ré RMO0016
’l augmented Reference manual

STMS8S Series and STM8AF Series 8-bit microcontrollers

October 2017

Introduction

This reference manual provides complete information for application developers on how to
use STM8S Series and STM8AF Series microcontroller memory and peripherals.

The STMB8AF Series of microcontrollers is designed for automotive applications, with
different memory densities, packages and peripherals:

The low-density STM8AF devices are the STM8AF6223/26 with 8 Kbytes of Flash
memory.

The medium-density STM8AF devices are the STM8AF624x and STM8AF6266/68
microcontrollers with 16 to 32 Kbytes of Flash memory.

The high-density STM8AF devices are the STM8AF52xx and STM8AF6269/8x/Ax
microcontrollers with 32 to 128 Kbytes of Flash memory.

The STM8S Series of microcontrollers is designed for general purpose applications, with
different memory densities, packages and peripherals.

The value-line low-density STM8S devices are the STM8S001xx/STM8S003xx
microcontrollers with 8 Kbytes of Flash memory.

The value-line medium-density STM8S devices are the STM8S005xx microcontrollers
with 32 Kbytes of Flash memory.

The value-line high-density STM8S devices are the STM8S007xx microcontrollers with
64 Kbytes of Flash memory.

The access-line low-density STM8S devices are the STM8S103xx and STM8S903xx
microcontrollers with 8 Kbytes of Flash memory.

The access-line medium-density STM8S devices are the STM8S105xx microcontrollers
with 16 to 32 Kbytes of Flash memory.

The performance-line high-density STM8S devices are the STM8S207xx and
STM8S208xx microcontrollers with 32 to 128 Kbytes of Flash memory.

Refer to the product datasheet for ordering information, pin description, mechanical and
electrical device characteristics, and for the complete list of available peripherals.

Reference documents

For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Series and STM8AF Series Flash programming manual
(PMO0051), and to the STM8 SWIM communication protocol and debug module user
manual (UM0470).

For information on the STM8 core, refer to STM8 CPU programming manual (PM0044).

The bootloader user manual (UM0560) describes the usage of the integrated ROM
bootloader.

DoclD14587 Rev 14 1/467

www.st.com

http://www.st.com

Contents RMO0016

Contents
1 Central processingunit (CPU)cciiiiiiiiin.. 23
1.1 CPUintroduction 23
1.2 CPUTregisters 23
1.2.1 Description of CPU registers 23
1.2.2 STM8 CPUregistermapcuiii e 27
1.3 Global configuration register (CFG_GCR) 27
1.31 Activation level 27
1.3.2 SWIMdisable 27
1.3.3 Description of global configuration register (CFG_GCR) 28
1.3.4 Global configuration register map and resetvalues 28
2 Boot ROM i i ittt a e 29
3 Memoryandregistermapcciiiiiiiiiiiiinnnnns 30
3.1 Memory layout e 30
3.1.1 Memory Map 30
3.1.2 Stackhandling 31
3.2 Register description abbreviations 33
4 Flash program memory and data EEPROM 34
4.1 Flash and EEPROM introduction 34
4.2 Flash and EEPROMglossary 34
4.3 Main Flash memory features 35
4.4 Memory organization e 36
441 STM8S and STM8AF memory organization 36
442 Memory access/ wait state configuration 40
443 Userbootarea (UBC) 40
4.4.4 Data EEPROM (DATA) ..ottt e e 43
44.5 Main programarea 43
44.6 Option bytes 43
4.5 Memory protection e 44
451 Readout protection 44
452 Memory access security system (MASS) 44

2/467 DoclD14587 Rev 14 ‘Yl

RMO0016 Contents
453 Enabling write access to optionbytes 45

4.6 Memory programmingttt e 46

4.6.1 Read-while-write (RWW) 46

4.6.2 Byte programming 46

46.3 Word programming e 47

46.4 Block programming 47

4.6.5 Option byte programming i 49

4.7 ICP (in-circuit programming) and IAP (in-application programming) 49

4.8 Flashregisters 51

4.8.1 Flash control register 1 (FLASH_CR1) 51

4.8.2 Flash control register 2 (FLASH_CR2) 52

4.8.3 Flash complementary control register 2 (FLASH_NCR2) 53

484 Flash protection register (FLASH_FPR) 54

4.8.5 Flash protection register (FLASH_NFPR) 54

4.8.6 Flash program memory unprotecting key register (FLASH_PUKR) ... 54

4.8.7 Data EEPROM unprotection key register (FLASH _DUKR) 55

4.8.8 Flash status register (FLASH_IAPSR), 55

4.8.9 Flash registermap andresetvalues 56

5 Single wire interface module (SWIM) and debug module (DM) 57
51 SWIM and DM introduction 57

52 SWIMmainfeatures 57

53 SWIMMOdES 57

6 Interrupt controller (ITC)o et 59
6.1 ITCintroduction i 59

6.2 Interrupt masking and processingflow, 59

6.2.1 Servicing pending interrupts 60

6.2.2 Interrupt sources 61

6.3 Interrupts and low powermodes 63

6.4 Activation level/low power mode control 63

6.5 Concurrent and nested interrupt management 64

6.5.1 Concurrent interrupt managementmode 64

6.5.2 Nested interrupt managementmode 65

6.6 External interrupts 66

6.7 Interruptinstructions 66

m DoclD14587 Rev 14 3/467

Contents RMO0016
6.8 Interruptmapping e 67

6.9 ITCand EXTIregisters e 68

6.9.1 CPU condition code register interrupt bits (CCR) 68

6.9.2 Software priority register x (ITC_SPRX) 69

6.9.3 External interrupt control register 1 (EXTI_.CR1) 70

6.9.4 External interrupt control register 1 (EXTI_.CR2) 71

6.9.5 ITC and EXTl register mapandresetvalues 72

7 Power supplycciii i e 73
8 Y A (2 1) T 74
8.1 “‘Reset state” and “under reset” definitions, 74

8.2 Reset circuit description 74

8.3 Internal reset sources 75

8.3.1 Power-on reset (POR) and brown-outreset (BOR) 75

8.3.2 Watchdogreset 75

8.3.3 Softwarereset 76

8.3.4 SWIMreset 76

8.3.5 lllegalopcodereset 76

8.3.6 EMC reset 76

8.4 RST register description 77

8.4.1 Reset status register (RST_SR) 77

8.5 RSTregistermap 77

9 Clockcontrol (CLK)0 ittt ittt eennnns 78
9.1 Master clock sources 80

9.1.1 HSE (high-speed external) clock signal 80

9.1.2 HSI (high-speed internal) clock signal 81

9.1.3 LSl 82

9.2 Master clock switching 83

9.21 Systemstartup 83

9.2.2 Master clock switching procedures 83

9.3 Low-speed clock selection 86

9.4 CPUclock-divider 86

9.5 Peripheral clock-gating (PCG) i, 87

9.6 Clock security system (CSS) i 88

4/467 DoclD14587 Rev 14 lﬁ

RMO0016 Contents
9.7 Clock-out capability (CCO) 89

9.8 CLKinterrupts 89

9.9 CLKregisterdescription 90

9.9.1 Internal clock register (CLK_ICKR) 90

9.9.2 External clock register (CLK_ECKR) 91

9.9.3 Clock master status register (CLK_CMSR) 92

9.94 Clock master switch register (CLK_SWR) 92

9.9.5 Switch control register (CLK_SWCR) 93

9.9.6 Clock divider register (CLK_CKDIVR) 94

9.9.7 Peripheral clock gating register 1 (CLK_PCKENR1) 95

9.9.8 Peripheral clock gating register 2 (CLK_PCKENR2) 96

9.9.9 Clock security system register (CLK_CSSR) 97

9.9.10 Configurable clock output register (CLK_CCOR) 98

9.9.11 HSI clock calibration trimming register (CLK_HSITRIMR) 99

9.9.12 SWIM clock control register (CLK_ SWIMCCR) 99

9.10 CLKregistermapandresetvalues 100

10 Powermanagement ¢t 101
10.1 General considerations 101

10.1.1 Clock management for low consumption 102

10.2 Low pOWEr MOdeSottt e e 102

10.2.1 Waitmode 103

10.2.2 Haltmode 103

10.2.3 Active-haltmodes 103

10.3 Additional analog powercontrols 104

10.3.1 Fast Flash wakeup fromHaltmode 104

10.3.2 Very low Flash consumption in Active-haltmode 104

11 General purpose /O ports (GPIO) 105
11.1 Introduction e 105

11.2 GPIOmainfeatures 105

11.3 Portconfigurationandusage 106

11.3.1 Inputmodes 107

11.3.2 Outputmodes e 108

11.4 Resetconfiguration 108

115 Unused l/OPpINS 108

m DoclD14587 Rev 14 5/467

Contents RMO0016
116 LOW pOWEr modesSttt e e e e 108

11.7 Inputmodedetails 109

11.7.1 Alternate functioninput 109

11.7.2 Interruptcapability 109

11.7.3 Analogchannels 109

11.7.4 Schmitttrigger 110

11.7.5 Analogfunction 110

11.8 Outputmodedetails 110

11.8.1 Alternate functionoutput 110

11.8.2 Slopecontrol e 110

11.9 GPIOTregisters 111

11.9.1 Port x output data register (Px_ODR) 111

11.9.2 Port x pininputregister (Px_IDR) 111

11.9.3 Port x data direction register (Px_DDR) 112

11.9.4 Port x control register 1 (Px_CR1) 112

11.9.5 Port x control register 2 (Px_CR2) 113

11.9.6 GPIOregistermapandresetvalues 113

12 Auto-wakeup (AWU)ottt it e eanens 114
121 AWUintroduction 114

12.2 LSlclock measurement 114

12.3 AWU functional description 115

12311 AWU Operationt 115

12.3.2 Timebaseselection i 116

12.3.3 LSl clock frequency measurement 117

124 AWU registers i e 118

12.4.1 Control/status register AWU_CSR) 118

12.4.2 Asynchronous prescaler register (AWU_APR) 119

12.4.3 Timebase selection register (AWU _TBR) 119

1244 AWUregistermapandresetvalues 120

13 Beeper (BEEP) i s 121
13.1 Beeperintroduction 121

13.2 Beeper functional description 121

13.21 Beeperoperation 121

13.2.2 Beepercalibration 122

6/467 DoclD14587 Rev 14 m

RMO0016 Contents
13.3 Beeperregisters 122

13.3.1 Beeper control/status register (BEEP_CSR) 122

13.3.2 Beeperregistermapandresetvalues 123

14 Independent watchdog (IWDG) iiiiiinnnnnn. 124
141 IWDGintroduction 124

14.2 IWDG functional description 124

14.3 IWDGregisters 126

14.3.1 Keyregister IWDG KR) ... e 126

14.3.2 Prescaler register IWDG_PR) 126

14.3.3 Reload register (IWDG_RLR), 127

14.3.4 IWDG registermap andresetvalues 127

15 Window watchdog (WWDG)ciiiiiiiiiiinnnnnnnns 128
15.1 WWDG introduction 128

15.2 WWDG mainfeatures i 128

15.3 WWDG functional description 128

15.4 How to program the watchdogtimeout.......................... 130

15,5 WWDG Ilow power modesoiiiiiiiiinnnnnaann. .. 131

156.6 Hardware watchdogoption., 132

15.7 Using Halt mode with the WWDG (WWDGHALT option) 132

15.8 WWDGinterrupts 132

15.9 WWDG registers e e e 132

15.9.1 Control register (WWDG_CR) 132

15.9.2 Window register (WWDG WR) 133

15.10 Window watchdog register map and resetvalues 133

16 Timer overviewttt e nnnnnnnnns 134
16.1 Timer feature comparison 135

16.2 Glossary of timer signalnames 136

17 16-bit advanced control timer (TIM1) 138
17.1 TIM71introduction 138

17.2 TIM1mainfeatures 139

17.3 TIM1timebaseunit 141

‘W DoclD14587 Rev 14 7/467

Contents RMO0016
17.3.1 Reading and writing to the 16-bitcounter 142

17.3.2 Write sequence for 16-bit TIM1_ARRregister 142

17.3.3 Prescaler e 142

17.3.4 Up-countingmode i 143

17.3.5 Down-countingmodet 145

17.3.6 Center-aligned mode (up/down counting) 147

17.3.7 Repetition down-counter, 149

17.4 TIM1 clock/triggercontroller 151
17.4.1 Prescalerclock (CK_PSC) 151

17.4.2 Internal clock source (f(MASTER) 152

17.4.3 Externalclock sourcemode 1 152

17.4.4 Externalclock sourcemode 2, 154

17.4.5 Trigger synchronization i .. 155

17.4.6 Synchronization between TIM1, TIM5 and TIM6 timers 159

17.5 TIM1 capture/compare channels 166
17.5.1 Write sequence for 16-bit TIM1_CCRiregisters 167

17.5.2 Inputstage 168

17.5.3 Inputcapturemode 169

1754 Outputstage e 171

17.5.5 Forcedoutputmode 172

17.5.6 Outputcomparemode 172

1757 PWMmMode e 174

17.5.8 Using the break function 181

17.5.9 Clearing the OCIiREF signal on an externalevent 184
17.5.10 Encoderinterfacemode 185

176 TIMlinterrupts 187
17.7 TIMAregisters 188
17.7.1 Control register 1 (TIM1_CR1) 188

17.7.2 Controlregister 2 (TIM1_CR2) 190

17.7.3 Slave mode control register (TIM1_SMCR) 191

17.7.4 External trigger register (TIM1_ETR) 192

17.7.5 Interrupt enable register (TIM1_IER) 194

17.7.6 Statusregister 1 (TIM1_SR1) i 195

17.7.7 Statusregister2 (TIM1_SR2) 196

17.7.8 Event generation register (TIM1_EGR) 197

17.7.9 Capture/compare mode register 1 (TIM1_CCMR1) 198
17.7.10 Capture/compare mode register 2 (TIM1_CCMR2) 202

8/467

DoclD14587 Rev 14 ‘Yl

RMO0016 Contents
17.7.11 Capture/compare mode register 3 (TIM1_CCMR3) 203

17.7.12 Capture/compare mode register 4 (TIM1_CCMR4) 204

17.7.13 Capture/compare enable register 1 (TIM1_CCER1) 205

17.7.14 Capture/compare enable register 2 (TIM1_CCER2) 208

17.7.15 Counter high (TIM1_CNTRH) 208

17.7.16 Counterlow (TIM1_CNTRL) 209

17.7.17 Prescaler high (TIM1_PSCRH) 209

17.7.18 Prescalerlow (TIM1_PSCRL) 209

17.7.19 Auto-reload register high (TIM1_ARRH) 210

17.7.20 Auto-reload register low (TIM1_ARRL) 210

17.7.21 Repetition counter register (TIM1_RCR) 210

17.7.22 Capture/compare register 1 high (TIM1_CCR1H) 211
17.7.23 Capture/compare register 1 low (TIM1_CCR1L) 21

17.7.24 Capture/compare register 2 high (TIM1_CCR2H) 212

17.7.25 Capture/compare register 2 low (TIM1_CCR2L) 212

17.7.26 Capture/compare register 3 high (TIM1_CCR3H) 213

17.7.27 Capture/compare register 3 low (TIM1_CCR3L) 213

17.7.28 Capture/compare register 4 high (TIM1_CCR4H) 214

17.7.29 Capture/compare register 4 low (TIM1_CCR4L) 214

17.7.30 Breakregister (TIM1_BKR) 215

17.7.31 Deadtime register (TIM1_DTR) 217

17.7.32 Output idle state register (TIM1_OISR) 218

17.7.33 TIM1 registermapandresetvalues 219

18 16-bit general purpose timers (TIM2, TIM3, TIMS5) 222
18.1 TIM2, TIM3 and TIMS introduction 222
18.2 TIM2/TIM3mainfeatures 222
18.3 TIMSmainfeatures 223
18.4 TIM2/TIM3/TIMS functional description 223
18.4.1 Timebaseunit e 224

18.4.2 Clock/triggercontroller 225

18.4.3 Capture/comparechannels 226

18.5 TIM2/TIM3/TIMS interrupts e 228
18.6 TIM2/TIM3/TIMS registers 229
18.6.1 Controlregister 1 (TIMX_CR1) 229

18.6.2 Control register 2 (TIM5_CR2) 230

m DoclD14587 Rev 14 9/467

Contents RMO0016
18.6.3 Slave mode control register (TIM5_SMCR) 231

18.6.4 Interrupt enable register (TIMx_IER) 232

18.6.5 Statusregister 1 (TIMX SR1) 233

18.6.6 Statusregister2 (TIMX SR2) 234

18.6.7 Event generation register (TIMx_EGR) 235

18.6.8 Capture/compare mode register 1 (TIMx_CCMR1) 236

18.6.9 Capture/compare mode register 2 (TIMXx_CCMR2) 239

18.6.10 Capture/compare mode register 3 (TIMx_CCMR3) 240

18.6.11 Capture/compare enable register 1 (TIMx_CCER1) 241

18.6.12 Capture/compare enable register 2 (TIMx_CCER2) 242

18.6.13 Counter high (TIMx_CNTRH) 242

18.6.14 Counterlow (TIMX_CNTRL) 243

18.6.15 Prescaler register (TIMXx_PSCR) o ... 244

18.6.16 Auto-reload register high (TIMx_ARRH) 244
18.6.17 Auto-reload register low (TIMx_ARRL) 245
18.6.18 Capture/compare register 1 high (TIMx CCR1H) 245
18.6.19 Capture/compare register 1 low (TIMx_CCR1L) 246
18.6.20 Capture/compare register 2 high (TIMx_CCR2H) 246

18.6.21 Capture/compare register 2 low (TIMx_CCR2L) 246

18.6.22 Capture/compare register 3 high (TIMx_CCR3H) 247
18.6.23 Capture/compare register 3 low (TIMx_CCR3L) 247

19 8-bit basic timer (TIM4, TIM6) i iiiiiinnn. 253
19.1 TIM4, TIM6 introduction 253
19.2 TIM4 mainfeatures 254
19.3 TIM6mainfeatures 254
19.4 TIMA/TIMG interrupts e 254
19.5 TIM4/TIM6 clock selection 254
19.6 TIM4A/TIMGBregisters 255
19.6.1 Control register 1 (TIMX_CR1) 255

19.6.2 Control register 2 (TIM6_CR2), 256

19.6.3 Slave mode control register (TIM6_SMCR) 256

19.6.4 Interrupt enable register (TIMx_IER) 258

19.6.5 Statusregister 1 (TIMX_SR) 258

19.6.6 Event generation register (TIMx_EGR) 259

19.6.7 Counter (TIMX_CNTR) 259

10/467 DoclD14587 Rev 14 m

RMO0016 Contents
19.6.8 Prescaler register (TIMXx_PSCR) 259

19.6.9 Auto-reload register (TIMXx_ARR) 260

19.6.10 TIM4/TIM6 register map andresetvalues 260

20 Serial peripheral interface (SPI) i ii... 262
20.1 SPlintroduction 262

20.2 SPlImainfeatures 262

20.3 SPlfunctional description 263

20.3.1 SPlgeneraldescription i 263

20.3.2 Configuringthe SPlinslavemode 267

20.3.3 Configuring the SPI mastermode 267

20.3.4 Configuring the SPI for simplex communications 268

20.3.5 Data transmission and reception procedures 268

20.3.6 CRCecalculationc. 275

20.3.7 Statusflags e 277

20.3.8 Disablingthe SPI 277

20.3.9 Errorflags 279

20.3.10 SPllow powermodesiuiuii i 280

20.3.11 SPlinterruptsot 280

204 SPlreqgisters 282

20.4.1 SPlcontrolregister 1 (SPI_CR1) 282

20.4.2 SPlcontrolregister 2 (SPI. CR2) 283

20.4.3 SPlinterrupt control register (SPI_ICR) 284

20.4.4 SPlstatusregister (SPI_SR) 285

20.4.5 SPldataregister (SPI_LDR) 286

20.4.6 SPI CRC polynomial register (SPI_CRCPR) 286

20.4.7 SPIRxCRC register (SPI_RXCRCR) oo 286

20.4.8 SPITx CRCregister (SPI_TXCRCR) 287

20.5 SPlregistermapandresetvalues 287

21 Inter-integrated circuit (12C) interface 288
211 12Cintroduction 288

21.2 12Cmainfeatures 288

21.3 12C general description 289

21.4 12C functional description L 291

2141 12Cslavemode 291

m DoclD14587 Rev 14 11/467

Contents RMO0016
2142 [12Cmastermode e 293

2143 Errorconditions 301

21.4.4 SDA/SCLIinecontrol 302

215 12Clowpowermodes 303
216 12CINnterrupts 303
217 12Cregisters 305
21.7.1 Controlregister 1 (I2C_CR1) e 305

21.7.2 Controlregister2 (I2C_CR2) i 306

21.7.3 Frequency register (I2C_FREQR) 307

21.7.4 Own address register LSB (I2C_ OARL) 308

21.7.5 Own address register MSB (I2C_OARH) 308

21.7.6 Dataregister (I2C_DR) 309

21.7.7 Statusregister 1 (I2C_SR1)o 310

21.7.8 Statusregister2 (I2C_SR2) 312

21.7.9 Statusregister 3 (I2C_SR3) 313
21.7.10 Interruptregister (I2C_ITR) 314

21.7.11 Clock control register low (I2C_CCRL) 315
21.7.12 Clock control register high (I2C_CCRH) 316
21.7.13 TRISEregister (I2C_TRISER) i 318
21.7.14 12Cregistermapandresetvalues 319

22 Universal asynchronous receiver transmitter (UART) 320
221 Introduction 320
222 UARTmainfeatures 321
22.3 UART functional description 322
22.3.1 UART characterdescription 327

2232 Transmitter e 328

22.3.3 RECEBIVEI 331

22.3.4 High precision baud rate generator 336

22.3.5 Clock deviation tolerance of the UART receiver 337

22.3.6 Paritycontrol 338

22.3.7 Multi-processor communication 339

22.3.8 LIN (local interconnection network) mode 340

22.3.9 UART synchronous communication 341
22.3.10 Single wire half duplex communication 343

22311 Smartcard 343

12/467 DoclD14587 Rev 14 ‘W

RMO0016 Contents
22312 IDASIRENDECDbIoCk i 345

22.4 LIN mode functional description 348
2241 Mastermode 348

22.4.2 Slave mode with automatic resynchronization disabled 352

22.4.3 Slave mode with automatic resynchronization enabled 355

2244 LINmodeselection 360

225 UARTIlowpowermodes 361
22.6 UARTInterrupts 361
22.7 UART registers e e e 363
22.7.1 Statusregister (UART_SR) 363

22.7.2 Dataregister (UART_DR) i, 365

22.7.3 Baudrateregister 1 (UART BRR1)........................... 365

22.74 Baudrateregister2(UART_BRR2).......... 366

22.7.5 Controlregister 1 (UART_CR1) 366

22.7.6 Controlregister 2 (UART_CR2) i 367

22.7.7 Controlregister 3(UART_CR3) 369

22.7.8 Controlregister4 (UART_CR4) 370

22.7.9 Control register 5(UART _CR5), 371
22.7.10 Control register 6 (UART_CR6) 372

22.7.11 Guard time register (UART_GTR) 373
22.7.12 Prescaler register (UART_PSCR) it 374
22713 UART registermap andresetvalues 375

23 Controller area network (beCAN) i, 378
23.1 Introduction 378
23.2 beCANmainfeatures 378
23.3 beCAN generaldescription 379
23.311 CAN2O0Bactivecorecouiiuiiiiiiinnen. 379

23.3.2 Control, status and configuration registers 379

23.3.3 Txmailboxes 380

23.3.4 Acceptancefilters 380

23.4 Operatingmodes 381
23.4.1 Initialization mode 381

2342 Normalmode 382

23.4.3 Sleepmode (IoW POWEN) it 382

23.4.4 Time triggered communicationmode 382

m DoclD14587 Rev 14 13/467

Contents RMO0016

23.5 Testmodes 383
23.5.1 Silentmode 383

23.5.2 Loopbackmode 383

23.5.3 Loop back combined with silentmode 384

23.6 Functional description 384
23.6.1 Transmissionhandling 384

23.6.2 Receptionhandling 387

23.6.3 Identifierfiltering 388

23.6.4 Messagestorage 394

23.6.5 Errormanagement 396

23.6.6 Bittiming 397

23.7 Interrupts e 399
23.8 Registeraccessprotection i ... 400
23.9 Clocksystem 400
23.10 beCANlowpowermodes 400
23.11 beCANTegiSters 401
23.11.1 CAN master control register (CAN_MCR) 401
23.11.2 CAN master status register (CAN_MSR) 402
23.11.3 CAN transmit status register (CAN_TSR) 403
23.11.4 CAN transmit priority register (CAN_TPR) 404
23.11.5 CAN receive FIFO register (CAN_RFR) 406
23.11.6 CAN interrupt enable register (CAN_IER) 407
23.11.7 CAN diagnostic register (CAN_DGR) 408
23.11.8 CAN page select register (CAN_PSR) 408
23.11.9 CAN error status register (CAN_ESR) 409
23.11.10 CAN error interrupt enable register (CAN_EIER) 410
23.11.11 CAN transmit error counter register (CAN_TECR) 410
23.11.12 CAN receive error counter register (CAN_RECR) 411
23.11.13 CAN bit timing register 1 (CAN_BTR1) 411
23.11.14 CAN bit timing register 2 (CAN_BTR2) 412
23.11.15 Mailbox registers 413
23.11.16 CANfilterregisters 418

23.12 CANregistermap 424
23.12.1 Page mapping for CAN 425

24 Analog/digital converter (ADC) 428

14/467 DoclD14587 Rev 14 ‘Yl

RMO0016 Contents
241 Introduction 428
242 ADCmainfeatures e 428
243 ADCextendedfeatures 428
244 ADCDPINS ..ot 431
24,5 ADC functional description 431

2451 ADCon-offcontrol 431

2452 ADCCIOCK ...t 431

2453 Channelselection 432

2454 Conversion MOdesttt e 432

2455 Overrunflag 433

2456 Analogwatchdog 434

2457 Conversionon externaltrigger............... 435

2458 Analog ZOOMINg . ..o oi ittt e 435

2459 Timingdiagram 435

246 ADCIlow powermodes ittt e 437
2477 ADCinterrupts 437
24.8 Dataalignment 440
24,9 Readingthe conversionresult, 440
24.10 Schmitt trigger disableregisters 441
2411 ADCregisters 441
24.11.1 ADC data buffer register x high (ADC_DBxRH) (x=0..70r0..9) 441
24.11.2 ADC data buffer register x low (ADC_DBxRL) (x=or 0..7 or 0..9)442
24.11.3 ADC control/status register (ADC_CSR) 443
24.11.4 ADC configuration register 1 (ADC_CR1) 444
24.11.5 ADC configuration register2 (ADC_CR2) 445
24.11.6 ADC configuration register 3 (ADC_CR3) 446
24.11.7 ADC data register high (ADC_DRH) 447
24.11.8 ADC data register low (ADC_DRL) 447
24.11.9 ADC Schmitt trigger disable register high (ADC_TDRH) 448
24.11.10 ADC Schmitt trigger disable register low (ADC_TDRL) 448
24.11.11 ADC high threshold register high (ADC_HTRH) 449
24.11.12 ADC high threshold register low (ADC_HTRL) 449
24.11.13 ADC low threshold register high (ADC_LTRH) 450
24.11.14 ADC low threshold register low (ADC_LTRL) 450
24.11.15 ADC watchdog status register high (ADC_AWSRH) 451
24.11.16 ADC watchdog status register low (ADC_AWSRL) 451

lﬁ DoclD14587 Rev 14 15/467

Contents RMO0016

24.11.17 ADC watchdog control register high (ADC_AWCRH) 452

24.11.18 ADC watchdog control register low (ADC_AWCRL) 452

2412 ADCregistermapandresetvalues 453

25 Revision history e 455

3

16/467 DoclD14587 Rev 14

RM0016

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

S74

Interrupt levels e 26
CPU register map e 27
CFG GCRregister mapo e e 28
Listof abbreviations 33
BIOCK SizZe . . . o 49
Memory access versus programmingmethod 50
Flash register map andresetvalues. 56
Software priority levels 60
Interrupt enabling/disabling insidean ISR 60
Vector address map versus software priority bits. L. 65
Dedicated interrupt instructionset 66
Interrupt register map 72
RST register Map e 77
Devices with 4 trimming bits 82
Devices with 3trimming bits 82
CLKinterrupt reqUests 89
Peripheral clock gating bits. 95
Peripheral clock gating bits. 96
CLKregistermapandresetvalues 100
Low power mode management 102
I/O port configuration summary 107
Effect of low power modes on GPIO ports 108
Recommended and non-recommended configurations for analog input 109
GPIOregister map 113
Time base calculationtable 116
AWU register map 120
Beeperregister map 123
Watchdog timeout period (LSl clock frequency =128 kHz) 125
IWDG register Map oo e e 127
Window watchdog timingexample 131
Effect of low power modes on WWDG i 131
WWDG registermap andresetvalues. i 133
Timer characteristics. e 134
Timer feature CoOmMPariSON. i e e e 135
Glossary of internal timersignals 136
Explanation of indices'i’, ‘n’, and X’ 137
Counting direction versus encodersignals. 185
Output control for complementary OCi and OCiN channels with break feature 207
TIMT register Map. e 219
TIMZ register Map. e 247
TIM3 register Map.o e 249
TIMS register Map.o e 250
TIM4 register Map. e 260
TIMG register Map. e 261
SPI behaviorinlow power modest e 280
SPlinterruptrequests. 280
SPlregistermapandresetvalues 287
I12C interface behaviorin low powermodes i 303

DoclD14587 Rev 14 17/467

List of tables RMO0016

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.

18/467

[2C Interrupt requests 303
12C_CCR values for SCL frequency table ((MASTER =10 MHz or 16 MHz). 317
[2C register Map 319
UART configurations. 320
Noise detection from sampleddata, 335
Baud rate programming and error calculation 337
UART receiver tolerance when UART _DIV[3:0]iszero.......... 337
UART receiver’s tolerance when UART_DIV[3:0] is different from zero. 338
Frame format 338
LINmode selection. 360
UART interface behavior in low powermodes 361
UART interrupt requests 361
UART register Mapo e 375
UARTZ2 register Map o e e 375
UART3 register Mapo e e 376
UARTA4 register Mapo e 377
Example of filter numbering 392
Transmit mailbox mapping e 394
Receive mailbox mapping.o 395
beCAN behavior in low powermodes. 400
beCAN control and status page - register map andresetvalues 426
beCAN mailbox pages - registermap andresetvalues 426
beCAN filter configuration page - register map andresetvalues 427
ADC PINS. . o e 431
LOW pPOWEr MOAES. oo e 437
ADC Interrupts in single and non-buffered continuous mode (ADC1 and ADC2). 437
ADC interrupts in buffered continuous mode (ADC1). 438
ADC interruptsinscan mode (ADC1).ot 439
ADC1 registermap andresetvalues 453
ADC2 registermap andresetvalues 454
Document revision history 455

3

DoclD14587 Rev 14

RM0016

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.

Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.

S74

Programming model 24
Stacking Order. 25
MEMOrY MaP . . . o e 30
Default stack model 31
Customized stack model. 32

Flash memory and data EEPROM organization on low density STM8S and STM8AF ... 38
Flash memory and data EEPROM organization on medium density STM8S and STM8AF39

Flash memory and data EEPROM organization high density STM8S and STM8AF 40
UBC area size definition on low density STM8S devices 41
UBC area size definition on medium density STM8S
and STM8AF with up to 32 Kbytes of Flash programmemory. 42
UBC area size definition on high density STM8S and
STMB8AF with up to 128 Kbytes of Flash programmemory 43
SWIM pin CONNECHioN 57
Interrupt processing flowchart 60
Priority deCision proCesSS 61
Concurrentinterrupt management 64
Nested interrupt management 66
Power sUpplYy OVeIVIEWo 73
Reset CirCUIt 74
VDD/VDDIO voltage detection: POR/BOR threshold 75
Clock tree . . o 79
HSE CIOCK SOUICESt e e e e e e 80
Clock switching flowchart (automatic mode example) 85
Clock switching flowchart (manual mode example) 86
GPIO block diagram e 106
AWU block diagram 114
Beep block diagram 121
Independent watchdog (IWDG) block diagram 124
Watchdog block diagram e 129
Approximate timeout duration. 130
Window watchdog timing diagram 131
TIM1 general block diagram e 140
Time base unit e 141
16-bit read sequence for the counter (TIM1_CNTR) 142
Counterinup-counting mode e 143
Counter update when ARPE = 0 (ARR not preloaded) with prescaler=2............ 144
Counter update event when ARPE =1 (TIM1_ARR preloaded). 144
Counter in down-counting mode. e 145
Counter update when ARPE = 0 (ARR not preloaded) with prescaler=2............ 146
Counter update when ARPE = 1 (ARR preloaded), with prescaler=1 146
Counterin center-alignedmode 147
Counter timing diagram, fok onT = fek psc, TIM1_ARR =06h, ARPE=1 148
Update rate examples depending on mode and TIM1_RCR register settings 150
Clock/trigger controller block diagram 151
Control circuit in normal mode, fok psc = fMASTER « v+« v v v v v v veeee i 152
TI2 external clock connection eXxample, 152
Control circuitin externalclock mode 1 153
DoclD14587 Rev 14 19/467

List of figures RMO0016

Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.

