
January 2008 Rev 1 1/30

UM0463
User manual

ST7 full-speed USB library

Introduction
The "ST7 Full-Speed USB Library" (hereafter "the library") is designed for ST7 full-speed
USB products. With the library, the user of the ST7265 and ST7SCR will have easy access
to the embedded USB cell. The library is provided with full source code and it can be used
for any USB application. The library also provides an optional feature to upgrade the
firmware of the microcontroller through the USB. This document describes the use and the
implementation of the library.

■ Definitions:

– USB Universal Serial Bus

– HID Human Interface Devices

– DFU Device Firmware Update

– IAP In-Application Programming

www.st.com

http://www.st.com

Contents UM0463

2/30

Contents

1 Overview . 5

1.1 Functionality of the library . 5

1.2 Background of ST7 full-speed USB device . 5

1.2.1 USB device . 5

2 Programming model of the library . 7

2.1 Handling control endpoint 0 . 7

2.2 Transactions on noncontrol endpoints . 8

2.3 Special note on MCU interrupt . 8

3 The USB state machine of the control endpoint 9

3.1 The states . 9

3.2 Data structure for the SETUP packet . 10

3.3 Standard requests . 11

3.4 Nonstandard requests . 13

3.4.1 SETUP stage . 13

3.4.2 Data stage . 13

Data IN stage with continued data buffer .13

Data IN stage with noncontinued data buffer .13

Data OUT stage .14

3.4.3 Status stage . 14

3.5 Processing of standard requests . 14

3.5.1 Get status . 15

Recipient of the device .15

Recipient of the interface .15

Recipient of the endpoint .15

3.5.2 Clear feature and set feature . 15

3.5.3 Recipient of device . 15

Recipient of interface .15

Recipient of endpoint .16

3.5.4 Set address . 16

3.5.5 Get descriptor . 16

Constant descriptors. .16

Nonconstant descriptors. .17

Standard request with constant descriptors .17

UM0463 Contents

3/30

3.5.6 Set configuration and get configuration . 17

3.5.7 Set interface and get interface . 17

3.5.8 Status stage of the standard requests . 18

3.6 The execution of the state machine . 18

4 Data transfer on noncontrol endpoints . 20

4.1 Sending data to the host . 20

4.2 Receiving data from the host . 20

4.3 Handling noncontrol endpoints directly . 21

4.3.1 Endpoint status registers . 21

4.3.2 DMA counter registers . 22

4.3.3 DMA buffers . 22

4.3.4 Sending data to the host . 22

4.3.5 Receiving data from the host . 22

5 USB control functions for nondata transfer . 23

5.1 Library initialization . 23

5.2 Device reset . 23

5.3 Start of frame . 23

6 Device firmware upgrade support . 24

7 The library package and its configuration . 25

7.1 The contents of the package . 25

7.2 Configuration of the library package . 26

7.3 Application interface to the library . 27

8 Comments about the sample project . 28

9 References . 28

10 Revision history . 29

List of tables UM0463

4/30

List of tables

Table 1. Endpoint configuration . 5
Table 2. Endpoint status . 5
Table 3. USB events. 6
Table 4. States of USB state machine . 9
Table 5. SETUP packet fields. 10
Table 6. Bitmap of flag field in sUSB_vSetup . 11
Table 7. Standard requests . 11
Table 8. Code structure . 25
Table 9. Call back functions . 27
Table 10. Document revision history . 29

UM0463 Overview

5/30

1 Overview

1.1 Functionality of the library
As a generic USB library, it provides the following functionalities:

● Initialize the USB hardware cell

● Answer all standard USB requests defined in Chapter 9 of USB specification [1]

● Enumerate the USB device to the host with less user code intervention

● Means for plug-in user code to handle nonstandard USB requests

● Functions for sending and/or receiving data on all the endpoints

● Optional DFU functionality without any user code intervention

1.2 Background of ST7 full-speed USB device

1.2.1 USB device

The ST7 full-speed USB device implements several USB endpoints. The number of
endpoints varies among products. Table 1 lists the endpoint configuration of each product:

The figures in the above table represent the maximum packet size allowed for a particular
endpoint. An endpoint is identified with its address and its direction. The endpoint in address
0 is the control endpoint and is always bidirectional. In the table, IN identifies that the
direction of the endpoint is from the device to the host and OUT identifies that the direction
of the endpoint is from the host to the device.

The data exchange on endpoints is done through endpoint DMA buffers. The endpoint DMA
buffers are located in the fixed location of RAM area and their locations vary among
products.

There is a pair of registers corresponding to each endpoint. They are the endpoint status
register and the DMA counter register. The endpoint status register identifies four status of
the endpoint:

Table 1. Endpoint configuration

Endpoint 0 1 IN 1 OUT 2 IN 2 OUT 3 IN 4 IN 5 IN

ST7265 16 16 16 64 64 N/A N/A N/A

ST7SCR 8 8 N/A 64 64 8 8 8

Table 2. Endpoint status

Status Meaning

DISABLE The endpoint does not answer any bus traffic.

STALL The endpoint stalls any IN token for IN direction or OUT token for OUT direction.

Overview UM0463

6/30

There are two interrupt sources that inform the software about the USB status, generic USB
interrupt and the End of Suspend interrupt. The generic USB interrupt integrates six USB
events. They are defined in Table 3.

The End Of Suspend (ESUSP) interrupt is asserted to wake up the device when bus activity
is detected in suspend mode.

In summary, to send data from the device to the host, one has to copy the data to one of the
IN endpoint buffers, then set the number of bytes to be sent in the corresponding endpoint
counter register, and set the endpoint status register to ACK state. Afterward, the device
waits for the USB host to send an IN token to that endpoint and the device sends the data
bytes after the IN token. After the host receives the data packet, it sends an ACK token to
acknowledge reception. The device sees the ACK token from the host and generates a CTR
interrupt to inform the software that the data transmission is successful.

Contrary to receiving data from the host, the corresponding endpoint counter register has to
be set as the number of bytes expected and the endpoint status register is set to ACK state.
When the host sends an OUT token to that endpoint and followed by the data packet, the
device copies the data packet to the endpoint DMA buffer. After the device receives the data
packet correctly, it sends an ACK token to acknowledge reception and then generates a
CTR interrupt to inform the software that the data has been successfully received. At this
time, the counter register contains the difference of expected bytes and received bytes.

If the device wants to send or receive data bytes containing more than the maximum packet
size of an endpoint, several sending or receiving procedures must be performed.

NAK(1) The endpoint responds with NAK to any IN token for IN direction or NAK to any OUT
token for OUT direction, and without data transfer.

ACK

– IN direction: The endpoint can send data to the host and the counter register gives
the number of bytes to be sent.

