set the bit to configure the input as Fast 
Interrupt (FIQ).

● Set the E bit in the Vector Control register (VICx_VCiR) to enable the vectored interrupt



   
   

   

Interrupts (VIC and WIU) RM0006

128/488  Doc ID 13742 Rev 4

4.10 Register description
In this section, the following abbreviations are used:

         

4.10.1 IRQ status register (VICx_ISR)

Address offset: 000h

Reset value: 0000 0000

         

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on the bit 
value

Write only (wo) Software can only write to this bit. Reading the bit returns the reset value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQStatus[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0

IRQStatus[15:0]: IRQ Status bits
These bits are set by hardware after masking by the VICx_INTER and 
VICx_INTSR registers. An active bit will remain high until software clears the 
interrupt in the registers of the peripheral which sourced the interrupt event. Each 
bit corresponds to an input channel. IRQStatus0 gives the status of channel 
VICx.0 and IRQStatus15 gives the status of channel VICx.15 (see Table 13.).
0: No IRQ interrupt generated by this input channel 
1: IRQ interrupt generated by this input channel



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 129/488

   
   

   

4.10.2 FIQ status register (VICx_FSR)

Address offset: 004h

Reset value: 0000 0000 0000 0000

         

         

4.10.3 Raw interrupt status register (VICx_RINTSR)

Address offset: 008h

Reset value: undefined

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIQStatus[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0

FIQStatus[15:0]: FIQ Status bits

These bits are set by hardware after masking by the VICx_INTER and 
VICx_INTSR registers. An active bit will remain high until software clears the 
interrupt in the registers of the peripheral which sourced the interrupt event. Each 
bit corresponds to an input channel. FIQStatus0 gives the status of channel 
VICx.0 and FIQStatus15 gives the status of channel VICx.15 (see Table 13.).
0: No FIQ interrupt generated by this input channel 
1: FIQ interrupt generated by this input channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RawIntr[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0

RawIntr[15:0]: Raw interrupt Status bits
These bits give the status of the interrupt sources (and software interrupts). An 
active bit will remain high until software clears the interrupt in the registers of the 
peripheral which sourced the interrupt event. Each bit corresponds to an input 
channel. RawIntr0 gives the status of channel VICx.0 and RawIntr15 gives the 
status of channel VICx.15 (see Table 13.).
0: Interrupt source inactive 
1: Interrupt source active before masking



   
   

   

Interrupts (VIC and WIU) RM0006

130/488  Doc ID 13742 Rev 4

4.10.4 Interrupt select register (VICx_INTSR)

Address offset: 00Ch

Reset value: 0000 0000 0000 0000

         

         

4.10.5 Interrupt enable register (VICx_INTER)

Address offset: 010h

Reset value: 0000 0000 0000 0000

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntSelect[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

IntSelect[15:0]: Interrupt Select bits

These bits select whether the corresponding interrupt source generates an FIQ 
or an IRQ interrupt.
0: IRQ 
1: FIQ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntEnable[15:0]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

Bits 15:0

IntEnable[15:0]: Interrupt Enable bits
Software can set these bits to enable interrupts on the corresponding channel. 
On reset, all interrupt sources are masked. Writing 0 has no effect.
0: Interrupt disabled (masked) (read)
1: Interrupt enabled



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 131/488

   
   

   

4.10.6 Interrupt enable clear register (VICx_INTECR)

Address offset: 014h

Reset value: undefined

         

         

4.10.7 Software interrupt register (VICx_SWINTR)

Address offset: 018h

Reset value: 0000 0000 0000 0000

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntEnClear[15:0]

wo wo wo wo wo wo wo wo wo wo wo wo wo wo wo wo

Bits 15:0

IntEnClear[15:0]: Interrupt enable clear bits

Software can set these bits to disable interrupts on the corresponding channel. 
Writing 1 clears the corresponding bit in the VICx_INTER register. Writing 0 has 
no effect.
0: No effect
1: Interrupt disabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SoftInt[15:0]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

Bits 15:0

SoftInt[15:0]: Software interrupt bits

Software can set these bits to generate a source interrupt event on the 
corresponding channel before masking. Writing 1 sets the corresponding register 
bit. Writing 0 has no effect.
0: No effect
1: Interrupt source active



   
   

   

Interrupts (VIC and WIU) RM0006

132/488  Doc ID 13742 Rev 4

4.10.8 Software interrupt clear register (VICx_SWINTCR)

Address offset: 01Ch

Reset value: undefined

         

         

4.10.9 Protection enable register (VICx_PER)

Address offset: 020h

Reset value: 0000 0000 0000 0000

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SoftIntClear[15:0]

wo wo wo wo wo wo wo wo wo wo wo wo wo wo wo wo

Bits 15:0

SoftIntClear[15:0]: Software interrupt clear bits

Software can set these bits to clear an active software interrupt on the 
corresponding channel. Writing 1 clears the corresponding bit in the 
VICx_SWINTR register. Writing 0 has no effect.
0: No effect
1: Clear software interrupt 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PRO T

rw

Bits 15:1 Reserved, forced by hardware to 0

Bit 0

PROT: Protection bit

This bit is set and cleared by software to enable/disable protected register 
access.
0: VIC registers can be accessed in user mode and privileged mode
1: VIC registers can be accessed in privileged mode only
Note: If the bus master cannot generate accurate protection information, leave 
this register in its reset state to allow user mode access.



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 133/488

   
   

   

4.10.10 Current vector address register (VICx_VAR)

Address offset: 030h

Reset value: 0000 0000 0000 0000

         

         

4.10.11 Default vector address register (VICx_DVAR)

Address offset: 034

Reset value: 0000 0000 0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CurrVectAddr[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CurrVectAddr[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

CurrVectorAddr[31:0]: Current Vector Address
This register contains the address of the currently active IRQ interrupt service 
routine. 
Reading from the VIC0_VAR register provides the address of the interrupt 
subroutine (ISR) and indicates to the priority hardware that the interrupt is being 
serviced. Writing to VIC0_VAR or VIC1_VAR register indicates to the priority 
hardware that the interrupt has been serviced. The register should be used as 
follows:

– When an IRQ interrupt is generated, read the VIC0_VAR register to fetch the 
address of the interrupt service routine (ISR). 

– At the end of the ISR, write to the VIC0_VAR register (or VIC1_VAR if the 
interrupt source is from VIC1) to update the priority hardware.

Caution: Reading or writing to the register at other times can cause incorrect 
operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DefVectAddr[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DefVectAddr[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0
DefVectorAddr[31:0]: Default Vector Address 

This register contains the default interrupt subroutine (ISR) address. 



   
   

   

Interrupts (VIC and WIU) RM0006

134/488  Doc ID 13742 Rev 4

4.10.12 Vector address i registers (VICx_VAiR)

Address offset: see Table 14

Reset value: 0000 0000 0000 0000

         

         

4.10.13 Vector control i registers (VICx_VCiR) 

Address offset: see Table 14

Reset value: 0000 0000 0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VectAddri[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VectAddri[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0
VectorAddri[31:0]: Vector Address i (i = 0 to 15)

These sixteen registers contain the addresses of the interrupt subroutines (ISR). 
VecAddr0 has the highest priority, VecAddr15 has the lowest priority. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Ei Res. VectCntli[3:0]

rw rw rw rw rw

Bits 15:6 Reserved, forced by hardware to 0

Bit 5

Ei: Vector interrupt i enable (i = 0 to 15)
This bit enables vectored interrupt i. It is cleared on reset.
0: Disabled
1: Enabled
Note: Vectored interrupts are only generated if the interrupt is enabled. You 
enable the specific interrupt in the VICx_INTER register and set the interrupt is 
set to generate an IRQ interrupt in the VICx_INTSR register. This prevents 
multiple interrupts being generated from a single request if the controller is 
incorrectly programmed

Bit 4 Reserved, always read as 0

Bits 3:0
VectorCntli[3:0]: Vector Control i (i = 0 to 15)

These bits select the interrupt source for the vectored interrupt. You can select 
any of the 16 VIC interrupt sources



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 135/488

   
   

   

4.11 VIC register map
The following table is a summary of the VIC registers. VIC0 and VIC1 have the same set of 
registers, only the base addresses are different.

         

Table 14. VICx register map

Addr. 
offset 
hex.

Register 
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000h VICx_ISR Reserved IRQ Status Register

004h VICx_FSR Reserved FIQ Status Register

008h
VICx_RINTS

R
Reserved Raw Status Register

00Ch VICx_INTSR Reserved Interrupt Select Register

010h VICx_INTER Reserved Interrupt Enable Register

014h
VICx_

INTECR
Reserved Interrupt Enable Clear Register

018h
VICx_

SWINTR
Reserved Software Interrupt Register

01Ch
VICx_

SWINTCR
Reserved Software Interrupt Clear Register

020h VICx_PER Reserved

P
R

O
T

030h VICx_VAR Current Vector Address 

034h VICx_DVAR Default Vector Address 

100h VICx_VA0R  Vector Address 0

104h VICx_VA1R  Vector Address 1

108h VICx_VA2R  Vector Address 2

10Ch VICx_VA3R  Vector Address 3

110h VICx_VA4R  Vector Address 4

114h VICx_VA5R  Vector Address 5

118h VICx_VA6R  Vector Address 6

11Ch VICx_VA7R  Vector Address 7

120h VICx_VA8R  Vector Address 8

124h VICx_VA9R  Vector Address 9

128h VICx_VA10R  Vector Address 10

12Ch VICx_VA11R  Vector Address 11

130h VICx_VA12R  Vector Address 12

134h VICx_VA13R  Vector Address 13

138h VICx_VA14R  Vector Address 14

13Ch VICx_VA15R  Vector Address 15

200h VICx_VC0R Reserved E0 VectCntrl0

204h VICx_VC1R Reserved E1 VectCntrl1

208h VICx_VC2R Reserved E2 VectCntrl2

20Ch VICx_VC3R Reserved E3 VectCntrl3

210h VICx_VC4R Reserved E4 VectCntrl4

214h VICx_VC5R Reserved E5 VectCntrl5

218h VICx_VC6R Reserved E6 VectCntrl6

21Ch VICx_VC7R Reserved E7 VectCntrl7



   
   

   

Interrupts (VIC and WIU) RM0006

136/488  Doc ID 13742 Rev 4

Refer to Table 5 on page 35 for the register base addresses.

4.12 Wakeup/Interrupt Unit (WIU)
The main function of the Wakeup Interrupt Unit (WIU) is to manage the external 
wakeup/interrupt pins (EXINT[31:2]). The WIU is connected to five of the 16 input channels 
of the VIC1 vectored interrupt controller (see Table 31 on page 122)

Using the WIU registers, 30 I/O port interrupts and the USB resume, RTC Alarm, Tamper or 
Periodic interrupts can be programmed as external interrupt lines or as wakeup lines, able to 
wakeup the STR91xFA from Sleep mode. 

The Wakeup signal is an ORed function of the 30 I/O port interrupts, the USB and RTC 
interrupts (refer to Figure 33: WIU block diagram). The Wakeup signal is routed as an input 
to the VIC1 channel 9 as well as to the Wakeup Logic. When the Wakeup signal is asserted, 
an interrupt and a wakeup event is generated. You can disable the VIC 1 channel 9 if you do 
not want an interrupt when the CPU is waking up.

220h VICx_VC8R Reserved E8 VectCntrl8

224h VICx_VC9R Reserved E9 VectCntrl9

228h VICx_VC10R Reserved E10 VectCntrl10

22Ch VICx_VC11R Reserved E11 VectCntr11

230h VICx_VC12R Reserved E12 VectCntr12

234h VICx_VC13R Reserved E13 VectCntrl13

238h VICx_VC14R Reserved E14 VectCntrl14

23Ch VICx_VC15R Reserved E15 VectCntrl15

Table 14. VICx register map (continued)

Addr. 
offset 
hex.

Register 
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 137/488

   
   

   

4.12.1 Features

● 30 I/O Port EXINT interrupt pins can be used to wakeup the MCU from Sleep mode or 
generate an IRQ or FIQ to the core via the Vectored Interrupt Controller (VIC1)

● Wakeup from Sleep Mode can be triggered by RTC Alarm/Tamper/Periodic or USB 
Resume events

● Programmable trigger edge polarity on EXINT pins 

● All EXINT pins individually maskable

● Software interrupt register can be used to generate wakeup/interrupt events

Figure 33. WIU block diagram

1. Refer to the System Controller chapter (SCU) for a description of the WKUPSELx bits. 

WIU_TR TRIGGERING LEVEL

PENDING REQUEST 

MASK REGISTER

EXTINT[7:2]

REGISTER 

REGISTER 

WIU_INTR 

WIU_PR 

WIU_MR

 
SOFTWARE INTERRUPT
REGISTER 

I/O Port 3[7:2] 

EXTINT[15:8]

I/O Port 5 

EXTINT[23:16]

I/O Port 6 

EXTINT[31:24]

I/O Port 7 

USB RESUME
RTC TAMPER/ALARM/PERIODIC

WKUPSEL3WKUPSEL7

WKUPSEL6 WKUPSEL5
3 3 3 3

8 8 8 8

32

IN
T

_E
N

To VIC1.10

Interrupt

IN
T

_E
N

IN
T

_E
N

IN
T

_E
N

To VIC1.11

Interrupt

To VIC1.12

Interrupt

To VIC1.13

Interrupt

IN
T

_E
N

To VIC1.9
Interrupt

and wakeup logic



   
   

   

Interrupts (VIC and WIU) RM0006

138/488  Doc ID 13742 Rev 4

4.12.2 Register description

In this section, the following abbreviations are used:

         

WIU control register (WIU_CTRL)

Address offset: 00h

Reset value: 0000 0000 0000 0000

         

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Read/clear (rc_w1)
Software can read as well as clear this bit by writing 1. Writing ‘0’ has no 
effect on the bit value

Read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on the bit 
value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved INT_ EN Res.

rw

Bits 31:2 Reserved, must be kept at reset value

Bit 1

 INT_EN: Global WIU Interrupt Enable.

This bit is set and cleared by software. It provides a global mask for WIU 
interrupts to the VIC.
0: WIU interrupts disabled
1: WIU interrupts enabled
Caution: To avoid spurious interrupt requests to the VIC due to change of 
interrupt source, it is recommended to clear the corresponding enable bit in the 
VIC1_IntEnable register before modifying the INT_EN bit.

Bit 0 Reserved, must be kept at reset value



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 139/488

   
   

   

WIU mask register (WIU_MR)

Address offset: 04h

Reset value: 0000 0000 0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUM[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUM[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

WUM[31:0]: WIU Mask bits

These bits are set and cleared by software. They provide an individual mask for 
each of the 30 EXTINT lines, RTC/USB interrupts or software interrupts. The 
EXTINT lines are controlled by WUM[31:2], the USB interrupt is controlled by 
WUM1, and the RTC interrupt is controlled by WUM0.
If WUMx is set, an interrupt and/or a wakeup event are generated if the 
corresponding WUPx pending bit is set. 
0: WIU interrupt disabled (masked)
1: WIU interrupt enabled
Note: If WUMx and WUPx are 1 and INT_EN is set to 1, then an interrupt is 
generated. It will also generate a wakeup event if the CPU is in low power mode. 
You can disable the VIC1 channel 9 if you do not want an interrupt when the CPU 
is waking up.



   
   

   

Interrupts (VIC and WIU) RM0006

140/488  Doc ID 13742 Rev 4

WIU trigger register (WIU_TR)

Address offset: 08h

Reset value: 0000 0000 0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUT [31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

WUT[31:0]: Wakeup Trigger Polarity bits
These bits are set and cleared by software. They select whether the 
corresponding WUPx pending bit will be set on the falling or rising edge of the 
EXTINT line/RTC/USB interrupt. The EXTINT lines are controlled by WUT[31:2], 
the USB interrupt is controlled by WUT1, and the RTC interrupt is controlled by 
WUT0.
0: Falling edge
1: Rising edge
Caution: 
- As the external EXTINT lines are edge-triggered, no glitches must be generated 
on these lines.
- If either a rising or a falling edge on an external EXTINT line occurs when 
writing to the WIU_TR register, the pending bit will not be set.



RM0006 Interrupts (VIC and WIU)

Doc ID 13742 Rev 4 141/488

   
   

   

WIU software interrupt register (WIU_INTR)

Address offset: 10h

Reset value: 0000 0000 0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUINT[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUINT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

WUINT[31:0]: WIU Software Interrupt bits

The WUINTx bits are set by software to generate a software interrupt. Setting 
one of these bits sets the corresponding bit in the Pending register (WIU_PR). 
The WUINTx bits are reset when the pending bits are cleared by writing a ‘1’ in 
the corresponding WUPx bit.
0: No effect
1: Software interrupt 



   
   

   

Interrupts (VIC and WIU) RM0006

142/488  Doc ID 13742 Rev 4

WIU pending register (WIU_PR)

Address offset: 0Ch

Reset value: 0000 0000h

         

         

4.12.3 WIU register map
         

Refer to Table 5 on page 35 for the register base addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUP[31:16]

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUP[15:0]

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

rc_w
1

Bits 31:0

WUP[31:0]: WIU Pending bits

The WUPx bits are Read/Clear, they are set by hardware on occurrence of the 
trigger event. They can be reset by software writing a ‘1’; writing a ‘0’ is ignored. 
0: No wakeup trigger event occurred
1: Wakeup Trigger event occurred
Note: The WUPx bits can be set by software, setting the corresponding bits in 
the Software Interrupt register (WIU_INTR) and choosing the trigger level high 
(WUTx set to ‘1’).

Table 15. WIU register map

Addr. 
offset

Register 
name

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h WIU_CTRL Reserved
INT
_EN

Res.

04h WIU_MR WUMR[31:0]

08h WIU_TR WUTR[31:0]

0Ch WIU_PR WUPR[31:0]

10h WIU_INTR WUINTR[31:0]



RM0006 Real time clock (RTC)

Doc ID 13742 Rev 4 143/488

   
   

   

5 Real time clock (RTC)

5.1 Introduction
The RTC block combines a complete time of day clock with alarm, periodic interrupt, tamper 
detection and a 9999-year calendar. The time is in 24 hour mode, and time/calendar values 
are stored in binary-coded decimal format. 

The RTC has separate power and clock connections that are activated during power down: 
this feature allows the RTC to continue working when the rest of the MCU is powered off. 

5.2 Main features
● Time of Day in 24 hour mode

● 9999-year calendar

● Leap year support 

● Programmable alarm interrupt, supporting up to one month range with wakeup from 
Sleep mode capability

● Tamper detection with Time Stamp and Wakeup from Sleep mode capability 

● Programmable periodic interrupt (1024 Hz / 128 Hz /16 Hz /2 Hz) 

● Millisecond Real Time Clock 

● Clock Calibration output

● Remains active during power down

Note: 1 Daylight saving time and 12 hour clock are not supported

2 The TAMPER_IN pin is not available on all packages, refer to datasheet for details)



   
   

   

Real time clock (RTC) RM0006

144/488  Doc ID 13742 Rev 4

Figure 34. RTC simplified block diagram

5.2.1 RTC clock control

The RTC is clocked by fRTC which allows it to continue operating even when the 
microcontroller is in Sleep mode. The APB interface to the RTC registers is clocked by 
PLCK. Refer to Figure 34.

5.2.2 Battery backup 

The VBATT pin can supply power to the RTC unit, allowing the RTC to function even when 
the main digital supplies (VDD and VDDQ) are switched off. By configuring the PWR bit in the 
RTC_CR register, you can select to power only the RTC or both the RTC and the SRAM 
from VBATT.

5.3 Reset 
The contents of the following registers are not affected by a system reset.

● Time register

● Date Register

Millisec Counter

RTC_ATR

RTC_TR

=

fRTC

APB interface

APB bus

Tamper interrupt 

Alarm interrupt 

Periodic interrupt 

RTC_CR

Alarm
interrupt

fPCLK

32768Hz

RTC_MILR

Alarm Time Register

Time Register

VBATT

X1_RTC

X2_RTCOSC
RTC

TAMPER_IN

1024 Hz

128 Hz

16 Hz

2 Hz

JRTCK4096 Hz

Calibration output

DIV /8

DIV /8

DIV /8

DIV /4

DIV /8

Clock Generation
1000 Hz

Periodic
interrupt 

Tamper
Detection 

RTC_DTR
Date Register

 (pin shared
with JTAG
return clock)

RTC interrupt to VIC and WIU 



RM0006 Real time clock (RTC)

Doc ID 13742 Rev 4 145/488

   
   

   

5.4 Clock calibration output
When the C bit in the RTC control register (RTC_CR) is set, the JTRTC outputs a 
32.768 kHz clock. This can be used to calibrate an external clock source. When enabled, 
this clock output is active during Sleep Mode and can be used to control the wakeup logic.

The RTC clock can be manually calibrated by adjusting the Trim Capacitors on the RTC 
crystal circuit while monitoring the output clock on the JRTCK pin.

5.5 Time of day clock / calendar
The RTC time register (RTC_TR) and RTC date register (RTC_DTR) can be read at any 
time, they provide the current date and time updated by the RTC millisecond timer.

To set up the Time of day Clock/Calendar: 

1. Set the W bit in the RTC control register (RTC_CR) to enable time register write mode

2. Write the Time /day of month in the RTC time register (RTC_TR), the date in the RTC 
date register (RTC_DTR) and the millisecond in the RTC millisecond register 
(RTC_MILR).

3. Clear the W bit in the RTC control register (RTC_CR) to disable time register write 
mode and update the internal registers

5.6 Tamper detection
The tamper detect feature monitors the level of the TAMPER_IN input pin, logs when a 
tamper event occurs (time stamp) and cuts off the SRAM standby voltage source to 
invalidate all SRAM contents.

To set up Tamper detection:

1. Select the operating mode by writing to the TM bit in the RTC control register 
(RTC_CR). Writing 1, has no effect. By writing 0, the “Driven Low/High” scheme is 
activated.

2. If TM=0, select the trigger polarity by writing to the TIS bit in the RTC control register 
(RTC_CR). For example, when set to 1, the tamper detect logic will register a tamper 
when the input goes high; and when set to 0, the tamper detect logic will register a 
tamper when the input goes low.

3. Enable the tamper detection logic by setting the TE bit RTC control register (RTC_CR). 

When a tamper event occurs:

● The RTC Time, Date and Millisecond counters are latched into the Time, Date and 
Millisecond registers to record the tamper event 

● The SRAM standby voltage is cut off

● The TSF flag is set in the RTC status register (RTC_SR)

● An interrupt request and a wakeup signal is sent to the Vectored Interrupt Controller 
(VIC) and Wakeup Interrupt Unit (WIU) if the TDIE bit in the RTC control register 
(RTC_CR) is set

The application can read the Time, Date, and Millisecond registers for the time stamp 
information. 



   
   

   

Real time clock (RTC) RM0006

146/488  Doc ID 13742 Rev 4

Software must then clear the Tamper status flag (TSF) and Time stamp information by 
resetting the TE bit in the RTC control register (RTC_CR). 

To resume Tamper detection, set the TE bit.

5.7 Alarm
The Alarm feature compares the RTC alarm time register (RTC_ATR) with the RTC time 
register (RTC_TR) and when their contents match, it generates an Alarm event. Both 
registers include a date field, allowing an Alarm event to be programmed up to 31 days in 
advance.

To set up the Alarm: 

1. Set the W bit in the RTC control register (RTC_CR) to enable time register write mode

2. Write the Alarm time /day of month in the RTC alarm time register (RTC_ATR)

3. Clear the W bit in the RTC control register (RTC_CR) to disable time register write 
mode and update the internal registers

4. Enable the Alarm by setting the AFE bit in the RTC control register (RTC_CR)

5. You can optionally enable interrupts by setting the AFIE bit in the RTC control register 
(RTC_CR)

When an Alarm event occurs:

● The AF flag is set in the RTC status register (RTC_SR)

● An interrupt request and a wakeup signal is sent to the Vectored Interrupt Controller 
(VIC) and Wakeup Interrupt Unit (WIU) if the AFIE bit in the RTC control register 
(RTC_CR) is set

Software must then clear the Alarm status flag (AF) by resetting the AFE bit in the RTC 
control register (RTC_CR).

5.8 Periodic interrupt
The RTC can be configured to generate a periodic event, setting a flag and optionally 
generating an interrupt at regular intervals. Selectable rates are 1024 Hz, 128Hz, 16 Hz and 
2 Hz. This feature does not operate in Sleep mode.

To set up the Periodic Interrupt: 

1. Enable the feature and select the rate by setting one of the PISEL[3:0] bits RTC control 
register (RTC_CR).

At the end of every selected period:

● The PISF flag is set in the RTC status register (RTC_SR).

● An interrupt request is sent to the Vectored Interrupt Controller (VIC) if the PIE bit in the 
RTC control register (RTC_CR) is set. 

Note: Do not poll the PISF flag before the interrupt request is generated.

Software must then clear the Periodic Interrupt Status flag (PISF) by reading the RTC status 
register (RTC_SR).

To disable periodic interrupts, clear the PIE bit and/or clear all the PISEL[3:0] bits 



RM0006 Real time clock (RTC)

Doc ID 13742 Rev 4 147/488

   
   

   

5.9 Register description
The RTC registers cannot be accessed by bytes, but only by half-words or words. The 
reserved bits cannot be written and they are always read as ‘0’.

5.9.1 RTC time register (RTC_TR)

Address offset: 00h

Reset value: N/A (not affected by reset)

Note: The time register is updated automatically by the RTC. It can be read to obtain the current 
date and time in days, hours, minutes and seconds. It can only be written when the W bit in 
the RTC_CR register is set.

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved DT[1:0] DU[3:0] Reserved HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. MIT[2:0] MIU[3:0] Res. ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, forced by hardware to 0

Bits 29:28 DT[1:0]: Date Tens in BCD Format

Bits 27:24
DU[3:0]: Date Units in BCD Format

Range DT+DU: 01-31

Bits 23:22 Reserved, forced by hardware to 0

Bits 21:20 HT[1:0]: Hour Tens in BCD Format

Bits 19:16
HU[3:0]: Hour Units in BCD Format

Range HT+HU: 00-23

Bit 15 Reserved, forced by hardware to 0

Bits 14:12 MIT[2:0]: Minute Tens in BCD Format

Bits 11:8
MIU[3:0]: Minute Units in BCD Format

Range MIT+MIU: 00-59

Bit 7 Reserved, forced by hardware to 0

Bits 6:4 ST[2:0]: Second Tens in BCD Format

Bits 3:0
SU[3:0]: Second Units in BCD Format

Range ST+SU: 00-59



   
   

   

Real time clock (RTC) RM0006

148/488  Doc ID 13742 Rev 4

5.9.2 RTC date register (RTC_DTR)

Address offset: 04h

Reset value: N/A (not affected by reset)

The date register is updated automatically by the RTC. It can be read to obtain the weekday, 
month, year and century. It can only be written when the W bit in the RTC_CR register is set.

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CT[3:0] CU[3:0] YT[3:0] YU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved MT MU[3:0] Reserved WDU[3:0]

rw rw rw rw rw rw rw rw rw

Bits 31:28 CT[3:0]: Century Tens in BCD Format

Bits 27:24
CU[3:0]: Century Units in BCD Format

Range CT+CU: 00-99

Bits 23:20 YT[3:0]: Year Tens in BCD Format

Bits 19:16
YU[3:0]: Year Units in BCD Format

Range YT+YU: 00-99

Bits 15:13 Reserved, forced by hardware to 0

Bit 12 MT: Month Tens in BCD Format

Bits 11:8
MU[3:0]: Month Units in BCD Format

Range MT+MU: 01-12

Bits 7:4 Reserved, forced by hardware to 0

Bits 3:0
WDU[3:0]: Weekday Units in BCD Format

Range 01-07



RM0006 Real time clock (RTC)

Doc ID 13742 Rev 4 149/488

   
   

   

5.9.3 RTC alarm time register (RTC_ATR)

Address offset: 08h

Reset value: Not affected by reset

Note: The alarm time register contains the alarm date and time in hours, minutes and seconds.

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved ADT[1:0] ADU[3:0] Reserved AHT[1:0] AHU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. AMIT[2:0] AMIU[3:0] Res. AST[2:0] ASU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, forced by hardware to 0

Bits 29:28 ADT[1:0]: Alarm Date Tens in BCD Format 

Bits 27:24
ADU[3:0]: Alarm Date Units in BCD Format

Range ADT+ADU: 01-31

Bits 23:22 Reserved, forced by hardware to 0

Bits 21:20 AHT[1:0]: Alarm Hour Tens in BCD Format

Bits 19:16
AHU[3:0]: Alarm Hour Units in BCD Format

Range AHT+AHU: 00-23

Bit 15 Reserved, forced by hardware to 0.

Bits 14:12 AMIT[2:0]: Alarm Minute Tens in BCD Format

Bits 11:8
AMIU[3:0]: Alarm Minute Units in BCD Format

Range AMIT+AMIU: 00-59

Bits 7 Reserved, forced by hardware to 0

Bits 6:4 AST[2:0]: Alarm Second Tens in BCD Format

Bits 3:0
ASU[3:0]: Alarm Second Units in BCD Format

Range AST+ASU: 00-59



   
   

   

Real time clock (RTC) RM0006

150/488  Doc ID 13742 Rev 4

5.9.4 RTC control register (RTC_CR)

Address offset: 0Ch

Reset value: Bits [31:16] and [1:0] are not affected by system and global reset. Bits 15:2 are 
reset to 0 by system reset but, are not affected by LVD reset in VBAT mode.

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved AIE TIE PIE AE PISEL[3:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved W RTCSEL Res. TM PWR TIS Res. TE

rw rw rw rw rw rw

Bits 31:24 Reserved, forced by hardware to 0

Bit 23

AIE: Alarm Interrupt Enable

0: Alarm interrupt disabled
1: Alarm interrupt enabled. An interrupt is generated when the AF bit in the 
RTC_SR register is set.

Bit 22

TIE: Tamper Interrupt Enable
0: Tamper interrupt disabled
1: Tamper interrupt enabled. A Tamper interrupt is generated when the TS bit in 
the RTC_SR register is set.

Bit 21

PIE: Periodic Interrupt Enable

0: Periodic interrupt disabled
1: Periodic interrupt enabled. An interrupt is generated when the PI bit in the 
RTC_SR register is set.

Bit 20

AE: Alarm Enable

0: Alarm disabled
1: Alarm enabled. The AF bit in the RTC_SR register is set when the value in the 
Time register (RTC_TR) matches the Alarm Time register (RTC_ATR).

Bits 19:16

PISEL[3:0]: Periodic Interrupt select
0001: 2 Hz period selected
0010: 16 Hz period selected
0100: 128Hz period selected
1000: 1024 Hz period selected

Bits 15:8 Reserved, forced by hardware to 0

Bit 7

W: Write Enable

This bit is set and cleared by software. It must be set to enable write access to the 
RTC_TR, RTC_DTR and RTC_MILR registers. The W bit must be cleared after 
the write operation for the registers to be updated. 
0: Write access to RTC_TR, RTC_DTR and RTC_MILR disabled
1: Write access to RTC_TR, RTC_DTR and RTC_MILR disabled



RM0006 Real time clock (RTC)

Doc ID 13742 Rev 4 151/488

   
   

   

Note: After enabling the RTC clock, the Control register (RTC_CR) and the alarm time register 
(RTC_ATR) must be cleared by software.

Bit 6

RTCSEL: Calibration Clock Output Enable

This bit is set and cleared by software. 
0: Calibration clock output disabled
1: Calibration clock output enabled, clock remains active during Sleep Mode

Bit 5 Reserved, forced by hardware to 0.

Bit 4

TM: Tamper Mode

0: Driven Low/High Scheme. If TE = 1, a tamper event is triggered when the 
TAMPER_IN input is driven high or low depending on the TIS bit.
1: No effect.

Bit 3

PWR: SRAM VBATT power control
This bit is set and cleared by software. It is cleared by hardware when a Tamper 
event occurs. Once this bit is set and SRAM is connected to VBATT, it will not be 
cleared by a subsequent reset.
0: SRAM disconnected from VBATT
1: SRAM connected to VBATT 

Bit 2

TIS: Trigger selection

This bit is set and cleared by software.
0: Tamper event triggered when Tamper input goes low
1: Tamper event triggered when Tamper input goes high

Bit 1 Reserved, forced by hardware to 0

Bit 0

TE: Tamper input enable

This bit is set and cleared by software.
0: Tamper input pin disabled
1: Tamper input pin enabled 
After a tamper event occurs the Tamper time stamp can be read in the Time and 
Date registers. The TE bit must then be cleared by software.



   
   

   

Real time clock (RTC) RM0006

152/488  Doc ID 13742 Rev 4

5.9.5 RTC status register (RTC_SR)

Address offset: 10h

Reset value: 0000h (reset by system reset but, not affected by LVD reset in VBAT mode 
mode).

         

          

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PISF AF Res. TSF Reserved

r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Bit 31

PISF: Periodic Interrupt Flag
This bit is set by hardware. It does not set when the RTC is running on battery. It is 
cleared by reading the register.
0: No periodic event
1: A periodic event occurred as configured by the PISEL bits in the RTC_CR 
register. An interrupt is generated if the PIE bit in the RTC_CR register is set.

Bit 30

AF: Alarm flag

This bit is set by hardware. It is cleared by clearing the AE bit in the RTC_CR 
register.
0: No Alarm event
1: An alarm event occurred. An interrupt is generated if the AIE bit in the RTC_CR 
register is set.

Bit 29 Reserved, forced by hardware to 0

Bit 28

TSF: Tamper flag
This bit is set by hardware. It is cleared by clearing the TE bit in RTC_CR register.
0: No Tamper event
1: An Tamper event occurred. An interrupt is generated if the TIE bit in the 
RTC_CR register is set.

Bits 27:0 Reserved, forced by hardware to 0



RM0006 Real time clock (RTC)

Doc ID 13742 Rev 4 153/488

   
   

   

5.9.6 RTC millisecond register (RTC_MILR)

This register contains current value of the RTC millisecond counter. When it is read, it 
returns the last updated value of the millisecond counter. Before writing to this register, the 
W bit must be set to '1' in the RTC_CR register.

Note: After all the clock registers (Time, Date, and Millisecond) are written, you must reset the W 
bit in the RTC_CR to update the clock registers. As long as W bit remains high, the clock 
registers will stay in write mode and the millisecond clock will not update these registers.

Address offset: 14h

Read/Write

Reset value: Not affected by reset

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved MSH[3:0] MST[3:0] MSU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, forced by hardware to 0

Bits 11:8 MSH[3:0]: Millisecond Hundreds in BCD Format

Bits 7:4 MST[3:0]: Millisecond Tens in BCD Format

Bits 3:0
MSU[3:0]: Millisecond Units in BCD Format

Range MSH+MST+MSU: 000-999



   
   

   

Real time clock (RTC) RM0006

154/488  Doc ID 13742 Rev 4

5.10 RTC register map
RTC registers are mapped as 32-bit addressable registers as described in the table below:

         

Refer to Table 5 on page 35 for the register base addresses.

Table 16. RTC register map

Addr. 
off set

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h RTC_TR Time register

04h RTC_DTR Date register

08h RTC_ATR Alarm Time register

0Ch RTC_CR Control register

10h RTC_SR Status Reserved

14h RTC_MILR Reserved Millisecond Register



RM0006 Watchdog timer (WDG)

Doc ID 13742 Rev 4 155/488

   
   

   

6 Watchdog timer (WDG)

6.1 Introduction
The Watchdog Timer peripheral can be used as free-running timer or as Watchdog to 
resolve processor malfunctions due to hardware or software failures.

6.2 Main features
● 16-bit down Counter 

● 8-bit clock Prescaler

● Safe Reload Sequence

● Free-running Timer mode

● End of Counting interrupt generation

6.3 Functional description
Figure 35 shows the functional blocks of the Watchdog Timer module. The module can work 
as a Watchdog or as a Free-running Timer. In both modes the 16-bit Counter value can be 
accessed by reading the WDG_CNT register.

6.3.1 Free-running timer mode

If the WE bit in the WDG_CR register is not set by software, the peripheral enters free-
running timer mode. 
In this operating mode, when the SC bit of WDG_CR register is written to ‘1’ the WDG_VR 
value is loaded in the Counter and the Counter starts counting down. 

Figure 35. Watchdog timer functional block

SC WE

End of Count Interrupt

WDG RESET

Prescaler
16-bit Counter

WDG_PR
Register

WDG_VR
Register

WDG_CR Register bits

8-bit

fPCLK

(VIC0.0 to VIC)fRTC

EE



   
   

   

Watchdog timer (WDG) RM0006

156/488  Doc ID 13742 Rev 4

When it reaches the end of count value (0000h) an End of Count interrupt is generated (EC) 
and the WDG_VR value is re-loaded. The Counter runs until the SC bit is cleared. If the SC 
bit is set again, both the Counter and the Prescaler are re-loaded with the values contained 
in registers WDG_VR and WDG_PR respectively, so it does not restart from where it last 
stopped, but from a defined state without having to reset and re-program the module. On the 
other hand, it is not possible to change the prescaler factor on-the-fly since it will only effect 
the counter after a restart command (setting the SC bit, which generates a re-load 
operation).

6.3.2 Watchdog mode

If the WE bit of WDG_CR register is written to ‘1’ by software, the peripheral enters 
Watchdog mode. This operating mode can not be changed by software (the SC bit has no 
effect and WE bit cannot be cleared).
As the peripheral enters in this operating mode, the WDG_VR value is loaded in the Counter 
and the Counter starts counting down. When it reaches the end of count value (0000h) a 
system reset signal is generated (WDG RESET).

If a sequence of two consecutive values, 0xA55A and 0x5AA5, is written in the WDG_KR 
register see Section 6.4, the WDG_VR value is re-loaded in the Counter, the End of count 
can be prevented.

6.3.3 Programming considerations

The following method must be used when attempting to change the WDG clock source (by 
changing the EE bit in the WGD register) when the counters are running:

● Set the SC bit to ‘0’ to stop the counters

● Write the new clock value to the EE bit

● Set the SC bit to ‘1’ to restart the counters with the new clock value

The following method must be used when writing to the WDG prescaler register (WDG_PR) 
or the WDG preload value register (WDG_VR):

● Set the SC bit to ‘0’ to stop the counters

● Write to the WDG_PR or WDG_VR register

● Set the SC bit to ‘1’ to restart the counters with the new value

The above ensures that the counters operate correctly.



RM0006 Watchdog timer (WDG)

Doc ID 13742 Rev 4 157/488

   
   

   

6.4 Register description
The Watchdog Timer registers can not be accessed by byte.
The reserved bits can not be written and they are always read at ‘0’.

In this section, the following abbreviations are used:

         

6.4.1 WDG control register (WDG_CR)

Address offset: 00h

Reset value: 0000h

         

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Read/clear (rc_w0)
Software can read as well as clear this bit by writing 0. Writing ‘1’ has no 
effect on the bit value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EE SC WE

- rw rw rw

Bits 15:2 Reserved. Forced by hardware to 0

Bit 2

EE: External Clock Enable

This bit is set and cleared by software. It selects the WDG clock source. This bit 
can be modified only when the Watchdog Timer is not in Watchdog mode.

0: PCLK
1: 32 kHz RTC clock

Bit 1

SC: Start Counting bit

0: The counter is stopped
1: The prescaler and counter are load with the preload values in the WDG_PR 
and WDG_TVR registers and the counter starts counting.
This bit is effective only in Timer Mode (WE bit = 0).

Bit 0

WE: Watchdog Enable bit

0: Timer Mode is enabled
1: Watchdog Mode is enabled 
This bit can’t be reset by software. When WE bit is high, SC bit has no effect.



   
   

   

Watchdog timer (WDG) RM0006

158/488  Doc ID 13742 Rev 4

6.4.2 WDG prescaler register (WDG_PR)

Address offset: 04h

Reset value: 00FFh

         

         

6.4.3 WDG preload value register (WDG_VR)

Address offset: 08h

Reset value: FFFFh

         

         

The time (µs) need to reach the end of count is given by:

         

Where tCLK is the Clock period measured in ns.
i.e. if CLK = 20 MHz the default time-out set after the system reset is:

256*65535*50/1000 = 838861µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

- rw rw rw rw rw rw rw rw

Bits 15:8 Reserved. Forced by hardware to 0

Bit 7:0 

PR[7:0]: Prescaler value
The clock to Timer Counter is divided by PR[7:0]+1.
This value takes effect when Watchdog mode is enabled (WE bit is set) or the re-
load sequence occurs or the Counter starts (SC) bit is set in Timer mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TV15 TV14 TV13 TV12 TV11 TV10 TV9 TV8 TV7 TV6 TV5 TV4 TV3 TV2 TV1 TV0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0
TV[15:0]: Timer Pre-load Value

This value is loaded in the Timer Counter when it starts counting or a re-load 
sequence occurs or an End of Count is reached. 

(PR[7:0] + 1) * (TV[15:0] +1) * tCLK 

1000 
µs



RM0006 Watchdog timer (WDG)

Doc ID 13742 Rev 4 159/488

   
   

   

6.4.4 WDG counter register (WDG_CNT)

Address offset: 0Ch

Reset value: FFFFh

         

         

6.4.5 WDG status register (WDG_SR)

Address offset: 10h

Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT
15

CNT
14

CNT
13

CNT
12

CNT
11

CNT
10

CNT
9

CNT
8

CNT
7

CNT
6

CNT
5

CNT
4

CNT
3

CNT
2

CNT
1

CNT
0

r r r r r r r r r r r r r r r r

Bits 15:0
CNT[15:0]: Timer Counter Value

The current value of the 16-bit Counter can be obtained by reading this register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EC

- rc_w0

Bits 15:1 Reserved. Forced by hardware to 0

Bit 0

EC: End of Count pending bit

0: no End of Count has occurred
1: the End of Count has occurred
In Watchdog Mode (WE = 1) this bit has no effect.
This bit can be set only by hardware and must be reset by software.



   
   

   

Watchdog timer (WDG) RM0006

160/488  Doc ID 13742 Rev 4

6.4.6 WDG mask register (WDG_MR)

Address offset: 14h

Reset value: 0000h

         

         

6.4.7 WDG key register (WDG_KR)

Address offset: 18h

Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ECM

- rw

Bits 15:1 Reserved. Forced by hardware to 0

Bit 0
ECM: End of Count Mask bit

0: End of Count interrupt request is disabled
1: End of Count interrupt request is enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15:0

K[15:0]: Key Value

When Watchdog Mode is enabled, writing in this register two consecutive values 
(A55A, 5AA5) the Counter is initialized to TV[15:0] value and the Prescaler value 
in WTDPR register take effect. Any number of instructions can be executed 
between the two writes.
If Watchdog Mode is disabled (WE = 0) a write to this register has no effect.
This register returns the value 0000h when read.



RM0006 Watchdog timer (WDG)

Doc ID 13742 Rev 4 161/488

   
   

   

6.5 Watchdog timer register map
         

Refer to Table 5 on page 35 for the register base addresses.

Table 17. Watchdog timer register map

Address 
offset

Register 
name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WDG_CR Reserved EE SC WE

4 WDG_PR Reserved PR[7:0]

8 WDG_VR TV[15:0]

C WDG_CNT CNT[15:0]

10 WDG_SR Reserved EC

14 WDG_MR Reserved ECM

18 WDG_KR K[15:0]



   
   

   

16-bit timer (TIM) RM0006

162/488  Doc ID 13742 Rev 4

7 16-bit timer (TIM)

7.1 Introduction
The timer consists of a 16-bit counter driven by a programmable prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of up to two 
input signals (input capture) or generating up to two output waveforms (output compare and 
PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several 
milliseconds.

7.2 Main features
● Programmable prescaler: fPCLK divided by 1 to 256 in steps of 1

● Overflow status flag and maskable interrupt

● External clock inputs with the choice of active edge (see External Clock section on 
frequency limitation).

● Output compare functions with:

– 2 dedicated 16-bit registers

– 2 dedicated programmable signals

– 2 dedicated status flags

– 1 maskable interrupt

● Input capture functions with:

– 2 dedicated 16-bit registers

– 2 dedicated active edge selection signals

– 2 dedicated status flags

– 1 maskable interrupt

● Pulse Width Modulation output mode (PWM)

● One Pulse mode (OPM)

● PWM input mode (PWMI) 

● 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)

● DMA support (TIM0 and TIM1)

The block diagram is shown in Figure 36.



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 163/488

   
   

   

Figure 36. Timer block diagram

1. To select the external clock pin, set bit 13 or 14 in the SCU_CLKCNTR register

APB INTERFACE

OUTPUT
COMPARE
REGISTER

OUTPUT COMPARE EDGE DETECT
OVERFLOW

DETECT
CIRCUIT

APB BUS

LATCH1 OCMP1

ICAP1

TIM INTERRUPT to VIC

ICAP2

LATCH2 OCMP2

16

16 16

16 16

STATUS REGISTER

16

16

EXEDG

TIMER INTERNAL BUS

CIRCUIT1

EDGE DETECT
CIRCUIT2

CIRCUIT

1

OUTPUT
COMPARE
REGISTER

2

INPUT
CAPTURE
REGISTER

1

INPUT
CAPTURE
REGISTER

2

CC[7:0] 

COUNTER

pin

pin

pin

pin

 REGISTER

 TIM_SR

16 16 16

CONTROL REGISTER 1
 TIM_CR1

CONTROL REGISTER 2
 TIM_CR2

8-BIT 
PRESCALER

TIM

PCLK

TIMER
CLOCK

Clock Select

EXTCLK pin*



   
   

   

16-bit timer (TIM) RM0006

164/488  Doc ID 13742 Rev 4

7.3 Functional description

7.3.1 Counter

The main block of the Programmable Timer is a 16-bit upcounter and its associated 16-bit 
registers. 

Counter Register (TIM_CNTR)

Writing in the TIM_CNTR register resets the free running counter to the FFFCh value.

The timer clock source can be either internal or external as selected by the ECKEN bit in the 
TIM_CR1 register and the TIMxSEL bit in the SCU_CLKCNTR register. When internal clock 
(PCLK) is selected, the frequency depends on the value programmed inthe CC[7:0] bits in 
the TIM_CR2 register.

An overflow occurs when the counter rolls over from FFFFh to 0000h then:

● The TOF bit in the TIM_SR register is set. 

● A timer interrupt is generated if the TOIE bit in the TIM_CR2 register is set 

To clear the interrupt, write 0 to the TOF bit in the TIM_SR register. 

7.3.2 External clock

The external clock from external clock input pin is selected if ECKEN=1 in the TIM_CR1 
register and TIMxSEL=1 in the SCU_CLKCNTR register. 

The status of the EXEDG bit in the TIM_CR1 register determines the type of level transition 
on the external clock EXTCLK that will trigger the free running counter.

The counter is synchronized with the rising edge of PCLK.

A minimum of four falling edges of the PCLK must occur between two consecutive active 
edges of the external clock; thus the external clock frequency must be less than a quarter of 
the PCLK frequency.

Figure 37. Counter timing diagram, internal clock divided by 2

PCLK

FFFD FFFE FFFF 0000 0001 0002 0003

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 165/488

   
   

   

Figure 38. Counter timing diagram, internal clock divided by 4

Figure 39. Counter timing diagram, internal clock divided by n

Note: The Timer’s internal reset signal is controlled by bits [1:0] in the SCU_PRR1 register.

FFFC FFFD 0000 0001

PCLK

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

PCLK

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

FFFC FFFD 0000



   
   

   

16-bit timer (TIM) RM0006

166/488  Doc ID 13742 Rev 4

7.3.3 Input capture

In this section, the index, i, may be 1 or 2.

The two input capture 16-bit registers (TIM_IC1R and TIM_IC2R) are used to latch the value 
of the counter after a transition is detected by the ICAPi pin (see Figure 39).

The TIM_ICiR register is a read-only register.

The active transition is software programmable through the IEDGi bit in Control Register 1 
(TIM_CR1). 

Timing resolution is one/two counts of the counter: (fPCLK/CC[7:0]+1).

Procedure

To use the input capture function, select the following in the TIM_CR1 and TIM_CR2 
registers:

● Select the timer clock source (ECKEN bit) and the TIMxSEL bit in the SCU_CLKCNTR 
register. 

● Program the timer clock prescaler CC[7:0] bits if PCLK is used (ECKEN = 0)

● Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit if ICAP1 is 
active.

● Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit if ICAP2 is 
active.

● Set the ICiIE bits to generate an interrupt after an input capture coming from the 
corresponding ICAP1 pin or ICAP2 pins.

When an input capture occurs:

● The ICFi bit is set.

● The TIM_ICiR register contains the value of the counter on the active transition on the 
ICAPi pin (see Figure 41).

● A timer interrupt is generated if the corresponding ICiIE bit is set. 

To clear the interrupt, write 0 to the ICFi bit in the TIM_SR register.

Figure 40. Input capture block diagram

16-BIT COUNTER

ICAP2

EDGE DETECT
CIRCUIT2

16-BIT

TIM_IC2R Registerpin

ICAP1

EDGE DETECT
CIRCUIT1

pin

IC1IE bit

Interrupt to VIC

16-BIT

TIM_IC1R Register

ICF1
Flag

ICF2
Flag

IC2IE bit



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 167/488

   
   

   

Figure 41. Input capture timing diagram, internal clock divided by 8

7.3.4 Output compare 

In this section, the index, i, may be 1 or 2.

This function can be used to control an output waveform or indicate when a period of time 
has elapsed.

When a match is found between the Output Compare register and the counter, the output 
compare function:

● Assigns pins with a programmable value if the OCiE bit is set

● Sets a flag in the status register

● Generates an interrupt if enabled

Two 16-bit registers Output Compare Register 1 (TIM_OC1R) and Output Compare 
Register 2 (TIM_OC2R) contain the value to be compared to the counter register each timer 
clock cycle.

These registers are readable and writable and are not affected by the timer hardware. A 
reset event changes the TIM_OCiR value to 8000h.

Timing resolution is one count of the counter: (fPCLK/CC[7:0]+1).

Procedure

To use the output compare function, select the following in the TIM_CR1 and TIM_CR2 
registers:

● Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output 
compare i function.

● Select the timer clock ECKEN and program the prescaler (CC[7:0])

● Select the OLVLi bit to applied to the OCMPi pins after the match occurs

● Set the OCiIE bit to generate an interrupt if required

When a match is found between TIM_OCRi register and TIM_CR register:

● The OCFi bit is set

● The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset and 
stays low until a valid compare changes it to OLVLi level).

● A timer interrupt is generated if the OCiIE bit is set in the TIM_CR1 register

To clear the interrupt, write 0 to the OCFi bit in the TIM_SR register.

FF01 FF02 FF03

FF03

PCLK

COUNTER REGISTER

ICAPi PIN

ICAPi FLAG

ICAPi REGISTER 

Note: Active edge is rising edge.
Capture 
Window



   
   

   

16-bit timer (TIM) RM0006

168/488  Doc ID 13742 Rev 4

The TIM_OCiR register value required for a specific timing application can be calculated 
using the following formula:

         

Where:

∆t = Output compare period (in seconds)

fPCLK = Internal clock frequency

CC7:0 = Timer clock prescaler 

Figure 42. Output compare block diagram

Figure 43. Output compare timing diagram, Internal Clock Divided by 2

∆ 
∆t * fPCLK

(CC7:0+1)
TIM_OCiR =

16-BIT COUNTER

16-BIT

TIM_OC2R Register

OCMP1

OUTPUT COMPARE
CIRCUIT 1

pin

OC1IE bit
Interrupt to VIC

16-BIT

TIM_OC1R Register

OCF1
Flag

OC2IE bit

OLVL1
bit

Latch
 1

OUTPUT COMPARE
CIRCUIT 2

OCMP2
pin

OLVL2
bit

Latch
 2

OCF2
Flag

PCLK

 TIMER STROBE

COUNTER

OUTPUT COMPARE REGISTER

COMPARE REGISTER SIGNAL

 OCFi AND OCMPi PIN (OLVLi=1)

CPU writes FFFF FFFF

FFFD FFFD FFFE FFFF 0000FFFC



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 169/488

   
   

   

7.3.5 Forced compare mode

In this section i may represent 1 or 2.

When the FOLV1 bit is set, the OLVL1 bit is copied to the OCMP1 pin if PWM and OPM are 
both cleared. 

When FOLV2 bit is set, the OLVL2 bit is copied to the OCMP2 pin.

The OLVLi bit has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE 
bit=1). 

Note: When FOLVi is set, no interrupt request is generated. 

Nevertheless the OCFi bit can be set if OCiR = Counter and an interrupt can be generated if 
enabled. 

Input capture function works in Forced compare mode.

7.3.6 One pulse mode

One Pulse mode (OPM) enables the generation of a pulse when an external event occurs. 
This mode is selected via the OPM bit in the TIM_CR1 register.

One Pulse mode uses the Input Capture1 function and the Output Compare1 function.

Procedure

To use One Pulse mode, select the following in the TIM_CR1 register:

● Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the pulse

● Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the pulse

● Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit

● Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1 function

● Set the OPM bit

● Select the timer clock ECKEN and the prescaler division factor CC[7:0]

● Load the OC1R register with the value corresponding to the length of the pulse (see the 
formula in PWM mode Section 1.1.3.7).

Figure 44. One pulse mode flowchart

Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is 
loaded on the OCMP1 pin after 4 clock period. When the value of the counter is equal to the 
value of the contents of the OC1R register, the OLVL1 bit is output on the OCMP1 pin (see 
Figure 45).

event occurs

Counter
= TIM_OC1R OCMP1 = OLVL1

When

When

on ICAP1

One Pulse mode cycle

Counter is initialized
to FFFCh

OCMP1 = OLVL2



   
   

   

16-bit timer (TIM) RM0006

170/488  Doc ID 13742 Rev 4

Note: The OCF1 bit cannot be set by hardware in one pulse mode but the OCF2 bit can generate 
an Output Compare interrupt.

The ICF1 bit is set when an active edge occurs and can generate an interrupt if the ICIE bit 
is set. The IC1R register will have the value FFFCh.

When Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set with 
FOLV1= 1, the OPM mode is the only active one, otherwise PWM mode is the only active 
one.

Forced Compare 2 mode works in OPM.

Input Capture 2 function works in OPM.

When OC1R = FFFBh in OPM, then a pulse of width FFFFh is generated.

If an event occurs on ICAP1 again before the Counter reaches the value of OC1R, then the 
Counter will be reset again and the pulse generated might be longer than expected (see 
Figure 45).

If a write operation is performed on the counter register before the Counter reaches the 
value of OC1R, then the Counter will be reset again and the pulse generated might be 
longer than expected. 

If a write operation is performed on the counter register after the Counter reaches the value 
of OC1R, then there will be no effect on the waveform.

Figure 45. One pulse mode timing

1. In the top part of Figure 45, IEDG1=1, OC1R = 2ED0h, OLVL1 = 0, OLVL2 = 1.

2. In the bottom part of Figure 45, IEDG1 = 1, OC1R = 2ED0h, OLVL1 = 0, OLVL2 = 1.

COUNTER .... FFFC FFFD FFFE 2ED0 2ED1 2ED2

2ED3

FFFC FFFD

OLVL2 OLVL2OLVL1

ICAP1

OCMP1
compare1

COUNTER .... FFFC FFFD FFFE 2ED0 2ED1 2ED2

2ED3

FFFC FFFD

OLVL2 OLVL2 OLVL1

ICAP1

OCMP1
compare1

0010 FFFC

4 clock periods



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 171/488

   
   

   

7.3.7 Pulse width modulation mode

Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency 
and pulse length determined by the value of the TIM_OC1R and TIM_OC2R registers.

The Pulse Width Modulation mode uses the complete Output Compare 1 function plus the 
TIM_OC2R register.

Procedure

To use pulse width modulation mode select the following in the CR1 register:

● Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a successful 
comparison with OC1R register.

● Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a successful 
comparison with OC2R register.

● Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.

● Set the PWM bit.

● Select the timer clock (ECKEN) and the prescaler division factor (CC[7:0]).

● Load the OC2R register with the value corresponding to the period of the signal.

● Load the OC1R register with the value corresponding to the length of the pulse if 
(OLVL1= 0 and OLVL2 = 1). 

If OLVL1= 1 and OLVL2 = 0 the length of the pulse is the difference between the OC2R and 
OC1R registers.

The OCiR register value required for a specific timing application can be calculated using 
the following formula:

         

Figure 46. PWM mode flowchart

Where:

t = Desired output compare period (seconds)

fPCLK = Internal clock frequency 

tPRESC = Timer clock prescaler 

The Output Compare 2 event causes the counter to be initialized to FFFCh (see Figure 47).

OCiR Value =
t * fPCLK

tPRESC
- 5

Counter

OCMP1 = OLVL2
Counter
= TIM_OC2R

OCMP1 = OLVL1

When

When

= TIM_OC1R

Pulse Width Modulation cycle

Counter is reset
to FFFCh

ICF1 bit is set



   
   

   

16-bit timer (TIM) RM0006

172/488  Doc ID 13742 Rev 4

Note: 1 The OCF1 bit cannot be set by hardware in PWM mode, but OCF2 is set every time counter 
matches OC2R. 

2 The Input Capture function is available in PWM mode. 

3 When Counter = OC2R, then OCF2 bit will be set. This can generate an interrupt if OC2IE is 
set. This interrupt will help any application where pulse-width or period needs to be changed 
interactively.

4 When Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set with 
FOLV1= 0, the PWM mode is the only active one, otherwise the OPM mode is the only 
active one.

5 The value loaded in OC2R must always be greater than that in OC1R to produce meaningful 
waveforms. Note that 0000h is considered to be greater than FFFCh or FFFDh or FFFEh or 
FFFFh.

6 When OC1R >OC2R, no waveform will be generated.

7 When OC2R = OC1R, a square waveform with 50 % duty cycle will be generated as in 
Figure 47 

8 When OC2R and OC1R are loaded with FFFC (the counter reset value) then a square 
waveform will be generated & the counter will remain stuck at FFFC. The period will be 
calculated using the following formula:

         

When OC1R is loaded with FFFC (the counter reset value) then the waveform will be 
generated as in Figure 47

When FOLV1 bit is set and PWM bit is set, then PWM mode is the active one. But if FOLV2 
bit is set then the OLVL2 bit will appear on OCMP2(when OC2E bit = 1).

When a write is performed on CNTR register in PWM mode, then the Counter will be reset 
and the pulse-width/period of the waveform generated may not be as desired

Period =
2 * fPCLK

tPRESC



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 173/488

   
   

   

Figure 47. Pulse width modulation mode timing 

1. In the top part of Figure 47, OC1R = 2ED0h, OC2R = 34E2, OLVL1 = 0, OLVL2 = 1.

2. In the middle part of Figure 47, OC1R = OC2R = 0010h, OLVL1 = 1, OLVL2 = 0.

3. In the bottom part of Figure 47, OC1R = FFFCh, OC2R = 0004h, OLVL1 = 1, OLVL2 = 0.

7.3.8 Pulse width modulation input mode

The PWM Input functionality enables the measurement of the period and the pulse width of 
an external waveform. The initial edge is programmable.

It uses the two Input Capture registers and the Input signal of the Input Capture 1 module.

Procedure

The CR2 register must be programmed as needed for Interrupts and DMA.

To use PWM input mode select the following in the TIM_CR1 register:

● Set the PWMI bit

● Select the first edge in IEDG1

● Select the second edge IEDG2 as the negated of IEDG1

● Program the clock source and prescaler as needed.

● Enable the counter by setting the EN bit.

To have a coherent measurement the interrupt/DMA should be linked to the Input Capture 1 
Interrupt, reading the period value in the TIM_IC1R register and in the pulse width in the 
IC2R register.

COUNTER 34E2 FFFC FFFD FFFE 2ED0 2ED1 2ED2 34E2 FFFC

OLVL2 OLVL2OLVL1OCMP1

compare2 compare1 compare2

COUNTER 000F 0010 FFFC 0010 FFFC

OLVL1 OLVL1OLVL2OCMP1

0010 FFFC

COUNTER 0003 0004 FFFC

OLVL1

OLVL2
OCMP1

0003 0004 FFFC

OLVL1
OLVL2



   
   

   

16-bit timer (TIM) RM0006

174/488  Doc ID 13742 Rev 4

To obtain the time values:

         

         

Where:

fPCLK = Internal clock frequency 

tPRESC = Timer clock prescaler 

The Input Capture 1 event causes the counter to be initialized to 0000h, allowing a new 
measurement to start.

The first Input Capture on IC1 does not generate the corresponding interrupt/DMA request.

Figure 48. Pulse width modulation input mode timing

7.4 Interrupt management
The five interrupt sources (IC1, OC1, IC2, OC2 and Timer Overflow) are mapped on the 
same input to the VIC (Vectored Interrupt Controller).

To enable the interrupt request, set the OCiIE and/or ICiIE and/or TOIE bits in the TIM_CR2 
register and configure the corresponding VIC registers.

7.5 DMA 
A DMA interface is available on TIM0 and TIM1; the source can be selected to be IC1, OC1, 
IC2, OC2.

Period =
IC1R * fPCLK

tPRESC

Pulse =
IC2R * fPCLK

tPRESC

COUNTER 34E2 0000 0001 2ED0 2ED1 2ED2 34E2 0000

ICAP1

capture1capture2capture1

0002

PERIOD = IC1

PULSE LENGTH = IC2

Capture 1,

period measurement,

reset counter

Interrupt/DMA

Capture 2,

pulse width measurement



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 175/488

   
   

   

To use the DMA feature:

● Select the DMA source by programming the DMAS[1:0] bits in the TIM_CR1 register

● Set the DMAIE bit in the TIM_CR2 register

This configuration allows the timer module to perform DMA requests. 

7.6 Register description
In this section, the following abbreviations are used:

         

7.6.1 Input capture register 1 (TIM_IC1R)

Address offset: 00h

Reset value: undefined (xxh)

         

         

7.6.2 Input capture register 2 (TIM_IC2R)

Address offset: 04h

Reset value: undefined

         

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Read/clear (rc_w0)
Software can read as well as clear this bit by writing 0. Writing ‘1’ has no 
effect on the bit value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IC1R[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, always read as 0

Bits 15:0
IC1R[15:0] IC 1 Captured value

These bits contain the counter value transferred by the Input Capture 1 event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IC2R[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, always read as 0

Bits 15:0
IC2R[15:0] IC 2 Captured value

These bits contain the counter value transferred by the Input Capture 2 event.



   
   

   

16-bit timer (TIM) RM0006

176/488  Doc ID 13742 Rev 4

7.6.3 Output compare register 1 (TIM_OC1R)

Address offset: 08h

Reset value: 0000 8000h

         

         

7.6.4 Output compare register 2 (TIM_OC2R)

Address offset: 0Ch

Reset value: 0000 8000h

         

         

7.6.5 Counter register (TIM_CNTR)

Address offset: 10h

Reset value: 0000 FFFCh

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC1R[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0

Bits 15:0
O1R[15:0] OC 1 Compare value

These bits are written by software, they contain the value to be compared to the 
counter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2R[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0

Bits 15:0
OC2R[15:0] OC 2 Compare value

These bits are written by software, they contain the value to be compared to the 
counter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OCR2[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, always read as 0

Bits 15:0
OCR2[15:0] Counter value

These bits contain the value of the free-running counter.



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 177/488

   
   

   

7.6.6 Control register 1 (TIM_CR1)

Address offset: 14h

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN
PWM

I
DMAS
[1:0]

FOLV
2

FOLV
1

OLVL
2

OLVL
1

OC2
E

OC1
E

OPM PWM
IEDG

2
IEDG

1
EX 

EDG
ECK 
EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0

Bit 15

EN Counter Enable

This bit is set and cleared by software
0: Counter disabled (stopped)
1: Counter enabled

Bit 14

PWMI PWM Input Mode Enable
This bit is set and cleared by software. 
0: PWM input mode disabled
1: PWM input mode enabled

Bit 13:12

DMAS[1:0] DMA source select

These bits are set and cleared by software. 
00: IC1 used as DMA source
01: OC1 used as DMA source
10: IC2 used as DMA source
11: OC2 used as DMA source

Bit 11

FOLV2 Forced Output Compare 2
This bit is set by software.
0: No effect
1: Forces the level of the OLVL2 bit to be copied to the OCMP2 pin

Bit 10

FOLV1 Forced Output Compare 1

This bit is set by software
0: No effect
1: Forces the level of the OLVL1 bit to be copied to the OCMP1 pin

Bit 9
OLVL2 Output Level 2

This bit is set and cleared by software. It is copied to the OCMP2 pin whenever a 
successful comparison occurs with the OC2R register and the OC2E bit is set. 

Bit 8
OLVL1 Output Level 1

This bit is set and cleared by software. It is copied to the OCMP1 pin whenever a 
successful comparison occurs with the OC1R register and the OC1E bit is set. 

Bit 7

OC2E Output Compare 2 Enable
This bit is set and cleared by software.
0: Output Compare 2 function is enabled, but the output to the OCMP2 pin is 
disabled.
1: Output Compare 2 function is enabled, and output to the OCMP2 pin enabled.
Note: The corresponding GPIO Alternate Function must be configured in the 
SCU_GPIOOUT register.



   
   

   

16-bit timer (TIM) RM0006

178/488  Doc ID 13742 Rev 4

Bit 6

OC1E Output Compare 1 Enable

This bit is set and cleared by software.
0: Output Compare 1 function is enabled, but the output to the OCMP1 pin is 
disabled.
1: Output Compare 1 function is enabled, and output to the OCMP1 pin enabled. 
Note: The corresponding GPIO Alternate Function must be configured in the 
GPIO output register (SCU_GPIOOUTn) on page 110.

Bit 5

OPM One Pulse Mode
This bit is set and cleared by software.
0: One Pulse Mode is not active
1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on 
the OCMP1 pin. The active transition is given by the IEDG1 bit. The length of the 
generated pulse depends on the contents of the TIM_OC1R register.

Bit 4

PWM Pulse Width Modulation Mode

This bit is set and cleared by software.
0: PWM mode is not active
1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; 
the length of the pulse depends on the value of the TIM_OC1R register. The 
period depends on the value of the TIM_OC2R register.

Bit 3

IEDG2 Input Edge 2
This bit determines which type of level transition on the ICAP2 pin will trigger the 
capture.
0: A falling edge triggers the capture
1: A rising edge triggers the capture

Bit 2

IEDG1 Input Edge 1
This bit determines which type of level transition on the ICAP1 pin will trigger the 
capture.
0: A falling edge triggers the capture
1: A rising edge triggers the capture

Bit 1

EXEDG External Clock Edge
This bit determines which type of level transition on the external clock pin 
EXTCLK will trigger the counter. 
0: A falling edge triggers the counter
1: A rising edge triggers the counter

Bit 0

ECKEN External Clock Enable
0: Internal clock (PCLK), divided by CC[7:0] prescaler, is used to feed timer clock
1: External source (EXTCLK clock on GPIO pins) is used for timer clock
Note: The External clock source is enabled using the TIM01SEL and TIM23SEL 
bits in the Clock control register (SCU_CLKCNTR) on page 86.



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 179/488

   
   

   

7.6.7 Control register 2 (TIM_CR2)

Address offset: 18h

Reset value: 0000 0001h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IC1IE OC1IE TOIE IC2IE OC2IE DMAE Reserved CC[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0

Bit 15

IC1IE Input Capture 1 interrupt enable

This bit is set and cleared by software.
0: IC1 interrupt disabled
1: Generate interrupt request to VIC if ICF1 flag is set

Bit 14

OC1IE Output Compare 1 interrupt enable
This bit is set and cleared by software.
0: OC1 interrupt disabled
1: Generate interrupt request to VIC if OCF1 flag is set

Bit 13

TOIE Timer Overflow interrupt enable

This bit is set and cleared by software.
0: TO interrupt disabled
1: Generate interrupt request to VIC if TOF flag is set

Bit 12

IC2IE Input Capture 2 interrupt enable

This bit is set and cleared by software.
0: IC2 interrupt disabled
1: Generate interrupt request to VIC if ICF2 flag is set

Bit 11

OC2IE Output Compare 2 interrupt enable
This bit is set and cleared by software.
0: OC2 interrupt disabled
1: Generate interrupt request to VIC if OCF2 flag is set

Bit 10

DMAE DMA enable

This bit is set and cleared by software.
0: DMA disabled
1: DMA is enabled
Note: DMA is available on TIM0 and TIM1 only.

Bits 9:8 Reserved, always read as 0

Bits 7:0

CC[7:0]: Clock Control

These bit are written by software to select the frequency of the timer clock 
applied when internal clock is selected (ECKEN = 0):
00h: fPCLK / 1
01h: fPCLK / 2
...
FFh: fPCLK / 256



   
   

   

16-bit timer (TIM) RM0006

180/488  Doc ID 13742 Rev 4

7.6.8 Status register (TIM_SR)

Address offset: 18h

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ICF1 OCF1 TOF ICF2 OCF2 Reserved

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 31:16 Reserved, always read as 0

Bit 15

ICF1 Input Capture Flag 1

This bit is read and clear only.
0: No input capture (reset value)
1: An input capture has occurred. An interrupt request is generated if IC1IE=1 in 
the TIM_CR2 register.

Bit 14

OCF1 Output Compare Flag 1

0: No match (reset value)
1: The content of the counter matches the content of the TIM_OC1R register. An 
interrupt request is generated if OC1IE=1 in the TIM_CR2 register.

Bit 13

TOF Timer Overflow Flag
0: No timer overflow (reset value)
1: The counter has rolled over from FFFFh to 0000h. An interrupt request is 
generated if TCIE = 1 in the TIM_CR2 register.

Bit 12

ICF2 Input Capture Flag 2

0: No input capture (reset value)
1: An input capture has occurred on the ICAP2 pin. An interrupt request is 
generated if IC2IE = 1 in the TIM_CR2 register.

Bit 11

OCF2 Output Compare Flag 2

0: No match (reset value).
1: The content of the free running counter matches the content of the TIM_OC2R 
register. An interrupt request is generated if OC2IE=1 in the TIM_CR2 register.

Bit 10:0 Reserved, forced by hardware to 0



RM0006 16-bit timer (TIM)

Doc ID 13742 Rev 4 181/488

   
   

   

7.7 TIM register map
         

Refer to Table 5 on page 35 for the register base addresses.

Table 18. TIM register map

Address 
offset

Register 
name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h TIM_IC1R Input Capture register 1

04h TIM_IC2R Input Capture register 

08h TIM_OC1R Output Compare register 1

0Ch TIM_OC2R Output Compare register 2

10h TIM_CNTR Counter register

14h TIM_CR1 Control register 1

18h TIM_CR2 Control register 12

1Ch TIM_SR Status Register Reserved



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

182/488  Doc ID 13742 Rev 4

8 MAC/DMA controller with DMA (ENET)

The IEEE 802.3 International Standard for Local Area Network (LANs) employs the 
CSMA/CD (Carrier Sense Multiple Access with collision detection) as the access method. 

The ENET peripheral consists of a MAC 802.3 (media access control) controller with media 
independent interface (MII) and a dedicated DMA controller. 

The MAC block implements the LAN CSMA/CD sublayer for the following families of 
systems: 10 Mb/s and 100 Mb/s of data rates for baseband and broadband systems. Half 
and full-duplex operation modes are supported. The collision detection access method is 
applied only to the half-duplex operation mode. The MAC control frame sublayer is 
supported.

Figure 49. MAC/DMA block diagram

A
H

B
 b

us

A
H

B
 S

la
ve

 In
te

rf
ac

e

Control
Registers

A
H

B
 M

as
te

r 
In

te
rf

ac
e

Global Interrupt 
Request
to VIC

MII
Interface

Independent
Media

MAC 802.3
Control
Access
Media

DMA

CSMA/CD

MII_TX_CLK

MII_TX_EN

MII_TXD[3:0]

MII_RX_CLK

MII_RXD[3:0]

MII_RX_DV

MII_RX_ER

MII_PHYCLK

MII_CRS

MII_COL

MII_MDIO

MII_MDC

Control
Registers

MAC

FIFO

RX DMA

FIFO

TX DMA



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 183/488

   
   

   

8.1 Functional description

8.1.1 MAC 802.3 

The MAC sublayer performs the following functions associated with a data link control 
procedure:

● Data encapsulation (transmit and receive)

– Framing (frame boundary delimitation, frame synchronization)

– Addressing (handle of source and destination addresses)

– Error detection

● Media access management

– Medium allocation (collision avoidance)

– Contention resolution (collision handling)

Basically there are two operating modes of the MAC sublayer:

● Half duplex mode: the stations contend for the use of the physical medium, using the 
CSMA/CD algorithms.

● Full duplex mode: simultaneous transmission and reception without contention 
resolution (CSMA/CD algorithm are unnecessary) when all the following conditions are 
matched:

– physical medium capability to support simultaneous transmission and reception

– exactly 2 stations connected to the LAN

– both stations configured for full duplex operation.

8.1.2 MII 

MII TX/RX interface

The MII TX/RX interface defines the interconnection between MAC sublayer and PHY for 
data transfer at 10 Mb/s and 100 Mb/s. These signals are implemented as alternate function 
I/Os on external pins of the microcontroller:

● MII_TX_CLK: Continuous clock that provides the timing reference for the TX data 
transfer. The nominal frequency is: 2.5 MHz at 10 Mb/s speed; 25 MHz at 100 Mb/s 
speed.

● MII_RX_CLK: Continuous clock that provides the timing reference for the RX data 
transfer. The nominal frequency is: 2.5 MHz at 10 Mb/s speed; 25 MHz at 100 Mb/s 
speed.

● MII_TX_EN: Transmission enable indicates that the MAC is presenting nibbles on the 
MII for transmission. It must be asserted synchronously (MII_TX_CLK) with the first 
nibble of the preamble and must remain asserted while all nibbles to be transmitted are 
presented to the MII.

● MII_TXD[3:0]: Transmit data is a bundle of 4 data signals driven synchronously by the 
MAC sublayer and qualified (valid data) on the assertion of the MII_TX_EN signal. 
MII_TXD[0] is the least significant bit, MII_TXD[3] is the most significant bit. While 
MII_TX_EN is deasserted the transmit data must have no effect upon the PHY.

● MII_CRS: Carrier sense is asserted by the PHY when either the transmit or receive 
medium is non idle. It shall be deasserted by the PHY when both the transmit and 
receive media are idle. The PHY must ensure that the MII_CS signal remains asserted 



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

184/488  Doc ID 13742 Rev 4

throughout the duration of a collision condition. This signal is not required to transition 
synchronously with respect to the TX and RX clocks. In full duplex mode the state of 
this signal is don’t care for the MAC sublayer.

● MII_COL: Collision detection must be asserted by the PHY upon detection of a collision 
on the medium and must remain asserted while the collision condition persists. This 
signal is not required to transition synchronously with respect to the TX and RX clocks. 
In full duplex mode the state of this signal is don’t care for the MAC sublayer.

● MII_RXD[3:0]: Reception data is a bundle of 4 data signals driven synchronously by the 
PHY and qualified (valid data) on the assertion of the MII_RX_DV signal. MII_RXD[0] is 
the least significant bit, MII_RXD[3] is the most significant bit. While MII_RX_EN is 
deasserted and MII_RX_ER is asserted, a specific MII_RXD[3:0] value is used to 
transfer specific information from the PHY (see Table 20).

● MII_RX_DV: Receive data valid indicates that the PHY is presenting recovered and 
decoded nibbles on the MII for reception. It must be asserted synchronously 
(MII_RX_CLK) with the first recovered nibble of the frame and must remain asserted 
through the final recovered nibble. It must be deasserted prior to the first clock cycle 
that follows the final nibble. In order to receive the frame correctly, the MII_RX_DV 
signal must encompass the frame, starting no later than the SFD field.

● MII_RX_ER: Receive error must be asserted for one or more clock periods 
(MII_RX_CLK) to indicate to the MAC sublayer that an error was detected somewhere 
in the frame. This error condition must be qualified by MII_RX_DV assertion as 
described in Table 20.