Figure 95.

Figure 96.

20/467

External trigger input block diagram 154
Control circuitin external clock mode 2 154
Control circuit in triggermode. e 155
Control circuitin triggerreset mode 156
Control circuitin triggergated mode. 157
Control circuit in external clock mode 2 + triggermode 158
Timer chaining system implementationexample 160
Trigger/master mode selectionblocks 161
Master/slave timerexample 161
Gating timer B with OC1REF of timer A 162
Gating timer B with the counter enable signal of timer A(CNT_EN) 163
Triggering timer B with the UEV of timer A (TIMERA-UEV) 164
Triggering timer B with counter enable CNT_EN of timer A 165
Triggering Timer A and B with Timer AT input 166
Capture/compare channel 1 maincircuit 166
16-bit read sequence for the TIM1_CCRi register in capturemode 167
Channel input stage block diagram 168
Inputstage of TIM 1 channel 1 168
PWM input signal measurement. 170
PWM input signal measurementexample 171
Channel output stage block diagram 171
Detailed output stage of channel with complementary output (channel 1)............ 172
Output compare mode, toggle on OCT. e 173
Edge-aligned counting mode PWM mode 1 waveforms (ARR=8) 175
Center-aligned PWM waveforms (ARR=8). o i 176
Example of one-pulse mode. e 177
Complementary output with deadtime insertion 179
Deadtime waveforms with a delay greater than the negativepulse 179
Deadtime waveforms with a delay greater than the positive pulse. 179
Six-step generation, COM example (OSSR =1) 181
Behavior of outputs in response to a break (channel without complementary output) . . . 182
Behavior of outputs in response to a break (TIM1 complementary outputs) 183
ETR activation e 184
Example of counter operation in encoder interfacemode 186
Example of encoder interface mode with IC1 polarity inverted. 186
TIM2/TIM3 block diagram 223
TIMS block diagram e 224
Time base Unit e 224
Input stage block diagram. 226
Inputstage of TIM 2 channel 1 226
Output Stageo 227
Output stage of channel 1. e 227
TIM4 block diagram e 253
TIMG block diagram e 253
SPIblock diagram. e 263
Single master/ single slave application. 264
Data clock timing diagram e 266
TXE/RXNE/BSY behavior in full duplex mode (RXONLY = 0).

Case of continuous transfers 271
TXE/RXNE/BSY behavior in slave / full duplex mode

(BDM = 0, RXONLY = 0). Case of continuous transfers. 271

TXE/BSY in master transmit-only mode

DoclD14587 Rev 14 ‘Yl

RM0016

List of figures

Figure 97.
Figure 98.

Figure 99.

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.

S74

(BDM = 0 and RXONLY = 0). Case of continuous transfers. 272
TXE/BSY in slave transmit-only mode (BDM = 0 and RXONLY = 0).
Case of continuous transfers 273
RXNE behavior in receive-only mode (BDM = 0 and RXONLY = 1).
Case of continuous transfers 274
TXE/BSY behavior when transmitting (BDM = 0 and RXLONY = 0).
Case of discontinuous transfers 275
[2Cbus protocol. 289
[2C block diagram e 290
Transfer sequence diagram for slave transmitter. 292
Transfer sequence diagram for slavereceiver 293
Transfer sequence diagram for master transmitter. 296
Method 1: transfer sequence diagram for masterreceiver. 297
Method 2: transfer sequence diagram for master receiverwhen N>2. 298
Method 2: transfer sequence diagram for master receiverwhen N=2 300
Method 2: transfer sequence diagram for master receiverwhen N=1 300
12C interrupt mapping diagram 304
UART1 block diagram. e 323
UART2 block diagram. e 324
UART3 block diagram. 325
UART4 block diagram. 326
Word length programming e 327
Configurable stop bits. o 329
TC/TXE behavior when transmitting. 330
Start bit detection 332
Data sampling for noise detection 334
How to code UART_DIVinthe BRRregisters 336
Mute mode using idle line detection 339
Mute mode using Address mark detection o 340
UART example of synchronous transmission. 342
UART data clock timing diagram (M=0) e 342
UART data clock timing diagram (M=1) e 342
RX data setup/hold time e 343
ISO 7816-3 asynchronous protocol 344
Parity error detection using 1.5 stop bits 345
IrDA SIR ENDEC- block diagram e 347
IrDA data modulation (3/16) -normalmode 347
Break detection in LIN mode (11-bit break length - LBDL bitisset)................. 350
Break detection in LIN mode vs framing error detection. 351
LIN identifier field parity bits 353
LIN identifier field parity check 353
LIN header reception time-out 354
LIN synch field measurement 356
UARTDIV read / write operations when LDUM =0. 356
UARTDIV read / write operations when LDUM =1. 357
Bit sampling inreception mode. 360
UART interrupt mapping diagram 362
CAN network topologyo e 379
beCAN block diagram. e 380
beCAN operating modes e 381
beCAN insilentmode. e 383
beCAN inloopbackmode 383
DoclD14587 Rev 14 21/467

List of figures RMO0016

Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.
Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.

22/467

beCAN incombined mode 384
Transmit mailbox states 386
Receive FIFO states. 387
32-bit filter bank configuration (FSCx bits = 0b11 in CAN_FCRx register). 390
16-bit filter bank configuration (FSCx bits = 0b10 in CAN_FCRx register). 390
16/8-bit filter bank configuration (FSCx bits = 0b01 in CAN_FCRx register) 391
8-bit filter bank configuration (FSCx bits = 0b00 in CAN_FCRx register). 391
Filter banks configured as in the examplein Table 65. 393
CAN error state diagram. e 396
Bit timing. . .. e 397
CAN frames e 398
Event flags and interrupt generation. 399
CAN register mappingo e 424
CAN page mappingo ottt e 425
ADCT block diagram. e 429
ADC2 block diagram. e 430
Analog watchdog guarded area 434
Timing diagram in single mode (CONT =0). e 436
Timing diagram in continuous mode (CONT =1). 436
Right alignmentof data 440
Leftalignmentofdata. 440

3

DoclD14587 Rev 14

RMO0016

Central processing unit (CPU)

1.1

1.2

1.2.1

3

Central processing unit (CPU)

CPU introduction

The CPU has an 8-bit architecture. Six internal registers allow efficient data manipulations.
The CPU is able to execute 80 basic instructions. It features 20 addressing modes and can
address six internal registers. For the complete description of the instruction set, refer to the
STM8 microcontroller family programming manual (PM0044).

CPU registers

The six CPU registers are shown in the programming model in Figure 1. Following an
interrupt, the registers are pushed onto the stack in the order shown in Figure 2. They are
popped from stack in the reverse order. The interrupt routine must therefore handle it, if
needed, through the POP and PUSH instructions.

Description of CPU registers

Accumulator (A)

The accumulator is an 8-bit general purpose register used to hold operands and the results
of the arithmetic and logic calculations as well as data manipulations.

Index registers (X and Y)

These are 16-bit registers used to create effective addresses. They may also be used as a
temporary storage area for data manipulations and have an inherent use for some
instructions (multiplication/division). In most cases, the cross assembler generates a
PRECODE instruction (PRE) to indicate that the following instruction refers to the Y register.

Program counter (PC)

The program counter is a 24-bit register used to store the address of the next instruction to
be executed by the CPU. It is automatically refreshed after each processed instruction. As a
result, the STM8 core can access up to 16 Mbytes of memory.

DoclD14587 Rev 14 23/467

Central processing unit (CPU) RMO0016

Figure 1. Programming model

7 0
[77 7T 7] AACCUMULATOR
15 g 7 0
Loovooxg v [y by) | XINDEX
15 g 7 0
Loovooxg v v [y by)] YINDEX
15 g 7 0
L, s8¢, |, /8 , |, | SPSTACKPOINTER
23 16 15 8 7 0
L . uPeEy [oyeeH, [oyPeL, o | PCPROGRAM COUNTER
7 0
[vio 11 H 0N .z c] CCCODECONDITION

Stack pointer (SP)

The stack pointer is a 16-bit register. It contains the address of the next free location of the
stack. Depending on the product, the most significant bits can be forced to a preset value.

The stack is used to save the CPU context on subroutine calls or interrupts. The user can
also directly use it through the POP and PUSH instructions.

The stack pointer can be initialized by the startup function provided with the C compiler. For
applications written in C language, the initialization is then performed according to the
address specified in the linker file for C users. If you use your own linker file or startup file,
make sure the stack pointer is initialized properly (with the address given in the datasheets).
For applications written in assembler, you can use either the startup function provided by ST
or write your own by initializing the stack pointer with the correct address.

The stack pointer is decremented after data has been pushed onto the stack and
incremented after data is popped from the stack. It is up to the application to ensure that the
lower limit is not exceeded.

A subroutine call occupies two or three locations. An interrupt occupies nine locations to
store all the internal registers (except SP). For more details refer to Figure 2.

Note: The WFI/HALT instructions save the context in advance. If an interrupt occurs while the
CPU is in one of these modes, the latency is reduced.

3

24/467 DoclD14587 Rev 14

RMO0016

Central processing unit (CPU)

3

Figure 2. Stacking order

[INTERRUPT GENERATION (execute pipeline) |
Complete instruction in execute stage (1-6 cycles latency)

PUSH PCL
PUSH PCH
PUSH PCE
PUSH Y
PUSH X
PUSH A
PUSH CC

v

JUMP_TOJNTERRUPT.ROUTINE GIVEN BY_ THEJNTERRUPT VECTOR

9 CPUCYCLES

A PCL
PCH
PCE

YL s

STACK
PUSH)

MHML3d
-
T

e
—
IEGEEEID

UNSTACK *H
(POP) A

*

b

| IRET_INSTRUCTION

r

POP CC
POP A
POP X
POP Y
POP PCE
POP PCH
POP PCL

9.CPUCYCLES

y
[JUMP_TO_THE ADDRESS.GIVEN BY PROGRAM COUNTER (Reload Pipeling]]

Condition code register (CC)

The condition code register is an 8-bit register which indicates the result of the instruction
just executed as well as the state of the processor. The 6th bit (MSB) of this register is
reserved. These bits can be individually tested by a program and specified action taken as a
result of their state. The following paragraphs describe each bit:

e V: Overflow

When set, V indicates that an overflow occurred during the last signed arithmetic operation,
on the MSB result bit. See the INC, INCW, DEC, DECW, NEG, NEGW, ADD, ADDW, ADC,
SUB, SUBW, SBC, CP, and CPW instructions.

e |1: Interrupt mask level 1
The 11 flag works in conjunction with the 10 flag to define the current interruptability level as
shown in Table 1. These flags can be set and cleared by software through the RIM, SIM,

HALT, WFI, IRET, TRAP, and POP instructions and are automatically set by hardware when
entering an interrupt service routine.

DoclD14587 Rev 14 25/467

Central processing unit (CPU) RMO0016

26/467

Table 1. Interrupt levels

Interruptability Priority " 10
Interruptable main Lowest 1 0
Interruptable level 1 0 1
Interruptable level 2 0 0
Non interruptable Highest 1 1

e H: Half carry bit

The H bit is set to 1 when a carry occurs between the bits 3 and 4 of the ALU during an ADD
or ADC instruction. The H bit is useful in BCD arithmetic subroutines.

e |0: Interrupt mask level O

See Flag 1.

e N: Negative

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is negative (i.e. the most significant bit is a logic 1).

o Z:Zero

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is zero.

e C:Carry

When set, C indicates that a carry or borrow out of the ALU occurred during the last

arithmetic operation on the MSB operation result bit. This bit is also affected during bit test,
branch, shift, rotate and load instructions. See the ADD, ADC, SUB, and SBC instructions.

In a division operation, C indicates if trouble occurred during execution (quotient overflow or
zero division). See the DIV instruction.

In bit test operations, C is the copy of the tested bit. See the BTJF and BTJT instructions.
In shift and rotate operations, the carry is updated. See the RRC, RLC, SRL, SLL, and SRA
instructions.

This bit can be set, reset or complemented by software using the SCF, RCF, and CCF
instructions.

Example: Addition
$B5 + $94 = "C" + $49 = $149

c 7 0
[o] [fofe]t]ofv[o]1]
c 7 0
+[o] [1]oJoft[ofr[o]0]
c 7 0

=[1] [ofr]ofof1]ofo]1]

3

DoclD14587 Rev 14

RMO0016

Central processing unit (CPU)

1.2.2 STM8 CPU register map
The CPU registers are mapped in the STM8 address space as shown inTable 2. These
registers can only be accessed by the debug module but not by memory access instructions
executed in the core.
Table 2. CPU register map
Address Register name 7 6 5 4 3 2 1 0
offset
0x00 A MSB - - - - - - LSB
0x01 PCE MSB -) - - - - LSB
0x02 PCH MSB - - - - - - LSB
0x03 PCL MSB - - - - - - LSB
0x04 XH MSB - - - - - - LSB
0x05 XL MSB - - - - - - LSB
0x06 YH MSB - - - - - - LSB
0x07 YL MSB - - - - - - LSB
0x08 SPH MSB - - - - - - LSB
0x09 SPL MSB - - - - - - LSB
0x0A CcC \% 0 11 H 10 N V4 C
1.3 Global configuration register (CFG_GCR)
1.3.1 Activation level
The MCU activation level is configured by programming the AL bit in the CFG_GCR register.
For information on the use of this bit refer to Section 6.4: Activation level/low power mode
control on page 63.
1.3.2 SWIM disable

3

By default, after an MCU reset, the SWIM pin is configured to allow communication with an
external tool for debugging or Flash/EEPROM programming. This pin can be configured by
the application for use as a general purpose I/O. This is done by setting the SWD bit in the
CFG_GCR register.

DoclD14587 Rev 14 271467

Central processing unit (CPU) RMO0016

1.3.3 Description of global configuration register (CFG_GCR)

Address offset: 0x00
Reset value: 0x00

7 6 5 4 3 2 1 0
AL SWD
Reserved
w w

Bits 7:2 Reserved

Bit 1 AL: Activation level
This bit is set and cleared by software. It configures main or interrupt-only activation.
0: Main activation level. An IRET instruction causes the context to be retrieved from the stack and
the main program continues after the WFI instruction.
1: Interrupt-only activation level. An IRET instruction causes the CPU to go back to WFI/Halt mode
without restoring the context.

Bit 0 SWD: SWIM disable
0: SWIM mode enabled
1: SWIM mode disabled
When SWIM mode is enabled, the SWIM pin cannot be used as general purpose I/O.

1.3.4 Global configuration register map and reset values

The CFG_GCR is mapped in the STM8 address space. Refer to the corresponding
datasheets for the base address.

Table 3. CFG_GCR register map

Address Register name 7 6 5 4 3 2 1 0
offset
0x00 CFG_GCR - - - - - - AL SWD
Reset value 0 0 0 0 0 0 0 0
28/467 DoclD14587 Rev 14 ‘Yl

RM0016 Boot ROM

2 Boot ROM

The internal 2 Kbyte boot ROM (available in some devices) contains the bootloader code.
Its main tasks are to download the application program to the internal Flash/EEPROM
through the SPI, CAN, or UART interface, and to program the code, data, option bytes and
interrupt vectors in internal Flash/EEPROM.

To perform bootlloading in LIN mode, a different bootloader communication protocol is
implemented on UART2/UART3 and UART1.

The boot loader starts executing after reset. Refer to the STM8 bootloader user manual
(UM0560) for more details.

3

DoclD14587 Rev 14 29/467

Memory and register map

RM0016

3

3.1

3.1.1

30/467

Memory and register map

For details on the memory map, 1/O port hardware register map and CPU/SWIM/debug
module/interrupt controller registers, refer to the product datasheets.

Memory layout

Memory map

Figure 3. Memory map

00 000h

RAM upper limit
Data EEPROM lower limit

Data EEPROM upper limit
00 4800h

Option bytes upper limit
00 5000h

HW registers upper limit
00 6000h

00 6800h
00 7F00h

00 8000h
00 8080h

Program memory upper limit

RAM

Sgck _

Reserved

Data EEPROM

Reserved

Option bytes

Reserved

HW registers

Reserved

Boot ROM (optional)

Reserved

Registers for CPU, SWIM, ITC, DM

Interrupt vectors

Program EEPROM

ai18468

The RAM upper limit, data EEPROM upper and lower limit, Option Byte upper limit,
hardware (HW) registers upper limit, and the program memory upper limit are specific to the

device configuration. Please refer to the datasheets for quantitative information.

DoclD14587 Rev 14

S74

RMO0016

Memory and register map

3.1.2

3

Stack handling

Default stack model

The stack of the STM8S and STM8AF microcontrollers is implemented in the user RAM
area. The default stack model is shown in Figure 4.

Figure 4. Default stack model

RAM
Start address
<— Stack roll-over limit (1)
End address <— Stack pointer initialization value
Default stack model
ai15055v2

1. The stack roll-over limit is not implemented on all devices. Refer to the datasheets for detailed information.

Stack pointer initialization value

This is the default value of the stack pointer. The user must take care to initialize this pointer.
Correct loading of this pointer is usually performed by the initialization code generated by
the development tools (linker file). In the default stack model this pointer is initialized to the
RAM end address.

Stack roll-over limit

In some devices, a stack roll-over limit is implemented at a fixed address. If the stack pointer
is decreased below the stack roll-over limit, using a push operation or during context saving
for subroutines or interrupt routines, it is reset to the RAM end address. The stack pointer
does not roll over if stack pointer arithmetic is used.

Such behavior of the stack pointer is of particular importance when developing software on
a device with a different memory configuration than the target device.

DoclD14587 Rev 14 31/467

Memory and register map RMO0016

Customized stack model

STM8S and STMB8AF stack pointer handling allows a customized stack model to be
implemented. This permits a flexible stack size without restrictions due to the stack roll-over
limit. Implementing the customized stack also benefits portability of the software on products
with different memory configurations. Figure 5 shows the customized stack model.

Figure 5. Customized stack model
RAM

Start address

Optional guard cells (2)

#/

Flexible stack size

<«— Stack pointer initialization value

Stack roll-over limit (1) —»

End address

Customized stack model
ail5056v2

1. The stack roll-over limit is not implemented on all devices.

2. The guard cells are RAM locations that have to be continuously polled by the application program to detect
whether a stack overflow has taken place.

In this stack model, the initial stack pointer must be placed beyond the stack roll-over limit.

Consequently, the growing stack never reaches the stack roll-over limit. It is clear that in this

implementation the stack size is not limited by the roll-over mechanism. Nevertheless, the

user has to define the stack position and stack size in the link file, and he has to ensure that

the stack pointer does not exceed the defined stack area (stack overflow or under-run).

The RAM locations above and below the customized stack can be regularly used as RAM to
store variables or other information.

Guard cells can be implemented at the lower end of the stack to detect if the stack pointer
exceeds the defined limit. These cells are standard RAM locations, initialized with fixed
values that the stack overwrites if an overflow occurs. The user software can regularly poll
these cells, detect the overflow condition, and put the application in a fail safe state.

During the software validation phase hardware breakpoints can be set at both limits of the
stack to validate that neither a stack overflow nor an under-run happens.

3

32/467 DoclD14587 Rev 14

RMO0016

Memory and register map

3.2

3

Register description abbreviations

In the register descriptions of each chapter in this reference manual, the following
abbreviations are used:

Table 4. List of abbreviations

Abbreviation

Description

read/write (rw)

Software can read and write to these bits.

read-only (r)

Software can only read these bits.

write only (w)

Software can only write to this bit. Reading the bit returns a meaningless
value.

read/write once (rwo)

Software can only write once to this bit but can read it at any time. Only a
reset can return this bit to its reset value.

read/clear (rc_w1)

Software can read and clear this bit by writing 1. Writing ‘0’ has no effect on
the bit value.

read/clear (rc_w0)

Software can read and clear this bit by writing 0. Writing ‘1’ has no effect on
the bit value.

read/set (rs)

Software can read and set this bit. Writing ‘0’ has no effect on the bit value.

read/clear by read
(re_r)

Software can read this bit. Reading this bit automatically clears it to ‘0’.
Writing ‘0’ has no effect on the bit value.

Reserved (Res.)

Reserved bit, must be kept at reset value.

DoclD14587 Rev 14 33/467

Flash program memory and data EEPROM RMO0016

4

4.1

4.2

34/467

Flash program memory and data EEPROM

Flash and EEPROM introduction

The embedded Flash program memory and data EEPROM memories are controlled by a
common set of registers. Using these registers, the application can program or erase
memory contents and set write protection, or configure specific low power modes. The
application can also program the device option bytes.

Flash and EEPROM glossary

e Block
Ablock is a set of bytes that can be programmed or erased in one single programming
operation. Operations that are performed at block level are faster than standard
programming and erasing. Refer to Table 5 for the details on block size.

e Page
A page is a set of blocks.

A dedicated option byte can be used to configure, by increments of one page, the size
of the user boot code.

3

DoclD14587 Rev 14

RMO0016

Flash program memory and data EEPROM

4.3

3

Main Flash memory features

STM8S and STM8AF EEPROM is divided into two memory areas

Up to 128 Kbytes of Flash program memory. The density differs according to the
device. Refer to Section 4.4: Memory organization for details

Up to 2 Kbytes of data EEPROM including option bytes. Data EEPROM density
differs according to the device. Refer to Section 4.4: Memory organization for
details.

Programming modes

Byte programming and automatic fast byte programming (without erase operation)
Word programming
Block programming and fast block programming mode (without erase operation)

Interrupt generation on end of program/erase operation and on illegal program
operation.

Read-while-write capability (RWW). This feature is not available on all devices. Refer to
the datasheets for details

In-application programming (IAP) and in-circuit programming (ICP) capabilities
Protection features

Memory readout protection (ROP)

Program memory write protection with memory access security system (MASS
keys)

Data memory write protection with memory access security system (MASS keys)
Programmable write protected user boot code area (UBC).

Memory state configurable to operating or power-down (lppq) in Halt and Active-halt
modes

DoclD14587 Rev 14 35/467

Flash program memory and data EEPROM RMO0016

44

4.41

36/467

Memory organization

STM8S and STM8AF memory organization
STM8S and STM8AF EEPROM is organized in 32-bit words (4 bytes per word).

The memory organization differs according to the devices:
Low density STM8S and STM8AF devices

8 Kbytes of Flash program memory organized in 128 pages or blocks of 64 bytes
each. The Flash program memory is divided into 2 areas, the user boot code area
(UBC), which size can be configured by option byte, and the main program
memory area. The Flash program memory is mapped in the upper part of the
STM8S addressing space and includes the reset and interrupt vectors.

Up to 640 bytes of data EEPROM (DATA) organized in pages or blocks of

64 bytes each. One block (64 bytes) contains the option bytes of which 11 are
used to configure the device hardware features. The options bytes can be
programmed in user, IAP and ICP/SWIM modes.

Medium density STM8S devices

From 16 to 32 Kbytes of Flash program memory organized in up to 64 pages of 4
blocks of 128 bytes each. The Flash program memory is divided into 2 areas, the
user boot code area (UBC), which size can be configured by option byte, and the
main program memory area. The Flash program memory is mapped in the upper
part of the STM8S addressing space and includes the reset and interrupt vectors.
Up to 1 Kbyte of data EEPROM (DATA) organized in up to 2 pages of 4 blocks of
128 bytes each. One block (128 bytes) contains the option bytes of which 13 are
used to configure the device hardware features. The options bytes can be
programmed in user, IAP and ICP/SWIM modes.

Medium density STM8AF devices

From 16 to 32 Kbytes of Flash program memory organized in up to 64 pages of 4
blocks of 128 bytes each. The Flash program memory is divided into 2 areas, the
user boot code area (UBC), which size can be configured by option byte, and the
main program memory area. The Flash program memory is mapped in the upper
part of the STM8AF addressing space and includes the reset and interrupt
vectors.

Up to 1 Kbyte of data EEPROM (DATA) organized in up to 2 pages of 4 blocks of
128 bytes each. One block (128 bytes) contains the option bytes of which 13 are
used to configure the device hardware features. The options bytes can be
programmed in user, |AP and ICP/SWIM modes.

High density STM8S devices

From 32 to 128 Kbytes of Flash program memory organized in up to 256 pages of
4 blocks of 128 bytes each. The Flash program memory is divided into 2 areas,
the user boot code area (UBC), which size can be configured by option byte, and
the main program memory area. The Flash program memory is mapped in the
upper part of the STM8S addressing space and includes the reset and interrupt
vectors.

Up to 2 Kbytes of data EEPROM (DATA) organized in up to 4 pages of 4 blocks of
128 bytes each. The size of the DATA area is fixed for a given microcontroller. One
block (128 bytes) contains the option bytes of which 15 are used to configure the

DoclD14587 Rev 14 ‘Yl

RMO0016 Flash program memory and data EEPROM

device hardware features. The options bytes can be programmed in user, IAP and
ICP/SWIM modes.

e High density STM8AF devices

— From 32 to 128 Kbytes of Flash program memory organized in up to 256 pages of
4 blocks of 128 bytes each. The Flash program memory is divided into 2 areas,
the user boot code area (UBC), which size can be configured by option byte, and
the main program memory area. The Flash program memory is mapped in the
upper part of the STM8AF addressing space and includes the reset and interrupt
vectors.

— Up to 2 Kbytes of data EEPROM (DATA) organized in up to 4 pages of 4 blocks of
128 bytes each. The size of the DATA area is fixed for a given microcontroller. One
block (128 bytes) contains the option bytes of which 15 are used to configure the
device hardware features. The options bytes can be programmed in user, IAP and
ICP/SWIM modes.

The page defines the granularity of the user boot code area as described in Section 4.4.3:
User boot area (UBC).

Figure 6, Figure 7, and Figure 8 show the Flash memory and data EEPROM organization
for STM8S and STM8AF devices. Refer to the STM8S and STM8AF programming manual
(PMO0051) for more information.

Note: The EEPROM access time allows the device to run up to 16 MHz. For clock frequencies
above 16 MHz, Flash/data EEPROM access must be configured for 1 wait state. This is
enabled by the device option byte (refer to the option bytes section of the STM8S and
STMB8AF datasheets).

3

DoclD14587 Rev 14 371467

Flash program memory and data EEPROM

RM0016

Figure 6. Flash memory and data EEPROM organization on low density STM8S and

STM8AF

0x00 4000
DATA EEPROM 0x00 427F
0x00 4800
0x00 483F
(" 0x00 8000
Programmable size
from 2 pages (1 Kbytes)
up to 8 Kbytes
(1 page steps)
L

0x00 9FFF

1 page = 1 block = 64 bytes

DATA MEMORY
(up to 640 bytes)

OPTION BYTES (1 block)

Interrupt vectors (128 bytes)

USER BOOT CODE (UBC)
(permanently write protected)

MAIN PROGRAM
(write access possible for IAP
and using MASS mechanism)

'

Flash program
memory

.

8 Kbytes of
FLASH PROGRAM
MEMORY

ai15503

38/467

DoclD14587 Rev 14

3

RMO0016

Flash program memory and data EEPROM

Figure 7. Flash memory and data EEPROM organization on medium density STM8S

and STM8AF

DATA EEPROM <

Programmable size
from 2 pages (1 Kbyte)
up to 32 Kbytes
(1 page steps)

00 4000h

00 43FFh
00 4800h

00 487Fh

00 8000h

00 FFFFh

1 page = 512 bytes
1 block = 128 bytes

DATA MEMORY
(up to 1 Kbyte)

OPTION BYTES (1 block)

Interrupt vectors (128 bytes)

USER BOOT CODE (UBC)
(permanently write protected)

MAIN PROGRAM
(write access possible for IAP
and using MASS mechanism)

‘

Flash program
memory

ai15502

1. The memory mapping is given for the STM8AF devices featuring 32 Kbytes of Flash program memory and
1 Kbytes of SRAM.

3

DoclD14587 Rev 14

39/467

Flash program memory and data EEPROM RMO0016

Figure 8. Flash memory and data EEPROM organization high density STM8S and
STM8AF

DATA EEPROM

Programmable size USER BOOT CODE (UBC)
from 2 pages (1 Kbytes)

up to 64 or 128 Kbytes
(1 page steps)

1 page = 512 bytes
1 block = 128 bytes

0x00 4000

DATA MEMORY
(up to 2 Kbytes)

OX0047FF faemccaccaccacanmnn=n=
OPTION BYTES (1 block)

0x00 487F

0x00 8000 | Interrupt vectors (128 bytes)

(permanently write protected)

Flash proaram 32 to 128 Kbytes of
- > prog Flash Program
memory
Memory

MAIN PROGRAM
(write access possible for IAP
and using MASS mechanism)

0x02 7FFF - .,

ai15501b

4.4.2

443

40/467

Memory access/ wait state configuration

The Flash/ data EEPROM access time allows the device to run at up to 16 MHz without wait
states.

When using the high-speed external clock (HSE) at higher frequencies up to 24 MHz, one
wait state is necessary. In this case the device option byte should be programmed to insert
this wait state. Refer to the datasheet option byte section.

User boot area (UBC)

The user boot area (UBC) contains the reset and the interrupt vectors. It can be used to
store the IAP and communication routines. The UBC area has a second level of protection
to prevent unintentional erasing or modification during IAP programming. This means that it
is always write protected and the write protection cannot be unlocked using the MASS keys.

DoclD14587 Rev 14 ‘Yl

RMO0016

Flash program memory and data EEPROM

3

The size of the UBC area can be obtained by reading the UBC option byte.

The size of the UBC area can be configured in ICP mode (using the SWIM interface)
through the UBC option byte. The UBC option byte specifies the number of pages allocated

for the UBC area starting from address 0x00 8000.

Refer to Figure 9, Figure 10, and Figure 11 for a description of the UBC area memory
mapping and to the option byte section in the datasheets for more details on the UBC option

Figure 9. UBC area size definition on low density STM8S devices

byte.
0x00 8000
J 64 bytes
Interrupt vectors < gynng goan
64 bytes
0x00 8080
64 bytes
000 80CO
64 bytes
0x00 8100
| |
| |
| |
| |
000 9FO0
64 bytes
000 9F40
64 bytes
000 9F80
64 bytes
0%00 9FCO
64 bytes
0%00 9FFF

Page 0

Page 1

Page 2

Page 3

Page 124
Page 125
Page 126

Page 127

0x7F

UBC[7:0]

UBC[7:0] =0x01
0x02 64 bytes
128 hytes

UBC[7:0]

8 Kbytes

64 bytes to 8 Koytes
user bhoot code area

N (number of protected pages) = UBCJ[7:0].
2. UBCI7:0] = 0x00 means no user boot code area is defined. Refer to the datasheets for the description of

the UBC option byte.

3. The first 2 pages (128 bytes) contain the interrupt vectors.

DoclD14587 Rev 14

41/467

Flash program memory and data EEPROM RMO0016

42/467

Figure 10. UBC area size definition on medium density STM8S
and STM8AF with up to 32 Kbytes of Flash program memory

A Interrupt vectar table - g
0x00 807F - — — _p _____ Page 0 Lé‘
0x00 5200 = g
512 bytes FPage 1 6‘_
0«00 8400 S g
512 bytes Page 2 .
0«00 8600 g
512 bytes Page 3 m e
0«00 8800 E%
'“O;x
o [}
o
| | T8 1K to 32 Kbytes
| | Eg“ User boot code area
=8
5o
| | @~
o
000 Fa0o
512 bytes Page 60
0x00 FADD
512 bytes Page 61
0x00 FCO0
512 bytes Page 62
0x00 FEOOD
512 bytes Page 63
0x00 FFFF

N (number of protected pages) = UBC[7:0] + 2 for UBC[7:0] > 1.

UBC[7:0] =0x00 means no user boot code area is defined. Refer to the datasheets for the description of the
UBC option byte.

The first 2 pages (1 Kbytes) contain the 128 bytes of interrupt vectors (32 IT vectors).