– OUT direction: The endpoint can receive data and responses with ACK after the
data packet and the counter register indicates the number of bytes received after the
device ACKs the data packet.

At the end of the data transmission, the hardware machine switches to NAK.

1. In case of error on data toggling bit, the hardware machine does the data retransmission

Table 2. Endpoint status (continued)

Status Meaning

Table 3. USB events

Events Meaning

Correct Transfer (CTR)
A correct USB transfer is complete on either endpoint. The software is responsible for
checking what the endpoint is.

Setup Overrun (SOVR)
A SETUP transfer is complete when a previous CTR is pending. It happens when the
software does not have enough time to process a CTR event.

Error (ERR) The USB cell detects a bus error. Register ERRSR gives the type of error.

Suspend request (SUSP)
The USB cell detects that the bus is idle for more than 3ms, requiring the device to enter
suspend mode.

Reset (RESET) The USB cell detects a USB reset sequence on the bus.

Start of frame (SOF) A SOF token is received.

UM0463 Programming model of the library

7/30

2 Programming model of the library

2.1 Handling control endpoint 0
The USB specification[1] defines four transfer types, Control, Interrupt, Bulk and
Isochronous. The USB host sends requests to the device through the control endpoint
(every USB device has only one control endpoint). The format of the requests is defined and
is sent to the device as a SETUP packet. The meaning of the requests is classified into
three categories: standard, class specific and vendor specific.

Since the standard requests are common and generic to all USB devices, the library
receives and handles all standard requests on the control endpoint 0. The library also
handles DFU specific requests by itself without any user code intervention. The library
answers requests without the intervention of the user application if the library has enough
information about the requests.

 Otherwise, the library will call user application defined callback functions to process the
requests when some application actions are needed or some information from the
application is needed.

The format and the meaning of the class specific requests and the vendor specific requests
are not common to all USB devices. The library does not handle any of the requests in these
categories except DFU requests. Whenever the library receives a request that it does not
know, the library calls a user defined callback function and passes the request to the user
application code.

All the SETUP requests are processed with a state machine. Two models are implemented
to run this state machine, the polling model and the interrupt model.

As stated previously in Section 1.2.1: USB device, an interrupt is generated at the end of the
correct USB transfer. The library code receives this interrupt. In the interrupt process
routine, the trigger endpoint is identified. If the event is Correct Transfer on endpoint 0, the
state machine is started with the token received in the interrupt model immediately, or the
token received is saved and the state machine is started from the main loop in the polling
model afterward.

The advantage of the interrupt model is that the device answers the host requests to the
control endpoint in the fastest way which improves the overall performance of the whole
USB system. The disadvantage of the interrupt model is that the MCU global interrupt will
be disabled for a slightly longer time and the other application defined interrupt events have
to wait for the USB process finishes to be served. Some programming restrictions are
required in the interrupt model because of the limitation of the particular compiler.

On the other hand, the advantage and the disadvantage of the polling model are reversed.
The running of the USB state machine would not interfere with the other part of the
application. The application developer has the freedom to run the USB state machine at the
time when he/she wants. In the polling model, the library responds to the USB requests
quite slower than running in the interrupt model. This may slow down the bus in a fast
system or in systems with a lot of transactions on the control endpoint.

In the polling model, USB_Polling () is used to run the USB state machine. The user code
has to call this function from his/her main (see app_main () function) loop. The USB model is
selected in the configuration file (mcu_conf.h).

Programming model of the library UM0463

8/30

2.2 Transactions on noncontrol endpoints
The user application uses noncontrol endpoints by calling a set of functions to send or
receive data. The user application calls a function to pass the data buffer that contains the
data or will receive the data from the library and calls another function to inquire if the
transaction is finished. This inquiry checks an internal flag that represents the status of the
transceiver.

The interrupt model and the polling model are implemented for the noncontrol endpoints too.
The flag of the transceiver status is set in the interrupt routine as soon as the transaction is
done in the interrupt model, but the flag is set in the USB polling routine if the polling model
is selected. Obviously, the interrupt model improves overall system performance.

2.3 Special note on MCU interrupt
The USB events are very special versus other events in the MCU application. Interrupt of
the USB events has to be answered as soon as possible, otherwise, the performance of the
USB system would be decreased and some USB events may be lost.

The library configures the MCU to work on nested interrupt mode and set the USB interrupt
as the highest interrupt level, so that the USB interrupt will be served in the fastest way.

In the interrupt model, the USB interrupt is configured as interrupt level 3 and the USB state
machine will be running in interrupt level 2. All the other interrupt sources are configured as
interrupt level 1.

In the polling model, the USB interrupt is configured as interrupt level 3 and the USB state
machine will be running in interrupt level 1. All the other interrupt sources are configured as
interrupt level 1. The user code can change the non-USB interrupt to level 2.

The user application has to be aware of this special configuration when using the interrupt
peripheral of the MCU.

UM0463 The USB state machine of the control endpoint

9/30

3 The USB state machine of the control endpoint

3.1 The states
The USB state machine implemented in the library is used to handle the requests on the
control endpoint only. The state machine does not process any transactions of noncontrol
endpoints.

The USB state machine is designed to execute the SETUP requests. A SETUP request
consists of three stages: SETUP stage, data stage and status stage. The states of the state
machine are designed to match these three stages.

Figure 1. States evaluation

Table 4. States of USB state machine

State Meaning

Wait_Setup The state machine is in idle.

In_Data The state machine is in data IN stage and is waiting for an IN data packet.

Out_Data The state machine is in data OUT stage and is waiting to send an OUT data packet.

One_More_In
The state machine is in data IN stage and is waiting for a zero-length IN data packet when the
length of the data stream in the data stage is multiple of the maximum packet size of the
endpoint.

One_More_Out
The state machine is in data OUT stage and is waiting for sending a zero-length OUT data
packet when the length of the data stream in the data stage is a multiple of the maximum packet
size of the endpoint.

Wait_Status_In
The state machine is waiting for a status IN stage after the data OUT stage is finished, or after
the SETUP stage if there is no data stage.

Wait_Status_Out The state machine is waiting for a status OUT stage after the data IN stage is finished.

Address2Set This is a special state to identify the process of a Set Address request.

State_Error An error is detected, such as an invalid request.

SETUP

SETUP

SETUP

IN OUT

IN

OUT OUTOUT

ININ

IN

Wait_Setup In_Data

Wait_Status_In

Wait_Setup

Wait_Setup

Out_Data

Wait_Status_Out

.....

.....