         

         

Table 19. TX interface signals encoding

MII_TX_EN MII_TXD[3:0] Description

0 0000 through 1111 Normal inter-frame

1 0000 through 1111 Normal data transmission

Table 20. RX interface signals encoding

MII_RX_DV MII_RX_ERR MII_RXD[3:0] Description

0 0 0000 through 1111 Normal inter-frame

0 1 0000 Normal inter-frame

0 1 0001 through 1101 Reserved

0 1 1110 False carrier indication

0 1 1111 Reserved

1 0 0000 through 1111 Normal data reception

1 1 0000 through 1111 Data reception with errors



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 185/488

   
   

   

Figure 50. Transmission with no collision

Figure 51. Transmission with collision

Figure 52. Reception with no errors

Figure 53. Reception with errors

MII_TX_CLK

MII_TX_EN

MII_TXD[3:0] PR EA MB LE

MII_CS

MII_COL

MII_TX_CLK

MII_TX_EN

MII_TXD[3:0] SFD DA

MII_CS

MII_COL

DA JAM JAMDA JAM JAM  PR EAM BLE

MII_RX_CLK

MII_RX_DV

MII_RXD[3:0] PREAMBLE SFD

MII_RX_ERR

FCS

MII_RX_CLK

MII_RX_DV

MII_RXD[3:0] PREAMBLE SFD XX

MII_RX_ERR

DA DA XXXX



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

186/488  Doc ID 13742 Rev 4

Figure 54. Reception with false carrier indication

Figure 55. MII TX interface: output timing requirements

Figure 56. MII RX interface: input timing requirements

MII management interface

The MII management interface defines the interconnection and the protocol used to 
configure the internal registers of the PHY device. The MII_MDC signal is implemented as 
an alternate function I/O of the microcontroller. The MII_MDIO signal is a dedicated pin.

● MII_MDC: aperiodic clock that provides the timing reference for the data transfer at the 
maximum frequency of 2.5 Mhz. The minimum high and low times for MII_MDC must 
be 160 ns each, and the minimum period for MII_MDC must be 400 ns. In idle state the 
MIM management interface must drive the MII_MDC clock signal low.

● MII_MDIO: data input/output bit stream to transfer status information to/from the PHY 
device synchronously to the MII_MDC clock signal 

The frame structure related to a read or write operation is shown in Table 21, the order of bit 
transmission must be from left to right.

MII_RX_CLK

MII_RX_DV

MII_RXD[3:0] XX XX XX

MII_RX_ERR

0E XX XXXXXXXX

    MII_TXD[3:0], MII_TX_EN

MII_TX_CLK

0 ns MIN  
25 ns MAX

DATA

    MII_RXD[3:0], MII_RX_DV

MII_RX_CLK

10 ns MIN (HOLD time)

10 ns MIN (SETUP time)

DATA



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 187/488

   
   

   

         

The management frame consists of eight fields:

● IDLE: the MDIO line is driven in high-impedance state. All three-state drivers must be 
disabled and the PHY’s pull-up resistor keeps the line to logic one.

● PREAMBLE: each transaction (read or write) can be initiated with the preamble field 
that corresponds to 32 contiguous logic one bits on the MDIO line with 32 
corresponding cycles on MDC. This field is used to establish synchronization with the 
PHY device and its generation is optional (depending on the PHY features) depending 
on the PR bit in the ENET_MIIA register.

● START: the start of frame is defined by a <0> pattern to verify transitions on the line 
from the default logic one state to zero and back to one.

● OPERATION: defines the type of transaction (read or write) in progress.

● PADDR: the PHY address is 5 bits, allowing 32 unique PHY addresses. The MSB bit of 
the address is the first transmitted and received.

● RADDR: the register address is 5 bits, allowing 32 individual registers to be addressed 
within the selected PHY device. The MSB bit of the address is the first transmitted and 
received.

● TA: the turn-around field defines a 2-bit pattern between the RADDR and DATA fields to 
avoid contention during a read transaction. For a read transaction the MAC controller 
drives high-impedance on the MDIO line for the 2 bits of TA. The PHY device must 
drive a high-impedance state on the first bit of TA, a zero bit on the second one. 
For a write transaction, the MAC controller drives a <10> pattern during the TA field. 
The PHY device must drive a high-impedance state for the 2 bits of TA.

● DATA: the data field is 16-bit. The first bit transmitted and received must be bit 15 of the 
ENET_MIID register.

Figure 57. MII management interface: input timing requirements (PHY device)

Table 21. Management frame format

Management frame fields

Preamble 
(32 bits)

Start Operation PADDR RADDR TA Data (16 bits) Idle

Read 1... 1  01  10 ppppp rrrrr Z0 ddddddddddddddd Z

Write 1... 1  01  01 ppppp rrrrr 10 ddddddddddddddd Z

    MDIO

MDC

10 ns MIN (HOLD time)

10 ns MIN (SETUP time)

DATA



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

188/488  Doc ID 13742 Rev 4

Figure 58. MII management interface: output timing requirements (PHY device)

8.1.3 DMA

The TX DMA and RX DMA blocks use the information written in the TX and RX 
configuration registers, to move data from the FIFOs to a specified memory area (master 
DMA).

When TX DMA or RX DMA is enabled via the configuration registers, they are able to 
manage the data transfer without further processor intervention.

The DMA transfer can be:

● DMA continuous/fixed size: the DMA can be required to run indefinitely or to stop after 
a configured number of data bytes has been transferred

● Fixed/incrementing address: the DMA address can be fixed (i.e. all the data are 
transferred to the same AHB word-aligned address) or it can be updated after each 
data transfer

● Linear incrementing or wrapping address: when the address is defined as 
incrementing, it can be required that, once reached a programmed value, the address 
counter wraps back to the initial address value (the address location, pointed by the 
wrapping address, is not modified)

● With FIFO entry threshold: the DMA starts transferring data to/from the AHB bus when 
a programmable number of 32-bit RX FIFO entries is valid

When the DMA is enabled, as soon as data appears in the RX FIFO (or one free entry 
appears in the TX FIFO), the DMA may either initiate an AHB transfer immediately, or be 
delayed until X data bytes are available in the FIFO (FIFO entry threshold).

The DMA can be configured to wrap-round the AHB address at some point to implement a 
circular buffer in CPU memory.

The DMA can be configured to run indefinitely or to stop after DMA_XFERCOUNT data 
have been transferred. The maximum DMA transfer count is 4 Kbytes.

When the DMA completes, it can either generate an interrupt request to the processor and 
wait for new instruction, or fetch a new DMA descriptor.

If an AHB error condition occurs, while the DMA is running, the DMA activity is suspended, 
until the error interrupt bit (MERR_INT) is reset. When the error condition is removed the 
DMA makes the same request previously interrupted by the error response.

RX/TX FIFOs

The FIFOs are readable (write has no effect) as a sequence of 32-bit registers, mapped at 
adjacent addresses.

For the FIFO address mapping refer to Table 8.5.

    MDIO

MDC

0 ns MIN  
300 ns MAX

DATA



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 189/488

   
   

   

8.2 MAC 802.3 operation

8.2.1 MAC 802.3 frame format

The MAC block implements the MAC sublayer and the optional MAC control sublayer 
(10/100 Mb/s) as specified by the IEEE 802.3-2002 standard.

Two frame formats are specified for data communication systems using the CSMA/CD MAC:

● Basic MAC frame format

● Tagged MAC frame format (extension of the basic MAC frame format)

Figure 60 and Figure 61 describe the frame structure (untagged and tagged) that include 
the following fields:

● Preamble: 7-byte field used for synchronization purpose (PLS circuitry).
hexadecimal value: 55-55-55-55-55-55-55
bit pattern: 01010101 01010101 01010101 01010101 01010101 01010101 01010101 
(right to left bit transmission)

●  Start frame delimiter (SFD): 1-byte field used to indicate the start of a frame.
 hexadecimal value: D5
 bit pattern: 11010101 (right to left bit transmission)

● Destination and Source Address fields: 6-byte fields to indicate the destination and 
source station addresses as follows (see Figure 60):

– Each address is 48 bits in length

– The first LSB bit (I/G) in the destination address field is used to indicate an 
individual (I/G = 0) or a group address (I/G = 1). A group address could identify 
none, one or more, or all the stations connected to the LAN. In the source address 
the first bit is reserved and set to 0.

– The second bit (U/L) distinguishes between locally (U/L = 1) or globally (U/L = 0) 
administered addresses. For broadcast addresses this bit is also 1.

– Each byte of each address field must be transmitted least significant bit first.

The address designation is based on the following types:

● Individual address: this is the physical address associated with a particular station on 
the network.

● Group address. A multi destination address associated with one or more stations on a 
given network. There are 2 kinds of multicast address:

– Multicast-Group address. An address associated with a group of logically related 
stations.

– Broadcast address. A distinguished, predefined multicast address (all 1’s in the 
destination address field) that always denotes all the stations on a given LAN.

Figure 59. Address field format

1. Legend: I/G = 0 individual address; I/G = 1 group address; U/L = 0 globally administered address; U/L = 1 
locally administered address.

MSB LSB

Bit transmission order (right to left)

U/L I/G46-BIT ADDRESS



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

190/488  Doc ID 13742 Rev 4

● QTag Prefix: 4-byte field inserted between the Source Address field and the MAC 
Client Length/Type field. This field is an extension of the basic frame (untagged) to 
obtain the tagged MAC frame. The untagged MAC frames don’t include this field. The 
extension for tagging are as follows:

– 2-byte constant Length/Type field value consistent with the Type interpretation 
(greater than 06-00 hexadecimal) equal to the value of the 802.1Q Tag Protocol 
Type (81-00 hexadecimal). This constant field allows to distinguish tagged and 
untagged MAC frames.

– 2-byte field containing Tag control information field subdivided as follows: a 3-bit 
user priority, a canonical format indicator (CFI) bit and a 12-bit VLAN Identifier.

The length of the tagged MAC frame is extended by 4 bytes by the QTag Prefix.

● MAC Client Length/Type: 2-byte field with different meaning (mutually exclusive), 
depending on its value:

– If the value is less than or equal to maxValidFrame (1500 decimal) than this field 
indicates the number of MAC client data bytes contained in the subsequent data 
field of the 802.3 frame (Length interpretation).

– If the value is greater than or equal to MinTypeValue (1536 decimal, 06-00 
hexadecimal) than this field indicates the nature of the MAC client protocol (Type 
interpretation) related to the ethernet frame.

Regardless of the interpretation of the Length/Type field, if the length of the data field is less 
than the minimum required for proper operation of the protocol, a PAD field is added after 
the data field but prior to the FCS field. The Length/Type field is transmitted and received 
with the high order byte first.
For Length/Type field values in the range between maxValidLength and minTypeValue 
(boundaries excluded), the behavior of the MAC sublayer is not specified: they may or may 
not be passed by the MAC sublayer.

● Data and PAD fields: n-byte data field. Full data transparency is provided, it means that 
any arbitrary sequence of byte values may appear in the data field. The size of the PAD, 
if any, is determined by the size of the data field. Max and min length of the data and 
PAD field are: 

– Maximum length = 1500 bytes

– Minimum length for untagged MAC frames = 46 bytes

– Minimum length for tagged MAC frames = 42 bytes

When the data field length is less than the minimum required, the PAD field is added to 
match the minimum length (42 bytes for tagged frames, 46 bytes for untagged frames).

● Frame Check Sequence: 4-byte field that contains the cyclic redundancy check (CRC) 
value. The CRC computation is based on the following fields: source address, 
destination address, QTag prefix, length/type, LLC data and pad (that is, all fields 
except the preamble, SFD). The generating polynomial is the following:

         

G x( ) x32 x26 x23 x22 x16 x12 x11 x10 x8 x7 x5 x4 x2 x 1+ + + + + + + + + + + + + +=



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 191/488

   
   

   

The CRC value of a frame is computed as follows:

● The first two bits of the frame are complemented

● The n-bits of the frame are the coefficients of a polynomial M(x) of degree (n-1). The 
first bit of the destination address corresponds to the x**(n-1) term and the last bit of 
the data field corresponds to the x**0 term.

● M(x) is multiplied by x**32 and divided by G(x), producing a remainder R(x) of degree 
<=31.

● The coefficients of R(x) are considered to be 32-bit sequence

● The bit-sequence is complemented and the result is the CRC

The 32-bits of the CRC value are placed in the frame check sequence. The x**31 term is the 
first transmitted, the term x**0 term is the last one.

Figure 60. MAC frame format

PREAMBLE

SFD

DESTINATION ADDRESS

SOURCE ADDRESS

MAC CLIENT LENGTH/TYPE

MAC CLIENT DATA

PAD

FRAME CHECK SEQUENCE

7 bytes

1 byte

6 bytes

6 bytes

2 bytes

46-1500 bytes

4 bytes

MSB LSB

Bit transmission order (right to left)

Bytes within
 frame transmitted

top to bottom



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

192/488  Doc ID 13742 Rev 4

Figure 61. Tagged MAC frame format

Each byte of the MAC frame, except the FCS field, is transmitted low-order bit first.

An invalid MAC frame is defined by one of the following conditions:

● The frame length is inconsistent with the expected value as specified by the 
Length/Type field. If the Length/Type field contains a type value, then the frame length 
is assumed to be consistent with this field (no invalid frame)

● The frame length is not an integer number of bytes (extra bits).

● The CRC value computed on the incoming frame doesn’t match with the included FCS.

8.2.2 MAC frame reception

When the MAC-802.3 receives a frame, it starts transferring data to the RX DMA block.

If the DMA has been properly enabled and a valid descriptor fetched, the data is transferred 
to the DMA RX FIFO. The DMA will then move this data to the main memory, as detailed in 
the DMA descriptor.

After receiving the last data frame, the MAC-802.3 checks the CRC, reports the end of 
frame and sends the DMA a 32 bit word named ‘RX Packet Status’.

As soon as the RX DMA has successfully transferred to main memory all the frame data, 
has updated the Packet status and has reset the VALID bit, the DMA is considered to be 
completed and the descriptor fetch logic is invoked.

Prior to checking if a new descriptor has to be loaded, the 32-bit RX Frame Status, received 
by the MAC-802.3 is copied by the DMA to the following address in main memory: 

CURRENT_DESCRIPTOR_START_ADDRESS + ‘C’ (hex)

PREAMBLE

SFD

   DESTINATION ADDRESS

SOURCE ADDRESS

LENGTH/TYPE = 802.1QTagType

 TAG CONTROL INFORMATION

MAC CLIENT LENGTH/TYPE

MAC CLIENT DATA

7 bytes

1 byte

6 bytes

6 bytes

QTag Prefix

42-1500 bytes

2 bytes

MSB LSB

Bit transmission order (right to left)

bytes within
 frame transmitted

top to bottom

FRAME CHECK SEQUENCE

PAD

4 bytes

4 bytes

1  0  0  0  0  0  0  0  1

VLAN IDENTIFIER (VID, 12 bits)

CFIUser priority

MSB LSB

0  0  0  0  0  0  0  0  0



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 193/488

   
   

   

To increase the performance, it replaces the 16th bit of the Packet Status with the VALID bit. 
See Figure 62. The original value of this bit (Late Collision flag) is moved to replace the 1-st 
bit (it’s an unused bit). In this way the DMA can reset the descriptor VALID bit and, by the 
same write operation, save the status of the received packet.

The VALID bit set to ‘0’ indicating that the descriptor is no longer owned by the DMA and 
that the DMA operations are completed.

If enabled, an interrupt will then be sent to the CPU to notify the transfer completion.

The DMA descriptor fetch logic is then able to start processing the next DMA sequence, and 
a new descriptor fetch, starting at the NEXT descriptor memory address, is performed. 

Figure 62. RX Packet status word modification

10-0 Frame Length
12-11 Reserved 

13 False carrier indication

14 Watchdog time-out
15 Runt Frame

16 Over length

17 Late collision
18 Frame type

19 MII error

20 Extra bits
21 CRC error

22 One level VLAN

23 Two level VLAN

24 Length error
25 Control Frame

26 Unsupported control frame

27 Multicast frame
28 Broadcast frame

29 Filtering fail

30 Packet filter
31 Frame abort

10-0 Frame Length
11 Reserved

12 Over length

13 False carrier indication
14 Watchdog time-out

15 Runt Frame

16 VALID bit
17 Late collision

18 Frame type

19 MII error
20 Extra bits

21 CRC error

22 One level VLAN

23 Two level VLAN
24 Length error

25 Control Frame

26 Unsupported control frame
27 Multicast frame

28 Broadcast frame

29 Filtering fail
30 Packet filter

31 Frame abort
From MAC-802.3

To main memory



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

194/488  Doc ID 13742 Rev 4

8.2.3 Frame reception errors

RX address filtering failed

When a new frame arrives to the MAC-802.3 logic, it transfers all the incoming data to the 
DMA, regardless of the frame attributes.

If the destination address doesn’t match the address filtering policy programmed in the 
MAC-802.3 registers, the data are sent anyway to the DMA, but an ‘Address filtering failed’ 
flag is set.

The ADDRESS_FILTER bit, in the ENET_RXSTR register, forces the DMA logic to 
discharge the incoming frame if the address filtering failed: in this case, no data is 
transferred to memory and the fetched descriptors will be used for the next incoming frame.

RX packet too long

While the DMA RX logic is receiving data frame from the MAC-802.3 core, it checks that the 
received byte number does not exceed the DMA_XFERCOUNT value in the ENET_RXCR 
register.

If this condition occurs, no more data are accepted by the DMA, the already loaded data are 
written to the system memory and, when the frame completes, the RX packet status 
information will report the information that the frame was aborted by the receiving logic.

RX packet with MAC-802.3 reported error

Even when the incoming frame is received and downloaded to main memory by the DMA, 
without any problem, the RX packet status, sent by the MAC-802.3 when the transfer 
completes, can report some error conditions.

The DMA will check the COLLISION_SEEN and RUNT_FRAME bit in the of the RX packet 
status word and, depending on the value of bits 7 and 6 of the ENET_RXSTR register will 
proceed as follows.

If: Both the COLLISION_SEEN bit of the RX packet status and the bit 7 of the 
ENET_RXSTR are set to 1.

Or: Both the RUNT_FRAME bit of the RX packet status and the bit 6 of the ENET_RXSTR 
register are set to 1.

Then: The RX DMA will discard the received frame (even if it was already downloaded to 
memory) and will use the current DMA descriptor and memory buffer for the next incoming 
RX frame.

8.2.4 MAC frame transmission

After the DMA has been properly enabled for a TX data transfer, a valid descriptor fetched, 
and some data have been loaded to the TX FIFO, the DMA starts to move data from the 
DMA TX FIFO to the MAC-802.3 core. 

The MAC-802.3 core will then try to transfer the TX frame to the PHY device, via the MII 
interface, and then from the PHY to the line.

Depending on the line traffic condition, the packet frame transfer can succeed or not (normal 
collision, late collision, deferral, excessive deferral and so on).

If the transaction succeeds, after the last data byte transfer, the TX DMA reads the TX 
packet status word.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 195/488

   
   

   

The MAC-802.3 logic will hold this request until the frame transmission completes on the 
line, and then it will provide the TX packet status information to the DMA.

If no error occurred, the DMA is considered to be completed and the descriptor fetch logic is 
invoked.

Prior to checking if a new descriptor has to be loaded, the 32-bit TX Frame Status, received 
by the MAC-802.3 is copied by the DMA to the following address in main memory: 

CURRENT_DESCRIPTOR_START_ADDRESS + ‘C’ (hex)

To increase the performance, it replaces the 16th bit of the Packet Status (it’s an unused bit) 
with the VALID bit. See Figure 63. In this way the DMA can reset the descriptor VALID bit 
and, by the same write operation, save the status of the transmitted packet.

The VALID bit set to ‘0’ indicating that the descriptor is no longer owned by the DMA and 
that the DMA operations are completed.

If enabled, an interrupt will then be sent to the CPU to notify the transfer completion.

The DMA descriptor fetch logic is then able to start processing the next DMA sequence, and 
a new descriptor fetch, starting at the NEXT descriptor memory address, is performed. 

Figure 63. TX Packet Status word modification

0 Frame Aborted

1 Reserved

2 No carrier
3 Loss of carrier

4 Excessive deferral

5 Late collision
6 Excessive collisions

7 Under run

8 Deferred

9 Late collision observed
13-10 Collision count

17-14 Reserved

30-18 Byte counter
31 Packet retry

0 Frame Aborted

1 Reserved

2 No carrier
3 Loss of carrier

4 Excessive deferral

5 Late collision
6 Excessive collisions

7 Under run

8 Deferred

9 Late collision observed
13-10 Collision count

15-14 Reserved

16 VALID bit
17 Reserved

30-18 Byte counter

31 Packet retry
From MAC-802.3

To main memory



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

196/488  Doc ID 13742 Rev 4

8.2.5 Frame transmission errors

TX packet with MAC reported error

When the transmitted packet reports an error condition, the MAC-802.3 qualifies if the error 
was due to a ‘protocol related’ condition (i.e. collision) or if it was an error to be reported to 
the CPU attention. This kind of information is summarized in bit 31 (RETRY, see Ref. [1]) of 
the TX packet status word.

The DMA_MAC wrapper logic will check also the bit UNDER_RUN (bit 7) of the TX packet 
status word and, depending on the value of the bit 5 of the DMA_START register will 
proceed as in the following.

If: RETRY=1 

Or: Both the UNDER_RUN bit of the TX packet status and bit 5 of the ENET_TXSTR 
register are set.

Then, the DMA retransmits the same packet to the MAC-802.3 core, without reporting the 
error condition to the CPU.

In all the other cases, the DMA updates the current descriptor status information in main 
memory (detailing the error condition), generates an interrupt (if enabled) and starts fetching 
the DMA descriptors for the next data transfer.

8.2.6 Loopback mode

Loop back mode is available for test purposes. You select it using the LM[1:0] bits in the 
ENET_MCR register.

When the loop back is active, the TX logic outputs are shorted to the RX logic inputs, and all 
the data transmitted by the TX are received by the RX.

At the end of each frame, to provide both the RX and TX channels with the expected status 
words, the loop back logic drives the proper signals on the interfaces and sends a 
received/transmitted packet status to the two blocks.

To allow you to test different packet status vector values, the loop back logic will use the last 
3 (three) words transmitted by the TX DMA to generate the RX and TX status.

In detail:

● the last word of the TX frame is not used because it could be less than 32 valid bits

● the TX packet status bits will have the same value as the word before the last of the TX 
frames.

● the RX packet status bits will have the same value as the second word before the last of 
the TX frames.

Note: It is important to pay attention to the status word value, because the behavior of the TX/RX 
logic depends on these bits (e.g. if the TX status has the RETRY bit set, the TX logic can re-
send the same packet forever).



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 197/488

   
   

   

8.3 DMA controller operation

8.3.1 RX DMA configuration

Before starting RX DMA operations, you have to program the following RX DMA 
configuration registers.

●  RX DMA Start Register (ENET_RXSTR)

●  RX DMA Control Register (ENET_RXCR)

●  RX DMA Start Address Register (ENET_RXSAR)

● RX DMA Next Descriptor Address Register (ENET_RXNDAR)

● RX DMA Time Out Register (ENET_RXTOR)

8.3.2 RX DMA descriptors

The DMA operates by performing a DMA descriptor fetch, which allows it to load all the 
required information from main memory without any CPU intervention.

You have to allocate a 16-byte region (word-aligned) in main memory, for each DMA 
transfer. 3 words for the DMA descriptors, plus 1 word for Packet Status and descriptor 
VALID bit.

● In the first three descriptor words, you write the information to be loaded in the:

– Control register (ENET_RXCR)

– Start address register (ENET_RXSAR) 

– Next descriptor address register (ENET_RXNDAR)

● Then set to ‘1’, bit 16 (VALID bit) in the fourth word (Packet Status)

● The packet status word will be then updated by the DMA automatically when the DMA 
transfer has been completed.

Note: All the addresses in the DMA descriptors MUST be word aligned (32 bit).

When at least one descriptor is ready, you can start the RX DMA logic using this sequence:

● Load the memory address of the first descriptor word into the ENET_RXNDAR register

● Write a ‘1’ in the START_FETCH bit in the ENET_RXSTR register to start DMA 
operation

As soon as the RX DMA has been enabled, it loads the DMA descriptors and is ready to 
transfer the data sent by the MAC-802.3 core.

When a DMA operation is completed, the DMA hardware updates the packet status word 
and the descriptor VALID bit in main memory, and generates an interrupt (if enabled).

Then the DMA hardware verifies, in the ENET_RXCR register, if it is required to stop or to 
fetch a new descriptor for the next DMA transfer (NXT_EN = 1). 

The location of the next DMA descriptor (DMA_DESCR_ADDR), and whether the DMA 
engine is enabled to load it (NXT_EN), is part of the information previously fetched with the 
current descriptor.

This has the advantage that the subsequent DMA descriptor starting address can be 
located anywhere in the memory area. Descriptors related to a single DMA operation are 
required to be contiguous, but data from different DMA operations can be scattered in 
memory.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

198/488  Doc ID 13742 Rev 4

8.3.3 RX error handling

Invalid descriptor

For added flexibility, when a descriptor is found to be not valid (VALID bit, in PACKET 
STATUS field, equal to ‘0’), the DMA engine can be programmed either to generate an 
interrupt (RX_NEXT) or to keep polling (NPOL_EN=1) the memory location (with a 
programmable period) until it has been set valid by the software application.

The interrupt register bit named RX_NEXT is always set when a non valid descriptor is 
loaded.

● If NPOL_EN = 0, the DMA stops and resets the DMA_EN bit in the ENET_RXSTR 
register. You have to re-enable the DMA operation by setting the START_FETCH bit in 
the ENET_RXSTR register to attempt a new descriptor fetch.

● In polling mode (NPOL_EN = 1, the DMA keeps reloading the descriptor, with an 
access frequency determined by the DFETCH_DLY field in the ENET_RXSTR register.

Master error

An AHB error response suspends the DMA activity, set the RX_MERR_INT bit or 
TX_MERR_INT in the ENET_ISR register and resets the DMA_EN bit in the ENET_RXSTR 
or ENET_TXSTR register. To help determine the error source, you can read the 
ENET_RXCAR or ENET_TXCAR register (current address register) which contains the 
address at which the error occurred. 

After clearing the error bit, you have to reprogram the DMA registers, to start a new 
descriptor fetch.

Caution: Special care must be taken when the FIFO entry to be read has 3 valid bytes: in this case, 
because the AHB protocol doesn’t allow 3 byte transfers, the DMA splits the transfer in two 
single transfers (byte + half or half + byte) and sends an acknowledge signal to the FIFO 
only when the second one has been read. If the second read receives an error response 
then, when the error condition is removed, the DMA repeats the first one again (because the 
FIFO has not seen the acknowledge yet).

Note: While the DMA is running, the descriptor registers cannot be modified: the DMA must be 
stopped before attempting to change them.

For a description of the DMA configuration registers, refer to Section 8.4

Figure 64. DMA Descriptor in main memory

DMA_CONTROL

Offset Descriptor Function

00

DMA_START_ADDRESS04

DMA_NEXT08

PACKET STATUS 0C

Written by software

Written by software and by 
DMA controller



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 199/488

   
   

   

8.3.4 RX packet status word

The “0C” word of the DMA descriptor contains the following information:

● the packet status bits (updated by the MAC-802.3 core at the end of the received 
frame)

● the VALID bit (flag used to determine the descriptor ownership)

The MAC-802.3 packet status format is slightly modified by the DMA block, as shown in the 
Figure 62, to make room for the VALID bit.

The VALID bit contains the descriptor ownership information. 

When the VALID bit is set, it indicates that the descriptor is up to date in memory and can be 
processed by the DMA.

When the VALID bit is reset, the descriptor either is not valid yet or has already been 
serviced by the DMA and can be checked by the application software.

A typical sequence of operations is:

● The application software loads the first three descriptor words in memory and then sets 
the VALID bit in the fourth descriptor word (new owner: DMA)

● The DMA loads the descriptor, transfers data and, at the end, in the same write 
operation, saves the packet status coming from the MAC-802.3 core and resets the 
VALID bit (new owner: host processor)

● The software checks the status and then, if needed, updates the descriptor fields and 
sets the VALID bit again for a new DMA transfer.

8.3.5 TX DMA configuration

Before starting TX DMA operations, you have to program the following TX DMA 
configuration registers.

● TX DMA Start Register (ENET_TXSTR)

● TX DMA Control Register (ENET_TXCR)

● TX DMA Start Address Register (ENET_TXSAR)

● TX DMA Next Descriptor Address Register (ENET_TXNDAR)

● TX DMA Time Out Register (ENET_TXTOR)

The RX DMA block uses the information written in the TX configuration registers, to move 
data to the TX FIFO from a specified memory area (master DMA).



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

200/488  Doc ID 13742 Rev 4

8.3.6 TX DMA descriptors

The DMA operates by performing a DMA descriptor fetch, which allows it to load all the 
required information from main memory without any CPU intervention.

You have to allocate a 16-byte region (word-aligned) in main memory, for each DMA 
transfer. 3 words for the DMA descriptors, plus 1 word for Packet Status and descriptor 
VALID bit.

● In the first three descriptor words, you write the information to be loaded in the:

– Control register (ENET_TXCR)

– Start address register (ENET_TXSAR) 

– Next descriptor address register (ENET_TXNDAR)

● Then set to ‘1’, bit 16 (VALID bit) in the fourth word (Packet Status)

● The packet status word will be then updated by the DMA automatically when the DMA 
transfer has been completed.

Note: All the addresses in the DMA descriptors MUST be word aligned (32 bit).

When at least one descriptor is ready, you can start the TX DMA logic using this sequence:

● Load the memory address of the first descriptor word into the ENET_TXNDAR register

● Write a ‘1’ in the START_FETCH bit in the ENET_TXSTR register to start DMA 
operation.

As soon as the TX DMA has been enabled, it loads the DMA descriptors and is ready to 
transfer the data loaded from memory to the MAC-802.3 core.

When a DMA operation is completed, the DMA hardware updates the packet status word 
and the descriptor VALID bit in main memory, and generates an interrupt (if enabled).

Then the DMA hardware verifies, in the ENET_TXCR register, if it is required to stop or to 
fetch a new descriptor for the next DMA transfer (NXT_EN = 1). 

The location of the next DMA descriptor (DMA_DESCR_ADDR), and whether the DMA 
engine is enabled to load it (NXT_EN), is part of the information previously fetched with the 
current descriptor.

This has the advantage that the subsequent DMA descriptor starting address can be 
located anywhere in the memory area. Descriptors related to a single DMA operation are 
required to be contiguous, but data from different DMA operations can be scattered in 
memory.

For added flexibility, when a descriptor is found to be not valid (VALID bit, in PACKET 
STATUS field, equal to ‘0’), the DMA engine can be programmed either to generate an 
interrupt (TX_NEXT) or to keep polling (NPOL_EN = 1) the memory location (with a 
programmable period) until it has been set valid by the software application.

Note: While the DMA is running, the descriptor registers cannot be modified: the DMA must be 
stopped before attempting to change them.

For a more detailed description of the TX DMA configuration registers, refer to Section 8.4



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 201/488

   
   

   

8.3.7 TX packet status word

The “0C” word of the DMA descriptor contains the following information:

● The packet status bits (updated by the MAC-802.3 core at the end of the transmitted 
frame).

● The VALID bit (flag used to determine the descriptor ownership)

The MAC-802.3 packet status format is slightly modified by the DMA block, as shown in the 
Figure 62, to make room for the VALID bit.

The VALID bit contains the descriptor ownership information. 

When the VALID bit is set, it indicates that the descriptor is up to date in memory and can be 
processed by the DMA.

When the VALID bit is reset, the descriptor either is not valid yet or has already been 
serviced by the DMA and can be checked by the application software.

A typical sequence of operations is:

● The application software loads the first three descriptor words in memory and then sets 
the VALID bit in the fourth descriptor word (new owner: DMA).

● The DMA loads the descriptor, transfers data and, at the end, in the same write 
operation, saves the packet status coming from the MAC-802.3 core and resets the 
VALID bit (new owner: host processor).

● The software checks the status and then, if needed, updates the descriptor fields and 
sets the VALID bit again.

8.4 Register description
In this section, the following abbreviations are used:

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Read/clear (rc_w1)
Software can read as well as clear this bit by writing 1. Writing ‘0’ has no 
effect on the bit value

Read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on the bit 
value

Write only (wo) Software can only write to this bit. Reading the bit returns the reset value



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

202/488  Doc ID 13742 Rev 4

8.4.1 DMA status/control register (ENET_SCR)

Address offset: 00h

Reset value: 5A5A0101h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TX_FIFO_SIZE
TX_IO_DATA_

WIDTH
TX_CHAN_

STATUS
RX_FIFO_SIZE

RX_IO_
DATA_WIDTH

RX_CHAN _
STATUS

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TX_MAX_

BURST_SIZE
RX_MAX_

BURST_SIZE
Reserved LOOPB

SRE 
SET

r r r r r r r r r r r r r

Bits 31:28

TX_FIFO_SIZE[3:0]: Transmit FIFO size
These bits indicate the size of the transmitter data path FIFO.
0000: Reserved
0001: 2 * 32-bit words
0010: 4 * 32-bit words
0011: 8 * 32-bit words
0100: 16 * 32-bit words
0100: 32 * 32-bit words
Others: Reserved

Bits 27:26

TX_IO_DATA_WIDTH[1:0]: Transmit data bus width
00: 8-bit
01: 16-bit
10: 32-bit
11: Reserved

Bits 25:24

TX_CHAN_STATUS[1:0]: Transmit channel information
00: No TX channel present
01: Low end TX channel (no DMA descriptor fetch)
10: High end TX channel
11: Reserved 

Bits 23:20

RX_FIFO_SIZE[3:0]: Receive FIFO size
These bits indicate the size of the receiver data path FIFO.
0000: Reserved
0001: 2 * 32-bit words
0010: 4 * 32-bit words
0011: 8 * 32-bit words
0100: 16 * 32-bit words
0100: 32 * 32-bit words
Others: Reserved 

Bits 19:18

RX_IO_DATA_WIDTH[1:0]: Receive data bus width
00: 8-bit
01: 16-bit
10: 32-bit
11: Reserved 



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 203/488

   
   

   

Bits 17:16

RX_CHAN _STATUS[1:0]: Receive channel information

01: Low end RX channel (no DMA descriptor fetch)
10: High end RX channel
11: Reserved

Bits 15:8
REVISION[7:0]: Revision number

These bits indicate the revision number of the DMA hardware

Bits 7:6

TX_MAX_BURST_SIZE[1:0]: Transmit Max. burst size
These bits define the maximum size of bursts performed by the TX DMA logic on 
the AHB bus to read data from the main memory.
00: 16-beat incrementing burst (INCR16)
01: 8-beat incrementing burst (INCR8)
10: 4-beat incrementing burst (INCR4)
11: Single transfers only (SINGLE)
Note: Descriptor fetch operation is not affected by this field.

Bits 5:4

RX_MAX_BURST_SIZE[1:0]: Receive Max. burst size

These bits define the maximum size of bursts performed by the RX DMA logic on 
the AHB bus to write data to the main memory.
00: 16-beat incrementing burst (INCR16)
01: 8-beat incrementing burst (INCR8)
10: 4-beat incrementing burst (INCR4)
11: Single transfers only (SINGLE)
Note: Descriptor fetch operation is not affected by this field.

Bits 3:2 Reserved, forced by hardware to 0

Bit 1

LOOPB: Loopback mode

This bit selects loopback mode.
0: Normal mode
1: Loopback mode

Bit 0

SRESET: MAC DMA Software reset

This bit is written by software.
0: Write ‘0’ to exit the reset phase.
1: Write ‘1’ to hold the whole DMA and MAC-802.3 logic in reset condition
Notes:
- After a hardware reset, the DMA logic wakes up with the SRESET bit asserted 
(‘1’), to keep all the DMA and MAC-802.3 logic in the reset condition, until the 
software is sure that clocks and the other MII signal inputs to the MAC-802.3 
core, are stable.
- When this condition is met, the software is allowed to clear the SRESET bit 
(write ‘0’) to start the normal operation.
- Until the SRESET bit is set to ‘1’, no operation is allowed on the DMA or MAC-
802.3 registers, except the SRESET bit clear.
- This signal has no effect on the AHB interface so, when asserted during 
runtime, the whole DMA will be reset only when the last AHB transfer, in the AHB 
master queue, has been completed.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

204/488  Doc ID 13742 Rev 4

8.4.2 DMA interrupt enable register (ENET_IER)

Address offset: 04h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

T
X

_C
U

R
R

_D
O

N
E

_E
N

R
es

er
ve

d

M
A

C
-8

02
.3

_I
N

T
_E

N

R
es

.

T
X

_M
E

R
R

_I
N

T
_E

N

R
es

er
ve

d

T
X

_D
O

N
E

_E
N

T
X

_N
E

X
T

_E
N

R
es

er
ve

d

T
X

_T
O

_E
N

T
X

_E
N

T
R

Y
_E

N

T
X

_F
U

LL
_E

N

T
X

_E
M

P
T

Y
_E

N

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
X

_C
U

R
R

_D
O

N
E

_E
N

R
es

er
ve

d

R
X

_M
E

R
R

_I
N

T
_E

N

R
es

er
ve

d

R
X

_D
O

N
E

_E
N

R
X

_N
E

X
T

_E
N

PA
C

K
E

T
_L

O
S

T
_E

N

R
es

er
ve

d

R
X

_T
O

_E
N

R
X

_E
N

T
R

Y
_E

N

R
X

_F
U

LL
_E

N

R
X

_E
M

P
T

Y
_E

N

rw rw rw rw rw rw rw rw rw

Bit 31
TX_CURR_DONE_EN: TX_CURR_DONE interrupt enable

0: Disabled
1: Enabled

Bits 30:29 Reserved, forced by hardware to 0

Bit 28
MAC-802.3_INT_EN: MAC-802.3 interrupt enable

0: Disabled
1: Enabled

Bits 27:26 Reserved, forced by hardware to 0

Bit 25
TX_MERR_INT_EN: TX_MERR interrupt enable

0: Disabled
1: Enabled

Bit 24 Reserved, forced by hardware to 0

Bit 23
TX_DONE_EN: TX_DONE interrupt enable

0: Disabled
1: Enabled

Bit 22
TX_NEXT_EN: TX_NEXT interrupt enable

0: Disabled
1: Enabled

Bits 21:20 Reserved, forced by hardware to 0

Bit 19
TX_TO_EN: TX_TO interrupt enable

0: Disabled
1: Enabled



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 205/488

   
   

   

Bit 18
TX_ENTRY_EN: TX_ENTRY interrupt enable

0: Disabled
1: Enabled

Bit 17
TX_FULL_EN: TX_FULL interrupt enable

0: Disabled
1: Enabled

Bit 16
TX_EMPTY_EN: TX_EMPTY interrupt enable

0: Disabled
1: Enabled

Bit 15
RX_CURR_DONE_EN: RX_CURR_DONE interrupt enable

0: Disabled
1: Enabled

Bits 14:10 Reserved, forced by hardware to 0

Bit 9
RX_MERR_INT_EN: RX_MERR interrupt enable

0: Disabled
1: Enabled

Bit 8 Reserved, forced by hardware to 0

Bit 7
RX_DONE_EN: RX_DONE interrupt enable

0: Disabled
1: Enabled

Bit 6
RX_NEXT_EN: RX_NEXT interrupt enable

0: Disabled
1: Enabled

Bit 5
PACKET_LOST_EN: PACKET_LOST interrupt enable

0: Disabled
1: Enabled

Bit 4 Reserved, forced by hardware to 0

Bit 3
RX_TO_EN: RX_TO interrupt enable

0: Disabled
1: Enabled

Bit 2
RX_ENTRY_EN: RX_ENTRY interrupt enable

0: Disabled
1: Enabled

Bit 1
RX_FULL_EN: RX_FULL interrupt enable

0: Disabled
1: Enabled

Bit 0
RX_EMPTY_EN: RX_EMPTY interrupt enable

0: Disabled
1: Enabled



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

206/488  Doc ID 13742 Rev 4

8.4.3 DMA interrupt status register (ENET_ISR)

Address offset: 08h

Reset value: 0005 0001h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

T
X

_C
U

R
R

_D
O

N
E

R
es

er
ve

d

M
A

C
-8

02
.3

_I
N

T

R
es

er
ve

d

T
X

_M
E

R
R

_I
N

T

R
es

er
ve

d

T
X

_D
O

N
E

T
X

_N
E

X
T

R
es

er
ve

d

T
X

_T
O

T
X

_E
N

T
R

Y

T
X

_F
U

LL

T
X

_E
M

P
T

Y

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
X

_C
U

R
R

_D
O

N
E

R
es

er
ve

d

R
X

_M
E

R
R

_I
N

T

R
es

er
ve

d

R
X

_D
O

N
E

R
X

_N
E

X
T

PA
C

K
E

T
_L

O
S

T

R
es

er
ve

d

R
X

_T
O

R
X

_E
N

T
R

Y

R
X

_F
U

LL

R
X

_E
M

P
T

Y

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bit 31

TX_CURR_DONE: TX_CURR_DONE interrupt flag
0: Cleared state
1: The TX master DMA has completed the current DMA transfers.
Note: This bit differs from TX_DONE: 
TX_CURRENT_DONE is set after a single DMA descriptor execution has been 
completed, the status register updated and the descriptor valid bit cleared. 
TX_DONE is set only after all the descriptors in the descriptor chain have been 
fully executed.

Bits 30:29 Reserved, forced by hardware to 0

Bit 28
MAC-802.3_INT: MAC-802.3 interrupt flag

0: Cleared state
1: Interrupt request from external MAC-802.3 device (not used). 

Bits 27:26 Reserved, forced by hardware to 0

Bit 25

TX_MERR_INT: TX_MERR interrupt flag
0: Cleared state
1: Master error during transmission. The AHB master has received an error 
response from the selected slave while the internal arbiter has granted the TX 
FIFO.

Bit 24 Reserved, forced by hardware to 0

Bit 23
TX_DONE: TX_DONE interrupt flag

0: Cleared state
1: TX master DMA completed



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 207/488

   
   

   

Bit 22
TX_NEXT: TX_NEXT interrupt flag

0: Cleared state
1: Invalid descriptor fetched (VALID bit in PACKET STATUS field, equal to ‘0’)

Bits 21:20 Reserved, forced by hardware to 0

Bit 19
TX_TO: TX_TO timeout interrupt flag

0: Cleared state
1: Data has been stalled in the TX FIFO for too long

Bit 18

TXENTRY: TX_ENTRY interrupt flag

0: Cleared state
1: TX DMA has been triggered by a number of empty TX FIFO entries greater 
than the TX_FIFO_SIZE value set in the ENET_SCR register.

Bit 17
TX_FULL: TX_FULL interrupt flag

0: Cleared state
1: TX FIFO is full (< 4 byte entries available)

Bit 16
TX_EMPTY: TX_EMPTY interrupt flag

0: Cleared state
1: TX FIFO is empty

Bit 15

RX_CURR_DONE: RX_CURR_DONE interrupt flag
0: Cleared state
1: Set when the RX master DMA has completed the current DMA transfers.
Note: This bit differs from RX_DONE: 
RX_CURRENT_DONE is set after a single DMA descriptor execution has been 
completed, the status register updated and the descriptor valid bit cleared. 
RX_DONE is set only after all the descriptors in the descriptor chain have been 
fully executed.

Bits 14:10 Reserved, forced by hardware to 0

Bit 9

RX_MERR_INT: RX_MERR interrupt flag

0: Cleared state
1: Master error during reception. The AHB master has received an error 
response from the selected slave while the internal arbiter has granted the RX 
FIFO.

Bit 8 Reserved, forced by hardware to 0

Bit 7
RX_DONE: RX_DONE interrupt flag

0: Cleared state
1: RX master DMA completed

Bit 6
RX_NEXT: RX_NEXT interrupt flag

0: Cleared state
1: Invalid descriptor fetched (VALID bit in PACKET STATUS field, equal to ‘0’)

Bit 5

PACKET_LOST: PACKET_LOST interrupt flag

0: Cleared state
1: There is an incoming frame but the RX DMA logic cannot service it because 
the RX FIFO is not empty yet or the next descriptor fetch is still running.

Bit 4 Reserved, forced by hardware to 0

Bit 3
RX_TO: RX_TO interrupt flag

0: Cleared state
1: Data has been stalled in the RX FIFO for too long



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

208/488  Doc ID 13742 Rev 4

8.4.4 Clock configuration register (ENET_CCR)

Address offset: 0Ch

Reset value: 0000 0000h

         

         

Bit 2

RXENTRY: RX_ENTRY interrupt flag

0: Cleared state
1: RX DMA has been triggered by a number of valid RX FIFO entries greater 
than the RX_FIFO_SIZE value set in the ENET_SCR register.

Bit 1
RX_FULL: RX_FULL interrupt flag

0: Cleared state
1: RX FIFO is full and no more data can be accepted

Bit 0
RX_EMPTY: RX_EMPTY interrupt flag

0: Cleared state
1: RX FIFO is empty

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SEL_CLK[1:0] Reserved

rw rw

Bits 31:4 Reserved, forced by hardware to 0

Bits 3:2

SEL_CLK[1:0]: Clock configuration 
This register is the first register to be programmed after the ENET_SCR register. 
00: HCLK = PCLK
01: HCLK = 2*PCLK
10: Reserved
11: Reserved
Note: The MAC 802.3 specifications indicate that the MAC module should be run 
in the frequency range 50 - 200 MHz for proper functional operation.

Bits 1:0 Reserved, forced by hardware to 0



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 209/488

   
   

   

8.4.5 RX start register (ENET_RXSTR)

Address offset: 10h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved DFETCH_DLY[15:8]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DFETCH_DLY[7:0]

C
O

LL
_S

E
E

N

R
U

N
T_

FR
A

M
E

F
IL

T
E

R
_F

A
IL

R
es

er
ve

d

ST
AR

T_
FE

TC
H

R
es

er
ve

d

D
M

A
_E

N

rw rw rw rw rw rw rw rw rw rw rw rs rc_w1

Bits 31:24 Reserved, forced by hardware to 0

Bits 23:8

DFETCH_DLY[15:0]: Descriptor fetch delay
These bits specify, in bus clock periods, the delay between two descriptor 
fetches, in the event that the descriptor in main memory is not valid.
When set to ‘0’ it forces the DMA logic, in case of invalid descriptor, to wait for 
2**16 system bus clocks before attempting a new fetch.

Bit 7

COLL_SEEN: Late Collision Seen control bit

0: No action by the DMA when a Late Collision Seen condition occurs
1: Received frames are discarded by the DMA if a Late Collision Seen condition 
is flagged by the MAC-802.3 in the RX packet status word.

Bit 6

RUNT_FRAME: Damaged Frame control bit

0: No action by the DMA when a Damaged Frame condition occurs
1: Received frames are discarded by the DMA if a Damaged frame condition is 
flagged by the MAC-802.3 in the RX packet status word (e. g. normal collision, 
frame too short, etc.).

Bit 5

FILTER_FAIL: Address Filtering Fail control bit

0: No action by the DMA when an Address Filtering Failed condition occurs
1: Received frames are discarded by the DMA when an Address Filtering Failed 
condition is flagged by the MAC-802.3 during the RX packet transmission. 
Note: Setting this bit reduces AHB bus utilization, because data packets filtered 
by the MAC core are not moved to memory.

Bits 4:3 Reserved, forced by hardware to 0



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

210/488  Doc ID 13742 Rev 4

Bit 2

START_FETCH: Start Fetching control bit

This bit is a Read/Set bit, that means it can be both read and written, but writing 
a ‘0’ has no effect.
0: No effect
1: Start RX DMA fetching descriptors
Notes:
- Before starting the DMA, the ENET_RXNDAR register has to be loaded with the 
starting address of the descriptor to be fetched.
- The DMA logic will reset this bit and set the DMA_EN bit as soon as the first 
fetch has been completed

Bit 1 Reserved, forced by hardware to 0

Bit 0

DMA_EN: DMA enable bit

Read/Clear bit: a write with ‘1’ reset to ‘0’ the bit value, while a write with ‘0’ has 
no effect.
This bit, set to ‘1’ by the DMA after the first descriptor fetch, can be reset to ‘0’ by 
the software to force a DMA abort and stop the data transfer as soon as possible, 
before the DMA completion. When all the DMA sequences complete normally, 
this bit is reset by the DMA logic and a new action by the software is required to 
restart the DMA engine.
Notes:
- A DMA_EN 0->1 transition resets the FIFO content and the RX interrupts 
(ENET_ISR[15:0]).
- A DMA_EN 1->0 transition forces the DMA to immediately close the transfers 
toward the AHB bus and MAC core. When the AHB transfer completes the 
RX_DONE bit in the ENET_ISR register is set and software can reprogram and 
reactivate the RX logic.
- When the interrupt is received it is important to wait at least 1 RxClk before 
restarting the DMA i.e. before writing ‘1’ to DMA_EN.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 211/488

   
   

   

8.4.6 RX control register (ENET_RXCR)

Address offset: 14h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR_WRAP[9:0] ENTRY_TRIG[4:0] Res.

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DLY_EN NXT_EN Res. CONT_EN DMA_XFERCOUNT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22

ADDR_WRAP[9:0]: DMA address counter wrap location
These bits define where the DMA address counter wraps by forcing it to retain 
the data originally written by the host in the ENET_RXSAR register. As soon as 
the DMA has written to the memory location prior to the value specified in 
ADD_WRAP the wrapping condition occurs.
This can be used to restrict the address counter within an address window (e.g. 
circular buffer). 
The wrapping point MUST be 32-bit aligned, so the 10 bits of ADDR_WRAP are 
used to compare DMA address bits 11 to 2. 
If ADD_WRAP[9:0]= ENET_RXSAR[11:2] then a 4Kbyte buffer is defined.
Note: ADDR_WRAP is ignored unless WRAP_EN is set.

Bits 21:17

ENTRY_TRIG[4:0]: Entry trigger count
These bits define the amount of valid entries (in 32-bit words) required in the RX 
FIFO before the DMA is re-triggered. 
If the value is set to 0, as soon as one valid entry is present, the DMA logic starts 
the data transfer.

Bit 16 Reserved, forced by hardware to 0

Bit 15

DLY_EN: DMA trigger delay enable
0: Delay disabled
1: DMA trigger delay enabled. If valid data resides in the FIFO more than the 
time-out period programmed in the ENET_RXTOR register, a time-out condition 
occurs (RX_TO) and the RX FIFO is emptied even if the number of valid words 
does not exceed the threshold value.

Bit 14

NXT_EN: Next Descriptor Fetch mode enable

0: Next Descriptor Fetch Mode disabled. Whenever a DMA transfer is completed, 
no descriptor is fetched and an interrupt request is generated
1: Next Descriptor Fetch Mode enabled. Whenever a DMA transfer is completed, 
a new DMA descriptor is fetched. 
Note: When a descriptor is fetched, ENET_RXCR is one of the registers updated

Bits 13 Reserved, forced by hardware to 0



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

212/488  Doc ID 13742 Rev 4

8.4.7 RX start address register (ENET_RXSAR)

Address offset: 18h

Reset value: 0000 0000h

         

         

Bit 12

CONT_EN: Continuous Mode Enable

0: Normal mode
1: Continuous mode. The DMA runs indefinitely ignoring DMA_ XFERCOUNT
Note: Continuous mode supersedes “Next Descriptor Mode”.

Bit 11:0
DMA_XFERCOUNT[11:0]: DMA transfer count

These bits define the block size (in bytes) of DMA data transfers, up to 4 Kbytes.
If DMA_XFERCOUNT is set to ‘0’, the DMA will transfer 4 Kbyte data.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RXADDR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXADDR[15:0]

F
IX

_A
D

D
R

W
R

A
P

_E
N

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:2

RXADDR[31:2]: Start address for master DMA transfer (32-bit word aligned)
These bits define the start address for master DMA transfer.
Note: This register is taken into account by the DMA hardware before starting 
the DMA operation and when the wrap condition is met. Updating this register 
while DMA is running will have unpredictable effects.

Bit 1

FIX_ADDR: Fixed address

0: RXADDR incrementation enabled
1: RXADDR incrementation disabled. All the DMA data transfer operations are 
performed at the same AHB address, i.e. the ENET_RXSAR start address.

Bit 0

WRAP_EN: Wrap enable
0: Wrap disabled
1: Enables wrapping of the DMA transfer address to ENET_RXSAR when the 
memory location specified by the ADDR_WRAP[9:0] bits in the ENET_RXCR 
register, is reached.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 213/488

   
   

   

8.4.8 RX next descriptor address register (ENET_RXNDAR)

Address offset: 1Ch

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DESCADDR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DESCADDR[15:2]

R
es

er
ve

d

N
P

O
L_

E
N

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:2

DESCADDR[31:2]: RX DMA Next Descriptor pointer (32-bit word aligned)

When Next Descriptor Fetch mode is enabled (NXT_EN bit = 0 in the 
ENET_RXCR register), this register points to the next descriptor starting 
address. 
Notes: 
- DMA descriptors are 32-bit, so the Next Descriptor Address must be 32-bit 
aligned.
- This register allows different DMA descriptors to be located in different memory 
areas, because part of the current DMA descriptor points to the next one 
(descriptor chaining).
- If Next Descriptor Fetch mode is not enabled (NXT_EN bit = 0 in the 
ENET_RXCR register), this register does not need to be updated. 

Bit 1 Reserved, forced by hardware to 0

Bit 0

NPOL_EN: Next Descriptor Polling Enable

0: Next Descriptor Polling disabled. If an invalid descriptor is fetched, the DMA 
logic sets the RX_DONE bit in the ENET_ISR register and clears the DMA_EN 
bit in the ENET_RXSTR register.
1: Next Descriptor Polling enabled. If an invalid descriptor is fetched, the 
RX_NEXT bit in the ENET_ISR register is set and a new descriptor fetch will be 
attempted after DFETCH_DLY clocks (refer to ENET_RXSTR register. This 
mode handles the case when the DMA logic fetches a descriptor that is not valid 
yet. The DMA logic keeps polling the DMA descriptor in main memory, until it’s 
found to be valid.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

214/488  Doc ID 13742 Rev 4

8.4.9 RX current address register (ENET_RXCAR)

Address offset: 20h

Reset value: 0000 0000h

         

         

8.4.10 RX current transfer count register (ENET_RXCTCR)

Address offset: 24h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CADDR[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CADDR[15:0]

r r r r r r r r r r r r r r r r

Bits 31:0
CADDR[31:0]: RX DMA Current address (byte-aligned)

The value of this register changes while the DMA is running, reflecting the value 
driven by the core on the AHB bus.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CXFER[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, forced by hardware to 0

Bits 11:0

CXFER[11:0]: RX DMA Current transfer count 

This value is updated while the DMA is running, when a data word is moved from 
the MAC core to the DMA FIFO, indicating the number of bytes that can still be 
accepted.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 215/488

   
   

   

8.4.11 RX time-out register (ENET_RXTOR)

Address offset: 28h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXTO[15:0]

r r r r r r r r r r r r

Bits 31:16 Reserved, forced by hardware to 0

Bits 15:0

RXTO[15:0]: RX FIFO Time-out value

This value is used as initial value for the FIFO entry time-out counter. It is 
recommended not to use too low a value, to avoid generating interrupts too 
frequently.
The time-out counter starts as soon as one valid entry is present in the FIFO and 
is reset each time a data entry is popped out of the FIFO.
The counter expires if no FIFO data are popped for a period longer than the value 
programmed in the RXTO[15:0] bits. 
The time-out is flagged by the RX_TO bit in the ENET_ISR register and the 
DELAY_T bit in the ENET_RXSR register.
If the RX_TO_RN bit in the ENET_IER register is set, an interrupt request is 
generated.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

216/488  Doc ID 13742 Rev 4

8.4.12 RX status register (ENET_RXSR)

Address offset: 2Ch

Reset value: 0000 0001h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved ENTRIES[5:0] Reserved DMA_POINTER[4:0]

r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved IO_POINTER[4:0] Reserved DELAY_T ENTRY_T FULL EMPTY

r r r r r r r r r

Bits 31:30 Reserved, forced by hardware to 0

Bits 29:24
ENTRIES[5:0]: RX FIFO entry count 

These bits indicate the number of free entries (in 32 bit words) in the DMA RX 
FIFO

Bits 23:21 Reserved, forced by hardware to 0

Bits 20:16
DMA_POINTER[4:0]: DMA RX FIFO Pointer 

These bits indicate the value of the RX FIFO pointer on the DMA controller side.

Bits 15:13 Reserved, forced by hardware to 0

Bits 12:8
IO_POINTER[4:0]: value

These bits indicate the value of the RX FIFO pointer on the I/O side.

Bits 7:4 Reserved, forced by hardware to 0

Bit 3
DELAY_T: RX FIFO Time-out flag

0: Normal state
1: The DMA RX FIFO delay time-out has expired

Bit 2
ENTRY_T: RX FIFO Entry Threshold flag

0: Normal state
1: The DMA RX FIFO entry trigger threshold has been reached

Bit 1
FULL: RX FIFO Full flag

0: Normal state
1: The DMA RX FIFO is full

Bit 0
EMPTY: RX FIFO Empty flag

0: Normal state
1: The DMA RX FIFO is empty



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 217/488

   
   

   

8.4.13 TX start register (ENET_TXSTR)

Address offset: 30h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved DFETCH_DLY[15:8]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DFETCH_DLY[7:0]

R
es

er
ve

d

U
N

D
E

R
_R

U
N

R
es

er
ve

d

ST
AR

T_
FE

TC
H

R
es

er
ve

d

D
M

A
_E

N

rw rw rw rw rw rw rw rw rw rs rc_w1

Bits 31:24 Reserved, forced by hardware to 0

Bits 23:8

DFETCH_DLY[15:0]: Descriptor fetch delay
These bits specify, in bus clock periods, the delay between two descriptor 
fetches, in the event that the descriptor in main memory is not valid.
When set to ‘0’ it forces the DMA logic, in case of invalid descriptor, to wait for 
2**16 system bus clocks before attempting a new fetch.

Bits 7:6 Reserved, forced by hardware to 0

Bit 5

UNDER_RUN: Underrun enabled
0: Normal state
1: If an underrun condition occurs, reported by the MAC in the TX packet status 
word, the DMA logic retransmits the same packet to the MAC-802.3 core, without 
reporting any error condition to the CPU.

Bits 4:3 Reserved, forced by hardware to 0

Bit 2

START_FETCH: Start Fetching control bit

This bit is a Read/Set bit, that means it can be both read and written, but writing 
a ‘0’ has no effect.
0: No effect
1: Start TX DMA fetching descriptors
Notes:
- Before starting the DMA, the ENET_TXNDAR register has to be loaded with the 
starting address of the descriptor to be fetched.
- The DMA logic will reset this bit and set the DMA_EN bit as soon as the first 
fetch has been completed



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

218/488  Doc ID 13742 Rev 4

Bit 1 Reserved, forced by hardware to 0

Bit 0

DMA_EN: DMA enable bit

Read/Clear bit: a write with ‘1’ resets the bit value to ‘0’, while a write with ‘0’ has 
no effect. This bit is set to ‘1’ by the DMA after the first descriptor fetch. It can be 
reset to ‘0’ by the software to force a DMA abort and stop the data transfer as 
soon as possible, before the DMA completion. When all the DMA sequences 
complete normally, this bit is reset by the DMA logic and a new action by the 
software is required to restart the DMA engine. 
Notes: 
- A DMA_EN 0->1 transition resets the FIFO content and the TX interrupts 
(ENET_ISR [31:16]).
- A DMA_EN 1->0 transition forces the DMA to immediately close the transfers 
toward the AHB bus and MAC core. When the AHB transfer completes the 
TX_DONE bit in the ENET_ISR register is set and software can reprogram and 
reactivate the TX logic.
- When the interrupt is received it is important to wait at least 1 TxClk before 
restarting the DMA i.e. before writing ‘1’ to DMA_EN.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 219/488

   
   

   

8.4.14 TX control register (ENET_TXCR)

Address offset: 34h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR_WRAP[9:0] ENTRY_TRIG[4:0] Res.

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DLY_ EN NXT_EN Res. CONT_EN DMA_XFERCOUNT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22

ADDR_WRAP[9:0]: DMA address counter wrap location
These bits define where the DMA address counter wraps by forcing it to retain 
the data originally written by the host in the ENET_TXSAR register. As soon as 
the DMA has read the memory location prior to the value specified in 
ADD_WRAP the wrapping condition occurs.
This can be used to restrict the address counter within an address window (e.g. 
circular buffer). 
The wrapping point MUST be 32-bit aligned, so the 10 bits of ADDR_WRAP are 
used to compare DMA address bits 11 to 2. 
If ADD_WRAP[9:0]= ENET_TXSAR[11:2] then a 4 Kbyte buffer is defined.
Note: ADDR_WRAP is ignored unless WRAP_EN is set.

Bits 21:17

ENTRY_TRIG[4:0]: Entry trigger count
These bits define the amount of valid entries (in 32-bit words) required in the TX 
FIFO before the DMA is re-triggered. 
If the value is set to 0, as soon as one valid entry is present, the DMA logic starts 
the data request.

Bit 16 Reserved, forced by hardware to 0

Bit 15

DLY_EN: DMA trigger delay enable
0: Delay disabled
1: DMA trigger delay enabled. If valid data resides in the FIFO more than the 
time-out period programmed in the ENET_TXTOR register, a time-out condition 
occurs (TX_TO).

Bit 14

NXT_EN: Next Descriptor Fetch mode enable
0: Next Descriptor Fetch Mode disabled. Whenever a DMA transfer is completed, 
no descriptor is fetched and an interrupt request is generated
1: Next Descriptor Fetch Mode enabled. Whenever a DMA transfer is completed, 
a new DMA descriptor is fetched. 
Note: When a descriptor is fetched, ENET_TXCR is one of the registers updated

Bits 13 Reserved, forced by hardware to 0



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

220/488  Doc ID 13742 Rev 4

8.4.15 TX start address register (ENET_TXSAR)

Address offset: 38h

Reset value: 0000 0000h

         

         

Bit 12

CONT_EN: Continuous Mode Enable

0: Normal mode
1: Continuous mode. The DMA runs indefinitely ignoring DMA_ XFERCOUNT. 
Note: Continuous mode supersedes “Next Descriptor Mode”.

Bit 11:0
DMA_XFERCOUNT[11:0]: DMA transfer count

These bits define the block size (in bytes) of DMA data transfers, up to 4 Kbytes.
If DMA_XFERCOUNT is set to ‘0’, the DMA will transfer 4 Kbyte data.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TXADDR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXADDR[15:0]

F
IX

_A
D

D
R

W
R

A
P

_E
N

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:2

TXADDR[31:2]: Start address for master DMA transfer (32-bit word aligned)

These bits define the start address for master DMA transfer.
Note: This register is taken into account by the DMA hardware before starting 
the DMA operation and when the wrap condition is met. Updating this register 
while DMA is running will have unpredictable effects.

Bit 1

FIX_ADDR: Fixed address

0: RXADDR incrementation enabled
1: RXADDR incrementation disabled. All the DMA data transfer operations are 
performed at the same AHB address, i.e. the ENET_TXSAR start address.

Bit 0

WRAP_EN: Wrap enable

0: Wrap disabled
1: Enables wrapping of the DMA transfer address to ENET_TXSAR when the 
memory location specified by the ADDR_WRAP[9:0] bits in the ENET_TXCR 
register, is reached.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 221/488

   
   

   

8.4.16 TX next descriptor address register (ENET_TXNDAR)

Address offset: 3Ch

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DESCADDR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DESCADDR[15:2]

R
es

er
ve

d

N
P

O
L_

E
N

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:2

DESCADDR[31:2]: TX DMA Next Descriptor pointer (32-bit word aligned)

When Next Descriptor Fetch mode is enabled (NXT_EN bit = 0 in the 
ENET_TXCR register), this register points to the next descriptor starting address. 
Notes: 
- DMA descriptors are 32-bit, so the Next Descriptor Address must be 32-bit 
aligned.
- This register allows different DMA descriptors to be located in different memory 
areas, because part of the current DMA descriptor points to the next one 
(descriptor chaining).
- If Next Descriptor Fetch mode is not enabled (NXT_EN bit = 0 in the 
ENET_TXCR register), this register does not need to be updated. 

Bit 1 Reserved, forced by hardware to 0

Bit 0

NPOL_EN: Next Descriptor Polling Enable

0: Next Descriptor Polling disabled. If an invalid descriptor is fetched, the DMA 
logic sets the TX_DONE bit in the ENET_ISR register and clears the DMA_EN 
bit in the ENET_TXSTR register.
1: Next Descriptor Polling enabled. If an invalid descriptor is fetched, the 
TX_NEXT bit in the ENET_ISR register is set and a new descriptor fetch will be 
attempted after DFETCH_DLY clocks (refer to ENET_TXSTR register. This mode 
handles the case when the DMA logic fetches a descriptor that is not valid yet. 
The DMA logic keeps polling the DMA descriptor in main memory, until it’s found 
to be valid.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

222/488  Doc ID 13742 Rev 4

8.4.17 TX current address register (ENET_TXCAR)

Address offset: 40h

Reset value: 0000 0000h

         

         

8.4.18 TX current transfer count register (ENET_TXCTCR)

Address offset: 44h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CADDR[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CADDR[15:0]

r r r r r r r r r r r r r r r r

Bits 31:0
CADDR[31:0]: TX DMA Current address (byte-aligned)

The value of this register changes while the DMA is running, reflecting the value 
driven by the core on the AHB bus.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CXFER[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, forced by hardware to 0

Bits 11:0

CXFER[11:0]: TX DMA Current transfer count (byte-aligned)

This value is updated while the DMA is running, when one word is moved from 
the main memory, to the DMA FIFO, indicating the number of bytes that must still 
be read.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 223/488

   
   

   

8.4.19 TX time-out register (ENET_TXTOR)

Address offset: 48h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXTO[15:0]

r r r r r r r r r r r r

Bits 31:16 Reserved, forced by hardware to 0

Bits 15:0

TXTO[15:0]: TX FIFO Time-out value

This value is used as initial value for the FIFO entry time-out counter. It is 
recommended not to use too low a value, to avoid generating interrupts too 
frequently.
The time-out counter starts as soon as one valid entry is present in the FIFO and 
is reset each time a data entry is popped out of the FIFO.
The counter expires if no FIFO data are popped for a period longer than the value 
programmed in the TXTO[15:0] bits. 
The time-out is flagged by the RX_TO bit in the ENET_ISR register and the 
DELAY_T bit in the ENET_TXSR register.
If the TX_TO_RN bit in the ENET_IER register is set, an interrupt request is 
generated.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

224/488  Doc ID 13742 Rev 4

8.4.20 TX status register (ENET_TXSR)

Address offset: 4Ch

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved ENTRIES[5:0] Reserved DMA_POINTER[4:0]

r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved IO_POINTER[4:0] Reserved

D
E

LA
Y

_T

E
N

T
R

Y
_T

F
U

LL

E
M

P
T

Y

r r r r r r r r r

Bits 31:30 Reserved, forced by hardware to 0

Bits 29:24
ENTRIES[5:0]: TX FIFO entry count 

These bits indicate the number of free entries (in 32 bit words) in the DMA TX 
FIFO.

Bits 23:21 Reserved, forced by hardware to 0

Bits 20:16
DMA_POINTER[4:0]: DMA TX FIFO Pointer 

These bits indicate the value of the TX FIFO pointer on the DMA controller side.

Bits 15:13 Reserved, forced by hardware to 0

Bits 12:8
IO_POINTER[4:0]: IO TX FIFO Pointer 

These bits indicate the value of the TX FIFO pointer on the I/O side.

Bits 7:4 Reserved, forced by hardware to 0

Bit 3
DELAY_T: TX FIFO Time-out flag

0: Normal state
1: The DMA TX FIFO delay time-out has expired

Bit 2
ENTRY_T: TX FIFO Entry Threshold flag

0: Normal state
1: The DMA TX FIFO entry trigger threshold has been reached

Bit 1
FULL: TX FIFO Full flag

0: Normal state
1: The DMA TX FIFO is full

Bit 0
EMPTY: TX FIFO Empty flag

0: Normal state
1: The DMA TX FIFO is empty



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 225/488

   
   

   

8.4.21 MAC control register (ENET_MCR)

Address offset: 400h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RA EN Reserved PS DRO LM[1:0] FDM AFM[2:0] PWF

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VFM Res. ELC DBF DPR RVFF APR BL[1:0] DCE RVBE TE RE Res.
RCF

A

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31

RA: Receive All 

This bit defines the reception mode of the incoming frames.
0: The incoming frames are received only if the address matches with the filtering 
rules programmed by the AFM bits.
1: All the valid incoming frames are received regardless of the destination 
address. The PF (packet filter) bit is set also if the address filter does not match 
the destination address (FF bit set).

Bit 30

EN: Endianity 
This bit selects the endianity mode (little or big) of the VCI interfaces when 
transmitting or receiving data frames. The Rx and Tx status are always 
transferred in little endian mode.
0: Little endian mode
1: Big endian mode

Bits 29:26 Reserved, forced by hardware to 0

Bits 25:24

PS[1:0]: Prescaler bits

These bits select the HCLK divider (prescaler) used to generate the correct 
frequency of the aperiodic clock output on the MII_MDC pin.
00: prescaler factor = 1, system clock frequency range: fHCLK <= 50 Mhz.
01: prescaler factor = 2, system clock frequency range:  (50 MHz < fHCLK <= 100 
MHz).
Note: To match the minimum period (400 ns) of the MII_MDC clock pin exactly, 
use the upper limit of the system clock frequency range for each setting of the 
prescaler field.

Bit 23

DRO: Disable Receive Own 

Set this bit to disable the reception of frames during transmission (MII_TX_EN 
pin asserted). You should reset this bit In full duplex or loopback mode and set it 
in half duplex mode (with no loopback).
0: Enable the MAC controller to receive all the incoming packets including those 
transmitted.
1: Disable the reception path during the frame transmission (MII_TX_EN pin 
asserted).



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

226/488  Doc ID 13742 Rev 4

Bits 22:21

LM [1:0]: Loopback Mode 

These bits select normal or loopback operating mode.
00: Normal mode
01: Loopback mode
1x: Reserved

Bit 20

FDM: Full Duplex Mode 

This bit selects half duplex of full duplex operating mode.
0: Half duplex mode.
1: Full duplex mode.

Bits 19:17

AFM[2:0]: Address filtering mode
These bits select the address filtering rules applied to the received frames.
000: MAC address perfect filtering for physical and multicast addresses.
001: MAC address perfect filtering for physical address and Hash filtering for 
multicast addresses.
010: Hash filtering for physical and multicast addresses.
011: Inverse filtering: identical to the configuration mode ‘000’ but the filter 
operates in inverted mode (the frame is accepted when the MAC address perfect 
filtering for physical and multicast addresses failed).
100: Promiscuous filtering: any incoming valid frame is received regardless of its 
destination address and the FF bit (filtering fail) is never set (this filtering rule is 
similar to set the RA bit)
101: MAC address perfect filtering mode for physical addresses. The multicast 
frames are all received.
110: Hash filtering mode for physical addresses. The multicast frames are all 
received. 
111: Reserved.

Bit 16

PWF: Pass Wrong Frame

This bit select if wrong frames received are filtered or not.
0: Wrong frames are filtered.
1: Wrong frames (runt frames, overlength, late collision, MII error, extra bits, CRC 
error, length error, unsupported control frames) are passed.

Bit 15

VFM: VLAN Filtering Mode 

This bit selects the VLAN filtering mode.
0: Tagged MAC frames with the 13th and 14th bytes of the incoming frame 
corresponding to the content of the register field VLTAG1 or VLTAG2 (see the 
VL1 and VL2 registers) are received.
1: Tagged MAC frames with the 13th and 14th bytes of the incoming frame 
corresponding to the content of the register field VLTAG1 or VLTAG2 (see the 
VL1 and VL2 registers) and the 15th and 16th bytes of the incoming frame 
corresponding to the content of the register field VLID1 or VLID2 (see the VL1 
and VL2 registers) are received. 

Bits 14:13 Reserved, forced by hardware to 0

Bit 12

ELC: Enable Late Collision

This bit enables/disables frame retransmission when a collision occurs outside 
the collision window.
0: When a late collision is detected, the LC and FA status bits (late collision and 
frame aborted) in the ENET_MTS register are set.
1: When a late collision is detected, the LCO and PR status bits (late collision 
observed and packet retry) in the ENET_MTS are set. The application should 
retransmit the collided frame.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 227/488

   
   

   

Bit 11

DBF: Disable Broadcast Frame 

This bit enables/disables reception of broadcast frames.
0: Broadcast frame reception enabled
1: Broadcast frame reception disabled

Bit 10

DPR: Disable Packet Retry 
This bit enables/disables frame retransmission when a normal collision occurs.
0: in case of normal collision the PR status bit (packet retry) in the ENET_MTS 
register is set, indicating to the application that it should retransmit the packet. 
After 16 successive retransmission attempts, the frame is aborted and the EC 
and FA bits (excessive collisions and frame aborted) are set in the ENET_MTS 
register). 
1: Disables the frame retransmission in case of normal collision. When a collision 
occurs the EC and FA bits (excessive collisions and frame aborted) are set in the 
ENET_MTS register).

Bit 9

RVFF: VCI Rx Frame filtering 
This bit enables filtering of received frames by the VCI Rx interface in the 
following cases: 
- FF bit (filtering fail) in the ENET_ MRS register is set
- Early runt frame received.
The purpose is to remove the filtered frames (FF bit set) or early runt frames 
(detected in the first 18 bytes of the frame).
0: VCI Rx Filtering disabled, all frames are transferred to the VCI Rx interface.
1: VCI Rx Filtering enabled, failed frames or early runt frames are not transferred 
to the VCI Rx interface.

Bit 8

APR: Automatic Pad Removal 

This bit enables/disables removal of the pad and CRC fields from all the incoming 
frames when the length field is less than 46 bytes for untagged frames or less 
than 42 bytes for tagged frames.
0: automatic pad removal disabled
1: automatic pad removal enabled

Bits 7:6

BL[1:0]: Back-off Limit 

These bits select the mode used to compute the back-off time after a collision 
occurrence. Once a collision is detected the MAC controller has to wait for R slot-
times before re-transmitting the frame, where:
0 <= R < 2**K
K = min(N, 10)
N is the current number of retries (0...16)
The random number R is computed using a 24-bit random generator based on a 
LFSR (linear feedback register) structure. The current number of retries (N) 
selects the bits of the LFSR used to initialize the slot-time counter. The max. 
number of bits of the LFSR is defined by programming the BL[1:0] bits.
00: #bits used from LFSR to initialize the slot-time counter = 10
01: #bits used from LFSR to initialize the slot-time counter = 8
10: #bits used from LFSR to initialize the slot-time counter = 6
11: #bits used from LFSR to initialize the slot-time counter = 3



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

228/488  Doc ID 13742 Rev 4

Bit 5

DCE: Deferral Check Enable 

This bit enables the deferral check, starting the Defer counter when a Tx frame is 
pending because the carrier sense (MII_CRS signal) is active. The Defer counter 
is reset each time the transmission is started.
0: Deferral check disabled, the MAC controller can defer indefinitely.
1: Deferral check enabled. In case of excessive deferral (more than 24288 bit 
times) the transmission is aborted and the ED bit (excessive deferral) in the 
ENET_MTS register is set.

Bit 4

RVBE: Reception VCI Burst Enable 

This bit enables the VCI Rx interface to generate bursts. Burst write transactions 
are performed with zero wait states except for the first byte which requires one 
wait state. The burst size is fixed and equal to 4 words. The burst is initiated only 
when the internal Rx buffer (FIFO) has 4 entries.
0: The VCI Rx interface performs only single write transactions
1: The VCI Rx interface performs single or burst write transactions.