3

DoclD14587 Rev 14

RMO0016 Flash program memory and data EEPROM

Figure 11. UBC area size definition on high density STM8S and
STMB8AF with up to 128 Kbytes of Flash program memory

00D 8000 Interrupt vectar takle - E
0x00 8O7F | _oruptVeEtoriave Page 0 Lf‘;
0x00 8200 E 5
512 bytes Page 1 5%
0x00 8400 Y g
512 bytes Page 2 .
0x00 8600 =
512 bytes Page 3 & a
0x00 8300 £
=2
O
o (]
o
| | w
= o
| |) 1K to 128 Khytes
T2 User hoot code area
| | 2:
oo
o
| | o
0x02 7300
512 tlytES page 252
0x02 7ADD
512 bytes Page 233
0x02 7Coo
512 bytes Page 254
0x02 FEOOD
512 hytes Page 255
0x02 7FFF

1. UBCJ7:0] = 0x00 means no user boot code area is defined. Refer to the datasheets for the description of
the UBC option byte.

2. Thefirst 2 pages (1 Kbytes) contain the interrupt vectors, of which only 128 bytes (32 IT vectors) are used.

44.4 Data EEPROM (DATA)

The data EEPROM area can be used to store application data. By default, the DATA area is
write protected to prevent unintentional modification when the main program is updated in
IAP mode. The write protection can be unlocked only by using a specific MASS key
sequence (refer to Enabling write access to the DATA area).

Refer to Section 4.4: Memory organization for the size of the DATA area.

4.4.5 Main program area

The main program is the part of the Flash program memory which is used to store the
application code (see Figure 6, Figure 7 and Figure 8).

4.4.6 Option bytes

The option bytes are used to configure device hardware features and memory protection.
They are located in a dedicated memory array of one block.

The option bytes can be modified both in ICP/SWIM and in IAP mode, with OPT bit of the
FLASH_CR?2 register set to 1 and the NOPT bit of the FLASH_NCR2 register set to 0 (see
Section 4.8.2: Flash control register 2 (FLASH_CR2) and Section 4.8.3: Flash
complementary control register 2 (FLASH_NCR2)).

3

DoclD14587 Rev 14 43/467

Flash program memory and data EEPROM RMO0016

4.5

4.5.1

4.5.2

44/467

Refer to the option byte section in the datasheet for more information on option bytes, and to
the STM8 SWIM protocol and debug module user manual (UM0470) for details on how to
program them.

Memory protection

Readout protection

Readout protection is selected by programming the ROP option byte to OxAA. When
readout protection is enabled, reading or modifying the Flash program memory and DATA
area in ICP mode (using the SWIM interface) is forbidden, whatever the write protection
settings. Furthermore, on medium and high density STM8S and STM8AF, the debug
module (DM) cannot start code execution by the CPU when the readout protection is active,
and the CPU is stalled.

Even if no protection can be considered as totally unbreakable, the readout feature provides
a very high level of protection for a general purpose microcontroller.

Removing the readout protection

The readout protection can be disabled on the program memory, UBC and DATA areas, by
reprogramming the ROP option byte in ICP mode. In this case, the Flash program memory,
the DATA area and the option bytes are automatically erased and the device can be
reprogrammed.

Refer to Table 6: Memory access versus programming method for details on memory
access when readout protection is enabled or disabled.

Memory access security system (MASS)

After reset, the main program and DATA areas are protected against unintentional write
operations. They must be unlocked before attempting to modify their content. This unlock
mechanism is managed by the memory access security system (MASS).

The UBC area specified in the UBC option byte is always write protected (see Section 4.4.3:
User boot area (UBC)).

Once the memory has been modified, it is recommended to enable the write protection
again to protect the memory content against corruption.

Enabling write access to the main program memory

After a device reset, it is possible to disable the main program memory write protection by
writing consecutively two values called MASS keys to the FLASH_PUKR register (see
Section 4.8.6: Flash program memory unprotecting key register (FLASH_PUKR)). These
programmed keys are then compared to two hardware key values:

e First hardware key: 0b0101 0110 (0x56)

e Second hardware key: 0b1010 1110 (OxAE)

The following steps are required to disable write protection of the main program area:

3

DoclD14587 Rev 14

RMO0016

Flash program memory and data EEPROM

4.5.3

3

1. Write a first 8-bit key into the FLASH_PUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (0x56).

2. If the key available on the data bus is incorrect, the FLASH_PUKR register remains
locked until the next reset. Any new write commands sent to this address are
discarded.

3. If the first hardware key is correct when the FLASH_PUKR register is written for the
second time, the data bus content is still not latched into the register, but compared to
the second hardware key value (OXAE).

4. If the key available on the data bus is incorrect, the write protection on program
memory remains locked until the next reset. Any new write commands sent to this
address is discarded.

5. If the second hardware key is correct, the main program memory is write unprotected

and the PUL bit of the FLASH_IAPSR is set (see Section 4.8.8: Flash status register
(FLASH_IAPSR)) register.

Before starting programming, the application must verify that PUL bit is effectively set. The
application can choose, at any time, to disable again write access to the Flash program
memory by clearing the PUL bit.

Enabling write access to the DATA area

After a device reset, it is possible to disable the DATA area write protection by writing
consecutively two values called MASS keys to the FLASH_DUKR register (see
Section 4.8.9: Flash register map and reset values). These programmed keys are then
compared to two hardware key values:

e First hardware key: 0b1010 1110 (OXAE)

e Second hardware key: 0b0101 0110 (0x56)

The following steps are required to disable write protection of the DATA area:

1. Write a first 8-bit key into the FLASH_DUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (OxAE).

2. If the key available on the data bus is incorrect, the application can re-enter two MASS
keys to try unprotecting the DATA area.

3. If the first hardware key is correct, the FLASH_DUKR register is programmed with the
second key. The data bus content is still not latched into the register, but compared to
the second hardware key value (0x56).

4. If the key available on the data bus is incorrect, the data EEPROM area remains write
protected until the next reset. Any new write command sent to this address is ignored.

5. If the second hardware key is correct, the DATA area is write unprotected and the DUL

bit of the FLASH_IAPSR register is set (see Section 4.8.8: Flash status register
(FLASH_IAPSR)).

Before starting programming, the application must verify that the DATA area is not write
protected by checking that the DUL bit is effectively set. The application can choose, at any
time, to disable again write access to the DATA area by clearing the DUL bit.

Enabling write access to option bytes

The procedure for enabling write access to the option byte area is the same as the one used
for data EEPROM. However, the OPT bit in the Flash control register 2 (FLASH_CR2) must

DoclD14587 Rev 14 45/467

Flash program memory and data EEPROM RMO0016

4.6

4.6.1

Note:

4.6.2

46/467

be set, and the corresponding NOPT bit in the Flash complementary control register 2
(FLASH_NCRZ2) must be cleared to enable write access to the option bytes.

Memory programming

The main program memory, and the DATA area must be unlocked before attempting to
perform any program operation. The unlock mechanism depends on the memory area to be
programmed as described in Section 4.5.2: Memory access security system (MASS).

Read-while-write (RWW)

The RWW feature allows write operations to be performed on data EEPROM while reading
and executing the program memory. Execution time is therefore optimized. The opposite
operation is not allowed: Data memory cannot be read while writing to the program memory.

This RWW feature is always enabled and can be used at any time. Any access to Flash
control registers FLASH_CR1 and FLASH_CR2 while writing to the memory stalls the CPU,
making RWW unavailable.

The RWW feature is not available on all devices. Refer to the datasheets for addition
information.

Byte programming
The main program memory and the DATA area can be programmed at byte level. To
program one byte, the application writes directly to the target address.
e Inthe main program memory:
The application stops for the duration of the byte program operation.
e In DATA area:

— Devices with RWW capability: Program execution does not stop, and the byte
program operation is performed using the read-while-write (RWW) capability in
IAP mode.

— Devices without RWW capability: The application stops for the duration of the byte
program operation.

To erase a byte, simply write 0x00 at the corresponding address.

The application can read the FLASH_IAPSR register to verify that the programming or

erasing operation has been correctly executed:

e EOP flag is set after a successful programming operation

e WR _PG_DIS is set when the software has tried to write to a protected page. In this
case, the write procedure is not performed.

As soon as one of these flags are set, a Flash interrupt is generated if it has been previously
enabled by setting the IE bit of the FLASH_CR1 register.

Automatic fast byte programming

The programming duration can vary according to the initial content of the target address. If
the word (4 bytes) containing the byte to be programmed is not empty, the whole word is
automatically erased before the program operation. On the contrary if the word is empty, no
erase operation is performed and the programming time is shorter (see tprpg in Table
“Flash program memory” in the datasheet).

DoclD14587 Rev 14 ‘Yl

RMO0016

Flash program memory and data EEPROM

Note:

4.6.3

4.6.4

3

However, the programming time can be fixed by setting the FIX bit of the FLASH_CR1
register to force the program operation to systematically erase the byte whatever its content
(see Section 4.8.1: Flash control register 1 (FLASH_CR1)). The programming time is
consequently fixed and equal to the sum of the erase and write time (see tprog in Table
“Flash program memory” in the datasheet).

To write a byte fast (no erase), the whole word (4 bytes) into which it is written must be
erased beforehand. Consequently, It is not possible to do two fast writes to the same word
(without an erase before the second write): The first write will be fast but the second write to
the other byte will require an erase.

Word programming

A word write operation allows an entire 4-byte word to be programmed in one shot, thus
minimizing the programming time.

As for byte programming, word operation is available both for the main program memory
and data EEPROM. On some devices, the read-while-write (RWW) capability is also
available when a word programming operation is performed on the data EEPROM. Refer to
the datasheets for additional information.

e In the main program memory:
The application stops for the duration of the byte program operation.
e InDATAarea
— Devices with RWW capability: Program execution does not stop, and the byte
program operation is performed using the read-while-write (RWW) capability in
IAP mode.

— Devices without RWW capability: The application stops for the duration of the byte
program operation.

To program a word, the WPRG/NWPRG bits in the FLASH_CR2 and FLASH_NCR2
registers must be previously set/cleared to enable word programming mode (see

Section 4.8.2: Flash control register 2 (FLASH_CRZ2) and Section 4.8.2: Flash control
register 2 (FLASH_CR2)). Then, the 4 bytes of the word to be programmed must be loaded
starting with the first address. The programming cycle starts automatically when the 4 bytes
have been written.

As for byte operation, the EOP and the WR_PG_DIS control flags of FLASH_IAPSR,
together with the Flash interrupt, can be used to determine if the operation has been
correctly completed.

Block programming

Block program operations are much faster than byte or word program operations. In a block
program operation, a whole block is programmed or erased in a single programming cycle.
Refer to Table 5 for details on the block size according to the devices.

DoclD14587 Rev 14 47/467

Flash program memory and data EEPROM RMO0016

48/467

Block operations can be performed both to the main program memory and DATA area:

e In the main program memory:
Block program operations to the main program memory have to be executed totally
from RAM.

e Inthe DATA area
— Devices with RWW capability: DATA block operations can be executed from the

main program memory. However, the data loading phase (see below) has to be
executed from RAM.

— Devices without RWW capability: Block program operations must be executed
totally from RAM.

There are three possible block operations:

e Block programming, also called standard block programming: The block is
automatically erased before being programmed.

e Fast block programming: No previous erase operation is performed.
e Block erase

During block programming, interrupts are masked by hardware.

Standard block programming

A standard block program operation allows a whole block to be written in one shot. The
block is automatically erase before being programmed.

To program a whole block in standard mode, the PRG/NPRG bits in the FLASH_CR2 and
FLASH_NCR?2 registers must be previously set/cleared to enable standard block
programming (see Section 4.8.2: Flash control register 2 (FLASH_CRZ2) and Section 4.8.2:
Flash control register 2 (FLASH_CRZ2)). Then, the block of data to be programmed must be
loaded sequentially to the destination addresses in the main program memory or DATA
area. This causes all the bytes of data to be latched. To start programming the whole block,
all bytes of data must be written. All bytes written in a programming sequence must be in the
same block. This means that they must have the same high address: Only the six least
significant bits of the address can change. When the last byte of the target block is loaded,
the programming starts automatically. It is preceded by an automatic erase operation of the
whole block.

When programming a block in DATA area, the application can check the HVOFF bit in the
Flash status register (FLASH_IAPSR). As soon the HVOFF flag is reset the actual
programming phase starts and the application can return to main program memory.

The EOP and the WR_PG_DIS control flags of the FLASH_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

Fast block programming

Fast block programming allows programming without first erasing the memory contents.
Fast block programming is therefore twice as fast as standard programming.

This mode is intended only for programming parts that have already been erased. It is very
useful for programming blank parts with the complete application code, as the time saving is
significant.

Fast block programming is performed by using the same sequence as standard block
programming. To enable fast block programming mode, the FPRG/NFPRG bits of the
FLASH_CR2 and FLASH_NCR?2 registers must be previously set/cleared.

DoclD14587 Rev 14 ‘Yl

RMO0016

Flash program memory and data EEPROM

Caution:

4.6.5

4.7

3

The HVOFF flag can also be polled by the application which can execute other instructions
(RWW) during the actual programming phase of the DATA.

The EOP and WR_PG_DIS bits of the FLASH_IAPSR register can be checked to determine
if the fast block programming operation has been correctly completed.

The data programmed in the block are not guaranteed when the block is not blank before
the fast block program operation.

Block erasing

A block erase allows a whole block to be erased.

To erase a whole block, the ERASE/NERASE bits in the FLASH_CR2 and FLASH_NCR2
registers must be previously set/cleared to enable block erasing (see Section 4.8.2: Flash
control register 2 (FLASH_CRZ2) and Section 4.8.3: Flash complementary control register 2
(FLASH_NCR?2)). The block is then erased by writing ‘0x00 00 00 00’ to any word inside the
block. The word start address must end with ‘0’, ‘4, ‘8, or ‘C’.

The EOP and the WR_PG_DIS control flags of the FLASH_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

Table 5. Block size

STM8 microcontroller family Block size

Low density STM8S and STM8AF 64 bytes

Medium density STM8S and STM8AF (up to 32 Kbytes) 128 bytes
High density STM8S and STMB8AF (up to 128 Kbytes) 128 bytes

Option byte programming
Option byte programming is very similar to data EEPROM byte programming.

The application writes directly to the target address. The program does not stop and the
write operation is performed using the RWW capability.

Refer to the datasheet for details of the option byte contents.

ICP (in-circuit programming) and IAP (in-application
programming)

The in-circuit programming (ICP) method is used to update the entire content of the memory,
using the SWIM interface to load the user application into the microcontroller. ICP offers
quick and efficient design iterations and eliminates unnecessary package handling or
socketing of devices. The SWIM interface (single wire interface module) uses the SWIM pin
to connect to the programming tool.

In contrast to the ICP method, in-application programming (IAP) can use any communication
interface supported by the microcontroller (I/Os, 12C, SPI, USART...) to download the data to
be programmed in the memory. IAP allows the Flash program memory content to be
reprogrammed during application execution. Nevertheless, part of the application must have
been previously programmed in the Flash program memory using ICP.

DoclD14587 Rev 14 49/467

Flash program memory and data EEPROM

RM0016

Refer to the STM8S and STM8AF Flash programming manual (PM0051) and STM8 SWIM
protocol and debug manual (UMO0470) for more information on programming procedures.

Table 6. Memory access versus programming method(")

Mode ROP Memory Area Access from
core
User boot code area (UBC) R/E
Readout Main program R/W/E®@)
protection
enabled Data EEPROM area (DATA) R/W®)
User, |AP, and bootloader Option bytes R
(if available) User boot code area (UBC) R/E@
Readout Main program R/W/E®)
protection
disabled Data EEPROM area (DATA) R/W)
Option bytes R/W®)
User boot code area (UBC) P
Readout Main program)
protection
enabled Data EEPROM area (DATA) P
SWIM active Option bytes P/Wgop®
(ICP mode) User boot code area (UBC) R/E@
Readout Main program RW/E®)
protection
disabled Data EEPROM area (DATA) R/W)
Option bytes R/W®)

50/467 DoclD14587 Rev 14

R/WI/E = Read, write, and execute

R/E = Read and execute (write operation forbidden)

R = Read (write and execute operations forbidden)

P = The area cannot be accessed (read, execute and write operations forbidden)
P/Wgop = Protected, write forbidden except for ROP option byte.

The Flash program memory is write protected (locked) until the correct MASS key is written in the FLASH_PUKR. It is
possible to lock the memory again by resetting the PUL bit in the FLASH_IAPSR register. If incorrect keys are provided, the
device must be reset and new keys programmed.

The data memory is write protected (locked) until the correct MASS key is written in the FLASH_DUKR. It is possible to lock
the memory again by resetting the DUL bit in the IAPSR register. If incorrect keys are provided, another key program
sequence can be performed without resetting the device.

To program the UBC area, the application must first clear the UBC option byte.

The option bytes are write protected (locked) until the correct MASS key is written in the FLASH_DUKR (with OPT set to 1).
It is possible to lock the memory again by resetting the DUL bit in the FLASH_IAPSR register. If incorrect keys are
provided, another key program sequence can be performed without resetting the device.

When ROP is removed, the whole memory is erased, including the option bytes.

3

RMO0016

Flash program memory and data EEPROM

4.8 Flash registers

4.8.1 Flash control register 1 (FLASH_CR1)

Address offset: 0x00
Reset value: 0x00

7 6 4 3 2 1 0
Reserved HALT AHALT IE FIX
r w w w w

Bits 7:4 Reserved

Bit 3 HALT: Power-down in Halt mode
This bit is set and cleared by software.
0: Flash in power-down mode when MCU is in Halt mode
1: Flash in operating mode when MCU is in Halt mode
Bit 2 AHALT: Power-down in Active-halt mode
This bit is set and cleared by software.

0: Flash in operating mode when MCU is in Active-halt mode

1: Flash in power-down when MCU is in Active-halt mode

Bit 1 IE: Flash Interrupt enable
This bit is set and cleared by software.

0: Interrupt disabled

1: Interrupt enabled. An interrupt is generated if the EOP or WR_PG_DIS flag in the
FLASH_IAPSR register is set.

Bit 0 FIX: Fixed Byte programming time
This bit is set and cleared by software.

0: Standard programming time of (1/2 t
otherwise.

prog

1: Programming time fixed at tpog.

3

DoclD14587 Rev 14

) if the memory is already erased and t

prog

51/467

Flash program memory and data EEPROM RMO0016
4.8.2 Flash control register 2 (FLASH_CR2)
Address offset: 0x01
Reset value: 0x00
7 6 5 4 3 2 0
OPT WPRG ERASE FPRG Reserved PRG
w rw rw rw r w

Bit 7 OPT: Write option bytes
This bit is set and cleared by software.
0: Write access to option bytes disabled
1: Write access to option bytes enabled

Bit6 WPRG: Word programming

This bit is set by software and cleared by hardware when the operation is completed.

0: Word program operation disabled
1: Word program operation enabled

Bit 5 ERASE("): Block erasing

This bit is set by software and cleared by hardware when the operation is completed.

0: Block erase operation disabled
1: Block erase operation enabled

Bit4 FPRG!"): Fast block programming

This bit is set by software and cleared by hardware when the operation is completed.

0: Fast block program operation disabled
1: Fast block program operation enabled

Bits 3:1 Reserved
Bit 0 PRG: Standard block programming

This bit is set by software and cleared by hardware when the operation is completed.

0: Standard block programming operation disabled

1: Standard block programming operation enabled (automatically first erasing)

1. The ERASE and FPRG bits are locked when the memory is busy.

52/467 DoclD14587 Rev 14

3

RMO0016 Flash program memory and data EEPROM

4.8.3 Flash complementary control register 2 (FLASH_NCR2)
Address offset: 0x02

Reset value: OxFF

7 6 5 4 3 2 1 0
NOPT NWPRG NERASE NFPRG Reserved NPRG
w rw rw rw r w

Bit 7 NOPT: Write option bytes
This bit is set and cleared by software.
0: Write access to option bytes enabled
1: Write access to option bytes disabled

Bit6 NWPRG: Word programming
This bit is cleared by software and set by hardware when the operation is completed.
0: Word programming enabled
1: Word programming disabled

Bit 5 NERASE: Block erase

This bit is cleared by software and set by hardware when the operation is completed.
0: Block erase enabled
1: Block erase disabled

Bit 4 NFPRG: Fast block programming
This bit is cleared by software and set by software reading the register.

0: Fast block programming enabled (no erase before programming, the programmed data
values are not guaranteed when the block is not blank (fully erased) before the operation)
1: Fast block programming disabled

Bits 3:1 Reserved.

Bit 0 NPRG: Block programming

This bit is cleared by software and set by hardware when the operation is completed.
0: Block programming enabled
1: Block programming disabled

3

DoclD14587 Rev 14 53/467

Flash program memory and data EEPROM RMO0016

4.8.4 Flash protection register (FLASH_FPR)
Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved WPB5 WPB4 WPB3 WPB2 WPB1 WPBO
r ro ro ro ro ro ro

Bits 7:6 Reserved.

Bits 5:0 WPBI[5:0]: User boot code area protection bits

These bits show the size of the boot code area. They are loaded at startup with the content of
the UBC option byte. Refer to the datasheets for the protected pages according to the bit
values.

48.5 Flash protection register (FLASH_NFPR)
Address offset: 0x04

Reset value: OxFF

7 6 5 4 3 2 1 0
NWPB5 NWPB4 NWPB3 NWPB2 NWPB1 NWPBO
Reserved
ro ro ro ro ro ro

Bits 7:6 Reserved.

Bits 5:0 WPB[5:0]: User boot code area protection bits

These bits show the size of the boot code area. They reflect the content of the NUBC option
byte. Refer o the datasheet for the protected pages according to the bit values.

4.8.6 Flash program memory unprotecting key register (FLASH_PUKR)

Address offset: 0x08
Reset value: 0x00

7 6 5 4 3 2 1 0

MASS_PRG KEYS

w

Bits 7:0 PUK [7:0]: Main program memory unlock keys
This byte is written by software (all modes). It returns 0x00 when read.

Refer to Enabling write access to the main program memory on page 44 for the description
of main program area write unprotection mechanism.

3

54/467 DoclD14587 Rev 14

RMO0016 Flash program memory and data EEPROM
4.8.7 Data EEPROM unprotection key register (FLASH_DUKR)
Address offset: 0x0A
Reset value: 0x00
7 6 5 4 3 2 1 0
MASS_DATA KEYS
rw
Bits 7:0 DUK][7:0]: Data EEPROM write unlock keys
This byte is written by software (all modes). It returns 0x00 when read.
Refer to Enabling write access to the DATA area on page 45 for the description of main
program area write unprotection mechanism.
4.8.8 Flash status register (FLASH_IAPSR)
Address offset: 0x05
Reset value: 0x40
7 6 5 4 3 2 1 0
Reserved HVOFF Reserved DUL EOP PUL WR_PG_DIS
res. r r rc_w0 rc_r rc_w0 rc_r

3

Bit 7 Reserved.

Bit 6 HVOFF: End of high voltage flag
This bit is set and cleared by hardware.
0: HV ON, start of actual programming
1: HV OFF, end of high voltage

Bits 5:4 Reserved, forced by hardware to 0.

Bit 3 DUL: Data EEPROM area unlocked flag
This bit is set by hardware and cleared by software by programming it to 0.
0: Data EEPROM area write protection enabled
1: Data EEPROM area write protection has been disabled by writing the correct MASS
keys

DoclD14587 Rev 14 55/467

Flash program memory and data EEPROM

RM0016

Bit2 EOP: End of programming (write or erase operation) flag
This bit is set by hardware. It is cleared by software by reading the register, or when a new
write/erase operation starts.
0: No EOP event occurred

1: An EOP operation occurred. An interrupt is generated if the IE bit is set in the

FLASH_CRH1 register.

Bit 1 PUL: Flash Program memory unlocked flag
This bit is set by hardware and cleared by software by programming it to 0.
0: Write protection of main Program area enabled
1: Write protection of main Program area has been disabled by writing the correct MASS

keys.

Bit 0 WR_PG_DIS: Write attempted to protected page flag
This bit is set by hardware and cleared by software by reading the register.
0: No WR_PG_DIS event occurred

1: A write attempt to a write protected page occurred. An interrupt is generated if the IE bit
is set in the FLASH_CR1 register.

48.9 Flash register map and reset values
For details on the Flash register boundary addresses, refer to the general hardware register
map in the datasheets.
Table 7. Flash register map and reset values
Address | Register name 7 6 5 4 3 2 1 0
0x00 FLASH_CR1 - - - - HALT AHALT IE FIX
Reset value 0 0 0 0 0 0 0 0
0x01 FLASH_CR2 OPT WPRG | ERASE | FPRG - - - PRG
Reset value 0 0 0 0 0 0 0 0
FLASH_NCR2 | NOPT |NWPRG NERAS NFPRG - - - NPRG
0x02 E
Reset value 1 1 1 1 1 1 1 1
0x03 FLASH_FPR - - WPB5 WPB4 WPB3 WPB2 WPBA1 WPBO
Reset value 0 0 0 0 0 0 0 0
FLASH_NFPR - - NWPB5 | NWPB4 | NWPB3 | NWPB2 | NWPB1 NWPBO
0x04
Reset value 1 1 1 1 1 1 1 1
0x05 FLASH_IAPSR - HVOFF - - DUL EOP PUL WITZ)_IEG_
Reset value 0 1 0 0 0 0 0 0
0x06-
0x07 Reserved
0x08 FLASH_PUKR | PUK7 PUKG6 PUK5 PUK4 PUK3 PUK2 PUKA1 PUKO
Reset value 0 0 0 0 0 0 0 0
0x09 Reserved
0XOA FLASH_DUKR | DUK7 | DUNP6 | DUK5 DUK4 DUK3 DUK2 DUKA1 DUKO
Reset value 0 0 0 0 0 0 0 0
56/467 DoclD14587 Rev 14 Kys

RMO0016

Single wire interface module (SWIM) and debug module (DM)

5

5.1

5.2

5.3

Note:

3

Single wire interface module (SWIM) and debug
module (DM)

SWIM and DM introduction

In-circuit debugging mode or in-circuit programming mode are managed through a single
wire hardware interface featuring ultrafast memory programming. Coupled with an in-circuit
debugging module, it also offers a non-intrusive emulation mode, making the in-circuit
debugger extremely powerful, close in performance to a full-featured emulator.

SWIM main features

e Based on an asynchronous, high sink (8 mA), open-drain, bidirectional communication.
e Allows reading or writing any part of memory space.

e Access to CPU registers (A, X, Y, CC, SP). They are memory mapped for read or write
access.

e Non intrusive read/write on the fly to the RAM and peripheral registers.
e Device reset capability with status flag in the Reset status register (RST_SR).
e Clock speed selectable in the SWIM clock control register (CLK_SWIMCCR).

SWIM pin can be used as a standard 1/0 with some restrictions if you also want to use it for
debug. The most secure way is to provide on the PCB a strap option.

Figure 12. SWIM pin connection

I/O for applicaton +———@ mMcu

°] swim/pAo
SWIM interface for tools «———@

Jumper selection for
debug process

MSv17035V1

SWIM modes

After a power-on reset, the SWIM is reset and enters OFF mode.
1. OFF: Default state after power-on reset. The SWIM pin cannot be used by the
application as an 1/0.

2. 1/O: This state is entered by software writing to the SWD bit in the Global configuration
register (CFG_GCR). In this state, the SWIM pin can be used by the application as a
standard I/O pin. In case of a reset, the SWIM goes back to OFF mode.

3. SWIM: This state is entered when a specific sequence is performed on the SWIM pin.
In this state, the SWIM pin is used by the host tool to control the STM8 with 3
commands (SRST system reset, ROTF read on the fly, WOTF write on the fly).

Refer to the STM8 SWIM communication Protocol and Debug Module User Manual for a
description of the SWIM and Debug module (DM) registers.

DoclD14587 Rev 14 571467

Single wire interface module (SWIM) and debug module (DM) RMO0016

58/467

There are two important considerations to highlight for the devices where the NRST pin is
not present:

If the SWIM pin should be used with the I/O pin functionality, it is recommended to add
a ~5 seconds delay in the firmware before changing the functionality on the pin with
SWIM functions. This action allows the user to set the device into SWIM mode after the
device power on and to be able to reprogram the device. If the pin with SWIM
functionality is set to I/O mode immediately after the device reset, the device is unable
to connect through the SWIM interface and it will be locked forever (if the NRST pin is
not available on the package). This initial delay can be removed in the final (locked)
code.

Their program memory must contain a valid program loop. If the device's memory is
empty, the program continues into non-existing memory space and executes invalid
opcode; this causes the device to reset (reading of non-existing memory is random
content). This behavior might lead to periodic device resets and to a difficulty to
connect to the device through the SWIM interface.

3

DoclD14587 Rev 14

RMO0016

Interrupt controller (ITC)

6

6.1

6.2

3

Interrupt controller (ITC)

ITC introduction

Management of hardware interrupts

— External interrupt capability on most I/O pins with dedicated interrupt vector and
edge sensitivity setting per port

— Peripheral interrupt capability
Management of software interrupt (TRAP)

Nested or concurrent interrupt management with flexible interrupt priority and level
management:

— Up to 4 software programmable nesting levels

— Up to 32 interrupt vectors fixed by hardware

— 2 non maskable events: RESET, TRAP

— 1 non-maskable top level hardware interrupt (TLI)

This interrupt management is based on:

Bit 11 and 10 of the CPU Condition Code register (CCR)
Software priority registers (ITC_SPRXx)

Reset vector address 0x00 8000 at the beginning of program memory. In devices with
boot ROM, the reset initialization routine is programmed in ROM by
STMicroelectronics.

Fixed interrupt vector addresses located at the high addresses of the memory map
(0Ox00 8004 to 0x00 807C) sorted by hardware priority order.

Interrupt masking and processing flow

The interrupt masking is managed by bits 11 and 10 of the CCR register and by the
ITC_SPRXx registers which set the software priority level of each interrupt vector (see
Table 8). The processing flow is shown in Figure 13.

When an interrupt request has to be serviced:

1.
2.
3.

4.

Normal processing is suspended at the end of the current instruction execution.
The PC, X,Y, A and CCR registers are saved onto the stack.

Bits 11 and 10 of CCR register are set according to the values in the ITC_SPRXx registers
corresponding to the serviced interrupt vector.

The PC is then loaded with the interrupt vector of the interrupt to service and the first
instruction of the interrupt service routine is fetched .

The interrupt service routine should end with the IRET instruction which causes the content
of the saved registers to be recovered from the stack. As a consequence of the IRET
instruction, bits 11 and 10 are restored from the stack and the program execution resumes.

DoclD14587 Rev 14 59/467

Interrupt controller (ITC) RMO0016

Caution:

6.2.1

60/467

Table 8. Software priority levels

Software priority Level " 10
Level 0 (main) 1 0
Low
Level 1 l 0 1
Level 2 . 0 0
High
Level 3 (= software priority disabled) 1 1
Figure 13. Interrupt processing flowchart
PENDING Y
RESET [~ \UNTERRUPT >
Interrupt has the same or a
N lower software priority
J than current one
FETCH NEXT THE INTERRUPT
INSTRUCTION STAYS PENDING 5
259
gos
4
RESTORE PC, X, Y, A, CCR EXECUTE ¥
FROM STACK INSTRUCTION STACK PC, X. Y, A, CCR
‘ LOAD I1:0 FROM INTERRUPT SW REG.
LOAD PC FROM INTERRUPT VECTOR

MSv47744V1

If the interrupt mask bits 10 and 11 are set within an interrupt service routine (ISR) with the
instruction SIM, removal of the interrupt mask with RIM causes the software priority to be
set to level 0.

To restore the correct priority when disabling and enabling interrupts inside an ISR, follow
the procedures presented in Table 8 for disabling and enabling the interrupts.

Table 9. Interrupt enabling/disabling inside an ISR

Disabling the interrupts Enabling the interrupts
#asm #asm
PUSH CC PUSH ISR cc‘l)
poP ISR _cc) POP CC
SIM #endasm
#endasm

1. ISR_CC is a variable which stores the current value of the CC register.
Servicing pending interrupts

Several interrupts can be pending at the same time. The interrupt to be taken into account is
determined by the following two-step process:

DoclD14587 Rev 14 ‘Yl

RMO0016

Interrupt controller (ITC)

Note:

6.2.2

3

1

1. The highest software priority interrupt is serviced.
2. If several interrupts have the same software priority then the interrupt with the highest
hardware priority is serviced first.

When an interrupt request is not serviced immediately, it is latched and then processed
when its software priority combined with the hardware priority becomes the highest one.

The hardware priority is exclusive while the software one is not. This allows the previous
process to succeed with only one interrupt.