The USB state machine of the control endpoint UM0463

10/30

3.2 Data structure for the SETUP packet
When a new SETUP packet arrives, all eight bytes of the SETUP packet are copied to an
internal structure sUSB_vSetup, so that the next SETUP packet does not overwrite the
previous one during processing. This internal structure is defined as:

typedef struct USB_vSetup {

unsigned char USBbmRequestType;

unsigned char USBbRequest;

WORD_BYTE USBwValues;

WORD_BYTE USBwIndexes;

WORD_BYTE USBwLengthes;

unsigned char Flag;

} _USB_VSETUP;

_USB_VSETUP sUSB_vSetup;

This structure is used in the library and is used in the user code of the USB callback
functions. Referring to Table 9-2 of the USB specification [1], each field of the structure
corresponds to a SETUP field.

The bitmap of the flag field in the structure is designed to shorten the code size. Table 6
shows the corresponding meaning in each bit and it is set during the copy of the SETUP
packet.

Table 5. SETUP packet fields

Field in SETUP packet Software name with the defined structure

bmRequestType sUSB_vSetup.USBbmRequestType

bRequest sUSB_vSetup.USBbRequest

wValue sUSB_vSetup.USBwValue

High byte of wValue sUSB_vSetup.USBwValue1

Low byte of wValue sUSB_vSetup.USBwValue0

wIndex sUSB_vSetup.USBwIndex

High byte of wIndex sUSB_vSetup.USBwIndex1

Low byte of wIndex sUSB_vSetup.USBwIndex0

wLength sUSB_vSetup.USBwLength

High byte of wLength sUSB_vSetup.USBwLength1

Low byte of wLength sUSB_vSetup.USBwLength0

UM0463 The USB state machine of the control endpoint

11/30

Table 6. Bitmap of flag field in sUSB_vSetup

3.3 Standard requests
Most of the requests specified in Table 9-3 of the USB specification [1] are treated as
standard requests in the library. Table 7 lists all the standard requests and their valid
parameters in the library. Requests that are not in the table below are considered as
nonstandard requests.

D7 D6 D5 D4 D3 D2 D1 D0

 Set if high byte of wValue is not zero

Set if low byte of wValue is not zero

Set if high byte of wIndex is not zero

Set if low byte of wIndex is not zero

Set if high byte of wLength is not zero

Set if low byte of wLength is not zero

Set if wLength is 1 (one)

Set if wLength is 2 (two)

Table 7. Standard requests

State
bmRequest

Type

Low
byte of
wValue

High
byte of
wValue

Low
byte of
wIndex

High
byte of
wIndex

wLength Comments

GET_STATUS

A, C 80 00 00 00 00 2
Get Status of the
Device.

C 81 00 00 N 00 2
Get Status of Interface,
N is the valid interface
number.

A, C 82 00 00 00 00 2
Get Status of Endpoint
0 OUT direction.

A, C 82 00 00 80 00 2
Get Status of Endpoint
0 IN direction.

C 82 00 00 EP 00 2
Get Status of Endpoint
EP.

The USB state machine of the control endpoint UM0463

12/30

CLEAR_FEATURE

A, C 00 01 00 00 00 00
Clear the device
remote wake-up
feature.

C 02 00 00 EP 00 00

Clear STALL condition
of endpoint EP. EP
does not refer to
endpoint 0.

SET_FEATURE

A, C 00 01 00 00 00 00
Set the device remote
wake-up feature.

C 02 00 00 EP 00 00
Set STALL condition of
endpoint EP. EP does
not refer to endpoint 0.

SET_ADDRESS D, A 00 N 00 00 00 00
Set the device address,
N is the valid device
address.

GET_DESCRIPTOR

All 80 00 01 00 00 Non-0
Get the device
descriptor.

All 80 N 02 00 00 Non-0

Get the configuration
descriptor; N is the
valid configuration
index.

All 80 N 03 LangID Non-0

Get the string
descriptor; N is the
valid string index. This
request is valid only
when the string
descriptor is
supported.

GET_CONFIGURATION A, C 80 00 00 00 00 1
Get the device
configuration.

SET_CONFIGURATION A, C 80 N 00 00 00 00

Set the device
configuration; N is the
valid configuration
number.

GET_INTERFACE C 81 00 00 N 00 1
Get alternate setting of
the interface N; N is the
valid interface number.

SET_INTERFACE C 01 M 00 N 00 00

Set alternate setting M
of the interface N; N is
the valid interface
number and M is the
valid alternate setting
of the interface N.

Table 7. Standard requests (continued)

State
bmRequest

Type

Low
byte of
wValue

High
byte of
wValue

Low
byte of
wIndex

High
byte of
wIndex

wLength Comments

UM0463 The USB state machine of the control endpoint

13/30

Note: Letters in the column “State”: D=Default state; A=Address state; C=Configured state; All=All
EP states.

EP value: D0-D3=endpoint address; D4-D6=reserved as zero; D7= 0: OUT endpoint, 1: IN
endpoint.

All the nonstandard requests are passed to the user application code by means of a
callback function. Every project that uses this library has to implement a callback function to
receive nonstandard requests and return with success or with error. Section 3.4 discusses
the callback function.

3.4 Nonstandard requests

3.4.1 SETUP stage

The library passes all nonstandard requests to the user code with the callback
USER_USB_Setup (). The nonstandard requests include the user-interpreted requests and
the invalid requests. User-interpreted requests are class specific requests, vendor specific
requests or the requests that the library considers as an invalid request but the application
wants to interpret them as valid requests (for example, the library does not support the Halt
feature on endpoint 0 but the user application may need this feature.) Invalid requests are
the requests that are not standard requests and are not user-interpreted requests.

Since USER_USB_Setup () is called after the SETUP stage and before the data stage
(Section 3.1), the user code is responsible, in the USER_USB_Setup (), to parse the
content of the SETUP packet (sUSB_vSetup). If a request is invalid request, the user code
has to call RequestError () and return to the caller of USER_USB_Setup ().

For a user-interpreted request, the user code prepares the data buffer for the following data
stage if the request has a data stage, otherwise the user code executes the request and
returns to the caller of USER_USB_Setup ().

3.4.2 Data stage

The process of the data stage has three categories: data IN stage with continued data
buffer, data IN stage with noncontinued data buffer and data OUT stage.

Data IN stage with continued data buffer

The user code should perform the operation given in this section if a request needs a data
IN stage and all data bytes that are going to be sent to the host are saved in a single and
continued data buffer. Examples of requests in this category are: GET_REPORT &
GET_DESCRIPTOR request of HID class .

In the USER_USB_Setup (), once the request is identified and all the data bytes are ready
in the buffer, the user code assigns the buffer pointer to the variable vUSB_DataToCopy and
assigns the number of bytes to be sent to the variable vUSB_length. The library will send
the data from the buffer without the user code intervention again.