Bit 3

TE: Transmission Enable 
This bit enables frame transmission from the internal buffer to the MII interface:
0: Transmission disabled
1: Transmission enabled

Bit 2

RE: Reception Enable 
This bit enables frame reception from the MII interface:
0: reception disabled
1: reception enabled

Bit 1 Reserved, forced by hardware to 0

Bit 0

RCFA: Reverse Control Frame Address
This bit selects the byte ordering of the control frame multicast address. 
0: Multicast address = 0x010000C28001 (bits transmission order right to left)
1: Multicast address = 0x0180C2000001 (bits transmission order right to left)



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 229/488

   
   

   

8.4.22 MAC address high register (ENET_MAH)

Address offset: 404h

Reset value: 0000 FFFFh

         

         

8.4.23 MAC address low register (ENET_MAL)

Address offset: 408h

Reset value: FFFF FFFFh

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAH[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0

Bits 15:0

MAH[15:0]: MAC address high 

These bits contains the upper 16 bits of the Physical Address of the MAC 
controller. The address is loaded from the OTP sector or external EEPROM at 
power on but also the host can update it after the initialization.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MAL[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAL[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

MAL[31:0]: MAC address low 
These bits contains the lower 32 bits of the Physical Address of the MAC 
controller. The address is loaded from the OTP sector or external EEPROM at 
power on but also the host can update it after the initialization.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

230/488  Doc ID 13742 Rev 4

8.4.24 Multicast address high register (ENET_MCHA)

Address offset: 40Ch

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HHT[63:48]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MCA[47:32]/HHT[47:32]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

MCHA[47:32]/HHT[63:32]: Multicast address high / Hash table high
The content of this register depends on the filtering mode selected by the 
AFM[2:0] bits in the ENET_MCR register. 
- In perfect filtering mode it contains the upper 16 bits of the 48-bit multicast 
address.
- In hash filtering mode it contains the upper 32 bits of the 64-bit hash table for 
multicast addresses.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 231/488

   
   

   

8.4.25 Multicast address low register (ENET_MCLA)

Address offset: 410h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MCA[31:16]/HLT[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MCA[15:0]/HLT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

MCLA/HLT[31:0]: Multicast address low / Hash table low
The content of this register depends on the filtering mode selected by the 
AFM[2:0] bits in the ENET_MCR register. 
- In perfect filtering mode it contains the lower 32 bits of the 48-bit multicast 
address.
- In hash filtering mode it contains the lower 32 bits of the 64-bit hash table for 
multicast addresses.
Note: The Hash table is used for group address filtering. The upper 6 bits of the 
CRC register resulting from the CRC logic computation on the destination 
address of the incoming frame are used in the following way:
- The MSB bit selects the Hash table registers (0 => HLT, 1 => HHT).
- The 5 LSB bits select the n-bit (0 ..31) of the Hash table register (HLT or HHT 
depending on the MSB bit). If the selected n-bit is '1' then the multicast frame is 
accepted, else it's refused.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

232/488  Doc ID 13742 Rev 4

8.4.26 MII address register (ENET_MIIA)

Address offset: 414h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PADDR[4:0] RADDR[4:0] Reserved PR WR BUSY

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0

Bits 15:11
PADDR[4:0]: Physical address

These bits contain the address of the PHY device (32 available) attached to the 
MII interface. The MSB of the PHY address is bit 15.

Bits 10:6
RADDR[4:0]: Register address

These bits contain the address of the MII register (32 available) in the selected 
PHY device. The MSB bit of the register address is bit 10.

Bits 5:3 Reserved, forced by hardware to 0.

Bit 2

PR: Preamble removal bit

This is used to enable/disable generation of a preamble field (32 contiguous logic 
one bits) in all transactions (read or write).
0: Preamble generated
1: Preamble not generated

Bit 1

WR: Write/Not read bit

This bit defines the type of operation (write or read) to be performed on the PHY 
device register.
0: Read operation
1: Write operation

Bit 0

BUSY: Busy bit

This bit is used to start a write/read operation accessing the PHY register and to 
check (by polling) the completion of the operation in progress. 
0: Idle state, the last operation (in progress) has been completed. In case of read 
operation, the data is available in the MIID register.
1: Busy state, is set by the application to start the programmed operation. On the 
completion of the operation the MAC clears this bit (idle state) and the application 
can read the data from the MIID register (in case of read operation) and program 
a new operation. 
Note: The PADDR, RADDR, WR fields and the MIID register must be 
programmed only in idle state (BUSY bit reset).



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 233/488

   
   

   

8.4.27 MII data register (ENET_MIID)

Address offset: 418h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDATA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0

Bits 15:0
RDATA[15:0]: Register Data

These bits contain the read data from the PHY register after a read operation or 
the data to be written before a write operation.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

234/488  Doc ID 13742 Rev 4

8.4.28 MII control frame register (ENET_MCF)

Address offset: 41Ch

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PTIME[15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PCF FCE FCB

rw rw rw

Bits 31:16
PTIME[15:0]: Pause time

These bits contain the pause time (two bytes) used for the transmission of the 
control frame.

Bits 15:3 Reserved, forced by hardware to 0

Bit 2 

PCF: Pass Control Frame 

This bit defines if the received control frames are passed to the host or not.
0: The MAC controller decodes the control frames but will not pass the control 
frames to the application. The CF bit is set, and the PF bit is reset in the 
ENET_MRS register to indicate to the application to flush the frame.
1: The MAC controller decodes the control frames and passes the control frames 
to the application. The CF and the PF bits in the ENET_MRS register are set.

Bit 1 

FCE: Flow Control Enable 

This bit enables reception of control frames (PAUSE command) and performs the 
related command, disabling the transmitter for the specified time. Flow control is 
applicable only in full duplex mode.
0: No actions are performed (no transmission disabling) on reception of a control 
frame. The CF bit (control frame) in the ENET_MCR register is set anyway.
1: On reception of a control frame the transmission is disabled for the specified 
time. The current frame transmission is completed in anyway.

Bit 0 

FCB: Flow Control Busy
This bit is used to start a control frame (PAUSE command) transmission and to 
check (by polling) the related completion. 
0: Idle state, the MAC clears this bit when the pending control frame transmission 
has been completed. 
1: Busy state, is set by the application to start the control frame transmission. 
The PAUSE time parameter of the control frame is defined by the PTIME[15:0] 
bits. On completion of the frame transmission the MAC clears this bit (idle state). 
Note: The MCF register must be programmed only in idle state (FCB bit reset).



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 235/488

   
   

   

8.4.29 VLAN1 register (ENET_VL1)

Address offset: 420h

Reset value: 0000 8100h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved VLID1[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VLTAG1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, forced by hardware to 0

Bits 27:16

VLID1[11:0]: VLAN 1 Identifier

These bits contain contains the VLAN Identifier (12 bits) for the comparison with 
the 15th and 16th bytes of the tagged MAC frame (VID field) to identify the 
VLAN1 frames.

Bits 15:0

VLTAG1[11:0]: VLAN 1 Tag
These bits contain the VLAN Tag control information for the comparison with the 
13th and 14th bytes of the tagged MAC frame (13th and 14th bytes equal to 81-
00h corresponding to the 802.1QTagType) to identify the VLAN1 frames. 
Programming a value different from 81-00h a proprietary VLAN network can be 
identified by this register. The 0x88-08 value (control frame type) and values less 
than 0x600 are forbidden for this field.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

236/488  Doc ID 13742 Rev 4

8.4.30 VLAN2 register (ENET_VL2)

Address offset: 424h

Reset value: 0000 8100h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved VLID2[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VLTAG2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, forced by hardware to 0

Bits 27:16

VLID2[11:0]: VLAN 2 Identifier

These bits contain contains the VLAN Identifier (12 bits) for the comparison with 
the 15th and 16th bytes of the tagged MAC frame (VID field) to identify the 
VLAN2 frames.

Bits 15:0

VLTAG2[11:0]: VLAN 2 Tag
These bits contain the VLAN Tag control information for the comparison with the 
13th and 14th bytes of the tagged MAC frame (13th and 14th bytes equal to 81-
00h corresponding to the 802.1QTagType) to identify the VLAN2 frames. 
Programming a value different from 81-00h a proprietary VLAN network can be 
identified by this register. The 0x88-08 value (control frame type) and values less 
than 0x600 are forbidden for this field.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 237/488

   
   

   

8.4.31 MAC transmission status register (ENET_MTS)

Address offset: 428h

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PR BC Res.

r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. CC[3:0] LCO DEF UR EC LC ED LOC NC Res. FA

r r r r r r r r r r r r r

Bit 31

PR: Packet retry
This bit indicates that a packet retry is required. FA and PR bit settings are 
mutually exclusive.
0: The current frame transmission has been completed successfully (if the PR 
and FA bits are both reset).
1: The current frame has to be retransmitted due to a collision event

Bits 30:18
BC[12:0]: Byte count

These bits contain the number of frame bytes transmitted (excluding the 
preamble and SFD delimiter).

Bits 17:14 Reserved, forced by hardware to 0

Bits 13:10

CC[3:0]: Collision count

These bits contain the number of successive collisions that occurred before the 
frame re-transmission when the packet retry bit (PR) is set. In case of excessive 
collision (EC bit set) this field is not significant. This field is valid only in half 
duplex mode.

Bit 9

LCO: Late Collision Observed

This bit is valid only in half duplex mode.
0: Normal state
1: Late collision observed. A collision after the collision window (64 bytes) 
occurred during the frame transmission while the ELC bit in the ENET_MCR 
register was set. The PR bit is set for the frame re-transmission request. 

Bit 8

DEF: Deferred

This bit is valid only in half duplex mode.
0: Normal state
1: Deferred. The transmitter has deferred starting the transmission because 
MII_CRS carrier sense signal was asserted. 

Bit 7

UR: Under run

0: Normal state
1: Under run. A data underrun condition has occurred during the frame 
transmission. The frame transmission is aborted and the FA bit is set.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

238/488  Doc ID 13742 Rev 4

Bit 6

EC: Excessive collision

This bit is valid only in half duplex mode.
0: Normal state
1: Excessive collision. 16 successive collisions occurred during the frame 
transmission when the DPR bit in the ENET_MCR register is reset. If the DPR bit 
is set, the EC bit is set on the first collision occurrence. The frame transmission is 
aborted and the FA bit is set.

Bit 5

LC: Late collision

This bit is valid only in half duplex mode.
0: Normal state
1: Late collision. During the frame transmission, a collision occurred after the 
collision window (64 bytes). The frame transmission is aborted and the FA bit is 
set.

Bit 4

ED: Excessive deferral

This bit is valid only in half duplex mode.
0: Normal state
1: Excessive deferral. The transmission is terminated due to excessive deferral 
when the DCE bit in the ENET_MCR register is set. The deferral time-out occurs 
when a frame transmission is deferred for more than 24288 bit times. The the 
frame transmission is then aborted and the FA bit is set.

Bit 3

LOC: Loss of Carrier

This bit is valid only in half duplex mode.
0: Normal state
1: Loss of carrier. The MII_CRS carrier sense signal has been de-asserted for at 
least one TX clock cycle during frame transmission. The frame transmission is 
finished but when the status is returned, the LOC and FA bits are set, and the 
frame transmission must be considered failed.

Bit 2

NC: No Carrier

This bit is valid only in half duplex mode.
0: Normal state
1: No carrier. The MII_CRS carrier sense signal was not present during the 
whole frame transmission. The frame transmission is aborted and the related bit 
FA (frame abort) is set.

Bit 1 Reserved, forced by hardware to 0.

Bit 0

FA: Frame Aborted
This bit indicates that the current frame has been aborted by the MAC controller 
for one of the following reasons:
- No Carrier (NC)
- Loss of Carrier (LOC)
- Excessive Deferral (ED)
- Late Collision (LC)
- Excessive Collisions (EC)
- Under Run (UR)
0: Normal state
1: Frame aborted. For each abort condition, the related status bit is set in this 
register.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 239/488

   
   

   

8.4.32 MAC reception status register (ENET_MRS)

Address offset: 42Ch

Reset value: 0000 0000h

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FA PF FF BF MCF UCF CF LE VL2 VL1 CE EB ME FT LC OL

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RF WT FCI Reserved FL

r r r r r r r r r r r r r

Bit 31

FA: Frame Aborted
This bit indicates that the current frame has been aborted for one of the following 
reasons:
- Excessive latency (wait cycles) by the application in acknowledging the data 
when related buffer of the MAC controller is full.
- Abort response from the application during data transfer
0: Normal state
1: Frame aborted 

Bit 30

PF: Packet filter
0: Invalid frame. Detected in the following cases: runt frame, over length, late 
collision, MII error, extra bits, CRC error, length error, unsupported control frame, 
extension error.
1: Valid frame. A frame is considered valid when one of the following conditions is 
matched (in all cases, for broadcast frames, the DBF bit in the ENET_MCR 
register must be cleared and for control frames, the PCF bit in the ENET_MCF 
register must be set):
- The FF (filtering fail) bit is reset and no error condition has been detected.
- The FF bit is reset and an error condition has been detected (error frame) but 
the PWF (pass wrong frame) bit in the ENET_MCR register is set. 
- The FF bit is set, the RA (receive all) bit in the ENET_MCR register is reset, no 
error condition has been detected.
- The FF bit is set, the RA bit is reset, error condition has been detected (error 
frame), and the PWF bit is set.
- The FF bit is set, the RA bit is set, no error condition has been detected. 
- The FF bit is set, the RA bit is set, a error condition has been detected (error 
frame), the PWF bit is set. 

Bit 29

FF: Filtering fail

0: Normal state
1: Filtering fail. The destination address field of the current frame failed the 
address filtering rules programmed in the AFM[2:0] bits in the ENET_MCR 
register.

Bit 28

BF: Broadcast Frame 

0: Normal state
1: Broadcast frame. The destination address field of the current frame is a 
broadcast address (all the bits of the destination address set to 1).



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

240/488  Doc ID 13742 Rev 4

Bit 27

MCF: Multicast Frame 

0: Normal state
1: Multicast frame. The destination address field of the current frame is a 
multicast-group address (LSB bit of the destination address set to 1).

Bit 26

UCF: Unsupported Control Frame 
0: Normal state
1: The current frame is an unsupported MAC control frame. A control frame is 
received (destination address hexadecimal value = 01-80-C2-00-00-01 or 
physical address matched, type field hexadecimal value: 88-08) and the opcode 
field doesn’t correspond to the PAUSE command (opcode hexadecimal value: 
00-01) or the frame length is not equal to 64 bytes. 
Note: When the CF bit is set and the UCF bit is reset, a PAUSE command has 
been received.

Bit 25

CF: Control Frame

This bit is valid only in full duplex mode.
0: Normal state
1: The current frame is identified as a MAC control frame. The MAC control frame 
structure is described in Section 8.1.1. This bit is set when a Control frame is 
received (destination address hexadecimal value = 01-80-C2-00-00-01 or 
physical address matched, type field hexadecimal value: 88-08). 

Bit 24

LE: Length Error 
0: Normal state
1: The length field of the current frame is inconsistent with the payload size 
(number of data bytes) of the received packet.
Notes:
- The length field is the 13th and 14th bytes of an untagged MAC frame, and the 
17th and 18th bytes of a tagged MAC frame.
- This bit is valid only if the FT (frame type) bit is reset.
- This bit is not set when a runt frame is received.

Bit 23

VL2: Vlan2 Tag 

This bit indicates that the frame received is a VLAN2 type tagged frame. Its 
meaning depends on the setting of the VFM bit in the ENET_MCR register.
0: Normal state
1: If VFM = 0: a tagged MAC frame has been received and the 13th and 14th 
bytes the frame match the VLTAG2[15:0] bits in the ENET_VL2 register. 
If VFM = 1: a tagged MAC frame has been received and the 13th and 14th bytes 
the frame match the VLTAG2[15:0] bits and the 15th and 16th bytes of the frame 
match the VLID2[11:0] bits in the ENET_VL2 register.

Bit 22

VL1: Vlan1 Tag 

This bit indicates that the frame received is a VLAN1 type tagged frame. Its 
meaning depends on the setting of the VFM bit in the ENET_MCR register.
0: Normal state
1: If VFM = 0: a tagged MAC frame has been received and the 13th and 14th 
bytes the frame match the VLTAG1[15:0] bits in the ENET_VL1 register. 
If VFM = 1: a tagged MAC frame has been received and the 13th and 14th bytes 
the frame match the VLTAG1[15:0] bits and the 15th and 16th bytes of the frame 
match the VLID1[11:0] bits in the ENET_VL1 register.



RM0006 MAC/DMA controller with DMA (ENET)

Doc ID 13742 Rev 4 241/488

   
   

   

Bit 21

CE: CRC Error 

0: Normal state
1: The received frame contains a wrong CRC field.
Notes:
- When the ME bit (MII error) is set, the CE bit is set although the CRC field is 
correct.
- This bit is not set when a runt frame or overflow condition occurs.

Bit 20

EB: Extra Bit 
0: Normal state
1: The received frame contains a non integer number of bytes. 
Note: If EB bit is set and CE (CRC error) bit is reset, the frame is valid.

Bit 19
ME: MII Error 

0: Normal state
1:The MII_RX_ER signal has been asserted during the frame data reception.

Bit 18

FT: Frame Type 

0: Normal state
1: An Ethernet frame has been received (frame length/type greater or equal to 
the hexadecimal value 06-00). The Length/Type field to be checked is the 13th 
and 14th bytes for untagged MAC frame and the 17th and 18th bytes for tagged 
MAC frame.
Note: If the received frame is a MAC control frame the CF bit is also set.

Bit 17

LC: Late Collision 

0: Normal state
1: A collision occurred after the collision window (64 bytes following the SFD start 
frame delimiter)

Bit 16

OL: Over Length 
0: Normal state
1: The frame is received correctly, but the frame length is greater than the 
maximum frame size (1518 bytes for a untagged MAC frame, 1522 bytes for a 
tagged MAC frame). 

Bit 15

RF: Runt Frame 
0: Normal state
1:The current frame was damaged within the collision window (64 bytes) due to a 
collision event or premature termination.

Bit 14

WT: Watchdog Time-out 

0: Normal state
1:The watchdog time-out, the data field length of the received frame is over 2047 
bytes (FLT overflow).

Bit 13
FCI: False Carrier Indication 

0: Normal state
1:The PHY device indicates a false carrier condition.

Bits 12:11 Reserved, forced by hardware to 0

Bits 10:0
FL: Frame Length 

These bits indicates the byte length of the received frame (excluding preamble 
and SFD delimiter). This field is valid when the WT bit is not set.



   
   

   

MAC/DMA controller with DMA (ENET) RM0006

242/488  Doc ID 13742 Rev 4

8.5 Ethernet controller register map

Refer to Table 5 on page 35 for the register base addresses.

Table 22. Ethernet controller register map
Address 

offset
Register 

name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h ENET_SCR DMA Status/Control Register

04h ENET_IER DMA Interrupt Enable Register

08h ENET_ISR DMA Interrupt Status Register

0Ch ENET_CCR Clock Control Register

10h ENET_RXSTR  RX DMA Start Register

14h ENET_RXCR  RX DMA Control Register

18 ENET_RXSAR  RX DMA Start Address Register

1C ENET_RXNDAR  RX DMA Next Descriptor Address Register

20 ENET_RXCAR  RX DMA Current Address Register

24 ENET_RXCTCR  RX DMA Current Transfer Count Register

28 ENET_RXTOR  RX DMA Time Out Register

2C ENET_RXSR  RX DMA Status Register

30 ENET_TXSTR  TX DMA Start Register

34 ENET_TXCR  TX DMA Control Register

38 ENET_TXSAR  TX DMA Start Address Register

3C ENET_TXNDAR  TX DMA Next Descriptor Address Register

40 ENET_TXCAR  TX DMA Current Address Register

44 ENET_TXTCR  TX DMA Current Transfer Count Register

48 ENET_TXTOR  TX DMA Time Out Register

4C ENET_TXSR  TX DMA Status Register

100 RX_FIFO_0

RX DMA FIFO.. ..

17C RX_FIFO_31

180-
1FF

Reserved

200 TX_FIFO_0

TX DMA FIFO.. ..

27C TX_FIFO_31

400 ENET_MCR MAC Control Register

404 ENET_MAH MAC Address High Register

408 ENET_MAL MAC Address Low Register

40C ENET_MCHA Multicast Address High Register 

410 ENET_MCLA Multicast Address Low Register 

414 ENET_MIIA MII Address Register 

418 ENET_MIID MII Data Register

41C ENET_MCF MAC Control Frame Register

420 ENET_VL1 VLAN1 register

424 ENET_VL2 VLAN2 register

428 ENET_MTS MAC Transmission Status Register

42C ENET_MRS MAC Reception Status Register



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 243/488

   
   

   

9 DMA controller (DMAC)

9.1 Introduction
The DMAC enables memory-to-memory, memory-to-peripheral, peripheral-to-memory, and 
peripheral-to-peripheral transactions. Each DMA stream provides unidirectional serial DMA 
transfers for a single source and destination. For example, a bidirectional port requires one 
stream for transmit and one for receive. The source and destination areas can each be 
either a memory region or a peripheral, and you can access them through the same AHB 
master, or one area by each master. Refer to Figure 65.

Note: The Ethernet controller has its own dedicated DMA controller described in Section 8.

Figure 65. DMA block diagram

ADC

AHB
Slave

AHB
Master

AHB Bus

ARM Core

External 

Memory

EMI APB
Bridge

DMA Controller

APB Bus

USB

SSP0
SSP1

UART0
UART1

RAM

TIM0
TIM1

VIC

DMA Interrupt Request

2 x External DMA Requests

Channel 7
FIFO

Channel 6
FIFO

Channel 5
FIFO

Channel 4
FIFO

Channel 3
FIFO

Channel 2
FIFO

Channel 1
FIFO

Channel 0
FIFO

IRQ

FIQ



   
   

   

DMA controller (DMAC) RM0006

244/488  Doc ID 13742 Rev 4

9.2 Main features
● Eight DMA channels. Each channel can support a unidirectional transfer.

● 14 DMA requests. The DMAC provides 16 peripheral DMA request lines.

● Single DMA and burst DMA request signals. Each peripheral connected to the DMAC 
can assert either a burst DMA request or a single DMA request. You set the DMA burst 
size by programming the DMAC.

● Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-
peripheral transfers.

● Scatter or gather DMA support through the use of linked lists.

● Hardware DMA channel priority. Each DMA channel has a specific hardware priority. 
DMA channel 0 has the highest priority and channel 7 has the lowest priority. If 
requests from two channels become active at the same time, the channel with the 
highest priority is serviced first.

● 32-bit AHB master bus width.

● Incrementing or non-incrementing addressing for source and destination.

● Programmable DMA burst size. You can program the DMA burst size to transfer data 
more efficiently. The burst size is usually set to half the size of the FIFO in the 
peripheral.

● Internal four word FIFO per channel.

● Supports 8, 16, and 32-bit wide transactions.

● Separate and combined DMA error and DMA Terminal Count interrupt requests. You 
can generate an interrupt to the processor on a DMA error or when a DMA count has 
reached 0 (Terminal Count event, usually used to indicate that a transfer has finished).

– Interrupt masking. You can mask the DMA Error and DMA Terminal Count 
interrupt requests.

– Raw interrupt status. You can read the DMA error and DMA count raw interrupt 
status prior to masking.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 245/488

   
   

   

         

9.3 Functional description

9.3.1 DMA request priority

DMA channel priority is fixed. DMA channel 0 has the highest priority and DMA channel 7 
has the lowest priority.

If the DMAC is transferring data for a lower priority channel, and then a higher priority 
channel goes active, it completes the number of transfers delegated to the master interface 
by the lower priority channel before switching over to transfer data for the higher priority 
channel. In the worst case, this is as large as one quadword.

The two lowest priority channels in the DMAC, 6 and 7, are designed so that they cannot 
saturate the AHB bus. If one of these lower priority channels goes active, the DMAC 
relinquishes the bus for one cycle each four transfers of the programmed WIDTH 
irrespective of the size of the transfer. For example, if the programmed size WIDTH is 8, 
then after four transfers of 8 bits the DMAC relinquishes the bus. This enables other AHB 
masters to access the bus.

It is recommended that memory-to-memory transactions use one of these low-priority 
channels or other lower priority AHB bus masters cannot access the bus during DMAC 
memory-to-memory transfer.

Table 23. DMA request signal mapping

DMA request 
signal

Associated peripheral 
function

Comments

0 USB RX USB has only 1 DMA Req signal

1 USB TX

2 TIM0 2 out of 4 TIMs have DMA support
(TIM2 and 3 are not supported by DMA)3 TIM1

4 UART0 RX

2 out of 3 UARTs have DMA support (UART2 is 
not supported by DMA) 

5 UART0 TX

6 UART1 RX

7 UART1 TX

8 External DMA Req 0

Shared with GPIO
9

External DMA Req 1 or 
ADC

10 Reserved

11 Reserved

12 SSP0 RX

13 SSP0 TX

14 SSP1 RX

15 SSP1 TX



   
   

   

DMA controller (DMAC) RM0006

246/488  Doc ID 13742 Rev 4

9.3.2 Protection control

Software programs PROT[2:0] bits for each DMA channel. The bits are set as follows:

PROT[0] User or Privileged. User = 0, privileged = 1. Programmed by software. See 
Channel control register x (DMA_CCx) on page 268. During LLI loads, PROT[0] is made 1, 
privileged.

PROT[1] Bufferable or Nonbufferable. Nonbufferable = 0, bufferable = 1. Programmed by 
software. See Channel control register x (DMA_CCx) on page 268. During LLI loads, 
PROT[1] is made 0. 

PROT[2] Cacheable or Noncacheable. Noncacheable = 0, cacheable = 1. Programmed by 
software. See Channel control register x (DMA_CCx) on page 268. During LLI loads, 
PROT[2] is made 1.

Peripherals can interpret the PROT information as required to help perform efficient 
transactions. For example:

● You can use the PROT[1] User or privileged bit to protect certain peripherals or 
memory spaces from User mode transactions.

● You can use the PROT[1] bufferable or nonbufferable bit to indicate to the APB bridge 
that the write can complete in zero wait states on the source bus. This is without waiting 
for it to arbitrate for the destination bus and for the slave to accept the data.

● The APB bridge can use the PROT[2] cacheable or noncacheable bit so that on the first 
read of a burst of eight, it can transfer the whole burst of eight reads on the destination 
bus, rather than pass the transactions through one at a time.

9.3.3 Lock control

Set the lock bit by programming bit 16 in the  DMA_CCNFx Register. See Channel control 
register x (DMA_CCx) on page 268. When a burst occurs, the AHB arbiter must not degrant 
the master during the burst until the lock is deasserted. You can lock the DMAC for a single 
burst such as a long source fetch burst or a long destination drain burst. The DMAC does 
not usually assert the lock continuously for a source fetch burst followed by a destination 
drain burst.

There are situations when the DMAC asserts the lock for source transfers followed by 
destination transfers. This is possible when internal conditions in the DMAC enable it to 
perform a source fetch followed by a destination drain back-to-back.

This is possible when internal conditions in the DMAC enable it to perform a source fetch 
followed by a destination drain back-to-back, and when the following conditions are both 
met:

● Source width = destination width, and,

● Source burst size is a minimum of 4.

9.3.4 Bus width

The source width, SWidth, or destination width, DWidth, values in the DMA_CCRx Register 
program the bus transfer size.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 247/488

   
   

   

9.3.5 Interrupt generation logic

The DMAC generates a maskable interrupt to the Interrupt Controller. The interrupt is an 
ORed function of the DMAC Error interrupt and DMAC Terminal Count interrupt.

9.4 Software considerations
You must take into account the following software considerations when programming the 
DMAC:

There must not be any write-operation to Channel registers in an active channel after the 
channel enable is made HIGH. If you must reprogram any DMAC channel parameters, you 
must reprogram after disabling the DMAC channel.

● If the source width is less than the destination width, the TransferSize value multiplied 
by the source width must be an integral multiple of the destination width.

● When the source peripheral is the flow controller and the source width is less than the 
destination width, the number of transfers that the source peripheral performs, before 
asserting an DMA request, must be so that the number of transfers multiplied by the 
source width is an integral multiple of the destination width. If this case is violated, the 
data can get stuck and lost in the FIFO causing UNPREDICTABLE results. You can 
abort the transfer by disabling the relevant DMAC channel.

● You must not program the SrcPeripheral and DestPeripheral bit fields in the 
DMA_CCNFx Register (see Channel configuration register x (DMA_CCNFx) on 
page 271) with any value greater than 15.

● The SWidth and DWidth bit fields in the DMA_CCRx Register (see Channel control 
register x (DMA_CCx) on page 268) must not indicate more than a 32-bit wide 
peripheral.

● After the software disables a channel by clearing the E bit in the DMA_CCNFx Register 
(see Channel configuration register x (DMA_CCNFx) on page 271), it must re-enable 
the bit only after it has polled a 0 in the corresponding DMA_ENCSR Register bit (see 
Enabled channel status register (DMA_ENCSR) on page 261). This is because the 
actual disabling does not immediately happen with the clearing of the E bit. You must 
accommodate the latency of the ongoing AHB burst.

● The LLI field in the DMA_LLIx Register (see Channel linked list item register x 
(DMA_LLIx) on page 267) must not indicate an address greater than 0xFFFFFFF0, 
otherwise the four-word LLI burst wraps over at 0x00000000 and the LLI data structure 
is not in contiguous memory locations. 

● When the transfer size programmed in the DMAC is greater than the depth of the FIFO 
in a source or destination peripheral, you must only program the DMAC for non-
incrementing address generation.



   
   

   

DMA controller (DMAC) RM0006

248/488  Doc ID 13742 Rev 4

If you program the TransferSize field in the DMA_CCRx Register (see Channel control 
register x (DMA_CCx) on page 268) as zero, and the DMAC is the flow controller (the 
TransferSize field has no meaning in other flow-control modes) then the channel does not 
initiate any transfers. It is your responsibility to disable the channel by writing into the 
channel enable bit of the DMA_CCNFx Register and reprogramming the channel again.

● You must not run the normal read-write tests on the DMA_CCRx Register (see Channel 
control register x (DMA_CCx) on page 268) because the TransferSize field is not a 
typical write and read-back register field. While writing, the TransferSize bit-field is like 
a control register because it determines how many transfers the DMAC performs. 
However, during read-back, TransferSize behaves like a status register because it 
returns the number of remaining transfers in terms of source width. So when 
TransferSize is read back, it returns the number of destination-transfer-completed 
stored in a separate counter called TrfSizeDst multiplied by a factor. The same physical 
register is not being written into and read from, and normal write and read-back tests 
are not applicable.

● In the destination flow control mode, with peripheral-to-peripheral transfer, if sufficient 
data is present in the channel FIFO to service a DMA request raised by a destination 
peripheral without requiring data to be fetched from the source peripheral, then the 
source peripheral is issued a DMA Terminal count signal.

● For destination flow controlled case (peripheral-to-peripheral transfer) with DWidth < 
SWidth, the number of data bytes requested by the destination peripheral must be an 
integral multiple of Swidth expressed in bytes. If you do not ensure this, then the DMAC 
might fetch more data from the source peripheral than is required. This can result in 
data loss.

● At the end of accesses corresponding to low-priority channels, an IDLE cycle is 
inserted on the AHB bus to enable other masters to access the bus. This ensures that 
a low-priority channel does not monopolize the bus. It does, however, mean that the 
bus might be occupied by transactions corresponding to a low priority for up to 16 
cycles in the worst case. This applies to all transfer configurations, including memory-
to-memory transfers.

9.4.1 Error conditions

An error during a DMA transfer is flagged directly by the peripheral by asserting an Error 
response on the AHB bus during the transfer. The DMAC automatically disables the DMA 
stream after the current transfer has completed, and optionally generates an error interrupt 
to the CPU. You can mask this error interrupt.

9.4.2 Programming the DMAC

All transactions on the AHB Slave programming bus must be 32 bits wide. This  eliminates 
endian issues when programming the DMAC. This section provides more information on 
programming the DMAC:

● Enabling the DMAC

● Disabling the DMAC

● Enabling a DMA channel

● Disabling a DMA channel 

● Setting up a new DMA transfer

● Halting a DMA channel on page 

● Programming a DMA channel



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 249/488

   
   

   

Enabling the DMAC

Enable the DMAC by setting the EN bit in the  DMA_CNFR Register. See Configuration 
register (DMA_CNFR) on page 263.

Disabling the DMAC

To disable the DMAC:

1. Read the DMA_ENCSR Register and ensure that you have disabled all the DMA 
channels. If any channels are active, see Disabling a DMA channel on page 249.

2. Disable the DMAC by writing 0 to the EN bit in the  DMA_CNFR Register. See 
Configuration register (DMA_CNFR) on page 263.

Enabling a DMA channel

Enable the DMA channel by setting the Channel Enable bit in the relevant DMA channel 
Configuration Register. See Channel configuration register x (DMA_CCNFx) on page 271.

Note: You must fully initialize the channel before you enable it. Additionally, you must set the EN bit 
of the DMAC before you enable any channels.

Disabling a DMA channel

You can disable a DMA channel in the following ways:

● Write directly to the Channel Enable bit.

Note: You lose any outstanding data in the FIFOs if you use this method.

● Use the Active and Halt bits in conjunction with the Channel Enable bit.

● Wait until the transfer completes. The channel is then automatically disabled.

Disabling a DMA channel and losing data in the FIFO

Clear the relevant Channel Enable bit in the relevant channel Configuration Register. See 
Channel configuration register x (DMA_CCNFx) on page 271. The current AHB transfer, if 
one is in progress, completes and the channel is disabled.

Note: You lose any data in the FIFO.

Disabling a DMA channel without losing data in the FIFO

To disable a DMA channel without losing data in the FIFO:

1. Set the Halt bit in the relevant channel Configuration Register. See Channel 
configuration register x (DMA_CCNFx) on page 271. This causes any subsequent 
DMA requests to be ignored.

2. Poll the Active bit in the relevant channel Configuration Register until it reaches 0. This 
bit indicates whether there is any data in the channel that has to be transferred.

3. Clear the Channel Enable bit in the relevant channel Configuration Register.



   
   

   

DMA controller (DMAC) RM0006

250/488  Doc ID 13742 Rev 4

Setting up a new DMA transfer

To set up a new DMA transfer:

1. If the channel is not set aside for the DMA transaction:

a) Read the DMA_ENCSR Register and determine the channels that are inactive. 
See Enabled channel status register (DMA_ENCSR) on page 261.

b) Choose an inactive channel that has the necessary priority.

2. Program the DMAC.

Halting a DMA channel

Set the Halt bit in the relevant DMA channel Configuration Register. The current source 
request is serviced. Any subsequent source DMA requests are ignored until the Halt bit is 
cleared.

Programming a DMA channel

To program a DMA channel:

1. Choose a free DMA channel with the necessary priority. DMA channel 0 has the 
highest priority and DMA channel 7 has the lowest priority.

2. Clear any pending interrupts on the channel you want to use by writing to the 
DMA_TCICR and DMA_EICR Registers. See Terminal count interrupt clear register 
(DMA_TCICR) on page 258 and Error interrupt clear register (DMA_EICR) on 
page 259. The previous channel operation might have left interrupts active.

3. Write the source address into the DMA_SRCx Register. See Channel source address 
register x (DMA_SRCx) on page 265.

4. Write the destination address into the DMA_DESTx Register. See Channel destination 
address register x (DMA_DESTx) on page 266.

5. Write the address of the next LLI into the DMA_LLIx Register. See Channel linked list 
item register x (DMA_LLIx) on page 267. If the transfer consists of a single packet of 
data, you must write 0 into this register.

6. Write the control information into the DMA_CCRx Register. See Channel control 
register x (DMA_CCx) on page 268.

7. Write the channel configuration information into the  DMA_CCNFx Register. See 
Channel configuration register x (DMA_CCNFx) on page 271. If the Enable bit is set, 
then the DMA channel is automatically enabled.

9.4.3 Address generation

Address generation can be either incrementing or non-incrementing (address wrapping is 
not supported). Bursts do not cross the 1 Kb address boundary.

9.4.4 Scatter/gather

Scatter/gather is supported through the use of linked lists. This means that the source and 
destination areas do not have to occupy contiguous areas in memory. You must set the 
DMA_LLIx Register to 0 if you do not require scatter/gather. 



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 251/488

   
   

   

9.4.5 Linked list items

An LLI consists of four words. These words are organized in the following order:

1. DMA_SRCx

2. DMA_DESTx

3. DMA_LLIx

4. DMA_CCRx

Note: The  DMA_CCNFx Channel Configuration Register is not part of the LLI.

A series of linked lists define the source and destination data areas. Each LLI controls the 
transfer of one block of data, and then optionally loads another LLI to continue the DMA 
operation, or stops the DMA stream. The first LLI is programmed into the DMAC.

The data to be transferred described by an LLI, referred to as the packet of data, usually 
requires one or more DMA bursts (to each of the source and destination). Figure 66 shows 
an example of an LLI. A rectangle of memory has to be transferred to a peripheral. The 
addresses of each line of data are given (in hexadecimal) at the left-hand side of the figure. 
The LLIs describing the transfer are to be stored contiguously from address 0x20000. The 
first LLI, stored at 0x20000, defines the first block of data to be transferred. This is the data 
stored between addresses 0x0A200 and 0x0AE00:

● source start address 0x0A200

● destination address set to the destination peripheral address

● transfer width, word (32-bit)

● transfer size, 3 072 bytes (0xC00)

● source and destination burst sizes, 16 transfers

● next LLI address, 0x20010

The second LLI, stored at 0x20010, describes the next block of data to be transferred:

● source start address 0x0B200

● destination address set to the destination peripheral address

● transfer width, word (32-bit)

● transfer size, 3 072 bytes (0xC00)

● source and destination burst sizes, 16 transfers

● next LLI address, 0x20020

A chain of descriptors is built up, each one pointing to the next in the series. To initialize the 
DMA stream, the first LLI, 0x20000, is programmed into the DMAC. When the first packet of 
data has been transferred, the next LLI is automatically loaded.

The final LLI is stored at 0x20070 and contains:

● source start address 0x11200

● destination address set to the destination peripheral address

● transfer width, word (32-bit)

● transfer size, 3 072 bytes (0xC00)

● source and destination burst sizes, 16 transfers

● next LLI address, 0x0



   
   

   

DMA controller (DMAC) RM0006

252/488  Doc ID 13742 Rev 4

Because the next LLI address is set to zero, this is the last descriptor, and the DMA channel 
is disabled after transferring the last item of data. The channel is probably set to generate an 
interrupt at this point to indicate to the ARM processor that the channel can be 
reprogrammed.

Figure 66. LLI example

9.4.6 Programming the DMAC for scatter/gather DMA

To program the DMAC for scatter/gather DMA:

1. Write the LLIs for the complete DMA transfer to memory. Each LLI contains four words:

a) source address

b) destination address

c) pointer to next LLI

d) control word.

The last LLI has its linked list word pointer set to 0.

2. Choose a free DMA channel with the required priority. DMA channel 0 has the highest 
priority and DMA channel 7 the lowest priority.

3. Write the first LLI, previously written to memory, to the relevant channel in the DMAC.

4. Write the channel configuration information to the channel configuration register and 
set the Channel Enable bit. The DMAC then transfers the first and then subsequent 
packets of data as each LLI is loaded.

5. An interrupt can be generated at the end of each LLI depending on the Terminal Count 
bit in the DMA_CCRx Register. If this bit is set, an interrupt is generated at the end of 
the relevant LLI. You must then service the interrupt request, and you must set the 
relevant bit in the DMA_TCICR Register to clear the interrupt.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 253/488

   
   

   

9.4.7 Interrupt requests

Interrupt requests can be generated when an AHB error is encountered, or at the end of a 
transfer (terminal count) after all the data corresponding to the current LLI has been 
transferred to the destination. The interrupts can be masked by programming the relevant 
bits on the relevant DMA_CCRx and  DMA_CCNFx Channel Registers.

Interrupt Status Registers are provided. They group the interrupt requests from all the DMA 
channels prior to interrupt masking (DMA_TCRISR, DMA_ERISR), and after interrupt 
masking (DMA_TCISR, DMA_EISR).

The DMA_ISR Register combines both the DMA_TCISR and DMA_EISR requests into a 
single register to enable the source of an interrupt to be found quickly. Writing to the 
DMA_TCICR or the DMA_EICR Registers with a bit set HIGH enables selective clearing of 
interrupts.

The DMAC has a combined error and end of transfer complete interrupt request. To find the 
source of an interrupt, you must read both the DMA_ISR and DMA_TCISR Registers.

9.4.8 Combined terminal count and error interrupt sequence flow 

When you use the DMACINTR interrupt request:

1. You must wait until the combined interrupt request from the DMAC goes active.

2. Assuming the interrupt is enabled in the interrupt controller and in the processor, the 
processor branches to the interrupt vector address and enters the interrupt service 
routine.

3. You must read the interrupt controller Status Register and determine whether the 
source of the request was the DMAC.

4. You must read the DMA_ISR Register to determine the channel that generated the 
interrupt. If more than one request is active, it is recommended that you check the 
highest priority channels first.

5. You must read the DMA_TCISR Register to determine whether the interrupt was 
generated because of the end of the transfer (terminal count) or because an error 
occurred. A HIGH bit indicates that the transfer completed.

6. You must read the DMA_EISR Register to determine whether the interrupt was 
generated because of the end of the transfer (terminal count) or because an error 
occurred. A HIGH bit indicates that an error occurred.

7. You must write a 1 to the relevant bit in the DMA_TCICR (or DMA_EICR) Register to 
clear the interrupt request.



   
   

   

DMA controller (DMAC) RM0006

254/488  Doc ID 13742 Rev 4

9.4.9 Interrupt polling sequence flow

The DMAC interrupt request signal is masked out, disabled in the interrupt controller, or 
disabled in the processor. When polling the DMAC, you must:

1. Read the DMA_ISR Register. If none of the bits are HIGH repeat this step, otherwise, 
go to step 2. If more than one request is active, it is recommended that you check the 
highest priority channels first.

2. Read the DMA_TCISR Register to determine if the interrupt was generated because of 
the end of the transfer (terminal count) or because of error occurred. A HIGH bit 
indicates that the transfer completed.

3. Service the interrupt request.

4. For an error interrupt, write a 1 to the relevant bit of the DMA_EICR Register to clear 
the interrupt request. For a terminal count interrupt, write a 1 to the relevant bit of the 
DMA_TCICR Register.

9.4.10 DMAC data flow

This section describes the DMAC data flow sequences for:

● Memory-to-memory DMA flow

● Memory-to-peripheral, or peripheral-to-memory DMA flow

● Peripheral-to-peripheral DMA flow

Memory-to-memory DMA flow

For a memory-to-memory DMA flow:

1. Program and enable the DMA channel.

2. Transfer data whenever the DMA channel has the highest pending priority and the 
DMAC gains bus master ship of the AHB bus.

3. If an error occurs while transferring the data, generate an error interrupt and disable the 
DMA stream.

4. Decrement the transfer count.

5. If the count has reached zero:

a) Generate a terminal count interrupt (you can mask the interrupt).

b) If the DMA_LLIx Register is not 0, then reload the DMA_SRCx, DMA_DESTx, 
DMA_LLIx, and DMA_CCRx Registers and go to back to step 2. However, if 
DMA_LLIx is 0, the DMA stream is disabled and the flow sequence ends.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 255/488

   
   

   

Memory-to-peripheral, or peripheral-to-memory DMA flow

For a peripheral-to-memory or memory-to-peripheral DMA flow:

1. Program and enable the DMA channel.

2. Wait for a DMA request.

3. The DMAC then starts transferring data when:

a) The DMA request goes active.

b) The DMA stream has the highest pending priority.

c) The DMAC is the bus master of the AHB bus.

4. If an error occurs while transferring the data, an error interrupt is generated and the 
DMA stream is disabled, and the flow sequence ends.

5. Decrement the transfer count if the DMAC is controlling the flow control.

6. If the transfer has completed (indicated by the transfer count reaching 0 if the DMAC is 
performing flow control, or by the peripheral setting the DMA request signals if the 
peripheral is performing flow control):

a) The DMAC asserts the DMA Terminal Count signal to the peripheral indicating that 
the transfer is complete and the packet of data is transferred.

b) The terminal count interrupt is generated (you can mask this interrupt).

c) If the DMA_LLIx Register is not 0, then reload the DMA_SRCx, DMA_DESTx, 
DMA_LLIx, and DMA_CCRx Registers and go to back to step 2. However, if 
DMA_LLIx is 0, the DMA stream is disabled and the flow sequence ends.



   
   

   

DMA controller (DMAC) RM0006

256/488  Doc ID 13742 Rev 4

Peripheral-to-peripheral DMA flow

For a peripheral-to-peripheral DMA flow:

1. Program and enable the DMA channel.

2. Wait for a source DMA request.

3. The DMAC then starts transferring data when:

a) The DMA request goes active.

b) The DMA stream has the highest pending priority.

c) The DMAC is the bus master of the AHB bus.

4. If an error occurs while transferring the data, an error interrupt is generated, then 
finishes.

5. Decrement the transfer count if the DMAC is controlling the flow control.

6. If the transfer has completed (indicated by the transfer count reaching 0 if the DMAC is 
performing flow control, or by the peripheral setting the DMA request signals if the 
peripheral is performing flow control):

a) The DMAC asserts the the DMA Terminal Count signal to the source peripheral 
indicating that the transfer is complete and the packet of data is transferred

b) Subsequent source DMA requests are ignored.

7. When the destination DMA request goes active and there is data in the DMAC FIFO, 
transfer data into the destination peripheral.

8. If an error occurs while transferring the data, an error interrupt is generated and the 
DMA stream is disabled, and the flow sequence ends.

9. If the transfer has completed, it is indicated by the transfer count reaching 0 if the 
DMAC is performing flow control, or by the peripheral setting the DMA request signals if 
the peripheral is performing flow control. The following happens:

a) The DMAC asserts the DMA Terminal Count signal to the destination peripheral 
indicating that the transfer is complete and the packet of data is transferred.

b) The Terminal Count interrupt is generated (you can mask this interrupt).

c) If the DMA_LLIx Register is not 0, then reload the DMA_SRCx, DMA_DESTx, 
DMA_LLIx, and DMA_CCRx Registers and go to back to step 2. However, if 
DMA_LLIx is 0, the DMA stream is disabled and the flow sequence ends.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 257/488

   
   

   

9.5 Register description
The DMA registers are accessed via the APB bus and the register data path is 32 bits wide.

In this section, the following abbreviations are used:

         

The following applies to the registers used in the DMAC:

● You must not access reserved or unused address locations because this can result in 
unpredictable behavior of the device.

● You must write reserved or unused bits of registers as zero, and ignore them on read 
unless otherwise stated in the relevant text.

● A system or power-on reset resets all registers bits to a logic 0 unless otherwise stated 
in the relevant text.

● All registers support read/write accesses unless otherwise stated in the relevant text. A 
write updates the contents of a register and a read returns the contents of the register.

● You can only access registers defined in this document using word reads and word 
writes, unless otherwise stated in the relevant text.

9.5.1 Common registers

Interrupt status register (DMA_ISR) 

Address offset: 000h 

Reset value: 0000 0000h

         

          

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Write only (wo) Software can only write to this bit. Reading the bit returns the reset value

7 6 5 4 3 2 1 0

IS7 IS6 IS5 IS4 IS3 IS2 IS1 IS0

r r r r r r r r

Bits 31:8 Reserved, always read as 0

Bits 7:0
IS[7:0] Interrupt Status after masking

0: No interrupt or interrupt masked on the corresponding DMA channel
1: Interrupt requested by the corresponding DMA channel 



   
   

   

DMA controller (DMAC) RM0006

258/488  Doc ID 13742 Rev 4

Terminal count interrupt status register (DMA_TCISR) 

Address offset: 004h 

Reset value: 0000 0000h

         

          

Terminal count interrupt clear register (DMA_TCICR) 

Address offset: 008h 

Reset value: xxxx xxxxh

         

          

7 6 5 4 3 2 1 0

TCS7 TCS6 TCS5 TCS4 TCS3 TCS2 TCS1 TCS0

r r r r r r r r

Bits 31:8 Reserved, always read as 0

Bits 7:0

TCS[7:0] Terminal Count interrupt Status after masking

This register can be read to determine the source of a DMA interrupt 
request. A Terminal Count event occurs when a DMA transfer is 
complete and the transfer counter reaches 0.
0: No Terminal Count interrupt on the corresponding DMA channel
1: Terminal Count Interrupt requested by the corresponding DMA 
channel.

7 6 5 4 3 2 1 0

TCC7 TCC6 TCC5 TCC4 TCC3 TCC2 TCC1 TCC0

wo wo wo wo wo wo wo wo

Bits 31:8 Reserved, write as 0

Bits 7:0

TCS[7:0] Terminal Count interrupt clear

This register can be written to clear any Terminal Count interrupt 
requests. 
0: No effect
1: Clear a Terminal Count Interrupt on the corresponding DMA channel 



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 259/488

   
   

   

Error interrupt status register (DMA_EISR) 

Address offset: 00Ch 

Reset value: 0000 0000h

         

          

Error interrupt clear register (DMA_EICR) 

Address offset: 010h 

Reset value: xxxx xxxxh

         

          

7 6 5 4 3 2 1 0

ES7 ES6 ES5 ES4 ES3 ES2 ES1 ES0

r r r r r r r r

Bits 31:8 Reserved, always read as 0

Bits 7:0

ES[7:0] Error interrupt Status after masking

This register can be read to determine the source of a DMA interrupt 
request. 
0: No Error interrupt on the corresponding DMA channel
1: Error Interrupt requested by the corresponding DMA channel 

7 6 5 4 3 2 1 0

EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

wo wo wo wo wo wo wo wo

Bits 31:8 Reserved, write as 0

Bits 7:0

ES[7:0] Error interrupt Clear

This register can be written to clear any Error interrupt requests. 
0: No effect
1: Clear an Error Interrupt on the corresponding DMA channel 



   
   

   

DMA controller (DMAC) RM0006

260/488  Doc ID 13742 Rev 4

Terminal count raw interrupt status register (DMA_TCRISR) 

Address offset: 014h 

Reset value: xxxx xxxxh

         

          

Error raw interrupt status register (DMA_ERISR) 

Address offset: 018h 

Reset value: xxxx xxxxh

         

          

7 6 5 4 3 2 1 0

TCRS7 TCRS6 TCRS5 TCRS4 TCRS3 TCRS2 TCRS1 TCRS0

r r r r r r r r

Bits 31:8 Reserved, always read as 0

Bits 7:0

TCRS[7:0] Terminal Count raw interrupt status (before masking)

This register can be read to determine the Terminal Count status of a 
channel. A Terminal Count event occurs when a DMA transfer is 
complete and the transfer counter reaches 0.
0: No Terminal Count event on the corresponding DMA channel
1: Terminal Count event occured on the corresponding DMA channel 

7 6 5 4 3 2 1 0

ERS7 ERS6 ERS5 ERS4 ERS3 ERS2 ERS1 ERS0

r r r r r r r r

Bits 31:8 Reserved, always read as 0

Bits 7:0

ERS[7:0] Error raw interrupt status (before masking)

This register can be read to determine the Error status of a channel. 
0: No Error event on the corresponding DMA channel
1: Error event occured on the corresponding DMA channel 



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 261/488

   
   

   

Enabled channel status register (DMA_ENCSR) 

Address offset: 01Ch 

Reset value: 0000 0000h

         

          

Software burst request register (DMA_SBRR) 

Address offset: 020h 

Reset value: 0000 0000h

         

          

7 6 5 4 3 2 1 0

ENCS7 ENCS6 ENCS5 ENCS4 ENCS3 ENCS2 ENCS1 ENCS0

r r r r r r r r

Bits 31:8 Reserved, always read as 0

Bits 7:0

ENCS[7:0] Enabled Channel status 

You can read this register to determine the Enabled status of any 
channel. You can enabled or disable the channels by writing to the  
DMA_CNFR register.
0: The corresponding DMA channel is disabled
1: The corresponding DMA channel is enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBR
15

SBR
14

SBR
13

SBR
12

SBR
11

SBR
10

SBR
9

SBR
8

SBR
7

SBR
6

SBR
5

SBR
4

SBR
3

SBR
2

SBR
1

SBR
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always write as 0

Bits 15:0

SBR[15:0] Software Burst Request for Source x

You can generate a DMA request for each source by writing a 1 to the 
corresponding register bit. A register bit is cleared when the transaction 
has completed. Writing 0 to this register has no effect. Reading the 
register indicates the sources that are requesting DMA burst transfers. 
You can generate a request from either a peripheral or the software 
request register.
0: No effect
1: Generate burst transfer request for the corresponding DMA Request 
Source.
Note: It is recommended not to use software and hardware peripheral 
requests the same time.



   
   

   

DMA controller (DMAC) RM0006

262/488  Doc ID 13742 Rev 4

Software single request register (DMA_SSRR) 

Address offset: 024h 

Reset value: 0000 0000h

         

          

Software last burst request register (DMA_SLBR) 

Address offset: 028h 

Reset value: 0000 0000h

         

          

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSR
15

SSR
14

SSR
13

SSR
12

SSR
11

SSR
10

SSR
9

SSR
8

SSR
7

SSR
6

SSR
5

SSR
4

SSR
3

SSR
2

SSR
1

SSR
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always write as 0

Bits 15:0

SSR[15:0] Software Single Request for Source x
You can generate a DMA request for each source by writing a 1 to the 
corresponding register bit. A register bit is cleared when the transaction 
has completed. Writing 0 to this register has no effect. Reading the 
register indicates the sources that are requesting DMA single transfers. 
You can generate a request from either a peripheral or the software 
request register.
0: No effect
1: Generate single transfer request for the corresponding DMA Request 
Source.
Note: It is recommended not to use software and hardware peripheral 
requests the same time.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SLB1
5

SLB1
4

SLB1
3

SLB1
2

SLB1
1

SLB1
0

SLB
9

SLB
8

SLB
7

SLB
6

SLB
5

SLB
4

SLB
3

SLB
2

SLB
1

SLB
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always write as 0

Bits 15:0

SLB[15:0] Software Last Burst Request for Source x

You can generate a DMA request for each source by writing a 1 to the 
corresponding register bit. A register bit is cleared when the transaction 
has completed. Writing 0 to this register has no effect. Reading the 
register indicates the sources that are requesting DMA last burst 
transfers. You can generate a request from either a peripheral or the 
software request register.
0: No effect
1: Generate last burst transfer request for the corresponding DMA 
Request Source.
Note: It is recommended not to use software and hardware peripheral 
requests the same time.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 263/488

   
   

   

Software last single request register (DMA_SLSR) 

Address offset: 02Ch 

Reset value: 0000 0000h

         

          

Configuration register (DMA_CNFR) 

Address offset: 030h 

Reset value: 0000 0000h

         

          

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SLS1
5

SLS1
4

SLS1
3

SLS1
2

SLS1
1

SLS1
0

SLS9 SLS8 SLS7 SLS6 SLS5 SLS4 SLS3 SLS2 SLS1 SLS0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always write as 0

Bits 15:0

SLS[15:0] Software Last Single Request for Source x
You can generate a DMA request for each source by writing a 1 to the 
corresponding register bit. A register bit is cleared when the transaction 
has completed. Writing 0 to this register has no effect. Reading the 
register indicates the sources that are requesting DMA last single 
transfers. You can generate a request from either a peripheral or the 
software request register.
0: No effect
1: Generate last single transfer request for the corresponding DMA 
Request Source.
Note: It is recommended not to use software and hardware peripheral 
requests the same time.

7 6 5 4 3 2 1 0

Reserved EN

rw

Bits 31:1 Reserved, always read as 0

Bit 0
EN: DMA Controller Enable 

0: DMA controller disabled
1: DMA controller enabled



   
   

   

DMA controller (DMAC) RM0006

264/488  Doc ID 13742 Rev 4

Synchronization register (DMA_SYNC) 

Address offset: 034h 

Reset value: 0000 0000h

         

          

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SYN
C15

SYN
C14

SYN
C13

SYN
C12

SYN
C11

SYN
C10

SYN
C 9

SYN
C 8

SYN
C7

SYN
C6

SYN
C5

SYN
C4

SYN
C3

SYN
C2

SYN
C 1

SYN
C 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always write as 0

Bits 15:0

SYNC[15:0] Synchronization Enable/Disable
These bits are set and cleared by software. You must use 
synchronization logic when the peripheral generating the DMA request 
runs on a different clock to the DMAC. For peripherals running on the 
same clock as the DMAC, disabling the synchronization logic improves 
the DMA request response time. 
0: Enable synchronization logic for the corresponding DMA Request 
Signal
1: Disable synchronization logic for the corresponding DMA Request 
Signal.
Note: All DMA requests must be synchronized with the exception of the 
USB DMA Request.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 265/488

   
   

   

9.5.2 Channel registers

The channel registers are for programming a DMA channel. These registers consist of:

● Eight DMA_SRCx Channel Source Address Registers

● Eight DMA_DESTx Channel Destination Address Registers

● Eight DMA_LLIx Channel Linked List Registers

● Eight DMA_CCx Channel Control Registers

● Eight DMA_CCNFx Channel Configuration Registers.

When performing scatter/gather DMA, the first four registers are automatically updated.

Note: Unpredictable behavior can result if you update the channel registers when a transfer is 
taking place. If you want to change the channel configurations, you must disable the channel 
first and then reconfigure the relevant register.

Channel source address register x (DMA_SRCx) 

Address offset: See Table 24

Reset value: 0000 0000h

         

          

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SrcAddr[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SrcAddr[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

SrcAddr[31:0] DMA Source Address for channel x 
These bits contain the current source address (byte aligned) of the data 
to be transferred
Software programs each register directly before the appropriate channel 
is enabled.
When the DMA channel is enabled, this register is updated:
- As the source address is incremented
- By following the linked list when a complete packet of data has been 
transferred.
Reading the register when the channel is active does not provide useful 
information. This is because by the time the software has processed the 
value read, the channel might have progressed. It is intended to be read-
only when the channel has stopped, and in such case, it shows the 
source address of the last item read.
Note: You must align source and destination addresses to the source 
and destination widths.



   
   

   

DMA controller (DMAC) RM0006

266/488  Doc ID 13742 Rev 4

Channel destination address register x (DMA_DESTx) 

Address offset: See Table 24

Reset value: 0000 0000h

         

          

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DestAddr[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DestAddr[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

SrcAddr[31:0] DMA Destination Address for channel x 
These bits contain the current destination address (byte aligned) of the 
data to be transferred
Software programs each register directly before the appropriate channel 
is enabled.
When the DMA channel is enabled, this register is updated:
- As the destination address is incremented
- By following the linked list when a complete packet of data has been 
transferred.
Reading the register when the channel is active does not provide useful 
information. This is because by the time the software has processed the 
value read, the channel might have progressed. It is intended to be read-
only when the channel has stopped, and in such case, it shows the 
destination address of the last item read.
Note: You must align source and destination addresses to the source 
and destination widths.



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 267/488

   
   

   

Channel linked list item register x (DMA_LLIx) 

Address offset: See Table 24

Reset value: 0000 0000h

         

          

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LLI[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LLI[15:2] 0 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0

LLI[31:2] Linked List Item for channel x 
These bits contain the word aligned address of the next LLI to be 
transferred. Address bits 1:0 are 0. If the LLI is 0, then the current LLI is 
the last in the chain, and the DMA channel is disabled after all DMA 
transfers associated with it are completed.
Note: Programming this register when the DMA channel is enabled has 
unpredictable results.

Bits 1:0 Reserved, always write as 0



   
   

   

DMA controller (DMAC) RM0006

268/488  Doc ID 13742 Rev 4

Channel control register x (DMA_CCx) 

Address offset: See Table 24

Reset value: 0000 0000h

         

Note: 1 This register contains DMA channel control information such as the transfer size, burst size, 
and transfer width. Software programs each register directly before the DMA channel is 
enabled.

2 When the channel is enabled, the register is updated by following the linked list when a 
complete packet of data has been transferred. Reading the register while the channel is 
active does not give useful information. This is because by the time that software has 
processed the value read, the channel might have progressed. It is intended to be read-only 
when a channel has stopped.

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TCIE
PRO
T2

PRO
T1

PRO
T0

DI SI 0 0 DWIDTH SWIDTH DBSize[2:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DB 
Size0

SBSize[2:0] TransferSize[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31

TCIE Terminal Count Interrupt enable 

This bit controls whether the current LLI is expected to trigger the 
terminal count interrupt.
0: Terminal Count interrupt disabled
1: Terminal Count interrupt enabled

Bit 30

PROT2 Cacheable/Noncacheable

This bit indicates whether or not the access is cacheable. For example, 
you can use this bit to indicate to the hardware that it can transfer the 
whole burst of eight reads on the destination bus, rather than pass the 
transactions through one at a time.
0: Noncacheable
1: Cacheable

Bit 29

PROT1 Bufferable/Nonbufferable

This bit indicates whether or not the access is bufferable. For example, 
you can use this bit to indicate that the write can complete in zero wait 
states on the source bus without waiting for arbitration of the destination 
bus and for the slave to accept the data. 
0: Nonbufferable
1: Bufferable

Bit 28

PROT0 Privileged/user mode protection
This bit controls if the access is in privileged or user mode.
0: User mode
1: Privileged mode



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 269/488

   
   

   

Bit 27

DI Destination increment 

This bit is set and cleared by software.
0: Destination address not incremented
1: The destination address is incremented after each transfer

Bit 26

SI Source increment 
This bit is set and cleared by software.
0: Source address not incremented
1: The source address is incremented after each transfer

Bits 25:24 Reserved, always write as 0

Bits 23:21

DWIDTH Destination width
These bits indicate the data width of the destination peripheral or 
memory. The source and destination widths can be different from each 
other. The hardware automatically packs and unpacks the data when 
required
000: Byte (8-bit)
001: Halfword (16-bit)
010: Word (32-bit)
Other values: Reserved

Bits 20:18

SWIDTH Source width

These bits indicate the data width of the source peripheral or memory. 
The source and destination widths can be different from each other. The 
hardware automatically packs and unpacks the data when required
000: Byte (8-bit)
001: Halfword (16-bit)
010: Word (32-bit)
Other values: Reserved

Bits 17:15

DBSize[2:0] Destination Burst size

These bits indicate the number of transfers that make up a destination 
burst transfer request. You must set this value to the burst size of the 
destination peripheral, or if the destination is memory, to the memory 
boundary size.
000: single transfer 
001: 4 transfers
010: 8 transfers
011: 16 transfers
100: 32 transfers
101: 64 transfers
110: 128 transfers
111: 256 transfers

Bits 14:12

SBSize[2:0] Source Burst size

These bits indicate the number of transfers that make up a source burst. 
You must set this value to the burst size of the source peripheral, or if the 
source is memory, to the memory boundary size.
000: single transfer 
001: 4 transfers
010: 8 transfers
011: 16 transfers
100: 32 transfers
101: 64 transfers
110: 128 transfers
111: 256 transfers



   
   

   

DMA controller (DMAC) RM0006

270/488  Doc ID 13742 Rev 4

Bits 11:0

TransferSize[11:0] Transfer size

A write to this field sets the size of the transfer when the DMAC is the 
flow controller. A read from this field indicates the number of transfers 
completed on the destination bus. Reading the register when the 
channel is active does not give useful information because by the time 
the software has processed the value read, the channel might have 
progressed. You should only use it when a channel is enabled, and then 
disabled. Program the transfer size value to zero if the DMAC is not the 
flow controller. If you program the TransferSize to a non-zero value, the 
DMAC might attempt to use this value instead of ignoring the 
TransferSize. 



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 271/488

   
   

   

Channel configuration register x (DMA_CCNFx) 

Address offset: See Table 24

Reset value: 0000 0000h

         

Note: The channel configuration registers are not updated when a new LLI is requested.

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved H A L

rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ITC IE FlowCntrl[2:0] Res. DestPeripheral Res. SrcPeripheral E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, always write as 0

Bit 18

H Halt 

You can use this value with the Active and Channel Enable bits to cleanly 
disable a DMA channel. 
0: DMA requests enabled on channel x 
1: Any extra source DMA requests are ignored. The contents of the 
channel x FIFO are drained.

Bit 17

A Active 

You can use this value with the Halt and Channel Enable bits to cleanly 
disable a DMA channel. 
0: No data in the channel x FIFO 
1: The channel x FIFO has data.

Bit 16
L Lock 

0: Locked transfers disabled on channel x
1: Locked transfers enabled channel x

Bit 15
ITC Terminal Count Interrupt Mask

0: Terminal Count interrupt disabled on channel x
1: Terminal Count interrupt enabled on channel x

Bit 14
IE Error Interrupt Mask

0: Error interrupt disabled on channel x
1: Error interrupt enabled on channel x



   
   

   

DMA controller (DMAC) RM0006

272/488  Doc ID 13742 Rev 4

Bits 13:11

FlowCntrl[2:0] Flow controller and transfer type

This value indicates the flow controller and transfer type.
Transfer Type Flow Controller
000: Memory-to-memory DMA 
001:Memory-to-peripheral DMA 
010: Peripheral-to-memory DMA 
011: Source peripheral-to-destination peripheral DMA 
100: Source peripheral-to-destination peripheral Destination peripheral 
101: Memory-to-peripheral Peripheral 
110: Peripheral-to-memory Peripheral 
111: Source peripheral-to-destination peripheral Source peripheral 

Bit 10 Reserved, always write as 0

Bits 9:6
DestPeripheral Destination peripheral selection

This value selects the DMA destination request peripheral. Refer to Table 
23. This field is ignored if the destination of the transfer is to memory.

Bit 5 Reserved, always write as 0

Bits 4:1
SrcPeripheral Source peripheral selection

This value selects the DMA source request peripheral. Refer to Table 23. 
This field is ignored if the source of the transfer is from memory.

Bit 0

E Channel enable
Reading this bit indicates whether a channel is currently enabled or 
disabled. You can also determine the Channel Enable bit status by 
reading the DMA_ECSR register. 
You enable a channel by setting the E bit. You can disable a channel by 
clearing the E bit. This causes the current AHB transfer (if one is in 
progress) to complete, and the channel is then disabled. Any data in the 
channel's FIFO is lost. Restarting the channel by setting the Channel 
Enable bit has unpredictable effects and you must fully re-initialize the 
channel. 
The channel is also disabled, and the E bit cleared, when the last LLI is 
reached, or if a channel error is encountered. If a channel has to be 
disabled without losing data in a channel's FIFO, you must set the H 
(HALT) bit so that subsequent DMA requests are ignored. The A (Active) 
bit must then be polled until it reaches 0, indicating that there is no data 
left in the channel's FIFO. Finally, you can clear the Channel Enable bit. 
0: Channel disabled
1: Channel enabled



RM0006 DMA controller (DMAC)

Doc ID 13742 Rev 4 273/488

   
   

   

9.6 DMA register map
The following table summarizes the DMA registers:

         

Table 24. DMA register map

Addr.
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h DMA_ISR Interrupt Status

04h DMA_TCISR
Terminal Count Interrupt Sta-

tus

08h DMA_TCICR
Terminal Count Interrupt 

Clear

0Ch DMA_EISR Error Interrupt Status

10h DMA_EICR Error Interrupt Clear

14h DMA_TCRISR
Terminal Count Raw 

Interrupt Status

18h DMA_ERISR
Error Raw 

Interrupt Status

1Ch DMA_ENCSR Enabled Channel Status

20h DMA_SBRR Software Burst Request 

24h DMA_SSRR Software Single Request 

28h DMA_SLBR Software Last Burst Request 

2Ch DMA_SLSR Software Last Single Request 

30h  DMA_CNFR Configuration EN

34h DMA_SYNC Synchronization

100h DMA_SRC0 Channel 0 Source Address

104h DMA_DEST0 Channel 0 Destination Address

108h DMA_LLI0 Channel 0 Linked List Item 0 0

10Ch DMA_CC0 Channel 0 Control

110h DMA_CCNF0 Channel 0 Configuration

120h DMA_SRC1 Channel 1 Source Address

124h DMA_DEST1 Channel 1 Destination Address

128h DMA_LLI1 Channel 1 Linked List Item 0 0

12Ch DMA_CC1 Channel 1 Control

130h DMA_CCNF1 Channel 1 Configuration

140h DMA_SRC2 Channel 2 Source Address

144h DMA_DEST2 Channel 2 Destination Address

148h DMA_LLI2 Channel 2 Linked List Item 0 0

14Ch DMA_CC2 Channel 2 Control

150h DMA_CCNF2 Channel 2 Configuration

160h DMA_SRC3 Channel 3 Source Address

164h DMA_DEST3 Channel 3 Destination Address

168h DMA_LLI3 Channel 3 Linked List Item 0 0

16Ch DMA_CC3 Channel 3 Control

170h DMA_CCNF3 Channel 3 Configuration

180h DMA_SRC4 Channel 4 Source Address

184h DMA_DEST4 Channel 4 Destination Address

188h DMA_LLI4 Channel 4 Linked List Item 0 0



   
   

   

DMA controller (DMAC) RM0006

274/488  Doc ID 13742 Rev 4

Refer to Table 5 on page 35 for the register base addresses. 

18Ch DMA_CC4 Channel 4 Control

190h DMA_CCNF4 Channel 4 Configuration

1A0h DMA_SRC5 Channel 5 Source Address

1A4h DMA_DEST5 Channel 5 Destination Address

1A8h DMA_LLI5 Channel 5 Linked List Item 0 0

1ACh DMA_CC5 Channel 5 Control

1B0h DMA_CCNF5 Channel 5 Configuration

1C0h DMA_SRC6 Channel 6 Source Address

1C4h DMA_DEST6 Channel 6 Destination Address

1C8h DMA_LLI6 Channel 6 Linked List Item 0 0

1CCh DMA_CC6 Channel 6 Control

1D0h DMA_CCNF6 Channel 6 Configuration

1E0h DMA_SRC7 Channel 7 Source Address

1E4h DMA_DEST7 Channel 7 Destination Address

1E8h DMA_LLI7 Channel 7 Linked List Item 0 0

1ECh DMA_CC7 Channel 7 Control

1F0h DMA_CCNF7 Channel 7 Configuration

Table 24. DMA register map (continued)

Addr.
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 275/488

   
   

   

10 Synchronous serial peripheral (SSP)

10.1 Introduction
The SSP is a master or slave interface for synchronous serial communication with 
peripheral devices that have either Motorola SPI, National Microwire or Texas Instruments 
SSI synchronous serial interfaces. 

The SSP performs serial-to-parallel conversion on data received from a peripheral device. 
The CPU accesses data, control, and status information through the AMBA APB interface. 
The transmit and receive paths are buffered with internal FIFO memories allowing up to 
eight 16-bit values to be stored independently in both transmit and receive modes. The SSP 
includes a programmable bit rate clock divider and prescaler to generate the serial output 
clock SCLK from the input clock BRCLK. 

The SSP operating mode, frame format, and size are programmed through the control 
registers SSP_CR0 and SSP_CR1.

Four individually maskable interrupt events are generated:

● A TX event requests servicing of the transmit buffer

● A RX event requests servicing of the receive buffer

● An ROR event indicates an overrun condition in the receive FIFO

● An RT event indicates that a timeout period expired while data was present in the 
receive FIFO.

The above interrupts are ORed to generate a single interrupt to the Vectored Interrupt 
Controller (VIC).

In addition to the above interrupts, a set of DMA signals are provided for interfacing with a 
DMA controller.

10.2 Main features
● Master and slave modes supported

● Programmable choice of interface operation: Motorola SPI, National Microwire or TI 
synchronous serial.

● Programmable data frame size from 4 to 16 bits

● Programmable bit rate and internal clock prescaler

● Separate transmit and receive FIFO buffers, 16 bits wide, 8 locations deep

● Support for DMA

● Independent masking of transmit FIFO, receive FIFO, and overrun interrupts

● Internal loopback test mode available.

● Dynamic change from master to slave or slave to master operations



   
   

   

Synchronous serial peripheral (SSP) RM0006

276/488  Doc ID 13742 Rev 4

10.3 Functional description
The processor views the SSP as a memory mapped peripheral, which may be used by 
standard polling, interrupt programming techniques or DMA controlled access.

When an SSP transfer occurs data is transmitted and received simultaneously. A serial clock 
line synchronizes shifting and sampling of the information on the two serial data lines. A 
slave select line allows individual selection of a slave device. The central elements in the 
SSP system are the 16-bit shift register and the two read data buffer which each one is 8 
words x 16-bit. An SSP-DMA interface is also present to allow for data to be transferred 
to/from memory using the DMA

A block diagram of the SSP is shown in Figure 67.

Figure 67. SSP block diagram
A

P
B

SCLK

MISO

MOSI
NSS

IRQ to VIC

RECEIVE FIFO
(16 bits x 8)

CONTROL 
REGISTERS

BRCLK

TRANSMIT FIFO
(16 bits x 8)

CLOCK
PRESCALER

DMA
INTERFACE



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 277/488

   
   

   

10.3.1 Pin description

The SSP is a four wire, bi-directional bus. The data path is determined by the mode of 
operation selected. 

The SSP is connected to external devices through 4 I/O pins, see table below:

● MISO: Master In Slave Out pin

● MOSI: Master Out Slave In pin

● SCLK: Serial Clock pin

● NSS: Slave Select pin

         

A basic example of interconnections between a single master and a single slave is 
illustrated in Figure 68.

The MOSI pins are connected together as are MISO pins. In this way data is transferred 
serially between master and slave (most significant bit first). 

When the master device transmits data to a slave device via MOSI pin, the slave device 
responds by sending data to the master device via the MISO pin. This implies full duplex 
transmission with both data out and data in synchronized with the same clock signal (which 
is provided by the master device via the SCLK pin).

Figure 68. Interconnection example 

Table 25. SSP pins

Pin Name Description

SCLK
Serial Clock pin: The bit clock for all data transfers. When the SSP is a master the 
SCLK is output from the chip. When configured as a slave the SCLK is input from the 
external source.

MISO Master Input/ Slave Output serial data line

MOSI Master Output/ Slave Input serial data line

NSS
Slave Select pin: The NSS input pin is used to select a slave device. Must be pulled 
low after the SCLK is stable and held low for the duration of the data transfer. The 
NSS on the master must be deasserted high.

n-BIT SHIFT REGISTER

SPI
CLOCK

GENERATOR

n-BIT SHIFT REGISTER
MISO

MOSI MOSI

MISO

SCLK SCLK

SLAVEMASTER

NSS NSSVDD

MSBit LSBit MSBit LSBit



   
   

   

Synchronous serial peripheral (SSP) RM0006

278/488  Doc ID 13742 Rev 4

10.3.2 Master mode

When configured as a master, the clock to the attached slaves is derived from a divided 
down version of BRCLK through the prescaler operations. The master transmit logic 
successively reads a value from its transmit FIFO and performs parallel to serial conversion 
on it. Then the serial data stream and frame control signal, synchronized to SCLK, are 
output through the MOSI pin to the attached slaves. The master receive logic performs 
serial to parallel conversion on the incoming synchronous MISO data stream, extracting and 
storing values in its receive FIFO, for subsequent reading through the APB interface.

10.3.3 Slave mode

When configured as a slave, the SCLK clock is provided by an attached master and used to 
time its transmission and reception sequences. The slave transmit logic, under control of the 
master clock, successively reads a value from its transmit FIFO, performs parallel to serial 
conversion, then outputs the serial data stream and frame control signal through the slave 
MISO pin. The slave receive logic performs serial to parallel conversion on the incoming 
MOSI data stream, extracting and storing values in its receive FIFO, for subsequent reading 
through the APB interface.

10.3.4 Slave Select management

The NSS Slave Select signal is output from the Master and received by the Slave.

There are two cases depending on the data/clock timing relationship (see Figure 69):

● If CPHA=1 (data latched on 2nd clock edge): 

NSS must be held low during the entire transmission. This implies that in single slave 
applications the NSS pin can be tied to VSS.

● If CPHA=0 (data latched on 1st clock edge): 

NSS must be held low during byte transmission and pulled high between each byte to 
allow the slave to write to the FIFO register.

Figure 69. Generic NSS Timing Diagram

MOSI/MISO

Master NSS

Slave NSS
(if CPHA=0)

Slave NSS
(if CPHA=1)

Byte 1 Byte 2 Byte 3



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 279/488

   
   

   

10.4 SSP operation
The operation of the SSP is described in the following sections

10.4.1 Configuring the SSP

Following reset, the SSP logic is disabled and must be configured when in this state.

Control registers SSP_CR0 and SSP_CR1 need to be programmed to configure the 
peripheral as a master or slave operating under one of the following protocols: 

● Motorola SPI 

● Texas Instruments SSI 

● National Semiconductor Microwire

The bit rate, derived from BRCLK, requires the programming of the clock prescaler register 
SSP_PR.

10.4.2 Enabling SSP operation

You can either prime the transmit FIFO, by writing up to eight 16-bit values when the SSP is 
disabled, or allow the transmit FIFO service request to interrupt the CPU. Once enabled, 
transmission or reception of data begins on the transmit and receive pins.

10.4.3 Programming the SSP_CR0 control register

The SSP_CR0 register is used to: 

● Program the serial clock rate 

● Select one of the three protocols

● Select the data word size (where applicable) 

The Serial Clock Rate (SCR) value, in conjunction with the SSP_PR clock prescale divisor 
value (CPSDVSR), is used to derive the SSP transmit and receive bit rate from the external 
SCLK. 