RESET, TLI and TRAP are considered as having the highest software priority in the decision
process.

See Figure 14 for a description of pending interrupt servicing process.

Figure 14. Priority decision process

PENDING
INTERRUPTS

Same SOFTWARE Different
PRIORITY

A 4

HIGHEST SOFTWARE
PRIORITY SERVICED

Y

HIGHEST HARDWARE
PRIORITY SERVICED

MSv45261V1

Interrupt sources

Two interrupt source types are managed by the STM8 interrupt controller:

¢ Non-maskable interrupts: RESET, TLI and TRAP

e Maskable interrupts: external interrupts or interrupts issued by internal peripherals
Non-maskable interrupt sources

Non-maskable interrupt sources are processed regardless of the state of bits 11 and 10 of the
CCR register (see Figure 13). PC, X, Y, Aand CCR registers are stacked only when a TRAP

DoclD14587 Rev 14 61/467

Interrupt controller (ITC) RMO0016

or TLI interrupt occurs. The corresponding vector is then loaded in the PC register and bits
I1 and 10 of the CCR register are set to disable interrupts (level 3).

e TRAP (non-maskable software interrupt)

This software interrupt source is serviced when the TRAP instruction is executed. It is
serviced accordingly to the flowchart shown in Figure 13.

A TRAP interrupt does not allow the processor to exit from Halt mode.
e RESET

The RESET interrupt source has the highest STM8 software and hardware priorities.
This means that all the interrupts are disabled at the beginning of the reset routine.
They must be re-enabled by the RIM instruction (see Table 11: Dedicated interrupt
instruction set).

A RESET interrupt allows the processor to exit from Halt mode.
See RESET chapter for more details on RESET interrupt management.
e TLI (top level hardware interrupt)

This hardware interrupt occurs when a specific edge is detected on the corresponding
TLI input. It is serviced accordingly to the flowchart shown in Figure 13.

Caution: A TRAP instruction must not be used in a TLI service routine.

3

62/467 DoclD14587 Rev 14

RMO0016

Interrupt controller (ITC)

6.3

6.4

3

Maskable interrupt sources

Maskable interrupt vector sources are serviced if the corresponding interrupt is enabled and
if its own interrupt software priority in ITC_SPRX registers is higher than the one currently
being serviced (11 and 10 in CCR register). If one of these two conditions is not met, the
interrupt is latched and remains pending.

e External interrupts

External interrupts can be used to wake up the MCU from Halt mode. The device
sensitivity to external interrupts can be selected by software through the External
Interrupt Control registers (EXTI_CRXx).

When several input pins connected to the same interrupt line are selected
simultaneously, they are logically ORed.

When external level-triggered interrupts are latched, if the given level is still present at
the end of the interrupt routine, the interrupt remains activated except if it has been
inactivated in the routine.

e Peripheral interrupts

Most peripheral interrupts cause the MCU to wake up from Halt mode. See the interrupt
vector table in the datasheet.

A peripheral interrupt occurs when a specific flag is set in the peripheral status register
and the corresponding enable bit is set in the peripheral control register.

The standard sequence for clearing a peripheral interrupt performs an access to the
status register followed by a read or write to an associated register. The clearing
sequence resets the internal latch. A pending interrupt (that is an interrupt waiting to be
serviced) is therefore lost when the clear sequence is executed.

Interrupts and low power modes

All interrupts allow the processor to exit from Wait mode.

Only external and other specific interrupts allow the processor to exit from Halt and Active-
halt mode (see wakeup from halt and wakeup from Active-halt in the interrupt vector table in
the datasheet).

When several pending interrupts are present while waking up from Halt mode, the first
interrupt serviced can only be an interrupt with exit-from-Halt mode capability. It is selected
through the decision process shown in Figure 14. If the highest priority pending interrupt
cannot wake up the device from Halt mode, it will be serviced next.

If any internal or external interrupt (from a timer for example) occurs while the HALT
instruction is executing, the HALT instruction is completed but the interrupt invokes the
wakeup process immediately after the HALT instruction has finished executing. In this case
the MCU is actually waking up from Halt mode to Run mode, with the corresponding delay
of tyyny as specified in the datasheet.

Activation level/low power mode control

The MCU activation level is configured by programming the AL bit in the CFG_GCR register
(see global configuration register (CFG_GCR)).

This bit is used to control the low power modes of the MCU. In very low power applications,
the MCU spends most of the time in WFI and is woken up (through interrupts) at specific

DoclD14587 Rev 14 63/467

Interrupt controller (ITC) RMO0016

6.5

6.5.1

64/467

moments in order to execute a specific task. Some of these recurring tasks are short
enough to be treated directly in an ISR (interrupt service routine), rather than going back to
the main program. To cover this case, you can set the AL bit before entering Low power
mode (by executing WFI instruction), then the interrupt routine returns directly to Low power
mode. The run time/ISR execution is reduced due to the fact that the register context is
saved only on the first interrupt.

As a consequence, all the operations can be executed in ISR in very simple applications. In
more complex ones, an interrupt routine may relaunch the main program by simply resetting
the AL bit.

For example, an application may need to be woken up by the auto-wakeup unit (AWU)
every 50 ms in order to check the status of some pins/sensors/push-buttons. Most of the
time, as these pins are not active, the MCU can return to Low power mode without running
the main program. If one of these pins is active, the ISR decides to launch the main program
by resetting the AL bit.

Concurrent and nested interrupt management

STM8 devices feature two interrupt management modes:
e Concurrent mode
e Nested mode

Concurrent interrupt management mode

In this mode, all interrupts are interrupt priority level 3 so that none of them can be
interrupted, except by a TLI, RESET, or TRAP.

The hardware priority is given in the following order from the lowest to the highest priority,
thatis: MAIN, IT4, IT3, IT2, IT1, ITO, TRAP/TLI (same priority), and RESET.

Figure 15 shows an example of concurrent interrupt management mode.

Figure 15. Concurrent interrupt management

o
<
EEEEERER Software " 10
“ Ph b oylod || |
————————————————————— D - N I B
| | O
————————————————————— b Lm0)---------"--------- 3 11 =3
| Lo I g
Bh-——mmmm - R e) e 3 11 %
S ! I ~
Bfp--------- M2 J-————————————- B e ettt e e 3 11 1
o] l s
—————————————————————————————— T3)——————————————-
g RIM 1 (™) 3 11 8
© | e}
&F————""[—~ e M4 y————-——- 3 11 2
T | |
L e
11/10 10

MSv47717V2

3

DoclD14587 Rev 14

RMO0016

Interrupt controller (ITC)

6.5.2

Caution:

3

Nested interrupt management mode

In this mode, interrupts are allowed during interrupt routines. This mode is activated as soon
as an interrupt priority level lower than level 3 is set.

The hardware priority is given in the following order from the lowest to the highest priority,
that is: MAIN, IT4, IT3, IT2, IT1, ITO, and TRAP.

The software priority is configured for each interrupt vector by setting the corresponding
I11_x and I0_x bits of the ITC_SPRXx register. I1_x and 10_x bits have the same meaning as
11 and 10 bits of the CCR register (see Table 10).

Level 0 can not be programmed (I1_x=1, I0_x=0). In this case, the previously stored value is
kept. For example: if previous value is 0xCF, and programmed value equals 64h, the result
is 44h.

The RESET and TRAP vectors have no software priorities. When one is serviced, bits 11
and 10 of the CCR register are both set.

If bits 11_x and 10_x are modified while the interrupt x is executed, the device operates as
follows: if the interrupt x is still pending (new interrupt or flag not cleared) and the new
software priority is higher than the previous one, then the interrupt x is re-entered.
Otherwise, the software priority remains unchanged till the next interrupt request (after the
IRET of the interrupt x).

During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI
instructions change the current software priority till the next IRET instruction or one of the
previously mentioned instructions is issued. See Section 6.7 for the list of dedicated
interrupt instructions.

Figure 16 shows an example of nested interrupt management mode.

Warning: A stack overflow may occur without notifying the software of
the failure.

Table 10. Vector address map versus software priority bits

Vector address ITC_SPRXx bits
0x00 8008h 11_0 and 10_0 bits()
0x00 800Ch 11_1and 10_1 bits
0x00 807Ch 11_29 and 10_29 bits

1. ITC_SPRXx register bits corresponding to the TLI can be read and written. However they are not significant
in the interrupt process management.

DoclD14587 Rev 14 65/467

Interrupt controller (ITC) RMO0016

Figure 16. Nested interrupt management

o
<
rrEp e Software i1 o
priority leve j 1 r
A
oYY oY vy

———————————————————— B - N T B

I I 4
R e L et 3 11 =

| |
o e (M} --—-A-——4--bo—- b [y —— - - 2 o0 X
S o : Lo | I | <
o G R e e SR S Mir> EESEEEES 101 1
% __________ :_____I_____:___JI__l___l Vo JI ________ 3 1 1 8
S RIM ! i i T I3 : g
| SR I T 1i7) T —— T —— 3 11 3
T | | %
N L_wan > 300

11110 10
MSv47718V2
6.6 External interrupts

Five interrupt vectors are dedicated to external Interrupt events:

e 5lines on Port A: PA[6:2]

e 8lines on Port B: PB[7:0]

e 8lines on Port C: PC[7:0]

e 7 lines on Port D: PD[6:0]

e 8lines on Port E: PE[7:0]

PD7 is the Top Level Interrupt source (TLI), except for 20-pin packages on which the Top

Level Interrupt source (TLI) can be available on the PC3 pin using an alternate function
remapping option bit. Refer to option bytes section in the product datasheet for more details.

To generate an interrupt, the corresponding GPIO port must be configured in input mode
with interrupts enabled. Refer to the register description in the GPIO chapter for details.

The interrupt sensitivity must be configured in the external interrupt control register 1
(EXTI_CR1) and external interrupt control register 2 (EXTI_CR2) (see Section 6.9.3 and
Section 6.9.4.).

6.7 Interrupt instructions

Table 11 shows the interrupt instructions.

Table 11. Dedicated interrupt instruction set

Instruction New description Function/example " H 10 N V4 C
HALT Entering Halt mode - 1 - 0 - - -
IRET Interrupt routine return Pop CCR, A, X, Y, PC 11 H 10 N 4 C
JRM Jump if 11:0=11 (level 3) 11:0=11 7 - - - - - -

66/467 DoclD14587 Rev 14 ‘Yl

RMO0016 Interrupt controller (ITC)
Table 11. Dedicated interrupt instruction set (continued)
Instruction New description Function/example " H 10 C
JRNM Jump if 11:0<>11 11:0<>11 ? - - - -
POP CC Pop CCR from the stack Memory => CCR 11 H 10 C
PUSH CC Push CC on the stack CC =>Memory - - - -
RIM Enable interrupt (level 0 set) Load 10in I11:0 of CCR 1 - 0 -
SIM Disable interrupt (level 3 set) Load 11 in 11:0 of CCR 1 - 1 -
TRAP Software trap Software NMI 1 - 1 -
WEFI Wait for interrupt - 1 - 0 -
6.8 Interrupt mapping
Refer to the corresponding device datasheet for the table of interrupt vector addresses.
1S7 DoclD14587 Rev 14 67/467

Interrupt controller (ITC) RMO0016

6.9 ITC and EXTI registers

6.9.1 CPU condition code register interrupt bits (CCR)

Address: refer to the general hardware register map table in the datasheet.
Reset value: 0x28

6 5 3
\ - 11 H 10 N z Cc
r r rw r w r r r

Bits 5, 3(") 1[1:0]: Software interrupt priority bits(2)
These two bits indicate the software priority of the current interrupt request. When an interrupt
request occurs, the software priority of the corresponding vector is loaded automatically from the
software priority registers (ITC_SPRX).
The I[1:0] bits can be also set/cleared by software using the RIM, SIM, HALT, WFI, IRET or
PUSH/PORP instructions (see Figure 16: Nested interrupt management).

| 10 Priority Level
1 0 Level 0 (main)

Low
0 1 Level 1 l
0 0 Level 2

High
1 1 Level 3 (= software priority disabled*)

1. Refer to the central processing section for details on the other CCR bits.

2. TLI, TRAP and RESET events can interrupt a level-3 program.

3

68/467 DoclD14587 Rev 14

RMO0016 Interrupt controller (ITC)
6.9.2 Software priority register x (ITC_SPRXx)
Address offset: 0x00 to 0x07
Reset value: OxFF
7 6 5 4 3 2 1 0
ITC_SPR1 VECT3SPR[1:0] VECT2SPR[1:0] VECT1SPR[1:0] VECTOSPR[1:0]
ITC_SPR2 VECT7SPR[1:0] VECT6SPR[1:0] VECT5SPR[1:0] VECT4SPR[1:0]
ITC_SPR3 VECT11SPR[1:0] VECT10SPR[1:0] VECT9SPR[1:0] VECT8SPR[1:0]
ITC_SPR4 VECT15SPR[1:0] VECT14SPR[1:0] VECT13SPR[1:0] VECT12SPR[1:0]
ITC_SPR5 VECT19SPR[1:0] VECT18SPR[1:0] VECT17SPR[1:0] VECT16SPR[1:0]
ITC_SPR6 VECT23SPR[1:0] VECT22SPR[1:0] VECT21SPR[1:0] VECT20SPR[1:0]
ITC_SPR7 VECT27SPR[1:0] VECT26SPR[1:0] VECT25SPR[1:0] VECT24SPR[1:0]
ITC_SPR8 Reserved VECT29SPR[1:0] VECT28SPR[1:0]
w rw r'w rw rw

Bits 7:0 VECTxSPR[1:0]: Vector x software priority bits

3

These eight read/write registers (ITC_SPR1 to ITC_SPR8) are written by software to define the
software priority of each interrupt vector.
The list of vectors is given in Table 10: Vector address map versus software priority bits.
Refer to Section 6.9.1: CPU condition code register interrupt bits (CCR) for the values to be
programmed for each priority.
ITC_SPR1 bits 1:0 are forced to 1 by hardware (TLI)
ITC_SPRS bits 7:4 are forced to 1 by hardware.
Note: It is forbidden to write 10 (priority level 0). If 10 is written, the previous value is kept and the
interrupt priority remains unchanged.

DoclD14587 Rev 14 69/467

Interrupt controller (ITC)

RM0016

6.9.3 External interrupt control register 1 (EXTI_CR1)
Address offset: 0x00

Reset value: 0x00

PDIS[1:0]

PCIS[1:0]

PBIS[1:0]

PAIS[1:0]

w

w

w

w

Bits 7:6 PDIS[1:0]: Port D external interrupt sensitivity bits

These bits can only be written when |1 and 10 in the CCR register are both set to 1 (level 3). They
define the sensitivity of Port D external interrupts.

00: Falling edge and low level
01: Rising edge only

10: Falling edge only

11: Rising and falling edge

Bits 5:4 PCIS[1:0]: Port C external interrupt sensitivity bits

These bits can only be written when I1 and 10 in the CCR register are both set to 1 (level 3). They
define the sensitivity of Port C external interrupts.

00: Falling edge and low level
01: Rising edge only

10: Falling edge only

11: Rising and falling edge

Bits 3:2 PBIS[1:0]: Port B external interrupt sensitivity bits

These bits can only be written when 11 and 10 in the CCR register are both set to 1 (level 3). They
define the sensitivity of Port B external interrupts.

00: Falling edge and low level
01: Rising edge only

10: Falling edge only

11: Rising and falling edge

Bits 1:0 PAIS[1:0]: Port A external interrupt sensitivity bits

70/467

These bits can only be written when I1 and 10 in the CCR register are both set to 1 (level 3). They
define the sensitivity of Port A external interrupts.

00: Falling edge and low level
01: Rising edge only

10: Falling edge only

11: Rising and falling edge

3

DoclD14587 Rev 14

RMO0016 Interrupt controller (ITC)

6.9.4

External interrupt control register 1 (EXTI_CR2)
Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved TLIS PEIS[1:0]
r w w

Bits 7:3 Reserved.

Bit 2 TLIS: Top level interrupt sensitivity

This bit is set and cleared by software. This bit can be written only when external interrupt is
disabled on the corresponding GPIO port (PD7 or PC3, refer to Section 6.6: External interrupts on
page 66).

0: Falling edge

1: Rising edge

Bits 1:0 PEIS[1:0]: Port E external interrupt sensitivity bits

3

These bits can only be written when [1 and 10 in the CCR register are both set to 1 (level 3). They
define the sensitivity of the Port E external interrupts.

00: Falling edge and low level

01: Rising edge only

10: Falling edge only

11: Rising and falling edge

DoclD14587 Rev 14 71/467

Interrupt controller (ITC) RMO0016
6.9.5 ITC and EXTI register map and reset values
Table 12. Interrupt register map
Add. | Register
9 7 6 5 4 3 2 1 0
offset name
ITC-SPR block("
ITC_SPR1 VECT3 VECT3 VECT2 VECT2 VECT1 VECT1 Reserved Reserved
0x00 SPR1 SPRO SPR1 SPRO SPR1 SPRO
Reset value 1 1 1 1 1 1 1 1
ITC_SPR2 VECT7 VECT7 VECT6 VECT6 VECT5 VECT5 VECT4 VECT4
0x01 SPR1 SPRO SPR1 SPRO SPR1 SPRO SPR1 SPRO
Reset value 1 1 1 1 1 1 1 1
ITC_SPR3 VECTM VECTM VECT10 VECT10 VECT9 VECT9 VECT8 VECT8
0x02 SPR1 SPRO SPR1 SPRO SPR1 SPRO SPR1 SPRO
Reset value 1 1 1 1 1 1 1 1
ITC_SPR4 VECT15 VECT15 VECT14 VECT14 VECT13 VECT13 VECT12 VECT12
0x03 SPR1 SPRO SPR1 SPRO SPR1 SPRO SPR1 SPRO
Reset value 1 1 1 1 1 1 1 1
ITC_SPR5 VECT19 VECT19 VECT18 VECT18 VECT17 VECT17 VECT16 VECT16
0x04 SPR1 SPRO SPR1 SPRO SPR1 SPRO SPR1 SPRO
Reset value 1 1 1 1 1 1 1 1
ITC_SPR6 VECT23 VECT23 VECT22 VECT22 VECT21 VECT21 VECT20 VECT20
0x05 SPR1 SPRO SPR1 SPRO SPR1 SPRO SPR1 SPRO
Reset value 1 1 1 1 1 1 1 1
ITC_SPR7 VECT27 VECT27 VECT26 VECT26 VECT25 VECT25 VECT24 VECT24
0x06 SPR1 SPRO SPR1 SPRO SPR1 SPRO SPR1 SPRO
Reset value 1 1 1 1 1 1 1 1
ITC_SPR8 VECT28 VECT28
0x07 - - - - - - SPR1 SPRO
Reset value 1 1
ITC-EXTI block®
000 EXTI_CR1 PDIS1 PDISO PCIS1 PCISO PBIS1 PBISO PAIS1 PAISO
X
Reset value 0 0 0 0 0 0 0 0
EXTI_CR2 - - - - - TLIS PEIS1 PEISO
0x01
Reset value 0 0 0 0 0 0 0 0

1. The address offsets are expressed for the ITC-SPR block base address (see CPU/SWIM/debug module/interrupt controller

registers table in the datasheet).

2. The address offsets are expressed for the ITC-EXTI block base address (see General hardware register map table in the
datasheet).

721467

DoclD14587 Rev 14

3

RM0016

Power supply

7

3

Power supply

The MCU has four distinct power supplies:

e Vpp/Vgs: Main power supply (3 V to 5.5 V)

e Vppio/Vssio: I/O power supply (3 V to 5.5 V)

e Vppa/Vssa: Power supply for the analog functions

e VRrer+/Vger.: Reference supply for Analog Digital Converter

The Vpp/Vsg pins are used to supply the internal Main Voltage Regulator (MVR) and the

internal Low Power Voltage Regulator (LPVR). The 2 regulator outputs are connected and
provide the 1.8 V supply (V4g) to the MCU core (CPU, Flash and RAM)

In low power modes the system automatically switches from the MVR to the LPVR in order
to reduce current consumption.

To stabilize the MVR, a capacitor must be connected to the VCAP pin (for more details refer
to the datasheet electrical characteristics section).

Depending on the package size, there are one or two pairs of dedicated pins for
Vpopio/Vssio to supply power to the 1/Os.

Vppa/Vssa and Vrer+/VReg. are connected to the Analog to Digital Converter (ADC).

Figure 17. Power supply overview

IW-5.5Y

Vopa
O——
V54 AD converter
REF+
Veer O——

Veap O
MCU core
- 1.8v
Vop O— VB Yoltage Regulator cPU
Wyg Ran
Flash
Low Power Yoltage Regulator [T
aAV-5.5Y
Vpolog—r22 0| VO buffers
DoclD14587 Rev 14 73/467

Reset (RST) RM0016

8 Reset (RST)

There are 9 reset sources:

e External reset through the NRST pin

e Power-on reset (POR)

e Brown-out Reset (BOR)

e Independent watchdog reset (IWDG)

e Window watchdog reset (WWDG)

e Software reset

e SWIM reset

e lllegal opcode reset

e EMC reset: generated if critical registers are corrupted or badly loaded

These sources act on the RESET pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 6000h in the memory map.

Figure 18. Reset circuit

Vob_io

T
% Rpu
(typ 45 kQ)
@_ Fiter |, SYSTEM NRESET

EXTERNAL
RESET ¢ l[]
NRST
POR/BOR RESET
PULSE {*iWDG/WWDG/SOFTWARE RESET
‘+ GENERATOR SWIM RESET
(min 20 ps) & ILLEGAL OPCODE RESET
EMC RESET
8.1 “Reset state” and “under reset” definitions

When a reset occurs, there is a reset phase from the external pin pull-down to the internal
reset signal release. During this phase, the microcontroller sets some hardware
configurations before going to the reset vector.

At the end of this phase, most of the registers are configured with their “reset state” values.
During the reset phase, i.e. “under reset”, some pin configurations may be different from
their “reset state” configuration.

8.2 Reset circuit description

The NRST pin is both an input and an open-drain output with integrated Rp weak pull-up
resistor.

The low pulse of duration tyrp(nrsT) ON the NRST pin generates an external reset. The
reset detection is asynchronous and therefore the MCU can enter reset even in Halt mode.

The NRST pin also acts as an open-drain output for resetting external devices.

74/467 DoclD14587 Rev 14 ‘Yl

RM0016

Reset (RST)

8.3

8.3.1

8.3.2

S74

An internal temporization maintains a pulse of duration top(nrsT) Whatever the internal reset
source. An additional internal weak pull-up ensures a high level on the reset pin when the
reset is not forced.

Internal reset sources

Each internal reset source is linked to a specific flag bit in the Reset status register
(RST_SR) except POR/BOR which have no flag. These flags are set respectively at reset
depending on the given reset source. So they are used to identify the last reset source.
They are cleared by software writing the logic value “1”.

Power-on reset (POR) and brown-out reset (BOR)

During power-on, the POR keeps the device under reset until the supply voltages (Vpp and
Vppio) reach the voltage level at which the BOR starts to function. At this point, the BOR
reset replaces the POR and the POR is automatically switched off. The BOR reset is
maintained till the supply voltage reaches the operating voltage range.

See Electrical parameters section of the datasheet for more details.

The BOR also generates a reset when the supply voltage drops below the V1. threshold.
When this occurs, the POR is re-armed for the next power-on phase.

An hysteresis is implemented to ensure clean detection of voltage rise and fall.

The BOR always remains active even when the MCU is put into Low Power mode.

Figure 19. Vpp,Vpp|o Voltage detection: POR/BOR threshold

VDD\I'VDDIO

Watchdog reset

Refer to Section 15: Window watchdog (WWDG) and Section 14: Independent watchdog
(IWDG) for details.

DoclD14587 Rev 14 751467

Reset (RST) RM0016

8.3.3 Software reset

The application software can trigger reset by clearing bit T6 in the WWDG_CR register.
Refer to Section 15: Window watchdog (WWDG).

8.3.4 SWIM reset

An external device connected to the SWIM interface can request the SWIM block to
generate an MCU reset.

8.3.5 lllegal opcode reset

In order to provide enhanced robustness to the device against unexpected behavior, a
system of illegal opcode detection is implemented. If a code to be executed does not
correspond to any opcode or prebyte value, a reset is generated. This, combined with the
Watchdog, allows recovery from an unexpected fault or interference.

Note: A valid prebyte associated with a valid opcode forming an unauthorized combination does
not generate a reset.

8.3.6 EMC reset

To protect the application against spurious write access or system hang-up, possibly caused
by electromagnetic disturbance, the most critical registers are implemented as two bitfields
that must contain complementary values. Mismatches are automatically detected by this
mechanism, triggering an EMC reset and allowing the application to cleanly recover normal
operations.

3

76/467 DoclD14587 Rev 14

RM0016 Reset (RST)

8.4 RST register description

8.4.1 Reset status register (RST_SR)
Address offset: 0x00

Reset value: 0xXX

7 6 5 4 3 2 1 0
Reserved EMCF SWIMF ILLOPF IWDGF WWDGF
r rc_wi rc_wi rc_w1 rc_w1 rc_wi

Bits 7:5 Reserved.

Bit 4 EMCF: EMC reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No EMC reset occurred
1: An EMC reset occurred (possible cause: complementary register or option byte mismatch).

Bit 3 SWIMF: SWIM reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No SWIM reset occurred
1: ASWIM reset occurred

Bit 2 ILLOPF: lllegal opcode reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No ILLOP reset occurred
1: An ILLOP reset occurred

Bit 1 IWDGF: Independent Watchdog reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No IWDG reset occurred
1: An IWDG reset occurred

Bit 0 WWDGF: Window Watchdog reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No WWDG reset occurred
1: An WWDG reset occurred

8.5 RST register map

Refer to the corresponding datasheet for the base address.

Table 13. RST register map

Address | o gister Name 7 6 5 4 3 2 1 0
offset
RST_SR - - - EMCF SWIMF ILLOPF IWDGF WWDGF
0x00
Reset value X X X X X X X X
‘Yl DoclD14587 Rev 14 771467

Clock control (CLK) RMO0016

9

78/467

Clock control (CLK)

The clock controller is designed to be powerful, very robust, and at the same time easy to
use. Its purpose is to allow you to obtain the best performance in your application while at
the same time get the full benefit of all the microcontroller’s power saving capabilities.

You can manage all the different clock sources independently and distribute them to the
CPU and to the various peripherals. Prescalers are available for the master and CPU
clocks.

A safe and glitch-free switch mechanism allows you to switch the master clock on the fly
from one clock source to another one.

EMC-hardened clock configuration registers

To protect the application against spurious write access or system hang-up, possibly caused
by electromagnetic disturbance, the most critical CLK registers are implemented as two
bitfields that must contain complementary values. Mismatches are automatically detected
by the CLK, triggering an EMC reset and allowing the application to cleanly recover normal
operations. See CLK register description for more details.

3

DoclD14587 Rev 14

RM0016

Clock control (CLK)

3

Figure 20. Clock tree

CEM[7:0]
HSE Ext.
CPUDIV[2:0]
fHse
OSCIN
HSE OSC
1-24MHz "
0scouT EXTCLK OPT BIT 2
4
Master| MASTER | /8 fepu
Clock " 16
p CSS [~ — -7 HSIDIV[1:0] Switch 2
| 64
I 128
HSI RC fHSl
1o To CPU and
window watchdog
LSI_EN OPT BIT
LSIRC
128 kHz
to Timers
12C
To independent watchdog - [=3=]]
Peripheral clock) » i&%
enable (8 bits) CAN
PRSC(1:0) OPT BITS UART
128 kHz To auto wakeup unit (AWU)
CKAWUSEL OPT BIT
CCOSEL[3:0]
s
— fHsiD
— fHse
— fisi
- Configurable clock output - faAsTER
oo A — fepu
— fepu2
— fepurd
— fcpu/8
— fcpu”ﬁ
— fepu/32
fopu/64

1.

Legend: HSE = High speed external clock signal; HSI = High speed internal clock signal; LS| = Low Speed internal clock

signal.

DoclD14587 Rev 14

79/467

Clock control (CLK) RMO0016

9.1

9.1.1

80/467

Master clock sources

4 different clock sources can be used to drive the master clock:

e 1-24 MHz high speed external crystal oscillator (HSE)

Up to 24 MHz high speed user-external clock (HSE user-ext)
16 MHz high speed internal RC oscillator (HSI)

128 kHz low speed internal RC (LSI)

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

HSE (high-speed external) clock signal

The high speed external clock signal (HSE) can be generated from two possible clock
sources:

e HSE external crystal/ceramic resonator

e HSE user external clock

Figure 21. HSE clock sources

Hardware configuration

3

L 0SCoUT
™

c

2 T (I/O available)
L

EXTERNAL
SOURCE

OSCIN OscouT

HHHOES

. LOAD
~ CAPACITORS "~

Crystal/ceramic resonators

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and start-up stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

3

DoclD14587 Rev 14

RM0016

Clock control (CLK)

Note:

9.1.2

Note:

3

External crystal/ceramic resonator (HSE crystal)

The 1 to 24 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock with 50% duty cycle.

The associated hardware configuration is shown in Figure 21. Refer to the electrical
characteristics section for more details.

At start up the clock signal produced by the oscillator is not stable, and by default a delay of
2048 osc cycles is inserted before the clock signal is released. You can program a shorter
stabilization time in the HSECNT option byte, please refer to option bytes section in the
datasheet.

The HSERDY flag in the External clock register (CLK_ECKR) indicates if the high-speed
external oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware.

The HSE Crystal can be switched on and off using the HSEEN bit in the External clock
register (CLK_ECKR).

External source (HSE user-ext)

In this mode, an external clock source must be provided. It can have a frequency of up to
24 MHz. You select this mode by programming the EXTCLK option bit. Refer to the option
bytes section of the datasheet. The external clock signal (square, sinus or triangle) with
~50% duty cycle has to drive the OSCIN pin while the OSCOUT pin is available as standard
I/O (see Figure 20).

For clock frequencies above 16 MHz, Flash /data EEPROM access must be configured for 1
wait state. This is enabled by the device option byte. Refer to the datasheet option byte
section.

HSI (high-speed internal) clock signal

The HSI clock signal is generated from an internal 16 MHz RC oscillator together with a
programmable divider (factor 1 to 8). This is programmed in the Clock divider register
(CLK_CKDIVR).

At startup the master clock source is automatically selected as HSI RC clock output divided
by 8 (frs/8)-

The HSI RC oscillator has the advantage of providing a 16 MHz master clock source with
50% duty cycle at low cost (no external components). It also has a faster startup time than
the HSE crystal oscillator however, even with calibration the frequency is less accurate than
an external crystal oscillator or ceramic resonator.

The HSIRDY flag in the Internal clock register (CLK_ICKR) indicates if the HSI RC is stable
or not. At startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC can be switched on and off using the HSIEN bit in the Internal clock register
(CLK_ICKR).

Backup source

The HSI/8 signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 9.6: Clock security system (CSS).

DoclD14587 Rev 14 81/467

Clock control (CLK) RMO0016

9.1.3

82/467

Fast wakeup feature

If the FHWU bit in the Internal clock register (CLK_ICKR) is set, this automatically selects
the HSI clock as master clock after MCU wakeup from Halt or Active-halt (see Low power
chapter).

Calibration

Each device is factory calibrated by ST.

After reset, the factory calibration value is automatically loaded in an internal calibration
register.

If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. You can trim the HSI frequency in the application using the HS/ clock
calibration trimming register (CLK_HSITRIMR). In this register there are 3 or 4 bits providing
an additional trimming value that is added to the internal HSI calibration register value.

The width of the trimming steps with 4 bits is half the trimming step width with 3 bits.

Table 14. Devices with 4 trimming bits

Trimming bits value Trimming steps Trimming bits value Trimming steps
0111b +7 1111b -1
0110b +6 1110b -2
0101b +5 1101b -3
0100b +4 1100b -4
0011b +3 1011b -5
0010b +2 1010b -6
0001b +1 1001b -7
0000b 0 1000b -8

Table 15. Devices with 3 trimming bits

Trimming bits value Trimming steps Trimming bits value Trimming steps
011b +3 111b -1
010b +2 110b -2
001b +1 101b -3
000b 0 100b -4

As the trimming step width depends on the absolute frequency of the RC oscillator, a
successive approximation method needs to be applied for the trimming. This method is
described in a separate technical document.

LSI

The 128 kHz LSI RC acts as a low power, low cost alternative master clock source as well
as a low power clock source that can be kept running in Halt mode for the independent
watchdog (IWDG) and auto-wakeup unit (AWU).

DoclD14587 Rev 14 ‘Yl

RMO0016 Clock control (CLK)
The LSI RC can be switched on and off using the LSIEN bit in the Internal clock register
(CLK_ICKR).