Data IN stage with noncontinued data buffer

It is easy and convenient to save all data bytes in one single buffer, but in some applications,
because of the limitation of the buffer RAM size or that required by the application, all data
bytes cannot be saved in one single buffer. For example, if the application wants to send a

The USB state machine of the control endpoint UM0463

14/30

big chunk of data (larger than the MCU RAM size) located in an external memory, then the
data stream has to be split into small pieces and read into RAM piece by piece.

In the USER_USB_Setup (), the user code should assign the variable vUSB_DataToCopy
as NULL (char *0) and the variable vUSB_length as the size of the data stream. Then, when
the library is going to send a data packet of the data IN stage, it calls a callback function
USER_USB_CopydataIN (unsigned char CopyLength). In this function, the user code
should copy CopyLength bytes of data from its own buffer to the endpoint DMA buffer
EP0_IN. The variable vUSB_offset indicates where to start copying the data.

In this way, the user code can generate the data stream, for example reports of GET
REPORT request, in the DMA buffer directly and dynamically.

Data OUT stage

When a data OUT stage is necessary, the user code should assign the number of bytes that
is going to receive to the variable vUSB_length in the USER_USB_Setup () and return to the
caller of USER_USB_Setup (). Every time the library receives a data packet, it then calls
callback USER_USB_CopydataOUT (unsigned char CopyLength). In the function
USER_USB_CopydataOUT (), the user code has to copy the data to its own buffer from the
endpoint DMA buffer EP0_OUT. The variable vUSB_offset indicates the offset of this data
packet in the data stream. Of course, the user code can process the received data in the
endpoint buffer EP0_OUT directly if the data stream fits in the buffer.

Before returning to the caller of USER_USB_CopydataOUT (), the library will not go on to
receive the next data packet or to the status stage. Please do not stay in the function
USER_USB_CopydataOUT () for a long time as it will slow down the performance of the
USB system.

3.4.3 Status stage

The status stage of a control endpoint identifies the end of a SETUP transaction. To the user
application, the status stage means that all data bytes have been sent/received. It is time to
release the data buffer and prepare another data stream for the next data IN stage or to
process the received data and prepare a new buffer for the next data OUT stage.

The library calls callback function USER_USB_Status_In() after the host acknowledges a
status IN stage and calls callback function USER_USB_Status_Out() after it acknowledges
a status OUT stage. In these two callback functions, the user code can call RequestError() if
the request is an invalid request or there is any error in the data stage (for example received
invalid data or failed to collect data to send).

3.5 Processing of standard requests
After the SETUP packet is copied into sUSB_vSetup, the request and its parameters are
parsed. Standard requests defined in Section 3.3 are handled in the library with less user
code intervention. The following sections will discuss how the library processes each
standard request and when the user code will be involved.

UM0463 The USB state machine of the control endpoint

15/30

3.5.1 Get status

Recipient of the device

The library exports a variable, vUSB_Current_Feature. This variable is defined as: unsigned
char vUSB_Current_Feature;

The meaning of this variable is:

● D7: Reserved as one

● D6: Power feature; 1=Self-Powered, 0=Bus-Powered

● D5: Remote-wake-up: 1=Support, 0=Not support

● D4-D2: Reserved as zero

● D1: Current Remote-wakeup: 1=Enable, 0=Disable

● D0: Current power feature: 1=Self-Powered, 0=Bus-Powered

This variable has the features of a device. The library requires that the user code copies the
bmAttributes field of the configuration descriptor to this variable in the
USER_USB_Set_Configuration() callback function.

With the help of the above variable, the library answers the request without any callback to
the user code.

Recipient of the interface

In the configured state, the library ensures that the interface index is valid by checking the
low byte of wIndex with the number of interfaces (vUSB_Num_Interface) given by the user
code. The library replies with two bytes of zero without any callback to the user code if the
interface index is valid.

Recipient of the endpoint

The library checks if the endpoint referred to is valid. In the address state, the valid endpoint
is endpoint address 0 on both directions only. In the configured state, the endpoint is valid if
its corresponding status register is not set as DISABLE (Section 1.2.1).

The library answers the request without the user code intervention if the endpoint referred to
is valid.

3.5.2 Clear feature and set feature

3.5.3 Recipient of device

The valid requests are set/clear the remote wakeup feature. The library sets or clears the
feature if the feature is supported (bit 5 of vUSB_Current_Feature is 1, see Section 3.5.1:
Get status)

The library answers the request without any callback to the user code.

Recipient of interface

The USB specification [1] specifies that this request is valid in the configured state but the
behavior is not specified. The library checks if the request parameters are valid and passes
the control to the user code. It is up to the user code to decide what to do.

The USB state machine of the control endpoint UM0463

16/30

Recipient of endpoint

The library does not support the Halt feature for the endpoint 0. In the configured state, the
library checks if status register of the specified endpoint is not set as DISABLE (see
Section 1.2.1). Then the endpoint is set to STALL status (Set Feature) or is set to NAK
status if it was in the STALL status (Clear Feature.)

After the status of the endpoint is changed correctly, the user code implemented callback
function USER_USB_Clear_Feature_EP() is called for the Clear Feature request and the
USER_USB_Set_Feature_EP() is called for the Set Feature request. In
USER_USB_Clear_Feature_EP(), the user code knows that a STALL condition is cleared
for certain endpoint and it is up to the user code to set the endpoint to ACK or stay in NAK
status. In USER_USB_Set_Feature_EP(), the user code knows that a STALL condition is
set for certain endpoint so that the state machine of that endpoint can be paused or
stopped.

3.5.4 Set address

The library checks the parameters of the request and set the device to the new address if
the request is valid. There is no user code callback for this request.

3.5.5 Get descriptor

A structure is defined for the user code to pass the descriptors to the library.

typedef struct OneDescriptor {

char *Descriptor;

unsigned short Size;

} ONE_DESCRIPTOR;

The field Descriptor is the pointer that points to the descriptor and the field Size gives the
length of the descriptor.

An Application Descriptor table (Appli_Desc_Tab) is defined in the user area to keep track of
descriptors. The number of string descriptors in the table has to be configured by the user
through NUM_APP_STR_DESC macro (descriptor.h file) and the descriptor table has to be
changed accordingly. This descriptor table is accessed through a pointer variable
(DescTabPtr) which is present at a fixed location in the RAM. The user has to pass the
address of the table to this pointer (DescTabPtr) in his main (App_main) function. The rest
will be taken care of by the library.

For StringDescriptors, the 3rd descriptor in the descriptor table must list all the language ID
supported. The remaining string descriptors will follow language ID descriptor in the
descriptor table.

Limitation: The library supports the language ID of US English (0x0409) only, so the element
0 of StringDescriptor should list one language ID of US English only.

Constant descriptors

A descriptor is constant if the descriptor is stored in a single continued data buffer when it is
going to be sent to the host. With the constant descriptors, the application initializes the
Descriptor table pointer with the table address. The library will send the constant descriptors
when they are required.