The frame format is programmed through the FRF bits and the data word size through the 
DSS bits.

Bit phase and polarity, applicable to Motorola SPI format only, are programmed through the 
CPHA and CPOL bits.

10.4.4 Programming the SSP_CR1 control register

The SSP_CR1 register is used to: 

● Select master or slave mode 

● Enable a loop back test feature 

● Enable the SSP peripheral 

To configure the SSP as a master, clear the SSP_CR1 register master or slave selection bit 
(MS) to 0, which is the default value on reset. 

Setting the SSP_CR1 register MS bit to 1 configures the SSP as a slave. When configured 
as a slave, enabling or disabling of the MISO output signal is provided through the 
SSP_CR1 slave mode MISO output disable bit (SOD). This can be used in some multi-slave 
environments where masters might parallel broadcast.



   
   

   

Synchronous serial peripheral (SSP) RM0006

280/488  Doc ID 13742 Rev 4

To enable the operation of the SSP set the Synchronous Serial Port Enable (SSE) bit to 1.

10.4.5 Clock ratios

There is a constraint on the ratio of the frequencies of PCLK and SSPCLK (BRCLK). The 
frequency of SSPCLK must be less than or equal to that of PCLK. This ensures that control 
signals from the BRCLK domain to the PCLK domain are certain to get synchronized before 
on frame duration. 

fBRCLK<=fPCLK

There is another constraint on the ratio of the frequencies of BRCLK to SCLK. To ensure 
correct device operation, BRCLK must be at least 12 times faster than the maximum 
expected frequency of SCLK in slave mode, and at least 2 times faster than the maximum 
expected frequency of SCLK in master mode.

To generate a maximum bit rate of 1.8432 Mbps in Master mode, the frequency of BRCLK 
must be at least 3.6864 MHz. With a BRCLK frequency of 3.6864 MHz, the SSP_PR 
register has to be programmed with a value of two and the SCR[7:0] field in the SSP_CR0 
register needs to be programmed as zero. 

To work with a maximum bit rate of 1.8432 Mbps in the slave mode, the frequency of BRCLK 
must be at least 22.12 MHz. With an BRCLK frequency of 22.12 MHz, the SSP_PR register 
can be programmed with a value of 12 and the SCR[7:0] field in the SSP_CR0 register can 
be programmed as zero. Similarly the ratio of BRCLK maximum frequency to SCLK 
minimum frequency is 254 x 256.

The minimum frequency of BRCLK is governed by the following equations, both of which 
have to be satisfied:

● fBRCLK(min) => 2 x fSCLK(max) [for master mode]

● fBRCLK(min) => 12 x fSCLK(max) [for slave mode]

The maximum frequency of BRCLK is governed by the following equations, both of which 
have to be satisfied:

● fBRCLK(max) <= 254 x 256 x fSCLK(min) [for master mode]

● fBRCLK(max) <= 254 x 256 x fSCLK(min) [for slave mode]

10.4.6 Bit rate generation

The serial bit rate is derived by dividing down the input clock BRCLK. The clock is first 
divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in 
SSP_PR. The clock is further divided by a value from 1 to 256, which is 1 + SCR, where 
SCR is the value programmed in SSP_CR0.

The frequency of the output signal bit clock SCLK is defined below:

fSCLK=fBRCLK / (CPSDVR * (1+SCR))

For example, if BRCLK is 3.6864 MHz, and CPSDVSR = 2, then SCLK has a frequency 
range from 7.2 kHz to 1.8432 MHz.



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 281/488

   
   

   

10.4.7 Frame format

Each data frame is between 4 and 16 bits long depending on the size of data programmed, 
and is transmitted starting with the MSB. There are three basic frame types that can be 
selected:

● Texas Instruments synchronous serial

● Motorola SPI

● National Semiconductor Microwire

For all three formats, the serial clock (SCLK) is held inactive while the SSP is idle, and 
transitions at the programmed frequency only during active transmission or reception of 
data. The idle state of SCLK is utilized to provide a receive timeout indication that occurs 
when the receive FIFO still contains data after a timeout period.

For Motorola SPI and National Semiconductor Microwire formats, the slave select (NSS) pin 
is active LOW, and is asserted (pulled down) during the entire transmission of the frame. 

For Texas Instruments synchronous serial frame format, the NSS pin is pulsed for one serial 
clock period starting at its rising edge, prior to the transmission of each frame. For this frame 
format, both the SSP and the off-chip slave device drive their output data on the rising edge 
of SCLK, and latch data from the other device on the falling edge.

Texas Instruments synchronous serial frame format

Figure 70 shows the Texas Instruments synchronous serial frame format for a single 
transmitted frame.

Figure 70. TI synchronous serial frame format (single transfer)

In this mode, SCLK and NSS are forced LOW, and the transmit data line is tristated 
whenever the SSP is idle. Once the bottom entry of the transmit FIFO contains data, NSS is 
pulsed HIGH for one SCLK period. The value to be transmitted is also transferred from the 
transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of 
SCLK, the MSB of the 4 to 16-bit data frame is shifted out on the Transmit (MOSI) pin. 
Likewise, the MSB of the received data is shifted onto the Receive (MISO) pin by the off-chip 
serial slave device.

Both the SSP and the off-chip serial slave device then clock each data bit into their serial 
shifter on the falling edge of each SCLK. The received data is transferred from the serial 
shifter to the receive FIFO on the first rising edge of SCLK after the LSB has been latched.

Figure 71 shows the Texas Instruments synchronous serial frame format when back-to-back 
frames are transmitted.

4 to 16 bits

MSB LSB



   
   

   

Synchronous serial peripheral (SSP) RM0006

282/488  Doc ID 13742 Rev 4

Figure 71. TI synchronous serial frame format (continuous transfer)

Note: When configured in TI slave mode, the internal SSPx SCLK clock rate must be configured 
(using SSPx_CRO and SSPx_PR registers) to match the SCLK clock rate of the external 
master. This does not apply in Motorola SPI slave mode where there is no need to configure 
the internal slave clock rate. Consequently, in this mode, a slave can connect to a master 
without knowing the SPI clock rate.

Motorola SPI frame format

The Motorola SPI interface is a four-wire interface where the NSS signal behaves as a slave 
select. The main feature of the Motorola SPI format is that the inactive state and phase of 
the SCLK signal are programmable through the CPOL and CPHA bits in the SSP_CR0 
control register.

CPOL, clock polarity

When the CPOL clock polarity control bit is LOW, it produces a steady state low value on the 
SCLK pin. If the CPOL clock polarity control bit is HIGH, a steady state high value is placed 
on the SCLK pin when data is not being transferred.

CPHA, clock phase

The CPHA control bit selects the clock edge that captures data and allows it to change 
state. It has the most impact on the first bit transmitted by either allowing or not allowing a 
clock transition before the first data capture edge.

When the CPHA phase control bit is LOW, data is captured on the first clock edge transition. 
If the CPHA clock phase control bit is HIGH, data is captured on the second clock edge 
transition. 

Note: The idle state of SCLK must correspond to the polarity selected in the SPICSR register (by 
pulling up SCLK if CPOL = 1 or pulling down SCLK if CPOL = 0).

Figure 72, shows an SPI transfer with the four combinations of the CPHA and CPOL bits. 
The diagram may be interpreted as a master or slave timing diagram where the SCLK pin, 
the MISO pin, the MOSI pin are directly connected between the master and the slave 
device.

SCK

NSS

MOSI/
MISO

MSB LSB

4 to 16 bits



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 283/488

   
   

   

Figure 72. Motorola SPI frame format 

1. This figure should not be used as a replacement for parametric information.

2. Refer to the Electrical Characteristics chapter.

National Semiconductor Microwire frame format

Figure 73 shows the National Semiconductor Microwire frame format, again for a single 
frame. Figure 74 on page 285 shows the same format when back to back frames are 
transmitted. 

SCLK 

MSBit LSBit

MSBit LSBit

MISO
(from master)

MOSI
(from slave)

NSS

(to slave)

CAPTURE STROBE

CPHA =1

MSBit LSBit

MSBit LSBit

MISO
(from master)

MOSI

NSS
(to slave)

CAPTURE STROBE

CPHA =0

(from slave)

(CPOL = 1)

SCLK
(CPOL = 0)

SCLK
(CPOL = 1)

SCLK
(CPOL = 0)

4 to 16 bits

4 to 16 bits



   
   

   

Synchronous serial peripheral (SSP) RM0006

284/488  Doc ID 13742 Rev 4

Figure 73. Microwire frame format (single transfer)

Microwire format is very similar to SPI format, except that transmission is half-duplex instead 
of full-duplex, using a master-slave message passing technique. Each serial transmission 
begins with an 8-bit control word that is transmitted from the SSP to the off-chip slave 
device. During this transmission, no incoming data is received by the SSP. After the 
message has been sent, the off-chip slave decodes it and, after waiting one serial clock 
after the last bit of the 8-bit control message has been sent, responds with the required data. 
The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 
to 25 bits.

In this configuration, during idle periods: 

● the SCLK signal is forced LOW 

● NSS is forced HIGH 

● the transmit data line MOSI/MISO is arbitrarily forced LOW

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of 
NSS causes the value contained in the bottom entry of the transmit FIFO to be transferred 
to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be 
shifted out onto the MOSI pin. NSS remains LOW for the duration of the frame transmission. 
The data input MISO pin remains tristated during this transmission. 

The off-chip serial slave device latches each control bit into its serial shifter on the rising 
edge of each SCLK. After the last bit is latched by the slave device, the control byte is 
decoded during a one clock wait-state, and the slave responds by transmitting data back to 
the SSP. Each bit is driven onto MISO input line on the falling edge of SCLK. The SSP in 
turn latches each bit on the rising edge of SCLK. At the end of the frame, for single transfers, 
the NSS signal is pulled HIGH one clock period after the last bit has been latched in the 
receive serial shifter, that causes the data to be transferred to the receive FIFO. 

The off-chip slave device can tristate the receive line either on the falling edge of SCLK after 
the LSB has been latched by the receive shifter, or when the NSS pin goes HIGH.

For continuous transfers, data transmission begins and ends in the same manner as a 
single transfer. However, the NSS line is continuously asserted (held LOW) and 
transmission of data occurs back to back. The control byte of the next frame follows directly 
after the LSB of the received data from the current frame. Each of the received values is 
transferred from the receive shifter on the falling edge SCLK, after the LSB of the frame has 
been latched into the SSP.

SCLK

NSS

LSBMSBMISO
4 to 16 bits
output data

0

MOSI MSB LSB

8-bit control



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 285/488

   
   

   

Figure 74. Microwire frame format (continuous transfers) 

10.4.8 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory 
buffer. When software writes data to the SSP Data Register (SSP_DR), it is stored in the 
buffer until read out by the transmit logic.

When configured as a master or a slave parallel data is written into the transmit FIFO prior 
to serial conversion and transmission to the attached slave or master respectively, through 
the transmit pin (MOSI or MISO).

10.4.9 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. 
Received data from the serial interface are stored in the buffer until software reads the data 
from the SSP Data Register (SSP_DR).

When configured as a master or slave, serial data received through the receive pin (MOSI or 
MISO) is registered prior to parallel loading into the attached slave or master receive FIFO 
respectively.

8-bit control

SCLK

NSS

LSBMSBMISO
4 to 16 bits
output data

0

MOSI MSB LSBLSB

MSB



   
   

   

Synchronous serial peripheral (SSP) RM0006

286/488  Doc ID 13742 Rev 4

10.4.10 Interrupt control

Four individually maskable interrupt events are generated:

● A TX event requests servicing of the transmit buffer:

– The transmit interrupt is asserted when the number of valid entries in the transmit 
FIFO is less than or equal to four (when there is space for four or more entries). 

– The transmit interrupt can be enabled so that data can be written to the transmit 
FIFO by an interrupt service routine.

● An RX event requests servicing of the receive buffer:

– The receive interrupt is asserted when there are four or more valid entries in the 
receive FIFO

● An ROR event indicates an overrun condition in the receive FIFO

– The receive overrun interrupt is asserted when the FIFO is already full and an 
additional data frame is received, causing an overrun of the FIFO. Data is 
overwritten in the shift register, but not in the FIFO. The overrun interrupt flag can 
be cleared by writing to the RORIC bit in the SSP_ICR register if the 
corresponding mask bit RORIM in the SSP_IMSR register is set.

● An RT event indicates that a timeout period expired while data was present in the 
receive FIFO.

– The receive timeout interrupt is asserted when the receive FIFO is not empty and 
the SSP has remained idle for a fixed 32-bit period. This ensures that the user is 
aware that data is still present in the receive FIFO and requires servicing. This 
interrupt is deasserted if the receive FIFO becomes empty after one or more read 
accesses, or if new data is received. The timeout interrupt flag can be cleared by 
writing to the RTIC bit in the SSP_ICR register if the corresponding mask bit RTIM 
in the SSP_IMSCR register is set.



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 287/488

   
   

   

10.5 Register description
The registers can only accessed as 32-bit data. A byte or half-word cannot be read or 
written. In this section, the following abbreviations are used:

         

10.5.1 Control register 0 (SSP_CR0)

Address offset: 00h

Reset value: 0000 0000h

         

         

Read/write (rw) The software can read and write to these bits

Read-only (r) The software can only read these bits

Write-only (wo) The software can only write to these bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCR[7:0] CPHA CPOL FRF[1:0] DSS[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0

Bits 15:8

SCR[7:0]: Serial clock rate

This value is used to configure the transmit and receive bit rate of SCLK.
The bit rate is fBRCLK/(CPSDVR*(1+SCR)),
where CPSDVR is an even value from 2 to 254, programmed through the 
SSP_PR register and SCR is a value from 0 to 255.

Bit 7

CPHA: Serial clock phase

This bit is used to select the serial output clock phase (applicable only to 
Motorola SPI format).
0: Data is captured on first clock edge 
1: Data is captured on second clock edge

Bit 6

CPOL: Serial clock polarity

This bit is used to select the SCLK clock polarity (applicable only to Motorola SPI 
format).
0: SCLK is held low when no data is being transferred
1: SCLK is held high when no data is being transferred

Bits 5:4

FRF[1:0]: Frame format

00: Motorola SPI frame format
01: TI synchronous serial frame format
10: National Microwire frame format



   
   

   

Synchronous serial peripheral (SSP) RM0006

288/488  Doc ID 13742 Rev 4

10.5.2 Control register 1 (SSP_CR1)

Address offset: 04h

Reset value: 0000 0000h

         

         

Bits 3:0

DSS[3:0]: Data Size Select

000x: Reserved
0010: Reserved
0011: 4-bit data
0100: 5-bit data
0101: 6-bit data
0110: 7-bit data
0111: 8-bit data
1000: 9-bit data
1001: 10-bit data
1010: 11-bit data
1011: 12-bit data
1100: 13-bit data
1101: 14-bit data
1110: 15-bit data
1111: 16-bit data.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SOD MS SSE LBM

rw rw rw rw

Bits 31:4 Reserved, must be written with 0

Bit 3

SOD: Slave-mode output disable

This bit is relevant only in the slave mode (MS = 1). In multiple-slave systems, it 
is possible for an SSP master to broadcast a message to all slaves in the 
system while ensuring that only one slave drives data onto its serial output line. 
In such systems the data input lines from multiple slaves could be tied together. 
To operate in such systems, the SOD bit can be set if the SSP slave is not 
supposed to drive the serial data output line.
0: SSP can drive the serial data output in slave mode
1: SSP can not drive the serial data output in slave mode

Bit 2

MS: Master or slave mode select

This bit can be modified only when the SSP is disabled (SSE = 0).
0: Device configured as master (default)
1: Device configured as slave

Bit 1
SSE: SSP enable

0: SSP operation disabled
1: SSP operation enabled

Bit 0

LBM: Loop back mode

0: Normal serial port operation enabled
1: Output of transmit serial shifter is connected to input of receive serial shifter 
internally.



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 289/488

   
   

   

10.5.3 Data register (SSP_DR)

Address offset: 08h

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be written with 0

Bits 15:0 

DATA[15:0]: Transmit/Receive FIFO

When SSP_DR is read, the entry in the receive FIFO (pointed to by the 
current FIFO read pointer) is accessed. As data values are removed by the 
SSP receive logic from the incoming data frame, they are placed into the 
entry in the receive FIFO pointed to by the current FIFO write pointer.
When SSP_DR is written to, the entry in the transmit FIFO pointed to by the 
write pointer is written to. Data values are removed from the transmit FIFO 
one value at a time by the transmit logic. It is loaded into the transmit serial 
shifter, then serially shifted out onto the data output pin at the programmed 
bit rate.
When a data size of less than 16 bits is selected, the user must right-justify 
data written to the transmit FIFO. The transmit logic ignores the unused bits. 
Received data less than 16 bits is automatically right-justified in the receive 
buffer.
When the SSP is programmed for National Microwire frame format, the 
default size for transmit data is eight bits (the most significant byte is 
ignored). The receive data size is controlled by the application program. 
The transmit FIFO and the receive FIFO are not cleared even when SSE is 
set to zero. This allows the software to fill the transmit FIFO before enabling 
the SSP. 



   
   

   

Synchronous serial peripheral (SSP) RM0006

290/488  Doc ID 13742 Rev 4

10.5.4 Status register (SSP_SR)

Address offset: 0Ch

Reset value: 0000 0003h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved BSY RFF RNE TNF TFE

r r r r r

Bits 31:5 Reserved, must be written with 0

Bit 4

BSY: SSP Busy 

0: SSP is idle
1: SSP is currently transmitting and/or receiving a frame or the transmit FIFO 
is not empty

Bit 3
RFF: Receive FIFO full

0: Receive FIFO is not full
1: Receive FIFO is full

Bit 2
RNE: Receive FIFO not empty

0: Receive FIFO is empty
1: Receive FIFO is not empty

Bit 1
TNF: Transmit FIFO not full

0: Transmit FIFO is full
1: Transmit FIFO is not full

Bit 0
TFE: Transmit FIFO empty

0: Transmit FIFO is not empty
1: Transmit FIFO is empty



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 291/488

   
   

   

10.5.5 Clock prescaler register (SSP_PR)

Address offset: 10h

Reset value: 0000 0000h

         

         

10.5.6 Interrupt mask set and clear register (SSP_IMSCR)

Address offset: 14h

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CPSDVSR[7:0]

rw

Bits 31:8 Reserved, must be written with 0

Bits 7:0 CPSDVSR[7:0]: Clock prescaler divisor

These bits specify the division factor by which the input BRCLK must be 
divided for use by the SSP.
The value written to this register must be an even number between 2 and 
254. The least significant bit of the programmed number is hard-coded to 
zero. If an odd number is written to this register, data read back from this 
register has the least significant bit as zero. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TXIM RXIM RTIM RORIM

rw rw rw rw

Bits 31:4 Reserved, must written with 0

Bit 3
TXIM: Transmit FIFO interrupt mask

0: Tx FIFO half empty or less condition interrupt is masked
1: Tx FIFO half empty or less condition interrupt is not masked

Bit 2
RXIM: Receive FIFO interrupt mask

0: Rx FIFO half full or more condition interrupt is masked
1: Rx FIFO half full or more condition interrupt is not masked

Bit 1

RTIM: Receive timeout interrupt mask

0: RxFIFO not empty and no read prior to timeout period interrupt is masked
1: RxFIFO not empty and no read prior to timeout period interrupt is not 
masked.

Bit 0
RORIM: Receive overrun interrupt mask

0: RxFIFO written to while full condition interrupt is masked
1: RxFIFO written to while full condition interrupt is not masked



   
   

   

Synchronous serial peripheral (SSP) RM0006

292/488  Doc ID 13742 Rev 4

10.5.7 Raw interrupt status register (SSP_RISR)

Address offset: 18h

Reset value: 0000 0008h

         

         

10.5.8 Masked interrupt status register (SSP_MISR)

Address offset: 1Ch
Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TXRIS RXRIS RTRIS RORRIS

r r r r

Bits 31:4 Reserved, must written with 0

Bit 3
TXRIS: Transmit FIFO raw status flag

0: No TX FIFO event occurred 
1: A TX FIFO event occurred (prior to masking)

Bit 2
RXRIS: Receive FIFO raw status flag

0: No RX FIFO event occurred 
1: A RX FIFO event occurred (prior to masking)

Bit 1
RTRIS: Receive timeout raw status flag

0: No RX Timeout event occurred 
1: A RX Timeout event occurred (prior to masking)

Bit 0
RORRIS: Receive overrun raw status flag

0: No RX Overrun event occurred 
1: A RX Overrun event occurred (prior to masking)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TXMIS RXMIS RTMIS RORMIS

r r r r

Bits 31:4 Reserved, must be written with 0

Bit 3
TXMIS: Transmit FIFO masked status flag

0: No TX FIFO interrupt request (after masking)
1: TX FIFO interrupt request occurred (after masking)

Bit 2
RXMIS: Receive FIFO masked status flag

0: No RX FIFO interrupt request (after masking)
1: An RX FIFO interrupt request occurred (after masking)

Bit 1
RTMIS: Receive timeout masked status flag

0: No RX Timeout interrupt request (after masking)
1: RX Timeout interrupt request occurred (after masking)

Bit 0
RORMIS: Receive overrun masked status flag

0: No RX Overrun interrupt request (after masking)
1: RX Overrun interrupt request occurred (after masking)



RM0006 Synchronous serial peripheral (SSP)

Doc ID 13742 Rev 4 293/488

   
   

   

10.5.9 Interrupt clear register (SSP_ICR)

Address offset: 20h

Reset value: 0000 0000h

         

         

10.5.10 DMA control register (SSP_DMACR)

Address offset: 24h

Reset value: 0000 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RTIC RORIC

wo wo

Bits 31:2 Reserved, must be written with 0

Bit 1 
RTIC: Clear RX Timeout interrupt

0: No effect
1: Clear RX Timeout interrupt

Bit 0 
RORIC: Clear RX Overrun interrupt

0: No effect
1: Clear RX Overrun interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TXDMAE RXDMAE

rw rw

Bits 31: 2 Reserved, must be written with 0

Bit 1
TXDMAE: Transmit DMA enable

0: DMA for the transmit FIFO disabled
1: DMA for the transmit FIFO enabled

Bit 0
RXDMAE: Receive DMA enable

0: DMA for the receive FIFO disabled
1: DMA for the receive FIFO enabled



   
   

   

Synchronous serial peripheral (SSP) RM0006

294/488  Doc ID 13742 Rev 4

10.6 SSP register map
         

Refer to Table 5 on page 35 for the register base addresses. 

Table 26. SSP register map

Address 
offset

Register 
name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h SSP_CR0 SCR[7:0] CPHA CPOL FRF[1:0] DSS[3:0]

04h SSP_CR1 Reserved SOD MS SSE LBM

08h SSP_DR Data Register

0Ch SSP_SR Reserved BSY RFF RNE TNF TFE

10h SSP_PR Reserved Clock Prescaler Register

14h SSP_IMSCR Reserved
TX 
IM

RX 
IM

RT 
IM

RORIM

18h SSP_RISR Reserved
TX 
RIS

RX 
RIS

RT 
RIS

RORRIS

1Ch SSP_MISR Reserved
TX 
MIS

RX 
MIS

RT 
MIS

RORMIS

20h SSP_ICR Reserved RTIC RORIC

24h SSP_DMACR Reserved
TXD
MAE

RXDMAE

28h to 
7Ch

Reserved



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 295/488

   
   

   

11 Universal asynchronous receiver transmitter (UART)

11.1 Introduction
The UART interface provides serial communication between the STR91xF and other 
microcontrollers, microprocessors or external peripherals.

The UART supports full-duplex asynchronous communication. Five to eight bit data transfer, 
parity generation, and the number of stop bits are programmable. Parity, framing, and 
overrun error detection are provided to increase the reliability of data transfers. Transmission 
and reception of data can simply be double-buffered, or 16-deep FIFOs may be used. 
Testing is supported by a loop-back option. A programmable baud rate generator provides 
the UART with a separate serial clock signal. 

11.2 Main features
● Separate 16 x 8 transmit and 16 x 12 receive First-In First-Out memory buffers (FIFOs) 

to reduce CPU interrupts.

● Programmable FIFO disabling for 1-byte depth

● Programmable baud rate generator. This enables division of the reference clock by (1 x 
16) to (65535 x 16) and generates an internal x16 clock. The divider can be a fractional 
number enabling you to use any clock with a frequency >3.6864 MHz as the reference 
clock.

● Standard asynchronous communication bits (start, stop and parity). These are added 
prior to transmission and removed on reception.

● Independent masking of transmit FIFO, receive FIFO, receive timeout, CTS status, and 
error condition interrupts.

● Support for direct memory access (DMA)

● False start bit detection

● Programmable hardware flow control CTS and RTS

● Full modem interface (on UART0 only)

● IrDA Mode

● Fully-programmable serial interface characteristics:

– Data can be 5, 6, 7, or 8 bits

– Even, odd, stick, or no-parity bit generation and detection

– 1 or 2 stop bit generation

– Baud rate generation, dc up to BRCLK_max_freq/16



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

296/488  Doc ID 13742 Rev 4

11.3 Functional description
The UART supports full-duplex asynchronous communication, where both the transmitter 
and the receiver use the same data frame format and the same baud rate. Data is 
transmitted on the UART_TX pin and received on the UART_RX pin. 

A character frame (see Figure 75 and Figure 76) consists of:

● Five to eight data bits D4:0, D5:0, D6:0 or D7:0 (by setting the WLEN bits in 
UART_LCR).

● An optional parity bit if enabled by the PEN bit in the UART_LCR register

● One or two stop bits depending on the STP2 bit in the UART_LCR register

Figure 75. 8-bit data frames

Figure 76. 8-bit data frames with PEN = 1 and STP2 = 1

D0
LSB

D1 D2 D3 D4 D5 D6start stop
bit

D7
MSB

D0
LSB

D1 D2 D3 D4 D5 D6start
bit

parity
bit

D7
MSB

1st
stop
bit

2nd
stop
bit



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 297/488

   
   

   

11.3.1 Functional block diagram

Figure 77 shows the UART functional block diagram.

Figure 77. Block diagram

APB

interface

and 

register

block

A
PB

 B
us

DMA

interface

FIFO status
and 
interrupt
generation

Baud rate

generator

16 x 8

transmit 

FIFO

16 x 12

receive

FIFO

Transmitter

Receiver

DMA

Controller

Interrupt

Controller

BRCLK

Baud Rate Divider

Control and Status

Baud16

Write Data[7:0]

Read Data[11:0]

Trans
mit

Rece
ive

FIF

rxd[11:0]

txd[7:0]

UART_TX

UART_RX

UART_CTS

UART_RTS

UART interrupt

IRLPBaud16

IrDA LP Baud Rate Divider

UART_DSR

UART_DCD

UART_RI

Receive
Transmit
Receive Timeout
Clear to Send
Parity error
Overrun error
Break error

Data set ready
Data Carrier Detect
Ring Indicator

Framing error

SCU

System

Controller

IrDA Mode Control



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

298/488  Doc ID 13742 Rev 4

11.3.2 Fractional baud rate divider

The baud rate divider is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional 
part. It is used by the baud rate generator to determine the bit period. The fractional baud 
rate divider enables the use of any clock with a frequency >3.6864 MHz to act as BRCLK, 
while still being able to generate all the standard baud rates. The BRCLK clock is derived 
from the Master clock (fMSTR). The BRCLK frequency can either be the same or half of the 
Master clock. The clock divider is specified in the SCU_CLKCNTR register.

The 16-bit integer is loaded through the UART_IBRD register. The 6-bit fractional part is 
loaded into the UART_FBRD register. The Baud Rate Divider has the following relationship 
to the BRCLK frequency:

Baud Rate Divider BAUDDIV = Freq(BRCLK) / (16 x Baud Rate) = BRDI + BRDF

Where BRDI is the integer part and BRDF is the fractional part separated by a decimal point 
as shown in Figure 78.

Figure 78. Baud rate divider

You can calculate the 6-bit number (m) by taking the fractional part of the required baud rate 
divider and multiplying it by 64 (that is, 2n, where n is the width of the UART_FBRD register) 
and adding 0.5 to account for rounding errors:

m = integer(BRDF * 2n + 0.5)

An internal clock signal, Baud16, is generated, and is a stream of one BRCLK wide pulses 
with an average frequency of 16 times the desired baud rate. This signal is then divided by 
16 to give the transmit clock. A low number in the baud rate divider gives a short bit period, 
and a high number in the baud rate divider gives a long bit period.

Figure 79 is an example of how to calculate the divider value.

Figure 79. Calculating the divider value

16-bit integer 6-bit fractional part

Baud Rate Divider = (24 * 106)/(16 * 230400) = 6.51
Therefore, BRDI = 6 and BRDF = 0.51
Therefore, fractional part, m = integer((0.51 * 64) + 0.5) = 33   (21h)
Generated baud rate divider = 6 + 33/64 = 6.515625
Generated baud rate = (24 * 106)/(16 * 6.515625) = 230215
Error = (230215 - 230400)/230400 * 100 = -0.08 %
The maximum error using a 6-bit UART_FBRD register = 1/64 * 100 = 1.56 % 
This occurs when m = 1, and the error is cumulative over 64 clock ticks. 



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 299/488

   
   

   

Table 27 shows some typical bit rates and their corresponding dividers, given the UART 
clock (BRCLK) frequency of 96 MHz.

         

Table 28 shows some required bit rates and their corresponding integer and fractional 
divider values and generated bit rates with a clock frequency of 48 MHz.

         

Table 27. Typical baud rates and their corresponding integer and fractional
(dividers (BRCLK = 96 MHz)

Programmed divider 
(integer)

Programmed divider 
(fraction)

Required bit 
rate (bps)

Generated bit 
rate (bps)

Error (%)

1Ah 03h 230400 230353.93 -0.02 %

34h 05h 115200 115211.52 0.01 %

4Eh 08h 76800 76800.00 0.00 %

9Ch 10h 38400 38400.00 0.00 %

138h 20h 19200 19200.00 0.00 %

1A0h 2Bh 14400 14399.82 0.00 %

271h 00h 9600 9600.00 0.00 %

9C4h 00h 2400 2400.00 0.00 %

D511h 1Dh 110 110.00 0.00 %

Table 28. Typical baud rates and their corresponding integer and fractional
dividers (BRCLK = 48 MHz)

Programmed divider 
(integer)

Programmed divider 
(fraction)

Required bit 
rate (bps)

Generated bit 
rate (bps)

Error (%)

0Dh 01h 230400 230492.20 0.04 %

1Ah 03h 115200 115176.96 -0.02 %

27h 04h 76800 76800.00 0.00 %

4Eh 08h 38400 38400.00 0.00 %

9Ch 10h 19200 19200.00 0.00 %

D0h 15h 14400 14400.36 0.00 %

138h 20h 9600 9600.00 0.00 %

4E2h 00h 2400 2400.00 0.00 %

6A88h 2Fh 110 110.00 0.00 %



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

300/488  Doc ID 13742 Rev 4

Table 29 shows some required bit rates and their corresponding integer and fractional 
divider values and generated bit rates given a clock frequency of 24 MHz.

         

11.3.3 Data transmission or reception

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an 
extra four bits per character for status information.

For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a 
data frame to start transmitting with the parameters indicated in the UART_LCR register. 
Data continues to be transmitted until there is no data left in the transmit FIFO. 

The BUSY bit in the UART_FR register goes HIGH as soon as data is written to the transmit 
FIFO (that is, the FIFO is not empty) and remains asserted HIGH while data is being 
transmitted. BUSY is negated only when the transmit FIFO is empty, and the last character 
has been transmitted from the shift register, including the stop bits. BUSY can be asserted 
HIGH even though the UART might no longer be enabled.

For each sample of data, three readings are taken and the majority value is kept. In the 
following paragraphs the middle sampling point is defined, and one sample is taken either 
side of it.

When the receiver is idle (the UART_RX pin continuously 1, in the marking state) and a 
LOW is detected on the data input (a start bit has been received), the receive counter, with 
the clock enabled by Baud16, begins running and data is sampled on the eighth cycle of that 
counter. 

The start bit is valid if the UART_RX pin is still LOW on the eighth cycle of Baud16, 
otherwise a false start bit has been detected and is ignored.

If the start bit is valid, successive data bits are sampled on every 16th cycle of Baud16 (that 
is, one bit period later) according to the programmed length of the data characters. The 
parity bit is then checked if parity mode is enabled. 

Lastly, a valid stop bit is confirmed if the UART_RX pin is HIGH (otherwise a framing error 
has occurred). When a full word is received, the data is stored in the receive FIFO, with any 
error bits associated with that word.

Table 29. Typical baud rates and their corresponding integer and fractional
dividers (BRCLK = 24 MHz)

Programmed divider 
(integer)

Programmed divider 
(fraction)

Required bit 
rate (bps)

Generated bit 
rate (bps)

Error (%)

06h 21h 230400 230215.83 -0.08 %

0Dh 01h 115200 115246.10 0.04 %

13h 22h 76800 76800.00 0.00 %

27h 04h 38400 38400.00 0.00 %

4Eh 08h 19200 19200.00 0.00 %

68h 0Bh 14400 14399.28 0.00 %

9Ch 10h 9600 9600.00 0.00 %

271h 00h 2400 2400.00 0.00 %

3544h 17h 110 110.00 0.00 %



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 301/488

   
   

   

Error bits

Three error bits are stored in bits [10:8] of the receive FIFO, and are associated with a 
particular character. There is an additional error that indicates an overrun error and this is 
stored in bit 11 of the receive FIFO.

Overrun bit

The overrun bit is not associated with the character in the receive FIFO. The overrun error is 
set when the FIFO is full, and the next character is completely received in the shift register. 
The data in the shift register is overwritten, but it is not written into the FIFO. When an empty 
location is available in the receive FIFO, and another character is received, the state of the 
overrun bit is copied into the receive FIFO along with the received character. The overrun 
state is then cleared. Table 30 shows the bit functions of the receive FIFO.

         

Disabling the FIFOs

Additionally, you can disable the FIFOs. In this case, the transmit and receive sides of the 
UART have 1-byte holding registers (the bottom entry of the FIFOs). The overrun bit is set 
when a word has been received and the previous one has not yet been read. 

In this implementation, the FIFOs are not physically disabled, but the flags are manipulated 
to give the illusion of a 1-byte register. 

System and diagnostic loop-back testing

You can perform loop-back testing for UART data by setting the Loop Back Enable (LBE) bit 
to 1 in the control register UART_CR (bit 7).

Data transmitted on the UART_TX pin is received on the UART_RX input.

11.3.4 UART hardware flow control

The hardware flow control feature is fully selectable and enables you to control the serial 
data flow by using the UART_RTS output and UART_CTS input signals. Figure 80 shows 
how two devices can communicate with each other using hardware flow control.

Table 30. Receive FIFO bit functions

FIFO bit Function

11 Overrun indicator

10 Break error

9 Parity error

8 Framing error

7:0 Received data



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

302/488  Doc ID 13742 Rev 4

Figure 80. Hardware flow control between two similar devices

When the RTS flow control is enabled, the UART_RTS signal is asserted until the receive 
FIFO is filled up to the programmed watermark level. When the CTS flow control is enabled, 
the transmitter can only transmit data when the UART_CTS signal is asserted.

The hardware flow control is selectable through bits 14 (RTSEn) and 15 (CTSEn) in the 
UART_CR register (UART_CR). Table 31 shows how you must set the bits to enable RTS 
and CTS flow control both simultaneously and independently.

         

When RTS flow control is enabled, the software cannot control the UART_RTS pin through 
bit 11 of the UART_CR register.

RTS flow control

The RTS flow control logic is linked to the programmable receive FIFO watermark levels. 
When RTS flow control is enabled, the UART_RTS signal is asserted until the receive FIFO 
is filled up to the watermark level. When the receive FIFO watermark level is reached, the 
UART_RTS signal is de-asserted, indicating that there is no more room to receive any more 
data. The transmission of data is expected to cease after the current character has been 
transmitted.

The UART_RTS signal is re-asserted when data has been read out of the receive FIFO so 
that it is filled to less than the watermark level. If RTS flow control is disabled and the UART 
is still enabled, then data is received until the receive FIFO is full, otherwise no more data is 
transmitted to it.

Table 31. Control bits to enable and disable hardware flow control

CTSEn bit 15 in 
UART_CR

RTSEn bit 14 in 
UART_CR

Description

1 1 Both RTS and CTS flow control enabled

1 0 Only CTS flow control enabled

0 1 Only RTS flow control enabled

0 0 Both RTS and CTS flow control disabled

nUARTRTS nUARTRTS

nUARTCTS nUARTCTS

Rx FIFO

and

flow control

UART1

Tx FIFO

and

flow control

Rx FIFO

and

flow control

UART2

Tx FIFO

and

flow control



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 303/488

   
   

   

CTS flow control

If CTS flow control is enabled, then the transmitter checks the UART_CTS signal before 
transmitting the next byte. If the UART_CTS signal is asserted, it transmits the byte, 
otherwise transmission does not occur.

11.3.5 IrDA mode

IrDA mode is supported by UART0, 1 and 2. 

To select IrDA mode, set the corresponding UART_IRDA bit in the System configuration 
register 0 (SCU_SCR0) on page 108.

Program the baud rate by writing to the IrDA low power counter divisor register 
(UART_ILPR) on page 308.

Communication is performed via the UART_RX and UART_TX pins. 

11.3.6 Interrupts

There are 11 maskable interrupts generated within the UART. These are combined to one 
interrupt output, which is the OR of the individual interrupts.

You can enable or disable the individual interrupts by changing the mask bits in the 
UART_IMSC register. Setting the appropriate mask bit to HIGH enables the interrupt.

The status of the individual interrupt sources can be read from either UART_RIS, for raw 
interrupt status, or from UART_MIS, for the masked interrupt status.

The individual interrupt is cleared by setting the corresponding bit of UART_ICR.

         

Table 32. Status of individual interrupt sources

Interrupt event
Event flag 
UART_RIS

Enable control 
bit UART_IMSC

Masked interrupt 
status UART_MIS

Interrupt clear 
UART_ICR

Receive Interrupt RXRIS RXIM RXMIS RXIC

Transmit Interrupt TXRIS TXIM TXMIS TXIC

Receive Timeout Interrupt RTRIS RTXIM RTXMIS RTXIC

Framing Interrupt FERIS FEIM FEMIS FEIC

Parity Error Interrupt PERIS PEIM PEMIS PEIC

Break Error Interrupt BERIS BEIM BEMIS BEIC

Overrun Error Interrupt OERIS OEIM OEMIS OEIC

Data Set Ready Modem Interrupt DSRRIS DSRIM DSRSMIS DSRIC

Data Carrier Detect Modem Interrupt DCDRIS DCDIM DCDSMIS DCDIC

CTS Interrupt CTSRIS CTSIM CTSMIS CTSIC

Ring Indicator Modem Interrupt RIRIS RIIM RIMIS RIIC



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

304/488  Doc ID 13742 Rev 4

11.4 Register description
In this section, the following abbreviations are used:

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Write-only (w) Software can only write these bits

Read/clear (rc) Software can read as well as clear this bit by writing any value

Read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on 
the bit value



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 305/488

   
   

   

11.4.1 Data register (UART_DR)

Address offset: 00h 

Reset value: ----h

         

         

For words to be transmitted:

● If the FIFOs are enabled, data written to this location is pushed onto the transmit FIFO.

● If the FIFOs are not enabled, data is stored in the transmitting holding register (the 
bottom word of the transmit FIFO).

● The write operation initiates transmission from the UART. The data is prefixed with a 
start bit, appended with the appropriate parity bit (if parity is enabled), and a stop bit. 
The resultant word is then transmitted.

For received words:

● If the FIFOs are enabled, the data byte and the 4-bit status (break, frame, parity, and 
overrun) are pushed onto the 12-bit-wide receive FIFO.

● If the FIFOs are not enabled, the data byte and status are stored in the receiving 
holding register (the bottom word of the receive FIFO).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved OE BE PE FE DATA

r r r r rw rw rw rw rw rw rw rw

Bits 15:12 Reserved, forced by hardware to 0

Bit 11
OE: Overrun Error

0: No Overrun Error
1: Overrun Error: data is received while the receive FIFO is already full

Bit 10

BE: Break Error

0: No Break Error
1: Break Error: the received data input was held LOW for longer than a full-word 
transmission time.
Note: In FIFO mode, this error is associated with the character at the top of the 
FIFO.

Bit 9

PE: Parity Error
0: No Parity Error
1: Parity Error: the parity of the received data character did not match the parity 
selected as defined by bits 2 and 7 of the UART_LCR register.
Note: In FIFO mode, this error is associated with the character at the top of the 
FIFO.

Bit 8
FE: Framing Error

0: No Framing Error
1: Framing Error: the received character did not have a valid stop bit

Bits 7:0
DATA: 

Receive (read) data character
Transmit (write) data character



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

306/488  Doc ID 13742 Rev 4

11.4.2 Receive status register/error clear register(UART_RSECR)

Address offset: 04h 

Reset value: 0000h

         

         

Note: The received data character must first be read from the UART_DR register before reading 
the error status associated with that data character from the UART_RSECR register. This 
read sequence cannot be reversed, because the UART_RSECR register is updated only 
when a read occurs from the UART_DR register. However, the status information can also 
be obtained by reading the UART_DR register. The status information for overrun is set 
immediately when an overrun condition occurs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved OE BF PE FE

rc rc rc rc

Bits 15:4 Reserved, forced by hardware to 0

Bit 3

OE: Overrun Error

0: No Overrun Error
1: Overrun Error: data is received while the receive FIFO is already full
This bit is cleared to 0 by a write to UART_RSECR.
Note: The FIFO contents remain valid since no further data is written when the 
FIFO is full, only the contents of the shift register are overwritten. The CPU must 
now read the data in order to empty the FIFO.

Bit 2

BF: Break Flag

0: No Break Error
1: Break Error: a break condition was detected, indicating that the received data 
input was held LOW for longer than a full-word transmission time (defined as start, 
data, parity and stop bits).
This bit is cleared to 0 by a write to UART_RSECR.
Note: In FIFO mode, this error is associated with the character at the top of the 
FIFO. When a break occurs, only one 0 character is loaded into the FIFO. The 
next character is only enabled after the receive data input goes to a 1 (marking 
state) and the next valid start bit is received.

Bit 1

PE: Parity Error

0: No Parity Error
1: Parity Error: the parity of the received data character does not match the parity 
selected as defined by bits 2 and 7 of the UART_LCR register.
This bit is cleared to 0 by a write to UART_RSECR.
Note: In FIFO mode, this error is associated with the character at the top of the 
FIFO.

Bit 0

FE: Framing Error

0: No Framing Error
1: Framing Error: the received character did not have a valid stop bit (a valid stop 
bit being 1).
This bit is cleared to 0 by a write to UART_RSECR.
Note: In FIFO mode, this error is associated with the character at the top of the 
FIFO.



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 307/488

   
   

   

11.4.3 Flag register (UART_FR)

Address offset: 18h

Reset value: 0000 0000 1001 0xxxb

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RI TXFE RXFF TXFF RXFE BUSY DCD DSR CTS

r r r r r r r r r

Bits 15:8 Reserved, forced by hardware to 0

Bit 8
RI: Ring indicator status

This bit is the complement of the UART0_RI input pin. That is the bit is 1 when the 
pin status is 0.

Bit 7

TXFE: Transmit FIFO Empty

The meaning of this bit depends on the state of the FEN bit in the UART_LCR 
register. If the FIFO is disabled, this bit is set when the transmit holding register is 
empty. If the FIFO is enabled, the TXFE bit is set when the transmit FIFO is 
empty.

Bit 6

RXFF: Receive FIFO Full
The meaning of this bit depends on the state of the FEN bit in the UART_LCR 
register. If the FIFO is disabled, this bit is set when the receive holding register is 
full. If the FIFO is enabled, the RXFF bit is set when the receive FIFO is full.

Bit 5

TXFF: Transmit FIFO Full

The meaning of this bit depends on the state of the FEN bit in the UART_LCR 
register. If the FIFO is disabled, this bit is set when the transmit holding register is 
full. If the FIFO is enabled, the TXFF bit is set when the transmit FIFO is full.

Bit 4

RXFE: Receive FIFO Empty

The meaning of this bit depends on the state of the FEN bit in the UART_LCR 
register. If the FIFO is disabled, this bit is set when the receive holding register is 
empty. If the FIFO is enabled, the RXFE bit is set when the receive FIFO is empty.

Bit 3

BUSY: UART Busy
If this bit is set to 1, the UART is busy transmitting data. This bit remains set until 
the complete byte, including all the stop bits, has been sent from the shift register. 
This bit is set as soon as the transmit FIFO becomes non-empty (regardless of 
whether the UART is enabled or not). 

Bit 2
DCD: Data Carrier Detect

This bit is the complement of the UART0_DCD input pin. That is the bit is 1 when 
the pin status is 0.

Bit 1
DSR: Data Set Ready

This bit is the complement of the UART0_DSR input pin. That is the bit is 1 when 
the pin status is 0.

Bit 0
CTS: Clear To Send

This bit is the complement of the UART0_CTS input pin, that is, the bit is 1 when 
the pin status is 0.



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

308/488  Doc ID 13742 Rev 4

11.4.4 IrDA low power counter divisor register (UART_ILPR)

Address offset: 20h 

Reset value: 0000h

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ILPDVSR[7:0]

rw rw rw rw rw rw rw rw

Bits 15:1 Reserved, forced by hardware to 0

Bits 7:0

ILPDVSR[7:0]: IrDA Low Power Counter Divisor 

These bit are written by software to define the low power counter divisor value 
used to generate the IrLPBaud16 frequency from BRCLK.
The low-power divisor value is calculated as follows:
low-power divisor (ILPDVSR) = (fBRCLK / fIrLPBaud16)
where FIrLPBaud16 is nominally 1.8432 MHz.
You must chose the divisor so that 1.42 MHz < fIrLPBaud16 < 2.12 MHz, that results 
in a low-power pulse duration of 1.41-2.11µs (three times the period of 
IrLPBaud16).
The minimum frequency of IrLPBaud16 ensures that pulses less than one period 
of IrLPBaud16 are rejected, but that pulses greater than 1.4µs are accepted as 
valid pulses.
Note: Zero is an illegal value.  Programming a zero value results in no 
IrLPBaud16 pulses being generated.



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 309/488

   
   

   

11.4.5 Integer baud rate register (UART_IBRD)

Address offset: 24h 

Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BAUD DIVINT

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

BAUD DIVINT: Integer Baud Rate Divider
The baud rate divisor value BAUDDIV is comprised of the integer value BAUD 
DIVINT and the fractional value BAUD DIVFRAC
BAUDDIV is calculated as follows:
BAUDDIV= (fBRCLK / 16 * baud rate)
Refer to Figure 79: Calculating the divider value for an example.
Notes: In order to internally update the contents of the UART_IBRD register, a 
write to the UART_LCR register must always be performed at the end.
The baud rate must not be changed:
- When the UART is enabled
- When completing a transmission or reception when it has been programmed to 
become disabled.
The minimum possible divide ratio is 1 and the maximum is 65535(216 - 1). When 
this is the case, UART_IBRD = 0 is invalid and UART_FBRD is ignored.
Similarly, when UART_IBRD = 65535 (that is 0xFFFF), then UART_FBRD must 
not be greater than zero. If this is exceeded , the result is an aborted transmission 
or reception.



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

310/488  Doc ID 13742 Rev 4

11.4.6 Fractional baud rate register (UART_FBRD)

Address offset: 28h 

Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BAUD DIVFRAC

rw rw rw rw rw rw

Bits 15:6 Reserved, forced by hardware to 0

Bits 5:0

BAUD DIVFRAC: Fractional Baud Rate Divider
Notes: In order to internally update the contents of UART_FBRD, a UART_LCR 
write must always be performed at the end.
The baud rate must not be changed: 
- When the UART is enabled.
- When completing a transmission or reception when it has been programmed to 
become disabled.
The minimum divide ratio possible is 1 and the maximum is 65535(216 - 1). When 
this is the case, UART_IBRD = 0 is invalid and UART_FBRD is ignored.
Similarly, when UART_IBRD = 65535 (that is 0xFFFF), then UART_FBRD must 
not be greater than zero. If this is exceeded, the result is an aborted transmission 
or reception.



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 311/488

   
   

   

11.4.7 Line control register (UART_LCR)

Address offset: 2Ch 

Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SPS WLEN FEN STP2 EPS PEN BRK

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0

Bit 7

SPS: Stick Parity Select

When bits 1, 2, and 7 of the UART_LCR register are set, the parity bit is 
transmitted and checked as a 0. When bits 1 and 7 are set, and bit 2 is 0, the 
parity bit is transmitted and checked as a 1. When this bit is cleared stick parity is 
disabled. Table 33 on page 312 is a truth table showing the SPS, EPS and PEN 
bits.

Bits 6:5

WLEN: Word Length
The selected bits indicate the number of data bits transmitted or received in a 
frame as follows:
11 = 8 bits
10 = 7 bits
01 = 6 bits
00 = 5 bits

Bit 4 

FEN: Enable FIFOs

0: FIFOs disabled (character mode): the FIFOs become 1-byte-deep holding 
registers.
1: FIFOs enabled.

Bit 3

STP2: Two Stop Bits Select

0: One stop bit is transmitted at the end of the frame.
1: Two stop bits are transmitted at the end of the frame. 
Note: The receive logic does not check for two stop bits being received.

Bit 2

EPS: Even Parity Select

0: Odd parity: checks for an odd number of ‘1s’ in data and parity bits. 
1: Even parity: checks for an even number of ‘1s’ in data and parity bits. 
Notes: 
- Generation and checking is performed during transmission and reception
- This bit has no effect when parity is disabled by Parity Enable (bit 1) being 
cleared to 0. Table 33 on page 312 is a truth table showing the SPS, EPS and 
PEN bits.



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

312/488  Doc ID 13742 Rev 4

Note: The line control register must not be changed :
- when the UART is enabled.
- when completing a transmission or a reception when it has been programmed to become 
disabled.

Table 33 is a truth table for the SPS, EPS and PEN bits of the UART_LCR register.

         

The integrity of the FIFO is not guaranteed if the software disables the UART in the middle 
of a transmission with data in the FIFO, and then re-enables it.

Bit 1
PEN: Parity Enable

0: Parity checking and generation disabled
1: Parity checking and generation enabled (refer to Table 33)

Bit 0

BRK: Send Break

0: Normal mode
1: Send Break, this continually outputs a low-level on the UART_TXD pin, after 
completing transmission of the current character. For proper execution of the 
break command, the software must set this bit for at least two complete frames. 
This bit cannot be written when the STP2 bit is set. (Break feature is not available 
in “2 stop bits” mode).
The break is sent before or after the data depending on these two cases:  
- If a transmission is on-going, the break character will be sent at the end of the 
current transmission.
- If the transmission has not started yet, the break will be inserted first.

Table 33. SPS, EPS and PEN bits truth table

Parity Enable 
(PEN)

Even Parity Select 
(EPS)

Stick Parity Select 
(SPS)

Parity bit 
(transmitted or checked)

0 x x Not transmitted or checked

1 1 0 Even parity

1 0 0 Odd parity

1 0 1 1

1 1 1 0



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 313/488

   
   

   

11.4.8 Control register (UART_CR)

Address offset: 30h

Reset value: 0300h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTS
En

RST
En

Reserved RTS DTR RXE TXE LBE Reserved
SIRL

P
SIR 
EN

UART 
EN

rw rw rw rw rw rw rw rw rw rw

Bit 15

CTSEn: CTS Hardware Flow Control Enable

0: CTS hardware flow control disabled
1: CTS hardware flow control enabled: Data is only transmitted when the 
UART_CTS signal is asserted.

Bit 14

RTSEn: RTS Hardware Flow Control Enable

0: RTS hardware flow control disabled
1: RTS hardware flow control enabled: Data is only requested when there is 
space in the receive FIFO for it to be received.

Bits 13:12 Reserved, forced by hardware to 0

Bit 11
RTS: Request to Send

This bit is the complement of the UART request to send (UART_RTS) modem 
status output. That is, when the bit is programmed to a 1, the output is 0.

Bit 10
DTR: Data Transmit Ready

This bit is the complement of the UART Data Transmit Ready (UART_DTR) 
modem status output. That is, when the bit is programmed to a 1, the output is 0.

Bit 9

RXE: Receive Enable
0: Receive section of the UART disabled
1: Receive section of the UART enabled
Note: When the UART is disabled in the middle of reception, it completes the 
current character before stopping. 

Bit 8

TXE: Transmit Enable

0: Transmit section of the UART disabled
1: Transmit section of the UART enabled
Note: When the UART is disabled in the middle of transmission, it completes the 
current character before stopping.

Bit 7

LBE: Loop Back Enable

0: Loop Back disabled
1: Loop Back enabled: UART_TX is fed to UART_RX and UART_RTS is fed to 
UART_CTS. 

Bits 6:3 Reserved, forced by hardware to 0

Bit 2

SIRLP: IrDA SIR Low power mode enable

0: Low-level bits are transmitted as an active high pulse with a width of 3/16th of 
the bit period .
1: Low-level bits are transmitted with a pulse width which is 3 times the period of 
the IrLPBaud16 clock, regardless of the selected bit rate. 
Note: Setting this bit uses less power, but might reduce transmission distances



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

314/488  Doc ID 13742 Rev 4

The control register must be programmed as follows:

● Disable the UART

● Wait for the end of transmission or reception of the current character

● Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register 
(UART_LCR)

● Reprogram the control register

● Enable the UART

Bit 1

SIREN: IrDA SIR enable

This bit set set and cleared by software.
0: IrDA SIR ENDEC disabled
1: IrDA SIR ENDEC enabled
Note: Setting this bit has no effect unless UARTEN = 1

Bit 0

UARTEN: UART Enable

0: UART disabled
1: UART enabled 
Notes: 
- When the UART is disabled in the middle of transmission or reception, it 
completes the current character before stopping.
- To enable transmission, both TXE, bit 8, and UARTEN, bit 0, must be set. 
Similarly, to enable reception, RXE, bit 9, and UARTEN, bit 0, must be set.



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 315/488

   
   

   

11.4.9 Interrupt FIFO level select register (UART_IFLS)

Address offset: 34h 

Reset value: 0012h

         

         

The UART_IFLS register is the interrupt FIFO level select register. You can use the 
UART_IFLS register to define the FIFO level at which the TX and RX interrupts are 
triggered.

The interrupts are generated based on a transition through a level rather than being based 
on the level. That is, the interrupts are generated when the fill level progresses through the 
trigger level.

The reset value of these bits selects the trigger level of FIFOs at the half-way mark.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RXIFLSEL TXIFLSEL

- - - - - - - - - - rw rw rw rw rw rw

Bits 15:6 Reserved, forced by hardware to 0

Bits 5:3

RXIFLSEL: Receive Interrupt FIFO Level Select

The trigger points for the receive interrupt are as follows:
000 = Receive FIFO becomes >= 1/8 full
001 = Receive FIFO becomes >= 1/4 full
010 = Receive FIFO becomes >= 1/2 full
011 = Receive FIFO becomes >= 3/4 full
100 = Receive FIFO becomes >= 7/8 full
101:111 = Reserved

Bits 2:0

TXIFLSEL: Transmit Interrupt FIFO Level Select

The trigger points for the transmit interrupt are as follows:
000 = Transmit FIFO becomes <= 1/8 full
001 = Transmit FIFO becomes <= 1/4 full
010 = Transmit FIFO becomes <= 1/2 full
011 = Transmit FIFO becomes <= 3/4 full
100 = Transmit FIFO becomes <= 7/8 full
101:111 = Reserved



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

316/488  Doc ID 13742 Rev 4

11.4.10 Interrupt mask set/clear register (UART_IMSC)

Address offset: 38h 

Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OEI
M

BEIM PEIM FEIM RTIM TXIM RXIM
DSRI

M
DCDI

M
CTSI

M
RIIM

- - - - - rw rw rw rw rw rw rw rw rw rw rw

Bits 15:11 Reserved, forced by hardware to 0

Bit 10
OEIM: Overrun Error Interrupt Mask

0: Overrun Error Interrupt Disabled
1: Overrun Error Interrupt Enable

Bit 9
BEIM: Break Error Interrupt Mask

0: Break Error Interrupt Disabled
1: Break Error Interrupt Enabled

Bit 8
PEIM: Parity Error Interrupt Mask

0: Parity Error Interrupt Disabled
1: Parity Error Interrupt Enabled

Bit 7
FEIM: Framing Error Interrupt Mask

0: Framing Error Interrupt Disabled
1: Framing Error Interrupt EnableD

Bit 6
RTIM: Receive Timeout Interrupt Mask

0: Receive Timeout Interrupt Disabled
1: Receive Timeout Interrupt Enabled

Bit 5
TXIM: Transmit Interrupt Mask

0: Transmit Interrupt Disabled
1: Transmit Interrupt Enabled

Bit 4
RXIM: Receive Interrupt Mask

0: Receive Interrupt Disabled
1: Receive Interrupt Enabled

Bit 3
DSRIM: Modem DSR Interrupt Mask

0: DSR Interrupt Disabled
1: DSR Interrupt Enabled

Bit 2
DCDIM: Modem DCD Interrupt Mask

0: DCD Interrupt Disabled
1: DCD Interrupt Enabled

Bit 1
CTSIM: Modem CTS Interrupt Mask

0: CTS Interrupt Disable
1: CTS Interrupt Enable

Bit 0
RIIM: Modem RI Interrupt Mask

0: RI Interrupt Disabled
1: RI Interrupt Enabled



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 317/488

   
   

   

11.4.11 Raw interrupt status register (UART_RIS)

Address offset: 3Ch 

Reset value: 0000 0000 0000 xxxxb

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OERI

S
BERI

S
PERI

S
FERI

S
RTRI

S
TXRI

S
RXRI

S
DSR 
RIS

DCD 
RIS

CTSRI
S

RIRI
S

r r r r r r r r r r r

Bits 15:11 Reserved, forced by hardware to 0

Bit 10

OERIS: Overrun Error Interrupt Status

Gives the raw interrupt state (prior to masking) of the OE interrupt.
0: No Overrun Error
1: An Overrun Error occurs during reception of data

Bit 9

BERIS: Break Error Interrupt Status

Gives the raw interrupt state (prior to masking) of the BE interrupt.
0: No Break Error
1: A Break Error occurs during reception of data

Bit 8

PERIS: Parity Error Interrupt Status

Gives the raw interrupt state (prior to masking) of the PE interrupt.
0: No Parity Error
1: A Parity Error occurs during reception of data

Bit 7

FERIS: Framing Error Interrupt Status
Gives the raw interrupt state (prior to masking) of the FE interrupt.
0: No Framing Error
1: A Framing Error occurs during reception of data

Bit 6

RTRIS: Receive Timeout Interrupt Status

Gives the masked raw interrupt state of the RT interrupt.
0: No Receive Timeout
1: A Receive Timeout interrupt occurs when the receive FIFO is not empty, and 
no further data is received over a 32-bit period. In this case, the raw interrupt 
cannot be set unless the mask is set, this being due to the fact that the mask 
acts as an enable for power saving. (RTRIS = RTMIS)
Note: The receive timeout interrupt is cleared either when the FIFO becomes 
empty through reading all the data (or by reading the holding register), or when a 
1 is written to the corresponding bit of the UART_ICR register.



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

318/488  Doc ID 13742 Rev 4

Bit 5

TXRIS: Transmit Interrupt Status

Gives the raw interrupt state (prior to masking) of the TX interrupt. The transmit 
interrupt changes state when one of the following events occurs:
- If the FIFOs are enabled and the transmit FIFO reaches the programmed trigger 
level. When this happens, the transmit interrupt is asserted HIGH. The transmit 
interrupt is cleared by writing data to the transmit FIFO until it becomes greater 
than the trigger level, or by clearing the interrupt.
- If the FIFOs are disabled (have a depth of one location) and there is no data 
present in the transmitter’s single location, the transmit interrupt is asserted 
HIGH. It is cleared by performing a single write to the transmit FIFO, or by 
clearing the interrupt.
Notes: 
- If TXRIS is cleared by writing ‘1’ to the UART_ICR TXIC bit, without writing to 
the Data Register, TXRIS may be set and the TX interrupt may occur again if a 
break is requested. To update the transmit FIFO you must write data to the 
transmit FIFO either prior to enabling the UART and the interrupts, or after 
enabling the UART and interrupts. The transmit interrupt is based on a transition 
through a level, rather than on the level itself. When the interrupt and UART are 
enabled before any data is written to the transmit FIFO, the interrupt is not set. 
The interrupt is only set once written data leaves the single location of the 
transmit FIFO and it becomes empty.
- If a break request occurs during the transmission after which TXRIS should be 
set, it will be set only after the break transmission.

Bit 4

RXRIS: Receive Interrupt Status

Gives the raw interrupt state (prior to masking) of the RX interrupt.
The receive interrupt changes state when one of the following events occurs:
- If the FIFOs are enabled and the receive FIFO reaches the programmed trigger 
level. When this happens, the receive interrupt is asserted HIGH. The receive 
interrupt is cleared by reading data from the receive FIFO until it becomes less 
than the trigger level, or by clearing the interrupt.
- If the FIFOs are disabled (have a depth of one location) and data is received 
thereby filling the location, the receive interrupt is asserted HIGH. The receive 
interrupt is cleared by performing a single read of the receive FIFO, or by clearing 
the interrupt.

Bit 3

DSRRIS: DSR Modem Interrupt Status

Gives the raw interrupt state (prior to masking) of the DSR interrupt. The DSR 
interrupt is asserted if there is a change on UART_DSR. It is cleared by writing a 
1 to the corresponding bit in the UART_ICR register.

Bit 2

DCDRIS: DCD Modem Interrupt Status

Gives the raw interrupt state (prior to masking) of the DCD interrupt. The DCD 
interrupt is asserted if there is a change on UART_DCD. It is cleared by writing a 
1 to the corresponding bit in the UART_ICR register.

Bit 1

CTSRIS: CTS Interrupt Status
Gives the raw interrupt state (prior to masking) of the CTS interrupt. The CTS 
interrupt is asserted if there is a change on UART_CTS. It is cleared by writing a 1 
to the corresponding bit in the UART_ICR register.

Bit 0

RIRIS: RI Modem Interrupt Status

Gives the raw interrupt state (prior to masking) of the RI interrupt. The RI interrupt 
is asserted if there is a change on UART_RI. It is cleared by writing a 1 to the 
corresponding bit in the UART_ICR register.



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 319/488

   
   

   

11.4.12 Masked interrupt status register (UART_MIS)

Address offset: 40h 

Reset value: 0000 0000 0000 xxxxb

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OEM

IS
BEMI

S
PEMI

S
FEMI

S
RTMI

S
TXMI

S
RXMI

S
DSRM

IS
DCDR
MIS

CTSMI
S

RIMI
S

r r r r r r r r r r r

Bits 15:11 Reserved, forced by hardware to 0

Bit 10
OEMIS: Overrun Error Masked Interrupt Status

Gives the masked interrupt state (after masking) of the OE interrupt.

Bit 9
BEMIS: Break Error Masked Interrupt Status

Gives the masked interrupt state (after masking) of the BE interrupt.

Bit 8
PEMIS: Parity Error Masked Interrupt Status

Gives the masked interrupt state (after masking) of the PE interrupt.

Bit 7
FEMIS: Frame Error Masked Interrupt Status

Gives the masked interrupt state (after masking) of the FE interrupt.

Bit 6
RTMIS: Receive Timeout Masked Interrupt Status

Gives the masked interrupt state (after masking) of the RT interrupt.

Bit 5
TXMIS: Transmit Masked Interrupt Status

Gives the masked interrupt state (after masking) of the TX interrupt.

Bit 4
RXMIS: Receive Masked Interrupt Status

Gives the masked interrupt state (after masking) of the RX interrupt.

Bit 3
DSRMIS: DSR Modem Masked Interrupt Status

Gives the masked interrupt state (after masking) of the DSR interrupt.

Bit 2
DCDMIS: DCD Modem Masked Interrupt Status

Gives the masked interrupt state (after masking) of the DCD interrupt.

Bit 1
CTSMIS: CTS Masked Interrupt Status

Gives the masked interrupt state (after masking) of the CTS interrupt.

Bit 0
RIMIS: RI Modem Masked Interrupt Status

Gives the masked interrupt state (after masking) of the RI interrupt.



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

320/488  Doc ID 13742 Rev 4

11.4.13 Interrupt clear register (UART_ICR)

Address offset: 44h 

Reset value: -

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved OEIC BEIC PEIC FEIC RTIC TXIC RXIC DSRIC DCDIC CTSIC RI

w w w w w w w w w w w

Bits 15:11 Reserved, forced by hardware to 0

Bit 10
OEIC: Overrun Error Interrupt Clear

Write ‘1’ clears the OE interrupt
Write ‘0’ has no effect

Bit 9
BEIC: Break Error Interrupt Clear

Write ‘1’ clears the BE interrupt
Write ‘0’ has no effect

Bit 8
PEIC: Parity Error Interrupt Clear

Write ‘1’ clears the PE interrupt
Write ‘0’ has no effect

Bit 7
FEIC: Frame Error Interrupt Clear

Write ‘1’ clears the FE interrupt
Write ‘0’ has no effect

Bit 6
RTIC: Receive Timeout Interrupt Clear

Write ‘1’ clears the RT interrupt
Write ‘0’ has no effect

Bit 5
TXIC: Transmit Interrupt Clear

Write ‘1’ clears the TX interrupt
Write ‘0’ has no effect

Bit 4
RXIC: Receive Interrupt Clear

Write ‘1’ clears the RX interrupt
Write ‘0’ has no effect

Bit 3
DSRIC: DSR Modem Interrupt Clear

Write ‘1’ clears the DSR interrupt
Write ‘0’ has no effect

Bit 3
DCDIC: DCD Modem Interrupt Clear

Write ‘1’ clears the DCD interrupt
Write ‘0’ has no effect

Bit 1
CTSIC: CTS Interrupt Clear

Write ‘1’ clears the CTS interrupt
Write ‘0’ has no effect

Bit 0
RIIC: RI Modem Interrupt Clear

Write ‘1’ clears the RI interrupt
Write ‘0’ has no effect



RM0006 Universal asynchronous receiver transmitter (UART)

Doc ID 13742 Rev 4 321/488

   
   

   

11.4.14 DMA control register (UART_DMACR)

Address offset: 48h 

Reset value: 0000h

         

         

Note: Only UART0 and UART1 support DMA functions. 

Burst data transfers can be made depending on the programmed watermark level and the 
amount of data in the FIFO. Table 34 shows the trigger points for DMA burst requests 
depending on the watermark level, for both the transmit and receive FIFOs.

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DMAONERR TXDMAE RXDMAE

rw rw rw

Bits 15:3 Reserved, forced by hardware to 0

Bit 2
DMAONERR: DMA on Error 

0: DMA receive request enabled when the UART error interrupt is asserted
1: DMA receive request disabled when the UART error interrupt is asserted

Bit 1
TXDMAE: Transmit DMA Enable

0: DMA for the transmit FIFO disabled
1: DMA for the transmit FIFO enabled

Bit 0
RXDMAE: Receive DMA Enable

0: DMA for the receive FIFO disabled
1: DMA for the receive FIFO enabled

Table 34. Trigger points for DMA burst requests

Watermark level

Burst length

Transmit (number of empty 
locations)

Receive (number of filled 
locations

1/8 14 2

1/4 12 4

1/2 8 8

3/4 4 12

7/8 2 14



   
   

   

Universal asynchronous receiver transmitter (UART) RM0006

322/488  Doc ID 13742 Rev 4

11.5 UART register map
         

Refer to Table 5 on page 35 for the register base addresses.

Table 35. UART register map

Address 
offset

Register 
name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 UART_DR Data register

04 UART_RSECR Receive Status register/Error Clear Register

18 UART_FR Flag register

20 UART_ILPR Reserved IrDA Low Power Counter Register

24 UART_IBRD Integer Baud Rate Divider register

28 UART_FBRD Fractional Baud Rate Divider register

2C UART_LCR Line Control register

30 UART_CR Control register

34 UART_IFLS Interrupt FIFO Level Select 

38 UART_IMSC Interrupt Mask Set/Clear register

3C UART_RIS Raw Interrupt Status

40 UART_MIS Masked Interrupt Status

44 UART_ICR Interrupt Clear register

48 UART_DMACR DMA Control register



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 323/488

   
   

   

12 I2C interface module (I2C)

An I2C Bus Interface serves as an interface between the microcontroller and the serial I2C 
bus. It provides both multimaster and slave functions, and controls all I2C bus-specific 
sequencing, protocol, arbitration and timing. It supports fast I2C mode (400 kHz). 

12.1 Main features
● Parallel-bus/I2C protocol converter

● Multi-master capability

● 7-bit/10-bit addressing

● Transmitter/Receiver flag

● End-of-byte transmission flag

● Transfer problem detection 

● Standard/fast I2C mode

I2C master features

● Clock generation

● I2C bus busy flag

● Arbitration lost flag

● End-of-byte transmission flag

● Transmitter/receiver flag

● Start bit detection flag

● Start and stop generation

I2C slave features

● Start bit detection flag

● Stop bit detection

● I2C bus busy flag

● Detection of misplaced start or stop condition

● Programmable I2C address detection 

● Transfer problem detection 

● End-of-byte transmission flag

● Transmitter/receiver flag



   
   

   

I2C interface module (I2C) RM0006

324/488  Doc ID 13742 Rev 4

12.2 General description
In addition to receiving and transmitting data, this interface converts them from serial to 
parallel format and vice versa, using either an interrupt or polled handshake. The interrupts 
are enabled or disabled by software. The interface is connected to the I2C bus by a data pin 
(SDA) and by a clock pin (SCL). It can be connected both with a standard I2C bus and a Fast 
I2C bus. This selection is made by software.

12.2.1 Mode selection

The interface can operate in the four following modes:

● Slave transmitter/receiver

● Master transmitter/receiver

By default, it operates in slave mode.

The interface automatically switches from slave to master after it generates a START 
condition and from master to slave in case of arbitration loss or a STOP generation, allowing 
then Multi-Master capability.

12.2.2 Communication flow

In Master mode, it initiates a data transfer and generates the clock signal. A serial data 
transfer always begins with a start condition and ends with a stop condition. Both start and 
stop conditions are generated in master mode by hardware as soon as the Master mode is 
selected.

In Slave mode, the interface is capable of recognizing its own address (7 or 10-bit), and the 
General Call address. The General Call address detection may be enabled or disabled by 
software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the 
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is 
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must 
send an acknowledge bit to the transmitter. Refer to Figure 81.

Figure 81. I2C bus protocol

Acknowledge may be enabled and disabled by software.

The I2C interface address and/or general call address can be selected by software.

The speed of the I2C interface may be selected between Standard (0-100 kHz) and Fast I2C 
(100-400 kHz).

SCL

SDA

1 2 8 9

MSB ACK

STOP START
CONDITIONCONDITION



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 325/488

   
   

   

12.2.3 SDA/SCL line control

Transmitter mode: the interface holds the clock line low before transmission to wait for the 
microcontroller to write the byte in the Data Register.

Receiver mode: the interface holds the clock line low after reception to wait for the 
microcontroller to read the byte in the Data Register.

The SCL frequency (fSCL) is controlled by a programmable clock divider which depends on 
the I2C bus mode.

Figure 82. I2C interface block diagram

DATA REGISTER (DR)

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER 1 (OAR1)

CLOCK CONTROL REGISTER (CCR)

STATUS REGISTER 1 (SR1)

CONTROL REGISTER (CR)

CONTROL LOGIC

STATUS REGISTER 2 (SR2)

INTERRUPT

CLOCK CONTROL

DATA CONTROL

SCL

SDA

OWN ADDRESS REGISTER 2 (OAR2)

E. CLOCK CONTROL REGISTER (ECCR)



   
   

   

I2C interface module (I2C) RM0006

326/488  Doc ID 13742 Rev 4

12.3 Functional description
Refer to the I2C_CR, I2C_SR1 and I2C_SR2 registers in Section 12.5 for the bit definitions.

By default the I2C interface operates in Slave mode (M/SL bit is cleared) except when it 
initiates a transmit or receive sequence. 

First the interface frequency must be configured using the FRi bits in the I2C_OAR2 register.

12.3.1 Slave mode

As soon as a start condition is detected, the address is received from the SDA line and sent 
to the shift register; then it is compared with the address of the interface or the General Call 
address (if selected by software). 

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and 
the two most significant bits of the address.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the 
ACK bit is set.

Address not matched: the interface ignores it and waits for another Start condition.

Address matched: the interface generates in sequence:

● Acknowledge pulse if the ACK bit is set.

● EVF and ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the I2C_SR1 register, holding the SCL line low (see 
Figure 83 Transfer sequencing EV1).
Next, in 7-bit mode read the I2C_DR register to determine from the least significant bit (Data 
Direction Bit) if the slave must enter Receiver or Transmitter mode. 

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It 
will enter transmit mode on receiving a repeated Start condition followed by the header 
sequence with matching address bits and the least significant bit set (11110xx1).

Slave receiver

Following the address reception and after I2C_SR1 register has been read, the slave 
receives bytes from the SDA line into the I2C_DR register via the internal shift register. After 
each byte the interface generates in sequence:

● Acknowledge pulse if the ACK bit is set

● EVF and BTF bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the I2C_SR1 register followed by a read of the I2C_DR 
register, holding the SCL line low (see Figure 83 Transfer sequencing EV2).

Slave transmitter

Following the address reception and after I2C_SR1 register has been read, the slave sends 
bytes from the I2C_DR register to the SDA line via the internal shift register.

The slave waits for a read of the I2C_SR1 register followed by a write in the I2C_DR 
register, holding the SCL line low (see Figure 83 Transfer sequencing EV3).

When the acknowledge pulse is received: 

● The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 327/488

   
   

   

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The 
interface detects this condition and sets:

● EVF and STOPF bits with an interrupt if the ITE bit is set.

Then the interface waits for a read of the I2C_SR2 register (see Figure 83 Transfer 
sequencing EV4).

Error cases 

● BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the 
EVF and the BERR bits are set with an interrupt if the ITE bit is set. 
This detection is performed on the last 8 bits of a byte transfer but not on the first bit, as 
a Start or Stop condition is a normal operation at this stage in Slave mode. 
If it is a Stop then the interface discards the data, released the lines and waits for 
another Start condition.
If it is a Start then the interface discards the data and waits for the next slave address 
on the bus.

● AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set with 
an interrupt if the ITE bit is set.

Note: In both cases, SCL line is not held low; however, SDA line can remain low due to possible 
«0» bits transmitted last. It is then necessary to release both lines by software.

How to release the SDA / SCL lines

Set and subsequently clear the STOP bit while BTF is set. The SDA/SCL lines are released 
after the transfer of the current byte.

12.3.2 Master mode

To switch from default Slave mode to Master mode a Start condition generation is needed.

Start condition 

Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master 
mode (M/SL bit set) and generates a Start condition.

Once the Start condition is sent, the EVF and SB bits are set by hardware with an interrupt if 
the ITE bit is set.

Then the master waits for a read of the I2C_SR1 register followed by a write in the I2C_DR 
register with the Slave address, holding the SCL line low (see Figure 83 Transfer 
sequencing EV5).

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

In 7-bit addressing mode, one address byte is sent.

In 10-bit addressing mode, sending the first byte including the header sequence causes the 
following event, the EVF bit is set by hardware with interrupt generation if the ITE bit is set. 

Then the master waits for a read of the I2C_SR1 register followed by a write in the I2C_DR 
register, holding the SCL line low (see Figure 83 Transfer sequencing EV9). 



   
   

   

I2C interface module (I2C) RM0006

328/488  Doc ID 13742 Rev 4

Then the second address byte is sent by the interface.

After completion of this transfer (and acknowledge from the slave if the ACK bit is set), the 
EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the I2C_SR1 register followed by a write in the I2C_CR 
register (for example set PE bit), holding the SCL line low (see Figure 83 Transfer 
sequencing EV6). 

Next the master must enter Receiver or Transmitter mode.

Note: In 10-bit addressing mode, to switch the master to Receiver mode, software must generate 
a repeated Start condition and re-send the header sequence with the least significant bit set 
(11110xx1).