The LSIRDY flag in the Internal clock register (CLK_ICKR) indicates if the low-speed
internal oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware.

Calibration

Like the HSI RC, the LSI RC device is factory calibrated by ST. However, it is not possible to
perform further trimming.

Note: When using the independent watchdog with the LSI as clock source, in order to guarantee
that the CPU will never run on the same clock in case of corruption, the LSI clock cannot be
the master clock if LSI_EN option bit is reset. Refer to the option bytes section in the
datasheet.

9.2 Master clock switching
The clock switching feature provides an easy to use, fast and secure way for the application
to switch from one master clock source to another.

9.2.1 System startup
For fast system startup, after a reset the clock controller configures the master clock source
as HSI RC clock output divided by 8 (HSI/8). This is to take advantage of the short
stabilization time of the HSI oscillator. The /8 divider is to ensure safe start-up in case of
poor Vpp conditions.

Once the master clock is released, the user program can switch the master clock to another
clock source.

9.2.2 Master clock switching procedures

3

To switch clock sources, you can proceed in one of two ways:
e Automatic switching
e Manual switching

Automatic switching

The automatic switching enables, the user to launch a clock switch with a minimum number
of instructions. The software can continue doing other operations without taking care of the
switch event exact time.

To enable automatic switching, follow the sequence below (refer to the flowchart in

Figure 22):

1. Enable the switching mechanism by setting the SWEN bit in the Switch control register
(CLK_SWCR).

2. Write the 8-bit value used to select the target clock source in the Clock master switch
register (CLK_SWR). The SWBSY bit in the CLK_SWCR register is set by hardware,
and the target source oscillator starts. The old clock source continues to drive the CPU
and peripherals.

DoclD14587 Rev 14 83/467

Clock control (CLK) RMO0016

84/467

As soon as the target clock source is ready (stabilized), the content of the CLK_SWR
register is copied to the Clock master status register (CLK_CMSR).

The SWBSY bit is cleared and the new clock source replaces the old one. The SWIF flag in
the CLK_SWCR is set and an interrupt is generated if the SWIEN bit is set.

Manual switching

The manual switching is not as immediate as the automatic switching but it offers to the user
a precise control of the switch event time.

To enable manual switching, follow the sequence below (refer to the flowchart in Figure 23):

1. Write the 8-bit value used to select the target clock source in the Clock master switch
register (CLK_SWR). Then the SWBSY bit is set by hardware, and the target source
oscillator starts. The old clock source continues to drive the CPU and peripherals.

2. The software has to wait until the target clock source is ready (stabilized). This is
indicated by the SWIF flag in the CLK_SWCR register and by an interrupt if the SWIEN
bit is set.

3. The final software action is to set, at the chosen time, the SWEN bit in the CLK_SWCR
register to execute the switch.

In both manual and automatic switching modes, the old master clock source will not be
powered off automatically in case it is required by other blocks (the LSI RC may be used to
drive the independent watchdog for example). The clock source can be powered off using
the bits in the Internal clock register (CLK_ICKR) and External clock register (CLK_ECKR).

If the clock switch does not work for any reason, software can reset the current switch
operation by clearing the SWBSY flag. This will restore the CLK_SWR register to its
previous content (old master clock).

3

DoclD14587 Rev 14

RM0016

Clock control (CLK)

3

Figure 22. Clock switching flowchart (automatic mode example)

HARDWARE ACTION

‘ MCU in Run mode with HSIIS‘

SOFTWARE ACTION

\
‘ Set SWEN bit in CLK_SWCR ‘

| Set SWIEN bit in CLK_SWCR to enable interrupt if suitable

| Wirite target clock source in CLK_SWR ‘
J

Switch busy
SwWBSY ——= 1

Target clock source powered on

Target clock source ready after
stabilization time

Update clock master status
CLK_SWR——>CLK_CMSR

Reset switch busy flag
SWBSY——= 0

Switch done

SWIF —> 1

Interrupt if activated

MCU in Run mode
with new master clock source

|
‘ Clear SWIF flag

DoclD14587 Rev 14 85/467

Clock control (CLK) RMO0016

9.3

9.4

86/467

Figure 23. Clock switching flowchart (manual mode example)

HARDWARE ACTION SOFTWARE ACTION

| MCU in Run mode with Hsus|
[

1
| Set SWIEN bit in CLK_SWCR to enable interrupt if suitable |

‘ Write target clock source in CLK_SWR |
[

Switch busy
SWBSY ——>1

Target clock source powered on

I
|
|
|
|
|
|
I
|
|
Target clock source ready after |
stabilization time |
|

|

|

|

|

|

|

|

|

|

Ready for the switch
SWIF — 1

Interrupt if activated

| Clear SWIF flag |

‘ Set SWEN bit in CLK_SWCR to execute switch
|

I
Update clock master status

CLK_SWR ——= CLK_CMSR

Reset switch busy flag
SWBSY——= 0

MCU in Run mode
with new master clock source

Low-speed clock selection

The Low-speed clock source for the AWU or the independent watchdog can be LSI or HSE
divided according to the CKAWUSEL option bit. Refer to option bytes section in the
datasheet.

The division factor for HSE has to be programmed in the HSEPRSCJ1:0] option bits Refer to
in the option bytes section of the datasheet. The goal is to get 128 kHz at the output of the
HSE prescaler.

CPU clock-divider

The CPU clock (fopy) is derived from the master clock (fyaster), divided by a factor
programmed in the CPUDIV[2:0] bits in the Clock divider register (CLK_CKDIVR). Seven
division factors (1 to 128 in steps of power of 2) can be selected (refer to Figure 20).

The fcpy signal is the clock for both the CPU and the window watchdog.

3

DoclD14587 Rev 14

RM0016

Clock control (CLK)

9.5

3

Peripheral clock-gating (PCG)

Gating the clock to unused peripherals helps reduce power consumption. Peripheral clock
Gating (PCG) mode allows you to selectively enable or disable the fy asTER ClOoCk
connection to the following peripherals at any time in Run mode:

[] ADC

e I2C

e AWU (register clock, not counter clock)
e SPI

e TIM[4:1]

e UART

e CAN (register clock, not CAN clock)

After a device reset, all peripheral clocks are enabled. You can disable the clock to any
peripheral by clearing the corresponding PCKEN bit in the Peripheral clock gating register 1
(CLK_PCKENR1) and in the Peripheral clock gating register 2 (CLK_PCKENRZ2). But you
have to disable properly the peripheral using the appropriate bit, before stopping the
corresponding clock.

To enable a peripheral, you must first enable the corresponding PCKEN bit in the
CLK_PCKENR registers and then set the peripheral enable bit in the peripheral’s control
registers.

The AWU counter is driven by an internal or external clock (LS| or HSE) independent from
fuasTER- SO that it continues to run even if the register clock to this peripheral is switched
off.

DoclD14587 Rev 14 871467

Clock control (CLK) RMO0016

9.6

88/467

Clock security system (CSS)

The Clock Security System (CSS) monitors HSE crystal clock source failures. When
fuasTER depends on HSE crystal, i.e. when HSE is selected, if the HSE clock fails due to a
broken or disconnected resonator or any other reason, the clock controller activates a stall-
safe recovery mechanism by automatically switching fyaster to the auxiliary clock source
(HS1/8). Once selected the auxiliary clock source remains enabled until the MCU is reset.

You enable the clock security system by setting the CSSEN bit in the Clock security system
register (CLK_CSSR). For safety reason, once CSS is enabled it cannot be disabled until
the next reset.

The following conditions must be met so that the CSS can detect HSE quartz crystal
failures:

e HSE crystal on: (HSEEN = 1 in the External clock register (CLK_ECKR))

e HSE oscillator in quartz crystal configuration (EXTCLK option bit is reset)

e CSS function enabled: (CSSEN = 1 in the CLK_CSSR register)

If HSE is the current clock master when a failure is detected, the CSS performs the following
actions:

e The CSSD bit is set in the CLK_CSSR register and an interrupt is generated if the
CSSIEN bit is set.

e The Clock master status register (CLK_CMSR), Clock master switch register
(CLK_SWR) register and the HSIDIV[1:0] bits in the Clock divider register
(CLK_CKDIVR) are set to their reset values (CKM[7:0]= SWI[7:0]=E1h). HSI/8
becomes the master clock.

e The HSIEN bit in the Internal clock register (CLK_ICKR) register is set (HSI on).

e The HSEEN bit in the External clock register (CLK_ECKR) is cleared (HSE off)

e The AUX bit is set to indicate that the HSI/8 auxiliary clock source is forced.
You can clear the CSSD bit by software but the AUX bit is cleared only by reset.

To select a faster clock speed, you can modify the HSIDIV[1:0] bits in the CLK_CKDIVR
register after the CSSD bit in the CLK_CSSR register is cleared.

If HSE is not the current clock master when a failure is detected, the master clock is not
switched to the auxiliary clock and none of the above actions are performed except:

e The HSEEN bit is cleared in the CLK_ECKR register, HSE is then switched OFF

e The CSSD bitis set in the CLK_CSSR register and interrupt is generated if CSSDIE is
also set, it can be cleared by software.

If HSE is not the current clock master and the master clock switch to HSE is ongoing, the
SWBSY bit in the CLK_SWCR register must be cleared by software before clearing the
CSSD bit.

If HSE is selected by CCOSEL to be in output mode (see Clock-out capability (CCQO)) when
a failure is detected, the selection is automatically changed to force HSI (HSIDIV) instead of
HSE.

3

DoclD14587 Rev 14

RM0016

Clock control (CLK)

9.7

Note:

9.8

3

Clock-out capability (CCO)

The configurable Clock Output (CCO) capability allows you to output a clock on the external
CCO pin. You can select one of 6 clock signals as CCO clock:

e fuse

e fhsi

* fhusibiv
e fig

* fmasTeER

o fcpy (With current prescaling selection)
50% duty cycle is not guaranteed on all possible prescaled values

The selection is controlled by the CCOSEL[3:0] bits in the Configurable clock output register
(CLK_CCOR).

The user has to select first the desired clock for the dedicated 1/O pin (see Pin Description
chapter). This I/O must be set at 1 in the corresponding Px_CR1 register to be set as input
with pull-up or push-pull output.

The sequence to really output the chosen clock starts with CCOEN=1 in Configurable clock
output register (CLK_CCOR).

The CCOBSY s set to indicate that the configurable clock output system is operating. As
long as the CCOBSY bit is set, the CCOSEL bits are write protected.

The CCO automatically activates the target oscillator if needed. The CCORDY bit is set
when the chosen clock is ready.

To disable the clock output the user has to clear the CCOEN bit. Both CCOBSY and
CCORDY remain at 1 till the shut down is completed. The time between the clear of CCOEN
and the reset of the two flags can be relatively long, for instance in case the selected clock
output is very slow compared to fepy.

CLK interrupts

The following interrupts can be generated by the clock controller:
e Master clock source switch event
e Clock Security System event

Both interrupts are individually maskable.

Table 16. CLK interrupt requests

Enable Exit Exit
Event
Interrupt event fla control from from
9 bit wait Halt
CSS event CSssD CSSDIE Yes No
Master clock switch event SWIF SWIEN Yes No

DoclD14587 Rev 14 89/467

Clock control (CLK) RMO0016
9.9 CLK register description
9.9.1 Internal clock register (CLK_ICKR)
Address offset: 0x00
Reset value: 0x01
7 5 4 3 2 1 0
Reserved REGAH LSIRDY LSIEN FHW HSIRDY HSIEN
r rw r w w r w

Bits 7:6 Reserved, must be kept cleared.

Bit 5 REGAH: Regulator power off in Active-halt mode
This bit is set and cleared by software. When it is set, the main voltage regulator is powered off as
soon as the MCU enters Active-halt mode, so the wakeup time is longer.
0: MVR regulator ON in Active-halt mode
1: MVR regulator OFF in Active-halt mode

Bit 4 LSIRDY: Low speed internal oscillator ready
This bit is set and cleared by hardware.
0: LSI clock not ready
1: LSl clock ready

Bit 3 LSIEN: Low speed internal RC oscillator enable
This bit is set and cleared by software. It is set by hardware whenever the LS| oscillator is required,
for example:
— When switching to the LSI clock (see CLK_SWR register)
— When LSl is selected as the active CCO source (see CLK_CCOR register)
— When BEEP is enabled (BEEPEN bit set in the BEEP_CSR register)
— When LSI measurement is enabled (MSR bit set in the AWU_CSR register)
It cannot be cleared when LSl is selected as master clock source (CLK_CMSR register), as active
CCO source or as clock source for the AWU peripheral or independent Watchdog.
0: Low-speed internal RC off
1: Low-speed internal RC on

3

90/467 DoclD14587 Rev 14

RMO0016 Clock control (CLK)

Bit 2 FHWU: Fast wakeup from Halt/Active-halt modes
This bit is set and cleared by software.
0: Fast wakeup from Halt/Active-halt modes disabled
1: Fast wakeup from Halt/Active-halt modes enabled

Bit 1 HSIRDY: High speed internal oscillator ready
This bit is set and cleared by hardware.
0: HSI clock not ready
1: HSI clock ready

Bit 0 HSIEN: High speed internal RC oscillator enable
This bit is set and cleared by software. It is set by hardware whenever the HSI oscillator is required,
for example:
— When activated as safe oscillator by the CSS
— When switching to HSI clock (see CLK_SWR register)
— When HSI is selected as the active CCO source (see CLK_CCOR register)
It cannot be cleared when HSI is selected as clock master (CLK_CMSR register), as active CCO
source or if the safe oscillator (AUX) is enabled.
0: High-speed internal RC off
1: High-speed internal RC on

9.9.2 External clock register (CLK_ECKR)
Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved HSERDY HSEEN
r r w

Bits 7:2 Reserved, must be kept cleared.

Bit 1 HSERDY: High speed external crystal oscillator ready
This bit is set and cleared by hardware.
0: HSE clock not ready
1: HSE clock ready (HSE clock is stabilized and available)

Bit 0 HSEEN: High speed external crystal oscillator enable
This bit is set and cleared by software. It can be used to switch the external crystal oscillator on or
off. It is set by hardware in the following cases:
— When switching to HSE clock (see CLK_SWR register)
— When HSE is selected as the active CCO source (see CLK_CCOR register)
It cannot be cleared when HSE is selected as clock master (indicated in CLK_CMSR register) or as
the active CCO source.
0: HSE clock off
1: HSE clock on

3

DoclD14587 Rev 14 91/467

Clock control (CLK) RMO0016

9.9.3 Clock master status register (CLK_CMSR)
Address offset:0x03

Reset value: OxE1

CKM[7:0]

Bits 7:0 CKM][7:0]: Clock master status bits

These bits are set and cleared by hardware. They indicate the currently selected master clock
source. An invalid value occurring in this register will automatically generate an MCU reset.
OxE1: HSI selected as master clock source (reset value)

0xD2: LSI selected as master clock source (only if LSI_EN option bit is set)

0xB4: HSE selected as master clock source

994 Clock master switch register (CLK_SWR)
Address offset: 0x04

Reset value: OxE1

SWI[7:0]

Bits 7:0 SWI[7:0]: Clock master selection bits
These bits are written by software to select the master clock source. Its contents are write protected
while a clock switch is ongoing (while the SWBSY bit is set). They are set to the reset value (HSI) if
the AUX bit is set in the CLK_CSSR register. If Fast Halt wakeup mode is selected (FHW bit =1 in
CLK_ICKR register) then these bits are set by hardware to E1h (HSI selected) when resuming from
Halt/Active-halt mode.
OxE1: HSI selected as master clock source (reset value)
0xD2: LS| selected as master clock source (only if LSI_EN option bit is set)
0xB4: HSE selected as master clock source

3

92/467 DoclD14587 Rev 14

RMO0016 Clock control (CLK)

9.9.5 Switch control register (CLK_SWCR)
Address offset: 0x05

Reset value: 0xXX

7 6 5 4 3 2 1 0
Reserved SWIF SWIEN SWEN SWBSY
r rc_w0 w w w

Bits 7:4 Reserved.

Bit 3 SWIF: Clock switch interrupt flag
This bit is set by hardware and cleared by software writing 0. Its meaning depends on the status of
the SWEN bit. Refer to Figure 22 and Figure 23.
In manual switching mode (SWEN = 0):
0: Target clock source not ready
1: Target clock source ready
In automatic switching mode (SWEN = 1):
0: No clock switch event occurred
1: Clock switch event occurred

Bit 2 SWIEN: Clock switch interrupt enable
This bit is set and cleared by software.
0: Clock switch interrupt disabled
1: Clock switch interrupt enabled

Bit 1 SWEN: Switch start/stop
This bit is set and cleared by software. Writing a 1 to this bit enables switching the master clock to
the source defined in the CLK_SWR register.
0: Disable clock switch execution
1: Enable clock switch execution

Bit 0 SWBSY: Switch busy
This bit is set and cleared by hardware. It can be cleared by software to reset the clock switch
process.
0: No clock switch ongoing
1: Clock switch ongoing

”

”

3

DoclD14587 Rev 14 93/467

Clock control (CLK)

RM0016

9.9.6

Clock divider register (CLK_CKDIVR)
Address offset: 0x06

Reset value: 0x18

6 5 4 3 2

1

Reserved HSIDIV[1:0]

CPUDIV[2:0]

r 'w rw w

w

Bits 7:5 Reserved, must be kept cleared.

Bits 4:3 HSIDIV[1:0]: High speed internal clock prescaler

These bits are written by software to define the HSI prescaling factor.
00: fys1= fHsi RC output

01: fys1= fHsi RC output/2

10: fusi= fusi Re output’4

112 fusi= fusi R output/8

Bits 2:0 CPUDIV[2:0]: CPU clock prescaler
These bits are written by software to define the CPU clock prescaling factor.

94/467

000: fepu=fmasTErR
001: fepu=fmasTER/2
010: fepu=fmasTeR/4
011: fepu=fuasTerR/8
100: fepy=fmasTer/16
101: fepy=fuasTeR/32
110: fopu=fmasTer/64
111: fCPU=fMASTER/1 28

DoclD14587 Rev 14

3

RMO0016 Clock control (CLK)

9.9.7 Peripheral clock gating register 1 (CLK_PCKENR1)
Address offset: 0x07

Reset value: OxFF

PCKEN1[7:0]

Bits 7:0 PCKEN1[7:0]: Peripheral clock enable

These bits are written by software to enable or disable the fy asTeRr clock to the corresponding
peripheral (see Table 17).

0: fmasTeR to peripheral disabled

1: fuasTeR to peripheral enabled

Table 17. Peripheral clock gating bits

Control bit Peripheral
PCKEN17 TIM1
PCKEN16 TIM3
PCKEN15 TIM2/TIM5 (product dependent)
PCKEN14 TIM4/ TIM6 (product dependent)
PCKEN13 UART1/2/3/4 (product dependent, see datasheet
PCKEN12 for bit assignment table)
PCKEN11 SPI
PCKEN10 1°C

"_l DoclD14587 Rev 14 95/467

Clock control (CLK) RMO0016

9.9.8 Peripheral clock gating register 2 (CLK_PCKENRZ2)
Address offset: Ox0A

Reset value: OxFF

PCKEN2[7:0]

Bits 7:0 PCKEN2[7:0]: Peripheral clock enable

These bits are written by software to enable or disable the fy asTeRr clock to the corresponding
peripheral. See Table 17

0: fmasTeR to peripheral disabled

1: fuasTeR to peripheral enabled

Table 18. Peripheral clock gating bits

Control bit Peripheral

PCKEN27 CAN (product dependent, see datasheet)
PCKEN26 Reserved

PCKEN25 Reserved

PCKEN24 Reserved

PCKEN23 ADC

PCKEN22 AWU

PCKEN21 Reserved

PCKEN20 Reserved

96/467 DoclD14587 Rev 14 "_l

RMO0016 Clock control (CLK)
9.9.9 Clock security system register (CLK_CSSR)
Address offset: 0x08
Reset value: 0x00
7 6 5 4 3 2 1 0
Reserved CSSD CSSDIE AUX CSSEN
r rc_w0 w r rwo
Bits 7:4 Reserved, must be kept cleared.
Bit 3 CSSD: Clock security system detection
This bit is set by hardware and cleared by software writing 0.
0: CSS is off or no HSE crystal clock disturbance detected.
1: HSE crystal clock disturbance detected.
Bit 2 CSSDIE: Clock security system detection interrupt enable
This bit is set and cleared by software.
0: Clock security system interrupt disabled
1: Clock security system interrupt enabled
Bit 1 AUX: Auxiliary oscillator connected to master clock
This bit is set and cleared by hardware.
0: Auxiliary oscillator is off.
1: Auxiliary oscillator (HSI/8) is on and selected as current clock master source.
Bit 0 CSSEN: Clock security system enable
This bit can be read many times and be written once-only by software.
0: Clock security system off
1: Clock security system on
IS73 DocID14587 Rev 14 97/467

Clock control (CLK) RMO0016

9.9.10 Configurable clock output register (CLK_CCOR)
Address offset: 0x09

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved CCOBSY CCORDY CCOSEL[3:0] CCOEN
r r r rw w w w w

Bit 7 Reserved, must be kept cleared.

Bit 6 CCOBSY: Configurable clock output busy

This bit is set and cleared by hardware. It indicates that the selected CCO clock source is being
switched-on and stabilized. While CCOBSY is set, the CCOSEL bits are write-protected. CCOBSY
remains set until the CCO clock is enabled.

0: CCO clock not busy
1: CCO clock busy

Bit5 CCORDY: Configurable clock output ready
This bit is set and cleared by hardware. It indicates that the CCO clock is being output.
0: CCO clock not available
1: CCO clock available

Bits 4:1 CCOSEL[3:0]: Configurable clock output selection.
These bits are written by software to select the source of the output clock available on the
CLK_CCO pin. They are write-protected when CCOBSY s set.
0000: fysipiv
0001: f|_3|
0010: fHSE
0011: Reserved
0100: fCPU
0101: fcpu/2
0110: fcpu/4
0111: fcpu/s
1000: fcpu/1 6
1001: fcpu/32
1010: fcpu/64
1011: fHSl
1100: fyasTER
1101: fCPU
1110: fCPU
1111: fCPU

Bit 0 CCOEN: Configurable clock output enable
This bit is set and cleared by software.

0: CCO clock output disabled
1: CCO clock output enabled

3

98/467 DoclD14587 Rev 14

RMO0016 Clock control (CLK)
9.9.11 HSI clock calibration trimming register (CLK_HSITRIMR)
Address offset: 0x0C
Reset value: 0x00
7 6 5 4 3 2 1 0
Reserved HSITRIM[3:0]
r w w w w
Bits 7:4 Reserved, must be kept cleared.
Bits 3:0 HSITRIM[3:0] HSI trimming value
These bits are written by software to fine tune the HSI calibration.
Note: In high density STM8S and STMB8AF devices, only bits 2:0 are available.
In other devices, bits 3:0 are available to achieve a better HSI resolution. Compatibility with bits
2:0 can be selected through options bytes (refer to datasheet).
9.9.12 SWIM clock control register (CLK_SWIMCCR)
Address offset: 0x0D
Reset value: ObXXXX XXX0
7 6 5 4 3 2 1 0
Reserved SWIMCLK
r w
Bits 7:1 Reserved.
Bit0 SWIMCLK SWIM clock divider

3

This bit is set and cleared by software.
0: SWIM clock divided by 2
1: SWIM clock not divided by 2

DoclD14587 Rev 14 99/467

Clock control (CLK) RMO0016
9.10 CLK register map and reset values
Table 19. CLK register map and reset values
Address .
Register name 7 6 5 4 3 2 1 0
offset
0x00 CLK_ICKR - - REGAH LSIRDY LSIEN FHWU HSIRDY HSIEN
Reset value 0 0 0 0 0 0 0 1
0x01 CLK_ECKR - - - - - HSERDY HSEEN
Reset value 0 0 0 0 0 0 0 0
0x02 Reserved area (1 byte)
0x03 CLK_CMSR CKM7 CKM6 CKM5 CKM4 CKM3 CKM2 CKM1 CKMO
Reset value 1 1 1 0 0 0 0 1
0x04 CLK_SWR SwWi7 SWi6 SWI5 SWi4 SWI3 SWI2 SWH SWIO
Reset value 1 1 1 0 0 0 0 1
CLK_SWCR - - - SWIF SWIEN SWEN SWBSY
0x05 —
Reset value X X X X X X X X
0x06 CLK_CKDIVR - - - HSIDIVA1 HSIDIVO CPUDIV2 | CPUDIV12 | CPUDIVO
Reset value 0 0 0 1 1 0 0 0
0x07 CLK_PCKENR1 PCKEN17 | PCKEN16 | PCKEN15 | PCKEN14 | PCKEN13 | PCKEN12 | PCKEN11 | PCKEN10
Reset value 1 1 1 1 1 1 1 1
0x08 CLK_CSSR - - - - CSSD CSSDIE AUX CSSEN
Reset value 0 0 0 0 0 0 0 0
0x09 CLK_CCOR - CCOBSY CCORDY | CCOSEL3 | CCOSEL2 | CCOSEL1 | CCOSELO CCOEN
Reset value 0 0 0 0 0 0 0 0
OX0A CLK_PCKENR2 PCKEN27 | PCKEN26 | PCKEN25 | PCKEN24 | PCKEN23 | PCKEN22 | PCKEN21 | PCKEN20
Reset value 1 1 1 1 1 1 1 1
0x0B Reserved area (1 byte)
0x0C CLK_HSITRIMR - - - - - HSITRIM2 | HSITRIM1 | HSITRIMO
Reset value 0 0 0 0 0 0 0 0
CLK_SWIMCCR - - - - - - - SWIMCLK
0x0D
Reset value X X X X X X X 0
100/467 DoclD14587 Rev 14 Kys

RM0016

Power management

10

10.1

3

Power management

By default, after a system or power reset, the microcontroller is in Run mode. In this mode
the CPU is clocked by fcp_; and executes the program code, the system clocks are
distributed to the active peripherals and the microcontroller is drawing full power.

While in Run mode, still keeping the CPU running and executing code, the application has
several ways to reduce power consumption, such as:

e Slowing down the system clocks

e Gating the clocks to individual peripherals when they are unused

e Switching off any unused analog functions

However, when the CPU does not need to be kept running, three dedicated low power
modes can be used:

e Wait

e Active-halt (configurable for slow or fast wakeup)

e Halt (configurable for slow or fast wakeup)

You can select one of these three modes and configure them to obtain the best compromise
between lowest power consumption, fastest start-up time and available wakeup sources.

General considerations

Low power consumption features are generally very important for all types of application for
energy saving. Ultra low power features are especially important for mobile applications to
ensure long battery lifetimes. This is also crucial for environmental protection.

In a silicon chip there are two kind of consumption:

e Static power consumption which is due to analog polarization and leakages. This so
small, it is only significant in Halt and Active-halt modes (refer to Section 10.2: Low
power modes).

e Dynamic power consumption which comes from running the digital parts of the chip.
It depends on Vpp, clock frequency and load capacitors.

In a microcontroller device the consumption depends on:

e Vpp supply voltage

Analog performance

e MCU size or number of digital gates (leakages and load capacitors)

Clock frequency

Number of active peripherals

Available low power modes and low power levels

Device processing performance is also very important, as this allows the application to
minimize the time spent in Run mode and maximize the time in low power mode.

Using the MCU's flexible power management features, you can obtain a range of significant
power savings while the system is running or able to resume operations quickly.

DoclD14587 Rev 14 101/467

Power management

RM0016

10.1.1 Clock management for low consumption
Slowing down the system clock
In Run mode, choosing the oscillator to be used as the system clock source is very
important to ensure the best compromise between performance and consumption. The
selection is done by programming the clock controller registers. Refer to the Clock control
(CLK) section.
As a further measure, fcp can be reduced by writing to the CPUDIV[2:0] bits in the Clock
divider register (CLK_CKDIVR). This reduces the speed of the CPU and consequently the
power consumption of the MCU. The other peripherals (clocked by fyasTeR) are not affected
by this setting.
To return to full speed at any time in Run mode, clear the CPUDIV[2:0] bits.
Peripheral clock gating
For additional power saving you can use peripheral clock gating (PCG). This can be done at
any time by selectively enabling or disabling the fyasTeRr clock connection to individual
peripherals. Refer to the Clock control (CLK) section.
These settings are effective in both Run and Wait modes.
10.2 Low power modes
The main characteristics of the four low power modes are summarized in Table 20.
Table 20. Low power mode management
Mode . .
(consumption Main voltage Oscillators CPU Peripherals Wakeup trigger
regulator event
level)
All internal interrupts
Wait on on off on" (|nclud|ng AWU) or
(-) external interrupts,
reset
e Off 3
Active-halt on except LSI (or off Only AWU®) AWU or external
(--) H interrupts, reset
SE)
Active-halt with Off @3)
MVR auto power off | (low power Off Off Only AWU®@) AWU or external
except LS| only interrupts, reset
(---) regulator on)
Off 3);
Halt (low power off off o2 External'®’ interrupts,
(----) reset
regulator on)

1.

2. |If activated,
3.
102/467

If the peripheral clock is not disabled by peripheral clock gating function.

BEEP or IWDG stay switched on. In this case, the LSI clock is forced to run.

Including communication peripheral interrupts.

3

DoclD14587 Rev 14

RM0016

Power management

10.2.1

10.2.2

10.2.3

3

Wait mode

Wait mode is entered from Run mode by executing a WFI (wait for interrupt) instruction: this
stops the CPU but allows the other peripherals and interrupt controller to continue to run.
Therefore the consumption decreases accordingly. Wait mode can be combined with PCG
(peripheral clock gating), reduced CPU clock frequency and low mode clock source
selection (LSI, HSI) to further reduce the power consumption of the device. Refer to the
Clock control (CLK) description.

In Wait mode, all the registers and RAM contents are preserved, the previously defined
clock configuration remains unchanged (Clock master status register (CLK_CMSR)).

When an internal or external interrupt request occurs, the CPU wakes-up from Wait mode
and resumes processing.

Halt mode

In this mode the master clock is stopped. This means that the CPU and all the peripherals
clocked by fy asTER OF by derived clocks are disabled. As a result, none of the peripherals
are clocked and the digital part of the MCU consumes almost no power.

In Halt mode, all the registers and RAM contents are preserved, by default the clock
configuration remains unchanged (Clock master status register (CLK_CMSR)).

The MCU enters Halt mode when a HALT instruction is executed. Wakeup from Halt mode
is triggered by an external interrupt, sourced by a GPIO port configured as interrupt input or
an Alternate Function pin capable of triggering a peripheral interrupt.

In this mode the MVR regulator is switched off to save power. Only the LPVR regulator (and
brown-out reset) is active.

Fast clock wakeup

The HSI RC start-up time is much faster than the HSE crystal start-up time (refer to the
Electrical Parameters in the datasheet). Therefore, to optimize the MCU wakeup time, it is
recommended to select the HSI clock as the fyyasTER ClOCk source before entering Halt
mode.

This selection can be done without clock switching using the FHWU bit in the Internal clock
register (CLK_ICKR). Refer to the Clock control (CLK) chapter.

Active-halt modes

Active-halt mode is similar to Halt mode except that it does not require an external interrupt
for wakeup. It uses the AWU to generate a wakeup event internally after a programmable
delay.

In Active-halt mode, the main oscillator, the CPU and almost all the peripherals are stopped.

Only the LS| RC or HSE oscillators are running to drive the AWU counters and IWD counter
if enabled.

To enter Active-halt mode, first enable the AWU as described in the AWU section. Then
execute a HALT instruction.

DoclD14587 Rev 14 103/467

Power management RMO0016

10.3

10.3.1

10.3.2

104/467

Main voltage regulator (MVR) auto power-off

By default the main voltage regulator is kept on Active-halt mode. Keeping it active ensures
fast wakeup from Active-halt mode. However, the current consumption of the MVR is non-
negligible.

To further reduce current consumption, the MVR regulator can be powered off automatically

when the MCU enters Active-halt mode. To configure this feature, set the REGAH bit in the
Internal clock register (CLK_ICKR) register. In this mode:

e The MCU core is powered only by the LPVR regulator (same as in Halt mode).
e Only the LSI clock source can be used, as the HSE clock current consumption is too
high for the LPVR.

The Main voltage regulator is powered on again at wakeup and it requires a longer wakeup
time (refer to the datasheet electrical characteristics section for wakeup timing and current
consumption data).

Fast clock wakeup

As described for Halt mode, in order to get the shortest wakeup time, it is recommended to
select HSI as the fy asTER Clock source. The FHWU bit is also available to save switching
time.