UM0463 The USB state machine of the control endpoint

17/30

Nonconstant descriptors

Some descriptors may not be constant and they can be generated by the user code or can
be read from outside of the MCU (such as an E2PROM.) For these descriptors, the
corresponding pointer variable defined in the above section should be set as value zero. If a
pointer is NULL, the library passes the request to the user code through the callback
function USER_USB_Setup(). In USER_USB_Setup(), the user code has to identify the
request by checking the parameters in sUSB_vSetup and performs the actions described in
Data IN stage with noncontinued data buffer.

Standard request with constant descriptors

For the request of device descriptor, the library replies with the data referred by the
DeviceDescriptor.

For the requests of the configuration descriptor, the library checks the index of configuration
descriptor and then replies with the data from the corresponding index in the
ConfigDescriptor[] array.

For the requests of configuration descriptors, the library checks the configuration index that
is smaller than Num_Configuration given by the user code. Then the library replies with the
data referred by the array of ConfigDescriptor[] accordingly.

For the requests of string descriptors, the library checks that the language ID is 0x0409 (US
English) and that the string index is smaller than NUM_APP_STR_DESC given by the user
code. Then the library replies with the data referred by the array of Appli_Desc_Tab[]
accordingly.

For the requests that are not one of the above discussed, the library calls callback function
USER_USB_Setup() to pass the request to the user code. This gives the user code an
opportunity to answer, for example, the HID descriptor of an HID device.

3.5.6 Set configuration and get configuration

A variable, vUSB_Configuration, is defined in the library to keep track of the current
configuration value. The content of this variable is returned to answer the Get Configuration
request.

In the process of Set Configuration request, the library checks the configuration value
versus the user variable Num_Configuration to ensure a valid configuration value is set.
Then the library calls a callback function USER_Set_Configuration() to let the user code
configure the device. In the USER_Set_Configuration(), the user code has to check the
value of vUSB_Configuration and configure the device to the specified configuration
correspondingly. The user code returns REQ_ERROR if the configuration value is invalid or
the device cannot be configured correctly, otherwise the user code returns a value of
REQ_SUCCESS.

Note: When the device is unconfigured (vUSB_Configuration is zero), the user code has to set the
status register of all non-0 endpoints to DISABLE state. In any configured state, the user
code has to keep the status register of all unused endpoints in DISABLE state. This
requirement ensures that the Set Feature and the Clear Feature requests respond correctly.

3.5.7 Set interface and get interface

The library checks the parameters of the request and calls one of the two callback functions
USER_USB_Set_Interface() or USER_USB_Get_Interface().

The USB state machine of the control endpoint UM0463

18/30

For the Set Interface request, the user code in the USER_USB_Set_Interface() should take
the variable sUSB_vSetup.USBwIndex0 as the interface index and the variable
sUSB_vSetup.USBwValue0 as the alternative setting value. The user code validates these
two variables and configures the specified interface accordingly. The function
USER_USB_Set_Interface() returns REQ_ERROR if there is any error, otherwise returns
REQ_SUCCESS.

For the Get Interface request, the user code in the function USER_USB_Get_Interface()
should take the variable sUSB_vSetup.USBwIndex0 as the interface index and returns the
alternative setting value of the specified interface if there is no error. The user code calls
RequestError() if there is any error.

3.5.8 Status stage of the standard requests

As specified in Section 3.4.3, the callback functions USER_USB_Status_In() and
USER_USB_Status_Out() will be called respectively at the end of all the standard requests
except Set Address request. In these two callback functions, the user code is able to know
what request is processed in the library.

3.6 The execution of the state machine
The state machine is in the state Wait_Setup when it is in idle. Once a SETUP packet is
received, the request is copied to the sUSB_vSetup structure and the field
sUSB_vSetup.flag is evaluated. Then the state machine is started. Figure 2 illustrates the
execution of the state machine. The state machine returns to the idle state (Wait_Setup)
after USER_USB_Status_In() or USER_USB_Status_Out() returns.As stated in
Section 2.1, the state machine of the control endpoint has two execution models: the polling
model and the interrupt model. Since all callback functions specified in this chapter are part
of the state machine, they can be part of the interrupt process routine if the state machine is
working in the interrupt model. The application developers have to be aware that there are
some limitations concerning writing code of the interrupt routines. This topic is not the scope
of this document; please refer to other documents for this issue.

UM0463 The USB state machine of the control endpoint

19/30

Figure 2. State machine execution

In summary, the callback function USER_USB_Setup() opens the door for the user code to
parse the class specific or vendor specific requests or the Get Descriptor requests for
nonconstant descriptors. The callback functions USER_USB_CopydataIN() and
USER_USB_CopydataOUT() transfer data for those requests. The callback functions
USER_USB_Status_In() and USER_USB_Status_Out() inform the user code that the
process of a SETUP request is finished.

Note: For a complete list of callback functions please refer to Section 7.3.

The library checks the data transfer

direction and the data transfer length.

In_Data Out_Data Wait_Status_In

Wait_Status_Out

The library parses the request and passes non-

standard request to USER_Setup(). The

variable vUSB_DataToSend and vUSB_length

are set according to the request.
One data packet

is sent.

In_Data

The library copies the next data

packet to the DMA buffer if the

data buffer is continued. Otherwise,

USER_CopydataIN() is called.

N
o
 d

ata

to
 b

e sen
t

Data IN stage

One data packet is received

and USER_CopydataOUT()

is called.

Out_Data

Wait_Status_In

N
o
 d

ata to

b
e receiv

ed

Data OUT stage

USER_Status_Out() is called

after the device acknowledges

the status OUT stage.

USER_Status_In() is called after

the device acknowledges the

status OUT stage.

R
eq

u
est w

ith
o
u
t d

ata stag
e

Wait_Setup

Wait_Setup

A SETUP packet is received and is

copied to sUSB_vSetup structure.

Data transfer on noncontrol endpoints UM0463

20/30

4 Data transfer on noncontrol endpoints

Noncontrol endpoints are identified by the endpoint address and the endpoint direction, for
example endpoint 2 IN and endpoint 2 OUT are two different endpoints. The endpoint of IN
direction is used to send data from the device to the host. It can be either a bulk endpoint or
an interrupt endpoint. The endpoint of OUT direction is used to receive data from the host to
the device. It can be either a bulk endpoint or an interrupt endpoint too.

The library provides a set of functions for transferring data along endpoints of both
directions. Each endpoint of either direction has two functions.

4.1 Sending data to the host
There are two functions for sending data to an endpoint.

char USB_SendDataEP?(unsigned char *DataAddress,

 unsigned char LengthToXmit);

char USB_EP?_isSent(void);

Where? is a digit that represents the endpoint address. The digit ranges from 1 to 5 for
ST7SCR, and the digit is 1 or 2 for ST7265. For example, the sending functions for endpoint
2 are USB_SendDataEP2() and USB_EP2_isSent().