Master receiver 

Following the address transmission and after I2C_SR1 and I2C_CR registers have been 
accessed, the master receives bytes from the SDA line into the I2C_DR register via the 
internal shift register. After each byte the interface generates in sequence:

● Acknowledge pulse if the ACK bit is set

● EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the I2C_DR 
register, holding the SCL line low (see Figure 83 Transfer sequencing EV7).

To close the communication: before reading the last byte from the I2C_DR register, set the 
STOP bit to generate the Stop condition. The interface goes automatically back to slave 
mode (M/SL bit cleared).

Note: In order to generate the non-acknowledge pulse after the last received data byte, the ACK 
bit must be cleared just before reading the second last data byte.

Master transmitter

Following the address transmission and after I2C_SR1 register has been read, the master 
sends bytes from the I2C_DR register to the SDA line via the internal shift register.

The master waits for a read of the I2C_SR1 register followed by a write in the I2C_DR 
register, holding the SCL line low (see Figure 83 Transfer sequencing EV8).

When the acknowledge bit is received, the interface sets:

● EVF and BTF bits with an interrupt if the ITE bit is set.

To close the communication: after writing the last byte to the I2C_DR register, set the STOP 
bit to generate the Stop condition. The interface goes automatically back to slave mode 
(M/SL bit cleared).

Error cases

● BERR: Detection of a Stop or a Start condition during a byte transfer (on all bits). In this 
case, the EVF and BERR bits are set by hardware with an interrupt if ITE is set.

● AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set by 
hardware with an interrupt if the ITE bit is set. To resume, set the START or STOP bit.

● ARLO: Detection of an arbitration lost condition.
In this case the ARLO bit is set by hardware (with an interrupt if the ITE bit is set and 
the interface goes automatically back to slave mode (the M/SL bit is cleared).



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 329/488

   
   

   

Note: In all these cases, the SCL line is not held low; however, the SDA line can remain low due to 
possible «0» bits transmitted last. It is then necessary to release both lines by software.

Figure 83. Transfer sequencing

Legend

S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,
EVx = Event (with interrupt if ITE = 1).

EV1: EVF = 1, ADSL = 1, cleared by reading I2C_SR1 register

EV2: EVF = 1, BTF = 1, cleared by reading I2C_DR register

EV3: EVF = 1, BTF = 1, cleared by reading I2C_SR1 register followed by writing to the DR 
register.

7-bit Slave receiver:

7-bit Slave transmitter:

7-bit Master receiver:

7-bit Master transmitter:

10-bit Slave receiver:

10-bit Slave transmitter:

10-bit Master transmitter:

 

10-bit Master receiver:

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3 EV3 EV3 EV3-1 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8 EV8 EV8 EV8

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Sr Header A Data1 A
.....

DataN A P

EV1 EV3 EV3 EV3-1 EV4

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8 EV8 EV8

Sr Header A Data1 A
.....

DataN A P

EV5 EV6 EV7 EV7



   
   

   

I2C interface module (I2C) RM0006

330/488  Doc ID 13742 Rev 4

EV3-1: EVF = 1, AF = 1, BTF = 1; AF is cleared by reading SR2 register. BTF is cleared by 
releasing the lines (STOP = 1, STOP = 0) or by writing I2C_DR register (DR=FFh). 

Note: If lines are released by STOP = 1, STOP = 0, the subsequent EV4 is not seen.

EV4: EVF = 1, STOPF = 1, cleared by reading SR2 register

EV5: EVF = 1, SB = 1, cleared by reading I2C_SR1 register followed by writing I2C_DR 
register.

EV6: EVF=1, ENDAD=1 cleared by reading I2C_SR2 register followed by writing I2C_CR 
register (for example PE=1).

EV7: EVF = 1, BTF = 1, cleared by reading the I2C_DR register.

EV8: EVF = 1, BTF = 1, cleared by writing to the I2C_DR register.

EV9: EVF = 1, ADD10 = 1, cleared by reading the I2C_SR1 register followed by writing to 
the I2C_DR register.

12.4 Interrupts
Several interrupt events can be flagged by the module:

● requests related to bus events, like start or stop events, arbitration lost, etc.;

● requests related to data transmission and/or reception;

These requests are ORed together and issued to the interrupt controller on a single channel 
as shown in Figure 84. The different flags identify the events and can be polled by the 
software (interrupt service routine).

Figure 84. Event flags and interrupt generation

ITERR

SB

ADD10

ENDAD

ADSL

STOPF

AF

BERR

ARLO

BTF

ITE

EVF

TRA

RX

TX

Event Flag (SR1)

Interrupt Request to VIC



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 331/488

   
   

   

12.5 Register description

12.5.1 I2C control register (I2C_CR)

Address offset: 00h
Reset value: 00h

         

         

7 6 5 4 3 2 1 0

Reserved PE ENGC START ACK STOP ITE

rw rw rw rw rw rw

Bits 7:6 Reserved, forced by hardware to 0

Bit 5

PE: Peripheral Enable

This bit is set and cleared by software
0: Peripheral disabled. All the bits in the I2C_CR register and the I2C_SR register 
except the STOP and BUSY bit are reset. All outputs are released while PE = 0.
1: Master/Slave capability enabled. The I2C I/O pins must be enabled by setting up the 
configuration registers in the corresponding GPIO port. 
Note: To enable the I2C interface, write the I2C_CR register TWICE with PE = 1 as the 
first write only activates the interface (only PE is set).

Bit 4

ENGC: Enable General Call 
This bit is set and cleared by software. It is also cleared by hardware when the interface 
is disabled (PE=0). The 00h General Call address is acknowledged (01h ignored).
0: General Call disabled
1: General Call enabled

Bit 3

START: Generation of a Start condition
This bit is set and cleared by software. It is also cleared by hardware when the interface 
is disabled (PE = 0) or when the Start condition is sent (with interrupt generation if 
ITE = 1).
In master mode:
0: No start generation
1: Repeated start generation
In slave mode:
0: No start generation
1: Start generation when the bus is free

Bit 2

ACK: Acknowledge enable
This bit is set and cleared by software. It is also cleared by hardware when the interface 
is disabled (PE = 0)
0: No acknowledge returned 
1: Acknowledge returned after an address byte or a data byte is received



   
   

   

I2C interface module (I2C) RM0006

332/488  Doc ID 13742 Rev 4

Bit 1

STOP: Generation of a Stop condition. 

This bit is set and cleared by software. It is also cleared by hardware in master mode. 
Note: This bit is not cleared when the interface is disabled (PE = 0).
In master mode
0: No stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is 
sent. The STOP bit is cleared by hardware when the Stop condition is sent.
In slave mode
0: No stop generation. 
1: Release the SCL and SDA lines after the current byte transfer (BTF = 1). In this mode 
the STOP bit has to be cleared by software.

Bit 0

ITE: Interrupt enable. 

This bit is set and cleared by software and cleared by hardware when the interface is 
disabled (PE = 0).
0: Interrupts disabled
1: Interrupts enabled
Refer to Figure 84 for the relationship between the events and the interrupts. SCL is 
held low when the ADD10, SB, BTF or ADSL flags or an EV6 event (See Figure 83) is 
detected. 



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 333/488

   
   

   

12.5.2 I2C status register 1 (I2C_SR1)

Address offset: 04h
Reset value: 00h

         

         

7 6 5 4 3 2 1 0

EVF ADD10 TRA BUSY BTF ADSL M/SL SB

r r r r r r r r

Bit 7 

EVF: Event flag

This bit is set by hardware as soon as an event occurs. It is cleared by software reading 
I2C_SR2 register in case of error event or as described in Figure 83. It is also cleared 
by hardware when the interface is disabled (PE = 0).
0: No event
1: One of the following events has occurred:
- BTF = 1 (byte received or transmitted)
- ADSL = 1 (Address matched in Slave mode while ACK = 1)
- SB = 1 (Start condition generated in Master mode)
- AF = 1 (No acknowledge received after byte transmission)
- STOPF = 1 (Stop condition detected in Slave mode)
- ARLO = 1 (Arbitration lost in Master mode)
- BERR = 1 (Bus error, misplaced Start or Stop condition detected)
- ADD10 = 1 (Master has sent header byte)
- ENDAD = 1 (Address byte successfully transmitted in Master mode).

Bit 6

ADD10: 10-bit addressing in Master mode

This bit is set by hardware when the master has sent the first byte in 10-bit address 
mode. It is cleared by software reading I2C_SR2 register followed by a write in the 
I2C_DR register of the second address byte. It is also cleared by hardware when the 
peripheral is disabled (PE = 0).
0: No ADD10 event occurred
1: Master has sent first address byte (header)

Bit 5

TRA: Transmitter/Receiver
When BTF is set, TRA = 1 if a data byte has been transmitted. It is cleared 
automatically when BTF is cleared. It is also cleared by hardware after detection of Stop 
condition (STOPF = 1), loss of bus arbitration (ARLO = 1) or when the interface is 
disabled (PE = 0).
0: Data byte received (if BTF = 1)
1: Data byte transmitted

Bit 4 

BUSY: Bus busy

This bit is set by hardware on detection of a Start condition and cleared by hardware on 
detection of a Stop condition. It indicates a communication in progress on the bus. This 
information is still updated when the interface is disabled (PE = 0).
0: No communication on the bus
1: Communication ongoing on the bus



   
   

   

I2C interface module (I2C) RM0006

334/488  Doc ID 13742 Rev 4

Bit 3 

BTF: Byte transfer finished

This bit is set by hardware as soon as a byte is correctly received or transmitted with 
interrupt generation if ITE = 1. It is cleared by software reading I2C_SR1 register 
followed by a read or write of I2C_DR register. It is also cleared by hardware when the 
interface is disabled (PE = 0).
Following a byte reception, this bit is set after transmission of the acknowledge clock 
pulse if ACK=1. BTF is cleared by reading I2C_SR1 register followed by reading the 
byte from I2C_DR register.
Following a byte transmission, this bit is set after reception of the acknowledge clock 
pulse. In case an address byte is sent, this bit is set only after the EV6 event (see 
Figure 83). BTF is cleared by writing the next byte in I2C_DR register.
The SCL line is held low while BTF = 1.
0: Byte transfer not done
1: Byte transfer succeeded

Bit 2 

ADSL: Address matched (Slave mode)

This bit is set by hardware as soon as the received slave address matched with the 
I2C_OAR register content or a general call is recognized. An interrupt is generated if 
ITE = 1. It is cleared by software reading I2C_SR1 register or by hardware when the 
interface is disabled (PE = 0). The SCL line is held low while ADSL = 1.
0: Address mismatched or not received
1: Received address matched

Bit 1

M/SL: Master/Slave

This bit is set by hardware as soon as the interface is in Master mode (writing 
START = 1). It is cleared by hardware after detecting a Stop condition on the bus or a 
loss of arbitration (ARLO = 1). It is also cleared when the interface is disabled (PE = 0).
0: Slave mode
1: Master mode

Bit 0

SB: Start bit (Master mode)

This bit is set by hardware as soon as the Start condition is generated (following a write 
START = 1). An interrupt is generated if ITE = 1. It is cleared by software reading 
I2C_SR1 register followed by writing the address byte in I2C_DR register. It is also 
cleared by hardware when the interface is disabled (PE = 0).
0: No Start condition
1: Start condition generated



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 335/488

   
   

   

12.5.3 I2C status register 2 (I2C_SR2)

Address offset: 08h
Reset value: 00h

         

         

7 6 5 4 3 2 1 0

Reserved ENDAD AF STOPF ARLO BERR GCAL

- r r r r r r

Bits 7:6 Reserved, forced by hardware to 0

Bit 5

ENDAD: End of address transmission

This bit is set by hardware when:
- 7-bit addressing mode: the address byte has been transmitted
- 10-bit addressing mode: the MSB and the LSB have been transmitted during the 
addressing phase.   
When the master needs to receive data from the slave, it has to send just the MSB of 
the slave address once again; hence the ENDAD flag is set, without waiting for the LSB 
of the address. It is cleared by software by reading SR2 and a following write to the CR 
or by hardware when the interface is disabled (PE = 0).
0: No end of address transmission
1: End of address transmission

Bit 4

AF: Acknowledge failure

This bit is set by hardware when no acknowledge is returned. An interrupt is generated 
if ITE = 1. It is cleared by software by reading I2C_SR2 register or by hardware when 
the interface is disabled (PE = 0).
The SCL line is not held low while AF = 1.
0: No acknowledge failure
1: Acknowledge failure

Bit 3

STOPF: Stop detection (Slave mode). 
This bit is set by hardware when a Stop condition is detected on the bus after an 
acknowledge (if ACK = 1). An interrupt is generated if ITE = 1. It is cleared by software 
reading I2C_SR2 register or by hardware when the interface is disabled (PE = 0).
The SCL line is not held low while STOPF = 1.
0: No Stop condition detected
1: Stop condition detected

Bit 2

ARLO: Arbitration lost.

This bit is set by hardware when the interface loses the arbitration of the bus to another 
master. An interrupt is generated if ITE = 1. It is cleared by software reading I2C_SR2 
register or by hardware when the interface is disabled (PE = 0).
After an ARLO event the interface switches back automatically to Slave mode 
(M/SL = 0). The SCL line is not held low while ARLO = 1.
0: No arbitration lost detected
1: Arbitration lost detected



   
   

   

I2C interface module (I2C) RM0006

336/488  Doc ID 13742 Rev 4

Bit 1

BERR: Bus error

This bit is set by hardware when the interface detects a misplaced Start or Stop 
condition on all bits of a byte transfer in master mode and on the last 8 bits of a byte 
transfer in slave mode. An interrupt is generated if ITE = 1. It is cleared by software 
reading I2C_SR2 register or by hardware when the interface is disabled (PE = 0).
The SCL line is not held low while BERR = 1.
0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

Bit 0

GCAL: General Call (Slave mode)

This bit is set by hardware when a general call address is detected on the bus while 
ENGC = 1. It is cleared by hardware detecting a Stop condition (STOPF = 1) or when 
the interface is disabled (PE = 0).
0: No general call address detected on bus
1: general call address detected on bus



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 337/488

   
   

   

12.5.4 I2C clock control register (I2C_CCR)

Address offset: 0Ch
Reset value: 00h

         

         

Note: 1 The programmed fSCL assumes no load on SCL and SDA lines.

2 For correct usage of the divider, [CC11...CC0] must be equal or greater than 0x002 
(000000000010b). [CC11...CC0] equal to 0x001 (000000000001b) is not admitted.

3 When the I2C interface is operating in slave mode, configuring the I2C clock by writing into 
register I2C_CCR has no effect. I2C_CCR register is configured only when the I2C interface 
is operating in Master mode.

7 6 5 4 3 2 1 0

FM/SM CC6 CC5 CC4 CC3 CC2 CC1 CC0

rw rw rw rw rw rw rw rw

Bit 7

FM/SM: Fast/Standard I2C mode. 

This bit is set and cleared by software. It is not cleared when the interface is disabled 
(PE = 0).
0: Standard I2C mode
1: Fast I2C mode

Bits 6:0

CC[6:0]: 12-bit clock divider. 
These bits along with the CC[11:7] bit in the Extended Clock Control Register select the 
speed of the bus (fSCL) depending on the I2C mode. They are not cleared when the 
interface is disabled (PE = 0).

– Standard mode (FM/SM = 0): fSCL ≤ 100 kHz
fSCL = fPCLK/ (2 x (CC[11:0] + 7))
Given a certain fPCLK it is easy to obtain the right divider factor:
CC[11:0] = ((fPCLK / fSCL) - 7) / 2 = ((tSCL /tPCLK) - 7) / 2

– Fast mode (FM/SM = 1): 100 kHz < fSCL< 400 kHz
fSCL = fPCLK/ (3 x ([CC11...CC0] + 9))
Given a certain fPCLK it is easy to obtain the right divider factor:
CC[11:0] = ((fPCLK/ fSCL) - 9) / 3 = ((tSCL / tPCLK)- 9) / 3



   
   

   

I2C interface module (I2C) RM0006

338/488  Doc ID 13742 Rev 4

12.5.5 I2C extended clock control register (I2C_ECCR)

Address offset: 1Ch
Reset value: 00h

         

         

12.5.6 I2C own address register 1 (I2C_OAR1)

Address offset: 10h
Reset value: 00h

         

         

         

7 6 5 4 3 2 1 0

Reserved CC11 CC10 CC9 CC8 CC7

rw rw rw rw rw

Bits 7:5 Reserved, forced by hardware to 0

Bits 6:0

CC[11:7]: 12-bit clock divider. 

These bits along with those of the Clock Control Register select the speed of the bus 
(fSCL) depending on the I2C mode. They are not cleared when the interface is disabled 
(PE = 0)

7 6 5 4 3 2 1 0

ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

rw rw rw rw rw rw rw rw

Table 36. 7-bit addressing mode

Bits 7:1
ADD[7:1]: Interface address

These bits define the I2C bus address of the interface. They are not cleared when the 
interface is disabled (PE = 0).

Bit 0

ADD[0]: Address direction bit

This bit is don’t care, the interface acknowledges either 0 or 1. It is not cleared when the 
interface is disabled (PE = 0).
Note: Address 01h is always ignored.

Table 37. 10-bit Addressing Mode

Bits 7:0 
ADD[7:0]: Interface address

These are the least significant bits of the I2C bus address of the interface. They are not 
cleared when the interface is disabled (PE = 0).



RM0006 I2C interface module (I2C)

Doc ID 13742 Rev 4 339/488

   
   

   

12.5.7 I2C own address register 2 (I2C_OAR2)

Address offset: 14h
Reset value: 00h

         

         

12.5.8 I2C data register (I2C_DR)

Address offset: 18h
Reset value: 00h

         

         

7 6 5 4 3 2 1 0

FR2 FR1 FR0 Reserved ADD9 ADD8 Reserved

rw rw rw - rw rw -

Bits 7:5

FR[2:0]: Frequency bits

These bits are set by software only when the interface is disabled (PE = 0). To configure 
the interface to I2C specified delays select the value corresponding to fPCLK:
000: fPCLK = 5 to 10 MHz
001: fPCLK = 10 to 16.67 MHz
010: fPCLK = 16.67 to 26.67 MHz
011: fPCLK = 26.67 to 40 MHz
100: fPCLK = 40 to 53.33 MHz

Bits 4:3 Reserved, forced by hardware to 0

Bits 2:1
ADD[9:8]: Interface address

These are the most significant bits of the I2C bus address of the interface (10-bit mode 
only). They are not cleared when the interface is disabled (PE = 0).

Bit 0 Reserved, forced by hardware to 0

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

rw rw rw rw rw rw rw rw

Bits 7:0

D[7:0]: 8-bit Data Register

These bits contain the byte to be received or transmitted on the bus.
Transmitter mode: Byte transmission starts automatically when the software writes in 
the I2C_DR register.
Receiver mode: The first data byte is received automatically in the I2C_DR register 
using the least significant bit of the address. Then, the following data bytes are received 
one by one after reading the I2C_DR register.



   
   

   

I2C interface module (I2C) RM0006

340/488  Doc ID 13742 Rev 4

12.6 I2C register map
         

Refer to Table 5 on page 35 for the register base addresses.

Table 38. I2C register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

00h I2C_CR Reserved PE ENGC START ACK STOP ITE

04h I2C_SR1 EVF ADD10 TRA BUSY BTF ADSL M/SL SB

08h I2C_SR2 Reserved ENDAD AF STOPF ARLO BERR GCAL

0Ch I2C_CCR FM/SM CC6 CC5 CC4 CC3 CC2 CC1 CC0

10h I2C_OAR1 ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

14h I2C_OAR2 FR2 FR1 FR0 Reserved ADD9 ADD8 Reserved

18h I2C_DR D7 D6 D5 D4 D3 D2 D1 D0

1Ch I2C_ECCR Reserved CC11 CC10 CC9 CC8 CC7



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 341/488

   
   

   

13 3-phase induction motor controller (MC)

13.1 Introduction
The MC controller is designed for variable speed motor control applications. Three PWM 
outputs are available for controlling a three-phase motor drive. Rotor speed feedback is 
provided by capturing a tachogenerator input signal.

13.2 Main features
● 16 or 10-bit PWM up/down counter

● Classical and zerocentered PWM operating modes

● Double update mode for enhanced PWM control

● Full-scale PWM generation

● 10 or 6-bit dead time generator

● Rotor speed measurement

● 8 interrupt sources + 1 emergency stop interrupt

● Register write protection

● ADC trigger capability



   
   

   

3-phase induction motor controller (MC) RM0006

342/488  Doc ID 13742 Rev 4

13.3 Functional description
The MC controller consists of the following function blocks:

● Input and output pins 

● Rotor speed measurement

● 3-Phase PWM signal generation

● Dead time generation

● Polarity selection

● Interrupt generation

The block diagram is shown in Figure 85.

Figure 85.  MC controller block diagram

16-bit PWM Counter

16-bit Compare U Reg.

16-bit Preload Compare U Reg.

16-bit Compare V Reg.

16-bit Preload Compare V Reg.

16-bit Compare W Reg.

16-bit Preload Compare W Reg.

16-bit Preload Compare 0 Reg.

16-bit Compare 0 Reg.

Dead Time
Generator

Dead Time
Generator Reg.

P
ol

ar
ity

 S
el

ec
tio

n 
&

 O
ut

pu
t R

eg
is

te
rs

8-bit Repetition

Down-Counter

8-Bit Repetition
Counter Reg.

PWM Counter
 Prescaler Reg.

8-bit Prescaler

16-Bit Tacho Counter

16-Bit Tacho Capture Reg.

Tacho Prescaler Reg.

12-Bit Prescaler

DIV 2

OTC Int.

CPT Int.

CM0 Int.

ZPC Int.

ZPC Int.

ADT Int.

PCLK
CMS bit
CPC bit

CPT=0

CPT=0

TACHO

UH
UL

CLR on CPT

OVF

CMPU Int.

CMPV Int.

CMPW Int.

Dead Time
Generator

Dead Time
Generator

VH
VL

WH
WL

8-Bit Tacho Compare Reg.

ESTOP EST Int.
Emergency
Stop Logic



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 343/488

   
   

   

Input and output pins 

● Input Pins

– TACHO: Signal input from a tachogenerator for measuring the rotor speed

– ESTOP: Input signal for disabling the MC output and sending an interrupt request 
to the wakeup/interrupt unit (WIU). The ESTOP is an active low signal.

● Output Pins

– UH, UL, VH, VL, WH, WL: 3-Phase PWM signals and complementary signals

Rotor speed measurement

The TACHO signal is input from a Schmitt trigger port. When a rising and/or falling edge 
occurs (programmable edge sensitivity), the MC controller does the following:

● Captures the 16-bit Tacho Counter

● Clears the Tacho Counter (if the CCPT bit is set)

● Generates a CPT interrupt

The 16-bit Tacho Counter clock is derived from PCLK through a 12-bit prescaler. The 12-bit 
prescaler divides by 1, 2, 3, ......, 4096.

If no edge occurs on the TACHO signal or the event sensitivity is disabled (see 
Section 13.4.12) and the 16-bit counter is running, an OTC overflow interrupt will be issued 
when the MSB (Most Significant Byte) of the Tacho Counter reaches the Tacho Compare 
register value.

Three-phase PWM generator

The PWM counter can be configured in 10-bit or 16-bit mode by programming the EPWM bit 
in the MC_ECR register.

In 10-bit mode:

● The 3-Phase PWM signal is generated using a 10-bit PWM Counter and three 11-bit 
Compare registers one for each phase (U, V, W).

In 16-bit mode:

● The 3-Phase PWM signal is generated using a 16-bit PWM Counter and three 16-bit 
Compare registers one for each phase (U, V, W).

The PWM Counter clock is supplied through an 8-bit prescaler (dividing by 1, 2, 3, .., 256).

The PWM generator can work in Zerocentered mode or in Classical mode. The mode is 
selected by the CMS bit in the MC_PCR0 register:

● Zerocentered Mode: In this operating mode, the PWM Counter counts up to the value 
loaded in the 10-bit. 
Compare 0 register then counts down until it reaches zero and restarts counting up.

● Classical Mode: In this operating mode, the PWM Counter counts up to the value 
loaded in the 10-bit Compare Register. Then the PWM Counter is cleared and it 
restarts counting up.

Figure 86 shows the counting sequence in Classical and Zerocentered mode.



   
   

   

3-phase induction motor controller (MC) RM0006

344/488  Doc ID 13742 Rev 4

PWM signal generation in zerocentered mode

In this mode, all three PWM signals are set to ‘0’ when the PWM Counter reaches, in up-
counting, the corresponding W, V or U Compare register value and they are set to ‘1’ when 
the PWM Counter reaches the Compare value again in down-counting.

The comparison is performed between the PWM Counter value and W, V or U Compare 
register (either in Zerocentered or in Classical mode).

Figure 86. Counting sequence in zerocentered and classical mode

If the W, V or U Compare register value is greater than the Compare 0 Register, the 
corresponding PWM output signal is held at ‘1’.

If the W, V or U Compare register value is 0, the corresponding PWM output signal is held at 
‘0’.

Figure 87 shows some Zerocentered PWM waveforms in an example where the Compare 0 
register value = 8.

Figure 87. Zerocentered PWM waveforms (Compare 0 register = 8)

Zerocentered 
mode

0 1 2 .... 15 16 15 .... 2 1 0 1

T

Classical mode 0 1 2 ..... 15 16 0 1 ..... 16 0 1

T

T = PWM period, Value of 10-bit Compare Register = 16

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1

1

2

3 ‘1’

4 ‘0’

1 Compare Register value = 4
2 Compare Register value = 7

3 Compare Register value > = 8
4 Compare Register value = 0



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 345/488

   
   

   

Double update mode

Double update mode can be used with Zerocentered mode. It doubles the frequency of 
control value updates to the PWM counter compare registers allowing a finer granularity of 
PWM control. 

Double update mode is enabled by setting the DUM bit in the Enhanced control register 
(MC_ECR).

The three phase compare registers CMU, CMV, and CMW are updated from their respective 
preload registers when the PWM counter register hits its maximum value as well as its 
minimum value (i.e., zero).  The maximum value for the PWM counter is the value set in the 
CM0 register.  When the PWM counter increments up to this value, it resets to zero (in 
classical mode) or reverses direction and begins counting down to zero (in zero-centered 
mode).  Refer to Figure 88. 

The Repetition Down Counter is also decremented at Max, CM0.

DUM is only applicable in zero-centered mode, because in classical mode, the maximum 
value for the PWM counter register is followed immediately by a clear to zero.  The zero 
value triggers a normal update cycle, which would make the DUM update on the maximum 
counter value redundant.

Caution: In double update mode, the CMP0 register can only be modified in the following conditions:

1. If MC_REP = 0.

2. If MC_REP = 1 and update is done at crest. This is done by first programming 
MC_REP = 0, then starting the counter to cause the MC_REP preload value to be 
taken into account and re-programming MC_REP = 1 immediately afterwards.

When in double update mode, CMP0 must not be modified in conditions other than 1 and 2 
above.

Figure 88. Normal zerocentered mode

CP0CP0

PWM_Count =0

PWM_Count = CP0

DUM=0, MC_REP =0

t

update

update updateupdate

PWM_Count =0

PWM_Count =CP0

DUM=0, MC_REP =1

tupdate

PWM_Count =0

PWM_Count =CP0

DUM = 0, MC_REP = 2

tupdate

update

update



   
   

   

3-phase induction motor controller (MC) RM0006

346/488  Doc ID 13742 Rev 4

Figure 89. Double update zerocentered mode

1. Update at crest is done by first programming MC_REP = 0, then starting the counter to cause the MC_REP preload value 
to be taken into account and re-programming MC_REP = 1 immediately afterwards.

PWM_Count =0

PWM_Count =CP0

DUM = 1, MC_REP = 0

t

update

update updateupdate

PWM_Count =0

PWM_Count =CP0

DUM = 1, MC_REP = 1, update at valley

tupdate

PWM_Count =0

PWM_Count =CP0

DUM = 1, MC_REP = 2

tupdate

update

update

update update update

updateupdate

update

update

PWM_Count =0

PWM_Count =CP0

DUM = 1, MC_REP = 1, update at crest(1)

tupdate updateupdate



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 347/488

   
   

   

PWM signal generation in classical mode

In this mode, each of the three PWM signals set to ‘0’ when the PWM Counter reaches, in 
up-counting, the corresponding W, V or U Compare register value and they are set to ‘1’ 
when the PWM Counter is cleared.

If the W, V or U Compare register value is greater than the Compare 0 register, the 
corresponding PWM output signal is held at ‘1’.

If the W, V or U Compare register value = 0, the corresponding PWM output signal is held at 
‘0’.

Figure 90 shows some Classical PWM waves in an example where the Compare 0 register 
value = 8.

Figure 90. Classical PWM Waveforms (Compare 0 Register = 8)

Repetition down-counter

Both in Zerocentered and Classical working mode, the four Compare registers (one 
Compare 0 and three for the U, V and W phases) are updated when the PWM counter value 
is zero and the 8-bit Repetition Down-Counter has reached zero value by counting or by 
software programming (see Section 13.4.13).

This means that data transits from the Preload Compare registers to the Compare registers 
every N cycles of the PWM Counter, where N is the value of the 8-bit Repetition register 
(N = 1, 2, .., 256).

0 1 2 3 4 5 6 7 8 0 1

1

2

3 ‘1’

4 ‘0’

1 Compare Register value = 4
2 Compare Register value = 8
3 Compare Register value > 8
4 Compare Register value = 0



   
   

   

3-phase induction motor controller (MC) RM0006

348/488  Doc ID 13742 Rev 4

Dead time generator

For each phase there is one 10-bit or 6-bit Dead Time generator. The size of the Dead Time 
generator is selected by programming the EDTC bit in the MC_ECR register.

It generates two output signals: h and l.

● The h output signal is the same as the input phase signal except for the rising edge, 
which is delayed relatively to the input signal rising edge.

● The l output signal is the opposite of the input phase signal except the rising edge 
which is delayed relatively to the input signal falling edge.

The delay is the same for each phase (U,V,W) and its value depends on the content of the 
Compare Phase registers.

Delay = N x T when the MC_CMPx register is odd.

Delay = (N-1/2) x T when the MC_CMPx register is even.

where T is the period of the Dead Time Generator input clock (PCLK divided by 2) and N is 
the 10 or 6-bit number in the Dead Time register.

If the DTE bit in the MC_PCR0 register is reset, the Dead Time Generator is disabled. This 
means that no delays are added to the l complemented outputs.

Figure 91 shows an example waveform of the U phase.

If the delay is greater than the width of the active phase (l or h) then the corresponding pulse 
is not generated.

See Figure 92 and Figure 93.

Figure 91. Dead Time waveforms

U

Uh

Ul

Delay

Delay

3V

3V

3V

0V

0V

0V



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 349/488

   
   

   

Figure 92. Dead time waveforms with delay greater than the negative PWM pulse

Figure 93. Dead time waveforms with delay greater than the positive PWM pulse

Polarity selection 

The polarity selection performs a logical complement of the input signals (Uh, Ul, Vh, Vl, 
Wh, Wl) as programmed in the Polarity Selection register.

Interrupts/emergency stop

The MC controller generates the 8 interrupt events described in the Interrupt pending 
register (Section 13.4.3). These can be masked individually described in the Interrupt Mask 
register (Section 13.4.16) or globally by the GPIE bit in the MC_PCR2 register 
(Section 13.4.13). The interrupts are ORed together and a single interrupt request is sent to 
the interrupt controller (VIC). 

The emergency stop interrupt request is enabled from the MC block after reset. Setting the 
DISEST bit in the MC_PCR1 register blocks the emergency stop input. The emergency stop 
request is connected as a special external interrupt request to the WIU. Refer to the VIC and 
WIU chapters for more information. When an emergency stop event occurs, the EST flag is 
set in the interrupt pending register. This flag can be cleared by writing a special 16-bit value 
in the MC_ESC register.

U

Uh

Ul

Delay

3V

3V

3V

0V

0V

0V

U

Uh

Ul

Delay

3V

3V

3V

0V

0V

0V



   
   

   

3-phase induction motor controller (MC) RM0006

350/488  Doc ID 13742 Rev 4

Output values in emergency stop and debug mode

Two control bits, EMS and ESP, are present in the MC_ECR register which, under particular 
circumstances, modify the logic values that are output on the six PWM output pins MC_UH, 
MC_UL, MC_VH, MC_VL, MC_WH, and MC_WL. 

Bit MC_ECR[6] is designated as the Enhanced Motor Stop or EMS control bit. Writing a '1' 
to that bit enables an enhanced stop feature that is described below. Bit MC_ECR[1] is the 
Enhanced Stop Polarity or ESP bit. The ESP bit selects between normal and inverted output 
values under applicable conditions. 

The conditions under which these bits affect the PWM output values are complex. However, 
they can be summarized as any condition under which normal PWM cycling is halted, or 
needs to be halted. The intent is to place all motor drive switches in the OFF state, allowing 
the motor to freewheel. The purpose is to protect the motor drive circuits from burnout, not 
to apply active braking to stop the motor.

There are three situations in which normal PWM cycling is halted. One is in response to an 
active signal on the motor controller's Emergency Stop pin, ESTOP. This signal, mapped 
through one of the GPIO interrupt request pins, normally originates with thermal protection 
circuitry in the motor drive power electronics. It should not be confused with the signal from 
a motor equipment operator's emergency OFF button. The latter calls for active braking of 
the motor, which requires continued PWM cycling.

In normal operation, the automatic response to the ESTOP signal is to force the PWM 
outputs to zeroes. Zero is assumed to be the value corresponding to the OFF state for the 
drive switches. In Enhanced Stop configuration, the value forced to the PWM outputs is 
determined by the ESP bit. This allows for the possibility of that a PWM output of '1' 
corresponds to the OFF state of a drive switch.

The second situation in which PWM cycling is halted is when software has explicitly stopped 
it, by clearing the PWM Counter Enable bit (PCE, bit 5) in register MC_PCR0. In normal 
operation, it is essential for the controller software to "safe" the PWM outputs before 
disabling the PWM counter. This is done by setting bit 6, the Output Data Selection bit 
(ODS) in the Output Peripheral Register MC_OPR. Setting the ODS bit in MC_OPR forces 
the six PWM outputs to the XOR of MC_OPR bits [5:0] and MC_PSR bits [5:0]. Failure to set 
the ODS bit before disabling the PWM counter could result in burnout of one or more power 
switches in the motor drive. As a protection measure, the Enhanced Motor Stop (EMS) 
feature has been implemented. If the PWM counter is disabled by software while EMS bit is 
enabled, control logic will check the ODS bit. If it is not set, then the PWM outputs are forced 
to a safe state in the same manner they would be in response to the ESTOP signal, where 
the PWM output values are the XOR of ESP bit and MC_PSR bits[5:0] 

The third situation in which PWM cycling is halted is in debug mode, when a hardware break 
condition effectively halts the master clock. When EMS bit is set, the Debug Output 
Protection bit (DOP) in register MC_ECR enables the PWM outputs to be determined by the 
ESP bit.



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 351/488

   
   

   

ADC trigger

The microcontroller’s Analog to Digital Converter trigger input is internally connected to the 
IMC. An ADC conversion can be triggered one of the following IMC events:

● ZPC, when the PWM counter reaches zero.

● CM0, when the PWM counter reaches its maximum count.

● ADT, when the PWM counter equals zero and the Repetition Down counter equals 
zero.

This is selected by the ATS[1:0] bits in the Enhanced control register (MC_ECR).

13.3.1 Tacho counter operating modes

The Tacho Counter can work in One Shot mode or in Continuous mode.

In both Continuous or One Shot mode the Capture event can be generated by hardware 
(TACHO Pin) or by software (STC bit in the MC_PCR1 register) according to the value of the 
TES bit in the MC_PCR1 register.

When the CTC bit in the MC_PCR0 register is set, the TACHO Counter is cleared (this bit is 
reset by hardware).

Tacho counter in one shot mode

In this operating mode (TCB bit = 1 in the MC_PCR1 register) the Counter does the 
following:

● Counting is started by setting the TCE bit in the MC_PCR0 register.

● When a Capture event occurs, counting is stopped (TCE bit is cleared), the value is 
captured and a CPT interrupt is generated (if the CCPT bit in the MC_PCR1 register is 
set, the Counter is cleared).

● When the MSB of Tacho Counter reaches the Tacho Compare register value, the 
Counter is stopped (TCE bit is cleared) and the OTC interrupt is generated.

Tacho counter in continuous mode 

In this operating mode (TCB bit = 0 in the MC_PCR1 register) the Counter does the 
following:

● Counting is started by setting the TCE bit in the MC_PCR0 register.

● Every Capture event, the value is captured and a CPT interrupt is generated (if the 
CCPT bit in the MC_PCR1 register is set, the Counter is cleared).

● When the MSB of Tacho Counter reaches the Tacho Compare register value, an OTC 
interrupt is generated.



   
   

   

3-phase induction motor controller (MC) RM0006

352/488  Doc ID 13742 Rev 4

13.3.2 MC operating modes

The MC controller can work in two different modes:

● Hardware Operating mode (DTS bit = 0 in the MC_PCR2 register)

● Software Operating mode (DTS bit = 1 in MC_PCR2 register)

In both modes, when the corresponding event occurs, the ADT and the other interrupts are 
generated.

When the CPC bit in the MC_PCR0 register is set, the PWM Counter is cleared (this bit is 
reset by software).

MC hardware operating mode

After system reset, the Compare U, V, W and Compare 0 register values are all “0”.

When the PWM Counter is enabled (by setting the PCE bit in the MC_PCR0 register) and 
every time the Repetition Counter and the PWM Counter reach “0” value, the Repetition 
Counter is loaded, the preload registers are loaded into the Compare registers and an ADT 
interrupt is generated.

Note: If an ADT (or any other interrupt) is generated and the previous one is not completed, the 
last one will be lost without any error condition being issued.

MC software operating mode

In this operating mode, the Repetition register and any Compare register can be 
independently updated by software by setting the SDT bit in the MC_PCR2 register (this bit 
will be reset by hardware) and the corresponding enable bit in the same register.

No hardware loading is performed when an ADT interrupt is generated.

Note: The Repetition Counter is decremented immediately when the Repetition Counter is 
updated.

13.3.3 MC output selection

The MC Output can be selected from the following sources:

● MC_OPR register (bits 5:0), by setting the ODS bit in the MC_OPR register.

● Dead Time Generator outputs, by setting the ODCS bit in the MC_PCR0 register.

● PWM Counter outputs (h and l) are not complemented when the ODCS bit is reset.

Figure 94 shows the MC output selection.



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 353/488

   
   

   

Figure 94. MC output selection

0

1
0

1

UH

UL

VH

VL

WH

WL

PWM Counter

Dead Time 

ODS bit

ODCS bit

P
ol

ar
ity

 S
el

ec
tio

n

Generator

MC_OPR Register

MC_PSR Register



   
   

   

3-phase induction motor controller (MC) RM0006

354/488  Doc ID 13742 Rev 4

13.4 Register description

13.4.1 Tacho capture register (MC_TCPT)

Address offset: 00h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

13.4.2 Tacho compare register (MC_TCMP)

Address offset: 04h

Reset value: 0000 0000 1111 1111 (00FFh)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCPT[15:0]

r

Bits 15:0
TCPT[15:0]: Captured value of tacho counter

These bits are read only. They contain the captured value of the tacho counter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TCMP[7:0]

rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:0

TCMP[7:0]: Tacho Compare register
These bits are written by software. They contain the value to be compared to the 
MSB of the Tacho counter. When the Most Significant Byte of the tacho counter 
reaches the TCMP value, the Tacho Counter is cleared and an OTC interrupt is 
generated both in Continuous and One Shot modes.



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 355/488

   
   

   

13.4.3 Interrupt pending register (MC_IPR)

Address offset: 08h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EST CM0 CPT OTC ADT ZPC CMPU CMPV CMPW

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:9 Reserved, must be kept at reset value

Bit 8

EST: Emergency stop bit

This bit is set by hardware in response to an emergency stop condition. The EST 
bit must be cleared by software.
0: No EST interrupt occurred
1: EST interrupt pending

Bit 7

CM0: Compare0 of PWM pending bit

This bit is set by hardware when the PWM counter reaches the value in the 
Compare 0 register while CM0E = 1. The CM0 bit must be cleared by software.
0: No CM0 interrupt occurred
1: CM0 interrupt pending

Bit 6

CPT: Capture of Tacho counter pending bit

This bit is set by hardware when a Tacho signal event occurs while CPTE = 1. 
The CPT bit must be cleared by software. 
0: No CPT interrupt occurred
1: CPT interrupt pending

Bit 5

OTC: Overflow of Tacho counter pending bit

This bit is set by hardware on a Tacho counter overflow while OTCE = 1. The 
OTC bit must be cleared by software.
0: No OTC interrupt occurred
1: OTC interrupt pending

Bit 4

ADT: Automatic Data Transfer pending bit

This bit is set by hardware when data is transferred from the preload registers to 
the compare registers while ADTE = 1. The ADT bit must be cleared by software.
0: No ADT interrupt occurred
1: ADT interrupt pending

Bit 3

ZPC: Zero of PWM counter pending bit

This bit is set by hardware when the PWM counter reaches zero while ZPCE = 1. 
The ZPC bit must be cleared by software. 
0: No ZPC interrupt occurred
1: ZPC interrupt pending



   
   

   

3-phase induction motor controller (MC) RM0006

356/488  Doc ID 13742 Rev 4

13.4.4 Tacho prescaler register (MC_TPRS)

Address offset: 0Ch

Reset value: 0000 0000 0000 0001 (0001h)

         

         

Bit 2

CMPU: Compare U pending bit

In Classical Mode (CMS bit = 0), this bit is set by hardware when the PWM 
Counter reaches the Compare U register value while CMPUE = 1. 
In Zerocentered Mode (CMS bit =1), this bit is set by hardware when the PWM 
Counter reaches the Compare U register value while CMPUE = 1 in up or 
downcounting (depending on the UDIS bit in the MC_PSR register). 
The CMPU bit must be cleared by software.
0: No CMPU interrupt occurred
1: CMPU interrupt pending

Bit 1

CMPV: Compare V pending bit
In Classical Mode (CMS bit = 0), this bit is set by hardware when the PWM 
Counter reaches the Compare V register value while CMPVE = 1.
In Zerocentered Mode (CMS bit =1), this bit is set by hardware when the PWM 
Counter reaches the Compare V register value while CMPVE = 1 in up or 
downcounting (depending on the UDIS bit in the MC_PSR register). 
The CMPV bit must be cleared by software.
0: No CMPV interrupt occurred
1: CMPV interrupt pending

Bit 0

CMPW: Compare W pending bit
In Classical Mode (CMS bit = 0), this bit is set by hardware when the PWM 
Counter reaches the Compare W register value while CMPWE = 1. 
In Zerocentered Mode (CMS bit =1), this bit is set by hardware when the PWM 
Counter reaches the Compare W register value while CMPWE = 1 in up or 
downcounting (depending on the UDIS bit in the MC_PSR register).
The CMPW bit must be cleared by software.
0: No CMPW interrupt occurred
1: CMPW interrupt pending

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TPRS[11:0]

rw

Bits 15:12 Reserved, must be kept at reset value

Bits 11:0
TPRS[11:0]: Tacho Prescaler value N

This value N is written by software to define the tacho prescaler. The value 
divides the tacho frequency by N.



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 357/488

   
   

   

13.4.5 PWM counter prescaler register (MC_CPRS)

Address offset: 10h

Reset value: 0000 0000 0000 0001 (0001h)

         

         

13.4.6 Repetition counter register (MC_REP)

Address offset: 14h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CPRS[7:0]

rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:0
CPRS[7:0]: PWM counter prescaler value N

This value N is written by software to define the PWM counter prescaler. The 
value divides the PCLK frequency by N.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved REP[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:0
REP[7:0]: Repetition counter value N

If N = 0, each time the PWM Counter reaches zero, the Compare registers are 
updated and an ADT interrupt is generated.



   
   

   

3-phase induction motor controller (MC) RM0006

358/488  Doc ID 13742 Rev 4

13.4.7 Compare phase W preload register (MC_CMPW)

Address offset: 18h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMPW[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

CMPW[15:0]: Phase W preload value
This value is written by software to define the phase W compare value to be 
loaded at the next register update.
In 10-bit PWM mode (EPWM bit = 0 in MC_ECR register):
Bits 15:11 = Reserved, forced to 0 by hardware.
Bits 10:0 = Phase W preload value (11 bits)
In 16-bit PWM mode (EPWM bit = 1 in MC_ECR register):
Bits 15:0 = Phase W preload value (16 bits)



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 359/488

   
   

   

13.4.8 Compare phase V preload register (MC_CMPV)

Address offset: 1Ch

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMPV[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

CMPV[15:0]: Phase V preload value
This value is written by software to define the phase V compare value to be loaded at 
the next register update.
In 10-bit PWM mode (EPWM bit = 0 in MC_ECR register):
Bits 15:11 = Reserved, forced to 0 by hardware
Bits 10:0 = Phase V preload value (11 bits)
In 16-bit PWM mode (EPWM bit = 1 in MC_ECR register):
Bits 15:0 = Phase V preload value (16 bits)



   
   

   

3-phase induction motor controller (MC) RM0006

360/488  Doc ID 13742 Rev 4

13.4.9 Compare phase U preload register (MC_CMPU)

Address offset: 20h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

13.4.10 Compare 0 preload register (MC_CMP0)

Address offset: 24h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMPU[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

CMPU[15:0]: Phase U preload value
This value is written by software to define the phase U compare value to be 
loaded at the next register update.
In 10-bit PWM mode (EPWM bit = 0 in MC_ECR register):
Bits 15:11 = Reserved, forced to 0
Bits 10:0 = Phase U preload value (11 bits)
In 16-bit PWM mode (EPWM bit = 1 in MC_ECR register):
Bits 15:0 = Phase U preload value (16 bits)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP0[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

CMP0[15:0]: Compare 0 preload value
This value is written by software to define the compare 0 value to be loaded at the 
next register update. It must be greater than 1.
In 10-bit PWM mode (EPWM bit = 0 in MC_ECR register):
Bits 15:10 = Reserved, forced to 0
Bits 9:0 = CMP0 preload value
In 16-bit PWM mode (EPWM bit = 1 in MC_ECR register):
Bits 15:0 = CMP0 preload value



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 361/488

   
   

   

13.4.11 Peripheral control register 0 (MC_PCR0)

Address offset: 28h

Reset value: 0000 0000 0000 0011 (0003h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DTE TCE PCE CTC CPC CMS UDCS ODCS

rw rw rw rw rw rw r rw

Bits 15:8 Reserved, must be kept at reset value

Bit 7
DTE: Dead Time Counter Enable

0: Stop and bypass the Dead Time counter
1: Enable the Dead Time counter

Bit 6

TCE: Tacho Counter Enable

0: Stop Tacho counter and prescaler
1: Start Tacho counter and prescaler
Note: This bit is reset by the counter overflow or by the Tacho capture when the 
MC controller is in one shot mode.

Bit 5
PCE: PWM Counter Enable

0: Stop PWM Counter and prescaler
1: Start PWM Counter and prescaler

Bit 4
CTC: Clear Tacho Counter

0: No effect
1: Clear the Tacho Counter (this bit is reset by hardware)

Bit 3
CPC: Clear PWM Counter

0: No effect.
1: Clear the PWM Counter (this bit is reset by hardware)

Bit 2
CMS: PWM Counter Mode Selection

0: Classical mode
1: Zerocentered mode

Bit 1

UDCS: Up/Down status (read only)

This bit is set and cleared by hardware.
0: The PWM Counter is counting down
1: The PWM Counter is counting up

Bit 0
ODCS: Output Dead Time counter Selection

0: Select the same signal for both (h, l) outputs
1: Select complementary signal for output (Dead Time Generator outputs)



   
   

   

3-phase induction motor controller (MC) RM0006

362/488  Doc ID 13742 Rev 4

13.4.12 Peripheral control register 1 (MC_PCR1)

Address offset: 2Ch

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DIS 
EST

CCP
T

TES STC TCB TIN[1:0]

rw rw rw rw rw rw

Bits 15:7 Reserved, must be kept at reset value

Bit 6

DISEST: Emergency Stop Disable
0: Emergency Stop input is enabled
1: Emergency Stop input is blocked from the MC. The EST bit in the IPR register 
is set when the ESTOP pin input goes low.

Bit 5
CCPT: Clear on Capture of tacho counter

0: No clear on capture
1: Clear on capture

Bit 4
TES: Tacho Event Selection

0: Select capture by tacho event signal
1: Select capture by software (STC bit)

Bit 3
STC: Software tacho capture

0: No effect
1: Capture the Tacho counter (while TES = 1). This bit is reset by hardware.

Bit 2

TCB: Tacho Counter Mode

0: Select continuous mode
1: Select one shot mode (counting starts when TCE bit is set and stops when a 
capture or an overflow event occurs)

Bit 1:0

TIN[1:0] Tacho Signal Event Sensitivity

These bits select which Tacho signal event triggers the Tacho Capture register.
00: No operation
01: Falling edge
10: Rising edge
11: Rising and falling edge



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 363/488

   
   

   

13.4.13 Peripheral control register 2 (MC_PCR2)

Address offset: 30h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved GPIE RSE CWSE CVSE CUSE C0SE SDT DTS

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bit 7
GPIE: Global Peripheral Interrupt Enable

0: Disable all MC controller interrupts
1: Enable all MC controller interrupts

Bit 6
RSE: Enable Software Data Transfer to Repetition register

0: Disable loading of Repetition register by SDT bit 
1: Enable loading of Repetition register by SDT bit 

Bit 5
CWSE: Enable Software Data Transfer to Compare W

0: Disable load of Compare W register by SDT bit 
1: Enable load of Compare W register by SDT bit 

Bit 4
CVSE: Enable Software Data Transfer to Compare V register

0: Disable loading of Compare V register by SDT bit 
1: Enable loading of Compare V register by SDT bit 

Bit 3
CUSE: Enable Software Data Transfer to Compare U register

0: Disable loading of Compare U register by SDT bit 
1: Enable loading of Compare U register by SDT bit 

Bit 2
C0SE: Enable Software Data Transfer to Compare 0 register

0: Disable loading of Compare 0 register by SDT bit 
1: Enable loading of Compare 0 register by SDT bit 

Bit 1

SDT: Software Data Transfer

0: No effect
1: Transfer Data from preload to compare register (while DTS = 1) (This bit is 
reset by hardware).

Bit 0
DTS: Data Transfer Mode Selection

0: Hardware transfer using Repetition counter
1: Software transfer using SDT bit.



   
   

   

3-phase induction motor controller (MC) RM0006

364/488  Doc ID 13742 Rev 4

13.4.14 Polarity selection register (MC_PSR)

Address offset: 34h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved UDIS PUH PUL PVH PVL PWH PWL

rw rw rw rw rw rw rw

Bits 15:7 Reserved, must be kept at reset value

Bit 6

UDIS: Up-Down Interrupt Select

When the PWM Counter is working in Zerocentered Mode the meaning is:
0: Compare interrupts (CMPU, CMPV, CMPW) are issued when the counter is 
counting up.
1: Compare interrupts (CMPU, CMPV, CMPW) are issued when the counter is 
counting down.
Note: This bit has no effect when the Counter is working in Classical Mode. 

Bit 5
PUH: Polarity of Uh phase

0: Positive logical level
1: Complemented logical level

Bit 4
PUL: Polarity of Ul phase

0: Positive logical level
1: Complemented logical level

Bit 3
PVH: Polarity of Vh phase

0: Positive logical level
1: Complemented logical level

Bit 2
 PVL: Polarity of Vl phase

0: Positive logical level
1: Complemented logical level

Bit 1
PWH: Polarity of Wh phase

0: Positive logical level
1: Complemented logical level

Bit 0
PWL: Polarity of Wl phase

0: Positive logical level
1: Complemented logical level



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 365/488

   
   

   

13.4.15 Output peripheral register (MC_OPR)

Address offset: 38h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ODS UH UL VH VL WH WL

rw rw rw rw rw rw rw

Bits 15:7 Reserved, must be kept at reset value

Bit 6
ODS: Output Data Selection

0: Dead time generator data
1: Select the data in bits 5:0 (UH, UL, VH, VL, WH, WL)

Bits 5:0
 UH, UL, VH, VL, WH, WL: UH, UL, VH, VL, WH, WL phases

These bits can be sent out through the output port.



   
   

   

3-phase induction motor controller (MC) RM0006

366/488  Doc ID 13742 Rev 4

13.4.16 Interrupt mask register (MC_IMR)

Address offset: 3Ch

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CM0E CPTE OTCE ADTE ZPCE CMPUE CMPVE CMPWE

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bit 7
CM0E: Compare 0 of PWM counter interrupt enable

0: Disabled
1: Enabled

Bit 6
CPTE: Capture of Tacho counter Interrupt enable

0: Disabled
1: Enabled

Bit 5
OTCE: Overflow of Tacho counter Interrupt enable

0: Disabled.
1: Enabled

Bit 4
ADTE: Automatic data transfer Interrupt enable

0: Disabled
1: Enabled

Bit 3
ZPCE: Zero of PWM counter interrupt enable

0: Disabled
1: Enabled

Bits 2:0
CMPUE, CMPVE, CMPWE: Compare U, V, W interrupt enable

0: Disabled
1: Enabled



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 367/488

   
   

   

13.4.17 Dead time generator register (MC_DTG)

Address offset: 40h

Reset value (EDTC bit = 0) : 0000 0000 0011 1111 (003Fh)

Reset value (EDTC bit = 1) : 0000 0011 1111 1111 (03FFh)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DTG[9:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:0

DTG[9:0] Dead time generator value (N)
This value N is written by software to define the dead time. The delay is N x 
PCLK period X2 for MC_CMPx register with an odd number. For even number, 
the delay is (N-1/2) x PCLK period X 2..
If N = 0 the delay is 0.
In 6-bit mode (EDTC bit = 0 in MC_ECR register):
Bits 15:6 = Reserved, forced to 0 by hardware
Bits 5:0 = Dead time generator value (6 bits)
In 10-bit mode (EDTC bit = 0 in MC_ECR register):
Bits 15:10 = Reserved, forced to 0 by hardware
Bits 9:0 = Dead time generator value (10 bits)



   
   

   

3-phase induction motor controller (MC) RM0006

368/488  Doc ID 13742 Rev 4

13.4.18 Emergency stop clear register (MC_ESC)

Address offset: 44h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

ESC[15:0]: Emergency Stop Clear
This register is used to clear an Emergency Stop condition. Its behavior depends 
on the setting of the HRE bit set in the MC_ECR register.
If the HRE bit = 1 in the MC_ECR register :
After the ESTOP pin input becomes de-asserted, software must:
Write 4321h to the MC_ESC register to re-start the PWM. This automatically 
rearms the Emergency Stop in 1 clock cycle.
If the HRE bit = 0 in the MC_ECR register :
After the ESTOP pin input becomes de-asserted, software must:
1. Write 4321h to the MC_ESC register to re-start the PWM
2. Write 00h to the MC_ESC register to re-arm the Emergency Stop



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 369/488

   
   

   

13.4.19 Enhanced control register (MC_ECR)

Address offset: 48h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HRE DOP EMS EPWM EDTC ATS[1:0] ESP DUM

rw rw rw rw rw rw rw rw rw

Bits 15:9 Reserved, must be kept at reset value.

Bit 8

HRE: ESC register hardware reset 

When this bit is set, the hardware clears the ESC register one PCLK after a 
4321h was written in ESC, rearming the emergency stop trigger.
0: No automatic hardware clearing of ESC. Software clearing is needed
1: Automatic hardware clearing of ESC register in response to a 4321h value

Bit 7

DOP: Debug output protection bit
When set, this bit make the outputs follow the value of the individual phase 
polarity setting, PSR,  while in debug mode and the SCU_PECGR1 clock enable 
to IMC, is disabled (= 0).
0: Output phases remain in their last known state
1: Output phases follow the polarity set by PSR. If PUH = 1 and PUL = 0 then 
during the debug condition above, phase PUH will be stopped at 1 and PUL 
stopped at 0.

Bit 6

EMS: Enhanced motor stop bit

If set, this bit forces the output phases to follow the value of the individual phase 
polarity setting when PCR0(5) = '0' (pwm_counter disabled), unless the ODS bit 
is set in which case the output assumes the value stored in the OPR register. 
0: Output phases will remain in their last known state
1: Output phases will follow the polarity set by PSR

Bit 5
EPWM: Enhanced PWM counter

0: PWM Counter is set to 10 bits
1: PWM Counter is set to 16 bits

Bit 4
EDTC: Enhanced Dead Time counter

0: Dead Time Counter is set to 6 bits
1: Dead Time Counter is set to 10 bits

Bits 3:2

ATS[1:0]: ADC trigger select bits
00: No trigger is sent to ADC
01: ZPC event is selected as ADC trigger input
10: CM0 event is selected as ADC trigger input
11: ADT event is selected as ADC trigger input



   
   

   

3-phase induction motor controller (MC) RM0006

370/488  Doc ID 13742 Rev 4

Bit 1

ESP: Emergency stop polarity bit

This bit inverts the value of phase polarity bits during a stop.
0: Output phases follow phase polarity bits during any stop or emergency stop
1: Output phases follow the inverted phase polarity bit value during any stop or 
emergency stop.

Bit 0

DUM: Double Update Mode

This bit is set and cleared by software. 
0: Double update mode disabled
1: Double update mode enabled. In this mode, the compare registers (CP0, 
CMU, CMV, CMW) and the Repetition Counter are updated from the preload 
registers when the Repetition counter = 0 (PWM counter at min) and on a CM0 
event (PWM counter at max).



RM0006 3-phase induction motor controller (MC)

Doc ID 13742 Rev 4 371/488

   
   

   

13.4.20 Lock register (MC_LOK)

Address offset: 4Ch

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOK4 LOK3 LOK2 LOK4 LOK0

wo wo wo wo wo

Bits 15:5 Reserved, must be kept at reset value

Bit 4

LOK4: Lock DTG register

This bit can be written once only. Once it is set it can be cleared only by a device 
reset. When the DTG register is locked, its value cannot be modified.
0: DTG register not locked
1: DTG register locked

Bit 3

LOK3: Lock OPR register 

This bit can be written once only. Once it is set it can be cleared only by a device 
reset. When the OPR register is locked, its value cannot be modified.
0: OPR[5:0] bits not locked
1: OPR[5:0] bits locked

Bit 2

LOK2: Lock phase polarity bits

This bit can be written once only. Once it is set it can be cleared only by a device 
reset. When the PSR[5:0] bits are locked, the value of PUH, PUL, PVH, PVL, 
PWH, PWL cannot be modified.
0: PSR[5:0] bits not locked
1: PSR[5:0] bits locked

Bit 1

LOK1: Lock emergency stop disable bit
This bit can be written once only. Once it is set it can be cleared only by a device 
reset. When the DISEST bit (Emergency Stop disable) is locked, its value cannot 
be modified.
0: DISEST bit not locked
1: DISEST bit locked

Bit 0

LOK0: Lock Dead Time enable and Output DT counter selection bits

This bit can be written once only. Once it is set it can be cleared only by a device 
reset. When the DTE and ODCS bits are locked, their value cannot be modified.
0: DTE & ODCS bits not locked
1: DTE & ODCS bits locked



   
   

   

3-phase induction motor controller (MC) RM0006

372/488  Doc ID 13742 Rev 4

13.5 MC register map

Refer to Table 5 on page 35 for the register base addresses.

Table 39. MC register map

Address 
offset

Register 
name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h MC_TCPT Tacho capture register TCPT[15:0]

04h MC_TCMP Tacho compare register TCM[7:0]

08h MC_IPR EST CM0 CPT OTC ADT ZPC CMP
U

CMP
V

CMP
W

0Ch MC_TPRS Tacho prescaler TPH[11:0]

10h MC_CPRS PWM counter prescaler CPRS[7:0]

14h MC_REP Repetition counter REP[7:0]

18h MC_CMPW Compare Phase W CMPW[15:0] or [9:0]

1Ch MC_CMPV Compare Phase V CMPV[15:0] or [9:0]

20h MC_CMPU Compare Phase U CMPU[15:0] or [9:0]

24h MC_CMP0 Compare 0 Preload CP0[15:0] or [9:0]

28h MC_PCR0 DTE TCE PCE CTC CPC CMS UDC
S

ODC
S

2Ch MC_PCR1 DISE
ST

CCP
T TES STC TCB TIN1 TIN0

30h MC_PCR2 GPIE RSE CWS
E

CVS
E

CUS
E

COS
E SDT DTS

34h MC_PSR UDIS PUH PUL PVH PVL PWH PWL

38h MC_OPR ODS UH UL VH VL WH WL

3Ch MC_IMR CM0
E CPTE OTC

E
ADT

E
ZPC

E
CMP 
UE

CMP 
VE

CMP
WE

40h MC_DTG Dead time register DTG[9:0] or DTG[5:0]

44h MC_ESC Emergency stop clear register 

48h MC_ECR HRE DOP EMS EPW
M

EDT
C ATS1 ATS0 ESP DUM

4Ch MC_LOK LOK
4

LOK
3

LOK
2

LOK
4

LOK
0



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 373/488

   
   

   

14 Controller area network (CAN)

14.1 Introduction
The CAN peripheral consists of the CAN Core, Message RAM, Message Handler, Control 
Registers and Module Interface (Refer to Figure 95).

The CAN Core performs communication according to the CAN protocol version 2.0 part A 
and B. The bit rate can be programmed to values up to 1 Mbit/s. For the connection to the 
physical layer, additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The 
Message Objects and Identifier Masks for acceptance filtering of received messages are 
stored in the Message RAM.

All functions concerning the handling of messages are implemented in the Message 
Handler. These functions include acceptance filtering, the transfer of messages between the 
CAN Core and the Message RAM, and the handling of transmission requests as well as the 
generation of the module interrupt.

The register set of the CAN peripheral can be accessed directly by the CPU through the 
module interface. These registers are used to control/configure the CAN Core and the 
Message Handler and to access the Message RAM.

14.2 Main features
● Supports CAN protocol version 2.0 part A and B

● Bit rates up to 1 Mbit/s

● 32 Message Objects

● Each Message Object has its own identifier mask

● Programmable FIFO mode (concatenation of Message Objects)

● Maskable interrupt

● Disabled Automatic Re-transmission mode for Time Triggered CAN applications

● Programmable loop-back mode for self-test operation

● Two 16-bit module interfaces to the APB bus



   
   

   

Controller area network (CAN) RM0006

374/488  Doc ID 13742 Rev 4

14.3 Block diagram
The CAN peripheral interfaces with the AMBA APB bus. Figure 95 shows the block diagram 
of the CAN peripheral:

● CAN core

● CAN Protocol Controller and Rx/Tx Shift Register

● Message RAM

● Stores Message Objects and Identifier Masks.

● Registers

● All registers used to control and to configure the CAN peripheral.

● Message handler

● State Machine that controls the data transfer between the Rx/Tx Shift Register of the 
CAN Core and the Message RAM as well as the generation of interrupts as 
programmed in the Control and Configuration Registers.

● Module interface

● The module interface provides the interface between the APB 16-bit bus and the CAN 
peripheral registers.

Figure 95. Block diagram of the CAN Peripheral

CAN Peripheral

CAN CORE

REGISTERS

MODULE INTERFACE

M
E

S
S

AG
E

 H
A

N
D

LE
R

CAN_TX CAN_RX

Message RAM

D
at

aI
N

In
te

rr
up

t

C
lo

ck

R
es

et

A
dd

re
ss

(7
:0

)

C
on

tro
l

C
A

N
_W

A
IT

_B

D
at

aO
U

T



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 375/488

   
   

   

14.4 Functional description

14.4.1 Software initialization

The software initialization is started by setting the Init bit in the CAN Control Register, either 
by a software or a hardware reset, or by going to Bus_Off state.

While the Init bit is set, all message transfers to and from the CAN bus are stopped and the 
status of the CAN_TX output pin is recessive (HIGH). The Error Management Logic (EML) 
counters are unchanged. Setting the Init bit does not change any configuration register.

To initialize the CAN Controller, software has to set up the Bit Timing Register and each 
Message Object. If a Message Object is not required, the corresponding MsgVal bit should 
be cleared. Otherwise, the entire Message Object has to be initialized.

Access to the Bit Timing Register and to the Baud Rate Prescaler (BRP) Extension Register 
for configuring bit timing is enabled when the Init and Configuration Change Enable (CCE) 
bits in the CAN Control Register are both set.

Resetting the Init bit (by CPU only) finishes the software initialization. Later, the Bit Stream 
Processor (BSP) (see Section 14.7.10: Configuring the bit timing on page 411) 
synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a 
sequence of 11 consecutive recessive bits (≡ Bus Idle) before it can take part in bus 
activities and start the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly, 
but the Message Objects should all be configured to particular identifiers or set to not valid 
before the BSP starts the message transfer.

To change the configuration of a Message Object during normal operation, software has to 
start by resetting the corresponding MsgVal bit. When the configuration is completed, 
MsgVal is set again.

14.4.2 CAN message transfer

Once the CAN peripheral is initialized and Init bit is cleared, the CAN peripheral Core 
synchronizes itself to the CAN bus and starts the message transfer.

Received messages are stored in their appropriate Message Objects if they pass the 
Message Handler’s acceptance filtering. The whole message including all arbitration bits, 
DLC and eight data bytes are stored in the Message Object. If the Identifier Mask is used, 
the arbitration bits which are masked to “don’t care” may be overwritten in the Message 
Object.

Software can read or write each message any time through the Interface Registers and the 
Message Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the application software. If a permanent 
Message Object (arbitration and control bits are set during configuration) exists for the 
message, only the data bytes are updated and the TxRqst bit with NewDat bit are set to 
start the transmission. If several transmit messages are assigned to the same Message 
Object (when the number of Message Objects is not sufficient), the whole Message Object 
has to be configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time. 
Message objects are transmitted subsequently according to their internal priority. Messages 
may be updated or set to not valid any time, even when their requested transmission is still 



   
   

   

Controller area network (CAN) RM0006

376/488  Doc ID 13742 Rev 4

pending. The old data will be discarded when a message is updated before its pending 
transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may 
be requested autonomously by the reception of a remote frame with a matching identifier.

14.4.3 Disabled automatic re-transmission mode

In accordance with the CAN Specification (see ISO11898, 6.3.3 Recovery Management), 
the CAN peripheral provides means for automatic re-transmission of frames that have lost 
arbitration or have been disturbed by errors during transmission. The frame transmission 
service will not be confirmed to the user before the transmission is successfully completed. 
This means that, by default, automatic retransmission is enabled. It can be disabled to 
enable the CAN peripheral to work within a Time Triggered CAN (TTCAN, see ISO11898-1) 
environment.

Disabled Automatic Retransmission mode is enabled by setting the Disable Automatic 
Retransmission (DAR) bit in the CAN Control Register. In this operation mode, the 
programmer has to consider the different behaviour of bits TxRqst and NewDat in the 
Control Registers of the Message Buffers:

● When a transmission starts, bit TxRqst of the respective Message Buffer is cleared, 
while bit NewDat remains set.

● When the transmission completed successfully, bit NewDat is cleared.

● When a transmission fails (lost arbitration or error), bit NewDat remains set. 

To restart the transmission, the CPU should set the bit TxRqst again.

14.4.4 Test mode

Test Mode is entered by setting the Test bit in the CAN Control Register. In Test Mode, bits 
Tx1, Tx0, LBack, Silent and Basic in the Test Register are writeable. Bit Rx monitors the 
state of the CAN_RX pin and therefore is only readable. All Test Register functions are 
disabled when the Test bit is cleared.

Silent mode

The CAN Core can be set in Silent Mode by programming the Silent bit in the Test Register 
to one.

In Silent Mode, the CAN peripheral is able to receive valid data frames and valid remote 
frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If 
the CAN Core is required to send a dominant bit (ACK bit, Error Frames), the bit is rerouted 
internally so that the CAN Core monitors this dominant bit, although the CAN bus may 
remain in recessive state. The Silent Mode can be used to analyse the traffic on a CAN bus 
without affecting it by the transmission of dominant bits. Figure 96 shows the connection of 
signals CAN_TX and CAN_RX to the CAN Core in Silent Mode.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 377/488

   
   

   

Figure 96. CAN core in silent mode

In ISO 11898-1, Silent Mode is called Bus Monitoring Mode.

Loop back mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack 
to one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received 
messages and stores them in a Receive Buffer (if they pass acceptance filtering). Figure 97 
shows the connection of signals, CAN_TX and CAN_RX, to the CAN Core in Loop Back 
Mode.

Figure 97. CAN core in loop back mode

This mode is provided for self-test functions. To be independent from external stimulation, 
the CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a 
data/remote frame) in Loop Back Mode. In this mode, the CAN Core performs an internal 
feedback from its Tx output to its Rx input. The actual value of the CAN_RX input pin is 
disregarded by the CAN Core. The transmitted messages can be monitored on the CAN_TX 
pin.

Loop back combined with silent mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack 
and Silent to one at the same time. This mode can be used for a “Hot Selftest”, which means 
that CAN peripheral can be tested without affecting a running CAN system connected to the 
CAN_TX and CAN_RX pins. In this mode, the CAN_RX pin is disconnected from the CAN 
Core and the CAN_TX pin is held recessive. Figure 98 shows the connection of signals 
CAN_TX and CAN_RX to the CAN Core in case of the combination of Loop Back Mode with 
Silent Mode.

CAN_TX CAN_RX

Tx Rx

CAN Core

CAN Peripheral

••

=1

CAN_TX CAN_RX

Tx Rx

CAN Core

••

CAN Peripheral



   
   

   

Controller area network (CAN) RM0006

378/488  Doc ID 13742 Rev 4

Figure 98. CAN core in loop back mode combined with silent mode

Basic mode

The CAN Core can be set in Basic Mode by programming the Test Register bit Basic to one. 
In this mode, the CAN peripheral runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1 
Registers are requested by writing the Busy bit of the IF1 Command Request Register to 
one. The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the 
transmission is pending.

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN 
Core and the transmission is started. When the transmission has been completed, the Busy 
bit is reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1 
Command Request Register while the IF1 Registers are locked. If the CPU has reset the 
Busy bit, a possible retransmission in case of lost arbitration or in case of an error is 
disabled.

The IF2 Registers are used as a Receive Buffer. After the reception of a message the 
contents of the shift register is stored into the IF2 Registers, without any acceptance 
filtering.

Additionally, the actual contents of the shift register can be monitored during the message 
transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2 
Command Request Register to one, the contents of the shift register are stored in the IF2 
Registers.

In Basic Mode, the evaluation of all Message Object related control and status bits and the 
control bits of the IFn Command Mask Registers are turned off. The message number of the 
Command request registers is not evaluated. The NewDat and MsgLst bits in the IF2 
Message Control Register retain their function, DLC3-0 indicate the received DLC, and the 
other control bits are read as ‘0’.

Software control of CAN_TX pin

Four output functions are available for the CAN transmit pin, CAN_TX. In addition to its 
default function (serial data output), the CAN transmit pin can drive the CAN Sample Point 
signal to monitor CAN_Core’s bit timing and it can drive constant dominant or recessive 
values. The latter two functions, combined with the readable CAN receive pin CAN_RX, can 
be used to check the physical layer of the CAN bus.

The output mode for the CAN_TX pin is selected by programming the Tx1 and Tx0 bits of 
the CAN Test Register.

CAN_TX CAN_RX

Tx Rx

CAN Core

••

=1
CAN Peripheral



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 379/488

   
   

   

The three test functions of the CAN_TX pin interfere with all CAN protocol functions. 
CAN_TX must be left in its default function when CAN message transfer or any of the test 
modes (Loop Back Mode, Silent Mode, or Basic Mode) are selected.

14.5 Register description
The CAN peripheral allocates an address space of 256 bytes. The registers are organized 
as 16-bit registers.

The two sets of interface registers (IF1 and IF2) control the CPU access to the Message 
RAM. They buffer the data to be transferred to and from the RAM, avoiding conflicts 
between CPU accesses and message reception/transmission.

In this section, the following abbreviations are used:

         

The CAN registers are listed in Table 40.

Read/write (rw) The software can read and write to these bits

Read-only (r) The software can only read these bits

Write-only (w) The software should only write to these bits



   
   

   

Controller area network (CAN) RM0006

380/488  Doc ID 13742 Rev 4

         

Table 40. CAN registers

Register name Address offset Reset value

CAN Control Register (CAN_CR) 00h 0001h

Status Register (CAN_SR) 04h 0000h

Error Counter (CAN_ERR) 08h 0000h

Bit Timing Register (CAN_BTR) 0Ch 2301h

Test Register (CAN_TESTR) 14h
0000 0000 R000 0000 b
Note: R = current value of 
the RX pin

BRP Extension Register (CAN_BRPR) 18h 0000h

IFn Command Request Registers 
(CAN_IFn_CRR)

20h (CAN_IF1_CRR), 
80h (CAN_IF2_CRR)

0001h

IFn Command Mask Registers 
(CAN_IFn_CMR)

24h (CAN_IF1_CMR), 
84h (CAN_IF2_CMR)

0000h

IFn Mask 1 Register (CAN_IFn_M1R)
28h (CAN_IF1_M1R), 
88h (CAN_IF2_M1R)

FFFFh

IFn Mask 2 Register (CAN_IFn_M2R)
2Ch (CAN_IF1_M2R), 
8Ch (CAN_IF2_M2R)

FFFFh

IFn Message Arbitration 1 Register 
(CAN_IFn_A1R)

30h (CAN_IF1_A1R), 
90h (CAN_IF2_A1R)

0000h

IFn Message Arbitration 2 Register 
(CAN_IFn_A2R)

34h (CAN_IF1_A2R), 
94h (CAN_IF2_A2R)

0000h

IFn Message Control Registers 
(CAN_IFn_MCR)

38h (CAN_IF1_MCR), 
98h (CAN_IF2_MCR)

0000h

IFn Data A/B Registers 
(CAN_IFn_DAnR and CAN_IFn_DBnR)

3Ch (CAN_IF1_DA1R), 
40h (CAN_IF1_DA2R),
44h (CAN_IF1_DB1R), 
48h (CAN_IF1_DB2R),
9Ch (CAN_IF2_DA1R), 
A0h (CAN_IF2_DA2R),
A4h (CAN_IF2_DB1R), 
A8h (CAN_IF2_DB2R)

0000h

Interrupt Identifier Register (CAN_IDR) 10h 0000h

Transmission Request Registers 1 & 2 
(CAN_TxRnR)

100h (CAN_TxR1R), 
104h (CAN_TxR2R)

0000h

New Data Registers 1 & 2 (CAN_NDnR)
120h (CAN_ND1R), 
124h (CAN_ND2R)

0000h

Interrupt Pending Registers 1 & 2 
(CAN_IPnR)

140h (CAN_IP1R), 
144h (CAN_IP2R)

0000h

Message Valid Registers 1 & 2 
(CAN_MVnR)

160h (CAN_MV1R), 
164h (CAN_MV2R)

0000h



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 381/488

   
   

   

14.5.1 CAN interface reset state 

After the hardware reset, the CAN peripheral registers hold the reset values given in the 
register descriptions below.

Additionally the busoff state is reset and the output CAN_TX is set to recessive (HIGH). The 
value 0x0001 (Init = ‘1’) in the CAN Control Register enables the software initialization. The 
CAN peripheral does not influence the CAN bus until the CPU resets the Init bit to ‘0’.

The data stored in the Message RAM is not affected by a hardware reset. After powering on, 
the contents of the Message RAM are undefined.

14.5.2 CAN protocol related registers

These registers are related to the CAN protocol controller in the CAN Core. They control the 
operating modes and the configuration of the CAN bit timing and provide status information.

CAN control register (CAN_CR)

Address offset: 00h
Reset value: 0001h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Test CCE DAR res EIE SIE IE Init

- - - - - - - - rw rw rw - rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0

Bit 7
Test: Test Mode Enable

0: Normal Operation
1: Test Mode

Bit 6 
CCE: Configuration Change Enable

0: No write access to the Bit Timing Register
1: Write access to the Bit Timing Register allowed (while bit Init = 1)

Bit 5
DAR: Disable Automatic Re-transmission

0: Automatic Retransmission of disturbed messages enabled
1: Automatic Retransmission disabled

Bit 4 Reserved, forced by hardware to 0

Bit 3

EIE: Error Interrupt Enable

0: Disabled - No Error Status Interrupt will be generated
1: Enabled - A change in the bits BOff or EWarn in the Status Register will 
generate an interrupt.