A fast wakeup time is very important in Active-halt mode. It supplements the effect of CPU
processing performance by helping to minimize the time the MCU stays in Run mode
between two periods in low power mode, and thus reduces the overall average power
consumption.

Since the clock is not automatically switched to the original master clock, the application
must restore the clock source before entering Halt/Active-halt mode as soon as it is ready.

Additional analog power controls

Fast Flash wakeup from Halt mode

By default the Flash is in power-down state when the microcontroller enters Halt mode. The
current leakage is negligible, resulting in very low consumption in Halt mode. However the
Flash wakeup time is relatively slow (several ps).

If you need the application to wakeup quickly from Halt mode, set the HALT bit in

Section 4.8.1: Flash control register 1 (FLASH_CR1). This ensures that the Flash is in
Standby mode when the microcontroller enters in Halt mode. Its wakeup time is reduced to a
few ns. However, in this case the consumption is increased up to several pAs.

Refer to the electrical characteristics section of the datasheet for more details.

Very low Flash consumption in Active-halt mode

By default, in Active-halt mode, the Flash remains in operating mode to ensure the fastest
wakeup time, however in this case the power consumption is not optimized.

To optimize the power consumption you can set the AHALT bit in Flash control register 1
(FLASH_CR1). This will switch the Flash to power-down state when entering Active-halt
mode. The consumption decreases but the wakeup time increases up to a few ps.

DocID14587 Rev 14 ‘Yl

RMO0016

General purpose /O ports (GPIO)

11

1.1

11.2

3

General purpose I/O ports (GPIO)

Introduction

General purpose input/output ports are used for data transfers between the chip and the
external world. An I/O port can contain up to eight pins. Each pin can be individually
programmed as a digital input or digital output. In addition, some ports may have alternate
functions like analog inputs, external interrupts, input/output for on-chip peripherals. Only
one alternate function can be mapped to a pin at a time, the alternate function mapping is
controlled by option byte. Refer to the datasheet for a description of the option bytes.

An output data register, input data register, data direction register and two configuration
registers are associated with each port. A particular port will behave as an input or output
depending on the status of the data direction register of the port.

GPIO main features

e Port bits can be configured individually

e Selectable input modes: floating input or input with pull-up

e Selectable output modes: push-pull output or pseudo-open-drain.
e Separate registers for data input and output

e External interrupts can be enabled and disabled individually

e Output slope control for reduced EMC noise

e Alternate function I/Os for on-chip peripherals

e Input Schmitt trigger can be disabled on analog inputs for reduced power consumption
e Read-modify-write possible on data output latch

e 5 V-tolerant inputs

e |/O state guaranteed in voltage range 1.6 V t0 Vppiomax

DoclD14587 Rev 14 105/467

General purpose 1/O ports (GPIO) RMO0016

Figure 24. GPIO block diagram

P-BUFFER
ALTERNATE

OUTPUT F— — s — — “

ALTERNATE [
ENABLE

|
o L
] | PULL-UP

OUTPUT

|

K=>|ODR REGISTER ﬂD_l | Vb |
- X v

K—>|DDR REGISTER ggﬁéﬁroh ‘{ |

j — N

] |

PIN

3
3 SLOPE | /‘ |
< CONTROL —
< — PROTECTION
ZK=>|cr2 REGISTER 4D_> IN-BUFFER | biobes
| L — — | — — 1
Analog input
Schmitt \§\ /&——— On/Off
INPUT rager
<:: IDR REGISTER
(Read only)
ALTERNATE FUNCTION

INPUT TO ON-CHIP
PERIPHERAL
EXTERNAL < b l—
FROM
INTERRUPT OTHER

TO INTERRUPT BITS
CONTROLLER
ai17840
Note: The output stage is disabled when the analog input is selected.
11.3 Port configuration and usage

An output data register (ODR), pin input register (IDR), data direction register (DDR) are
always associated with each port.

The control register 1 (CR1) and control register 2 (CR2) allow input/output options. An 1/O
pin is programmed using the corresponding bits in the DDR, ODR, CR1 and CR2 registers.

Bit n in the registers corresponds to pin n of the Port.

The various configurations are summarized in Table 21.

3

106/467 DoclD14587 Rev 14

RMO0016 General purpose /O ports (GPIO)
Table 21. 1/0 port configuration summary
Diodes
Mode DlRtR CinRt1 c:?tz Function Pull-up | P-buffer
to VDD to VSS
0 0 0 Floatlng without Off
interrupt
Pull-up without
Input | O 1 0 interrupt On Off
0 0 1 Floating with interrupt Off
0 1 1 Pull-up with interrupt On On
1 0 0 | Open drain output Off on
1 1 0 | Push-pull output off On
1 0 1 2232 drain output, fast off
Output
1 1 1 Push-pull, fast mode Off On
True open drain (on Not im-
1 X X open Not implemented | plemented
specific pins) ™
1. The diode connected to Vpp is not implemented in true open drain pads. A local protection between the
pad and Vg,_is implemented to protect the device against positive stress.
11.3.1 Input modes

3

Clearing the DDRXx bit selects input mode. In this mode, reading a IDR bit returns the digital
value of the corresponding I/O pin.

Refer to Section 11.7: Input mode details on page 109 for information on analog input,
external interrupts and Schmitt trigger enable/disable.

As shown in Table 21, four different input modes can be theoretically be configured by
software: floating without interrupt, floating with interrupt, pull-up without interrupt or pull-up
with interrupt. However in practice, not all ports have external interrupt capability or pull-ups.
You should refer to the datasheet pin-out description for details on the actual hardware
capability of each port.

DoclD14587 Rev 14

107/467

General purpose 1/O ports (GPIO) RMO0016

11.3.2 Output modes

Setting the DDRXx bit selects output mode. In this mode, writing to the ODR bits applies a
digital value to the 1/O through the latch. Reading IDR bit returns the digital value from the
corresponding I/O pin. Using the CR1, CR2 registers, different output modes can be
configured by software: Push-pull output, Open-drain output.

Refer to Section 11.8: Output mode details on page 110 for more information.

1.4 Reset configuration

All'I/O pins are generally input floating under reset (i.e. during the reset phase) and at reset
state (i.e. after reset release). However, a few pins may have a different behavior. Refer to
the datasheet pinout description for all details.

11.5 Unused I/O pins

Unused I/O pins must not be left floating to avoid extra current consumption. They must be
put into one of the following configurations:

e connected to Vpp or Vgg by external pull-up or pull-down resistor and kept as input
floating (reset state),

e configured as input with internal pull-up/down resistor,

e configured as output push-pull low.

The 1/0 ports not present on smaller packages are automatically configured by a factory
setting (unless otherwise specified in the datasheet). As a consequence, no configuration is
required on these /O ports. The bits corresponding to these ports in the configuration

registers Px_ODR, PxDDR, PxCR1 and PxCR2 can be written, but this will have no effect.
The value read in the corresponding bits of the PxIDR register will be '0'.

11.6 Low power modes

Table 22. Effect of low power modes on GPIO ports

Mode Description

Wait No effect on 1/0 ports. External interrupts cause the device to exit from Wait

mode.
Halt No effect on I/O ports. External interrupts cause the device to wakeup from
Halt mode.
Note: If PA1/PA2 pins are used to connect an external oscillator, to ensure a lowest power

consumption in Halt mode, PA1 and PA2 must be configured as input pull-up.

3

108/467 DoclD14587 Rev 14

RMO0016

General purpose /O ports (GPIO)

11.7

11.71

11.7.2

11.7.3

Input mode details

Alternate function input

Some I/Os can be used as alternate function input. For example as the port may be used as
the input capture input to a timer. Alternate function inputs are not selected automatically,
you select them by writing to a control bit in the registers of the corresponding peripheral.
For Alternate Function input, you should select floating or pull-up input configuration in the
DDR and CR1 registers.

Interrupt capability

Each I/O can be configured as an input with interrupt capability by setting the CR2x bit while
the 1/O is in input mode. In this configuration, a signal edge or level input on the 1/0
generates an interrupt request.

Falling or rising edge sensitivity is programmed independently for each interrupt vector in
the EXTI_CR[2:1] registers.

External interrupt capability is only available if the port is configured in input mode.

Interrupt masking

Interrupts can be enabled/disabled individually by programming the corresponding bit in the
configuration register (Px_CR2). At reset state, the interrupts are disabled.

If a pin alternate function is TLI, use the Px_CR2 bit to enable/disable the TLI interrupt. The
TLI interrupt is associated to a dedicated interrupt vector.

Analog channels

Analog I/O channels can be selected by the ADC peripheral. The corresponding input and
output stages are then automatically disabled. As mentioned in the next section, the input
Schmitt trigger should be disabled in the ADC_TDR register when using the analog
channels.

Table 23. Recommended and non-recommended configurations for analog input

DDR | CR1 CR2 | ADC_TDR Configuration Comments
0 0 0 1 Floating Ir'1put' withogt interrupt, Recgmmgnded analog input
Schmitt trigger disabled configuration
0 1 X X Input with pull-up enabled Not recommended for analog input when
1 0 N N Output analog voltage is present since these

configurations cause excess current flow

on the input pin.
X X Output Both input and output stages are
disabled on ADC selected channel.

3

DoclD14587 Rev 14 109/467

General purpose 1/O ports (GPIO) RMO0016

11.7.4

11.7.5

11.8

11.8.1

11.8.2

110/467

Schmitt trigger

On all I/0s with an analog input, it is possible to disable the Schmitt trigger, even if the
corresponding ADC channel is not enabled. The two registers ADC_TDRH and ADC_TDRL
allow to disable the Schmitt trigger.

Setting one bit in these registers leads to disabling the corresponding Schmitt trigger input
buffer.

In case an /O is used as analog input, and the corresponding ADC channel is enabled
(CH[3:0] bits in ADC_CSR register), the Schmitt trigger is disabled, whatever the status of
the corresponding bit in ADC_TDRH or ADC_TDRL registers.

Analog function

Selected I/Os can be used to deliver analog signal to ADC, Comparators or DAC periphery.
The GPIO pin have to be configured in the input floating configuration without interrupt
(default state) to use it for analog function. The current consumption of the IO with enabled
analog function can be reduced by disabling unused Schmitt trigger in 10 input section
either by ADC_TRIGRXx register in ADC interface (see Section 14.3.15: Schmitt trigger
disabling) or by switching on a corresponding analog switch in RI by setting corresponding
CHXxE bit in RI_IOSRXx (see Section 11.2.2: I/O groups). See the product datasheet for pins
with analog functions.

Output mode details

Alternate function output

Alternate function outputs provide a direct path from a peripheral to an output or to an I/O
pad, taking precedence over the port bit in the data output latch register (Px_ODR) and
forcing the Px_DDR corresponding bit to 1.

An alternate function output can be push-pull or pseudo-open drain depending on the
peripheral and Control register 1 (Px_CR1) and slope can be controlled depending on the
Control register 2 (Px_CR2) values.

Examples:

SPI output pins must be set-up as push-pull, fast slope for optimal operation.

Slope control

The maximum frequency that can be applied to an 1/O can be controlled by software using
the CR2 bit. Low frequency operation with improved EMC behavior is selected at reset.
Higher frequency (up to 10 MHz) can be selected if needed. This feature can be applied in
either open drain or push-pull output mode on I/O ports of output type O3 or O4. Refer to the
pin description tables in the datasheets for the specific output type information for each pin.

3

DoclD14587 Rev 14

RMO0016

General purpose /O ports (GPIO)

11.9 GPIO registers
The bit of each port register drives the corresponding pin of the port.
11.9.1 Port x output data register (Px_ODR)
Address offset: 0x00
Reset value: 0x00
7 6 5 4 3 2 1 0
ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODRO
w rw rw rw w w w w
Bits 7:0 ODR[7:0]: Output data register bits
Writing to the ODR register when in output mode applies a digital value to the 1/O through the latch.
Reading the ODR returns the previously latched value in the register.
In Input mode, writing in the ODR register, latches the value in the register but does not change the
pin state. The ODR register is always cleared after reset. Bit read-modify-write instructions (BSET,
BRST) can be used on the DR register to drive an individual pin without affecting the others.
11.9.2 Port x pin input register (Px_IDR)
Address offset: 0x01
Reset value: OxXX
7 6 5 4 3 2 1 0
IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDRO
r r r r r r r r
Bits 7:0 IDR[7:0]: Pin input values
The pin register can be used to read the pin value irrespective of whether port is in input or output
mode. This register is read-only.
0: Low logic level
1: High logic level
Note: Px_IDR reset value depends on the external circuitry.

3

DoclD14587 Rev 14 111/467

General purpose 1/O ports (GPIO) RMO0016

11.9.3 Port x data direction register (Px_DDR)

Address offset: 0x02
Reset value: 0x00

7 6 5 4 3 2 1 0
DDR7 DDR6 DDR5 DDR4 DDR3 DDR2 DDR1 DDRO
w rw rw rw w w w w

Bits 7:0 DDR[7:0]: Data direction bits

These bits are set and cleared by software to select input or output mode for a particular pin of a
port.

0: Input mode
1: Output mode

11.9.4 Port x control register 1 (Px_CR1)

Address offset: 0x03
Reset value: 0x00 except for PD_CR1 which reset value is 0x02.

7 6 5 4 3 2 1 0
c17 C16 C15 C14 C13 C12 Cc11 C10
w w w w w w w w

Bits 7:0 C1[7:0]: Control bits

These bits are set and cleared by software. They select different functions in input mode and output
mode (see Table 21).

— In input mode (DDR = 0):
O: Floating input
1: Input with pull-up
— In output mode (DDR = 1):
0: Pseudo open drain
1: Push-pull, slope control for the output depends on the corresponding CR2 bit

Note: This bit has no effect on true open drain ports (refer to pin marked “T” in datasheet pin
description table).

3

112/467 DoclD14587 Rev 14

RMO0016

General purpose /O ports (GPIO)

11.9.5 Port x control register 2 (Px_CR2)
Address offset: 0x04
Reset value: 0x00
7 6 5 4 3 2 1 0
c27 C26 c25 c24 c23 c22 c21 C20
w rw rw rw w w w w
Bits 7:0 C2[7:0]: Control bits
These bits are set and cleared by software. They select different functions in input mode and output
mode. In input mode, the CR2 bit enables the interrupt capability if available. If the 1/0 does not have
interrupt capability, setting the CR2 bit has no effect. In output mode, setting the bit increases the
speed of the I/O. This applies to ports with O3 and O4 output types (see pin description table).
— In input mode (DDR = 0):
0: External interrupt disabled
1: External interrupt enabled
— In output mode (DDR = 1):
0: Output speed up to 2 MHz
1: Output speed up to 10 MHz
11.9.6 GPIO register map and reset values
Each GPIO port has five registers mapped as shown in Table 24. Refer to the register map
in the corresponding datasheet for the base address for each port.
Note: At reset state, all ports are input floating. Exceptions are indicated in the pin description
table of the corresponding datasheet.
Table 24. GPIO register map
Address Register 7 6 5 4 3 2 1 0
offset name
0x00 Px_ODR ODR? ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODRO
Reset value 0 0 0 0 0 0 0 0
0x01 Px_IDR IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDRO
Reset value X X X X X X X X
Ox02 Px_DDR DDR7 DDR6 DDR5 DDR4 DDR3 DDR2 DDR1 DDRO
Reset value 0 0 0 0 0 0 0 0
0x03 Px_CR1M | c17 C16 C15 C14 C13 C12 c1 C10
Reset value 0 0 0 0 0 0 0 0
O0x04 Px_CR2 c27 C26 C25 C24 Cc23 C22 C21 C20
Reset value 0 0 0 0 0 0 0 0

1. PD_CR reset value is 0x02.

3

DoclD14587 Rev 14 113/467

Auto-wakeup (AWU) RMO0016

12

12.1

12.2

114/467

Auto-wakeup (AWU)

AWU introduction

The AWU is used to provide an internal wakeup time base that is used when the MCU goes
into Active-halt power saving mode. This time base is clocked by the low speed internal
(LSI) RC oscillator clock or the HSE crystal oscillator clock divided by a prescaler.

LSI clock measurement

To ensure the best possible accuracy when using the LSI clock, its frequency can be
measured with TIM3 or TIM1 timer input capture 1 (see datasheet for information on which
timer is connected in the specific product).

Figure 25. AWU block diagram

PRSC [1:0] CKAWUSEL
OPTION bits OPTION bit

HSE clock
(1-24 MHz)

MSR
~ 128 kHz LS clock) To timer input capture _

>
(for measurement)

Prescaler

LSIRC
128 kHz

LS

APR[5:0]
fLs

6-BIT PROG
COUNTER

v AWUTB [3:0]

AWU COUNTERS +D7 AWU interrupt
15 time bases

AWUEN & HALT/WAIT

MSv45269V1

1. The LS clock source is selected by programming the CKAWUSEL option bit as explained in the clock
controller chapter.

3

DoclD14587 Rev 14

RM0016

Auto-wakeup (AWU)

12.3

12.3.1

Note:

3

AWU functional description

AWU operation

To use the AWU, perform the following steps in order:

1. Measure the LS clock frequency using the MSR bit in AWU_CSR register and TIM3 or
TIM1 input capture 1.

2. Define the appropriate prescaler value by writing to the APR [5:0] bits in the
Asynchronous prescaler register (AWU_APR).

3. Select the desired auto-wakeup delay by writing to the AWUTB[3:0] bits in the
Timebase selection register (AWU_TBR).

4. Setthe AWUEN bit in the Control/status register (AWU_CSR).
5. Execute the HALT instruction. AWU counters are reloaded and start to count a new
AWU time interval.

The counters only start when the MCU enters Active-halt mode after a HALT instruction
(refer to the Active-halt mode section in the power management chapter). The AWU
interrupt is then enabled at the same time.

The prescaler counter starts to count only if APR[5:0] value is different from its reset value,
Ox3F.

Idle mode

If the AWU is not in use, then the AWUTBJ[3:0] bits the Timebase selection register
(AWU_TBR) should be loaded with 0b0000 to reduce power consumption.

DoclD14587 Rev 14 115/467

Auto-wakeup (AWU)

RM0016

12.3.2 Time base selection
Please refer to the Asynchronous prescaler register (AWU_APR) and Timebase selection
register (AWU_TBR) descriptions.
The AWU time intervals depend on the values of:
e AWUTB[3:0] bits. This gives the counter output rank.
e APR[5:0] bits. This gives the prescaler division factor (APRpy).
15 non-overlapped ranges of time intervals can be defined as follows:

Table 25. Time base calculation table
Interval range APRp,y formula for APR
AWUTBI[3:0] time interval DIv
fig=f fLs = 128kHz calculation range
2/f - 64/f 0.015625 ms - 0.5 ms 0001 APRp/fiLs 2 to 64
2x32/f - 2x2x32/f 05ms-1.0ms 0010 2 x APRpp/fLs 32 to 64
2x64/f - 2x2x64/f 1ms-2ms 0011 22 x APRp/fLs 32 to 64
22x64/f - 2°x128/f 2ms-4ms 0100 23 x APRp\/fiLs 32to 64
23x64/f - 23x128/f 4ms-8ms 0101 2% x APRp\/fiLs 32to 64
2%x64/f - 24x128/f 8ms-16 ms 0110 2% x APRp//fis 32to 64
25x641/f - 2°x128/f 16 ms - 32 ms 0111 2% x APRp\/fL s 32 to 64
25x64/f - 25x128/f 32 ms - 64 ms 1000 27 x APRp\/fi g 32 to 64
27x64/f - 27x128/f 64 ms - 128 ms 1001 28 x APRp\//fLs 32 to 64
28x64/f - 28x128/f 128 ms - 256 ms 1010 29 x APRp\/fiLs 32to 64
29x64/f - 29x128/f 256 ms - 512 ms 1011 210 x APRp/fLs 32to 64
2"0x64/f - 219x128/f |512ms-1.024 s 1100 2" x APRp/fLs 32to 64
2"x64/f - 211x128/f 1.024 5 -2.048 s 1101 2"2 x APRp/fLs 32 to 64
2"x130/f - 2"1x320/f |2.0805-5.120 s 1110 5x 2" xAPRp/ffLs | 26to 64
2"1x330/f - 212x960/f [5.280s - 30.720 s 1111 30 x 2" x APRp/fLs | 11to 64
In order to obtain the right values for AWUTBJ[3:0] and APRp,y, you have to:
e First, search the interval range corresponding to the desired time interval. This gives
the AWUTBJ3:0] value.
e Then APRp)y can be chosen to obtain a time interval value as close as possible to the
desired one. This can be done using the formulas listed in the table above.

Note: If the target value is between 2"7x128/f, g and 2'"x130/f; 5 or between 27'x320/f, s and
211x330/fL s the value closer to the target one must be chosen.

116/467 DoclD14587 Rev 14 m

RM0016

Auto-wakeup (AWU)

12.3.3

3

Example 1
e flg=128kHz
e Target time interval = 6 ms

The appropriate interval range is: 4 ms - 8 ms
so the AWUTB[3:0] value is 0x5.

The APRp,y value is:

6 ms = 2% x APRpy / fs => APRpyy = (6*10°3 x fi g) / 2* = 48
so the APR[5:0] value is 48 (0x30)

Example 2

e fig=128kHz

e Targettime interval =3 s

The appropriate interval range is: 2.080 s - 5.120 s
So the AWUTBJ3:0] value is OxE.

The APRp,y value is:

3s=5x2"" xAPRpy / fis => APRpy = (3xflg)/5x2" =375

So the AWUTBJ3:0] can be either 37 or 38 which gives a time base of 2.96s or 3.04s
respectively. This is not exactly 3s.

LSI clock frequency measurement

The frequency dispersion of the low speed internal RC (LSI) oscillator after RC factory
trimming is 128 kHz +/- 12.5% on the whole temperature range. To obtain a precise AWU
time interval or beeper output, the exact LSI frequency has to be measured.

Use the following procedure:

1. Setthe MSR bit in the Control/status register (AWU_CSR) to connect the LSI clock
internally to a timer input capture.

2. Measure the frequency of the LSI clock using the Timer input capture interrupt.

3. Write the appropriate value in the APR [5:0] bits in the Asynchronous prescaler register
(AWU_APR) to adjust the AWU time interval to the desired length. The AWUTB[3:0]
bits can be modified to select different time intervals.

LSI clock frequency measurement can also be used to calibrate the beeper frequency (see
Section 13.2.2).

DoclD14587 Rev 14 117/467

Auto-wakeup (AWU) RMO0016

12.4 AWU registers
12.4.1 Control/status register (AWU_CSR)
Address offset: 0x00
Reset value: 0x00
7 6 5 4 3 2 1 0
Reserved AWUF AWUEN Reserved MSR
r rc_r rw r w
Bits 7:6 Reserved
Bit 5 AWUF: Auto-wakeup flag
This bit is set by hardware when the AWU module generates an interrupt and cleared by reading the
AWU_CSR register. Writing to this bit does not change its value.
0: No AWU interrupt occurred
1: AWU interrupt occurred
Bit4 AWUEN: Auto-wakeup enable
This bit is set and cleared by software. It enables the auto-wakeup feature. If the microcontroller enters
Active-halt or Wait mode, the AWU feature wakes up the microcontroller after a programmable time
delay.
0: AWU (Auto-wakeup) disabled
1: AWU (Auto-wakeup) enabled
Bits 3:1 Reserved
Bit 0 MSR: Measurement enable
This bit connects the f| g clock to a timer input capture. This allows the timer to be used to measure the
LS frequency (f_s).
0: Measurement disabled
1: Measurement enabled
Note: Refer to the datasheet for information on which timer input capture can be connected to the LS|
clock in the specific product).
118/467 DoclD14587 Rev 14 Kys

RMO0016 Auto-wakeup (AWU)

12.4.2 Asynchronous prescaler register (AWU_APR)
Address offset: 0x01

Reset value: 0x3F

7 6 5 4 3 2 1 0
Reserved APR[5:0]

r rw

Bits 7:6 Reserved

Bits 5:0 APR[5:0]: Asynchronous prescaler divider

These bits are written by software to select the prescaler divider (APRp,y) feeding the counter clock.
0x00: APRDlV = 2 OxOE: APRD|V =16
0x01: APRDlV = 3 OxOF: APRD|V =17

0x06: APRDlV = 8 Ox3E: APRDlV =64
Note: This register must not be kept at its reset value (0x3F)

12.4.3 Timebase selection register (AWU_TBR)
Address offset: 0x02

Reset value: 0x00

Reserved AWUTBJ[3:0]

r w

Bits 7:4 Reserved

Bits 3:0 AWUTB[3:0]: Auto-wakeup timebase selection
These bits are written by software to define the time interval between AWU interrupts. AWU
interrupts are enabled when AWUEN = 1.
0000: No interrupt

0001: APRp/fL s 0010: 2xAPRp /s 0011: 22APRp\/fL s
0100: 22APRp/fLs 0101: 2*APRp/fLs 0110: 25APRp\/fiLs
0111: 28APRp/fLs 1000: 2’ APRp/fLs 1001: 28APRp/fLs
1010: 2°APRp/fLs 1011: 2"9APRp /L s 1100: 2" APRp/fiLs
1101: 2'2APRp/fLs 1110: 5x2"'APRp/fL s 1111: 30x2"'APRp/fLs

3

DoclD14587 Rev 14 119/467

Auto-wakeup (AWU)

RM0016

12.4.4 AWU register map and reset values

Table 26. AWU register map

Address Register
9 7 6 5 4 3 2 1 0
offset name
. AWU_CSR - - AWUF AWUEN - - - MSR
Reset value 0 0 0 0 0 0 0 0
Ox01 AWU_APR - - APR5 APR4 APR3 APR2 APR1 APRO
Reset value 0 0 1 1 1 1 1 1
0x02 AWU_TBR - - - - AWUTB3 AWUTB2 AWUTB1 AWUTBO
Reset value 0 0 0 0 0 0 0 0

120/467 DoclD14587 Rev 14

3

RM0016

Beeper (BEEP)

13

13.1

13.2

13.2.1

Note:

3

Beeper (BEEP)

Beeper introduction

This function generates a beep signal in the range of 1, 2 or 4 kHz when the LS clock is

operating at a frequency of 128 kHz.

Figure 26. Beep block diagram

HSE clock (4 — 24 MHz)

PRSC [1:0] CKAWUSEL
OPTION bits OPTION bit

MSR
~ 128 kHz LS clock) To timer input capture -

>
(for measurement)

Prescaler

LSIRC
128 kHz

LS
BEEPDIV[4:0] bits BEEPSEL[1:0] bits

. | 5-BIT BEEPER PROG 1kHz, 2 kHz, 4 kHz
> COUNTER —— 3-BIT COUNTER >
BEEP pin

BEEPEN

MSv45270V1

Beeper functional description

Beeper operation

To use the beep function, perform the following steps in order:

1. Calibrate the LS clock frequency as described in Section 13.2.2: Beeper calibration to

define BEEPDIV[4:0] value.

2. Select 1 kHz, 2 kHz or 4 kHz output frequency by writing to the BEEPSEL[1:0] bits in

the Beeper control/status register (BEEP_CSR).

3. Setthe BEEPEN bit in the Beeper control/status register (BEEP_CSR) to enable the

LS clock source.

The prescaler counter starts to count only if BEEPDIV[4:0] value is different from its reset

value, Ox1F.

DoclD14587 Rev 14

121/467

Beeper (BEEP) RMO0016

13.2.2 Beeper calibration

This procedure can be used to calibrate the LS 128 kHz clock in order to reach the standard
frequency output, 1 kHz, 2 kHz or 4 kHz.
Use the following procedure:

1. Measure the LSI clock frequency (refer to Section 12.3.3: LSl clock frequency
measurement above).

2. Calculate the BEEPp,y, value as follows, where A and x are the integer and fractional
part of f g/8 (in kHz):
BEEPpy = A-2 when x is less than or equal to A/(1+2*A), else
BEEPDN =A-1

3. Write the resulting BEEPp)y, value in the BEEPDIV[4:0] bits in the Beeper control/status
register (BEEP_CSR).

13.3 Beeper registers

13.3.1 Beeper control/status register (BEEP_CSR)

Address offset: 0x00
Reset value: Ox1F

7 6 5 4 3 2 1 0
BEEPSEL[1:0] BEEPEN BEEPDIV[4:0]
w rw w

Bits 7:6 BEEPSEL[1:0]: Beep selection
These bits are set and cleared by software to select 1, 2 or 4 kHz beep output when calibration is
done.
00: f g/(8 x BEEPp,y) kHz output
01: f_s/(4 x BEEPp,y) kHz output
1x: f s/(2 x BEEPpy) kHz output

Bit 5 BEEPEN: Beep enable
This bit is set and cleared by software to enable the beep feature.
0: Beep disabled
1: Beep enabled

Bits 4:0 BEEPDIV[4:0]: Beep prescaler divider
These bits are set and cleared by software to define the Beeper prescaler dividing factor BEEPR)y,.
0x00: BEEPpy =2
0x01: BEEPD|V =3

OxOE: BEEPp, = 16
OxOF: BEEPp,y, =17
Ox1E: BEEPp)y = 32
Note: This register must not be kept at its reset value (0x1F)

3

122/467 DoclD14587 Rev 14

Beeper (BEEP)

RMO0016
13.3.2 Beeper register map and reset values
Table 27. Beeper register map
Address Register 7 6 5 4 3 2 1 0
offset name
0x00 BEEP_CSR BEEPSEL[2:0] BEEPEN BEEPDIV[4:0]
Reset value 00 0 11111
123/467

3

DoclD14587 Rev 14

Independent watchdog (IWDG) RMO0016

14

14.1

14.2

124/467

Independent watchdog (IWDG)

IWDG introduction

The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures. It is clocked by the 128 kHz LSl internal RC clock source, and
thus stays active even if the main clock fails.

IWDG functional description

Figure 27 shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCC in the key register
(IWDG_KR), the counter starts counting down from the reset value of OxFF. When it reaches
the end of count value (0x00) a reset signal is generated (IWDG RESET).

Once enabled, the independent watchdog can be configured through the IWDG_PR, and
IWDG_RLR registers. The IWDG_PR register is used to select the prescaler divider feeding
the counter clock. Whenever the KEY_REFRESH value (0xAA) is written in the IWDG_KR
register, the IWDG is refreshed by reloading the IWDG_RLR value into the counter and the
watchdog reset is prevented.

The IWDG_PR and IWDG_RLR registers are write protected. To modify them, first write the
KEY_ACCESS code (0x55) in the IWDG_KR register. The sequence can be aborted by
writing OxAA in the IWDG_KR register to refresh it.

Refer to Section 14.3: IWDG registers for details on the IWDG registers.

Figure 27. Independent watchdog (IWDG) block diagram

128 kHz LS clock

IWDG_RLR IWDG_KR
reload register key register

cow T L

WDG reset
7-bit "| 8-bit-down-counter
prescaler

IWDG_PR register

MSv45271V1

Hardware watchdog feature

If the hardware watchdog feature has been enabled through the IWDG_HW option byte, the
watchdog is automatically enabled at power-on, and generates a reset unless the key
register is written by the software before the counter reaches end of count. Refer to the
option byte description in the datasheet.

3

DoclD14587 Rev 14

RM0016

Independent watchdog (IWDG)

3

Timeout period

The timeout period can be configured through the IWDG_PR and IWDG_RLR registers. It
is determined by the following equation:

where:
T = Timeout period

Tis = g
p = o (PRI2:0] + 2)

R = RLR[7:0]+1

The IWDG counter must be refreshed by software before this timeout period expires.
Otherwise, an IWDG reset will be generated after the following delay has elapsed since the
last refresh operation:

D=T+6XTLS|

where D= delay between the last refresh operation and the IWDG reset.

Table 28. Watchdog timeout period (LSI clock frequency = 128 kHz)

Timeout
Prescaler divider PR[2:0] bits
RL[7:0]= 0x00 RL[7:0]= OxFF

14 0 62.5 ps 15.90 ms

/8 1 125 ps 31.90 ms
/16 2 250 ps 63.70 ms
/32 3 500 pus 127 ms
/64 4 1.00 ms 255 ms
1128 5 2.00 ms 510 ms
1256 6 4.00 ms 1.02s

DoclD14587 Rev 14 125/467

Independent watchdog (IWDG) RMO0016

14.3

14.3.1

IWDG registers

Key register (IWDG_KR)
Address offset: 0x00

Reset value: 0xXX

KEY[7:0]

w

Bits 7:0

14.3.2

KEY[7:0]: Key value

The KEY_REFRESH value must be written by software at regular intervals, otherwise the watchdog
generates an MCU reset when the counter reaches 0.

If the IWDG is not enabled by option byte (see datasheet for option byte description), the
KEY_ENABLE value is the first value to be written in this register.