The function USB_SendDataEP?() is used to start a sending procedure. The parameter
DataAddress is a pointer which points to the data buffer and the parameter LengthToXmit
gives the length of the data package. After the sending procedure is started, this function
returns REQ_SUCCESS to the caller immediately. The function returns REQ_ERROR if the
previous sending procedure is not finished or the specified endpoint is in the state of
DISABLE or STALL. The user code should call function USB_EP?_isSent() some time later
to enquire that the data transmission is finished. The function USB_EP?_isSent() returns a
nonzero value if the data is sent, otherwise it returns a value zero. The user code has to wait
that a sending procedure is finished before starting another sending procedure.

If the data package to be sent is longer than 255 bytes, the user code has to split the data
package into a few small pieces that shorter than 255 bytes. The length of these few small
data pieces, except the last data piece, have to be in the multiple of the maximum packet
size of the used endpoint. Refer to Section 1.2.1 for the maximum packet size of each
endpoint.

4.2 Receiving data from the host
There are two functions for receiving data from an endpoint.

char USB_RecvDataEP?(unsigned char *DataAddress,

 unsigned char Length);

unsigned char USB_TakeDataEP?(void);

Where? is a digit that represents the endpoint address. The digit is 1 or 2 for ST7265 and
the digit is 2 for ST7SCR only. For example, the receiving functions for endpoint 2 are
USB_RecvDataEP2() and USB_TakeDataEP2().

UM0463 Data transfer on noncontrol endpoints

21/30

The function USB_RecvDataEP?() is used to start a receiving procedure. The parameter
DataAddress is a pointer which points to the data buffer and the parameter Length gives the
length of the data package. After the receiving procedure is started, this function returns
REQ_SUCCESS to the caller immediately. The function returns REQ_ERROR if the
previous receiving procedure is not finished or the specified endpoint is in the state of
DISABLE or STALL. After starting the receiving procedure, the user code should call
function USB_TakeDataEP?() some time later to enquire that the data package is received.
The function USB_TakeDataEP?() returns 0xFF if the receiving procedure is not finished,
otherwise it returns a value that represents the length of the valid data bytes in the buffer.
The user code has to wait that a receiving procedure is finished before starting another
receiving procedure.

If the data packet to be received is longer than 254 bytes, the user code has to split the data
packet into smaller pieces that are shorter than 254 bytes. The length of these small data
pieces, except the last data piece, must be a multiple of the maximum packet size of the
endpoint used. Refer Section 1.2.1 for the maximum packet size of each endpoint.

4.3 Handling noncontrol endpoints directly
The library provides the standard procedure to transfer data on the noncontrol endpoints.
The user code can handle the data transfer on the noncontrol endpoints by access the
endpoint status registers directly. The library defines a set of operations to manipulate the
status registers.

4.3.1 Endpoint status registers

Refer to Section 1.2.1, each endpoint has four possible states and they are defined as
EP_DISABLE, EP_STALL, EP_NAK and EP_ACK respectively.

For ST7265, there are four operations available to read status registers:

● USB_GetRx1Status() // Get the endpoint 1 receiving status

● USB_GetTx1Status() // Get the endpoint 1 sending status

● USB_GetRx2Status() // Get the endpoint 2 receiving status

● USB_GetTx2Status() // Get the endpoint 2 sending status

For ST7SCR, there are six operations available to read status registers:

● USB_GetTx1Status() // Get the endpoint 1 sending status

● USB_GetRx2Status() // Get the endpoint 2 receiving status

● USB_GetTx2Status() // Get the endpoint 2 sending status

● USB_GetTx3Status() // Get the endpoint 3 sending status

● USB_GetTx4Status() // Get the endpoint 4 sending status

● USB_GetTx5Status() // Get the endpoint 5 sending status

For ST7265, there are four operations available to set status registers:

● USB_SetTxEP1Status(Status) // Set the endpoint 1 sending status

● USB_SetRxEP1Status(Status) // Set the endpoint 1 receiving status

● USB_SetTxEP2Status(Status) // Set the endpoint 2 sending status

● USB_SetRxEP2Status(Status) // Set the endpoint 2 receiving status

Data transfer on noncontrol endpoints UM0463

22/30

For ST7SCR, there are six operations available to set status registers:

● USB_SetTxEP1Status(Status) // Set the endpoint 1 sending status

● USB_SetTxEP2Status(Status) // Set the endpoint 2 sending status

● USB_SetRxEP2Status(Status) // Set the endpoint 2 receiving status

● USB_SetTxEP3Status(Status) // Set the endpoint 3 sending status

● USB_SetTxEP4Status(Status) // Set the endpoint 4 sending status

● USB_SetTxEP5Status(Status) // Set the endpoint 5 sending status

In the above operations, Status is the state that will be set.

4.3.2 DMA counter registers

The sending DMA counter register for each endpoint is defined as CNTxTXR and the
receiving DMA counter register for each endpoint is defined as CNTxRXR, where x
represents the endpoint number.

4.3.3 DMA buffers

The DMA buffer for each sending endpoint is defined as EPx_IN and the DMA buffer for
each receiving endpoint is defined as EPx_OUT, where x represents the endpoint number.

4.3.4 Sending data to the host

Follow the steps below to send data to the host:

1. Check if the endpoint status is EP_NAK to ensure that the previous data in the buffer is
sent.

2. Copy the data to be sent to the DMA buffer of the endpoint.

3. Set the length of data to be sent to the corresponding endpoint DMA counter register.

4. Set the sending endpoint status to EP_VALID.

5. Check that the endpoint status becomes EP_NAK again to ensure that the data is sent.

4.3.5 Receiving data from the host

Follow the steps below to receive data from the host

1. Check if the endpoint status is EP_NAK to ensure that the EP is free to receive data.

2. Ensure that the data in the endpoint DMA buffer is useless to avoid the loss of useful
data.

3. Set the length of data expected to the corresponding endpoint DMA counter register.

4. Set the receiving endpoint status to EP_VALID.

5. Check that the endpoint status becomes EP_NAK from EP_VALID.

6. Subtract the current value of the endpoint DMA counter register from the value set in
step 2 to get the actual length of the received data.

7. Process the received data.

UM0463 USB control functions for nondata transfer

23/30

5 USB control functions for nondata transfer

The user application should be aware of a few other USB functions. Same as the data
transfer function, these functions are part of the USB library.

5.1 Library initialization
To use the library certain initializations need to be done. If the USB support is needed in the
application, then the application has to initialize the USB by calling the Init_USB function
and the descriptor table pointer by the descriptor table address. The Init_USB() function
initializes the USB state machine and the configuration state. This function also enables the
Reset interrupt of the USB along with suspend and End of suspend interrupts. After calling
this function, the library will be able to receive the reset from USB.