Bit 2 

SIE: Status Change Interrupt Enable
0: Disabled - No Status Change Interrupt will be generated
1: Enabled - An interrupt will be generated when a message transfer is 
successfully completed or a CAN bus error is detected.



   
   

   

Controller area network (CAN) RM0006

382/488  Doc ID 13742 Rev 4

Note: The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by 
setting or resetting the Init bit. If the device goes in the busoff state, it will set Init of its own 
accord, stopping all bus activities. Once Init has been cleared by the CPU, the device will 
then wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits) before 
resuming normal operations. At the end of the busoff recovery sequence, the Error 
Management Counters will be reset.

During the waiting time after resetting Init, each time a sequence of 11 recessive bits has 
been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to 
readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to 
monitor the proceeding of the busoff recovery sequence.

Bit 1 
IE: Module Interrupt Enable

0: Disabled
1: Enabled

Bit 0
Init: Initialization

0: Normal Operation
1: Initialization is started



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 383/488

   
   

   

Status register (CAN_SR)

Address offset: 04h
Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BOff EWarn EPass RxOk TxOk LEC

- - - - - - - - r r r rw rw rw rw rw

Bit 15:8 Reserved, forced by hardware to 0

Bit 7
BOff: Busoff Status

0: The CAN module is not in busoff state
1: The CAN module is in busoff state

Bit 6

EWarn: Warning Status
0: Both error counters are below the error warning limit of 96
1: At least one of the error counters in the EML has reached the error warning limit 
of 96.

Bit 5 
EPass: Error Passive

0: The CAN Core is error active.
1: The CAN Core is in the error passive state as defined in the CAN Specification.

Bit 4

RxOk: Received a Message Successfully

0: No message has been successfully received since this bit was last reset by the 
CPU. This bit is never reset by the CAN Core.
1: A message has been successfully received since this bit was last reset by the 
CPU (independent of the result of acceptance filtering).

Bit 3

TxOk: Transmitted a Message Successfully

0: Since this bit was reset by the CPU, no message has been successfully 
transmitted. This bit is never reset by the CAN Core.
1: Since this bit was last reset by the CPU, a message has been successfully 
(error free and acknowledged by at least one other node) transmitted.

Bits 2:0

LEC[2:0]: Last Error Code (Type of the last error to occur on the CAN bus)

The LEC field holds a code, which indicates the type of the last error to occur on 
the CAN bus. This field will be cleared to ‘0’ when a message has been transferred 
(reception or transmission) without error. The unused code ‘7’ may be written by 
the CPU to check for updates. Table  describes the error codes. 



   
   

   

Controller area network (CAN) RM0006

384/488  Doc ID 13742 Rev 4

         

Status interrupts

A Status Interrupt is generated by bits BOff and EWarn (Error Interrupt) or by RxOk, TxOk, 
and LEC (Status Change Interrupt) assuming that the corresponding enable bits in the CAN 
Control Register are set. A change of bit EPass or a write to RxOk, TxOk, or LEC will never 
generate a Status Interrupt. 

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt 
Register, if it is pending.

Table 41. Error codes

Error Code Meaning

0 No Error

1
Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a 
received message where this is not allowed.

2 Form Error: A fixed format part of a received frame has the wrong format

3
AckError: The message this CAN Core transmitted was not acknowledged by 
another node.

4
Bit1Error: During the transmission of a message (with the exception of the 
arbitration field), the device wanted to send a recessive level (bit of logical value 
‘1’), but the monitored bus value was dominant.

5

Bit0Error: During the transmission of a message (or acknowledge bit, or active 
error flag, or overload flag), though the device wanted to send a dominant level 
(data or identifier bit logical value ‘0’), but the monitored Bus value was recessive. 
During busoff recovery, this status is set each time a sequence of 11 recessive bits 
has been monitored. This enables the CPU to monitor the proceedings of the 
busoff recovery sequence (indicating the bus is not stuck at dominant or 
continuously disturbed).

6
CRCError: The CRC check sum was incorrect in the message received, the CRC 
received for an incoming message does not match with the calculated CRC for the 
received data.

7
Unused: When the LEC shows the value ‘7’, no CAN bus event was detected 
since the CPU wrote this value to the LEC.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 385/488

   
   

   

Error counter (CAN_ERR)

Address offset: 08h
Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RP REC[6:0] TEC[7:0]

r r r r r r r r r r r r r r r r

Bit 15

RP: Receive Error Passive

0: The Receive Error Counter is below the error passive level
1: The Receive Error Counter has reached the error passive level as defined in the 
CAN Specification.

Bits 14:8
REC[6:0]: Receive Error Counter

Actual state of the Receive Error Counter. Values between 0 and 127

Bits 7:0 
TEC[7:0]: Transmit Error Counter

Actual state of the Transmit Error Counter. Values between 0 and 255



   
   

   

Controller area network (CAN) RM0006

386/488  Doc ID 13742 Rev 4

Bit timing register (CAN_BTR)

Address offset: 0Ch

Reset value: 2301h

         

         

Note: With a module clock APB_CLK of 8 MHz, the reset value of 0x2301 configures the CAN 
peripheral for a bit rate of 500 Kbit/s. The registers are only writable if bits CCE and Init in 
the CAN Control Register are set.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. TSeg2 TSeg1 SJW BRP

- rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, forced by hardware to 0

Bits 14:12 

TSeg2: Time segment after sample point

0x0-0x7: Valid values for TSeg2 are [ 0 … 7 ]. The actual interpretation by the 
hardware of this value is such that one more than the value programmed here is 
used.

Bits 11:8 
TSeg1: Time segment before the sample point minus Sync_Seg

0x01-0x0F: valid values for TSeg1 are [ 1 … 15 ]. The actual interpretation by the 
hardware of this value is such that one more than the value programmed is used.

Bits 7:6 

SJW: (Re)Synchronization Jump Width
0x0-0x3: Valid programmed values are [ 0 … 3 ]. The actual interpretation by the 
hardware of this value is such that one more than the value programmed here is 
used.

Bits 5:0 

BRP: Baud Rate Prescaler

0x01-0x3F: The value by which the oscillator frequency is divided for generating 
the bit time quanta. The bit time is built up from a multiple of this quanta. Valid 
values for the Baud Rate Prescaler are [ 0 … 63 ]. The actual interpretation by 
the hardware of this value is such that one more than the value programmed here 
is used.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 387/488

   
   

   

Test register (CAN_TESTR)

Address offset: 14h
Reset value: 0000 0000 R000 0000 b (R:current value of RX pin)

         

         

Write access to the Test Register is enabled by setting the Test bit in the CAN Control 
Register. The different test functions may be combined, but Tx1-0 ≠ “00” disturbs message 
transfer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Rx Tx[1:0] LBack Silent Basic Reserved

- - - - - - - - r rw rw rw rw rw - -

Bits 15:8 Reserved, forced by hardware to 0

Bit 7 
Rx: Current value of CAN_RX Pin

0: The CAN bus is dominant (CAN_RX = ‘0’)
1: The CAN bus is recessive (CAN_RX = ‘1’)

Bit 6:5 

Tx[1:0]: CAN_TX pin control
00: Reset value, CAN_TX is controlled by the CAN Core
01: Sample Point can be monitored at CAN_TX pin
10: CAN_TX pin drives a dominant (‘0’) value
11: CAN_TX pin drives a recessive (‘1’) value

Bit 4
LBack: Loop Back Mode

0: Loop Back Mode is disabled
1: Loop Back Mode is enabled

Bit 3
Silent: Silent Mode

0: Normal operation
1: The module is in Silent Mode

Bit 2 
Basic: Basic Mode

0: Basic Mode disabled
1: IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer

Bits 1:0 Reserved, forced by hardware to 0



   
   

   

Controller area network (CAN) RM0006

388/488  Doc ID 13742 Rev 4

BRP extension register (CAN_BRPR)

Address offset: 18h
Reset value: 0000h

         

         

14.5.3 Message interface register sets

There are two sets of Interface Registers, which are used to control the CPU access to the 
Message RAM. The Interface Registers avoid conflict between the CPU access to the 
Message RAM and CAN message reception and transmission by buffering the data to be 
transferred. A complete Message Object (see Message object in the message memory on 
page 394) or parts of the Message Object may be transferred between the Message RAM 
and the IFn Message Buffer registers (see IFn message buffer registers on page 391) in 
one single transfer.

The function of the two interface register sets is identical except for the Basic test mode. 
They can be used the way one set of registers is used for data transfer to the Message RAM 
while the other set of registers is used for the data transfer from the Message RAM, allowing 
both processes to be interrupted by each other.Table 42 provides an overview of the two 
Interface Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own 
Command Registers. The Command Mask Register specifies the direction of the data 
transfer and which parts of a Message Object will be transferred. The Command Request 
Register is used to select a Message Object in the Message RAM as target or source for the 
transfer and to start the action specified in the Command Mask Register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BRPE

- - - - - - - - - - - - rw rw rw rw

Bits 15:4 Reserved, forced by hardware to 0

Bits 3:0

BRPE: Baud Rate Prescaler Extension

0x00-0x0F: By programming BRPE, the Baud Rate Prescaler can be extended to 
values up to 1023. The actual interpretation by the hardware is that one more than 
the value programmed by BRPE (MSBs) and BRP (LSBs) is used.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 389/488

   
   

   

         

IFn command request registers (CAN_IFn_CRR)

Address offset: 20h (CAN_IF1_CRR), 80h (CAN_IF2_CRR)
Reset value: 0001h

         

A message transfer is started as soon as the application software has written the message 
number to the Command Request Register. With this write operation, the Busy bit is 
automatically set to notify the CPU that a transfer is in progress. After a waiting time of 3 to 6 
APB_CLK periods, the transfer between the Interface Register and the Message RAM is 
completed. The Busy bit is cleared.

         

Note: When a Message Number that is not valid is written into the Command Request Register, 
the Message Number will be transformed into a valid value and that Message Object will be 
transferred.

Table 42. IF1 and IF2 message interface register set 

Address IF1 Register Set Address IF2 Register Set

CAN Base + 0x20 IF1 Command Request CAN Base + 0x80 IF2 Command Request

CAN Base + 0x24 IF1 Command Mask CAN Base + 0x84 IF2 Command Mask

CAN Base + 0x28 IF1 Mask 1 CAN Base + 0x88 IF2 Mask 1

CAN Base + 0x2C IF1 Mask 2 CAN Base + 0x8C IF2 Mask 2

CAN Base + 0x30 IF1 Arbitration 1 CAN Base + 0x90 IF2 Arbitration 1

CAN Base + 0x34 IF1 Arbitration 2 CAN Base + 0x94 IF2 Arbitration 2

CAN Base + 0x38 IF1 Message Control CAN Base + 0x98 IF2 Message Control

CAN Base + 0x3C IF1 Data A 1 CAN Base + 0x9C IF2 Data A 1

CAN Base + 0x40 IF1 Data A 2 CAN Base + 0xA0 IF2 Data A 2

CAN Base + 0x44 IF1 Data B 1 CAN Base + 0xA4 IF2 Data B 1

CAN Base + 0x48 IF1 Data B 2 CAN Base + 0xA8 IF2 Data B 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy Reserved Message Number

r - - - - - - - - - rw rw rw rw rw rw

Bit 15 

Busy: Busy Flag

0: Read/write action has finished
1: Writing to the IFn Command Request Register is in progress
This bit can only be read by the software.

Bits 14:6 Reserved, forced by hardware to 0

Bits 5:0

Message Number
0x01-0x20: Valid Message Number, the Message Object in the Message RAM is 
selected for data transfer.
0x00: Not a valid Message Number, interpreted as 0x20
0x21-0x3F: Not a valid Message Number, interpreted as 0x01-0x1F



   
   

   

Controller area network (CAN) RM0006

390/488  Doc ID 13742 Rev 4

IFn command mask registers (CAN_IFn_CMR)

Address offset: 24h (CAN_IF1_CMR), 84h (CAN_IF2_CMR)
Reset value: 0000h

         

The control bits of the IFn Command Mask Register specify the transfer direction and select 
which of the IFn Message Buffer Registers are source or target of the data transfer.

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved WR/RD Mask Arb Control
ClrInt
Pnd

TxRqst/
NewDat

Data A Data B

- - - - - - - - rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0

Bit 7

WR/RD: Write / Read

0: Read: Transfer data from the Message Object addressed by the Command 
Request Register into the selected Message Buffer Registers.
1: Write: Transfer data from the selected Message Buffer Registers to the Message 
Object addressed by the Command Request Register.

Bits 6:0 

These bits of the IFn Command Mask Register have different functions depending on 
the transfer direction:

Direction Write
Bit 6 = Mask Access Mask Bits
0: Mask bits unchanged
1: transfer Identifier Mask + MDir + MXtd to Message Object
Bit 5 = Arb Access Arbitration Bits
0: Arbitration bits unchanged
1: Transfer Identifier + Dir + Xtd + MsgVal to Message Object
Bit 4 = Control Access Control Bits
0: Control Bits unchanged
1: Transfer Control Bits to Message Object
Bit 3 = ClrIntPnd Clear Interrupt Pending Bit
When writing to a Message Object, this bit is ignored
Bit 2 = TxRqst/NewDat Access Transmission Request Bit
0: TxRqst bit unchanged
1: Set TxRqst bit

If a transmission is requested by programming bit TxRqst/NewDat in the IFn 
Command Mask Register, bit TxRqst in the IFn Message Control Register is ignored.

Bit 1 = Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged
1: Transfer Data Bytes 3:0 to Message Object
Bit 0 = Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged
1: Transfer Data Bytes 7:4 to Message Object



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 391/488

   
   

   

IFn message buffer registers

The bits of the Message Buffer registers mirror the Message Objects in the Message RAM. 
The function of the Message Objects bits is described in Message object in the message 
memory on page 394.

IFn mask 1 register (CAN_IFn_M1R)

Address offset: 28h (CAN_IF1_M1R), 88h (CAN_IF2_M1R)
Reset value: FFFFh

         

The function of the Msk bits is described in Message object in the message memory on 
page 394.

Bits 6:0 
cont’d

Direction Read
Bit 6 = Mask: Access Mask Bits
0: Mask bits unchanged
1: Transfer Identifier Mask + MDir + MXtd to IFn Message Buffer Register
Bit 5 = Arb: Access Arbitration Bits
0: Arbitration bits unchanged
1: Transfer Identifier + Dir + Xtd + MsgVal to IFn Message Buffer Register
Bit 4 = Control: Access Control Bits
0: Control Bits unchanged
1: Transfer Control Bits to IFn Message Buffer Register
Bit 3 = ClrIntPnd: Clear Interrupt Pending Bit
0: IntPnd bit remains unchanged
1: Clear IntPnd bit in the Message Object
Bit 2 = TxRqst/NewDat: Access Transmission Request Bit
0: NewDat bit remains unchanged
1: Clear NewDat bit in the Message Object
A read access to a Message Object can be combined with the reset of the control 
bits IntPnd and NewDat. The values of these bits transferred to the IFn Message 
Control Register always reflect the status before resetting these bits.
Bit 1 = Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged
1: Transfer Data Bytes 3:0 to IFn Message Buffer Register
Bit 0 = Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged
1: Transfer Data Bytes 7:4 to IFn Message Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw



   
   

   

Controller area network (CAN) RM0006

392/488  Doc ID 13742 Rev 4

IFn mask 2 register (CAN_IFn_M2R)

Address offset: 2Ch (CAN_IF1_M2R), 8Ch (CAN_IF2_M2R)
Reset value: FFFFh

         

The function of the Message Objects bits is described in the Message object in the message 
memory on page 394.

IFn message arbitration 1 register (CAN_IFn_A1R)

Address offset: 30h (CAN_IF1_A1R), 90h (CAN_IF2_A1R)
Reset value: 0000h

         

The function of the Message Objects bits is described in the Message object in the message 
memory on page 394.

IFn message arbitration 2 register (CAN_IFn_A2R)

Address offset: 34h (CAN_IF1_A2R), 94h (CAN_IF2_A2R)
Reset value: 0000h

         

The function of the Message Objects bits is described in the Message object in the message 
memory on page 394.

IFn message control registers (CAN_IFn_MCR) 

Address offset: 38h (CAN_IF1_MCR), 98h (CAN_IF2_MCR)
Reset value: 0000h

         

The function of the Message Objects bits is described in the Message object in the message 
memory on page 394.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXtd MDir Res. Msk[28:16]

rw rw r rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal Xtd Dir ID[28:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB Reserved DLC[3:0]

rw rw rw rw rw rw rw rw rw - - - rw rw rw rw



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 393/488

   
   

   

IFn data A/B registers (CAN_IFn_DAnR and CAN_IFn_DBnR)

The data bytes of CAN messages are stored in the IFn Message Buffer Registers in the 
following order:

         

In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or 
received. In CAN’s serial bit stream, the MSB of each byte will be transmitted first.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF1 Message 
Data A1 
(address 0x3C)

Data(1) Data(0)

IF1 Message 
Data A2 
(address 0x40)

Data(3) Data(2)

IF1 Message 
Data B1 
(address 0x44)

Data(5) Data(4)

IF1 Message 
Data B2 
(address 0x48)

Data(7) Data(6)

IF2 Message 
Data A1 
(address 0x9C)

Data(1) Data(0)

IF2 Message 
Data A2 
(address 0xA0)

Data(3) Data(2)

IF2 Message 
Data B1 
(address 0xA4)

Data(5) Data(4)

IF2 Message 
Data B2 
(address 0xA8)

Data(7) Data(6)

rw rw



   
   

   

Controller area network (CAN) RM0006

394/488  Doc ID 13742 Rev 4

Message object in the message memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU 
access to the Message RAM and CAN message reception and transmission, the CPU 
cannot directly access the Message Objects, these accesses are handled through the IFn 
Interface Registers.

Table 43 provides an overview of the structures of a Message Object

         

The Arbitration Registers ID28-0, Xtd, and Dir are used to define the identifier and type of 
outgoing messages and are used (together with the mask registers Msk28-0, MXtd, and 
MDir) for acceptance filtering of incoming messages. A received message is stored in the 
valid Message Object with matching identifier and direction set to receive (Data Frame) or 
transmit (Remote Frame). Extended frames can be stored only in Message Objects with Xtd 
set, standard frames in Message Objects with Xtd clear. If a received message (Data Frame 
or Remote Frame) matches more than one valid Message Object, it is stored into that with 
the lowest message number. For details see Acceptance filtering of received messages on 
page 406.

         

Table 43. Structure of a message object in the message memory

Message Object

UMask Msk 28-0 MXtd MDir EoB NewDat MsgLst RxIE TxIE Int Pnd RmtEn TxRqst

MsgVal ID28-0 Xtd Dir DLC 3-0 Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7

MsgVal

Message Valid
1: The Message Object is configured and should be considered by the Message 
Handler.
0: The Message Object is ignored by the Message Handler
Note: The application software must reset the MsgVal bit of all unused Messages 
Objects during the initialization before it resets bit Init in the CAN Control 
Register. This bit must also be reset before the identifier Id28-0, the control bits 
Xtd, Dir, or the Data Length Code DLC3-0 are modified, or if the Messages 
Object is no longer required.

UMask

Use Acceptance Mask
1: Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering
0: Mask ignored
Note: If the UMask bit is set to one, the Message Object’s mask bits have to be 
programmed during initialization of the Message Object before MsgVal is set to 
one.

ID28-0
Message Identifier

ID28 - ID0, 29-bit Identifier (“Extended Frame”)
ID28 - ID18, 11-bit Identifier (“Standard Frame”)

Msk28-0

Identifier Mask
1: The corresponding identifier bit is used for acceptance filtering.
0: The corresponding bit in the identifier of the message object cannot inhibit the 
match in the acceptance filtering.

Xtd

Extended Identifier
1: The 29-bit (“extended”) Identifier will be used for this Message 
Object.
0: The 11-bit (“standard”) Identifier will be used for this Message Object



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 395/488

   
   

   

MXtd

Mask Extended Identifier
1: The extended identifier bit (IDE) is used for acceptance filtering.
0: The extended identifier bit (IDE) has no effect on the acceptance filtering.
Note: When 11-bit (“standard”) Identifiers are used for a Message Object, the 
identifiers of received Data Frames are written into bits ID28 to ID18. For 
acceptance filtering, only these bits together with mask bits Msk28 to Msk18 are 
considered.

Dir

Message Direction
1: Direction = Transmit: On TxRqst, the respective Message Object is transmitted 
as a Data Frame. On reception of a Remote Frame with matching identifier, the 
TxRqst bit of this Message Object is set (if RmtEn = one).
0: Direction = Receive: On TxRqst, a Remote Frame with the identifier of this 
Message Object is transmitted. On reception of a Data Frame with matching 
identifier, that message is stored in this Message Object.

MDir
Mask Message Direction

1: The message direction bit (Dir) is used for acceptance filtering
0: The message direction bit (Dir) has no effect on the acceptance filtering

EoB

End of Buffer
1: Single Message Object or last Message Object of a FIFO Buffer.
0: Message Object belongs to a FIFO Buffer and is not the last Message Object 
of that FIFO Buffer.
Note: This bit is used to concatenate two or more Message Objects (up to 32) to 
build a FIFO Buffer. For single Message Objects (not belonging to a FIFO Buffer), 
this bit must always be set to one. For details on the concatenation of Message 
Objects see Section 14.7.7: Configuring a FIFO buffer.

NewDat

New Data
1: The Message Handler or the application software has written new data into the 
data portion of this Message Object.
0: No new data has been written into the data portion of this Message Object by 
the Message Handler since last time this flag was cleared by the application 
software.

MsgLst

Message Lost (only valid for Message Objects with direction = Receive)

1: The Message Handler stored a new message into this object when NewDat 
was still set, the CPU has lost a message.
0: No message lost since last time this bit was reset by the CPU

RxIE
Receive Interrupt Enable

1: IntPnd will be set after a successful reception of a frame
0: IntPnd will be left unchanged after a successful reception of a frame

TxIE
Transmit Interrupt Enable

1: IntPnd will be set after a successful transmission of a frame
0: IntPnd will be left unchanged after the successful transmission of a frame

IntPnd

Interrupt Pending
1: This message object is the source of an interrupt. The Interrupt Identifier in the 
Interrupt Register will point to this message object if there is no other interrupt 
source with higher priority.
0: This message object is not the source of an interrupt

RmtEn
Remote Enable

1: At the reception of a Remote Frame, TxRqst is set
0: At the reception of a Remote Frame, TxRqst is left unchanged



   
   

   

Controller area network (CAN) RM0006

396/488  Doc ID 13742 Rev 4

TxRqst
Transmit Request

1: The transmission of this Message Object is requested and is not yet done
0: This Message Object is not waiting for transmission

DLC3-0

Data Length Code
0-8: Data Frame has 0-8 data bytes
9-15: Data Frame has 8 data bytes
Note: The Data Length Code of a Message Object must be defined the same as 
in all the corresponding objects with the same identifier at other nodes. When the 
Message Handler stores a data frame, it will write the DLC to the value given by 
the received message.
Data 0: 1st data byte of a CAN Data Frame
Data 1: 2nd data byte of a CAN Data Frame
Data 2: 3rd data byte of a CAN Data Frame
Data 3: 4th data byte of a CAN Data Frame
Data 4: 5th data byte of a CAN Data Frame
Data 5: 6th data byte of a CAN Data Frame
Data 6: 7th data byte of a CAN Data Frame
Data 7: 8th data byte of a CAN Data Frame
Note: The Data 0 Byte is the first data byte shifted into the shift register of the 
CAN Core during a reception while the Data 7 byte is the last. When the Message 
Handler stores a Data Frame, it will write all the eight data bytes into a Message 
Object. If the Data Length Code is less than 8, the remaining bytes of the 
Message Object will be overwritten by unspecified values.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 397/488

   
   

   

14.5.4 Message handler registers

All Message Handler registers are read-only. Their contents, TxRqst, NewDat, IntPnd, and 
MsgVal bits of each Message Object and the Interrupt Identifier is status information 
provided by the Message Handler FSM.

Interrupt identifier register (CAN_IDR)

Address offset: 10h
Reset value: 0000h

         

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntId[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 

IntId[15:0]: Interrupt Identifier (Table 44 indicates the source of the interrupt)

If several interrupts are pending, the CAN Interrupt Register will point to the 
pending interrupt with the highest priority, disregarding their chronological order. 
An interrupt remains pending until the application software has cleared it. If IntId 
is different from 0x0000 and IE is set, the IRQ interrupt signal to the EIC is active. 
The interrupt remains active until IntId is back to value 0x0000 (the cause of the 
interrupt is reset) or until IE is reset.
The Status Interrupt has the highest priority. Among the message interrupts, the 
Message Object’ s interrupt priority decreases with increasing message number. 
A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The 
Status Interrupt is cleared by reading the Status Register.

Table 44. Source of interrupts

Interrupt identifier Cause of the inerrupt

0x0000 No Interrupt is Pending

0x0001-0x0020 Number of Message Object which caused the interrupt

0x0021-0x7FFF Unused

0x8000 Status Interrupt

0x8001-0xFFFF Unused



   
   

   

Controller area network (CAN) RM0006

398/488  Doc ID 13742 Rev 4

Transmission request registers 1 & 2 (CAN_TxRnR)

Address offset: 100h (CAN_TxR1R), 104h (CAN_TxR2R)
Reset value: 0000 0000h

         

         

These registers hold the TxRqst bits of the 32 Message Objects. By reading the TxRqst 
bits, the CPU can check which Message Object in a Transmission Request is pending. The 
TxRqst bit of a specific Message Object can be set/reset by the application software through 
the IFn Message Interface Registers or by the Message Handler after reception of a Remote 
Frame or after a successful transmission.

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TxRqst[32:17]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst[16:1]

r r r r r r r r r r r r r r r r

Bits 31:16

TxRqst[32:17]: Transmission Request Bits (of all Message Objects)
0: This Message Object is not waiting for transmission
1: The transmission of this Message Object is requested and is not yet done
These bits are read only.

Bits 15:0

TxRqst1[6:1]: Transmission Request Bits (of all Message Objects)

0: This Message Object is not waiting for transmission
1: The transmission of this Message Object is requested and is not yet done.
These bits are read only.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 399/488

   
   

   

New data registers 1 & 2 (CAN_NDnR)

Address offset: 120h (CAN_ND1R), 124h (CAN_ND2R)
Reset value: 0000 0000h

         

         

These registers hold the NewDat bits of the 32 Message Objects. By reading out the 
NewDat bits, the CPU can check for which Message Object the data portion was updated. 
The NewDat bit of a specific Message Object can be set/reset by the CPU through the IFn 
Message Interface Registers or by the Message Handler after reception of a Data Frame or 
after a successful transmission.

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NewDat[32:17]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat[16:1]

r r r r r r r r r r r r r r r r

Bits 31:16 

NewDat[32:17]: New Data Bits (of all Message Objects)
0: No new data has been written into the data portion of this Message Object by 
the Message Handler since the last time this flag was cleared by the application 
software.
1: The Message Handler or the application software has written new data into the 
data portion of this Message Object.

Bits 15:0

NewDat[16:1]: New Data Bits (of all Message Objects)

0: No new data has been written into the data portion of this Message Object by 
the Message Handler since the last time this flag was cleared by the application 
software.
1: The Message Handler or the application software has written new data into the 
data portion of this Message Object.



   
   

   

Controller area network (CAN) RM0006

400/488  Doc ID 13742 Rev 4

Interrupt pending registers 1 & 2 (CAN_IPnR)

Address offset: 140h (CAN_IP1R), 144h (CAN_IP2R)
Reset value: 0000 0000h

         

         

These registers contain the IntPnd bits of the 32 Message Objects. By reading the IntPnd 
bits, the CPU can check for which Message Object an interrupt is pending. The IntPnd bit of 
a specific Message Object can be set/reset by the application software through the IFn 
Message Interface Registers or by the Message Handler after reception or after a 
successful transmission of a frame. This will also affect the value of IntId in the Interrupt 
Register.

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IntPnd[32:17]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd[16:1]

r r r r r r r r r r r r r r r r

Bits 31:16
IntPnd[32:17]: Interrupt Pending Bits (of all Message Objects)

0: This message object is not the source of an interrupt
1: This message object is the source of an interrupt

Bits 15:0 
IntPnd[16:1]: Interrupt Pending Bits (of all Message Objects)

0: This message object is not the source of an interrupt
1: This message object is the source of an interrupt



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 401/488

   
   

   

Message valid registers 1 & 2 (CAN_MVnR)

Address offset: 160h (CAN_MV1R), 164h (CAN_MV2R)
Reset value: 0000 0000h

         

         

These registers hold the MsgVal bits of the 32 Message Objects. By reading the MsgVal 
bits, the application software can check which Message Object is valid. The MsgVal bit of a 
specific Message Object can be set/reset by the application software via the IFn Message 
Interface Registers.

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MsgVal[32:17]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal[16:1]

r r r r r r r r r r r r r r r r

Bits 31:16

MsgVal[32:17]: Message Valid Bits (of all Message Objects)
0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message 
Handler.

Bits 15:0 

MsgVal[16:1]: Message Valid Bits (of all Message Objects)

0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message 
Handler.



   
   

   

Controller area network (CAN) RM0006

402/488  Doc ID 13742 Rev 4

14.6 Can register map
Table 45. CAN register map

Addr. 
offset

Register 
name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h CAN_CR Reserved

Te
st

C
C

E

D
A

R

Res. E
IE

S
IE IE Init

04h CAN_SR Reserved

B
O

ff

E
W

ar
n

E
P

as
s

R
xO

k

T
xO

k

LEC

 08h CAN_ERR RP REC6-0 TEC7-0

0Ch CAN_BTR Res. TSeg2 TSeg1 SJW BRP

10h CAN_IDR IntId15-8 IntId7-0

14h CAN_TESTR Reserved R
x

T
x1

T
x0

LB
ac

k

S
ile

nt

B
as

ic

Reserved

18h CAN_BRPR Reserved BRPE

 20h CAN_IF1_CRR Busy Reserved Message Number

 24h CAN_IF1_CMR Reserved

W
R

/R
D

M
as

k

A
rb

C
on

tr
ol

C
lrI

nt
P

nd

T
xR

qs
t/N

ew
D

at

D
at

a 
A

D
at

a 
B

 28h CAN_IF1_M1R Msk15-0

2Ch CAN_IF1_M2R MXtd MDir Res. Msk28-16

30h CAN_IF1_A1R ID15-0

 34h CAN_IF1_A2R

M
sg

V
al

Xtd Dir ID28-16

 38h CAN_IF1_MCR

N
ew

D
at

M
sg

Ls
t

In
tP

nd

U
M

as
k

T
xI

E

R
xI

E

R
m

tE
n

T
xR

qs
t

E
oB Reserved DLC3-0

3Ch CAN_IF1_DA1R Data(1) Data(0)

40h CAN_IF1_DA2R Data(3) Data(2)

44h CAN_IF1_DB1R Data(5) Data(4)

 48h CAN_IF1_DB2R Data(7) Data(6)

 80h CAN_IF2_CRR Busy Reserved Message Number

 84h CAN_IF2_CMR Reserved

W
R

/R
D

M
as

k

A
rb

C
on

tr
ol

C
lrI

nt
P

nd

T
xR

qs
t/N

ew
D

at

D
at

a 
A

D
at

a 
B

 88h CAN_IF2_M1R Msk15-0



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 403/488

   
   

   

Note: Reserved bits are read as 0’ except for IFn Mask 2 Register where they are read as 1.

Refer to Table 5 on page 35 for the register base addresses.

8Ch CAN_IF2_M2R MXtd MDir Res. Msk28-16

90h CAN_IF2_A1R ID15-0

 94h CAN_IF2_A2R

M
sg

V
al

Xtd Dir ID28-16

 98h CAN_IF2_MCR

N
ew

D
at

M
sg

Ls
t

In
tP

nd

U
M

as
k

T
xI

E

R
xI

E

R
m

tE
n

T
xR

qs
t

E
oB Reserved DLC3-0

9Ch CAN_IF2_DA1R Data(1) Data(0)

A0h CAN_IF2_DA2R Data(3) Data(2)

A4h CAN_IF2_DB1R Data(5) Data(4)

 A8h CAN_IF2_DB2R Data(7) Data(6)

100h CAN_TxR1R TxRqst16-1

104h CAN_TxR2R TxRqst32-17

120h CAN_ND1R NewDat16-1

124h CAN_ND2R NewDat32-17

140h CAN_IP1R IntPnd16-1

 144h CAN_IP2R IntPnd32-17

160h CAN_MV1R MsgVal16-1

164h CAN_MV2R MsgVal32-17

Table 45. CAN register map (continued)

Addr. 
offset

Register 
name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



   
   

   

Controller area network (CAN) RM0006

404/488  Doc ID 13742 Rev 4

14.7 CAN communications

14.7.1 Managing message objects

The configuration of the Message Objects in the Message RAM (with the exception of the 
bits MsgVal, NewDat, IntPnd, and TxRqst) will not be affected by resetting the chip. All the 
Message Objects must be initialized by the application software or they must be “not valid” 
(MsgVal = ‘0’) and the bit timing must be configured before the application software clears 
the Init bit in the CAN Control Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control 
and Data fields of one of the two interface registers to the desired values. By writing to the 
corresponding IFn Command Request Register, the IFn Message Buffer Registers are 
loaded into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state 
machine of the CAN_Core and state machine of the Message Handler control the internal 
data flow of the CAN peripheral. Received messages that pass the acceptance filtering are 
stored in the Message RAM, messages with pending transmission request are loaded into 
the CAN_Core’s Shift Register and are transmitted through the CAN bus.

The application software reads received messages and updates messages to be 
transmitted through the IFn Interface Registers. Depending on the configuration, the CPU is 
interrupted on certain CAN message and CAN error events.

14.7.2 Message handler state machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the 
CAN Core, the Message RAM and the IFn Registers.

The Message Handler FSM controls the following functions:

● Data Transfer from IFn Registers to the Message RAM

● Data Transfer from Message RAM to the IFn Registers

● Data Transfer from Shift Register to the Message RAM

● Data Transfer from Message RAM to Shift Register

● Data Transfer from Shift Register to the Acceptance Filtering unit

● Scanning of Message RAM for a matching Message Object

● Handling of TxRqst flags

● Handling of interrupts.

Data transfer from/to message RAM

When the CPU initiates a data transfer between the IFn Registers and Message RAM, the 
Message Handler sets the Busy bit in the respective Command Request Register 
(CAN_IFn_CRR). After the transfer has completed, the Busy bit is again cleared (see 
Figure 99).

The respective Command Mask Register specifies whether a complete Message Object or 
only parts of it will be transferred. Due to the structure of the Message RAM, it is not 
possible to write single bits/bytes of one Message Object. It is always necessary to write a 
complete Message Object into the Message RAM. Therefore, the data transfer from the IFn 
Registers to the Message RAM requires a read-modify-write cycle. First, those parts of the 



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 405/488

   
   

   

Message Object that are not to be changed are read from the Message RAM and then the 
complete contents of the Message Buffer Registers are written into the Message Object.

Figure 99. Data transfer between IFn Registers and Message RAM

After a partial write of a Message Object, the Message Buffer Registers that are not 
selected in the Command Mask Register will set the actual contents of the selected 
Message Object.

After a partial read of a Message Object, the Message Buffer Registers that are not selected 
in the Command Mask Register will be left unchanged.

Message transmission 

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer 
between the IFn Registers and Message RAM, the MsgVal bits in the Message Valid 
Register and TxRqst bits in the Transmission Request Register are evaluated. The valid 
Message Object with the highest priority pending transmission request is loaded into the 
shift register by the Message Handler and the transmission is started. The NewDat bit of the 
Message Object is reset.

After a successful transmission and also if no new data was written to the Message Object 
(NewDat = ‘0’) since the start of the transmission, the TxRqst bit of the Message Control 
register (CAN_IFn_MCR) will be reset. If TxIE bit of the Message Control register 
(CAN_IFn_MCR) is set, IntPnd bit of the Interrupt Identifier register (CAN_IDR) will be set 
after a successful transmission. If the CAN peripheral has lost the arbitration or if an error 
occurred during the transmission, the message will be retransmitted as soon as the CAN 

START

WR/RD = 1

Busy = 0

Busy = 1

Read Message Object to IFn

Write IFn to Message RAM

Read Message Object to IFn

No Yes

CAN_WAIT_B = 0

CAN_WAIT_B = 1

Write Command Request Register
No

Yes



   
   

   

Controller area network (CAN) RM0006

406/488  Doc ID 13742 Rev 4

bus is free again. Meanwhile, if the transmission of a message with higher priority has been 
requested, the messages will be transmitted in the order of their priority.

Acceptance filtering of received messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming 
message is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message 
Handler FSM starts the scanning of the Message RAM for a matching valid Message 
Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is 
loaded with the arbitration bits from the CAN Core shift register. The arbitration and mask 
fields (including MsgVal, UMask, NewDat, and EoB) of Message Object 1 are then loaded 
into the Acceptance Filtering unit and compared with the arbitration field from the shift 
register. This is repeated with each following Message Object until a matching Message 
Object is found or until the end of the Message RAM is reached.

If a match occurs, the scan is stopped and the Message Handler FSM proceeds depending 
on the type of frame (Data Frame or Remote Frame) received.

Reception of data frame

The Message Handler FSM stores the message from the CAN Core shift register into the 
respective Message Object in the Message RAM. Not only the data bytes, but all arbitration 
bits and the Data Length Code are stored in the corresponding Message Object. This is 
done to keep the data bytes connected with the identifier even if arbitration mask registers 
are used.

The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been 
received. The application software should reset NewDat bit when the Message Object has 
been read. If at the time of reception, the NewDat bit was already set, MsgLst is set to 
indicate that the previous data (supposedly not seen by the CPU) is lost. If the RxIE bit is 
set, the IntPnd bit is set, causing the Interrupt Register to point to this Message Object.

The TxRqst bit of this Message Object is reset to prevent the transmission of a Remote 
Frame, while the requested Data Frame has just been received.

Reception of Remote Frame

When a Remote Frame is received, three different configurations of the matching Message 
Object have to be considered:

1. Dir = ‘1’ (direction = transmit), RmtEn = ‘1’, UMask = 1 or 0
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is 
set. The rest of the Message Object remains unchanged.

2. Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = 0
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object 
remains unchanged; the Remote Frame is ignored.

3. Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = 1
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is 
reset. The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift 
register is stored in the Message Object of the Message RAM and the NewDat bit of 
this Message Object is set. The data field of the Message Object remains unchanged; 
the Remote Frame is treated similar to a received Data Frame.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 407/488

   
   

   

Receive/transmit priority

The receive/transmit priority for the Message Objects is attached to the message number. 
Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. 
If more than one transmission request is pending, they are serviced due to the priority of the 
corresponding Message Object.

14.7.3 Configuring a transmit object

Table 46shows how a Transmit Object should be initialized.

         

The Arbitration Register values (ID28-0 and Xtd bit) are provided by the application. They 
define the identifier and type of the outgoing message. If an 11-bit Identifier (“Standard 
Frame”) is used, it is programmed to ID28 - ID18. The ID17 - ID0 can then be disregarded.

If the TxIE bit is set, the IntPnd bit will be set after a successful transmission of the Message 
Object.

If the RmtEn bit is set, a matching received Remote Frame will cause the TxRqst bit to be 
set; the Remote Frame will autonomously be answered by a Data Frame.

The Data Register values (DLC3-0, Data0-7) are provided by the application, TxRqst and 
RmtEn may not be set before the data is valid.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask = 1) to 
allow groups of Remote Frames with similar identifiers to set the TxRqst bit. The Dir bit 
should not be masked.

14.7.4 Updating a transmit object

The CPU may update the data bytes of a Transmit Object any time through the IFn Interface 
registers, neither MsgVal nor TxRqst have to be reset before the update. Even if only a part 
of the data bytes are to be updated, all four bytes of the corresponding IFn Data A Register 
or IFn Data B Register have to be valid before the contents of that register are transferred to 
the Message Object. Either the CPU has to write all four bytes into the IFn Data Register or 
the Message Object is transferred to the IFn Data Register before the CPU writes the new 
data bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask 
Register and then the number of the Message Object is written to the Command Request 
Register, concurrently updating the data bytes and setting TxRqst.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress 
while the data is updated, NewDat has to be set together with TxRqst. For details see 
Message transmission on page 405.

When NewDat is set together with TxRqst, NewDat will be reset as soon as the new 
transmission has started.

Table 46. Initialization of a Transmit Object

MsgV
al

Arb Data Mask EoB Dir
NewDa

t
MsgL

st
RxIE TxIE

IntPn
d

RmtE
n

TxRq
st

1 appl. appl. appl. 1 1 0 0 0 appl. 0 appl. 0



   
   

   

Controller area network (CAN) RM0006

408/488  Doc ID 13742 Rev 4

14.7.5 Configuring a receive object

Table 47 shows how a Receive Object should be initialized.

         

The Arbitration Registers values (ID28-0 and Xtd bit) are provided by the application. They 
define the identifier and type of accepted received messages. If an 11-bit Identifier 
(“Standard Frame”) is used, it is programmed to ID28 - ID18. Then ID17 - ID0 can be 
disregarded. When a Data Frame with an 11-bit Identifier is received, ID17 - ID0 will be set 
to ‘0’.

If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and 
stored in the Message Object.

The Data Length Code (DLC3-0) is provided by the application. When the Message Handler 
stores a Data Frame in the Message Object, it will store the received Data Length Code and 
eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message 
Object will be overwritten by unspecified values.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask = ‘1’) to 
allow groups of Data Frames with similar identifiers to be accepted. The Dir bit should not be 
masked in typical applications.

14.7.6 Handling received messages

The CPU may read a received message any time via the IFn Interface registers. The data 
consistency is guaranteed by the Message Handler state machine.

Typically, the CPU will write first 0x007F to the Command Mask Register and then the 
number of the Message Object to the Command Request Register. This combination will 
transfer the whole received message from the Message RAM into the Message Buffer 
Register. Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in 
the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits shows which 
of the matching messages have been received.

The actual value of NewDat shows whether a new message has been received since the 
last time this Message Object was read. The actual value of MsgLst shows whether more 
than one message has been received since the last time this Message Object was read. 
MsgLst will not be automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new 
data for a receive object. Setting the TxRqst bit of a receive object will cause the 
transmission of a Remote Frame with the receive object’s identifier. This Remote Frame 
triggers the other CAN node to start the transmission of the matching Data Frame. If the 
matching Data Frame is received before the Remote Frame could be transmitted, the 
TxRqst bit is automatically reset.

Table 47. Initialization of a Receive Object

MsgVal Arb Data Mask EoB Dir NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

1 appl. appl. appl. 1 0 0 0 appl. 0 0 0 0



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 409/488

   
   

   

14.7.7 Configuring a FIFO buffer

With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO 
Buffer is the same as the configuration of a (single) Receive Object, see Configuring a 
receive object on page 408.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks 
(if used) of these Message Objects have to be programmed to matching values. Due to the 
implicit priority of the Message Objects, the Message Object with the lowest number will be 
the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO 
Buffer except the last have to be programmed to zero. The EoB bits of the last Message 
Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

14.7.8 Receiving messages with FIFO buffers

Received messages with identifiers matching to a FIFO Buffer are stored in a Message 
Object of this FIFO Buffer starting with the Message Object with the lowest message 
number.

When a message is stored in a Message Object of a FIFO Buffer, the NewDat bit of this 
Message Object is set. By setting NewDat while EoB is zero, the Message Object is locked 
for further write access by the Message Handler until the application software has written 
the NewDat bit back to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is 
reached. If none of the preceding Message Objects is released by writing NewDat to zero, 
all further messages for this FIFO Buffer will be written into the last Message Object of the 
FIFO Buffer and therefore overwrite previous messages.

Reading from a FIFO buffer

When the CPU transfers the contents of a Message Object to the IFn Message Buffer 
register by writing its number to the IFn Command Request Register, the corresponding 
Command Mask Register should be programmed in such a way that bits NewDat and 
IntPnd are reset to zero (TxRqst/NewDat = ‘1’ and ClrIntPnd = ‘1’). The values of these bits 
in the Message Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read the Message Objects 
starting at the FIFO Object with the lowest message number.

Figure 100 shows how a set of Message Objects which are concatenated to a FIFO Buffer 
can be handled by the CPU.



   
   

   

Controller area network (CAN) RM0006

410/488  Doc ID 13742 Rev 4

Figure 100. CPU handling of a FIFO buffer

Read Interrupt Pointer

START

case Interrupt Pointer
0x8000h else 0x0000h

Status Change END

MessageNum = Interrupt Pointer

Write MessageNum to IFn Command Request

(Read Message to IFn Registers,
Reset NewDat = 0,
Reset IntPnd = 0)

Read IFn Message Control

NewDat = 1

Read Data from IFn Data A,B

EoB = 1

MessageNum = MessageNum + 1

Yes

No

Yes

No

Message Interrupt

Interrupt Handling



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 411/488

   
   

   

14.7.9 Handling interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending 
interrupt with the highest priority, disregarding their chronological order. An interrupt remains 
pending until the application software has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, interrupt 
priority of the Message Object decreases with increasing message number.

A message interrupt is cleared by clearing the IntPnd bit of the Message Object. The Status 
Interrupt is cleared by reading the Status Register.

The interrupt identifier, IntId, in the Interrupt Register, indicates the cause of the interrupt. 
When no interrupt is pending, the register will hold the value zero. If the value of the 
Interrupt Register is different from zero, then there is an interrupt pending and, if IE is set, 
the IRQ interrupt signal to the EIC is active. The interrupt remains active until the Interrupt 
Register is back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated 
(not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This 
interrupt has the highest priority. The CPU can update (reset) the status bits RxOk, TxOk 
and LEC, but a write access of the CPU to the Status Register can never generate or reset 
an interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects. IntId 
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Register may cause an interrupt (bits EIE 
and SIE in the CAN Control Register) and whether the interrupt line becomes active when 
the Interrupt Register is different from zero (bit IE in the CAN Control Register). The 
Interrupt Register will be updated even when IE is reset.

The CPU has two possibilities to follow the source of a message interrupt. First, it can follow 
the IntId in the Interrupt Register and second it can poll the Interrupt Pending Register (see 
Interrupt pending registers 1 & 2 (CAN_IPnR) on page 400).

An interrupt service routine that is reading the message that is the source of the interrupt 
may read the message and reset the Message Object’s IntPnd at the same time (bit 
ClrIntPnd in the Command Mask Register). When IntPnd is cleared, the Interrupt Register 
will point to the next Message Object with a pending interrupt.

14.7.10 Configuring the bit timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate 
failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronization will amend a faulty configuration of the CAN bit 
timing to such a degree that only occasionally an error frame is generated. However, in the 
case of arbitration, when two or more CAN nodes simultaneously try to transmit a frame, a 
misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit 
synchronization inside a CAN node and interaction of the CAN nodes on the CAN bus.



   
   

   

Controller area network (CAN) RM0006

412/488  Doc ID 13742 Rev 4

Bit time and bit rate

CAN supports bit rates in the range of lower than 1 Kbit/s up to 1000 Kbit/s. Each member of 
the CAN network has its own clock generator, usually a quartz oscillator. The timing 
parameter of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for 
each CAN node, creating a common bit rate even though the oscillator periods of the CAN 
nodes (fosc) may be different.

The frequencies of these oscillators are not absolutely stable, small variations are caused 
by changes in temperature or voltage and by deteriorating components. As long as the 
variations remain inside a specific oscillator tolerance range (df), the CAN nodes are able to 
compensate for the different bit rates by re-synchronizing to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see 
Figure 101). The Synchronization Segment, the Propagation Time Segment, the Phase 
Buffer Segment 1 and the Phase Buffer Segment 2. Each segment consists of a specific, 
programmable number of time quanta (see Table 48). The length of the time quantum (tq), 
which is the basic time unit of the bit time, is defined by the CAN controller’s system clock 
fAPB and the BRP bit of the Bit Timing Register (CAN_BTR): tq = BRP / fAPB. 

The Synchronization Segment, Sync_Seg, is that part of the bit time where edges of the 
CAN bus level are expected to occur. The distance between an edge, that occurs outside of 
Sync_Seg, and the Sync_Seg is called the phase error of that edge. The Propagation Time 
Segment, Prop_Seg, is intended to compensate for the physical delay times within the CAN 
network. The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample 
Point. The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization 
may move the Sample Point inside the limits defined by the Phase Buffer Segments to 
compensate for edge phase errors.

Figure 101. Bit timing

         

Table 48. CAN bit time parameters

Parameter Range Remark

BRP [1 .. 32] Defines the length of the time quantum tq

Sync_Seg 1 tq Fixed length, synchronization of bus input to system clock

Prop_Seg [1.. 8] tq Compensates for the physical delay times

Phase_Seg1 [1..8] tq May be lengthened temporarily by synchronization

Phase_Seg2 [1.. 8] tq May be shortened temporarily by synchronization

SJW [1 .. 4] tq May not be longer than either Phase Buffer Segment

This table describes the minimum programmable ranges required by the CAN protocol

1 Time Quantum
( tq )

Sync_ Prop_Seg Phase_Seg1 Phase_Seg2

Sample Point

Nominal CAN Bit Time

Seg



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 413/488

   
   

   

A given bit rate may be met by different bit time configurations, but for the proper function of 
the CAN network the physical delay times and the oscillator’s tolerance range have to be 
considered.

Propagation time segment

This part of the bit time is used to compensate physical delay times within the network. 
These delay times consist of the signal propagation time on the bus and the internal delay 
time of the CAN nodes.

Any CAN node synchronized to the bit stream on the CAN bus will be out of phase with the 
transmitter of that bit stream, caused by the signal propagation time between the two nodes. 
The CAN protocol’s non-destructive bitwise arbitration and the dominant acknowledge bit 
provided by receivers of CAN messages requires that a CAN node transmitting a bit stream 
must also be able to receive dominant bits transmitted by other CAN nodes that are 
synchronized to that bit stream. The example in Figure 102 shows the phase shift and 
propagation times between two CAN nodes.

Figure 102. Propagation time segment

1. Delay A_to_B >= node output delay(A) + bus line delay(A->B) + node input delay(B)

2. Prop_Seg >= Delay A_to_B + Delay B_to_A

3. Prop_Seg >= 2 • [max(node output delay+ bus line delay + node input delay)]

In this example, both nodes A and B are transmitters, performing an arbitration for the CAN 
bus. Node A has sent its Start of Frame bit less than one bit time earlier than node B, 
therefore node B has synchronized itself to the received edge from recessive to dominant. 
Since node B has received this edge delay (A_to_B) after it has been transmitted, B’s bit 
timing segments are shifted with respect to A. Node B sends an identifier with higher priority 
and so it will win the arbitration at a specific identifier bit when it transmits a dominant bit 
while node A transmits a recessive bit. The dominant bit transmitted by node B will arrive at 
node A after the delay (B_to_A).

Due to oscillator tolerances, the actual position of node A’s Sample Point can be anywhere 
inside the nominal range of node A’s Phase Buffer Segments, so the bit transmitted by node 
B must arrive at node A before the start of Phase_Seg1. This condition defines the length of 
Prop_Seg.

If the edge from recessive to dominant transmitted by node B arrives at node A after the 
start of Phase_Seg1, it can happen that node A samples a recessive bit instead of a 
dominant bit, resulting in a bit error and the destruction of the current frame by an error flag.

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

Node B

Node A

Delay A_to_B Delay B_to_A



   
   

   

Controller area network (CAN) RM0006

414/488  Doc ID 13742 Rev 4

The error occurs only when two nodes arbitrate for the CAN bus that have oscillators of 
opposite ends of the tolerance range and that are separated by a long bus line. This is an 
example of a minor error in the bit timing configuration (Prop_Seg to short) that causes 
sporadic bus errors.

Some CAN implementations provide an optional 3 Sample Mode but the CAN peripheral 
does not. In this mode, the CAN bus input signal passes a digital low-pass filter, using three 
samples and a majority logic to determine the valid bit value. This results in an additional 
input delay of 1 tq, requiring a longer Prop_Seg.

Phase buffer segments and synchronization

The Phase Buffer Segments (Phase_Seg1 and Phase_Seg2) and the Synchronization 
Jump Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer 
Segments may be lengthened or shortened by synchronization.

Synchronizations occur on edges from recessive to dominant, their purpose is to control the 
distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it 
with the bus level at the previous Sample Point. A synchronization may be done only if a 
recessive bit was sampled at the previous Sample Point and if the bus level at the actual 
time quantum is dominant.

An edge is synchronous if it occurs inside of Sync_Seg, otherwise the distance between 
edge and the end of Sync_Seg is the edge phase error, measured in time quanta. If the 
edge occurs before Sync_Seg, the phase error is negative, else it is positive.

Two types of synchronization exist, Hard Synchronization and Re-synchronization. 

A Hard Synchronization is done once at the start of a frame and inside a frame only when 
Re-synchronizations occur.

● Hard Synchronization
After a hard synchronization, the bit time is restarted with the end of Sync_Seg, 
regardless of the edge phase error. Thus hard synchronization forces the edge, which 
has caused the hard synchronization to lie within the synchronization segment of the 
restarted bit time.

● Bit Re-synchronization
Re-synchronization leads to a shortening or lengthening of the bit time such that the 
position of the sample point is shifted with regard to the edge.
When the phase error of the edge which causes Re-synchronization is positive, 
Phase_Seg1 is lengthened. If the magnitude of the phase error is less than SJW, 
Phase_Seg1 is lengthened by the magnitude of the phase error, else it is lengthened 
by SJW.
When the phase error of the edge, which causes Re-synchronization is negative, 
Phase_Seg2 is shortened. If the magnitude of the phase error is less than SJW, 
Phase_Seg2 is shortened by the magnitude of the phase error, else it is shortened by 
SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed 
value of SJW, the results of Hard Synchronization and Re-synchronization are the same. If 
the magnitude of the phase error is larger than SJW, the Re-synchronization cannot 
compensate the phase error completely, an error (phase error - SJW) remains.



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 415/488

   
   

   

Only one synchronization may be done between two Sample Points. The Synchronizations 
maintain a minimum distance between edges and Sample Points, giving the bus level time 
to stabilize and filtering out spikes that are shorter than (Prop_Seg + Phase_Seg1).

Apart from noise spikes, most synchronizations are caused by arbitration. All nodes 
synchronize “hard” on the edge transmitted by the “leading” transceiver that started 
transmitting first, but due to propagation delay times, they cannot become ideally 
synchronized. The “leading” transmitter does not necessarily win the arbitration, therefore 
the receivers have to synchronize themselves to different transmitters that subsequently 
“take the lead” and that are differently synchronized to the previously “leading” transmitter. 
The same happens at the acknowledge field, where the transmitter and some of the 
receivers will have to synchronize to that receiver that “takes the lead” in the transmission of 
the dominant acknowledge bit.

Synchronizations after the end of the arbitration will be caused by oscillator tolerance, when 
the differences in the oscillator’s clock periods of transmitter and receivers sum up during 
the time between synchronizations (at most ten bits). These summarized differences may 
not be longer than the SJW, limiting the oscillator’s tolerance range.

The examples in Figure 103 show how the Phase Buffer Segments are used to compensate 
for phase errors. There are three drawings of each two consecutive bit timings. The upper 
drawing shows the synchronization on a “late” edge, the lower drawing shows the 
synchronization on an “early” edge, and the middle drawing is the reference without 
synchronization.

Figure 103. Synchronization on “late” and “early” Edges

In the first example, an edge from recessive to dominant occurs at the end of Prop_Seg. 
The edge is “late” since it occurs after the Sync_Seg. Reacting to the “late” edge, 
Phase_Seg1 is lengthened so that the distance from the edge to the Sample Point is the 
same as it would have been from the Sync_Seg to the Sample Point if no edge had 
occurred. The phase error of this “late” edge is less than SJW, so it is fully compensated and 
the edge from dominant to recessive at the end of the bit, which is one nominal bit time long, 
occurs in the Sync_Seg.

In the second example, an edge from recessive to dominant occurs during Phase_Seg2. 
The edge is “early” since it occurs before a Sync_Seg. Reacting to the “early” edge, 

recessive
dominant

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

“late” Edge

“early” Edge

Rx-Input

Rx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

Sample-Point Sample-Point



   
   

   

Controller area network (CAN) RM0006

416/488  Doc ID 13742 Rev 4

Phase_Seg2 is shortened and Sync_Seg is omitted, so that the distance from the edge to 
the Sample Point is the same as it would have been from an Sync_Seg to the Sample Point 
if no edge had occurred. As in the previous example, the magnitude of phase error of this 
“early” edge’s is less than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit 
time, the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN state machine, 
where the bit time starts and ends at the Sample Points. The state machine omits Sync_Seg 
when synchronizing on an “early” edge, because it cannot subsequently redefine that time 
quantum of Phase_Seg2 where the edge occurs to be the Sync_Seg.

The examples in Figure 104 show how short dominant noise spikes are filtered by 
synchronizations. In both examples the spike starts at the end of Prop_Seg and has the 
length of “Prop_Seg + Phase_Seg1”.

Figure 104. Filtering of short dominant spikes

In the first example, the Synchronization Jump Width is greater than or equal to the phase 
error of the spike’s edge from recessive to dominant. Therefore the Sample Point is shifted 
after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be 
shifted far enough; the dominant spike is sampled as actual bus level.

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

SpikeRx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

recessive
dominantSpikeRx-Input

SJW ≥ Phase Error

SJW < Phase Error



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 417/488

   
   

   

Oscillator tolerance range

The oscillator tolerance range was increased when the CAN protocol was developed from 
version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to 
synchronize on edges from dominant to recessive became obsolete, only edges from 
recessive to dominant are considered for synchronization. The only CAN controllers to 
implement protocol version 1.1 have been Intel 82526 and Philips 82C200, both are 
superseded by successor products. The protocol update to version 2.0 (A and B) had no 
influence on the oscillator tolerance.

The tolerance range df for an oscillator frequency fosc around the nominal frequency fnom is: 

It depends on the proportions of Phase_Seg1, Phase_Seg2, SJW, and the bit time. The 
maximum tolerance df is the defined by two conditions (both shall be met):

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer 
Segments and that the Propagation Time Segment limits that part of the bit time that may be 
used for the Phase Buffer Segments.

The combination Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4 allows the 
largest possible oscillator tolerance of 1.58 %. This combination with a Propagation Time 
Segment of only 10 % of the bit time is not suitable for short bit times; it can be used for bit 
rates of up to 125 Kbit/s (bit time = 8 µs) with a bus length of 40 m.

Configuring the CAN protocol controller

In most CAN implementations and also in the CAN peripheral, the bit timing configuration is 
programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSEG1) is 
combined with Phase_Seg2 (as TSEG2) in one byte, SJW and BRP are combined in the 
other byte (see Figure 105 on page 418).

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to 
be programmed to a numerical value that is one less than its functional value. Therefore, 
instead of values in the range of [1..n], values in the range of [0..n-1] are programmed. That 
way, e.g. SJW (functional range of [1..4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSEG1 + TSEG2 + 3] tq or 
(functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

1 df–( ) fnom• fosc 1 df+( ) fnom•≤ ≤

 I:   df min Phase_Seg1  Phase_Seg2,( )
2 13 bit_time Phase_Seg2–⋅( )⋅
------------------------------------------------------------------------------------------≤

II:   df SJW
20 bit_time⋅
----------------------------------≤



   
   

   

Controller area network (CAN) RM0006

418/488  Doc ID 13742 Rev 4

Figure 105. Structure of the CAN core’s CAN protocol controller

The data in the bit timing registers is the configuration input of the CAN protocol controller. 
The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the 
basic time unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and 
SJW) defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and 
occasional synchronizations are controlled by the BTL state machine, which is evaluated 
once each time quantum. The rest of the CAN protocol controller, the BSP state machine is 
evaluated once each bit time, at the Sample Point.

The Shift Register sends the messages serially and receives the messages parallely. Its 
loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the 
enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC 
code, performs the error management, and decides which type of synchronization is to be 
used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time 
that is needed to calculate the next bit to be sent after the Sample point(e.g. data bit, CRC 
bit, stuff bit, error flag, or idle) is called the Information Processing Time (IPT).

The IPT is application specific but may not be longer than 2 tq; the IPT for the CAN 
peripheral is 0 tq. Its length is the lower limit of the programmed length of Phase_Seg2. In 
case of a synchronization, Phase_Seg2 may be shortened to a value less than IPT, which 
does not affect bus timing.

Sample_Point

Bit_to_send

Sync_Mode

Bus_Off

Scaled_Clock (tq)System Clock

Receive_Data

Transmit_Data

Control

Received_Message

Send_Message

Status

Bit

Timing

Logic

Baudrate_
Prescaler

Sampled_Bit

Configuration (TSEG1, TSEG2, SJW)

Configuration (BRP)

Shift-Register

Received_Data_Bit

Next_Data_Bit

Control

B
it 

S
tr

ea
m

 P
ro

ce
ss

or

IP
T



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 419/488

   
   

   

Calculating bit timing parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. 
The resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum tq is defined 
by the Baud Rate Prescaler with tq = (Baud Rate Prescaler)/fsys. Several combinations may 
lead to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times 
measured in the system. A maximum bus length as well as a maximum node delay has to 
be defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted 
into time quanta (rounded up to the nearest integer multiple of tq). 

The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two Phase 
Buffer Segments. If the number of remaining tq is even, the Phase Buffer Segments have 
the same length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may 
not be shorter than the IPT of the CAN controller, which, depending on the actual 
implementation, is in the range of [0..2] tq.

The length of the Synchronization Jump Width is set to its maximum value, which is the 
minimum of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the 
formulas given in Oscillator tolerance range on page 417

If more than one configuration is possible, that configuration allowing the highest oscillator 
tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same 
bit rate. The calculation of the propagation time in the CAN network, based on the nodes 
with the longest delay times, is done once for the whole network.

The oscillator tolerance range of the CAN systems is limited by that node with the lowest 
tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the 
stability of the oscillator frequency has to be increased in order to find a protocol compliant 
configuration of the CAN bit timing.

The resulting configuration is written into the Bit Timing Register:

(Phase_Seg2-1)&(Phase_Seg1+Prop_Seg-1)&

(SynchronisationJumpWidth-1)&(Prescaler-1)



   
   

   

Controller area network (CAN) RM0006

420/488  Doc ID 13742 Rev 4

Example for bit timing at high baudrate

In this example, the frequency of APB_CLK is 10 MHz, BRP is 0, the bit rate is 1 Mbit/s. The 
concatenated bit time parameters are (2-1)3&(7-1)4&(1-1)2&(1-1)6, the Bit Timing Register 
is programmed to equal 0x1600.

         

tq 100 ns = tAPB_CLK

Delay of bus driver 50 ns

Delay of receiver circuit 30 ns

Delay of bus line (40m) 220 ns

tProp 600 ns = 6 • tq

tSJW 100 ns = 1 • tq

tTSeg1 700 ns = tProp + tSJW

tTSeg2 200 ns = Information Processing Time + 1 • tq

tSync-Seg 100 ns = 1 • tq

Bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2

Tolerance for APB_CLK 0.39 %

=
min(PB1,PB2)

2x(13xbit_time-PB2)

0.1µs
2x(13x1µs-0.2µs)

=



RM0006 Controller area network (CAN)

Doc ID 13742 Rev 4 421/488

   
   

   

Example for bit timing at low baudrate

In this example, the frequency of APB_CLK is 2 MHz, BRP is 1, the bit rate is 100 Kbit/s. 
The concatenated bit time parameters are (4-1)3&(5-1)4&(4-1)2&(2-1)6, the Bit Timing 
Register is programmed to equal 0x34C1.

         

tq 1 µs = 2 • tAPB_CLK

Delay of bus driver 200 ns

Delay of receiver circuit 80 ns

Delay of bus line (40m) 220 ns

tProp 1 µs = 1 • tq

tSJW 4 µs = 4 • tq

tTSeg1 5 µs = tProp + tSJW

tTSeg2 4 µs = Information Processing Time + 3 • tq

tSync-Seg 1 µs = 1 • tq

Bit time 10 µs = tSync-Seg + tTSeg1 + tTSeg2

Tolerance for APB_CLK 1.58 %

=
min(PB1,PB2)

2x(13xbit_time-PB2)

4µs
2x(13x10µs-4µs)

=



   
   

   

USB slave interface (USB) RM0006

422/488  Doc ID 13742 Rev 4

15 USB slave interface (USB)

15.1 Introduction
The USB slave interface consists of both the USB Serial Interface Engine (SIE) and the USB 
Transceiver (Physical interface). It implements an interface between a full-speed USB 2.0 
and the AHB bus. USB power management capabilities (suspend/resume) can be interfaced 
with STR91xFA Low power modes for efficient power management. The STR91xFA DMA 
controller (DMAC) can be used off-load the CPU and increase application performance. The 
48 MHz USBCLK is supplied via the System Control Unit (SCU) from an internal or external 
clock source see Section 2.4.6 on page 72.

15.2 Main features
● Meets USB 2.0 Full Speed specification (12 Mbs) Slave mode

● Support up to 10 bidirectional or 20 mono-directional Endpoints 

● Support Isochronous, Control, Interrupt and Bulk endpoints 

● Each Endpoint is associated with two packet buffers (Tx and Rx) whose size may be up 
to 1024 bytes each.

● Packet Buffer Memory (2 Kb SRAM) to store the Endpoint buffers. Buffer size is user 
programmable.

● Support for Control EP0 with both IN and Out endpoints 

● DMA controller that can be used to transfer data from the Endpoint Buffer to memory 
when data is transmitted or received.

● Interrupt sources to the Interrupt Controller

● USB suspend resume operations

● Located on the AHB bus

● 48 Mhz clock comes from PLL main CPU clock or external input pin

15.3 Block diagram
Figure 106 shows the block diagram of the USB Peripheral.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 423/488

   
   

   

Figure 106. USB Peripheral block diagram

15.4 Functional description
The USB Peripheral provides a USB compliant connection between the host PC and the 
function implemented by the microcontroller. Data transfer between the host PC and the 
system memory occurs through a dedicated packet buffer memory accessed directly by the 
USB Peripheral. This dedicated memory is 2 Kbytes in size supporting up to 20 mono-
directional/single-buffered endpoints. The USB Peripheral interfaces with the USB host, 
detecting token packets, handling data transmission/reception, and processing handshake 
packets as required by the USB standard. Transaction formatting is performed by the 
hardware, including CRC generation and checking.

Arbiter

2KB Packet
Buffer
Memory

Register
Mapper

Interrupt
Mapper

AHB wrapper

Suspend

Timer

Packet

Buffer

Interface

USB 

RX-TX Clock

Recovery

Control
Endpoint

SelectionS.I.E.

Control and DMA
registers & logic

Interrupt
registers & logic

Analog

Endpoint

Registers

D+ D-

Transceiver

Endpoint

Registers

HCLK AHB bus IRQs to VIC

USBCLK (48 MHz)

HCLK

AHB Interface

DMA Tx/Rx Interface

to/from DMA Controller

(48 MHz)

USBCLK
from SCU

Resume signal
to WIU



   
   

   

USB slave interface (USB) RM0006

424/488  Doc ID 13742 Rev 4

Each Endpoint is associated with a buffer description block indicating where the Endpoint 
related memory area is located, how large it is or how many bytes must be transmitted. 
When a token for a valid function/Endpoint pair is recognized by the USB Peripheral, the 
related data transfer (if required and if the Endpoint is configured) takes place. The data 
buffered by the USB Peripheral is loaded in an internal 16 bit register and memory access to 
the dedicated buffer is performed. When all the data has been transferred, if needed, the 
proper handshake packet over the USB is generated or expected according to the direction 
of the transfer. 

At the end of the transaction, an Endpoint-specific interrupt is generated, reading status 
registers and/or using different interrupt response routines. The microcontroller can 
determine which:

● Endpoint has to be served

● Type of transaction took place, if errors occurred (bit stuffing, format, CRC, protocol, 
missing ACK, over/underrun, etc).

Two interrupt lines are generated by the USB Peripheral : one IRQ collecting high priority 
Endpoint interrupts (isochronous and double-buffered bulk) and another IRQ collecting all 
other interrupt sources (refer to the Table 13: VIC interrupt channels on page 124 for 
details).

Special support is offered to Isochronous transfers and high throughput bulk transfers, 
implementing a double buffer usage, which allows to always have an available buffer for the 
USB Peripheral while the microcontroller uses the other one.

The unit can be placed in low-power mode (SUSPEND mode), by writing in the control 
register, whenever required. At this time, all static power dissipation is avoided, and the USB 
clock can be slowed down or stopped. The detection of activity at the USB inputs, while in 
low-power mode, wakes the device up asynchronously. The RESUME interrupt source can 
be connected directly to a wakeup line (see Wakeup/Interrupt Unit (WIU) on page 136) to 
allow the system to immediately restart the normal clock generation and/or support direct 
clock start/stop.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 425/488

   
   

   

15.4.1 Description of USB blocks

The USB Peripheral implements all the features related to USB interfacing, which include 
the following blocks:

● Serial Interface Engine (SIE): The functions of this block include: synchronization 
pattern recognition, bit-stuffing, CRC generation and checking, PID 
verification/generation, and handshake evaluation. It must interface with the USB 
transceivers and uses the virtual buffers provided by the packet buffer interface for local 
data storage. This unit also generates signals according to USB Peripheral events, 
such as Start of Frame (SOF), USB_Reset, Data errors etc. and to Endpoint related 
events like end of transmission or correct reception of a packet; these signals are then 
used to generate interrupts.

● Suspend Timer: This block generates the frame locked clock pulse for any external 
device requiring Start-of-Frame synchronization and it detects a global suspend (from 
the host) when no traffic has been received for 3 mS. 

● Packet Buffer Interface: This block manages the local memory implementing a set of 
buffers in a flexible way, both for transmission and reception. It can choose the proper 
buffer according to requests coming from the SIE and locate them in the memory 
addresses pointed by the Endpoint registers. It increments the address after each 
exchanged word until the end of packet, keeping track of the number of exchanged 
bytes and preventing the buffer to overrun the maximum capacity.

● Endpoint-Related Registers: Each Endpoint has an associated register containing the 
Endpoint type and its current status. For mono-directional/single-buffer endpoints, a 
single register can be used to implement two distinct endpoints. The number of 
registers is 8, allowing up to 8 double-buffer endpoints or up to 16 mono-
directional/single-buffer ones in any combination. 

● Control Registers: These are the registers containing information about the status of 
the whole USB Peripheral and used to force some USB events, such as resume and 
power-down.

● Interrupt Registers: These contain the Interrupt masks and a record of the events. They 
can be used to determine the cause of an interrupt, read the interrupt status or clear a 
pending interrupt.

The USB Peripheral is connected to the AHB bus through an AHB interface, containing the 
following blocks:

● Packet Memory: This is the local memory that physically contains the Packet Buffers. It 
can be used by the Packet Buffer interface, which creates the data structure and can be 
accessed directly by the application software. The size of the Packet Memory is 
2 Kbytes, structured as 512 words by 32 bits.

● Arbiter: This block accepts memory requests coming from the AHB bus and from the 
USB interface. It resolves the conflicts by giving priority to AHB accesses, while always 
reserving half of the memory bandwidth to complete all USB transfers. This time-duplex 
scheme implements a virtual dual-port RAM that allows memory access, while an USB 
transaction is happening. Multi-word AHB transfers of any length are also allowed by 
this scheme.

● Register Mapper: This block collects the various byte-wide and bit-wide registers of the 
USB Peripheral in a structured 16-bit wide word set addressed by the AHB.

● Interrupt Mapper: This block maps the USB interrupts to IRQ lines of the VIC.

● AHB Wrapper: This provides an interface to the AHB for the memory and register. It 
also maps the whole USB Peripheral in the AHB address space.



   
   

   

USB slave interface (USB) RM0006

426/488  Doc ID 13742 Rev 4

15.5 Programming considerations
In the following sections, the expected interactions between the USB Peripheral and the 
application program are described, in order to ease application software development.

15.5.1 Generic USB device programming

This part describes the main tasks required of the application software in order to obtain 
USB compliant behaviour. The actions related to the most general USB events are taken 
into account and paragraphs are dedicated to the special cases of double-buffered 
endpoints and Isochronous transfers. Apart from system reset, action is always initiated by 
the USB Peripheral, driven by one of the USB events described below.

15.5.2 System and power-on reset

Upon system and power-on reset, the first operation the application software should perform 
is to provide all required clock signals to the USB Peripheral and subsequently de-assert its 
reset signal so to be able to access its registers. The whole initialization sequence is 
hereafter described.

As a first step application software needs to activate the 48 MHz USBCLK and HCLK to the 
USB Peripheral and de-assert the specific reset signal using related control bits Peripheral 
clock gating register 0 (SCU_PCGR0) on page 92. and Peripheral reset register 0 
(SCU_PRR0) on page 96

After that the analog part of the device related to the USB transceiver must be switched on 
using the PDWN bit in USB control register (USB_CNTR) register which requires a special 
handling. This bit is intended to switch on the internal voltage references supplying the port 
transceiver . Since this circuits have a defined start-up time, during which the behaviour of 
USB transceiver is not defined, it is necessary to wait this time, after having set the PDWN 
bit in the USB_CNTR register, then the reset condition on the USB part can be removed 
(clearing of FRES bit in USB_CNTR register) and the USB_ISTR register can be cleared, 
removing any spurious pending interrupt, before enabling any other macrocell operation.

As a last step the USB specific 48 MHz clock needs to be activated, using the related 
control bits provided in the Peripheral clock gating register 0 (SCU_PCGR0) on page 92.

At system reset, the microcontroller must initialize all required registers and the packet 
buffer description table, to make the USB Peripheral able to properly generate interrupts and 
data transfers. All registers not specific to any Endpoint must be initialized according to the 
needs of application software (choice of enabled interrupts, chosen address of packet 
buffers, etc.). Then the process continues as for the USB reset event (see next paragraph).

USB reset (RESET interrupt)

When this event occurs, the USB Peripheral is put in the same conditions it is left by the 
system reset after the initialization described in the previous paragraph: communication is 
disabled in all Endpoint registers (the USB Peripheral will not respond to any packet). As a 
response to the USB reset event, the USB function must be enabled, having as USB 
address 0, implementing only the default control Endpoint (Endpoint address is 0 too). This 
is accomplished by setting the Enable Function (EF) bit of the USB_DADDR register and 
initializing the EP0R register and its related packet buffers accordingly. During USB 
enumeration process, the host assigns a unique address to this device, which must be 
written in the ADD[6:0] bits of the USB_DADDR register, and configures any other 
necessary Endpoint. 



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 427/488

   
   

   

When a RESET interrupt is received, the application software is responsible to enable again 
the default Endpoint of USB function 0 within 10mS from the end of reset sequence which 
triggered the interrupt.

Structure and usage of packet buffers

Each bidirectional Endpoint may receive or transmit data from/to the host. The received data 
is stored in a dedicated memory buffer reserved for that Endpoint, while another memory 
buffer contains the data to be transmitted by the Endpoint. Access to this memory is 
performed by the packet buffer interface block, which delivers a memory access request and 
waits for its acknowledgement. Since the packet buffer memory has to be accessed by the 
microcontroller also, an arbitration logic takes care of the access conflicts, using half AHB 
cycle for microcontroller access and the remaining half for the USB Peripheral access. In 
this way, both the agents can operate as if the packet memory is a dual-port RAM, without 
being aware of any conflict even when the microcontroller is performing back-to-back 
accesses. The USB Peripheral logic uses a dedicated clock USBCLK. The frequency of this 
dedicated clock is fixed by the requirements of the USB standard at 48 MHz.

Note: Due to USB data rate and packet memory interface requirements, the AHB clock frequency 
must be greater than 8 MHz to avoid data overrun/underrun problems.

Each Endpoint is associated with two packet buffers (usually one for transmission and the 
other one for reception). The size of the buffer can be up to 512 words each. Buffers can be 
placed anywhere inside the packet memory because their location and size is specified in a 
buffer description table, which is also located in the packet memory at the address indicated 
by the USB_BTABLE register. Each table entry is associated to an Endpoint register and it is 
composed of four 16-bit words so that table start address must always be aligned to an 8-
byte boundary (the lowest three bits of USB_BTABLE register are always “000”). Buffer 
descriptor table entries are described in the Section 15.6.4: Buffer descriptor table. If an 
Endpoint is unidirectional and it is neither an Isochronous nor a double-buffered bulk, only 
one packet buffer is required (the one related to the supported transfer direction). Other 
table locations related to unsupported transfer directions or unused endpoints, are available 
to the user. Isochronous and double-buffered bulk endpoints have special handling of packet 
buffers (Refer to Section 15.5.4: Isochronous transfers and Section 15.5.3: Double-buffered 
endpoints respectively). The relationship between buffer description table entries and packet 
buffer areas is depicted in Figure 107.