KEY_ENABLE value = 0xCC

Writing the KEY_ENABLE value starts the IWDG.

KEY_REFRESH value = 0xAA

Writing the KEY_REFRESH value refreshes the IWDG.

KEY_ACCESS value = 0x55

Writing the KEY_ACCESS value enables the access to the protected IWDG_PR and IWDG_RLR
registers (see Section 14.2).

Prescaler register (IWDG_PR)
Address offset: 0x01

Reset value: 0x00

6 5 4 3 2 1 0

Reserved PR[2:0]

r w

Bits 7:3
Bits 2:0

126/467

Reserved

PR[2:0]: Prescaler divider
These bits are write access protected (see Section 14.2). They can be written by software to select the
prescaler divider feeding the counter clock.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: Reserved

3

DoclD14587 Rev 14

RMO0016 Independent watchdog (IWDG)
14.3.3 Reload register (IWDG_RLR)
Address offset: 0x02
Reset value: OxFF
7 6 5 4 3 2 1 0
RL[7:0]
rw
Bits 7:0 RL[7:0]: Watchdog counter reload value
These bits are write access protected (see Section 14.2). They are written by software to define the
value to be loaded in the watchdog counter each time the value 0xAA is written in the IWDG_KR
register. The watchdog counter counts down from this value. The timeout period is a function of this
value and the clock prescaler. Refer to Table 28.
14.3.4 IWDG register map and reset values
Table 29. IWDG register map
Address Register 7 6 5 4 3 2 1 0
offset name
IWDG_KR KEY[7:0]
0x00
Reset value XXXXXXXX
IWDG_PR - - - - - PR2[2:0]
0x01
Reset value 0 0 0 0 0 000
IWDG_RLR RL7[7:0]
0x02
Reset value 11111111
1S7 DocID14587 Rev 14 127/467

Window watchdog (WWDG) RMO0016

15 Window watchdog (WWDG)

15.1 WWDG introduction

The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

15.2 WWDG main features

e Programmable free-running downcounter
e Conditional reset

— Reset (if watchdog activated) when the downcounter value becomes less than
0x40

— Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 30)

e Hardware/software watchdog activation (selectable by option byte)
e Optional reset on HALT instruction (configurable by option byte)

15.3 WWDG functional description

If the watchdog is activated (the WDGA bit is set) and when the 7-bit downcounter (T[6:0]
bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset cycle pulling low
the reset pin. If the software refreshes the counter while the counter is greater than the
value stored in the window register, then a reset is generated.

3

128/467 DoclD14587 Rev 14

RMO0016

Window watchdog (WWDG)

Note:

3

Figure 28. Watchdog block diagram

RESET

WATCHDOG WINDOW REGISTER (WWDG_WR)

| - |W6|W5|W4|W3|W2|W1|WO|

Comparator = 1 when | | | | | | |
T6:0 > W6:0

CMP|

Write WWDG_CR

WATCHDOG CONTROL REGISTER (WWDG_CR)
|WDGA|T6|T5|T4|T3|T2|T1|T0|

7-BIT DOWNCOUNTER (CNT) |

fepu T

(from clock)) WDG PRESCALER

DIV12288

MSv45272V1

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WWDG_CR
register must be between 0xFF and 0xCO (see Figure 29):

Enabling the watchdog:

When software watchdog is selected (by option byte), the watchdog is disabled after a
reset. It is enabled by setting the WDGA bit in the WWDG_CR register, then it cannot
be disabled again except by a reset.

When hardware watchdog is selected (by option byte), the watchdog is always active
and the WDGA bit is not used.

Controlling the downcounter:

This downcounter is free-running: It counts down even if the watchdog is disabled.
When the watchdog is enabled, the T6 bit must be set to prevent generating an
immediate reset.

The T[5:0] bits contain the number of increments which represents the time delay
before the watchdog produces a reset (see Figure 29: Approximate timeout duration).
The timing varies between a minimum and a maximum value due to the unknown
status of the prescaler when writing to the WWDG_CR register (see Figure 30).

The window register (WWDG_WR) contains the high limit of the window: To prevent a
reset, the downcounter must be reloaded when its value is lower than the window
register value and greater than Ox3F. Figure 30 describes the window watchdog
process.

The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

Watchdog reset on halt option
If the watchdog is activated and the watchdog reset on halt option is selected, then the
HALT instruction will generate a reset.

DoclD14587 Rev 14 129/467

Window watchdog (WWDG)

RM0016

15.4 How to program the watchdog timeout

The formula below can be used to calculate the WWDG timeout, tyywpg, expressed in ms:

twwoe = Topu X 12288 x (T[5:01+ 1)

where TCPU is the peripheral clock period expressed in ms

Warning: When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.
Figure 29. Approximate timeout duration
7F
I I I I I I I
w4 = — = —]
I I I I I I I
0 =t =t ===t = =+ —
- I I I I I I I
E_ B FeT T T T o AT T T T
o I I I | I I I
s B
b s b—4+——f—-—2J3 -4 — 1
© I I I I I I I
0 -t ==+ ===+ —
I I I I I I I
A e e I) I I
40 I I I I I I I
0.768 6.144 12.288 18.432 24.576 30.72 36.864 43.008 49.152
Watchdog timeout (ms) @ 16 MHz fcru MSv45273VA

130/467

DoclD14587 Rev 14

3

RMO0016 Window watchdog (WWDG)
Figure 30. Window watchdog timing diagram
T[5:0] CNT downcounter
A
WDGWR
Ox7F
| | |
‘4 _HI — p time >
Refresh not allowed Refresh \Nind?W (step = 12288 wwdg ok
T8 bit
|
Reset []
|
Table 30. Window watchdog timing example
fcpu (MHz)
T[6:0]
2 16
40h 6.144 0.768
7Fh 393.216 49.152
15.5 WWDG low power modes
Table 31. Effect of low power modes on WWDG
Mode Description
Wait No effect on watchdog: The downcounter continues to decrement.
WWDG_HALT in option byte
No watchdog reset is generated. The MCU enters Halt mode. The watchdog counter is
decremented once and then stops counting and is no longer able to generate a watchdog reset
until the MCU receives an external interrupt or a reset.

Halt If an interrupt is received (refer to interrupt table mapping to see interrupts which can occur in
Halt mode), the watchdog restarts counting after the stabilization delay. If a reset is generated,
the watchdog is disabled (reset state) unless hardware watchdog is selected by option byte. For
application recommendations see Section 15.8 below.

A reset is generated instead of entering Halt mode.
No reset is generated. The MCU enters Active-halt mode. The watchdog counter is not
Active- decremented. It stops counting. When the MCU receives an oscillator interrupt or external

halt interrupt, the watchdog restarts counting immediately. When the MCU receives a reset the

watchdog restarts counting after the stabilization delay.

3

DoclD14587 Rev 14 131/467

Window watchdog (WWDG) RMO0016

15.6 Hardware watchdog option
If hardware watchdog is selected by option byte, the watchdog is always active and the
WDGA bit in the WWDG_CR register is not used. Refer to the option byte description in the
datasheet.
15.7 Using Halt mode with the WWDG (WWDGHALT option)
The following recommendation applies if Halt mode is used when the watchdog is enabled.
Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected
WWDG reset immediately after waking up the microcontroller.
15.8 WWDG interrupts
None.
15.9 WWDG registers
15.9.1 Control register WWDG_CR)
Address offset: 0x00
Reset value: Ox7F
7 6 5 4 3 2 1 0
WDGA 6 T5 T4 T3 T2 N TO
rs w w rw rw rw rw rw
Bit 7 WDGA: Activation bit(")
This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog
can generate a reset.
0: Watchdog disabled
1: Watchdog enabled
Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter. It is decremented every 12288 f-p(; cycles
(approximately). A reset is produced when it rolls over from 0x40 to Ox3F (T6 becomes cleared).

1. This bit is not used if the hardware watchdog option is enabled by option byte.

132/467

3

DoclD14587 Rev 14

RMO0016 Window watchdog (WWDG)

15.9.2 Window register (WWDG_WR)

Address offset: 0x01
Reset value: Ox7F

7 6 5 4 3 2 1 0
W6 W5 w4 W3 W2 W1 Wo
Reserved
rw rw rw w w w w

Bit 7 Reserved

Bits 6:0 WTI[6:0]: 7-bit window value
These bits contain the window value to be compared to the downcounter.

15.10 Window watchdog register map and reset values

Table 32. WWDG register map and reset values

Address Register
g 7 6 5 4 3 2 1 0
offset name
0x00 WWDG_CR WDGA T6 T5 T4 T3 T2 T1 TO
X
Reset value 0 1 1 1 1 1 1 1
0401 WWDG_WR - W6 w5 w4 w3 w2 W1 W0
X
Reset value 0 1 1 1 1 1 1 1

3

DoclD14587 Rev 14 133/467

Timer overview RMO0016

16

Timer overview

The devices in the STM8S and STM8AF family may be equipped with up to three different
timer types: Advanced control (TIM1), general purpose (TIM2/TIM3/TIM5), and basic timers
(TIM4/TIMB). The timers share the same architecture, but some have additional unique
features. The common timer architecture, which includes identical register mapping and
common basic features, simplifies their use and makes it easier to design applications.
Table 33 shows the main timer characteristics.

In STM8S and STMB8AF devices with TIM1, TIM5 and TIM6, the timers do not share any
resources but they can be linked together and synchronized as described in
Synchronization between TIM1, TIM5 and TIM6 timers on page 159. In STM8S and
STMBS8AF devices with TIM1, TIM2, TIM3 and TIM4, the timers are not linked together.

This section gives a comparison of the different timer features (Table 34), a glossary of
internal timer signal names (Table 35).

Section 17: 16-bit advanced control timer (TIM1) contains a full description of all the various
timer modes. The other timer sections (Section 18 and Section 19) are more brief and give
only specific details on each timer, its block diagram, and register description.

Table 33. Timer characteristics

Symbol Parameter Min Typ Max Unit
twacAP)in Input capture pulse time 2 tMASTER
tres(TIM) Timer resolution time 1 tMASTER
Timer resolution with 16-bit counter 16 bit
Restim
Timer resolution with 8-bit counter 8 bit
Counter clock period when internal clock is
{COUNTER selected 1 tMASTER
. Maximum possible count with 16-bit counter 65,536 tMASTER
MAX_COUNT
- Maximum possible count with 8-bit counter 256 tMASTER
134/467 DoclD14587 Rev 14 Kys

RMO0016 Timer overview

16.1 Timer feature comparison
Table 34. Timer feature comparison
Counter Capture/ Comple-| Repet- | External | External Timer
. Counter | Prescaler | compare I R synchro-
Timer resol- mentary | ition trigger break ..
. type factor chan- . . nization/
ution outputs | counter input input ..
nels chaining
@ dT/lellvr:le d Any integer With
control Up/down | from 1 to 4 3 Yes 1 1 TIM5/
. 65536 TIM6
timer)
TIM2
(general 16-bit 3
purpose
timer) Any power of
2 from 1 to
TIM3 32768
(general Up 2 None No 0 0 No
purpose
timer)
TIM4 Any power of
(basic 8-bit 2 from 1 to 0
timer) 128
TIMS Any power of !
(general | 4 pt 2 from 1 to 3 (shared
purpose with
. 32768
timer) Up None No TIM1) 0 Yes
TIM6 Any power of
(basic 8-bit 2 from 1 to 0 0
timer) 128
‘Yl DoclD14587 Rev 14 135/467

Timer overview

RM0016

16.2

136/467

Glossary of timer signal names

Table 35. Glossary of internal timer signals

Internal signal name

Description

Related figures

Bl

Break interrupt

Figure 31: TIM1 general block diagram on

CCil: CC1l, CC2l, CC3l, ccal | Saplure/compare page 140
interrupt
CK_CNT Counter clock Figure 35: Counter update when ARPE =
CK_PSC Prescaler clock 0 (ARR not preloaded) with prescaler = 2
CNT_EN Counter enable on page 144
CNT_INIT Counter initialize Figure 45: TI2 external clock connection
example on page 152
External trigger from
ETR TIMx_ETR pin
ETRF External trigger filtered F{gure 47: External trigger input block
diagram on page 154
ETRP External trigger
prescaled
Timer peripheral clock . .) .
Figure 20: Clock tree and Figure 12:
fMASTER from clock controller
Clock structure on page 61
(CLK)
ICi:IC1,1C2 Input capture

ICiPS: IC1PS, IC2PS

Input capture prescaled

Figure 64: Input stage of TIM 1 channel 1
on page 168

MATCH1

Compare match

Figure 54: Trigger/master mode selection
blocks on page 161 and Section 17.7.2:
Control register 2 (TIM1_CR2) on

page 190

OCi: OC1, OC2

Timer output channel

OCIREF: OC1REF, OC2REF

Output compare
reference signal

Figure 68: Detailed output stage of
channel with complementary output
(channel 1) on page 172

Figure 43: Clock/trigger controller block

TGI Trigger interrupt diagram on page 151
Tli: T, TI2 Timer input

TIiF: TIF, TI2F Timer input filtered

TH_ED Timer input edge

detector

TIFPn: TIFP1, THFP2,
TI2FP1, TI2FP2, TI3FP3,
TI3FP4, TI4FP3, TI4FP4

Timer input filtered
prescaled

TRC

Trigger capture

Figure 64: Input stage of TIM 1 channel 1
on page 168

TRGI

Trigger input to
clock/trigger/slave
mode controller

Figure 44: Control circuit in normal mode,
fek_psc = fuaster on page 152

DoclD14587 Rev 14

S74

RM0016

Timer overview

3

Table 35. Glossary of internal timer signals (continued)

Internal signal name Description Related figures
UEV Update event Figure 35: Counter update when ARPE =
0 (ARR not preloaded) with prescaler = 2
UIF Update interrupt on page 144

Table 36. Explanation of indices‘/’, ‘n’, and (1)

Signal number: May be 1, 2, 3, 4 depending on the device

i Bit number: May be 1,2, 3,4 depending on the device

Register number: May be 1, 2, 3, 4 depending on the device

n Signal number (when i is already used): May be 1, 2, 3, 4 depending on the device

Timer number: May be 1, 2, 3, 4, 5, 6 depending on the device

Don’t care (for bits)

1. These indices are used in Section 17, Section 18, and Section 19.

DoclD14587 Rev 14 137/467

16-bit advanced control timer (TIM1) RMO0016

17

17.1

138/467

16-bit advanced control timer (TIM1)

This section gives a description of the full set of timer features.

TIM1 introduction

TIM1 consists of a 16-bit up-down auto-reload counter driven by a programmable prescaler.

The timer may be used for a variety of purposes, including:

Time base generation

Measuring the pulse lengths of input signals (input capture)

Generating output waveforms (output compare, PWM and one-pulse mode)
Interrupt capability on various events (capture, compare, overflow, break, trigger)

Synchronization with TIM5/TIM6 timers or external signals (external clock, reset,
trigger and enable).

This timer is ideally suited for a wide range of control applications, including those requiring
center-aligned PWM capability with complementary outputs and deadtime insertion.

The timer clock can be sourced from internal clocks or from an external source selectable
through a configuration register.

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

17.2

3

TIM1 main features

TIM1 features include:

16-bit up, down, up/down counter auto-reload counter

Repetition counter to update the timer registers only after a given number of cycles of
the counter.

16-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any factor between 1 and 65536.

Synchronization circuit to control the timer with external signals and to interconnect
several timers (timer interconnection not implemented in some devices).

4 independent channels that can alternately be configured as:

— Input capture

— Output compare

— PWM generation (edge and center-aligned mode)

— 6-step PWM generation

— One-pulse mode output

— Complementary outputs on three channels with programmable deadtime insertion.
Break input to put the timer output signals in reset state or in a known state.

External trigger input pin (ETR)

Interrupt generation on the following events:

— Update: Counter overflow/underflow, counter initialization (by software or
internal/external trigger)

— Trigger event (counter start, stop, initialization or count by internal/external trigger)
— Input capture

— Output compare

— Break input

DoclD14587 Rev 14 139/467

16-bit advanced control timer (TIM1)

RM0016

Figure 31. TIM1 general block diagram

fmasTERDV »
TRGO to TIMSITIMS or to ADC
ETR —p
TiM1_ETR [CLOCK/TRIGGER CONTROLLER
TRGO from other TIM tlmersL.-
TRC
Clockireset/enable
TIME BASE UNIT
Repetition
counter
o | Prescaler m UP-DOWN COUNTER H Auto-reload register '
h 4
CAPTURE COMPARE ARRAY
e
TIM1_CH1 T Ic1 I VeV
I e | Hlﬂlﬁ" Captura/Compare 1 Registar 'ﬂ; I
cca TIM1_CH1N
2 2 Ic2 ic2ps VBV
TIMLCH"[]—TI"’- ———— | Erescaker Capture/Compare 2 Ragistar .ﬂi OUTPUT TIM1_CHZ
INPUT STAGE TIM1_CHZN
STAGE cc3l
TIM1_CH3 i, IC3 Ic3ps VBV OC3RE
C— e A B e e TIM1_CH3
cca TIMT_CH3N
TIM1_CH4 T4 IC4 ;:.;;5 DS oc4RE
[‘]—’ %lﬂ,—ﬂ Capture/Campare 4 Register I—i TIM1_CH4

TIM1_BKIN }——————

Legend:

e

Preload registers transfemed
to shadow registers on update
event (UEV) according to

contrel bit
event

intermupt

140/467

DoclD14587 Rev 14

3

RMO0016 16-bit advanced control timer (TIM1)
17.3 TIM1 time base unit

The timer has a time base unit that includes:

e 16-bit up/down counter

e 16-bit auto-reload register

e Repetition counter

e Prescaler

Figure 32. Time base unit
TIM1_ARRH, ARRL TIM1_RCR
UEV-a| Auto-reload register Repetition counter register
4 = UIF
% S 1 16-bit Counter Repetition Counter UEV=h
TIM1_PSCRH, PSCRL TIM1_CNTRH, CNTRL

~b vt
/_(interrupt

The 16-bit counter, the prescaler, the auto-reload register and the repetition counter register

can be written or read by software.

The auto-reload register is composed of a preload register plus a shadow register.

Writing to the auto-reload register can be done in two modes:

e Auto-reload preload enabled (ARPE bit set in the TIM1_CR1 register). In this mode,
when data is written to the auto-reload register, it is kept in the preload register and
transferred into the shadow register at the next update event (UEV).

e Auto-reload preload disabled (ARPE bit cleared in the TIM1_CR1 register). In this
mode, when data is written to the auto-reload register it is transferred into the shadow
register immediately.

An update event is generated:

e On a counter overflow or underflow

e By software, setting the UG bit in the TIM1_EGR register

e By atrigger event from the clock/trigger controller

With preload enabled (ARPE = 1), when an update event occurs: The auto-reload shadow

register is updated with the preload value (TIM1_ARR) and the buffer of the prescaler is

reloaded with the preload value (content of the TIM1_PSCR register).

The UEV can be disabled by setting the UDIS bit in the TIM1_CR1

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the

counter enable bit (CEN) in TIM1_CR1 register is set.

Note: The actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

3

DoclD14587 Rev 14 141/467

16-bit advanced control timer (TIM1) RMO0016

17.3.1

Note:

17.3.2

17.3.3

142/467

Reading and writing to the 16-bit counter

There is no buffering when writing to the counter. Both TIM1_CNTRH and TIM1_CNTRL
can be written at any time, so it is suggested not to write a new value into the counter while
it is running to avoid loading an incorrect intermediate content.

An 8-bit buffer is implemented for the read. Software must read the MS byte first, after which
the LS byte value is buffered automatically (see Figure 33). This buffered value remains
unchanged until the 16-bit read sequence is completed.

Do not use the LDW instruction to read the 16-bit counter. It reads the LS byte first and
returns an incorrect result.

Figure 33. 16-bit read sequence for the counter (TIM1_CNTR)

Beginning of the sequence

Read LS byte
At t0 MS byte T is buffered
v _
e Other |
Linitv_cti@%

Read |, |Returns the buffered
At t0 +Dt| LS byte LS byte value at t0

Sequence completed

Write sequence for 16-bit TIM1_ARR register

16-bit values are loaded in the TIM1_ARR register through preload registers. This must be
performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte has been written. Do not use the LDW instruction as this writes the
LS byte first which produces incorrect results.

Prescaler

The prescaler implementation is as follows:

The TIM1 prescaler is based on a 16-bit counter controlled through a 16-bit register (in
TIM1_PSCR register). It can be changed on the fly as this control register is buffered. It can
divide the counter clock frequency by any factor between 1 and 65536.

The counter clock frequency is calculated as follows:
fok_ont = fek_psc/(PSCR[15:0]+1)

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used, is loaded as soon as the LS byte has been written.

To update the 16-bit prescaler, load two bytes in separate write operations starting with the
MSB. Do not use the LDW instruction for this purpose as it writes the LSB first.

The new prescaler value is taken into account in the following period (after the next counter
update event).

DocID14587 Rev 14 ‘Yl

RMO0016

16-bit advanced control timer (TIM1)

17.3.4

3

Read operations to the TIM1_PSCR registers access the preload registers, so no special
care needs to be taken to read them.
Up-counting mode

In up-counting mode, the counter counts from 0 to a user-defined compare value (content of
the TIM1_ARR register). It then restarts from 0 and generates a counter overflow event and
a UEV if the UDIS bit is 0 in the TIM1_CR1 register.

Figure 34 shows an example of this counting mode.

Figure 34. Counter in up-counting mode

Counter
TIMx_ARR 4

0 >
Overflow Overflow Overflow Overflow Time

MSv45278V1

An update event can also be generated by setting the UG bit in the TIM1_EGR register
(either by software or by using the trigger controller).

The UEV can be disabled by software by setting the UDIS bit in the TIM1_CR1 register. This
is to avoid updating the shadow registers while writing new values in the preload registers.
No UEV occurs until the UDIS bit has been written to 0. Note that the counter and the
prescaler restart counting from 0 but, the prescaler division factor does not change. In
addition, if the URS bit (update request selection) in the TIM1_CR1 register is set, setting
the UG bit generates an UEV without setting the UIF flag. Consequently, no interrupt
request is sent. This avoids generating both update and capture interrupts when clearing
the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in

TIM1_SRH1 register) is set (depending on the URS bit):

e The auto-reload shadow register is updated with the preload value (TIM1_ARR).

e The buffer of the prescaler is reloaded with the preload value (content of the
TIM1_PSCR register).

Figure 35 and Figure 36 show two examples of the counter behavior for different clock
frequencies when TIM1_ARR = 0x36.

In Figure 35, the prescaler divider is set to 2, so the counter clock (CK_CNT) frequency is at
half the frequency of the prescaler clock source (CK_PSC). The auto-reload preload is
disabled (ARPE = 0). Consequently, the shadow register is immediately changed and
counter overflow occurs when upcounting reaches 0x36. This generates a UEV.

DoclD14587 Rev 14 143/467

16-bit advanced control timer (TIM1)

RM0016

144/467

Figure 35. Counter update when ARPE = 0 (ARR not preloaded) with prescaler = 2

CK_PSC

CNT_EN

TIMER CLOCK = CK_CNT

COUNTER REGISTER

COUNTER OVERFLOW

UPDATE EVENT (UEV)

UPDATE INTERRUPT FLAG (UIF)

AUTO-RELOAD PRELOAD REGISTER

AUTO-RELOAD SHADOW REGISTER

MWWMWWWWWUWM

%

. Annnmn
e

[T
00)o1}02{03Y04 05)0s)o7]
y

|

FF

36

A
/

Write a new value in TIMx_ARR

New value transferred

immediately in shadow register

In Figure 36 the prescaler divider is set to 1, so CK_CNT has the same frequency as
CK_PSC. The auto-reload preload is enabled (ARPE = 1), so the next counter overflow
occurs at 0xFF. The new auto-reload value register value of 36h is taken into account after
the overflow which generates a UEV.

Figure 36. Counter update event when ARPE =1 (TIM1_ARR preloaded)

CK_PSC

CNT_EN

TIMER CLOCK = CK_CNT

COUNTER REGISTER

COUNTER OVERFLOW

UPDATE EVENT (UEV)

UPDATE INTERRUPT FLAG (UIF)

Fe)[FoFo[FE(Fry0o)01)02)03)o4 o5 fos)o7)
i

MMMIIU‘LFM
%

|

AUTO-RELOAD PRELOAD REGISTER

e

36

/

AUTO-RELOAD SHADOW REGISTER

FF

36

Write a new valu

e in TIMx_ARR \

New value transferred in shadow register

on counter overflow

DoclD14587 Rev 14

3

RMO0016

16-bit advanced control timer (TIM1)

17.3.5

3

Down-counting mode

In down-counting mode, the counter counts from the auto-reload value (content of the
TIM1_ARR register) down to 0. It then restarts from the auto-reload value and generates a
counter underflow and a UEV, if the UDIS bit is 0 in the TIM1_CR1 register.

Figure 37 shows an example of this counting mode.

Figure 37. Counter in down-counting mode

TIMX_ARR

-
|

Underflow Underflow Underflow Underflow Time
MSv45281V1

An update event can also be generated by setting the UG bit in the TIM1_EGR register (by
software or by using the clock/trigger mode controller).

The UEV update event can be disabled by software by setting the UDIS bit in TIM1_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. No update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from the current auto-reload value, whereas the counter of the prescaler
restarts from 0 (without any change to the prescale rate).

In addition, if the URS bit (update request selection) in the TIM1_CR1 register is set, setting
the UG bit generates a UEV without setting the UIF flag (thus no interrupt request is sent).
This avoids generating both update and capture interrupts when clearing the counter on the
capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIM1_SRH1 register) is set (depending on the URS bit):

e The buffer of the prescaler is reloaded with the preload value (content of the
TIM1_PSCR register),

e The auto-reload shadow register is updated with the preload value (content of the
TIM1_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

Figure 38 and Figure 39 show some examples of the counter behavior for different clock
frequencies when TIM1_ARR = 0x36.

In downcounting mode, preload is not normally used. Consequently, the new value is taken
into account in the next period (see Figure 38).

DoclD14587 Rev 14 145/467

16-bit advanced control timer (TIM1) RMO0016

146/467

Figure 38. Counter update when ARPE = 0 (ARR not preloaded) with prescaler = 2

exese [T QUL

CNT_EN

TIMER CLOCK = CK_CNT UL LT LT
COUNTERREGISTER _ 06 J05)04)(03)02){01)oofze)(35)34f33)32)31

COUNTER UNDERFLOW T

UPDATE EVENT (UEV) i

UPDATE INTERRUPT FLAG (UIF)

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER FF / \,< 36

Write a new value in TIMx_ARR

New value transferred immediately in shadow register

Figure 39. Counter update when ARPE = 1 (ARR preloaded), with prescaler =1

CK_PSC - J U U

CNT_EN

TIMER CLOCK = CK_CNT _—
COUNTERREGISTER 06 Jos)o4Jo)02for{oofFA{Fe(FoFcfFe 00

COUNTER UNDERFLOW T

S

UPDATE EVENT (UEV)

[
=

Cleared by software

UPDATE INTERRUPT FLAG (UIF) — J
AUTO-RELOAD PRELOAD REGISTER FF \ 36
AUTO-RELOAD SHADOW REGISTER FF / 36

Write a new value in TIMx_ARR

New value transferred in shadow register
on counter underflow

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

17.3.6

3

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value of -1 (content of
the TIM1_ARR register). This generates a counter overflow event. The counter then counts
down to 0 and generates a counter underflow event. After this, the counter restarts counting
from 0.

In this mode, the direction bit (DIR) in the TIM1_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The Figure 40 shows an example of this counting mode.

Figure 40. Counter in center-aligned mode

Counter
TIMx_ARR j

Overflow Underflow Overflow Underflow Time

MSv45279V1

If the timer has a repetition counter (as in TIM1), the UEV is generated after up and down
counting and repeated for the number of times programmed in the repetition counter
register (TIM1_RCR). Otherwise, the UEV is generated at each counter overflow and at
each counter underflow.

Setting the UG bit in the TIM1_EGR register (by software or by using the clock/trigger mode
controller) also generates an update event. In this case, the counter and the prescaler
restart counting from 0.

The UEV can be disabled by software by setting the UDIS bit in the TIM1_CR1 register. This
is to avoid updating the shadow registers while writing new values in the preload registers.
In this way, no update event occurs until the UDIS bit is written to 0. However, the counter
continues counting up and down, based on the current auto-reload value. In timers with a
repetition counter, the new update rate is used because the repetition register is not double
buffered. For this reason, care must be taken when changing the update rate.

In addition, if the URS bit in the TIM1_CR1 register is set, setting the UG bit generates a
UEV without setting the UIF flag. Consequently, no interrupt request is sent. This avoids
generating both update and capture interrupts when clearing the counter on the capture
event.

When an update event occurs, all registers are updated and the update flag (the UIF bit in
the TIM1_SR1 register) is set (depending on the URS bit).

e The buffer of the prescaler is reloaded with the preload value (content of the
TIM1_PSCR register).

e The auto-reload shadow register is updated with the preload value (content of the
TIM1_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

Below are some examples of the counter behavior for different clock frequencies.

DoclD14587 Rev 14 147/467

16-bit advanced control timer (TIM1) RMO0016

Figure 41. Counter timing diagram, fck_cnt = fck_psc, TIM1_ARR = 06h, ARPE =1

expse [T LU U LU

CNT_EN

TIMER CLOCK = CK_CNT
COUNTERREGISTER 04 |(03f02)o1{oo)of02)oz)o4fosfos o5 o4} os)

COUNTER UNDERFLOW 0
COUNTER OVERFLOW b
UPDATE EVENT (UEV) Rl B

UPDATE INTERRUPT FLAG (UIF)

AUTO-RELOAD PRELOAD REGISTER FD | 06

AUTO-RELOAD SHADOW REGISTER FD 06

Write a new value in TIMX_ARR

New value transferred in shadow register
on update event

Hints on using center-aligned mode:

e When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter starts counting up or down depending on the value written in
the DIR bit in the TIM1_CR1 register. Moreover, the DIR and CMS bits must not be
changed at the same time by the software.

e Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

— The direction is not updated if a value is written in the counter that is greater than
the auto-reload value (TIM1_CNT>TIM1_ARR). For example, if the counter is
counting up, it continues to do so.

— The direction is updated if 0 or the TIM1_ARR value are written in the counter but
no UEV is generated.

e The safest way to use center-aligned mode is to generate an update by software

(setting the UG bit in the TIM1_EGR register) just before starting the counter. Avoid
writing to the counter while it is running.

3

148/467 DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

17.3.7

3

Repetition down-counter

Section 17.3: TIM1 time base unit describes how the UEV is generated with respect to
counter overflows/underflows. It is generated only when the repetition down-counter
reaches zero. This can be useful while generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIM1_ARR auto-reload register, TIM1_PSCR prescaler register, and TIM1_CCRXx
capture/compare registers in compare mode) every ‘n’ counter overflow or underflow, where
N is the value in the TIM1_RCR repetition counter register.

The repetition down-counter is decremented:
e At each counter overflow in up-counting mode
e At each counter underflow in down-counting mode

e At each counter overflow and at each counter underflow in center-aligned mode.
Although this limits the maximum number of repetitions to 128 PWM cycles, it makes it
possible to update the duty cycle twice per PWM period. When refreshing compare
registers only once per PWM period in center-aligned mode, maximum resolution is
2 x tck psc due to the symmetry of the pattern.

The repetition down-counter is an auto-reload type, the repetition rate of which is
maintained as defined by the TIM1_RCR register value (refer to Figure 42). When the UEV
is generated by software (by setting the UG bit in the TIM1_EGR register) or by hardware
(through the clock/trigger controller), it occurs immediately irrespective of the value of the
repetition down-counter. The repetition down-counter is reloaded with the content of the
TIM1_RCR register.

DoclD14587 Rev 14 149/467

16-bit advanced control timer (TIM1) RMO0016

Figure 42. Update rate examples depending on mode and TIM1_RCR register settings

Center-aligned mode Edge-aligned mode

Up-counting Down-counting
Counter

TIMLCNTH\/\/\/\/\

1 _Rog=0 YRR AAREARAAARE AARARLEEAE AASALARAAA

/NNVVVA

R D P S I R N N

NNNVVA

TMIRCR=2 UEGa 4 4 4 4 4 A 4 4 4 4 4 4

NNV

TIMi_RCR=3 VEWA 4 A A 4 3 A 4 A 4
TIM1_RCR =3 /\/1/\/\/\/\ | !
re-synchronization UEVLa * + * * + + * + +
(by SW) (by SW) {by SW)

UEVoA UEV: Preload registers transferred to shadow registers and update interrupt generated

4\ UEV if the repetition down-counter underflow occurs when the counter is equal to the auto-reload value

3

150/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

17.4 TIM1 clock/trigger controller

The clock/trigger controller allows the timer clock sources, input triggers, and output triggers
to be configured. The block diagram is shown in Figure 43.