5.2 Device reset
When the device receives a reset request from the USB, the library initializes the endpoint 0
to acknowledge the SETUP token from host. It then calls the callback function
USER_USB_Reset(). In this function, the user code should reset and initialize the
application on both software and hardware. This function is part of the interrupt routine. The
restriction of an interrupt routine is applied.

5.3 Start of frame
If the start of frame interrupt is enabled, the callback function USER_USB_SOF() is called
every time a start of frame (SOF) token arrives. In this function, the user code can perform
some timing related operations. This function is part of the interrupt routine. The restriction
of an interrupt routine is applied.

Two functions are provided to enable and disable the interrupt of arrival of SOF:

void Enable_SOF(void);

void Disable_SOF(void);

Device firmware upgrade support UM0463

24/30

6 Device firmware upgrade support

The library provides the support for the IAP which is used to change the application code
(present in sector 1 and sector 2) through the USB without disturbing the code of sector 0.
The Boot loader (USB + DFU) code of the library is placed in the sector 0. The user has to
take care that his code is always placed in sector 1 and sector 2 and the code in sector 0
should not be disturbed. Use only those pragmas which are used in user code file or new
defined pragmas. Don't use pragmas of bootloader. Refer to the lkf file for pragmas of each
sector.

To upgrade the firmware the user has to go to DFU mode and after upgrading he has to
return to the application mode. There can be two possible scenarios to go to DFU mode:

1. Composite mode: DFU Detach command is issued on the DFU interface to jump from
application mode to DFU mode

2. Noncomposite mode: In this mode the user has to enter the DFU mode by means of
checking the hardware switch after reset (e.g. Check the port status, if the pin level is
low then boot in DFU mode, else go to the application mode). The current code is using
PF3. If it's LOW, DFU mode is entered, otherwise it will boot in an application mode.

Firmware Upgrade: In the DFU mode, the user can upgrade the firmware through the PC
GUI. For upgrading the firmware the user first needs to convert .s19 file into .dfu file through
the GUI. Once converted, this dfu file will be used by the GUI to upgrade the firmware. For
changing the code, the flash of microcontroller needs 12 V during erasing and writing. The
supply for this 12 V should be available on the board (e.g. using charge pump ST662A).

Caution: 12 V should be supplied to the VPP pin of the microcontroller only during erasing or writing
the flash.

UM0463 The library package and its configuration

25/30

7 The library package and its configuration

7.1 The contents of the package
The library is provided as a software package. All the source code files are included.
Table 8 lists all the files in the package.

Table 8. Code structure

File name Comments
User

changeable

Config\Metrowerks\map_7265.h
Config\Metrowerks\map_7scr.h

Definition of hardware registers specific for each
microcontroller. Use corresponding file while using
Metrowerks compiler

No

Config\Metrowerks\map_7265.c
Config\Metrowerks\map_7scr.c

Reserve the memory space for hardware registers. No

Config\Cosmic\IO7265.h

Config\Cosmic\IO7scr.h

Definition of hardware registers specific for each
microcontroller. Use corresponding file while using Cosmic
compiler.

No

Config\Cosmic\Vect_7265.c

Config\Cosmic\Vect_7scr.c
Vector table files specific for each microcontroller. No

Sources\main.c Contain the main routine of the sample project. Yes

Sources\mcu_conf.h Contain the configuration information for configuring the library Yes

Sources\USB\usb_lib.c Code of control endpoint state machine. No

Sources\USB\usb_int.c Code to receive the USB interrupts. No

Sources\USB\usb_ep1-5.c Code related to the endpoint 1 to 5. No

Sources\USB\usb_lib.h
Sources\USB\usb_def.h

Sources\USB\usb_reg.h

Sources\USB\Vec_dec.h

Definitions of USB functions, structures, constants and
macros that are used by the library.
These three header files will be included in the user code files.

Vec_dec contains declarations of vector functions

No

Sources\user\user_usb.c

Sources\user\descriptor.c
Sources\user\application.c

Sources\user\user_usb.h

Sources\user\descriptor.h
Sources\user\appli.h

Sources\user Int_7265.c

User Files. User need to write/integrate his/her code in/with
these files.

Yes

Sources\HID\hidlayer.c

Sources\HID\hidlayer.h
Files of a sample project. Yes

The library package and its configuration UM0463

26/30

7.2 Configuration of the library package
The file "mcu_conf.h" under directory "sources/" contains the information to configure the
library.

One definition, USB_POLLING_MODEL, is used to select the model of execution of the
control endpoint state machine. Please comment out the definition if the user code wants to
use the interrupt running model, otherwise define it.

Two definitions (MCU_ST7SCR & MCU_ST7265) are used to select the product to be used.
Please comment the unused definition lines. When selecting the MCU_ST7265, you also
need to select MCU_ST72651 or MCU_ST72652 which have different code memory size.

After selecting the microcontroller, the user has to select the endpoint which the application
is going to use, for example, enable macro DECLARE_EP1_IN if the user code wants to use
the endpoint 1 IN. Similarly enable macro DECLARE_EP1_OUT to use the endpoint 1 in
OUT direction. Enable the macro of DECLARE_EP2_IN and DECLARE_EP2_OUT if the
user code wants to use the endpoint 2 in corresponding direction, and so on. The library
uses these definitions to include or exclude the endpoint functions. For example, for using
ST7265, open the workspace for this microcontroller. Customize the library for ST7265 by
changing configuration in mcu_conf.h file. Select the microcontroller in that file and choose
endpoints with proper directions which you want to support.

If the user code wants to transfer the data stream that is longer than 255 bytes along the
control endpoint, the line to define the macro LARGE_EP0 has to be included in the code.
One macro, DFU_ENABLE, is used to select the DFU feature of the library. If the user
doesn't want to use DFU, just comment DFU_ENABLE macro. The
DFU_COMPOSITE_DEVICE has to be enabled if the user wants to use DFU in composite
mode. In Composite mode there are application interfaces and DFU interface exposed.
When using in composite mode, then entry to DFU mode is done through the DFU Detach
command issued on the DFU interface through the GUI. If the composite mode is not used,
then the user has to make arrangements to enter the DFU mode (e.g. Check the port status
during reset, if the pin level is low then boot in DFU mode, else go to the application mode).

Warning: In composite mode, the DFU driver will be loaded every time
the device is plugged to a PC (not only during firmware
upgrades) .