   
   

   

USB slave interface (USB) RM0006

428/488  Doc ID 13742 Rev 4

Figure 107. Packet buffer areas with examples of buffer description table locations

Each packet buffer is used either during reception or transmission starting from the bottom. 
The USB Peripheral will never change the contents of memory locations adjacent to the 
allocated memory buffers; if a packet bigger than the allocated buffer length is received 
(buffer overrun condition) the data will be copied to the memory only up to the last available 
location.

Buffer for
double-buffered
IN Endpoint 3

ADDR0_TX

ADDR0_RX

0000_0000 (00)

COUNT0_TX

COUNT0_RX

ADDR1_TX

ADDR1_RX

COUNT1_TX

COUNT1_RX

ADDR2_RX0

ADDR2_RX1

COUNT2_RX0

COUNT2_RX1

ADDR3_TX0

ADDR3_TX1

0000_0010 (02)

0000_0100 (04)

0000_0110 (06)

0000_1000 (08)

0000_1010 (0A)

0000_1100 (0C)

0000_1110 (0E)

0001_0000 (10)

0001_0010 (12)

0001_0100 (14)

0001_0110 (16)

0001_1000 (18)

0001_1010 (1A)

Buffer description table locations

Transmission 
buffer for

Endpoint 0

Reception buffer 
for

Endpoint 0

Transmission 
buffer for

single-buffered
Endpoint 1

Packet buffers

COUNT3_TX0

COUNT3_TX1

0001_1100 (1C)

0001_1110 (1E)

Buffer for
double-buffered
OUT Endpoint 2



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 429/488

   
   

   

Endpoint initialization

The first step to initialize an Endpoint is to write appropriate values to the 
ADDRn_TX/ADDRn_RX registers so that the USB Peripheral finds the data to be 
transmitted already available and the data to be received can be buffered. The EP_TYPE 
bits in the USB_EPnR register must be set according to the Endpoint type, eventually using 
the EP_KIND bit to enable any special required feature. On the transmit side, the Endpoint 
must be enabled using the STAT_TX bits in the USB_EPnR register and COUNTn_TX must 
be initialized. For reception, STAT_RX bits must be set to enable reception and 
COUNTn_RX must be written with the allocated buffer size using the BL_SIZE and 
NUM_BLOCK fields. Unidirectional endpoints, except Isochronous and double-buffered bulk 
endpoints, need to initialize only bits and registers related to the supported direction. Once 
the transmission and/or reception are enabled, register USB_EPnR and locations 
ADDRn_TX/ADDRn_RX, COUNTn_TX/COUNTn_RX (respectively), should not be modified 
by the application software, as the hardware can change their value on the fly. When the 
data transfer operation is completed, notified by a CTR interrupt event, they can be 
accessed again to re-enable a new operation.

IN packets (data transmission)

When receiving an IN token packet, if the received address matches a configured and valid 
Endpoint one, the USB Peripheral accesses the contents of ADDRn_TX and COUNTn_TX 
locations in the buffer descriptor table entry related to the addressed Endpoint. The content 
of these locations is stored in its internal 16 bit registers ADDR and COUNT (not accessible 
by software). The packet memory is accessed again to read the first word to be transmitted 
(Refer to Structure and usage of packet buffers on page 427) and starts sending a DATA0 or 
DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is completed, the first 
byte from the word, read from buffer memory, is loaded into the output shift register to be 
transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is 
sent. If the addressed Endpoint is not valid, a NAK or STALL handshake packet is sent 
instead of the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while 
COUNT is used to count the number of remaining bytes to be transmitted. Each word read 
from the packet buffer memory is transmitted over the USB bus starting from the least 
significant byte. Transmission buffer memory is read starting from the address pointed by 
ADDRn_TX for COUNTn_TX/2 words. If a transmitted packet is composed of an odd 
number of bytes, only the lower half of the last word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the following 
way: DTOG_TX bit is toggled, the Endpoint is made invalid by setting STAT_TX=10 (NAK) 
and bit CTR_TX is set. The application software must first identify the Endpoint, which is 
requesting microcontroller attention by examining the EP_ID and DIR bits in the USB_ISTR 
register. Servicing of the CTR_TX event starts clearing the interrupt bit; the application 
software then prepares another buffer full of data to be sent, updates the COUNTn_TX table 
location with the number of byte to be transmitted during the next transfer, and finally sets 
STAT_TX to ‘11’ (VALID) to re-enable transmissions. While the STAT_TX bits are equal to 
‘10’ (NAK), any IN request addressed to that Endpoint is NAKed, indicating a flow control 
condition: the USB host will retry the transaction until it succeeds. It is mandatory to execute 
the sequence of operations in the above mentioned order to avoid losing the notification of a 
second IN transaction addressed to the same Endpoint immediately following the one which 
triggered the CTR interrupt.



   
   

   

USB slave interface (USB) RM0006

430/488  Doc ID 13742 Rev 4

OUT and SETUP packets (data reception)

These two tokens are handled by the USB Peripheral more or less in the same way; the 
differences in the handling of SETUP packets are detailed in the following paragraph about 
control transfers. When receiving an OUT/SETUP PID, if the address matches a valid 
Endpoint, the USB Peripheral accesses the contents of the ADDRn_RX and COUNTn_RX 
locations inside the buffer descriptor table entry related to the addressed Endpoint. The 
content of the ADDRn_RX is stored directly in its internal register ADDR. While COUNT is 
now reset and the values of BL_SIZE and NUM_BLOCK bit fields, which are read within 
COUNTn_RX content are used to initialize BUF_COUNT, an internal 16 bit counter, which is 
used to check the buffer overrun condition (all these internal registers are not accessible by 
software). Data bytes subsequently received by the USB Peripheral are packed in words 
(the first byte received is stored as least significant byte) and then transferred to the packet 
buffer starting from the address contained in the internal ADDR register while BUF_COUNT 
is decremented and COUNT is incremented at each byte transfer. When the end of DATA 
packet is detected, the correctness of the received CRC is tested and only if no errors 
occurred during the reception, an ACK handshake packet is sent back to the transmitting 
host. In case of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.), 
data bytes are anyways copied in the packet memory buffer, at least until the error detection 
point, but ACK packet is not sent and the ERR bit in USB_ISTR register is set. However, 
there is usually no software action required in this case: the USB Peripheral recovers from 
reception errors and remains ready for the next transaction to come. If the addressed 
Endpoint is not valid, a NAK or STALL handshake packet is sent instead of the ACK, 
according to bits STAT_RX in the USB_EPnR register and no data is written in the reception 
memory buffers.

Reception memory buffer locations are written starting from the address contained in the 
ADDRn_RX for a number of bytes corresponding to the received data packet length, CRC 
included (i.e. data payload length + 2), or up to the last allocated memory location, as 
defined by BL_SIZE and NUM_BLOCK, whichever comes first. In this way, the USB 
Peripheral never writes beyond the end of the allocated reception memory buffer area. If the 
length of the data packet payload (actual number of bytes used by the application) is greater 
than the allocated buffer, the USB Peripheral detects a buffer overrun condition. in this case, 
a STALL handshake is sent instead of the usual ACK to notify the problem to the host, no 
interrupt is generated and the transaction is considered failed.

When the transaction is completed correctly, by sending the ACK handshake packet, the 
internal COUNT register is copied back in the COUNTn_RX location inside the buffer 
description table entry, leaving unaffected BL_SIZE and NUM_BLOCK fields, which 
normally do not require to be re-written, and the USB_EPnR register is updated in the 
following way: DTOG_RX bit is toggled, the Endpoint is made invalid by setting STAT_RX = 
‘10’ (NAK) and bit CTR_RX is set. If the transaction has failed due to errors or buffer overrun 
condition, none of the previously listed actions take place. The application software must 
first identify the Endpoint, which is requesting microcontroller attention by examining the 
EP_ID and DIR bits in the USB_ISTR register. The CTR_RX event is serviced by first 
determining the transaction type (SETUP bit in the USB_EPnR register); the application 
software must clear the interrupt flag bit and get the number of received bytes reading the 
COUNTn_RX location inside the buffer description table entry related to the Endpoint being 
processed. After the received data is processed, the application software should set the 
STAT_RX bits to ‘11’ (Valid) in the USB_EPnR, enabling further transactions. While the 
STAT_RX bits are equal to ‘10’ (NAK), any OUT request addressed to that Endpoint is 
NAKed, indicating a flow control condition: the USB host will retry the transaction until it 
succeeds. It is mandatory to execute the sequence of operations in the above mentioned 



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 431/488

   
   

   

order to avoid losing the notification of a second OUT transaction addressed to the same 
Endpoint following immediately the one which triggered the CTR interrupt.

Control transfers

Control transfers are made of a SETUP transaction, followed by zero or more data stages, 
all of the same direction, followed by a status stage (a zero-byte transfer in the opposite 
direction). SETUP transactions are handled by control endpoints only and are very similar to 
OUT ones (data reception) except that the values of DTOG_TX and DTOG_RX bits of the 
addressed Endpoint registers are set to 1 and 0 respectively, to initialize the control transfer, 
and both STAT_TX and STAT_RX are set to ‘10’ (NAK) to let software decide if subsequent 
transactions must be IN or OUT depending on the SETUP contents. A control Endpoint 
must check SETUP bit in the USB_EPnR register at each CTR_RX event to distinguish 
normal OUT transactions from SETUP ones. A USB device can determine the number and 
direction of data stages by interpreting the data transferred in the SETUP stage, and is 
required to STALL the transaction in the case of errors. To do so, at all data stages before 
the last, the unused direction should be set to STALL, so that, if the host reverses the 
transfer direction too soon, it gets a STALL as a status stage. While enabling the last data 
stage, the opposite direction should be set to NAK, so that, if the host reverses the transfer 
direction (to perform the status stage) immediately, it is kept waiting for the completion of the 
control operation. If the control operation completes successfully, the software will change 
NAK to VALID, otherwise to STALL. At the same time, if the status stage will be an OUT, the 
STATUS_OUT (EP_KIND in the USB_EPnR register) bit should be set, so that an error is 
generated if a status transaction is performed with not-zero data. When the status 
transaction is serviced, the application clears the STATUS_OUT bit and sets STAT_RX to 
VALID (to accept a new command) and STAT_TX to NAK (to delay a possible status stage 
immediately following the next setup).

Since the USB specification states that a SETUP packet cannot be answered with a 
handshake different from ACK, eventually aborting a previously issued command to start the 
new one, the USB logic doesn’t allow a control Endpoint to answer with a NAK or STALL 
packet to a SETUP token received from the host. 

When the STAT_RX bits are set to ‘01’ (STALL) or ‘10’ (NAK) and a SETUP token is 
received, the USB accepts the data, performing the required data transfers and sends back 
an ACK handshake. If that Endpoint has a previously issued CTR_RX request not yet 
acknowledged by the application (i.e. CTR_RX bit is still set from a previously completed 
reception), the USB discards the SETUP transaction and does not answer with any 
handshake packet regardless of its state, simulating a reception error and forcing the host to 
send the SETUP token again. This is done to avoid losing the notification of a SETUP 
transaction addressed to the same Endpoint immediately following the transaction, which 
triggered the CTR_RX interrupt.



   
   

   

USB slave interface (USB) RM0006

432/488  Doc ID 13742 Rev 4

15.5.3 Double-buffered endpoints

All different Endpoint types defined by the USB standard represent different traffic models, 
and describe the typical requirements of different kind of data transfer operations. When 
large portions of data are to be transferred between the host PC and the USB function, the 
bulk Endpoint type is the most suited model. This is because the host schedules bulk 
transactions so as to fill all the available bandwidth in the frame, maximizing the actual 
transfer rate as long as the USB function is ready to handle a bulk transaction addressed to 
it. If the USB function is still busy with the previous transaction when the next one arrives, it 
will answer with a NAK handshake and the host PC will issue the same transaction again 
until the USB function is ready to handle it, reducing the actual transfer rate due to the 
bandwidth occupied by re-transmissions. For this reason, a dedicated feature called 
‘double-buffering’ can be used with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer 
is to be used by the USB Peripheral to perform the required data transfers, using both 
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each 
successful transaction in order to always have a complete buffer to be used by the 
application, while the USB Peripheral fills the other one. For example, during an OUT 
transaction directed to a ‘reception’ double-buffered bulk Endpoint, while one buffer is being 
filled with new data coming from the USB host, the other one is available for the 
microcontroller software usage (the same would happen with a ‘transmission’ double-
buffered bulk Endpoint and an IN transaction).

Since the swapped buffer management requires the usage of all 4 buffer description table 
locations hosting the address pointer and the length of the allocated memory buffers, the 
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be 
used as uni-directional ones. Therefore, only one STAT bit pair must be set at a value 
different from ‘00’ (Disabled): STAT_RX if the double-buffered bulk Endpoint is enabled for 
reception, STAT_TX if the double-buffered bulk Endpoint is enabled for transmission. In case 
it is required to have double-buffered bulk endpoints enabled both for reception and 
transmission, two USB_EPnR registers must be used.

To exploit the double-buffering feature and reach the highest possible transfer rate, the 
Endpoint flow control structure, described in previous chapters, has to be modified, in order 
to switch the Endpoint status to NAK only when a buffer conflict occurs between the USB 
Peripheral and application software, instead of doing it at the end of each successful 
transaction. The memory buffer which is currently being used by the USB Peripheral is 
defined by the DTOG bit related to the Endpoint direction: DTOG_RX (bit 14 of USB_EPnR 
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR 
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow 
control scheme, the USB Peripheral should know which packet buffer is currently in use by 
the application software, so to be aware of any conflict. Since in the USB_EPnR register, 
there are two DTOG bits but only one is used by USB Peripheral for data and buffer 
sequencing (due to the uni-directional constraint required by double-buffering feature) the 
other one can be used by the application software to show which buffer it is currently using. 
This new buffer flag is called SW_BUF. In the following table the correspondence between 
USB_EPnR register bits and DTOG/SW_BUF definition is explained, for the cases of 
‘transmission’ and ‘reception’ double-buffered bulk endpoints.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 433/488

   
   

   

         

The memory buffer which is currently being used by the USB Peripheral is defined by DTOG 
buffer flag, while the buffer currently in use by application software is identified by SW_BUF 
buffer flag. The relationship between the buffer flag value and the used packet buffer is the 
same in both cases, and it is listed in the following table.

         

Double-buffering feature for a bulk Endpoint is activated by: 

● Writing EP_TYPE bit field at ‘00’ in its USB_EPnR register, to define the Endpoint as a 
bulk.

● Setting EP_KIND bit at ‘1’ (DBL_BUF), in the same register

The application software is responsible for DTOG and SW_BUF bits initialization according 
to the first buffer to be used; this has to be done considering the special toggle-only property 
that these two bits have. The end of the first transaction occurring after having set 
DBL_BUF, triggers the special flow control of double-buffered bulk endpoints, which is used 
for all other transactions addressed to this Endpoint until DBL_BUF remain set. At the end of 
each transaction the CTR_RX or CTR_TX bit of the addressed Endpoint USB_EPnR 
register is set, depending on the enabled direction. At the same time, the affected DTOG bit 
in the USB_EPnR register is hardware toggled making the USB Peripheral buffer swapping 
completely software independent. Unlike common transactions, and the first one after 
DBL_BUF setting, STAT bit pair is not affected by the transaction termination and its value 
remains ‘11’ (Valid). However, as the token packet of a new transaction is received, the 
actual Endpoint status will be masked as ‘10’ (NAK) when a buffer conflict between the USB 
Peripheral and the application software is detected (this condition is identified by DTOG and 
SW_BUF having the same value). The application software responds to the CTR event 
notification by clearing the interrupt flag and starting any required handling of the completed 
transaction. When the application packet buffer usage is over, the software toggles the 
SW_BUF bit, writing ‘1’ to it, to notify the USB Peripheral about the availability of that buffer. 
In this way, the number of NAKed transactions is limited only by the application elaboration 
time of a transaction data: if the elaboration time is shorter than the time required to 
complete a transaction on the USB bus, no re-transmissions due to flow control will take 
place and the actual transfer rate will be limited only by the host PC.

Table 49. Double-buffering buffer flag definition

Buffer flag ‘Transmission’ endpoint ‘Reception’ endpoint

DTOG DTOG_TX (USB_EPnR bit 6) DTOG_RX (USB_EPnR bit 14)

SW_BUF USB_EPnR bit 14 USB_EPnR bit 6

Table 50. Double-buffering memory buffers usage

Endpoint
type

DTOG or 
SW_BUF bit value

Packet buffer used by USB Peripheral (DTOG) or application 
software (SW_BUF) 

IN
0 ADDRn_TX_0 / COUNTn_TX_0 buffer description table locations

1 ADDRn_TX_1 / COUNTn_TX_1 buffer description table locations

OUT
0 ADDRn_RX_0 / COUNTn_RX_0 buffer description table locations

1 ADDRn_RX_1 / COUNTn_RX_1 buffer description table locations



   
   

   

USB slave interface (USB) RM0006

434/488  Doc ID 13742 Rev 4

The application software can always override the special flow control implemented for 
double-buffered bulk endpoints, writing an explicit status different from ‘11’ (Valid) into the 
STAT bit pair of the related USB_EPnR register. In this case, the USB Peripheral will always 
use the programmed Endpoint status, regardless of the buffer usage condition.

15.5.4 Isochronous transfers

The USB standard supports full speed peripherals requiring a fixed and accurate data 
production/consume frequency, defining this kind of traffic as ‘Isochronous’. Typical 
examples of this data are: audio samples, compressed video streams, and in general any 
sort of sampled data having strict requirements for the accuracy of delivered frequency. 
When an Endpoint is defined to be ‘isochronous’ during the enumeration phase, the host 
allocates in the frame the required bandwidth and delivers exactly one IN or OUT packet 
each frame, depending on Endpoint direction. To limit the bandwidth requirements, no re-
transmission of failed transactions is possible for Isochronous traffic; this leads to the fact 
that an isochronous transaction does not have a handshake phase and no ACK packet is 
expected or sent after the data packet. For the same reason, Isochronous transfers do not 
support data toggle sequencing and always use DATA0 PID to start any data packet.

The Isochronous behaviour for an Endpoint is selected by setting the EP_TYPE bits at ‘10’ 
in its USB_EPnR register; since there is no handshake phase the only legal values for the 
STAT_RX/STAT_TX bit pairs are ‘00’ (Disabled) and ‘11’ (Valid), any other value will produce 
results not compliant to USB standard. Isochronous endpoints implement double-buffering 
to ease application software development, using both ‘transmission’ and ‘reception’ packet 
memory areas to manage buffer swapping on each successful transaction in order to have 
always a complete buffer to be used by the application, while the USB Peripheral fills the 
other.

The memory buffer which is currently used by the USB Peripheral is defined by the DTOG 
bit related to the Endpoint direction (DTOG_RX for ‘reception’ isochronous endpoints, 
DTOG_TX for ‘transmission’ isochronous endpoints, both in the related USB_EPnR 
register) according to Table 51.

         

As it happens with double-buffered bulk endpoints, the USB_EPnR registers used to 
implement Isochronous endpoints are forced to be used as uni-directional ones. In case it is 
required to have Isochronous endpoints enabled both for reception and transmission, two 
USB_EPnR registers must be used.

Table 51. Isochronous memory buffers usage

Endpoint 
type

DTOG bit 
value

DMA buffer used by USB 
peripheral

DMA buffer used by application 
software

IN

0
ADDRn_TX_0 / COUNTn_TX_0
buffer description table locations

ADDRn_TX_1 / COUNTn_TX_1
buffer description table locations

1
ADDRn_TX_1 / COUNTn_TX_1
buffer description table locations

ADDRn_TX_0 / COUNTn_TX_0
buffer description table locations

OUT

0
ADDRn_RX_0 / COUNTn_RX_0
buffer description table locations

ADDRn_RX_1 / COUNTn_RX_1
buffer description table locations

1
ADDRn_RX_1 / COUNTn_RX_1
buffer description table locations

ADDRn_RX_0 / COUNTn_RX_0
buffer description table locations



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 435/488

   
   

   

The application software is responsible for the DTOG bit initialization according to the first 
buffer to be used; this has to be done considering the special toggle-only property that these 
two bits have. At the end of each transaction, the CTR_RX or CTR_TX bit of the addressed 
Endpoint USB_EPnR register is set, depending on the enabled direction. At the same time, 
the affected DTOG bit in the USB_EPnR register is hardware toggled making buffer 
swapping completely software independent. STAT bit pair is not affected by transaction 
completion; since no flow control is possible for Isochronous transfers due to the lack of 
handshake phase, the Endpoint remains always ‘11’ (Valid). CRC errors or buffer-overrun 
conditions occurring during Isochronous OUT transfers are anyway considered as correct 
transactions and they always trigger an CTR_RX event. However, CRC errors will anyway 
set the ERR bit in the USB_ISTR register to notify the software of the possible data 
corruption.

15.5.5 Suspend/Resume events

The USB standard defines a special peripheral state, called SUSPEND, in which the 
average current drawn from the USB bus must not be greater than 500 µA. This requirement 
is of fundamental importance for bus-powered devices, while self-powered devices are not 
required to comply to this strict power consumption constraint. In suspend mode, the host 
PC sends the notification to not send any traffic on the USB bus for more than 3mS: since a 
SOF packet must be sent every mS during normal operations, the USB Peripheral detects 
the lack of 3 consecutive SOF packets as a suspend request from the host PC and set the 
SUSP bit to ‘1’ in USB_ISTR register, causing an interrupt if enabled. Once the device is 
suspended, its normal operation can be restored by a so called RESUME sequence, which 
can be started from the host PC or directly from the peripheral itself, but it is always 
terminated by the host PC. The suspended USB Peripheral must be anyway able to detect a 
RESET sequence, reacting to this event as a normal USB reset event.

The actual procedure used to suspend the USB peripheral is device dependent since 
according to the device composition, different actions may be required to reduce the total 
consumption. 

A brief description of a typical suspend procedure is provided below, focused on the USB- 
related aspects of the application software routine responding to the SUSP notification of 
the USB Peripheral:

1. Set the FSUSP bit in the USB_CNTR register to 1. This action activates the suspend 
mode within the USB Peripheral. As soon as the suspend mode is activated, the check 
on SOF reception is disabled to avoid any further SUSP interrupts being issued while 
the USB is suspended.

2. Remove or reduce any static power consumption in blocks different from the USB 
Peripheral.

3. Set LP_MODE bit in USB_CNTR register to 1 to remove static power consumption in 
the analog USB transceivers but keeping them able to detect resume activity.

4. Optionally turn off external oscillator and device PLL to stop any activity inside the 
device. 

When an USB event occurs while the device is in SUSPEND mode, the RESUME procedure 
must be invoked to restore nominal clocks and regain normal USB behaviour. Particular 
care must be taken to insure that this process does not take more than 10mS when the 
wakening event is an USB reset sequence (See “Universal Serial Bus Specification” for 
more details). The start of a resume or reset sequence, while the USB Peripheral is 
suspended, clears the LP_MODE bit in USB_CNTR register asynchronously. Even if this 
event can trigger an WKUP interrupt if enabled, the use of an interrupt response routine 



   
   

   

USB slave interface (USB) RM0006

436/488  Doc ID 13742 Rev 4

must be carefully evaluated because of the long latency due to system clock restart; to have 
the shorter latency before re-activating the nominal clock it is suggested to put the resume 
procedure just after the end of the suspend one, so its code is immediately executed as 
soon as the system clock restarts. To prevent ESD discharges or any other kind of noise 
from waking-up the system (the exit from suspend mode is an asynchronous event), a 
suitable analog filter on data line status is activated during suspend; the filter width is about 
70ns. 

The following is a list of actions a resume procedure should address:

1. Optionally turn on external oscillator and/or device PLL.

2. Clear FSUSP bit of USB_CNTR register.

3. If the resume triggering event has to be identified, bits RXDP and RXDM in the 
USB_FNR register can be used according to Table 52, which also lists the intended 
software action in all the cases. If required, the end of resume or reset sequence can 
be detected monitoring the status of the above mentioned bits by checking when they 
reach the “10” configuration, which represent the Idle bus state; moreover at the end of 
a reset sequence the RESET bit in USB_ISTR register is set to 1, issuing an interrupt if 
enabled, which should be handled as usual.

         

A device may require to exit from suspend mode as an answer to particular events not 
directly related to the USB protocol (e.g. a mouse movement wakes up the whole system). 
In this case, the resume sequence can be started by setting the RESUME bit in the 
USB_CNTR register to ‘1’ and resetting it to 0 after an interval between 1mS and 15mS (this 
interval can be timed using ESOF interrupts, occurring with a 1mS period when the system 
clock is running at nominal frequency). Once the RESUME bit is clear, the resume 
sequence will be completed by the host PC and its end can be monitored again using the 
RXDP and RXDM bits in the USB_FNR register. 

Note: The RESUME bit must be anyway used only after the USB Peripheral has been put in 
suspend mode, setting the FSUSP bit in USB_CNTR register to 1.

Table 52. Resume event detection

[RXDP,RXDM] status Wakeup event Required resume software action

“00” Root reset None

“10” None (noise on bus) Go back in Suspend mode

“01” Root resume None

“11” Not allowed (noise on bus) Go back in Suspend mode



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 437/488

   
   

   

15.6 Register description
The USB Peripheral registers can be divided into the following groups: 

● Common Registers: Interrupt and Control registers

● Endpoint Registers: Endpoint configuration and status

● DMA Registers: DMA control and configuration 

● Buffer Descriptor Table: Location of packet memory used to locate data buffers

All register addresses are expressed as offsets with respect to the USB Peripheral register 
base address, except the buffer descriptor table locations, which starts at the address in 
packet memory specified by the USB_BTABLE register All register addresses are aligned to 
32-bit word boundaries although they are 16-bit wide. The same address alignment is used 
to access packet buffer memory locations, which are located starting from the USB 
Peripheral register base address. See Table 58: USB peripheral register page mapping.

In this section, the following abbreviations are used:

         

Read/write (rw) The software can read and write to these bits

Read-only (r) The software can only read these bits

Write-only (w) The software can only write to these bits

Read-clear (rc_w0)
The software can only read or clear this bit by writing 0. Writing 
‘1’ has no effect

Toggle (t)
The software can only toggle this bit by writing ‘1’. Writing ‘0’ 
has no effect



   
   

   

USB slave interface (USB) RM0006

438/488  Doc ID 13742 Rev 4

15.6.1 Common registers

These registers affect the general behaviour of the USB Peripheral defining operating mode, 
interrupt handling, device address and giving access to the current frame number updated 
by the host PC.

USB control register (USB_CNTR) 

Address offset: 840h

Reset value: 0000 0000 0000 0011 (0003h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR
M

DOV
RM

ERR
M

WKU
PM

SUS
PM

RES
ETM

SOF
M

ESO
FM

SZD
PRM

Reserved
RES
UME

FSU
SP

LP
MODE

PDW
N

FRE
S

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15

CTRM: Correct Transfer Interrupt Mask

0: Correct Transfer (CTR) Interrupt disabled
1: CTR Interrupt enabled, an interrupt request is generated when the corresponding 
bit in the USB_ISTR register is set.

Bit 14 

DOVRM: DMA over / underrun Interrupt Mask

0: DOVR Interrupt disabled
1: DOVR Interrupt enabled, an interrupt request is generated when the 
corresponding bit in the USB_ISTR register is set.

Bit 13 

ERRM: Error Interrupt Mask
0: ERR Interrupt disabled
1: ERR Interrupt enabled, an interrupt request is generated when the corresponding 
bit in the USB_ISTR register is set.

Bit 12

WKUPM: Wakeup Interrupt Mask

0: WKUP Interrupt disabled
1: WKUP Interrupt enabled, an interrupt request is generated when the 
corresponding bit in the USB_ISTR register is set.

Bit 11

SUSPM: Suspend mode Interrupt Mask

0: Suspend Mode Request (SUSP) Interrupt disabled
1: SUSP Interrupt enabled, an interrupt request is generated when the 
corresponding bit in the USB_ISTR register is set.

Bit 10 

RESETM: USB Reset Interrupt Mask
0: RESET Interrupt disabled
1: RESET Interrupt enabled, an interrupt request is generated when the 
corresponding bit in the USB_ISTR register is set.

Bit 9

SOFM: Start Of Frame Interrupt Mask

0: SOF Interrupt disabled
1: SOF Interrupt enabled, an interrupt request is generated when the corresponding 
bit in the USB_ISTR register is set.

Bit 8

ESOFM: Expected Start Of Frame Interrupt Mask

0: Expected Start of Frame (ESOF) Interrupt disabled
1: ESOF Interrupt enabled, an interrupt request is generated when the 
corresponding bit in the USB_ISTR register is set.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 439/488

   
   

   

Bit 7

SZDPRM: Short or Zero-Length Data Packet Received Mask. 

0: Short or Zero-Length Data Packet Received (SZDPR) Interrupt disabled.
1: SZDPR Interrupt enabled an interrupt request is generated when the 
corresponding bit in the USB_ISTR register is set. 
Note: When the SZDRP interrupt occurs and is not masked (SZDRPM = 1) then the 
DMA RX channel is automatically disabled in order to stop the DMA transfer because 
the programmed linked list (LLI) on the DMAC could be different from the packet size 
received (refer to Section 9.4.6 on page 252)

Bits 6:5 Reserved, forced by hardware to 0

Bit 4

RESUME: Resume request

The microcontroller can set this bit to send a Resume signal to the host. It must be 
activated, according to USB specifications, for no less than 1mS and no more than 
15mS after which the Host PC is ready to drive the resume sequence up to its end.

Bit 3

FSUSP: Force suspend
Software must set this bit when the SUSP interrupt is received, which is issued when 
no traffic is received by the USB Peripheral for 3 mS.
0: No effect
1: Enter suspend mode. Clocks and static power dissipation in the analog transceiver 
are left unaffected. If suspend power consumption is a requirement (bus-powered 
device), the application software should set the LP_MODE bit after FSUSP as 
explained below.

Bit 2

LP_MODE: Low-power mode 

This mode is used when the suspend-mode power constraints require that all static 
power dissipation is avoided, except the one required to supply the external pull-up 
resistor. This condition should be entered when the application is ready to stop all 
system clocks, or reduce their frequency in order to meet the power consumption 
requirements of the USB suspend condition. The USB activity during the suspend 
mode (WKUP event) asynchronously resets this bit (it can also be reset by software).  
0: No Low Power Mode
1: Enter Low Power mode

Bit 1

PDWN: Power down

This bit is used to completely switch off all USB-related analog parts if it is required to 
completely disable the USB Peripheral for any reason. When this bit is set, the USB 
Peripheral is disconnected from the transceivers and it cannot be used.
0: Exit Power Down
1: Enter Power down mode

Bit 0 

FRES: Force USB Reset
0: Clear USB reset
1: Force a reset of the USB Peripheral, exactly like a RESET signalling on the USB. 
The USB Peripheral is held in RESET state until software clears this bit. A “USB-
RESET” interrupt is generated, if enabled.



   
   

   

USB slave interface (USB) RM0006

440/488  Doc ID 13742 Rev 4

USB interrupt status register (USB_ISTR) 

Address offset: 844h

Reset value: 0000 0000 0000 0000 (0000h)

         

This register contains the status of all the interrupt sources allowing application software to 
determine, which events caused an interrupt request.

Bits 15:7 each represent a specific event. They are set by the hardware when the related 
event occurs; if the corresponding bit in the USB_CNTR register is set, a generic interrupt 
request is generated. The interrupt routine, examining each bit, will perform all necessary 
actions, and finally it will clear the serviced bits. If any of them is not cleared, the interrupt is 
considered to be still pending, and the interrupt line will be kept high. If several bits are set 
simultaneously, only a single interrupt will be generated.

Endpoint transaction completion can be handled in a different way to reduce interrupt 
response latency. The CTR bit is set by the hardware as soon as an Endpoint successfully 
completes a transaction, generating a generic interrupt request if the corresponding bit in 
USB_CNTR is set. An Endpoint dedicated interrupt condition is activated independently 
from the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until 
software clears the pending bit in the corresponding  USB_EPnR register (the CTR bit is 
actually a read only bit). The USB Peripheral has two interrupt request lines:

● Higher priority USB IRQ: The pending requests for endpoints, which have transactions 
with a higher priority (isochronous and double-buffered bulk) and they cannot be 
masked.

● Lower priority USB IRQ: All other interrupt conditions, which can either be non-
maskable pending requests related to the lower priority transactions and all other 
maskable events flagged by the USB_ISTR high bytes.

For Endpoint-related interrupts, the software can use the Direction of Transaction (DIR) and 
EP_ID read-only bits to identify, which Endpoint made the last interrupt request and called 
the corresponding interrupt service routine.

The user can choose the relative priority of simultaneously pending USB_ISTR events by 
specifying the order in which software checks USB_ISTR bits in an interrupt service routine. 
Only the bits related to events, which are serviced, are cleared. At the end of the service 
routine, another interrupt will be requested, to service the remaining conditions.

To avoid spurious clearing of some bits, it is recommended to clear them with a load 
instruction where all bits which must not be altered are written with 1, and all bits to be 
cleared are written with ‘0’ (these bits can only be cleared by software). Read-modify-write 
cycles should be avoided because between the read and the write operations another bit 
could be set by the hardware and the next write will clear it before the microprocessor has 
the time to serve the event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR DOVR ERR WKUP SUSP RESET SOF ESOF SZDPR Reserved DIR EP_ID[3:0]

r rc_w0
rc_w

0
rc_w0 rc_w0 rc_w0

rc_w
0

rc_w0 rc_w0 - - r r r r r



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 441/488

   
   

   

The following describes each bit in detail:

         

Bit 15 

CTR: Correct Transfer

This bit is set by the hardware to indicate that an Endpoint has successfully completed 
a transaction; using DIR and EP_ID bits software can determine which Endpoint 
requested the interrupt. This bit is read-only.

Bit 14

DOVR: DMA over / underrun
This bit is set if the microcontroller has not been able to respond in time to an USB 
memory request. The USB Peripheral handles this event in the following way: During 
reception an ACK handshake packet is not sent, during transmission a bit-stuff error is 
forced on the transmitted stream; in both cases the host will retry the transaction. The 
DOVR interrupt should never occur during normal operations. Since the failed 
transaction is retried by the host, the application software has the chance to speed-up 
device operations during this interrupt handling, to be ready for the next transaction 
retry; however this does not happen during Isochronous transfers (no isochronous 
transaction is anyway retried) leading to a loss of data in this case. This bit is read/write 
but only ‘0’ can be written and writing ‘1’ has no effect.

Bit 13

ERR: Error

This flag is set whenever one of the errors listed below has occurred: 
NANS: No ANSwer. The timeout for a host response has expired.
CRC: Cyclic Redundancy Check error. One of the received CRCs, either in the token 
or in the data, was wrong.
BST: Bit Stuffing error. A bit stuffing error was detected anywhere in the PID, data, 
and/or CRC.
FVIO: Framing format Violation. A non-standard frame was received (EOP not in the 
right place, wrong token sequence, etc.).
The USB software can usually ignore errors, since the USB Peripheral and the PC host 
manage retransmission in case of errors in a fully transparent way. This interrupt can 
be useful during the software development phase, or to monitor the quality of 
transmission over the USB bus, to flag possible problems to the user (e.g. loose 
connector, too noisy environment, broken conductor in the USB cable and so on). This 
bit is read/write but only ‘0’ can be written and writing ‘1’ has no effect.

Bit 12

WKUP: Wakeup

This bit is set to 1 by the hardware when, during suspend mode, activity is detected 
that wakes up the USB Peripheral. This event asynchronously clears the LP_MODE bit 
in the CTLR register and activates the USB_WAKEUP line, which can be used to notify 
the rest of the device (e.g. wakeup unit) about the start of the resume process. This bit 
is read/write but only ‘0’ can be written and writing ‘1’ has no effect.

Bit 11

SUSP: Suspend mode request
This bit is set by the hardware when no traffic has been received for 3mS, indicating a 
suspend mode request from the USB bus. The suspend condition check is enabled 
immediately after any USB reset and it is disabled by the hardware when the suspend 
mode is active (FSUSP=1) until the end of resume sequence. This bit is read/write but 
only ‘0’ can be written and writing ‘1’ has no effect.



   
   

   

USB slave interface (USB) RM0006

442/488  Doc ID 13742 Rev 4

Bit 10 

RESET: USB RESET request

Set when the USB Peripheral detects an active USB RESET signal at its inputs. The 
USB Peripheral, in response to a RESET, just resets its internal protocol state 
machine, generating an interrupt if RESETM enable bit in the USB_CNTR register is 
set. Reception and transmission are disabled until the RESET bit is cleared. All 
configuration registers do not reset: the microcontroller must explicitly clear these 
registers (this is to ensure that the RESET interrupt can be safely delivered, and any 
transaction immediately followed by a RESET can be completed). The function 
address and Endpoint registers are reset by an USB reset event. 
This bit is read/write but only ‘0’ can be written and writing ‘1’ has no effect.

Bit 9

SOF: Start Of Frame
This bit signals the beginning of a new USB frame and it is set when a SOF packet 
arrives through the USB bus. The interrupt service routine may monitor the SOF 
events to have a 1mS synchronization event to the USB host and to safely read the 
USB_FNR register which is updated at the SOF packet reception (this could be useful 
for isochronous applications). This bit is read/write but only ‘0’ can be written and 
writing ‘1’ has no effect.

Bit 8 

ESOF: Expected Start Of Frame

This bit is set by the hardware when an SOF packet is expected but not received. The 
host sends an SOF packet each mS, but if the hub does not receive it properly, the 
Suspend Timer issues this interrupt. If three consecutive ESOF interrupts are 
generated (i.e. three SOF packets are lost) without any traffic occurring in between, a 
SUSP interrupt is generated. This bit is set even when the missing SOF packets occur 
while the Suspend Timer is not yet locked. This bit is read/write but only ‘0’ can be 
written and writing ‘1’ has no effect.

Bit 7 

SZDPR: Short or Zero-Length Received Data Packet
This bit is written by the DMA interface when a short or zero length data packet has been 
received and the DMA RX channel has been enabled in linked mode (see also ). A short 
packet is received when the related COUNTn_RX register field is less than the 
predefined max packet size (NUM_BLOCK register field). 

Bits 6:5 Reserved, forced by hardware to 0

Bit 4 

DIR: Direction of transaction

This bit is written by the hardware according to the direction of the successful 
transaction, which generated the interrupt request.
If DIR bit = 0, CTR_TX bit is set in the USB_EPnR register related to the interrupting 
Endpoint. The interrupting transaction is of IN type (data transmitted by the USB 
Peripheral to the host PC).
If DIR bit = 1, CTR_RX bit or both CTR_TX/CTR_RX are set in the USB_EPnR register 
related to the interrupting Endpoint. The interrupting transaction is of OUT type (data 
received by the USB Peripheral from the host PC) or two pending transactions are 
waiting to be processed.
This information can be used by the application software to access the USB_EPnR bits 
related to the triggering transaction since it represents the direction having the interrupt 
pending. This bit is read-only.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 443/488

   
   

   

USB frame number register (USB_FNR) 

Address offset: 848h

Reset value: 0000 0xxx xxxx xxxx (0xxxh)

         

         

Bits 3:0

EP_ID[3:0]: Endpoint Identifier

These bits are written by the hardware according to the Endpoint number, which 
generated the interrupt request. If several Endpoint transactions are pending, the 
hardware writes the Endpoint identifier related to the Endpoint having the highest 
priority defined in the following way: Two Endpoint sets are defined, in order of priority: 
Isochronous and double-buffered bulk endpoints are considered first and then the 
other endpoints are examined. If more than one Endpoint from the same set is 
requesting an interrupt, the EP_ID bits in USB_ISTR register are assigned according 
to the lowest requesting Endpoint register, EP0R having the highest priority followed by 
EP1R and so on. The application software can assign a register to each Endpoint 
according to this priority scheme, so as to order the concurring Endpoint requests in a 
suitable way. These bits are read only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXDP RXDM LCK LSOF[1:0] FN[10:0]

r r r r r r r r r r r r r r r r

Bit 15

RXDP: Receive Data + Line Status 

This bit can be used to observe the status of received data plus upstream port 
data line. It can be used during end-of-suspend routines to help determining the 
wakeup event.

Bit 14

RXDM: Receive Data - Line Status

This bit can be used to observe the status of received data minus upstream port 
data line. It can be used during end-of-suspend routines to help determining the 
wakeup event.

Bit 13

LCK: Locked
This bit is set by the hardware when at least two consecutive SOF packets have 
been received after the end of an USB reset condition or after the end of an USB 
resume sequence. Once locked, the frame timer remains in this state until an USB 
reset or USB suspend event occurs.

Bits12:11 

LSOF[1:0]: Lost SOF
These bits are written by the hardware when an ESOF interrupt is generated, 
counting the number of consecutive SOF packets lost. At the reception of an SOF 
packet, these bits are cleared.

Bits 10:0

FN[10:0]: Frame Number

This bit field contains the 11-bits frame number contained in the last received SOF 
packet. The frame number is incremented for every frame sent by the host and it is 
useful for Isochronous transfers. This bit field is updated on the generation of an 
SOF interrupt.



   
   

   

USB slave interface (USB) RM0006

444/488  Doc ID 13742 Rev 4

USB device address (USB_DADDR) 

Address offset: 84Ch

Reset value: 0000 0000 0000 0000 (0000h)

         

         

Buffer table address (USB_BTABLE)

Address offset: 50h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EF ADD[6:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0

Bit 7 

EF: Enable Function

This bit is set by the software to enable the USB device. The address of this device 
is contained in the following ADD[6:0] bits. If this bit is at ‘0’ no transactions are 
handled, irrespective of the settings of USB_EPnR registers.

Bits 6:0

ADD[6:0]: Device Address
These bits contain the USB function address assigned by the host PC during the 
enumeration process. Both this field and the Endpoint Address (EA) field in the 
associated USB_EPnR register must match with the information contained in a 
USB token in order to handle a transaction to the required Endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTABLE[15:3] Reserved

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:3

BTABLE[15:3]: Buffer Table

These bits contain the start address of the buffer allocation table inside the 
dedicated packet memory. This table describes each Endpoint buffer location and 
size and it must be aligned to an 8 byte boundary (the 3 least significant bits are 
always ‘0’). At the beginning of every transaction addressed to this device, the 
USP peripheral reads the element of this table related to the addressed Endpoint, 
to get its buffer start location and the buffer size (Refer to Structure and usage of 
packet buffers on page 427).

Bits 2:0 Reserved, forced by hardware to 0



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 445/488

   
   

   

15.6.2 Endpoint-specific registers

The number of these registers varies according to the number of endpoints that the USB 
Peripheral is designed to handle. The USB Peripheral supports up to 8 bi-directional 
endpoints. Each USB device must support a control Endpoint whose address (EA bits) must 
be set to 0. The USB Peripheral behaves in an undefined way if multiple endpoints are 
enabled having the same Endpoint number value. For each Endpoint, an USB_EPnR 
register is available to store the Endpoint specific information.

They are also reset when an USB reset is received from the USB bus or forced through bit 
FRES in the CTLR register, except the CTR_RX and CTR_TX bits, which are kept 
unchanged to avoid missing a correct packet notification immediately followed by an USB 
reset event. Each Endpoint has its USB_EPnR register where n is the Endpoint identifier.

Read-modify-write cycles on these registers should be avoided because between the read 
and the write operations some bits could be set by the hardware and the next write would 
modify them before the CPU has the time to detect the change. For this purpose, all bits 
affected by this problem have an ‘invariant’ value that must be used whenever their 
modification is not required. It is recommended to modify these registers with a load 
instruction where all the bits, which can be modified only by the hardware, are written with 
their ‘invariant’ value.



   
   

   

USB slave interface (USB) RM0006

446/488  Doc ID 13742 Rev 4

USB Endpoint n register (USB_EPnR), n = [0..9]

Address offset: 800h to 2Ch

Reset value: 0000 0000 0000 0000b (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR_
RX

DTOG_
RX

STATRX[1:0] SETUP EPTYPE[1:0]
EP_
KIND

CTR 
TX

DTOG_
TX

STATTX[1:0] EA[3:0]

rc_w0 t t t r rw rw rw rc_w0 t t t rw rw rw rw

Bit 15 

CTR_RX: Correct Transfer for reception

This bit is set by the hardware when an OUT/SETUP transaction is successfully 
completed on this Endpoint; the software can only clear this bit. If the CTRM bit in 
USB_CNTR register is set accordingly, a generic interrupt condition is generated 
together with the Endpoint related interrupt condition, which is always activated. The 
type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit 
described below. 
A transaction ended with a NAK or STALL handshake does not set this bit, since no 
data is actually transferred, as in the case of protocol errors or data toggle 
mismatches. 
This bit is read/write but only ‘0’ can be written, writing 1 has no effect.

Bit 14

DTOG_RX: Data Toggle, for reception transfers

If the Endpoint is not Isochronous, this bit contains the expected value of the data 
toggle bit (0 = DATA0, 1 = DATA1) for the next data packet to be received. Hardware 
toggles this bit, when the ACK handshake is sent to the USB host, following a data 
packet reception having a matching data PID value; if the Endpoint is defined as a 
control one, hardware clears this bit at the reception of a SETUP PID addressed to 
this Endpoint.
If the Endpoint is using the double-buffering feature this bit is used to support packet 
buffer swapping too (Refer to Section 15.5.3: Double-buffered endpoints).
If the Endpoint is Isochronous, this bit is used only to support packet buffer swapping 
since no data toggling is used for this sort of endpoints and only DATA0 packet are 
transmitted (Refer to Section 15.5.4: Isochronous transfers). Hardware toggles this 
bit just after the end of data packet reception, since no handshake is used for 
isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when 
the Endpoint is not a control one) or to force specific data toggle/packet buffer usage. 
When the application software writes ‘0’, the value of DTOG_RX remains 
unchanged, while writing ‘1’ makes the bit value toggle. This bit is read/write but it 
can be only toggled by writing 1.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 447/488

   
   

   

Bits 13:12

STAT_RX [1:0]: Status bits, for reception transfers

These bits contain information about the Endpoint status, which are listed in 
Table 53: Reception status encoding on page 449.These bits can be toggled by 
software to initialize their value. When the application software writes ‘0’, the value 
remains unchanged, while writing ‘1’ makes the bit value toggle. Hardware sets the 
STAT_RX bits to NAK when a correct transfer has occurred (CTR_RX = 1) 
corresponding to a OUT or SETUP (control only) transaction addressed to this 
Endpoint, so the software has the time to elaborate the received data before it 
acknowledge a new transaction.
Double-buffered bulk endpoints implement a special transaction flow control, which 
control the status based upon buffer availability condition (Refer to Section 15.5.3: 
Double-buffered endpoints).
If the Endpoint is defined as Isochronous, its status can be only “VALID” or 
“DISABLED”, so that the hardware cannot change the status of the Endpoint after a 
successful transaction. If the software sets the STAT_RX bits to ‘STALL’ or ‘NAK’ for 
an Isochronous Endpoint, the USB Peripheral behaviour is not defined. These bits 
are read/write but they can be only toggled by writing ‘1’.

Bit 11

SETUP: Setup transaction completed

This bit is read-only and it is set by the hardware when the last completed transaction 
is a SETUP. This bit changes its value only for control endpoints. It must be 
examined, in the case of a successful receive transaction (CTR_RX event), to 
determine the type of transaction occurred. To protect the interrupt service routine 
from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen 
while CTR_RX bit is at 1; its state changes when CTR_RX is at 0. This bit is read-
only.

Bits 10:9 

EP_TYPE[1:0]: Endpoint type
These bits configure the behaviour of this Endpoint as described in Table 54: 
Endpoint type encoding on page 449. Endpoint 0 must always be a control Endpoint 
and each USB function must have at least one control Endpoint which has address 
0, but there may be other control endpoints if required. Only control endpoints handle 
SETUP transactions, which are ignored by endpoints of other kinds. SETUP 
transactions cannot be answered with NAK or STALL. If a control Endpoint is defined 
as NAK, the USB Peripheral will not answer, simulating a receive error, in the receive 
direction when a SETUP transaction is received. If the control Endpoint is defined as 
STALL in the receive direction, then the SETUP packet will be accepted anyway, 
transferring data and issuing the CTR interrupt. The reception of OUT transactions is 
handled in the normal way, even if the Endpoint is a control one.
Bulk and interrupt endpoints have very similar behaviour and they differ only in the 
special feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in Section 15.5.4: Isochronous 
transfers.

Bit 8

EP_KIND: Endpoint Kind
The meaning of this bit depends on the Endpoint type configured by the EP_TYPE 
bits. Table 55 summarizes the different meanings.
DBL_BUF: This bit is set by the software to enable the double-buffering feature for 
this bulk Endpoint. The usage of double-buffered bulk endpoints is explained in 
Section 15.5.3: Double-buffered endpoints.
STATUS_OUT: This bit is set by the software to indicate that a status out transaction 
is expected: in this case all OUT transactions containing more than zero data bytes 
are answered ‘STALL’ instead of ‘ACK’. This bit may be used to improve the 
robustness of the application to protocol errors during control transfers and its usage 
is intended for control endpoints only. When STATUS_OUT is reset, OUT 
transactions can have any number of bytes, as required.



   
   

   

USB slave interface (USB) RM0006

448/488  Doc ID 13742 Rev 4

Bit 7

CTR_TX: Correct Transfer for transmission

This bit is set by the hardware when an IN transaction is successfully completed on 
this Endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR 
register is set accordingly, a generic interrupt condition is generated together with the 
Endpoint related interrupt condition, which is always activated. 
A transaction ended with a NAK or STALL handshake does not set this bit, since no 
data is actually transferred, as in the case of protocol errors or data toggle 
mismatches. 
This bit is read/write but only ‘0’ can be written.

Bit 6

DTOG_TX: Data Toggle, for transmission transfers
If the Endpoint is non-isochronous, this bit contains the required value of the data 
toggle bit (0 = DATA0, 1 = DATA1) for the next data packet to be transmitted. 
Hardware toggles this bit when the ACK handshake is received from the USB host, 
following a data packet transmission. If the Endpoint is defined as a control one, 
hardware sets this bit to 1 at the reception of a SETUP PID addressed to this 
Endpoint.
If the Endpoint is using the double buffer feature, this bit is used to support packet 
buffer swapping too (Refer to Section 15.5.3: Double-buffered endpoints)
If the Endpoint is Isochronous, this bit is used to support packet buffer swapping 
since no data toggling is used for this sort of endpoints and only DATA0 packet are 
transmitted (Refer to Section 15.5.4: Isochronous transfers). Hardware toggles this 
bit just after the end of data packet transmission, since no handshake is used for 
Isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when 
the Endpoint is not a control one) or to force a specific data toggle/packet buffer 
usage. When the application software writes ‘0’, the value of DTOG_TX remains 
unchanged, while writing ‘1’ makes the bit value toggle. This bit is read/write but it 
can only be toggled by writing 1.

Bit 5:4

STAT_TX [1:0]: Status bits, for transmission transfers

These bits contain the information about the Endpoint status, listed in Table 56. 
These bits can be toggled by the software to initialize their value. When the 
application software writes ‘0’, the value remains unchanged, while writing ‘1’ makes 
the bit value toggle. Hardware sets the STAT_TX bits to NAK, when a correct transfer 
has occurred (CTR_TX = 1) corresponding to a IN or SETUP (control only) 
transaction addressed to this Endpoint. It then waits for the software to prepare the 
next set of data to be transmitted.
Double-buffered bulk endpoints implement a special transaction flow control, which 
controls the status based on buffer availability condition (Refer to Section 15.5.3: 
Double-buffered endpoints).
If the Endpoint is defined as Isochronous, its status can only be “VALID” or 
“DISABLED”. Therefore, the hardware cannot change the status of the Endpoint after 
a successful transaction. If the software sets the STAT_TX bits to ‘STALL’ or ‘NAK’ for 
an Isochronous Endpoint, the USB Peripheral behaviour is not defined. These bits 
are read/write but they can be only toggled by writing ‘1’.

Bit 3:0 

EA[3:0]: Endpoint Address

Software must write in this field the 4-bit address used to identify the transactions 
directed to this Endpoint. A value must be written before enabling the corresponding 
Endpoint.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 449/488

   
   

   

         

         

         

         

Table 53. Reception status encoding

STAT_RX[1:0] Meaning

00 DISABLED: All reception requests addressed to this Endpoint are ignored

01
STALL: The Endpoint is stalled and all reception requests result in a STALL 
handshake

10
NAK: The Endpoint is naked and all reception requests result in a NAK 
handshake

11 VALID: This Endpoint is enabled for reception

Table 54. Endpoint type encoding

EP_TYPE[1:0] Meaning

00 BULK

01 CONTROL

10 ISO

11 INTERRUPT

Table 55. Endpoint kind meaning

EP_TYPE[1:0] EP_KIND Meaning

00 BULK DBL_BUF

01 CONTROL STATUS_OUT

10 ISO Not used

11 INTERRUPT Not used

Table 56. Transmission status encoding

STAT_TX[1:0] Meaning

00 DISABLED: All transmission requests addressed to this Endpoint are ignored

01
STALL: The Endpoint is stalled and all transmission requests result in a STALL 
handshake

10
NAK: The Endpoint is naked and all transmission requests result in a NAK 
handshake

11 VALID: This Endpoint is enabled for transmission



   
   

   

USB slave interface (USB) RM0006

450/488  Doc ID 13742 Rev 4

15.6.3 DMA registers

The DMAC has two separate request channels (Tx and Rx) dedicated to the USB peripheral 
see Table 23: DMA request signal mapping on page 245. The 10 USB endpoints can be 
mapped to the DMA Tx or Rx channels in Linked or Unlinked mode:

● Linked mode: A single Endpoint can be mapped in linked mode on the DMA channel 
(Tx/Rx). The DMA can prepare linked lists (LLI) in order to manage multiple data packet 
transfer without CPU intervention at the end of the single data packet transfer. The 
DMA interface provides transfer requests to the DMA controller until the LLI is 
completed. The CPU is only responsible for configuring the linked lists (descriptor 
chains) before enabling the DMA and, on termination of the DMA transfer (terminal 
count interrupt from the DMAC). The CTR_TX/CTR_RX interrupt (EPn registers) of the 
selected Endpoint (linked) is automatically cleared by the DMA interface, that masks 
the related source of the global CTR interrupt (USB_ISTR register). The CPU doesn't 
receive any CTR interrupt request for this Endpoint (linked). 

– A special case of linked lists (LLI) is represented by a chain including a single 
descriptor. The main difference with unlinked mode is that the descriptors related 
to the Tx/Rx Endpoint can be programmed independently and before the related 
Endpoint token (IN, OUT) is received by the USB device. The basic assumption is 
that the expected Endpoint and related packet size is known or assumed. In 
addition, the CTR_RX/CTR_TX interrupt is cleared automatically by the DMA 
interface. 

● Unlinked mode: Multiple endpoints can be mapped on the channel (3 in Tx mode and 
8 in Rx mode) without the use of linked lists (LLI). In this case the DMA cannot use 
linked lists (LLI) and only a single data packet can be transferred by the DMA controller. 
The CPU is responsible for configuring the new descriptor only on termination of the 
data transfer (DMAC terminal count interrupt) and when the new CTR_TX/CTR_RX 
interrupt is received. Software has to decode the Endpoint to be served before 
programming the next descriptor because multiple endpoints are mapped on the same 
channel (Tx/Rx). The DMA interface doesn't mask/clear any CTR_TX/CTR_RX 
interrupts (this has to be done by software). This operating mode requires CPU 
intervention and reduces the advantage in terms of CPU load. 

Note: Control and interrupt data flow endpoints are usually managed by the CPU while DMA is 
used for isochronous and/or bulk pipes.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 451/488

   
   

   

DMA control register 1 (USB_DMACR1)

Address offset: 854h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DMA_UNLK_RK_EN[9:0]

rw rw rw rw rw rw rw rw rw rw

Bit 15:10 Reserved, forced by hardware to 0

Bits 9:0

DMA_UNLK_RX_EN[9:0]: Unlinked mode Rx DMA enable

These bits are set and cleared by software. They are cleared by hardware on 
completion of a DMA data transfer to the corresponding Endpoint. Multiple 
endpoints (up to 8) can be enabled to be served by the DMA channel. In linked 
mode (LK_RX_EN = 1 in the USB_DMACR3 register) these bits are not used. 
0: Rx DMA in unlinked mode disabled. Any data transfer from system memory to 
Packet Buffer Memory for the corresponding Endpoint is performed by the CPU.
1: Rx DMA in unlinked mode enabled. Any data transfer from system memory to 
Packet Buffer Memory for the corresponding Endpoint is performed by the DMAC.



   
   

   

USB slave interface (USB) RM0006

452/488  Doc ID 13742 Rev 4

DMA control register 2 (USB_DMACR2)

Address offset: 858h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DMA_UNLK_TX_

EN [1:0]
UNLNK_TX_EP_ID3[3:0] UNLNK_TX_EP_ID3[3:0] UNLNK_TX_EP_ID3[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15:14 Reserved, forced by hardware to 0

Bits 13:12

DMA_UNLK_TX_EN[1:0]: Unlinked mode Tx DMA enable
These bits are set and cleared by software. In linked mode (LK_TX_EN = 1 in the 
USB_DMACR3 register) these bits are not used.
00: Tx DMA in unlinked mode disabled 
01: Tx DMA in unlinked mode enabled to serve the Endpoint selected by the 
UNLK_TX_EPID1[3:0] bits.
10: Tx DMA in unlinked mode enabled to serve the Endpoint selected by the 
UNLK_TX_EPID2[3:0] bits.
11: Tx DMA in unlinked mode enabled to serve the Endpoint selected by the 
UNLK_TX_EPID3[3:0] bits.

Bits 11:8

UNLK_TX_EP_ID3[3:0]: Unlinked mode Tx Endpoint ID 3

These bits can be set and cleared by software only when the DMA Tx interface is 
disabled. They select the Tx endpoints configured in unlinked mode. In linked 
mode (LK_TX_EN = 1 in the USB_DMACR3 register) these bits are not used. 
0000: Endpoint 0
0001: Endpoint 1
....
1001: Endpoint 9
Other values reserved

Bits 7:4

UNLK_TX_EP_ID2[3:0]: Unlinked mode Tx Endpoint ID 2

These bits can be set and cleared by software only when the DMA Tx interface is 
disabled. They select the Tx endpoints configured in unlinked mode. In linked 
mode (LK_TX_EN = 1 in the USB_DMACR3 register) these bits are not used. 
0000: Endpoint 0
0001: Endpoint 1
....
1001: Endpoint 9
Other values reserved

Bits 3:0

UNLK_TX_EP_ID1[3:0]: Unlinked mode Tx Endpoint ID 1

These bits can be set and cleared by software only when the DMA Tx interface is 
disabled. They select the Tx endpoints configured in unlinked mode. In linked 
mode (LK_TX_EN = 1 in the USB_DMACR3 register) these bits are not used. 
0000: Endpoint 0
0001: Endpoint 1
....
1001: Endpoint 9
Other values reserved



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 453/488

   
   

   

DMA control register 3 (USB_DMACR3)

Address offset: 85Ch

Reset value: 0000 0000 0000 0000 (0000h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S
R

_R
X

S
R

_T
X

D
M

A
_L

K
_R

X
_E

N

LK_RX_EP_ID[3:0]

LK
_R

X
_E

N

R
es

er
ve

d

SLE

D
M

A
_L

K
_R

X
_E

N

LK_TX_EP_ID[3:0]

LK
_T

X
_E

N

w w rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15

SR_RX: DMA Rx Software reset

This bit is write only
0: No effect
1: Reset the DMA Rx interface state machine. The DMA Rx interface is disabled 
and configured in idle state. The DMA configuration registers are unchanged.

Bit 14

SR_TX: DMA Tx Software reset

This bit is write only
0: No effect
1: Reset the DMA Tx interface state machine. The DMA Rx interface is disabled 
and configured in idle state. The DMA configuration registers are unchanged.

Bit 13

DMA_LK_RX_EN: Linked mode Rx DMA enable

This bit is set and cleared by software. It is cleared by hardware on completion of 
a DMA data transfer (DMA TC interrupt) to the selected Endpoint. It is also 
cleared by hardware if the Rx Endpoint has been programmed in linked mode for 
a data transfer with unknown total length (bit SZDPRM = 1 in the USB CNTR 
register) and the SZDPR flag in the USB_ISTR register is set. In unlinked mode 
(LK_RX_EN = 0) this bit is not used. In linked mode only a single Endpoint 
(LK_RX_EP_ID) can be managed by the DMA channel
0: Rx DMA in linked mode disabled. Any data transfer from system memory to 
Packet Buffer Memory of the selected Endpoint is performed by the CPU.
1: Rx DMA in linked mode enabled to serve the Endpoint selected by the 
LK_RX_EP_ID[3:0] bits. Any data transfer from system memory to Packet Buffer 
Memory of the selected Endpoint is performed by the DMAC.

Bits 12:9

LK_RX_EP_ID[3:0]: Linked mode Rx Endpoint ID.
These bits can be set and cleared by software only when the DMA Rx interface is 
disabled. They select the Rx Endpoint configured in linked mode. In unlinked 
mode (LK_RX_EN = 0) these bits are not used. 
0000: Endpoint 0
0001: Endpoint 1
....
1001: Endpoint 9
Other values reserved



   
   

   

USB slave interface (USB) RM0006

454/488  Doc ID 13742 Rev 4

Bit 8

LK_RX_EN: Rx Linked mode enable

This bit is set and cleared by software.This bit is used to configure the Rx channel 
selected by the LK_RX_EP_ID[3:0] bits. 
0: Rx Linked mode off 
1: Rx linked mode configured for the Rx channel selected by the 
LK_RX_EP_ID[3:0] bits.

Bit 7 Reserved, forced by hardware to 0.

Bit 6

SLE: Synchronization Logic enable 
This bit is set and cleared by software. It is used to insert/bypass the 
synchronization logic (double stage register) on the input signals generated by 
the DMA controller. inserted. It is equivalent to the corresponding bit in the 
Synchronization register (DMA_SYNC) on page 264. You must use 
synchronization logic when the USB peripheral runs on a different clock to the 
DMAC. If the USB peripheral runs on the same clock as the DMAC, disabling the 
synchronization logic improves the DMA request response time. 
0: Enable synchronization logic for USB peripheral DMA Request Signal
1: Disable synchronization logic for USB peripheral DMA Request Signal

Bit 5

DMA_LK_TX_EN: Linked mode Tx DMA enable 

This bit is set and cleared by software. It is cleared by hardware on completion of 
a DMA data transfer (DMA TC interrupt) to the selected Endpoint. In unlinked 
mode (LK_RX_EN = 0) this bit is not used. In linked mode only a single Endpoint 
(LK_RX_EP_ID) can be managed by the DMA channel.
Note: In Tx mode the buffers to be transmitted by the USB slave device should be 
ready before the USB slave device receives the USB host requests. After the 
reset, when the DMAC is able to load the Tx data buffers, the CPU enables the 
DMA Tx interface for the selected Tx Endpoint (LK_TX_EP_ID). During the 
initialization phase the DMA receives the proper requests to transfer single or 
double packets depending on the Tx Endpoint configuration (single or double 
buffer). The Tx buffer initialization phase is transparent for the CPU. On the 
completion of the DMA data transfer (DMAC TC terminal count interrupt) sofware 
can configure a new LLI for the next pipe transfer with a different Tx configuration 
(LK_TX_EP_ID Endpoint, COUNT_TX packet size). If the double buffer scheme 
is adopted, the DMAC should be able to complete the data transfer before the 
USB slave device transmits the data packet, otherwise to simplify the software 
management it's recommended to adopt a single buffer configuration scheme.
0: Tx DMA in linked mode disabled. Any data transfer from the Packet Buffer 
Memory of the selected Endpoint to system memory is performed by the CPU.
1: Tx DMA in linked mode enabled to serve the Endpoint selected by the 
LK_TX_EP_ID[3:0] bits. Any data transfer from the Packet Buffer Memory of the 
selected Endpoint to system memory is performed by the DMAC.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 455/488

   
   

   

Bits 4:1

LK_TX_EP_ID[3:0]: Linked mode Tx Endpoint ID

These bits can be set and cleared by software only when the DMA Tx interface is 
disabled. They select the Tx Endpoint configured in linked mode. In unlinked 
mode (LK_TX_EN = 0) these bits are not used. 
0000: Endpoint 0
0001: Endpoint 1
....
1001: Endpoint 9
Other values reserved

Bit 0

LK_TX_EN: Tx Linked mode enable 

This bit is set and cleared by software.This bit is used to configure the Tx channel 
selected by the LK_TX_EP_ID[3:0] bits. 
0: Tx Linked mode off 
1: Tx linked mode configured for the Tx channel selected by the 
LK_TX_EP_ID[3:0] bits.



   
   

   

USB slave interface (USB) RM0006

456/488  Doc ID 13742 Rev 4

DMA burst size register (USB_DMABSIZE)

Address offset: 860h

Reset value: 0000 0001 0000 0000 (0100h)

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LLI_RX_NPACKETS[7:0] Res. DBSIZE Res. SBSIZE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:8

LLI_RX_NPACKETS[7:0] LLI Rx Number of Packets

These bits are written by software to indicate the number of packets to be 
received for each single descriptor of the LLI in Rx linked mode. In unlinked mode 
this register is unused.
If the total transfer length (pipe length) is unknown, on the completion of the DMA 
transfer (short packet received) this field includes the number (less or equal than 
the initial value) of packets transferred in the last served descriptor of the LLI. If 
the last served descriptor contains only a short packet the 
LLI_RX_NPACKETS[7:0] value is equal to 1. This information with the 
LLI_RX_LNG and the COUNT_RX register fields could be used by CPU to 
determine the real data transfer size when using linked reception without known 
length (short packet). See also Section 9: DMA controller (DMAC) on page 243 
for more details.
If the total transfer length is known, this field is not needed, it gives the number of 
packets (with max packet size) transferred (equal to the initial value).

Bits 6:4

DBSIZE Destination Burst Size 

These bits are written by software to indicate the number of transfers which make 
up a destination burst. The same value must be written in the corresponding field 
in the Channel control register x (DMA_CCx) on page 268 (the software 
application must ensure these fields are in line). If the amount of data left to 
transfer is less than the burst size, a burst including only the pending transfers 
(less than DBSIZE) is performed. The DBSIZE field must be programmed less or 
equal to the max packet size of the related Tx Endpoint enabled for the DMA 
transfer. 
000: single transfer 
001: 4 transfers
010: 8 transfers
011: 16 transfers
100: 32 transfers
101: 64 transfers
110: 128 transfers
111: 256 transfers



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 457/488

   
   

   

DMA LLI register (USB_DMALLI)

Address offset: 864h

Reset value: 0000 0000 0000 0000 (0000h)

         

         

Bit 3 Reserved, forced by hardware to 0

Bits 2:0

SBSIZE Source Burst Size

These bits are written by software to indicate the number of transfers which make 
up a source burst. The same value must be written in the corresponding field in 
the Channel control register x (DMA_CCx) on page 268 (the software application 
must ensure these fields are in line). If the amount of data left to transfer is less 
than the burst size, a burst including only the pending transfers (less than 
SBSIZE) is performed.
The SBSIZE field must be programmed less or equal to the max packet size of 
the related Rx Endpoint enabled for the DMA transfer. 
000: single transfer 
001: 4 transfers
010: 8 transfers
011: 16 transfers
100: 32 transfers
101: 64 transfers
110: 128 transfers
111: 256 transfers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LLI_RX_LNG[7:0] LLI_TX_LNG[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:8

LLI_RX_LNG[7:0] LLI Rx Length 

These bits are written by software to indicate the number of descriptors 
(descriptor chain length) used to program the LLI (linked list item) on the DMA Rx 
channel. When the DMA Rx channel is programmed in unlinked mode 
(LK_RX_EN = 0) this register field is unused. The value 0 is forbidden when the 
DMA Rx channel is programmed in linked mode (LK_RX_EN = 1), otherwise the 
behavior is unpredictable. The valid range (write) for this field is 1 up to 255.

Bits 7:0

LLI_TX_LNG[7:0] LLI Tx Length 
These bits are written by software to indicate the number of descriptors 
(descriptor chain length) used to program the LLI (linked list item) on the DMA Tx 
channel. When the DMA Tx channel is programmed in unlinked mode 
(LK_TX_EN = 0) this register field is unused. The value 0 is forbidden when the 
DMA Rx channel is programmed in linked mode (LK_TX_EN = 1), otherwise the 
behavior is unpredictable. The valid range (write) for this field is 1 up to 255.



   
   

   

USB slave interface (USB) RM0006

458/488  Doc ID 13742 Rev 4

15.6.4 Buffer descriptor table

Although this table is located inside packet buffer memory, its entries can be considered as 
additional registers used to configure the location and size of packet buffers used to 
exchange data between the USB macrocell and the STR91xF. All packet memory locations 
are accessed by the AHB using 16-bit aligned addresses. In the following pages, the actual 
memory address is always used. The first packet memory location is located at offset 0x800 
(see Section 15.6.5: USB peripheral register page maping).

The buffer description table entry associated with the USB_EPnR registers is described 
below. A thorough explanation of packet buffers and buffer descriptor table usage can be 
found in the Structure and usage of packet buffers on page 427.

Packet buffer address n (USB_ADDRn)

Address offset: [USB_BTABLE] + n*8

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDRn_RX[15:2] 0 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_TX[15:2] 0 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:18 

ADDRn_RX[15:1]: Reception Buffer Address
These bits point to the starting address of the packet buffer, which will contain the 
data received by the Endpoint associated with the USB_EPnR register at the next 
OUT/SETUP token addressed to it.

Bits 17:16
These bits must always be written as ‘0’ since packet memory is word-wide and all 
packet buffers must be word-aligned.

Bits 15:1

ADDRn_TX[15:1]: Transmission Buffer Address

These bits point to the starting address of the packet buffer containing data to be 
transmitted by the Endpoint associated with the USB_EPnR register at the next IN 
token addressed to it.

Bits 1:0
These bits must always be written as ‘0’ since packet memory is word-wide and all 
packet buffers must be word-aligned.



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 459/488

   
   

   

Packet byte count n (USB_COUNTn)

Address offset: [USB_BTABLE] + n*8 + 4

         

The most significant half word of this location is used to store two different values, both 
required during packet reception. The most significant bits contains the definition of 
allocated buffer size, to allow buffer overflow detection, while the least significant part of this 
location is written back by the USB Peripheral at the end of reception to give the actual 
number of received bytes. Due to the restrictions on the number of available bits, buffer size 
is represented using the number of allocated memory blocks, where block size can be 
selected to choose the trade-off between fine-granularity/small-buffer and coarse-
granularity/large-buffer. The size of allocated buffer is a part of the Endpoint descriptor and it 
is normally defined during the enumeration process according to its maxPacketSize 
parameter value (See “Universal Serial Bus Specification”).

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BL SIZE NUMBLOCK COUNTn_RX[9:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved COUNTn_TX[9:0]

rw rw rw rw rw rw rw rw rw rw

Bit 31

BL_SIZE: Block SIZE. 
This bit selects the size of the memory block used to define the allocated buffer 
area.

– If BL_SIZE = 0, the memory block is 4-bytes wide. The allocated area is equal to 
the NUM_BLOCK multiplied by 2, if the NUM_BLOCK is an even number. The 
allocated area is equal to the (NUM_BLOCK-1) multiplied by 2, if the 
NUM_BLOCK is an odd number. This is due to the fact that the minimum block 
allowed is 4 bytes which implies that the NUM_BLOCK should be superior or 
equal to 2. With this block size the allocated buffer size ranges from 4 to 60 bytes.

– If BL_SIZE = 1, the memory block is 32-bytes wide. With this block size the 
allocated buffer size ranges from 32 to 992 bytes. The maximum allowed block is 
30.

Bits 30:26

NUM_BLOCK[4:0]: Number of blocks.
These bits define the number of memory blocks allocated to this packet buffer. 
The actual amount of allocated memory depends on the BL_SIZE value as 
illustrated in Table .

Bits 25:16
COUNTn_RX[9:0]: Reception Byte Count

These bits contain the number of bytes received by the Endpoint associated with 
the USB_EPnR register during the last OUT/SETUP transaction addressed to it.

Bits 15:10
These bits are not used since packet size is limited by USB specifications to 1023 
bytes. Their value is not considered by the USB Peripheral.

Bits 9:0
COUNTn_TX[9:0]: Transmission Byte Count

These bits contain the number of bytes to be transmitted by the Endpoint 
associated with the USB_EPnR register at the next IN token addressed to it.



   
   

   

USB slave interface (USB) RM0006

460/488  Doc ID 13742 Rev 4

Double-buffered and Isochronous OUT Endpoints have two USB_COUNTn_RX 
registers: named USB_COUNTn_RX_1 and USB_COUNTn_RX_0 with the 
following content

         

Double-buffered and Isochronous IN Endpoints have two USB_COUNTn_TX 
registers: named USB_COUNTn_TX_1 and USB_COUNTn_TX_0 with the 
following content

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BLSIZE_1 NUM_BLOCK_1[4:0] COUNTn_RX_1[9:0] (BUFFER 1)

rw rw rw rw rw rw r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE_0 NUM_BLOCK_0[4:0] COUNTn_RX_0[9:0] (BUFFER 0)

rw rw rw rw rw rw r r r r r r r r r r

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- COUNTn_TX_1[9:0] (BUFFER 1)

- - - - - - rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- COUNTn_TX_0[9:0] (BUFFER 0)

- - - - - - rw rw rw rw rw rw rw rw rw rw

Table 57. Definition of allocated buffer memory

Value of NUM_BLOCK[4:0]
Memory allocated when 

BL_SIZE = 0
Memory allocated when 

BL_SIZE=1

0 (‘00000’) Not allowed 32 bytes

1 (‘00001’) Not allowed 64 bytes

2 (‘00010’) 4 bytes 96 bytes

3 (‘00011’) 4 bytes 128 bytes

... ... ...

15 (‘01111’) 28 bytes 512 bytes

16 (‘10000’) 32 bytes 544 bytes

17 (‘10001’) 32 bytes 576 bytes

18 (‘10010’) 36 bytes 608 bytes

... ... ...

30 (‘11110’) 60 bytes 992 bytes

31 (‘11111’) 60 bytes Not allowed



RM0006 USB slave interface (USB)

Doc ID 13742 Rev 4 461/488

   
   

   

15.6.5 USB peripheral register page maping

Table 58 shows the mapping of all USB Peripheral registers and the Packet Buffer Memory.

         

Table 58. USB peripheral register page mapping

Address
offset

Register 
name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000 - 
0x7FC

Packet Buffer Memory 2 Kbytes 

0x800 USB_EP0R
C

T
R

_R
X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x804 USB_EP1R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x808 USB_EP2R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P
EP

TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x80C USB_EP3R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x810 USB_EP4R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x814 USB_EP5R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x818 USB_EP6R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x81C USB_EP7R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x820 USB_EP8R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x824 USB_EP9R

C
T

R
_R

X

D
TO

G
_R

X

STAT
RX[1:0]

S
E

T
U

P

EP
TYPE[1:0]

E
P

_K
IN

D

C
T

R
 T

X

D
TO

G
_T

X

STAT
TX[1:0] EA[3:0]

0x840  USB_CNTR

C
T

R
M

D
O

V
R

M

E
R

R
M

W
K

U
P

M

S
U

S
P

M

R
E

S
E

T
M

S
O

F
M

E
S

O
F

M

S
Z

D
P

R
M

Reserved

R
E

S
U

M
E

F
S

U
S

P

LP
M

O
D

E

P
D

W
N

F
R

E
S

0x844  USB_ISTR

C
T

R

D
O

V
R

E
R

R

W
K

U
P

S
U

S
P

R
E

S
E

T

S
O

F

E
S

O
F

S
Z

D
P

R

Reserved D
IR EP_ID[3:0]

0x848  USB_FNR

R
X

D
P

R
X

D
M

LC
K

LSOF[1:0] FN[10:0]

0x84C  USB_DADDR Reserved EF ADD[6:0]



   
   

   

USB slave interface (USB) RM0006

462/488  Doc ID 13742 Rev 4

Refer to Table 5 on page 35 for the register base addresses.