Sources\generic\define.h
Sources\generic\lib_bits.h

Generic files. Yes

Source\DFU\dfu.c
Source\DFU\dfu.h

Source\DFU\DFU_Desc.c

Source\DFU\DFU_Desc.h
Source\DFU\Flashing.h

The Files for IAP. No

Table 8. Code structure (continued)

File name Comments
User

changeable

UM0463 The library package and its configuration

27/30

7.3 Application interface to the library
The application code has to provide some values to the library to execute the state machine.
The library uses callback functions to perform the operation and all callback functions are
implemented by direct function calls which are defined in user_usb.h. These callback
functions are listed in Table 9.

Four variables are there for the application to pass some configuration values to the library:

● USB_Num_Configuration: number of configuration

● USB_Num_Interface: number of interface

● USB_Interrupt_Mask: the value for the USB interrupt mask register

● DescTabPtr: pointer to actual descriptor table

These variables must be set in (or prior to) the "USER_USB_Reset" function.

Table 9. Call back functions

Function name Description

USER_USB_Reset() Called when a USB Reset is received by the device.

USER_USB_Setup() All user-interpreted requests are parsed in this function.

USER_USB_CopydataIN()
Used to copy data to the endpoint DMA buffer EP0_IN for
each data packet of data IN stage.

USER_USB_CopydataOUT()
Used to copy data from the endpoint DMA buffer
EP0_OUT for each data packet of data OUT stage.

USER_USB_Status_In()
Called when a status IN stage is executed for all the
requests except Set Address.

USER_USB_Status_Out()
Called when a status OUT stage is executed for all the
requests.

USER_USB_Set_Configuration() The user code has to configure the device as specified.

USER_USB_Set_Interface()
The user code has to set the alternative setting of an
interface as specified.

USER_USB_Get_Interface()
The user code has to return the alternative setting of an
interface as specified.

USER_USB_Clear_Feature_EP()
The user code is informed that the specified endpoint
STALL condition is cleared.

USER_USB_Set_Feature_EP()
The user code is informed that the specified endpoint is set
as STALL.

USER_USB_SOF()
Called every time a start of frame (SOF) token arrives on
USB given SOF interrupt is enabled.

USER_USB_Suspend()
Called when suspend request is received by the device
from the USB.

USER_USB_ESuspend()
Called when the device is in suspended state and activity
on USB bus is detected

Comments about the sample project UM0463

28/30

8 Comments about the sample project

The sample project is built on the ST72651 product. The project demonstrates how to use
the library in an application.

The polling model is selected to run the control endpoint state machine.

The project implements a USB HID (Human Interface Device) class to establish the
communication of the board with the PC. HID requests such as Get Report descriptor, Get
Report and Set Report, Get Idle and Set Idle, Get Feature and Set Feature are implemented
on EP0 and these requests have the same meaning as requests in HID specification [2.]
with the same name. All these requests are implemented in HIDLayer.c and .h file.

The application replies Get Descriptor (Report descriptor) request with the content in the
array Report_Descriptor[].

The implementation of Get Descriptor, Get Idle, Get Output and Get Feature requests
shows how to send data through a control endpoint upon the request and the
implementation of Set Idle, Set Output and Set Feature requests shows how to receive data
from the control endpoint.

The sample project also shows how to send and receive data on a noncontrol endpoint in
file "application.c". In this sample, the data transfer on the EP2_IN and EP2_OUT is
demonstrated. Please use the USB Demonstration GUI for the evaluation which is freely
available on the internet.

The application also supports Loop Back feature. One macro, LOOP_BACK in appli.h is
used to enable/disable this feature. If it is enabled, then sent data to the hardware will be
received back from the hardware in the application mode. If it is disabled, then sent data will
not be received back automatically by the GUI.

When USB Demonstration GUI is used and LOOP_BACK is not enabled, then pressing the
LED button on the GUI allows the LED to glow on the hardware board present on PD0,
otherwise pressing the LED button on the GUI status allows the button to glow on the GUI
itself. A similar functionality can be tested for the scroll bar on the GUI.

9 References

1. "Universal Serial Bus Specification", Revision 1.1, 23 September 1998

2. "Device Class Definition for Human Interface Devices (HID)", version 1.0 Draft #4

3. "Universal Serial Bus Device Class Specification for Device Firmware Upgrade"
(Version 1.1 Aug 5, 2004)

4. "ST7265 Datasheet" (version 3.0 Sep 10, 2006)

5. "ST7265 Mass Storage Evaluation Kit"

UM0463 Revision history

29/30

10 Revision history

Table 10. Document revision history

Date Revision Changes

04-Jan-2008 1 Initial release

UM0463

30/30

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Overview
	1.1 Functionality of the library
	1.2 Background of ST7 full-speed USB device
	1.2.1 USB device
	Table 1. Endpoint configuration
	Table 2. Endpoint status
	Table 3. USB events

	2 Programming model of the library
	2.1 Handling control endpoint 0
	2.2 Transactions on noncontrol endpoints
	2.3 Special note on MCU interrupt

	3 The USB state machine of the control endpoint
	3.1 The states
	Table 4. States of USB state machine
	Figure 1. States evaluation

	3.2 Data structure for the SETUP packet
	Table 5. SETUP packet fields
	Table 6. Bitmap of flag field in sUSB_vSetup

	3.3 Standard requests
	Table 7. Standard requests

	3.4 Nonstandard requests
	3.4.1 SETUP stage
	3.4.2 Data stage
	Data IN stage with continued data buffer
	Data IN stage with noncontinued data buffer
	Data OUT stage

	3.4.3 Status stage

	3.5 Processing of standard requests
	3.5.1 Get status
	Recipient of the device
	Recipient of the interface
	Recipient of the endpoint

	3.5.2 Clear feature and set feature
	3.5.3 Recipient of device
	Recipient of interface
	Recipient of endpoint

	3.5.4 Set address
	3.5.5 Get descriptor
	Constant descriptors
	Nonconstant descriptors
	Standard request with constant descriptors

	3.5.6 Set configuration and get configuration
	3.5.7 Set interface and get interface
	3.5.8 Status stage of the standard requests

	3.6 The execution of the state machine
	Figure 2. State machine execution

	4 Data transfer on noncontrol endpoints
	4.1 Sending data to the host
	4.2 Receiving data from the host
	4.3 Handling noncontrol endpoints directly
	4.3.1 Endpoint status registers
	4.3.2 DMA counter registers
	4.3.3 DMA buffers
	4.3.4 Sending data to the host
	4.3.5 Receiving data from the host

	5 USB control functions for nondata transfer
	5.1 Library initialization
	5.2 Device reset
	5.3 Start of frame

	6 Device firmware upgrade support
	7 The library package and its configuration
	7.1 The contents of the package
	Table 8. Code structure

	7.2 Configuration of the library package
	7.3 Application interface to the library
	Table 9. Call back functions

	8 Comments about the sample project
	9 References
	10 Revision history
	Table 10. Document revision history