0x850  USB_BTABLE BTABLE[15:3] Reserved

0x854  USB_DMACR1 DMA Control Register 1

0x858  USB_DMACR2 DMA Control Register 2

0x85C  USB_DMACR3 DMA Control Register 3

0x860
 

USB_DMABSIZ
E

DMA Burst Size Register 

0x864  USB_DMALLI DMA Linked List Item Register 

Table 58. USB peripheral register page mapping (continued)

Address
offset

Register 
name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 463/488

   
   

   

16 Analog-to-digital converter (ADC)

16.1 Main characteristics
● ADC clock derives from PCLK through a 8-bit frequency prescaler

● Resolution: 10 bits

● 8 input channels

● 0 to 3.6 V input range

● Single channel/ scan modes (converts one or all of 8 channels successively without 
any software interaction).

● One-Shot or continuous conversion 

● Standby mode for low power consumption

● Analog watchdog with interrupt generation (when the converted value is above or 
below a threshold previously programmed by software).

● DMA support

● Start conversion can be triggered by software or by external pin, timer event or Motor 
control PWM event.

● Fast trigger mode (in Rev H devices)

● Sample Input every 16 ADC clocks (4 clocks for sampling and 12 clocks for successive 
approximation).

16.2 Introduction
The Analog-to-Digital Converter (ADC) comprises an input multiplexed channel selector 
feeding a successive approximation converter. The conversion resolution is 10 bits.



   
   

   

Analog-to-digital converter (ADC) RM0006

464/488  Doc ID 13742 Rev 4

Figure 108. ADC block diagram

16.2.1 Clock prescaler

The conversion time depends on the ADC clock frequency The ADC clock is the PCLK 
divided by the prescaler factor stored in the ADC_PRS register. 

You can change the conversion time by modifying the prescaling factor. Conversion time 
specified in the STR91xF datasheet includes the time required by the built-in Sample and 
Hold circuitry, which minimizes the need for external components and allows quick sampling 
of the signal to minimize warping and conversion errors.

ADC0

ADC1 ANALOG TO DIGITAL

CONVERTER

EXT. TRIGGER/ADC7

ANALOG
MUX

8-bit Prescaler
fADC PCLK

End of Conversion 
ADC Interrupt to VIC

GPIO
Port 4

ANALOG

WATCHDOG

A
P

B
 B

us

DATA REGISTERS

 (8 x 10 bits)

Low Threshold (10-bits)

AWD Channel Configuration 

Compare Result (8 bits)

High Threshold (10-bits)

Flags Masks

ECV
AWD

ECVI
AWDI

Analog Watchdog Event

Single Channel/Scan Mode

Channel select

One shot/Continuous

Start conversion (software)

Standby/Idle

Power on / Reset 

AVDD
AVSS

AVREF

(VDDQ)

SCU_GPIOANA
 control register

8

TIM0 OC1 event Trigger 

DMA request
DMA DATA REGISTER

10-bits data + 5 bits status

TRIGEN bit

TRIGSEL[1:0]
 bits

PWM (ZPC, ADT 
and CM0) event from Motor control



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 465/488

   
   

   

16.2.2 Interrupts

The ADC can generate three maskable interrupt requests:

● ECV (End of Conversion) interrupt request

● AWD (Analog watchdog) interrupt request

● OVERRUN (DMA overrun) interrupt request

The logical OR of all previous requests is provided to the VIC.

Before returning from serving the interrupt, the ISR typically clears the interrupt by setting 
the corresponding EVC, AWD or OVERRUN flag bit in the ADC_CR register to ‘0’.

The ADC clock is used to clear the interrupt flags. The time it takes to clear the flags is 
longer when the ADC clock frequency is lower. There are situations where the CPU returns 
from interrupt routine and the interrupt flag has not been cleared yet. Since the Interrupt 
Controller input is level sensitive, the CPU will see it as another interrupt. For this reason it is 
recommended to clear the ADC flags at the start of the interrupt subroutine, instead of at the 
end.

16.2.3 DMA

The ADC can store conversion results in SRAM using the DMAC.

To configure the ADC in DMA mode, set the DMAEN bit in ADC control register 2 
(ADC_CR2). In this mode, all conversion results are stored in the ADC DMA data register 
(ADC_DDR) and a DMA request is generated to the DMAC at each conversion.

If the DMA does not read the results before the next conversion, the data in the DMA data 
register will be overwritten. In this case, the new result will be flagged with the overrun bit 
(OR).

The ADC DMA request shares channel 9 of the DMA with external DMA request number 1 
(GPIO3.1).

When the ADC DMA feature is enabled, external DMA request number 1 is blocked.

Overrun flag

If the DMA is not able to read the data from the DMA data register (ADC_DDR) before a new 
data is written to it, an OVERRUN bit will be set and an interrupt is sent to the MCU unless it 
is disabled by setting the ORD bit in the ADC control register 2 (ADC_CR2) on page 477.

The interrupt and the OR bit are cleared when the ADC_DDR DMA data register is read. 
The DMA data register is read by either the CPU or the DMA Controller. 

Note: If the DMAC reads the register before the OR interrupt is served, the DMAC read will also 
clear the OR bit.



   
   

   

Analog-to-digital converter (ADC) RM0006

466/488  Doc ID 13742 Rev 4

16.3 External pins
The converter uses a fully differential analog input configuration for the best noise immunity 
and precision performance. Depending on the package size of the microcontroller, the 
AVREF voltage pin can be used for improved accuracy. Refer to Figure 20: Power supply 
overview on page 66 and Section 2.1.2: Independent A/D converter supply and reference 
voltage on page 67 for more information.

The converted digital value is referred to the analog reference voltage which determines the 
full-scale converted value. Of course, analog and digital grounds MUST be common (to be 
tied together externally). 

Up to 8 multiplexed analog inputs are available. The eight analog input pins are connected 
to GPIO port 4. After reset, you have to configure the GPIOs as analog inputs by 
programming the GPIO analog mode register (SCU_GPIOANA) on page 113. and 
programming the Channel configuration register (ADC_CCR) to configure the channels. The 
SC[2:0] bits in the ADC control register (ADC_CR) must be programmed to select a channel 
for single conversion. 

ADC7 can be used as external trigger if enabled in the ADC control register 2 (ADC_CR2) 
on page 477.



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 467/488

   
   

   

16.4 Functional description

Figure 109. ADC operation flowchart

16.4.1 Conversion modes

Two principal operating modes are available: Single Channel Mode and Scan Mode. You 
select these modes using the SCE bit in the Control Logic Register (ADC_CR). 

Single channel mode

In Single Channel Mode (SCE = 0) a single channel selected by the SC[2:0] bits in the 
ADC_CR register is performed. At the end of the conversion: 

● The digital result of the conversion (overflow status and result) is stored in the 
corresponding data register.

● The ECV flag is set and the ECV interrupt is generated if the ECVI bit = 1. 

● If the analog watchdog is enabled, the AWD flag is updated (see Section 16.4.5 for 
details). A interrupt is generated if the AWDI bit = 1.

Reset

Set POR bit

Standby

Clear STB bit

Idle

Set GPIOANA

Set STR bit

SCE=0 SCE=1

Convert Channel (SC)

x=lowest active

Convert active channel (x)

CH=x+1

Configure I/O ports

ADC power on 

Switch from Standby

Start Conversion

x=highest active channel

CONT=1

CONT=0CONT=0

CONT=1

to Idle

ECV flag

Read ECV Flag

Read Converted Data 

ECV flag

tPOR(ADC)

15 µs 

or generate trigger

channel



   
   

   

Analog-to-digital converter (ADC) RM0006

468/488  Doc ID 13742 Rev 4

Scan mode

In Scan mode (SCE = 1) all the channels configured as active for conversion (CCx[1:0] bits 
> 00b in the Channel configuration register (ADC_CCR)) are converted from the lowest 
active channel to the highest active channel. At the end of conversion of each channel:

● The digital result of the conversion (overflow status and result) is stored in the 
corresponding data register.

● If the analog watchdog is enabled, the AWD flag is updated (see Section 16.4.5 for 
details). A interrupt is generated if the AWDI bit = 1.

At the end of the conversion of the last active channel:

● The ECV flag is set and the ECV interrupt is generated if the ECVI bit = 1. 

One-shot/continuous modes

You can run single channel or scan mode in one-shot or continuous mode.

● In One-shot mode, the sequences described above for Single channel mode and Scan 
mode are run once and the STR bit is cleared by hardware. 

● In Continuous mode, the sequences, described above Single channel mode and Scan 
mode are run until the STR bit is cleared by software.

16.4.2 Power management

Reset mode

In Reset mode, the ADC is stalled, the analog part of the ADC is switched off and digital part 
is held in reset state. The ADC cell is in zero power consumption mode. This mode can be 
used:

● To perform a software reset of the ADC

● As a power saving mode if the ADC is not used

At reset, the ADC is in Reset mode. 

To switch from Reset mode to Standby mode, set the POR bit and the STB bit in the 
ADC_CR register. The ADC is switched on and enters Standby mode after tPOR(ADC).

You can also switch directly to Idle mode by setting the POR bit and keeping the STB bit at 
0.

Standby / idle mode 

You can put the ADC in Standby mode to reduce power consumption when A/D conversion 
is not required. Otherwise, when the ADC is not converting, it is Idle mode.

To switch from Idle to Standby mode, set the STB bit. The ADC enters Standby mode at the 
next clock pulse.

To switch the ADC from Standby to Idle mode, clear the STB bit in the ADC_CR register. 
The ADC is fully powered on after 15 µs. 

If STB is cleared and STR is set at the same time, the first conversion is delayed by 15 µs. If 
STB is cleared and STR is set before tPOR(ADC) after POR is set, the first conversion is 
delayed by tPOR(ADC)). 



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 469/488

   
   

   

16.4.3 Starting conversion

To start a conversion by software, set the STR bit in the ADC_CR register. Refer to the 
flowchart in Figure 109.

It is also possible to start conversion using an external trigger. The ADC configuration is the 
same as for starting a conversion by software except you have to set up the ADC Control 
Register 2 (ADC_CR2), using this procedure:

1. Select one of the 3 trigger sources (external pin, TIM or PWM) using the TRIGSEL bits. 

– Trigger using external pin: In this case, application hardware controls the signal 
input on the P4.7 pin. The default input function of this pin is "ADC External 
Trigger". ADC conversions will be triggered on falling or rising edges of this input 
signal. 

– Trigger using TIM0 OC1 event: The TIM0 OCMP1 feature can operate either in 
PWM mode or in output compare mode. If you choose to use TIM0 in output 
compare mode, be aware that ADC conversions are triggered on falling and rising 
edges of the output compare signal. Consequently, your software should ensure 
that the OC signal contains rising and falling edges. For example, this can be done 
by configuring Timer0 interrupt and by clearing OLVL1 bit if it is set and setting it if 
it is cleared in the Timer0 interrupt routine. In this case, when a match is found, 
Timer0 interrupt is generated and the pin OCMP1 will toggle and the ADC 
conversion will be triggered. 

– Trigger using PWM motor control: If you select PWM as the trigger source, you 
also need to specify one of the three events that generate the trigger in the 
IMC_ECR register.

2. Choose the polarity of the external pin if needed with ETE bit. 

3. Enable the trigger with the TRIGEN bit.

There is no need to set the start bit (STR) in the ADC_CR register to initiate a conversion. 
The ADC will start the conversion whenever the selected trigger event becomes activated.

To disable external trigger mode, or change the trigger configuration (polarity or trigger 
source), the following procedure must be followed: 

1. Select the default value of trigger selection. writing TRIGSEL bits to "00".

2. Disable trigger with TRIGEN bit.

The trigger event is synchronized with the rising edge of ADC clock (configured by ADC 
Prescaler Register). A minimum of two rising edges of the ADC clock must occur between 
two consecutive active triggers. Consequently the ADC clock frequency must be double the 
trigger frequency (external pin, TIM or PWM).

16.4.4 Fast trigger conversion in single mode

When trigger mode is enabled, a specific configuration can be used to provide a faster 
conversion time in single mode and cycle accurate synchronous data available after each 
trigger. Fast trigger mode is selected when the ACG bit is set in the GPIO analog mode 
register (SCU_GPIOANA). The ADC clock will start on each trigger event for 16 clock cycles 
and will automatically stopped when the digital result of the conversion is stored in the 
corresponding data register.



   
   

   

Analog-to-digital converter (ADC) RM0006

470/488  Doc ID 13742 Rev 4

Figure 110. ADC clock gated in Fast trigger conversion mode

In this mode, the ADC clock stops when no conversion is in progress, if this idle period 
(tTRIG) is too long, the accuracy of the first subsequent conversion may be out of 
specification. 

To avoid this limitation, the following two rules should be respected:

1. Do not keep the ADC clock stopped for a period longer than the tCK_OFF(ADC) maximum 
value specified in the datasheet. tTRIG_OFF must be less than tCK_OFF(ADC).

2. Minimum Trigger Throughput Rate is limited to TR(FT) (see datasheet for the minimum 
value).

Note: This feature is not available in device Rev G or earlier devices (see datasheet for silicon 
revision information).

16.4.5 Analog watchdog

A programmable watchdog is available for analog threshold detection.

The low and high thresholds of the guarded area are selected by the ADC_HTR and 
ADC_LTR registers See Figure 111.

You configure the analog watchdog event individually for each channel using the CCx[1:0] 
bits in the ADC_CCR register.

After conversion of the selected channel is finished, a comparison is performed between the 
current channel and, depending on the CCx[1:0] bits, the threshold value in ADC_HTR or 
ADC_LTR. The compare result is stored in the ADC_CRR register, and, depending on the 
AWDI mask bit in the ADC_CR register, an AWD interrupt request is generated if the 
converted value has crossed the threshold.

Figure 111. Analog watchdog guarded area

ACG

ck_ADC

EOC

Trigger

tTRIG_OFF

TR(FT)

tTRIG_OFF

Analog voltage

Upper threshold

Lower threshold

Guarded area

ADC_HTR register

ADC_LTR register



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 471/488

   
   

   

16.5 Register description
In this section, the following abbreviations are used:

         

16.5.1 ADC control register (ADC_CR)

Address offset: 00h
Reset value: 0000h

         

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Read/clear (rc_w1)
Software can read as well as clear this bit by writing ‘1’. Writing ‘0’ has 
no effect on the bit value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ECV AWD Reserved ECVI AWDI SC[2:0] SCE CONT STB res. POR STR

rc_w1 r r r rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0

Bit 15

ECV: End of conversion flag
This bit is set by hardware and cleared by software writing 1.
0: No end of conversion event
1: End of conversion. You can read the ADC_DRx registers to retrieve the result 
An interrupt request is generated if ECVI = 1.

Bit 14

AWD: Analog Watchdog flag
0: No analog watchdog event
1: An analog watchdog event occurred. You can read the ADC_CRR register to 
determine the result for each channel. An interrupt request is generated if 
AWDI = 1.

Bits 13:12 Reserved, forced by hardware to 0

Bit 11 Reserved, must be kept at reset value 0

Bit 10
ECVI: End of conversion interrupt enable

0: ECV interrupt disabled
1: ECV interrupt enabled

Bit 9
AWDI: Analog watchdog interrupt enable

0: AWD interrupt disabled
1: AWD interrupt enabled

Bits 8:6

SC[2:0]: Selected channel to be converted

These bits are written by software to select the channel to be converted. The 
selection applies only when Scan mode is disabled (SCE=0). The channel to be 
converted must also be configured as active in the ADC_CCR register.
000: Channel 0
001: Channel 1
...
111: Channel 7



   
   

   

Analog-to-digital converter (ADC) RM0006

472/488  Doc ID 13742 Rev 4

Bit 5

SCE: Scan mode enable

This bit is set and cleared by software.
0: Single channel mode. The channel selected by the SC[2:0] bits is enabled
1: Scan mode. All channels configured as active in the ADC_CCR register are 
converted. 

Bit 4

CONT: Continuous mode enable

This bit is set and cleared by software.
0: One shot mode: if SCE = 0 the channel selected by the SC[2:0] bits is converted 
once. The STR bit is cleared automatically and the ECV bit is set at the end of 
conversion. If SCE = 1 all channels are converted once. The STR bit is cleared 
automatically and the ECV bit is set at the end of conversion.
1: Continuous mode, if SCE = 0 the channel selected by the SC[2:0] is converted 
continuously. If SCE = 1 all channels are converted continuously. The STR bit 
must be cleared by software to stop conversion.

Bit 3

STB: Standby mode enable

This bit is set and cleared by software.
0: Idle mode. The analog block is kept powered on
1: Standby mode enabled. The analog block is put in low power mode
Note: When STB is cleared, the first conversion can start after 15 µs.

Bit 2 Reserved, must be kept at reset value 0.

Bit 1

POR: Power on/ Reset mode
This bit is set and cleared by software.
0: Reset mode. The analog block is switched off, all registers are reset. Write 
access to all registers disabled except POR bit.
1: Power on mode. ADC digital block is running. Analog block in Idle mode or 
Standby mode depending on the STB bit.
Note: When POR is set, the first conversion can start only after tPOR(ADC)

Bit 0

STR: Start Conversion

This bit is set and cleared by software.
0: Stop Conversion The ADC returns to Idle state at the next clock pulse. 
1: Start conversion The first conversion starts after up 3 x 16 ADC clock cycles 
(synchronously with analog block).



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 473/488

   
   

   

16.5.2 Channel configuration register (ADC_CCR)

Address offset: 04h
Reset value: 0000h

         

         

16.5.3 High threshold register (ADC_HTR)

Address offset: 08h
Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC7[1:0] CC6[1:0] CC5[1:0] CC4[1:0] CC3[1:0] CC2[1:0] CC1[1:0] CC0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0

Bits 15:0

CCx[1:0]: Channel x Configuration (x = 7:0)
These bits are written by software to configure the corresponding ADC input 
channel.
00: No A/D conversion or watchdog feature on channel x
01: Active for A/D conversion, analog watchdog event configured to trigger when 
the converted result on channel x is greater than the low threshold (CDATA > LT).
10: Active for A/D conversion, analog watchdog configured to trigger when the 
converted result on channel x is less than the high threshold (CDATA < HT).
11: Active for A/D Conversion without watchdog feature on channel x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved HT

rw rw rw rw rw rw rw rw rw rw

Bits 31:10 Reserved, must be kept at reset value 0

Bits 9:0
HT[9:0]: Analog Watchdog High Threshold

These bits are written by software to define the high threshold value for the analog 
watchdog (see Figure 111).



   
   

   

Analog-to-digital converter (ADC) RM0006

474/488  Doc ID 13742 Rev 4

16.5.4 Low threshold register (ADC_LTR)

Address offset: 0Ch
Reset value: 0000h

         

         

16.5.5 Compare result register (ADC_CRR)

Address offset: 10h
Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved HT

rw rw rw rw rw rw rw rw rw rw

Bits 31:10 Reserved, must be kept at reset value 0

Bits 9:0
LT[9:0]: Analog Watchdog Low Threshold

These bits are written by software to define the low threshold value for the analog 
watchdog (see Figure 111).

7 6 5 4 3 2 1 0

CR[7:0]

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:8 Reserved, forced by hardware to 0

Bits 7:0

CR[7:0]: Compare Result for Channel x

These bits are set by hardware when a watchdog event occurs on the 
corresponding channel. They are cleared by software, by writing ‘1’ in the 
corresponding bit. Writing this register also clears the AWD interrupt flag in the 
ADC_CR register, if all CR bits are cleared. When the CCx[1:0] bits in the 
ADC_CCR register are at "00" or "11" (watchdog disabled) then CRx is 
forced to '0'.
0: No analog watchdog event occurred on channel x
1: Analog watchdog event occurred on channel x (as configured in the ADC_CCR 
register).



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 475/488

   
   

   

16.5.6 ADC data register (ADC_DRx) 

There are eight ADC data registers (x can be a value from 0 to 7)
Address offset: 14h...30h
Reset value: 0000h

         

         

16.5.7 ADC prescaler register (ADC_PRS)

Address offset: 34h
Reset value: 00FFh

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OV Reserved CDATA[9:0]

r r r r r r r r r r r

Bits 31:16 Reserved, forced by hardware to 0

Bit 15

OV: Channel x Overflow status
This bit is updated by hardware after each conversion.
0: No overflow on this channel
1: A conversion overflow occurred on this channel

Bits 14:10 Reserved, forced by hardware to 0

Bits 9:0
CDATA[9:0]: Channel x Converted Data

The conversion results for the eight available channels are loaded into the eight 
different data registers following conversion of the corresponding analog input.

7 6 5 4 3 2 1 0

PRS[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, forced by hardware to 0

Bits 7:0

PRS[7:0]: ADC Prescaler
These bits are written by software to define the ADC clock prescaling factor.
00h: fADC=PCLK
01h: fADC=PCLK
02h: fADC=PCLK/2
..
FFh: fADC=PCLK/255



   
   

   

Analog-to-digital converter (ADC) RM0006

476/488  Doc ID 13742 Rev 4

16.5.8 ADC DMA data register (ADC_DDR) 

Address offset: 38h
Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OV Res OR CHANNELID CDATA[9:0]

r r r r r r r r r r r r r r r

Bits 31:16 Reserved, forced by hardware to 0

Bit 15

OV: Conversion Overflow status
This bit is updated by hardware after each conversion. 
0: No overflow
1: A conversion overflow occurred overflow bit (the ADC analog input exceeds the 
analog reference value).

Bits 14 Reserved, forced by hardware to 0

Bit 13

OR: DMA Overrun status

This bit is updated by hardware after each conversion. It is reset by hardware 
when this register is read.
0: No overrun 
1: A DMA overrun occurred (the DMAEN bit is set and the DMA did not read the 
previous converted result). 

Bits 12:10 

CHANNEL_ID: Channel ID status

These bits contain the number of the converted channel.
000: ADC0
....
111: ADC7

Bits 9:0
CDATA[9:0]: Channel Converted Data

The conversion results are loaded into the DMA data register after each 
conversion.



RM0006 Analog-to-digital converter (ADC)

Doc ID 13742 Rev 4 477/488

   
   

   

16.5.9 ADC control register 2 (ADC_CR2) 

Address offset: 3Ch
Reset value: 0000h

         

         

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ETE ORD DMA EN TRIG EN TRIGSEL[1:0]

rw rw rw rw rw rw

Bits 31:6 Reserved, forced by hardware to 0

Bit 5

ETE External trigger edge
This bit is set and cleared by software. It selects the trigger edge polarity.
0: Rising edge (reset value)
1: Falling edge

Bit 4 

ORD: Overrun interrupt disable

This bit is set and cleared by software.
0: Overrun interrupt enabled (reset value)
1: Overrun interrupt disabled

Bit 3

DMAEN: DMA trigger enable

This bit is set and cleared by software. When this bit is set the ADC DMA interface 
is enabled. Data written to the DDR register will generate a DMA request which 
triggers the DMA to read the conversion result from the ADC.
0: DMA disabled
1: DMA enabled

Bit 2

TRIGEN: Trigger enable

This bit is set and cleared by software
0: Trigger disabled
1: Trigger enabled

Bits 1:0

TRIGSEL[1:0]: Trigger selection

These bits are written by software to select the trigger event.
00: No trigger (default)
01: PWM trigger
10: Timer trigger
11: External trigger pin



   
   

   

Analog-to-digital converter (ADC) RM0006

478/488  Doc ID 13742 Rev 4

16.6 ADC register map
         

Refer to Table 5 on page 35 for the register base addresses.

Table 59. ADC register map

Address
offset

 Register 
name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h ADC_CR ECV AWD Reserved ECVI AWDI SC[2:0] SCE CONT STB res. POR STR

04h ADC_CCR Channel Configuration Register

08h ADC_HTR Reserved High Threshold

0Ch ADC_LTR Reserved Low Threshold

10h ADC_CRR Channel Compare Result Register

14h ADC_DR0 OV Reserved Channel 0 Converted Data

18h ADC_DR1 OV Reserved Channel 1 Converted Data

1Ch ADC_DR2 OV Reserved Channel 2 Converted Data

20h ADC_DR3 OV Reserved Channel 3 Converted Data

24h ADC_DR4 OV Reserved Channel 4 Converted Data

28h ADC_DR5 OV Reserved Channel 5 Converted Data

2Ch ADC_DR6 OV Reserved Channel 6 Converted Data

30h ADC_DR7 OV Reserved Channel 7 Converted Data

34h ADC_PRS Reserved ADC Clock Prescaler

38h ADC_DDR OV Res. OR CHANNEL_ID Channel Converted Data

3Ch ADC_CR2 Reserved ETE ORD
DMA
EN

TRIG
EN

TRIGSEL[1:0]



RM0006 AHB/APB bridges (APB)

Doc ID 13742 Rev 4 479/488

   
   

   

17 AHB/APB bridges (APB)

The two AHB/APB bridges provide completely asynchronous connections between the AHB 
and APB buses. Refer to Table 5 on page 35 for the address mapping of the peripherals 
connected to each bridge.

17.1 Main features
● AHB slave interface

● APB master interface

● Asynchronous AHB/APB clock domains

● Two identical APB bridges, each supporting a fixed set of peripherals

● AHB split accesses

● Time-Out condition for peripheral transactions

17.2 Split transactions 
The AHB/APB clock ratio can typically be around 1/2, depending on the application. The 
HCLK and PCLK frequencies are programmable via the SCU registers (refer to Figure 22: 
Clock control on page 71. As a consequence, an APB read access could need more than 2 
AHB cycles to be completed. To prevent the AHB being stalled, waiting for the APB access 
to be performed, a split mechanism is implemented. This enables the master to initiate the 
request, the AHB/APB bridge then releases the bus until the data is available. When the 
data is ready, the slave will signal the master to complete the transaction. 

17.3 Error handling
The AHB bridge registers can be used to troubleshoot errors that occur when accessing the 
APB peripherals. 

If an error occurs the bridge ends the APB transaction and reports an ERROR conditions on 
the AHB bus (if enabled).

17.4 Register description
In this section, the following abbreviations are used:

         

Read/write (rw) Software can read and write to these bits

Read-only (r) Software can only read these bits

Read/clear (rc_w0)
Software can read as well as clear this bit by writing 0. Writing ‘1’ has no 
effect on the bit value



   
   

   

AHB/APB bridges (APB) RM0006

480/488  Doc ID 13742 Rev 4

17.4.1 Bridge status register (APB_BSR)

Address offset: 00h

Reset value: 0x0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved APBT OUTM Reserved ERROR

rc_w0 rc_w0 rc_w0

Bits 31:6 Reserved, forced by hardware to 0

Bit 5

APBT: APB Time-out

This bit is set by hardware and cleared by software. 
0: Normal state
1: A peripheral did not answer before the time-out

Bit 4

OUTM: Out of Memory
This bit is set by hardware and cleared by software. 
0: Normal state
1: An access outside memory has been attempted

Bits 3:1 Reserved, forced by hardware to 0

Bit 0

ERROR: Error
This bit is set by hardware and cleared by software. 
0: Normal state
1: An access has been aborted because it generated an error. The type of error 
is flagged in bits 5:4 of this register.



RM0006 AHB/APB bridges (APB)

Doc ID 13742 Rev 4 481/488

   
   

   

17.4.2 Bridge configuration register (APB_BCR)

Address offset: 04h

Reset value: 0x0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved SPLITEN Reserved SPLIT_CNT[4:0]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ERR EN Reserved TOUT_CNT[4:0]

rw rw rw rw rw rw

Bits 31:25 Reserved, forced by hardware to 0

Bit 24

SPLITEN: Split enable

This bit is set and cleared by software. 
0: The bridge will provide the bus with HREADY low until the peripheral replies or 
a time-out occurs.
1: The bridge allows accesses to be split after the number of AHB cycles defined 
in SPLIT_CNT. 

Bits 23:21 Reserved, forced by hardware to 0

Bits 20:16

SPLIT_CNT[4:0]: Split counter
These bits are written by software. They specify the number of AHB cycles to be 
performed before returning a split to the arbiter. The number of cycles is 
comprised between 0 (immediate split) and 31 AHB cycles.

Bits 15:9 Reserved, forced by hardware to 0

Bit 8

ERREN: APB Time-out
This bit is set and cleared by software. 
0: If an error occurs, the bridge sets the APBT bit in the APB_BSR register, but 
the operation on the ARM bus terminates normally.
1: An error is generated on the ARM bus when an APB Time-out condition 
occurs.

Bits 7:5 Reserved, forced by hardware to 0

Bits 4:0

TOUT_CNT[4:0]: Time-out counter

These bits are written by software. When they are 00000 the time-out counter is 
disabled, otherwise, they define the delay, in terms of APB clock periods that the 
bridge waits for a target completion, before asserting the time-out error.



   
   

   

AHB/APB bridges (APB) RM0006

482/488  Doc ID 13742 Rev 4

17.4.3 Peripheral address register (APB_PAER)

Address offset: 08h

Reset value: 0x0000 0000

         

         

17.5 AHB/APB bridge register map

Table 60. Bridge register map

Refer to Table 5 on page 35 for the base addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved RW PERIPHERAL_ADDRESS[23:16]

r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PERIPHERAL_ADDRESS[15:0]

r r r r r r r r r r r r r r r r

Bits 31:25 Reserved, forced by hardware to 0

Bit 24

RW: Access type

This bit is set and cleared by hardware. It indicates the type of access that 
generated the error condition flagged in the APB_BSR register.
0: Read access
1: Write access

Bits 23:0
PERIPHERAL_ADDRESS[23:0]: Peripheral address

These bits are read only. They give the address of the slave that generated the 
error condition flagged in the APB_BSR register.

Addr.
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h APB_BSR Reserved

A
P

B
T

O
U

T
M

Reserved

E
R

R
O

R

04h APB_BCR Reserved

S
P

LI
T

E
N

Reserved SPLIT_CNT Reserved

E
R

R
E

N

Reserved TOUT_CNT

08h APB_PAER Reserved R
W PERIPHERAL_ADDRESS[23:0]



RM0006 Revision history

Doc ID 13742 Rev 4 483/488

   
   

   

18 Revision history

         

Table 61. Document revision history

Date Revision Changes

13-Dec-2007 1

Created new document RM0006 to replace UM0388 and restart 
revision numbering. 
Changes compared to the last revision of UM00388 
(Rev 1 dated 15-May-2007) 
Modified description of 2.5.2: Special interrupt run mode on page 77

Added Note on use of VBATT with LVD in Section 2.1.3 on page 67

Added ACG bit in GPIO analog mode register (SCU_GPIOANA) on 
page 113

Updated Figure 36 on page 163 
Updated description of ECKEN bit in Section 7.6.6: Control register 1 
(TIM_CR1) on page 177

Modified Section 10.3.4: Slave Select management on page 278
Updated Section 16.4.4: Fast trigger conversion in single mode on 
page 469

02-Mar-2008 2

Added Idle Mode entry timing on page 78

Modified SSPCLK in Figure 22: Clock control on page 71 and 
Figure 67: SSP block diagram on page 276

Updated SSP Section 10.4.5: Clock ratios on page 280.
Added note in Section 12.5.4: I2C clock control register (I2C_CCR) on 
page 337.
Modified ADC Section 16.4.3: Starting conversion on page 469

21-Apr-2008 3 Removed DMA feature from Section 12: I2C interface module (I2C)

03-Jul-2009 4

Converted document to new template.

Section 1.12.3: External memory interface (EMI) configuration/control: 
Updated configuration of the EMI address port and chip select pins.

Section 1.12.6: Timing rules: Replaced WSTOEN with WSTWEN.
Section 1.12.5: EMI bus timing configuration and Section 1.12.7: Bus 
mode configuration: Replaced WSTEN with WSTWEN.
Section 2.2.1 and Section 2.2.2: Updated definition of system reset and 
global reset respectively to account for the RTC and SCU registers.
Figure 22: Clock control: Replaced “SSPCLK” and “BRCLK” with 
“BRCLK”; Updated the PHYSEL/fOSC and RTSEL/fRTC And gates.
Section 2.4.4: Replaced “Baud rate clock (BRCLK)” with “UART and 
SSP clock (BRCLK)”.
Section 2.5.3: Replaced “RTC alarm interrupt” with “RTC alarm event”; 
added Idle Mode exit timing.
Section 2.5.4: Added Sleep Mode exit timing.

Section 5.6: Amended to account for the fact that “Normally 
close/Tamper open” is not supported.

Section 5.9.3, Section 5.9.4, Section 5.9.5, and Section 5.9.6: Reset 
values updated from 0000h.

Section 5.9.4: RTC control register (RTC_CR): Bit “C” replaced by 
“RTCSEL”; TM bit updated to account for the fact that “Normally 
close/Tamper open” is not supported.



   
   

   

Revision history RM0006

484/488  Doc ID 13742 Rev 4

03-Jul-2009
4 

cont’d

Section 6.3.3: Programming considerations: Added.

Section 8.4.21: MAC control register (ENET_MCR): Updated DRO bit 
description.

Section 15.4 and Section 15.4.1: Updated size (2 Kbytes), number of 
words (512) and number of bits (32) of dedicated packet buffer 
memory.
Texas Instruments synchronous serial frame format in Section 10.4.7: 
Added a note.
Figure 107: Packet buffer areas with examples of buffer description 
table locations: Modified buffer description table locations.
Section 15.6.4: Updated offset of first packet memory location (0x800).

Packet byte count n (USB_COUNTn) in Section 15.6.4: Updated bit 31 
concerning the width of the memory block.

Figure 57: Definition of allocated buffer memory: Updated the memory 
allocated when BL_SIZE = 0 and when BL_SIZE = 1.

Table 61. Document revision history

Date Revision Changes



   
   

   

RM0006 Index

Doc ID 13742 Rev 4 485/488

Index

A
ADC_CCR  . . . . . . . . . . . . . . . . . . . . . . . . . . .473
ADC_CR  . . . . . . . . . . . . . . . . . . . . . . . . . . . .471
ADC_CR2  . . . . . . . . . . . . . . . . . . . . . . . . . . .477
ADC_CRR  . . . . . . . . . . . . . . . . . . . . . . . . . . .474
ADC_DDR  . . . . . . . . . . . . . . . . . . . . . . . . . . .476
ADC_DRx . . . . . . . . . . . . . . . . . . . . . . . . . . . .475
ADC_HTR  . . . . . . . . . . . . . . . . . . . . . . . . . . .473
ADC_LTR . . . . . . . . . . . . . . . . . . . . . . . . . . . .474
ADC_PRS  . . . . . . . . . . . . . . . . . . . . . . . . . . .475
APB_BCR  . . . . . . . . . . . . . . . . . . . . . . . . . . .481
APB_BSR . . . . . . . . . . . . . . . . . . . . . . . . . . . .480
APB_PAER  . . . . . . . . . . . . . . . . . . . . . . . . . .482

C
CAN_BRPR  . . . . . . . . . . . . . . . . . . . . . . . . . .388
CAN_BTR  . . . . . . . . . . . . . . . . . . . . . . . . . . .386
CAN_CR  . . . . . . . . . . . . . . . . . . . . . . . . . . . .381
CAN_ERR  . . . . . . . . . . . . . . . . . . . . . . . . . . .385
CAN_IDR . . . . . . . . . . . . . . . . . . . . . . . . . . . .397
CAN_IFn_A1R . . . . . . . . . . . . . . . . . . . . . . . .392
CAN_IFn_A2R . . . . . . . . . . . . . . . . . . . . . . . .392
CAN_IFn_CMR  . . . . . . . . . . . . . . . . . . . . . . .390
CAN_IFn_CRR . . . . . . . . . . . . . . . . . . . . . . . .389
CAN_IFn_DAnR . . . . . . . . . . . . . . . . . . . . . . .393
CAN_IFn_DBnR . . . . . . . . . . . . . . . . . . . . . . .393
CAN_IFn_M1R . . . . . . . . . . . . . . . . . . . . . . . .391
CAN_IFn_M2R . . . . . . . . . . . . . . . . . . . . . . . .392
CAN_IFn_MCR  . . . . . . . . . . . . . . . . . . . . . . .392
CAN_IPnR  . . . . . . . . . . . . . . . . . . . . . . . . . . .400
CAN_MVnR  . . . . . . . . . . . . . . . . . . . . . . . . . .401
CAN_NDnR  . . . . . . . . . . . . . . . . . . . . . . . . . .399
CAN_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383
CAN_TESTR  . . . . . . . . . . . . . . . . . . . . . . . . .387
CAN_TxRnR  . . . . . . . . . . . . . . . . . . . . . . . . .398

D
DMA_CCNFx . . . . . . . . . . . . . . . . . . . . . . . . .271
DMA_CCx  . . . . . . . . . . . . . . . . . . . . . . . . . . .268
DMA_CNFR . . . . . . . . . . . . . . . . . . . . . . . . . .263
DMA_DESTx  . . . . . . . . . . . . . . . . . . . . . . . . .266
DMA_EICR . . . . . . . . . . . . . . . . . . . . . . . . . . .259
DMA_EISR . . . . . . . . . . . . . . . . . . . . . . . . . . .259
DMA_ENCSR . . . . . . . . . . . . . . . . . . . . . . . . .261
DMA_ERISR  . . . . . . . . . . . . . . . . . . . . . . . . .260
DMA_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

DMA_LLIx  . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
DMA_SBRR  . . . . . . . . . . . . . . . . . . . . . . . . . 261
DMA_SLBR . . . . . . . . . . . . . . . . . . . . . . . . . . 262
DMA_SLSR . . . . . . . . . . . . . . . . . . . . . . . . . . 263
DMA_SRCx . . . . . . . . . . . . . . . . . . . . . . . . . . 265
DMA_SSRR  . . . . . . . . . . . . . . . . . . . . . . . . . 262
DMA_SYNC  . . . . . . . . . . . . . . . . . . . . . . . . . 264
DMA_TCICR . . . . . . . . . . . . . . . . . . . . . . . . . 258
DMA_TCISR  . . . . . . . . . . . . . . . . . . . . . . . . . 258
DMA_TCRISR . . . . . . . . . . . . . . . . . . . . . . . . 260

E
ENET_CCR . . . . . . . . . . . . . . . . . . . . . . . . . . 208
ENET_IER . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
ENET_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
ENET_MAH . . . . . . . . . . . . . . . . . . . . . . . . . . 229
ENET_MAL . . . . . . . . . . . . . . . . . . . . . . . . . . 229
ENET_MCF . . . . . . . . . . . . . . . . . . . . . . . . . . 234
ENET_MCHA  . . . . . . . . . . . . . . . . . . . . . . . . 230
ENET_MCLA . . . . . . . . . . . . . . . . . . . . . . . . . 231
ENET_MCR . . . . . . . . . . . . . . . . . . . . . . . . . . 225
ENET_MIIA . . . . . . . . . . . . . . . . . . . . . . . . . . 232
ENET_MIID . . . . . . . . . . . . . . . . . . . . . . . . . . 233
ENET_MRS . . . . . . . . . . . . . . . . . . . . . . . . . . 239
ENET_MTS . . . . . . . . . . . . . . . . . . . . . . . . . . 237
ENET_RXCAR  . . . . . . . . . . . . . . . . . . . . . . . 214
ENET_RXCR . . . . . . . . . . . . . . . . . . . . . . . . . 211
ENET_RXCTCR  . . . . . . . . . . . . . . . . . . . . . . 214
ENET_RXNDAR  . . . . . . . . . . . . . . . . . . . . . . 213
ENET_RXSAR  . . . . . . . . . . . . . . . . . . . . . . . 212
ENET_RXSR . . . . . . . . . . . . . . . . . . . . . . . . . 216
ENET_RXSTR . . . . . . . . . . . . . . . . . . . . . . . . 209
ENET_RXTOR  . . . . . . . . . . . . . . . . . . . . . . . 215
ENET_SCR . . . . . . . . . . . . . . . . . . . . . . . . . . 202
ENET_TXCAR . . . . . . . . . . . . . . . . . . . . . . . . 222
ENET_TXCR . . . . . . . . . . . . . . . . . . . . . . . . . 219
ENET_TXCTCR  . . . . . . . . . . . . . . . . . . . . . . 222
ENET_TXNDAR  . . . . . . . . . . . . . . . . . . . . . . 221
ENET_TXSAR . . . . . . . . . . . . . . . . . . . . . . . . 220
ENET_TXSR . . . . . . . . . . . . . . . . . . . . . . . . . 224
ENET_TXSTR . . . . . . . . . . . . . . . . . . . . . . . . 217
ENET_TXTOR . . . . . . . . . . . . . . . . . . . . . . . . 223
ENET_VL1  . . . . . . . . . . . . . . . . . . . . . . . . . . 235
ENET_VL2  . . . . . . . . . . . . . . . . . . . . . . . . . . 236

F
FMI_BBADR  . . . . . . . . . . . . . . . . . . . . . . . . . . 40



   
   

   

Index RM0006

486/488  Doc ID 13742 Rev 4

FMI_BBSR . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
FMI_CR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
FMI_NBBADR  . . . . . . . . . . . . . . . . . . . . . . . . .41
FMI_NBBSR . . . . . . . . . . . . . . . . . . . . . . . . . . .40
FMI_SR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

G
GPIO_DATA . . . . . . . . . . . . . . . . . . . . . . . . . .119
GPIO_DIR  . . . . . . . . . . . . . . . . . . . . . . . . . . .120
GPIO_SEL . . . . . . . . . . . . . . . . . . . . . . . . . . .120

I
I2C_CCR  . . . . . . . . . . . . . . . . . . . . . . . . . . . .337
I2C_CR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331
I2C_DR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339
I2C_ECCR . . . . . . . . . . . . . . . . . . . . . . . . . . .338
I2C_OAR1  . . . . . . . . . . . . . . . . . . . . . . . . . . .338
I2C_OAR2  . . . . . . . . . . . . . . . . . . . . . . . . . . .339
I2C_SR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333
I2C_SR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335

M
MC_CMP0  . . . . . . . . . . . . . . . . . . . . . . . . . . .360
MC_CMPU . . . . . . . . . . . . . . . . . . . . . . . . . . .360
MC_CMPV . . . . . . . . . . . . . . . . . . . . . . . . . . .359
MC_CMPW  . . . . . . . . . . . . . . . . . . . . . . . . . .358
MC_CPRS  . . . . . . . . . . . . . . . . . . . . . . . . . . .357
MC_DTG  . . . . . . . . . . . . . . . . . . . . . . . . . . . .367
MC_ECR  . . . . . . . . . . . . . . . . . . . . . . . . . . . .369
MC_ESC  . . . . . . . . . . . . . . . . . . . . . . . . . . . .368
MC_IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366
MC_IPR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355
MC_LOK  . . . . . . . . . . . . . . . . . . . . . . . . . . . .371
MC_OPR  . . . . . . . . . . . . . . . . . . . . . . . . . . . .365
MC_PCR0  . . . . . . . . . . . . . . . . . . . . . . . . . . .361
MC_PCR1  . . . . . . . . . . . . . . . . . . . . . . . . . . .362
MC_PCR2  . . . . . . . . . . . . . . . . . . . . . . . . . . .363
MC_PSR  . . . . . . . . . . . . . . . . . . . . . . . . . . . .364
MC_REP  . . . . . . . . . . . . . . . . . . . . . . . . . . . .357
MC_TCMP . . . . . . . . . . . . . . . . . . . . . . . . . . .354
MC_TCPT  . . . . . . . . . . . . . . . . . . . . . . . . . . .354
MC_TPRS  . . . . . . . . . . . . . . . . . . . . . . . . . . .356

R
RTC_ATR . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
RTC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
RTC_DTR  . . . . . . . . . . . . . . . . . . . . . . . . . . .148
RTC_MILR . . . . . . . . . . . . . . . . . . . . . . . . . . .153
RTC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

RTC_TR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

S
SCU_CLKCNTR  . . . . . . . . . . . . . . . . . . . . . . . 86
SCU_EMI  . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
SCU_GPIOANA  . . . . . . . . . . . . . . . . . . . . . . 113
SCU_GPIOINn  . . . . . . . . . . . . . . . . . . . . . . . 110
SCU_GPIOOUTn  . . . . . . . . . . . . . . . . . . . . . 110
SCU_GPIOTYPEm . . . . . . . . . . . . . . . . . . . . 111
SCU_ITCMSK . . . . . . . . . . . . . . . . . . . . . . . . . 91
SCU_MGR0  . . . . . . . . . . . . . . . . . . . . . . . . . 100
SCU_MGR1  . . . . . . . . . . . . . . . . . . . . . . . . . 102
SCU_PCGR0  . . . . . . . . . . . . . . . . . . . . . . . . . 92
SCU_PCGR1  . . . . . . . . . . . . . . . . . . . . . . . . . 94
SCU_PECGR0  . . . . . . . . . . . . . . . . . . . . . . . 104
SCU_PECGR1  . . . . . . . . . . . . . . . . . . . . . . . 106
SCU_PLLCONF  . . . . . . . . . . . . . . . . . . . . . . . 88
SCU_PRR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SCU_PRR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SCU_PWRMNG  . . . . . . . . . . . . . . . . . . . . . . . 90
SCU_SCR0 . . . . . . . . . . . . . . . . . . . . . . . . . . 108
SCU_SYSSTATUS . . . . . . . . . . . . . . . . . . . . . 89
SCU_WKUPSEL . . . . . . . . . . . . . . . . . . . . . . 112
SSP_CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
SSP_CR1  . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
SSP_DMACR  . . . . . . . . . . . . . . . . . . . . . . . . 293
SSP_DR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SSP_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
SSP_IMSCR  . . . . . . . . . . . . . . . . . . . . . . . . . 291
SSP_MISR  . . . . . . . . . . . . . . . . . . . . . . . . . . 292
SSP_PR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
SSP_RISR . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
SSP_SR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

T
TIM_CNTR  . . . . . . . . . . . . . . . . . . . . . . . . . . 176
TIM_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
TIM_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
TIM_ICR1  . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
TIM_ICR2  . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
TIM_OCR1  . . . . . . . . . . . . . . . . . . . . . . . . . . 176
TIM_OCR2  . . . . . . . . . . . . . . . . . . . . . . . . . . 176
TIM_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

U
UART_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
UART_DMACR . . . . . . . . . . . . . . . . . . . . . . . 321
UART_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
UART_FBRD . . . . . . . . . . . . . . . . . . . . . . . . . 310
UART_FR  . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



   
   

   

RM0006 Index

Doc ID 13742 Rev 4 487/488

UART_IBRD . . . . . . . . . . . . . . . . . . . . . . . . . .309
UART_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . .320
UART_IFLS  . . . . . . . . . . . . . . . . . . . . . . . . . .315
UART_ILPR . . . . . . . . . . . . . . . . . . . . . . . . . .308
UART_IMSC  . . . . . . . . . . . . . . . . . . . . . . . . .316
UART_LCR  . . . . . . . . . . . . . . . . . . . . . . . . . .311
UART_MIS . . . . . . . . . . . . . . . . . . . . . . . . . . .319
UART_RIS . . . . . . . . . . . . . . . . . . . . . . . . . . .317
UART_RSECR . . . . . . . . . . . . . . . . . . . . . . . .306
USB_ADDRn  . . . . . . . . . . . . . . . . . . . . . . . . .458
USB_CNTR  . . . . . . . . . . . . . . . . . . . . . . . . . .438
USB_COUNTn . . . . . . . . . . . . . . . . . . . . . . . .459
USB_DADDR . . . . . . . . . . . . . . . . . . . . . . . . .444
USB_DMABSIZE . . . . . . . . . . . . . . . . . . . . . .456
USB_DMACR1 . . . . . . . . . . . . . . . . . . . . . . . .451
USB_DMACR2 . . . . . . . . . . . . . . . . . . . . . . . .452
USB_DMACR3 . . . . . . . . . . . . . . . . . . . . . . . .453
USB_EPnR  . . . . . . . . . . . . . . . . . . . . . . . . . .446
USB_FNR  . . . . . . . . . . . . . . . . . . . . . . . . . . .443
USB_ISTR  . . . . . . . . . . . . . . . . . . . . . . . . . . .440

V
VICx_DVAR . . . . . . . . . . . . . . . . . . . . . . . . . .133
VICx_FSR  . . . . . . . . . . . . . . . . . . . . . . . . . . .129
VICx_INTECR  . . . . . . . . . . . . . . . . . . . . . . . .131
VICx_INTER . . . . . . . . . . . . . . . . . . . . . . . . . .130
VICx_INTSR . . . . . . . . . . . . . . . . . . . . . . . . . .130
VICx_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
VICx_PER  . . . . . . . . . . . . . . . . . . . . . . . . . . .132
VICx_RINTSR  . . . . . . . . . . . . . . . . . . . . . . . .129
VICx_SWINTCR . . . . . . . . . . . . . . . . . . . . . . .132
VICx_SWINTR . . . . . . . . . . . . . . . . . . . . . . . .131
VICx_VAiR . . . . . . . . . . . . . . . . . . . . . . . . . . .134
VICx_VAR  . . . . . . . . . . . . . . . . . . . . . . . . . . .133
VICx_VCiR . . . . . . . . . . . . . . . . . . . . . . . . . . .134

W
WDG_CNT . . . . . . . . . . . . . . . . . . . . . . . . . . .159
WDG_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
WDG_KR . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
WDG_MR . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
WDG_PR . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
WDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
WDG_VR . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
WIU_CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . .138
WIU_INTR  . . . . . . . . . . . . . . . . . . . . . . . . . . .141
WIU_MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
WIU_PR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
WIU_TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
www.st.com  . . . . . . . . . . . . . . . . . . . . . . . . . . . .1



   
   

   

RM0006

488/488  Doc ID 13742 Rev 4

         

 

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - 
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


	1 Memory and bus architecture
	1.1 Introduction
	Figure 1. Memory and bus architecture

	1.2 ARM9 TCM memories
	Figure 2. ARM966E TCM interfaces
	1.2.1 Burst Flash
	Figure 3. Burst Flash memory

	1.2.2 Memory accelerator: Pre-Fetch Queue (PFQ) and Branch Cache (BC)
	Figure 4. Memory accelerator
	Figure 5. 16th cache entry for instruction at address 0x0018

	1.2.3 Main SRAM

	1.3 Memory map
	Figure 6. STR91xFA system memory map
	Table 1. STR91xFAx32 Flash module organization
	Table 2. STR91xFAx44 Flash module organization
	Table 3. STR91xFAx46 Flash module organization
	Table 4. STR91xFAx47 Flash module organization (continued)
	Figure 7. Typical memory map with device configured to boot from Bank 0

	1.4 Initialization
	1.5 Boot configuration
	1.6 OTP sector
	1.7 External memory
	Figure 8. EMI Memory Map

	1.8 Peripheral access
	1.9 Peripheral memory map
	Table 5. Peripheral memory map (continued)

	1.10 FMI register description
	1.10.1 Boot bank size register (FMI_BBSR)
	1.10.2 Non-boot bank size register (FMI_NBBSR)
	1.10.3 Boot Bank base address register (FMI_BBADR)
	1.10.4 Non-boot bank base address register (FMI_NBBADR)
	1.10.5 FMI Control register (FMI_CR)
	1.10.6 FMI Status register (FMI_SR)
	1.10.7 BC 16th Entry Target Address register (FMI_BCE16ADDR)

	1.11 FMI register map
	Table 6. FMI register map

	1.12 External memory interface (EMI)
	1.12.1 Functional description
	Figure 9. EMI memory map

	1.12.2 Summary of bus configurations
	Figure 10. Mux mode with 16-bit data, 20-bit address
	Figure 11. Mux mode with 16-bit data, 24-bit address
	Figure 12. Non-mux mode with 8-bit data, 16-bit address
	Figure 13. Mux mode with 8-bit data, 16-bit address

	1.12.3 External memory interface (EMI) configuration/control
	1.12.4 External memory interface clock (BCLK)
	1.12.5 EMI bus timing configuration
	1.12.6 Timing rules
	1.12.7 Bus mode configuration
	Figure 14. Asynchronous read bus cycle (mux mode, with WSTOE = 2, WSTRD = 3)
	Figure 15. Asynchronous write bus cycle (mux mode, with WSTWE = 2, WSTWR = 3)
	Figure 16. Asynchronous page mode read bus cycle (with WSTOE = 1, WSTRD = 2, WSTBRD = 0, BRLEN = 4)
	Figure 17. EMI Bus "glue-less" interface to PSRAM
	Figure 18. PSRAM synchronous burst read bus cycle (with WSTOE = 4, WSTRD = 5, WSTBRD = 0 for 70ns PSRAM at 96 MHz BCLK)
	Figure 19. PSRAM synchronous burst write bus cycle (with WSTWEN = 0, WSTWR = 5 for 70 ns PSRAM at 96 MHz BCLK)

	1.12.8 Register description
	1.12.9 EMI register map
	Table 7. EMI register map



	2 Power, reset and clocks
	2.1 Power supply
	2.1.1 Main operating voltages
	Figure 20. Power supply overview

	2.1.2 Independent A/D converter supply and reference voltage
	2.1.3 Battery backup
	2.1.4 Power-up
	Figure 21. Reset timing


	2.2 Reset
	2.2.1 System reset
	2.2.2 Global reset
	2.2.3 Reset flags
	Table 8. Reset flags

	2.2.4 Reset peripherals (software reset)
	2.2.5 Reset output

	2.3 Low voltage detector
	2.4 Clocks
	2.4.1 External clock sources
	Figure 22. Clock control

	2.4.2 Master clock (fMSTR)
	2.4.3 Flash memory interface clock (FMICLK)
	2.4.4 UART and SSP clock (BRCLK)
	2.4.5 External memory interface clock (BCLK)
	2.4.6 USBCLK
	2.4.7 External RTC calibration clock
	2.4.8 PHY clock output
	2.4.9 PLL
	2.4.10 Changing the PLL configuration
	2.4.11 Clock dividers
	2.4.12 Peripheral clock gating

	2.5 Low power modes
	Figure 23. Comparison of power control modes
	Figure 24. Low power mode state diagram
	2.5.1 Normal run mode
	2.5.2 Special interrupt run mode
	2.5.3 Idle mode
	2.5.4 Sleep mode
	2.5.5 Sleep mode and Idle mode configuration considerations
	Figure 25. Clock management during Sleep Mode with crystal connected
	Figure 26. Clock management during Sleep mode with crystal and PLL
	Table 9. Sleep mode wakeup time for PLL, Flash and crystal
	Table 10. CCU output clocks that determine the entry time (tSLEEP)


	2.6 System control unit (SCU)
	2.6.1 SCU interrupts
	Figure 27. SCU Interrupts

	2.6.2 SRAM configuration/control
	2.6.3 PFQ/BC configuration/control
	2.6.4 External memory interface (EMI) configuration/control
	2.6.5 UART configuration/control
	2.6.6 Port 3.0 ETM trigger or external debug request selection
	2.6.7 System control unit GPIO registers
	2.6.8 ADC Fast trigger conversion in single mode
	2.6.9 Register description
	2.6.10 SCU register map
	Table 11. SCU register map



	3 General purpose I/O ports (GPIO)
	3.1 Functional description
	3.2 I/O operation
	3.2.1 GPIO_DATA register read/write masking
	Figure 28. Example Write to address 098h
	Figure 29. Example Read from address 0C4h

	3.2.2 Reset state

	3.3 System control unit GPIO registers
	Figure 30. I/O Control block diagram P0 - P7

	3.4 Register description
	3.4.1 GPIO data register (GPIO_DATA)
	3.4.2 GPIO data direction register (GPIO_DIR)
	3.4.3 GPIO mode control register (GPIO_SEL)
	3.4.4 GPIO register map
	Table 12. GPIO register map



	4 Interrupts (VIC and WIU)
	4.1 Overview
	Figure 31. Interrupt control block diagram

	4.2 Interrupt inputs to the CPU
	4.3 Vectored interrupt controller (VIC)
	4.4 FIQ handling
	4.5 IRQ handling
	Table 13. VIC interrupt channels
	Figure 32. VIC interrupt request logic

	4.6 VIC register address mapping
	4.7 Interrupt priority
	4.8 Software interrupts
	4.9 Enabling interrupts
	4.10 Register description
	4.10.1 IRQ status register (VICx_ISR)
	4.10.2 FIQ status register (VICx_FSR)
	4.10.3 Raw interrupt status register (VICx_RINTSR)
	4.10.4 Interrupt select register (VICx_INTSR)
	4.10.5 Interrupt enable register (VICx_INTER)
	4.10.6 Interrupt enable clear register (VICx_INTECR)
	4.10.7 Software interrupt register (VICx_SWINTR)
	4.10.8 Software interrupt clear register (VICx_SWINTCR)
	4.10.9 Protection enable register (VICx_PER)
	4.10.10 Current vector address register (VICx_VAR)
	4.10.11 Default vector address register (VICx_DVAR)
	4.10.12 Vector address i registers (VICx_VAiR)
	4.10.13 Vector control i registers (VICx_VCiR)

	4.11 VIC register map
	Table 14. VICx register map

	4.12 Wakeup/Interrupt Unit (WIU)
	4.12.1 Features
	Figure 33. WIU block diagram

	4.12.2 Register description
	4.12.3 WIU register map
	Table 15. WIU register map



	5 Real time clock (RTC)
	5.1 Introduction
	5.2 Main features
	Figure 34. RTC simplified block diagram
	5.2.1 RTC clock control
	5.2.2 Battery backup

	5.3 Reset
	5.4 Clock calibration output
	5.5 Time of day clock / calendar
	5.6 Tamper detection
	5.7 Alarm
	5.8 Periodic interrupt
	5.9 Register description
	5.9.1 RTC time register (RTC_TR)
	5.9.2 RTC date register (RTC_DTR)
	5.9.3 RTC alarm time register (RTC_ATR)
	5.9.4 RTC control register (RTC_CR)
	5.9.5 RTC status register (RTC_SR)
	5.9.6 RTC millisecond register (RTC_MILR)

	5.10 RTC register map
	Table 16. RTC register map


	6 Watchdog timer (WDG)
	6.1 Introduction
	6.2 Main features
	6.3 Functional description
	6.3.1 Free-running timer mode
	Figure 35. Watchdog timer functional block

	6.3.2 Watchdog mode
	6.3.3 Programming considerations

	6.4 Register description
	6.4.1 WDG control register (WDG_CR)
	6.4.2 WDG prescaler register (WDG_PR)
	6.4.3 WDG preload value register (WDG_VR)
	6.4.4 WDG counter register (WDG_CNT)
	6.4.5 WDG status register (WDG_SR)
	6.4.6 WDG mask register (WDG_MR)
	6.4.7 WDG key register (WDG_KR)

	6.5 Watchdog timer register map
	Table 17. Watchdog timer register map


	7 16-bit timer (TIM)
	7.1 Introduction
	7.2 Main features
	Figure 36. Timer block diagram

	7.3 Functional description
	7.3.1 Counter
	7.3.2 External clock
	Figure 37. Counter timing diagram, internal clock divided by 2
	Figure 38. Counter timing diagram, internal clock divided by 4
	Figure 39. Counter timing diagram, internal clock divided by n

	7.3.3 Input capture
	Figure 40. Input capture block diagram
	Figure 41. Input capture timing diagram, internal clock divided by 8

	7.3.4 Output compare
	Figure 42. Output compare block diagram
	Figure 43. Output compare timing diagram, Internal Clock Divided by 2

	7.3.5 Forced compare mode
	7.3.6 One pulse mode
	Figure 44. One pulse mode flowchart
	Figure 45. One pulse mode timing

	7.3.7 Pulse width modulation mode
	Figure 46. PWM mode flowchart
	Figure 47. Pulse width modulation mode timing

	7.3.8 Pulse width modulation input mode
	Figure 48. Pulse width modulation input mode timing


	7.4 Interrupt management
	7.5 DMA
	7.6 Register description
	7.6.1 Input capture register 1 (TIM_IC1R)
	7.6.2 Input capture register 2 (TIM_IC2R)
	7.6.3 Output compare register 1 (TIM_OC1R)
	7.6.4 Output compare register 2 (TIM_OC2R)
	7.6.5 Counter register (TIM_CNTR)
	7.6.6 Control register 1 (TIM_CR1)
	7.6.7 Control register 2 (TIM_CR2)
	7.6.8 Status register (TIM_SR)

	7.7 TIM register map
	Table 18. TIM register map


	8 MAC/DMA controller with DMA (ENET)
	Figure 49. MAC/DMA block diagram
	8.1 Functional description
	8.1.1 MAC 802.3
	8.1.2 MII
	Table 19. TX interface signals encoding
	Table 20. RX interface signals encoding
	Figure 50. Transmission with no collision
	Figure 51. Transmission with collision
	Figure 52. Reception with no errors
	Figure 53. Reception with errors
	Figure 54. Reception with false carrier indication
	Figure 55. MII TX interface: output timing requirements
	Figure 56. MII RX interface: input timing requirements
	Table 21. Management frame format
	Figure 57. MII management interface: input timing requirements (PHY device)
	Figure 58. MII management interface: output timing requirements (PHY device)

	8.1.3 DMA

	8.2 MAC 802.3 operation
	8.2.1 MAC 802.3 frame format
	Figure 59. Address field format
	Figure 60. MAC frame format
	Figure 61. Tagged MAC frame format

	8.2.2 MAC frame reception
	Figure 62. RX Packet status word modification

	8.2.3 Frame reception errors
	8.2.4 MAC frame transmission
	Figure 63. TX Packet Status word modification

	8.2.5 Frame transmission errors
	8.2.6 Loopback mode

	8.3 DMA controller operation
	8.3.1 RX DMA configuration
	8.3.2 RX DMA descriptors
	8.3.3 RX error handling
	Figure 64. DMA Descriptor in main memory

	8.3.4 RX packet status word
	8.3.5 TX DMA configuration
	8.3.6 TX DMA descriptors
	8.3.7 TX packet status word

	8.4 Register description
	8.4.1 DMA status/control register (ENET_SCR)
	8.4.2 DMA interrupt enable register (ENET_IER)
	8.4.3 DMA interrupt status register (ENET_ISR)
	8.4.4 Clock configuration register (ENET_CCR)
	8.4.5 RX start register (ENET_RXSTR)
	8.4.6 RX control register (ENET_RXCR)
	8.4.7 RX start address register (ENET_RXSAR)
	8.4.8 RX next descriptor address register (ENET_RXNDAR)
	8.4.9 RX current address register (ENET_RXCAR)
	8.4.10 RX current transfer count register (ENET_RXCTCR)
	8.4.11 RX time-out register (ENET_RXTOR)
	8.4.12 RX status register (ENET_RXSR)
	8.4.13 TX start register (ENET_TXSTR)
	8.4.14 TX control register (ENET_TXCR)
	8.4.15 TX start address register (ENET_TXSAR)
	8.4.16 TX next descriptor address register (ENET_TXNDAR)
	8.4.17 TX current address register (ENET_TXCAR)
	8.4.18 TX current transfer count register (ENET_TXCTCR)
	8.4.19 TX time-out register (ENET_TXTOR)
	8.4.20 TX status register (ENET_TXSR)
	8.4.21 MAC control register (ENET_MCR)
	8.4.22 MAC address high register (ENET_MAH)
	8.4.23 MAC address low register (ENET_MAL)
	8.4.24 Multicast address high register (ENET_MCHA)
	8.4.25 Multicast address low register (ENET_MCLA)
	8.4.26 MII address register (ENET_MIIA)
	8.4.27 MII data register (ENET_MIID)
	8.4.28 MII control frame register (ENET_MCF)
	8.4.29 VLAN1 register (ENET_VL1)
	8.4.30 VLAN2 register (ENET_VL2)
	8.4.31 MAC transmission status register (ENET_MTS)
	8.4.32 MAC reception status register (ENET_MRS)

	8.5 Ethernet controller register map
	Table 22. Ethernet controller register map


	9 DMA controller (DMAC)
	9.1 Introduction
	Figure 65. DMA block diagram

	9.2 Main features
	Table 23. DMA request signal mapping

	9.3 Functional description
	9.3.1 DMA request priority
	9.3.2 Protection control
	9.3.3 Lock control
	9.3.4 Bus width
	9.3.5 Interrupt generation logic

	9.4 Software considerations
	9.4.1 Error conditions
	9.4.2 Programming the DMAC
	9.4.3 Address generation
	9.4.4 Scatter/gather
	9.4.5 Linked list items
	Figure 66. LLI example

	9.4.6 Programming the DMAC for scatter/gather DMA
	9.4.7 Interrupt requests
	9.4.8 Combined terminal count and error interrupt sequence flow
	9.4.9 Interrupt polling sequence flow
	9.4.10 DMAC data flow

	9.5 Register description
	9.5.1 Common registers
	9.5.2 Channel registers

	9.6 DMA register map
	Table 24. DMA register map


	10 Synchronous serial peripheral (SSP)
	10.1 Introduction
	10.2 Main features
	10.3 Functional description
	Figure 67. SSP block diagram
	10.3.1 Pin description
	Table 25. SSP pins
	Figure 68. Interconnection example

	10.3.2 Master mode
	10.3.3 Slave mode
	10.3.4 Slave Select management
	Figure 69. Generic NSS Timing Diagram


	10.4 SSP operation
	10.4.1 Configuring the SSP
	10.4.2 Enabling SSP operation
	10.4.3 Programming the SSP_CR0 control register
	10.4.4 Programming the SSP_CR1 control register
	10.4.5 Clock ratios
	10.4.6 Bit rate generation
	10.4.7 Frame format
	Figure 70. TI synchronous serial frame format (single transfer)
	Figure 71. TI synchronous serial frame format (continuous transfer)
	Figure 72. Motorola SPI frame format
	Figure 73. Microwire frame format (single transfer)
	Figure 74. Microwire frame format (continuous transfers)

	10.4.8 Transmit FIFO
	10.4.9 Receive FIFO
	10.4.10 Interrupt control

	10.5 Register description
	10.5.1 Control register 0 (SSP_CR0)
	10.5.2 Control register 1 (SSP_CR1)
	10.5.3 Data register (SSP_DR)
	10.5.4 Status register (SSP_SR)
	10.5.5 Clock prescaler register (SSP_PR)
	10.5.6 Interrupt mask set and clear register (SSP_IMSCR)
	10.5.7 Raw interrupt status register (SSP_RISR)
	10.5.8 Masked interrupt status register (SSP_MISR)
	10.5.9 Interrupt clear register (SSP_ICR)
	10.5.10 DMA control register (SSP_DMACR)

	10.6 SSP register map
	Table 26. SSP register map


	11 Universal asynchronous receiver transmitter (UART)
	11.1 Introduction
	11.2 Main features
	11.3 Functional description
	Figure 75. 8-bit data frames
	Figure 76. 8-bit data frames with PEN = 1 and STP2 = 1
	11.3.1 Functional block diagram
	Figure 77. Block diagram

	11.3.2 Fractional baud rate divider
	Figure 78. Baud rate divider
	Figure 79. Calculating the divider value
	Table 27. Typical baud rates and their corresponding integer and fractional (dividers (BRCLK = 96 MHz)
	Table 28. Typical baud rates and their corresponding integer and fractional dividers (BRCLK = 48 MHz)
	Table 29. Typical baud rates and their corresponding integer and fractional dividers (BRCLK = 24 MHz)

	11.3.3 Data transmission or reception
	Table 30. Receive FIFO bit functions

	11.3.4 UART hardware flow control
	Figure 80. Hardware flow control between two similar devices
	Table 31. Control bits to enable and disable hardware flow control

	11.3.5 IrDA mode
	11.3.6 Interrupts
	Table 32. Status of individual interrupt sources


	11.4 Register description
	11.4.1 Data register (UART_DR)
	11.4.2 Receive status register/error clear register(UART_RSECR)
	11.4.3 Flag register (UART_FR)
	11.4.4 IrDA low power counter divisor register (UART_ILPR)
	11.4.5 Integer baud rate register (UART_IBRD)
	11.4.6 Fractional baud rate register (UART_FBRD)
	11.4.7 Line control register (UART_LCR)
	Table 33. SPS, EPS and PEN bits truth table

	11.4.8 Control register (UART_CR)
	11.4.9 Interrupt FIFO level select register (UART_IFLS)
	11.4.10 Interrupt mask set/clear register (UART_IMSC)
	11.4.11 Raw interrupt status register (UART_RIS)
	11.4.12 Masked interrupt status register (UART_MIS)
	11.4.13 Interrupt clear register (UART_ICR)
	11.4.14 DMA control register (UART_DMACR)
	Table 34. Trigger points for DMA burst requests


	11.5 UART register map
	Table 35. UART register map


	12 I2C interface module (I2C)
	12.1 Main features
	12.2 General description
	12.2.1 Mode selection
	12.2.2 Communication flow
	Figure 81. I2C bus protocol

	12.2.3 SDA/SCL line control
	Figure 82. I2C interface block diagram


	12.3 Functional description
	12.3.1 Slave mode
	12.3.2 Master mode
	Figure 83. Transfer sequencing


	12.4 Interrupts
	Figure 84. Event flags and interrupt generation

	12.5 Register description
	12.5.1 I2C control register (I2C_CR)
	12.5.2 I2C status register 1 (I2C_SR1)
	12.5.3 I2C status register 2 (I2C_SR2)
	12.5.4 I2C clock control register (I2C_CCR)
	12.5.5 I2C extended clock control register (I2C_ECCR)
	12.5.6 I2C own address register 1 (I2C_OAR1)
	Table 36. 7-bit addressing mode
	Table 37. 10-bit Addressing Mode

	12.5.7 I2C own address register 2 (I2C_OAR2)
	12.5.8 I2C data register (I2C_DR)

	12.6 I2C register map
	Table 38. I2C register map


	13 3-phase induction motor controller (MC)
	13.1 Introduction
	13.2 Main features
	13.3 Functional description
	Figure 85. MC controller block diagram
	Figure 86. Counting sequence in zerocentered and classical mode
	Figure 87. Zerocentered PWM waveforms (Compare 0 register = 8)
	Figure 88. Normal zerocentered mode
	Figure 89. Double update zerocentered mode
	Figure 90. Classical PWM Waveforms (Compare 0 Register = 8)
	Figure 91. Dead Time waveforms
	Figure 92. Dead time waveforms with delay greater than the negative PWM pulse
	Figure 93. Dead time waveforms with delay greater than the positive PWM pulse
	13.3.1 Tacho counter operating modes
	13.3.2 MC operating modes
	13.3.3 MC output selection
	Figure 94. MC output selection


	13.4 Register description
	13.4.1 Tacho capture register (MC_TCPT)
	13.4.2 Tacho compare register (MC_TCMP)
	13.4.3 Interrupt pending register (MC_IPR)
	13.4.4 Tacho prescaler register (MC_TPRS)
	13.4.5 PWM counter prescaler register (MC_CPRS)
	13.4.6 Repetition counter register (MC_REP)
	13.4.7 Compare phase W preload register (MC_CMPW)
	13.4.8 Compare phase V preload register (MC_CMPV)
	13.4.9 Compare phase U preload register (MC_CMPU)
	13.4.10 Compare 0 preload register (MC_CMP0)
	13.4.11 Peripheral control register 0 (MC_PCR0)
	13.4.12 Peripheral control register 1 (MC_PCR1)
	13.4.13 Peripheral control register 2 (MC_PCR2)
	13.4.14 Polarity selection register (MC_PSR)
	13.4.15 Output peripheral register (MC_OPR)
	13.4.16 Interrupt mask register (MC_IMR)
	13.4.17 Dead time generator register (MC_DTG)
	13.4.18 Emergency stop clear register (MC_ESC)
	13.4.19 Enhanced control register (MC_ECR)
	13.4.20 Lock register (MC_LOK)

	13.5 MC register map
	Table 39. MC register map


	14 Controller area network (CAN)
	14.1 Introduction
	14.2 Main features
	14.3 Block diagram
	Figure 95. Block diagram of the CAN Peripheral

	14.4 Functional description
	14.4.1 Software initialization
	14.4.2 CAN message transfer
	14.4.3 Disabled automatic re-transmission mode
	14.4.4 Test mode
	Figure 96. CAN core in silent mode
	Figure 97. CAN core in loop back mode
	Figure 98. CAN core in loop back mode combined with silent mode


	14.5 Register description
	Table 40. CAN registers
	14.5.1 CAN interface reset state
	14.5.2 CAN protocol related registers
	Table 41. Error codes

	14.5.3 Message interface register sets
	Table 42. IF1 and IF2 message interface register set
	Table 43. Structure of a message object in the message memory

	14.5.4 Message handler registers
	Table 44. Source of interrupts


	14.6 Can register map
	Table 45. CAN register map

	14.7 CAN communications
	14.7.1 Managing message objects
	14.7.2 Message handler state machine
	Figure 99. Data transfer between IFn Registers and Message RAM

	14.7.3 Configuring a transmit object
	Table 46. Initialization of a Transmit Object

	14.7.4 Updating a transmit object
	14.7.5 Configuring a receive object
	Table 47. Initialization of a Receive Object

	14.7.6 Handling received messages
	14.7.7 Configuring a FIFO buffer
	14.7.8 Receiving messages with FIFO buffers
	Figure 100. CPU handling of a FIFO buffer

	14.7.9 Handling interrupts
	14.7.10 Configuring the bit timing
	Figure 101. Bit timing
	Table 48. CAN bit time parameters
	Figure 102. Propagation time segment
	Figure 103. Synchronization on “late” and “early” Edges
	Figure 104. Filtering of short dominant spikes
	Figure 105. Structure of the CAN core’s CAN protocol controller



	15 USB slave interface (USB)
	15.1 Introduction
	15.2 Main features
	15.3 Block diagram
	Figure 106. USB Peripheral block diagram

	15.4 Functional description
	15.4.1 Description of USB blocks

	15.5 Programming considerations
	15.5.1 Generic USB device programming
	15.5.2 System and power-on reset
	Figure 107. Packet buffer areas with examples of buffer description table locations

	15.5.3 Double-buffered endpoints
	Table 49. Double-buffering buffer flag definition
	Table 50. Double-buffering memory buffers usage

	15.5.4 Isochronous transfers
	Table 51. Isochronous memory buffers usage

	15.5.5 Suspend/Resume events
	Table 52. Resume event detection


	15.6 Register description
	15.6.1 Common registers
	15.6.2 Endpoint-specific registers
	Table 53. Reception status encoding
	Table 54. Endpoint type encoding
	Table 55. Endpoint kind meaning
	Table 56. Transmission status encoding

	15.6.3 DMA registers
	15.6.4 Buffer descriptor table
	Table 57. Definition of allocated buffer memory

	15.6.5 USB peripheral register page maping
	Table 58. USB peripheral register page mapping



	16 Analog-to-digital converter (ADC)
	16.1 Main characteristics
	16.2 Introduction
	Figure 108. ADC block diagram
	16.2.1 Clock prescaler
	16.2.2 Interrupts
	16.2.3 DMA

	16.3 External pins
	16.4 Functional description
	Figure 109. ADC operation flowchart
	16.4.1 Conversion modes
	16.4.2 Power management
	16.4.3 Starting conversion
	16.4.4 Fast trigger conversion in single mode
	Figure 110. ADC clock gated in Fast trigger conversion mode

	16.4.5 Analog watchdog
	Figure 111. Analog watchdog guarded area


	16.5 Register description
	16.5.1 ADC control register (ADC_CR)
	16.5.2 Channel configuration register (ADC_CCR)
	16.5.3 High threshold register (ADC_HTR)
	16.5.4 Low threshold register (ADC_LTR)
	16.5.5 Compare result register (ADC_CRR)
	16.5.6 ADC data register (ADC_DRx)
	16.5.7 ADC prescaler register (ADC_PRS)
	16.5.8 ADC DMA data register (ADC_DDR)
	16.5.9 ADC control register 2 (ADC_CR2)

	16.6 ADC register map
	Table 59. ADC register map


	17 AHB/APB bridges (APB)
	17.1 Main features
	17.2 Split transactions
	17.3 Error handling
	17.4 Register description
	17.4.1 Bridge status register (APB_BSR)
	17.4.2 Bridge configuration register (APB_BCR)
	17.4.3 Peripheral address register (APB_PAER)

	17.5 AHB/APB bridge register map
	Table 60. Bridge register map


	18 Revision history
	Table 61. Document revision history