Figure 43. Clock/trigger controller block diagram

fmasTER >
TIM1_ETR ETR? — igger
- Controller
D ETR o | Polarity Selection & Edge L] Input filter - TRGO . Toother
"] Detector & Prescaler P T timers
TRGO from TIM6 (ITRO) > ITR
E— TGl
TRC Clock / Trigger
TRGO from TIM5 (ITR2) » b ~ Mode Reset, Enable,
TRGI Controller Up/Down, Count
From input stage THF_ED
o CK_PSC
To Time Base Unit
THFP1 P Encoder
From input stage _ | | Interface
TIHFP2 -

MSv45285V1

17.41 Prescaler clock (CK_PSC)

The time base unit prescaler clock (CK_PSC) can be provided by the following clock
sources:

e Internal clock (fyasTeER)
e External clock mode 1: External timer input (TIx)
e External clock mode 2: External trigger input (ETR)

e Internal trigger inputs (ITR/): using one timer as prescaler for another timer. Refer to
Using one timer as prescaler for another timer on page 161 for more details.

3

DoclD14587 Rev 14 151/467

16-bit advanced control timer (TIM1) RMO0016

17.4.2

17.4.3

152/467

Internal clock source (f\asTER)

If both the clock/trigger mode controller and the external trigger input are disabled

(SMS =000 in TIM1_SMCR and ECE =0 in the TIM1_ETR register), the CEN, DIR, and UG
bits behave as control bits and can be changed only by software (except UG which remains
cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the
internal clock.

The figure below shows the behavior of the control circuit and the up-counter in normal
mode, without the prescaler.

Figure 44. Control circuit in normal mode, fck psc = fmasTER

CEN =CNT_EN J

ue]

CNT_INIT (=UG synchronized: UG or UG+1 clock) I_'

COUNTER GLOCK = CK_CNT = CK_PSC
COUNTER REGISTER 31 33 36§ 00)01)02{03)04 fo5)0s)07)

External clock source mode 1

The counter can count at each rising or falling edge on a selected timer input. This mode is
selected when SMS = 111 in the TIM1_SMCR register (see Figure 45).

Figure 45. TI2 external clock connection example

TIM1_SMCR
TS[2:0]
rTI2F5 orvy
TRGO from other timers TIMF Aoy |Encoder
— —————Imode
THMF_ED| 400
—_ TIEP1 {61 TRGI & E)étgén?l clock SiE BEG
i2f_rising =
Filter DS&or | tizf fallin TI2FP2 1110
- 9l ETRF 4 ETRF A E)E}Séngl clock
fMASTER & Internal clock
TIM1_CCMR2 TIM1_CCER1 (inm mode
SMS[2:0]
TIM1_ETR TIM1_SMCR

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

Procedure

Use the following procedure to configure the up-counter and, for example, to count in
response to a rising edge on the TI2 input:

1.

4.

5.
6.

Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = 01 in the
TIM1_CCMR2 register.

Configure the input filter duration by writing the IC2F[3:0] bits in the TIM1_CCMR2
register (if no filter is needed, keep IC2F = 0000).

Note: The capture prescaler is not used for triggering, so it does not need t o be
configured. The CC2S bits do not need to be configured either as they only select the
input capture source.

Select rising edge polarity by writing CC2P = 0 in the TIM1_CCER1 register.
Configure the timer in external clock mode 1 by writing SMS = 111 in the TIM1_SMCR
register.

Select TI2 as the input source by writing TS = 110 in the TIM1_SMCR register.

Enable the counter by writing CEN = 1 in the TIM1_CR1 register.

When a rising edge occurs on T12, the counter counts once and the trigger flag is set (TIF bit
in the TIM1_SR1 register) and an interrupt request can be sent if enabled (depending on the
TIE bit in the TIM1_IER register).

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on TI2 input.

Figure 46. Control circuit in external clock mode 1

T2] 1 [
CNT_EN |
COUNTER CLOCK = CK_CNT = CK_PSC B B
COUNTER REGISTER 34 35) 36
TIF [N

Write TIF=0 /

3

DoclD14587 Rev 14 153/467

16-bit advanced control timer (TIM1)

RM0016

17.4.4

154/467

External clock source mode 2

The counter can count at each rising or falling edge on the ETR. This mode is selected by
writing ECE = 1 in the TIM1_ETR register.

The Figure 47 gives an overview of the external trigger input block.

Figure 47. External trigger input block diagram

TRG! &
divider ETRP filter ETRF &
11,12, 14,18 fuasTer | down-counter,
fuasterd
(internal clock)
ETPS[1:0] ETF[3:0]
TIM1_ETR TIM1_ETR TIM1_ETR

: TI2F & orw

TIF & ory

encoder
mode

external clock
mode 1 CK_PSC

external clock

TIM1_ETR TIM1_SMCR

mode

inte&nal clock

SMS[2:0]

Procedure

Use the following procedure to configure the up-counter and, for example, to count once

every two rising edges on the ETR:
1.
2.
3.

4.
5.

As no filter is needed in this example, write ETF[3:0] = 0000 in the TIM1_ETR register.
Set the prescaler by writing ETPS[1:0] = 01 in the TIM1_ETR register.
Select rising edge detection on the ETR pin by writing ETP = 0 in the TIM1_ETR

register.

Enable external clock mode 2 by writing ECE = 1 in the TIM1_ETR register.
Enable the counter by writing CEN = 1 in the TIM1_CR1 register.

The counter counts once every two ETR rising edges.

The delay between the rising edge on the ETR and the actual reset of the counter is due to
the resynchronization circuit on the external trigger signal (ETRP).

Figure 48. Control circuit in external clock mode 2

fuasTER
CNT_EN
ETR
ETRP

ETRF

COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER

T O B O A

L]

_

S B O e

24 \

35

ok

DoclD14587 Rev 14

3

RMO0016

16-bit advanced control timer (TIM1)

17.4.5

3

Trigger synchronization

There are four trigger inputs (refer to Table 35: Glossary of internal timer signals on
page 136):

e ETR

e TH

o TI2

e TRGO from TIM5/TIM6

The TIM1 timer can be synchronized with an external trigger in three modes: Trigger
standard mode, trigger reset mode and trigger gated mode.

Trigger standard mode

The counter can start in response to an event on a selected input.
Procedure

Use the following procedure to start the up-counter in response, for example, to a rising
edge on the TI2 input:

1. Configure channel 2 to detect rising edges on TI2. As no filter is required in this
example, configure an input filter duration of 0 (IC2F = 0000). The capture prescaler is
not used for triggering and does not need to be configured. The CC2S bits select the
input capture source and do not need to be configured either. Write CC2P = 0 in the
TIM1_CCERH1 register to select rising edge polarity.

2. Configure the timer in trigger mode by writing SMS = 110 in the TIM1_SMCR register.
Select TI2 as the input source by writing TS = 110 in the TIM1_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on T12 input.

Figure 49. Control circuit in trigger mode

T]]
CNT_EN rr
COUNTER CLOCK = CK_CNT = CK_PSC
COUNTER REGISTER 34
TIF T

DoclD14587 Rev 14 155/467

16-bit advanced control timer (TIM1) RMO0016

Trigger reset mode

The counter and its prescaler can be re-initialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIM1_CR1 register is low, a UEV is generated. Then all
the preloaded registers (TIM1_ARR, TIM1_CCRJ) are updated.

Example

Use the following procedure to clear the up-counter in response to a rising edge on TI1

input:

1. Configure channel 1 to detect rising edges on TI1. As no filter is required in this
example, configure an input filter duration of 0 (IC2F = 0000). The capture prescaler is
not used for triggering and does not need to be configured. The CC1S bits select the
input capture source and do not need to be configured either. Write CC1P =0 in
TIM1_CCERH1 register to validate the polarity (and detect rising edges).

2. Configure the timer in reset mode by writing SMS = 100 in TIM1_SMCR register. Select
TI1 as the input source by writing TS = 101 in the TIM1_SMCR register.

3. Start the counter by writing CEN = 1 in the TIM1_CR1 register.

The counter starts counting on the internal clock and behaves normally until the TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIM1_SR1 register) and an interrupt request can be sent if
enabled (depending on the TIE in the TIM1_IER register).

Figure 50 shows this behavior when the auto-reload register TIM1_ARR = 36h. The delay
between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 50. Control circuit in trigger reset mode

w1]

uG]
counterctock=ck ent=ckpse LU U U UL UL L
SR
TIF r

COUNTER REGISTER

3

156/467 DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

3

Trigger gated mode

The counter can be enabled depending on the level of a selected input.
Example

Use the following procedure to enable the up-counter when TI1 input is low:

1. Configure channel 1 to detect low levels on TI1. Configure the input filter duration (IC1F
= 0000). The capture prescaler is not used for triggering and does not need to be
configured. The CC18S bits select the input capture source and do not need to be
configured either. Write CC1P = 1 in the TIM1_CCERH1 register to validate the polarity
(and detect low level).

2. Configure the timer in trigger gated mode by writing SMS = 101 in the TIM1_SMCR
register. Select TI1 as the input source by writing TS = 101 in the TIM1_SMCR register.

3. Enable the counter by writing CEN = 1 in the TIM1_CR1 register (in trigger gated
mode, the counter does not start if CEN = 0 irrespective of the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low. It stops as soon as
TI1 becomes high. The TIF flag is set when the counter starts or stops.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 51. Control circuit in trigger gated mode

T
CNT_EN
COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 34
TIE [] [

N /

DoclD14587 Rev 14 1571467

16-bit advanced control timer (TIM1) RMO0016

Combining trigger modes with external clock mode 2

External clock mode 2 can be used with another trigger mode. For example, the ETR can be
used as the external clock input, and a different input can be selected as trigger input (in
trigger standard mode, trigger reset mode, or trigger gated mode). Care must be taken not
to select ETR as TRGI (through the TS bits in the TIM1_SMCR register).

Example

Use the following procedure to enable the up-counter at each rising edge on the ETR as

soon as a rising edge occurs on TI1 (standard trigger mode with external ETR clock):

1. Configure the external trigger input circuit by writing to the TIM1_ETR register. Write
ETF = 0000 (no filter needed in this example). Write ETPS = 00 to disable the
prescaler, write ETP = 0 to detect rising edges on the ETR, and write ECE = 1 to
enable external clock mode 2.

2. Configure channel 1 to detect rising edges on TI1. Configure the input filter duration
(IC1F =0000). The capture prescaler is not used for triggering and does not need to be
configured. The CC1S bits select the input capture source and do not need to be
configured either. Write CC1P = 0 in the TIM1_CCER1 register to select rising edge
polarity.

3. Configure the timer in trigger mode by writing SMS = 110 in the TIM1_SMCR register.
Select TI1 as the input source by writing TS = 101 in the TIM1SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. Consequently, the counter
counts on the ETR rising edges.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input. The delay between the rising edge on the ETR and
the actual reset of the counter is due to the resynchronization circuit on the ETRP signal.

Figure 52. Control circuit in external clock mode 2 + trigger mode

T ’—’

CEN |

er | L L[L]

COUNTER CLOCK = CK_CNT = CK_PSC ﬂ ﬂ

COUNTER REGISTER 34 { s) =

TIF |

3

158/467 DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

17.4.6

3

Synchronization between TIM1, TIM5 and TIM6 timers

On STM8AF and STM8S low-density devices, the timers are linked together internally for
timer synchronization or chaining. When one timer is configured in master mode, it can
output a trigger (TRGO) to reset, start, stop, or clock the counter of any other timer
configured in slave mode.

DoclD14587 Rev 14 159/467

16-bit advanced control timer (TIM1)

RM0016

Figure 53. Timer chaining system implementation example

TIM 1
TRGO from TIME | ITR0 o
TRGO fom TIM5 |-TTRZ
—
Trgger TRGO TIM 5
| Controller >
B
TRGO from TiMs |-[IRDp,
La TRGOTom TIM1{-TRI) L
TIM1_CH1—ppr—111 - > Troger TRGO
TIM1_C T2 » | »| Confroller >
™
TIM 6 ™
TIMS_CH1 —pLt - >
TIM5_CH2 Ti2 >
Trigger TRGO
TRGO from TIM5 | ITR2 o 9| Controller >
TRGO from TIM1 | TTR3 g P
B
160/467 DoclD14587 Rev 14 Kyy

RMO0016 16-bit advanced control timer (TIM1)

Figure 54 presents an overview of the trigger selection and the master mode selection
blocks.

Figure 54. Trigger/master mode selection blocks

TRIGGER SELECTION BLOCK
TIMx_SMCR
TS[2:0]

MASTER MODE SELECTION BLOCK

JUGH |
TRGO from TIM6 1RO} SE\'II:_EN
ITR2 _MATCH1 | TRGO
TRGO from TIM5 O——=1 TRC ECTREE
"OCSREF |
THF_ED OC3REF
U T TRGI eeaoEE |
From the Capture/ | TI1FP1 R _OC4REF |
Compare block
TI2FP2 MMSE]
ETRF TIMx_CR2

Using one timer as prescaler for another timer

Refer to Figure 55 to see how timer A can be configured to act as a prescaler for timer B.

1. Configure timer A in master mode so that it outputs a periodic trigger signal on each
UEV. To configure that a rising edge is output on TRGO1 each time an update event is
generated, write MMS = 010 in the TIMx_CR2 register.

2. Connect the TRGO1 output of timer A to timer B, timer B must be configured in slave
mode using ITR1 as the internal trigger. Select this through the TS bits in the
TIMx_SMCR register (see TS[2:0] bit definitions in TIMx_SMCR register).

3. Put the clock/trigger controller in external clock mode 1, by writing SMS = 111 in the
TIMx_SMCR register. This causes timer B to be clocked by the rising edge of the
periodic timer A trigger signal (which corresponds to the timer A counter overflow).

4. Enable both timers by setting their respective CEN bits (TIMx_CR1 register).

Note: If OCi is selected on timer A as trigger output (MMS = 1xx), its rising edge is used to clock
the counter of timer B.

Figure 55. Master/slave timer example

TIMER A TIMER B

Clock MMS L SMS

MASTER SLAVE |[CK_PSC

MODE MODE —

PRESCALER COUNTER |CONTROL CONTROL PRESCALER COUNTER

UEv TRGO1 | |ITR1
»

INPUT
TRIGGER
SELECTION

3

DoclD14587 Rev 14 161/467

16-bit advanced control timer (TIM1) RMO0016

Note:

162/467

Using one timer to enable another timer

Example 1

The enable of timer B is controlled with the output compare 1 of timer A (refer to Figure 56
for connections). Timer B counts on the divided internal clock only when OC1REF of timer A
is high. Both counter clock frequencies are divided by four by the prescaler compared to
fuaser (fCK_CNT = funster/4).

1. Configure timer A master mode to send its output compare 1 reference (OC1REF)
signal as trigger output (MMS = 100 in the TIMx_CR2 register).

2. Configure the timer A OC1REF waveform (TIMx_CCMR1 register)

3. Configure timer B to get the input trigger from timer A (see TS[2:0] bit definitions in
TIMx_SMCR register).

4. Configure timer B in trigger gated mode (SMS = 101 in TIMx_SMCR register)
5. Enable timer B by writing 1 in the CEN bit (TIMx_CR1 register)
6. Start timer A by writing 1 in the CEN bit (TIMx_CR1 register)

The counter 2 clock is not synchronized with counter 1. This mode only affects the timer B
counter enable signal.

Figure 56. Gating timer B with OC1REF of timer A

fmasTER
Timer A-OC1REF \

Timer A-CNT X e Xm0 X fe X FF X 00 X o1 X

Timer B-CNT 3045 X 3046 X 3047 3048
Timer B-TIF
Imer f /’_‘v
Write TIF=0 /

In Figure 56, the timer B counter and prescaler are not initialized before being started.
Therefore, they start counting from their current value. It is possible to start from a given
value by resetting both timers before starting timer A. In this case, any value can be written
in the timer counters. The timers can easily be reset by software using the UG bit in the
TIMx_EGR registers.

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

3

Example 2

Timer A and timer B are synchronized. Timer A is the master and starts from 0. Timer B is
the slave and starts from E7h. The prescaler ratio is the same for both timers. Timer B stops
when timer A is disabled by writing 0 to the CEN bit in the TIMx_CR1 register:

1.

w

20N oA

Configure timer A master mode to send its output compare 1 reference (OC1REF)
signal as trigger output (MMS = 100 in the TIMx_CR2 register).

Configure the timer A OC1REF waveform (TIMx_CCMR1 register)

Configure timer B to get the input trigger from timer A (see TS[2:0] bit definitions in
TIMx_SMCR register).

Configure timer B in trigger gated mode (SMS = 101 in TIMx_SMCR register)
Reset timer A by writing 1 in UG bit (TIMx_EGR register)

Reset timer B by writing 1 in UG bit (TIMx_EGR register)

Initialize timer B to OXE7 by writing ‘E7h’ in the timer B counter (TIMx_CNTRL)
Enable timer B by writing 1 in the CEN bit (TIMx_CR1 register)

Start timer A by writing 1 in the CEN bit (TIMx_CR1 register)

. Stop timer A by writing 0 in the CEN bit (TIMx_CR1 register)

Figure 57. Gating timer B with the counter enable signal of timer A (CNT_EN)

fmasTER
Timer A-CEN = CNT_EN | |

Timer A-UG W

Timer A-CNT 75 X 00 X o1 X 02

Timer B-CNT AB oo X E7 X Es X E9

Timer B-UG ’—I
Timer B m

write CNT

Timer B-TIF I

—— /

DoclD14587 Rev 14 163/467

16-bit advanced control timer (TIM1) RMO0016

164/467

Using one timer to start another timer
Example 1

The enable of timer B is set with the UEV of timer A (refer to Figure 55 for connections).
Timer B starts counting from its current value (which can be non-zero) on the divided
internal clock as soon as the UEV is generated by timer A. When timer B receives the
trigger signal, its CEN bit is automatically set and the counter counts until 0 is written to the
CEN bit in the TIM1_CR1 register. Both counter clock frequencies are divided by four by the

prescaler compared to fyasTER (fCK_CNT = fuasTER/4)-

1. Configure timer A master mode to send its UEV as trigger output (MMS = 010 in the
TIM1_CR2 register).

2. Configure the timer A period (TIM1_ARR registers)

3. Configure timer B to get the input trigger from timer A (see TS[2:0] bit definitions in
TIM1_SMCR register).

4. Configure timer B in trigger mode (SMS = 110 in TIM1_SMCR register)
5. Start timer A by writing 1 in the CEN bit (TIM1_CR1 register)

Figure 58. Triggering timer B with the UEV of timer A (TIMERA-UEV)
fmasTER JUUuurL

Timer A-UEV I—’

TimerACNT — X b N Fe X fF K o0 X o1 X o2 X

Timer B-CNT 45 a6 X a7 X 48
Timer B-CEN = CNT_EN \

Timer B-TIF ,—'

Write TIF=0

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

Note:

3

Example 2

As in the previous example, both counters can be initialized before starting to count.
Figure 59 shows the behavior, with the same configuration as in Figure 57, but, in trigger
standard mode instead of trigger gated mode (SMS = 110 in the TIM1_SMCR register).

Figure 59. Triggering timer B with counter enable CNT_EN of timer A

fMaSTER

Timer A-CEN = CNT_EN \ |
Timer A-UG ’_|

Timer A-CNT s X 00 X o1 X 02

Timer B-CNT cD X oo X E7 X 8 X s fEa

Timer B-UG []

Timer B l—'

write CNT

Timer B-TIF |

Write TIF=0

Starting 2 timers synchronously in response to an external trigger
Example

The enable of timer Ais set when its TI1 input rises and the enable of timer B is set with the
enable of timer A (refer to Figure 55 for connections). To ensure the counters alignment,
timer A must be configured in master/slave mode (slave with respect to TI1, master with
respect to timer B).

1. Configure timer A master mode to send its enable as trigger output (MMS = 001 in the
TIMx_CR2 register).

2. Configure timer A slave mode to get the input trigger from TI1 (TS = 100 in the
TIMx_SMCR register).

3. Configure timer A in trigger mode (SMS = 110 in the TIMx_SMCR register)
4. Configure timer A in master/slave mode by writing MSM = 1 (TIMx_SMCR register)

5. Configure timer B to get the input trigger from timer A (see TS[2:0] bit definitions in
TIMx_SMCR register).

6. Configure timer B in trigger mode (SMS = 110 in the TIMx_SMCR register)

When a rising edge occurs on TI1 (timer A), both counters start counting synchronously on
the internal clock and both TIF flags are set.

In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters start from 0, but an offset can easily be inserted between them by
writing to any of the counter registers (TIMx_CNT). It can be seen that the master/slave
mode inserts a delay between CNT_EN and CK_PSC on timer A.

DoclD14587 Rev 14 165/467

16-bit advanced control timer (TIM1) RMO0016

Figure 60. Triggering Timer A and B with Timer A TI1 input

twasten [L[LTI LU L LT LU L LT LT LT L

Timer A-TH ’—|
Timer A-CEN = CNT_EN |
Timer A-CK_PSC [T L L L L
Timer A-GNT 00
Timer A-TIF |

Timer B-CEN = CNT_EN \

Timer B-CNT 00 {01)02)03)04)05 {0507)08X08)
Timer B-TIF |

17.5 TIM1 capture/compare channels

The timer 1/O pins (TIM1_CCi) can be configured either for input capture or output compare
functions. The choice is made by configuring the CCiS channel selection bits in the
capture/compare channel mode registers (TIM1_CCMRJ), where i is the channel number.

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), an input stage for capture (with digital filter, multiplexing and prescaler)
and an output stage (with comparator and output control).

Figure 61. Capture/compare channel 1 main circuit

5 write CCR1H

Read CCR1H['g write_in_progress
e read_in_progress

i write CCR1L
Read CCR1L| ‘CapturefCompare Preload Reglster‘ | write COR1

CC1S[1]

capture_transfer compare_transfer

ccis[] input
mode > ‘ Capture/Compare shadow Register‘
CC1S[0] (UEV

. . e TIMX_CCMR1
& omparator
delps ¥ base unit)
CCIE | CNT>CCR1
T
| C°“‘mer | CNT=CCR1
TIMx_EGR el

3

166/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)
The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register. In capture mode, captures are made in the
shadow register, which is copied into the preload register. In compare mode, the content of
the preload register is copied into the shadow register which is compared to the counter.
When the channel is configured in output mode (CCiS = 00 in the TIM1_CCMRI registers),
the TIM1_CCRi registers can be accessed without any restriction.

When the channel is configured in input mode, the sequence for reading the TIM1_CCR/
registers is the same as for the counter (see Figure 62). When a capture occurs, the content
of the counter is captured into the TIM1_CCRJ/ shadow registers. Then this value is loaded
into the preload register, except during a read sequence, when the preload register is
frozen.
Figure 62. 16-bit read sequence for the TIM1_CCRi register in capture mode
" omer |y Slereano
Linstryctions, the preload register
Beginning of the sequence
Read Preload register
At t0 MS va'fe ™ is frozen
" “other
_instructions,
Read Preload register
At t0 +Dt Lgal‘ayte ™ is no longer frozen
Sequence completed
v shadow regi
—_ gister
) ?th?r —I*b is buffered into
LINSTructions, the preload register
Figure 62 shows the sequence for reading the CCRJ registers in the 16-bit timers. This
buffered value remains unchanged until the 16-bit read sequence is completed.
After a complete read sequence, if only the TIM1_CCRIL registers are read, they return the
LS byte of the count value at the time of the read.
If the MS byte is read after the LS byte, it no longer corresponds to the same captured value
as the LS byte.
17.5.1 Write sequence for 16-bit TIM1_CCRi registers

3

16-bit values are loaded in the TIM1_CCRi/ registers through preload registers. This must
be performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte is written. Do not use the LDW instruction, as this writes the LS
byte first, and produces incorrect results in this case.

DoclD14587 Rev 14 167/467

16-bit advanced control timer (TIM1)

RM0016

17.5.2

168/467

Input stage

Figure 63. Channel input stage block diagram

TIM1_CH1 []

TIM1_CH2 [}

™ THFP1

THF_ED

TRC

[

Input Filter &
EdgeDetector

IC2

\rgf:ut Filter &
EdgeDetector

Input Filter &
EdgeDetector

L
to clock/trigger controller

Figure 64 shows how the input stage samples the corresponding Tli input to generate a
filtered signal TIiF. Then, an edge detector with polarity selection, generates a signal
(T1iFPn) which can be used as trigger input by the clock/trigger controller or as the capture
command. The signal is prescaled before entering the capture register (IC/PS).

Figure 64. Input stage of TIM 1 channel 1

o TH

fMASTER

filter

THF

down-counte

THF _rising ﬁ
Edge]

THF_ED
to glock/trigger controller

THFP1

detector| THF_falling

|

TIMx_CCMR1

TIMx_CCER

TI2F _rising

(from channel 2)
TI2F_falling :

(from channel 2)

TI2FP1 10 1C1_| divider

n,/2,/4,/8

ICPS

TRC

(from clock/trigger "
controller)

\cmsn:o]\ ICPS[1:0] | |CC1E\

TIMx_CCMR1 TIMx_CCER1

DoclD14587 Rev 14

3

RMO0016 16-bit advanced control timer (TIM1)
17.5.3 Input capture mode

In input capture mode, the capture/compare registers (TIM1_CCRJ) are used to latch the

value of the counter after a transition detected on the corresponding ICi signal. When a

capture occurs, the corresponding CCJlF flag (TIM1_SR1 register) is set.

An interrupt can be sent if it is enabled, by setting the CCIlE bits in the TIM1_IER register. If

a capture occurs while the CCJlF flag is already high, the over-capture flag CC/OF

(TIM1_SR2 register) is set. CCilF can be cleared by software by writing it to 0 or by reading

the captured data stored in the TIMx_CCRIL registers. CCJ/OF is cleared by writing it to 0.

Procedure

The following procedure shows how to capture the counter value in TIM1_CCR1, for

example, when TI1 input rises.

1. Select the active input: For example, to link the TIM1_CCR1 register to the TI1 input,
write the CC1S bits to 01 in the TIM1_CCMR1 register. This configures the channel in
input mode and the TIM1_CCR1 register becomes read-only.

2. Program the required input filter duration for the signal to be connected to the timer.
This is done for each Tli input using the IC/F bits in the TIM1_CCMRI registers. For
example, if the input signal is unstable for up to five tyasTer Cycles when it toggles, the
filter duration must be performed for longer than five clock cycles. The filter bits allow a
duration of eight cycles to be selected by writing them to 0011 in the TIMx_CCMR1
register. With this filter setting, a transition on TI1 is valid only when eight consecutive
samples with the new level have been detected (sampled at f\asTeR frequency).

3. Select the edge of the active transition on the TI1 channel by writing the CC1P bit to 0
in the TIM1_CCERH1 register (rising edge in this case).

4. Program the input prescaler. In this example, the capture needs to be performed at
each valid transition, so the prescaler is disabled (write the IC1PS bits to 00 in the
TIM1_CCMRH1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIM1_CCERH1 register.

6. If needed, enable the related interrupt request by setting the CC1IE bitin the TIM1_IER
register.

When an input capture occurs:

e The TIM1_CCR1 register gets the value of the counter on the active transition

e The input capture flag (CC1IF) is set. The overcapture flag (CC10F) is also set if at
least two consecutive captures occur while the flag remains uncleared.

e Aninterrupt is generated depending on the CC1IE bit

To handle the overcapture event (CC10F flag), it is recommended to read the data before

the overcapture flag. This avoids missing an overcapture which could occur after reading

the flag and before reading the data.
Note: IC interrupts can be generated by software by setting the corresponding CCiG bits in the

3

TIM1_EGR register.

DoclD14587 Rev 14 169/467

16-bit advanced control timer (TIM1) RMO0016

170/467

PWM input sighal measurement

This mode is a particular case of input capture mode (see Figure 65). The procedure is the
same except:

Two ICi signals are mapped on the same Tli input
These two ICi signals are active on edges with opposite polarity

One of the two TIiFP signals is selected as trigger input and the clock/trigger controller
is configured in trigger reset mode.

Figure 65. PWM input signal measurement

PWM Input
Signal

TIM1_ARR
value

Counter
value

0

IC1: Period measurement

|
in TIM1_CCR1 register. : measurement in :
Reset counter. | TIM1_CCR2 register
aaaaaaaaaa E)
Procedure

Depending on the fyasTER frequency and prescaler value, the period (in the TIM1_CCR1
register) can be measured and the duty cycle (in the TIM1_CCR2 register) of the PWM can
be applied on TI1 using the following procedure:

1.

Select the active input capture or trigger input for TIM1_CCR1 by writing the CC1S bits
to 01 in the TIM1_CCMR1 register (TI1FP1 selected).

Select the active polarity for TI1FP1 (used for both capture and counter clear in
TIMx_CCR1) by writing the CC1P bit to 0 (TI1TFP1 active on rising edge).

Select the active input for TIM1_CCR2 by writing the CC2S bits to 10 in the
TIM1_CCMR2 register (TI1FP2 selected).

Select the active polarity for TIM1FP2 (used for capture in TIM1_CCR2) by writing the
CC2P bit to 1 (TI1FP2 active on falling edge).

Select the valid trigger input by writing the TS bits to 101 in the TIM1_SMCR register
(TIMFP1 selected).

Configure the clock/trigger controller in reset mode by writing the SMS bits to 100 in the
TIM1_SMCR register.

Enable the captures by writing the CC1E and CC2E bits to 1 in the TIM1_CCER1
register.

3

DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

Figure 66. PWM input sighal measurement example

i 4\ I\\ [

TIMi_ONT 0004 N 0000) ooot X oooz N\ ooos) ooos X oooo X

TIM1_CCR1 \ 0004 \
TIM1_CCR2 \ 0002 \
IC1 Capture IC2 Capture
period measurement pulse width measurement

reset counter

17.5.4 Output stage

The output stage generates an intermediate waveform called OCI/REF (active high) which is
then used for reference. Break functions and polarity act at the end of the chain.

Figure 67. Channel output stage block diagram

Deadtime generation

DTG registers
4|—>|:| TIM1_CH1

OC1REF DTG output oci
controll [T TIM1_CHI1N
OC1N
TIM1_CH2
%’ DTG output OC2

|
\
\
|
From capture/compare ‘ controll /1 TIM1_CH2N
channels ‘ OC2N
|
\
|
\
|

’—PIII TIM1_CH3
oC3

OC3REF »| DTG output
picontroll—— B[] TIM1_CH3N
OC3N -
OC4REF pl output P TIM1_CH4

control| OC4

7y
BI T
TIMLBKIND_{ Polarity Selection H Enable }/"

3

DoclD14587 Rev 14 171/467

16-bit advanced control timer (TIM1) RMO0016

17.5.5

17.5.6

1721467

Figure 68. Detailed output stage of channel with complementary output (channel 1)

ETR & TIM1_CH1
utput
o Enable —H
— Circuit
0oC1_DT cciP 4
Counter > CCR1
Qutput Mode | OC1REF Deadtime TIM1_CCER1
Counter = CCR1| Controller Generator
— OC1IN_DT
A L 0
- Output TIM1_CH1IN
0 Enable al
1 Circuit
CC1E | TIM1_CCER1
OC1M[2:0] | DTG7] | (cCINGCCIE| [co1Np| [MOE|ossI/osSR|TiM1_BKR
TIM1_CCMR1 TIM1_DTR TIM1_CCER1 TIM1_CCER1 OIS1NTIM170ISR

Forced output mode

In output mode (CCiS bits = 00 in the TIM1_CCMR/ registers), each output compare signal
can be forced to high or low level directly by software, independently of any comparison
between the output compare register and the counter.

To force an output compare signal to its active level, write 101 in the OCiM bits in the
corresponding TIM1_CCMRi registers. OC/REF is forced high (OC/REF is always active
high) and the OCj output is forced high or low depending on the CCJP polarity bits.

For example, if CCiP = 0 (OCi active high) => OCij is forced high.

The OCIREF signal can be forced low by writing the OC/M bits to 100 in the TIMx_CCMRx
registers.

Nevertheless, the comparison between the TIM1_CCR/ shadow registers and the counter is
still performed and allows the flag to be set. Interrupt requests can be sent accordingly. This
is described in the output compare mode section below.

Output compare mode

This function is used to control an output waveform or indicate when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter:

¢ Depending on the output compare mode, the corresponding OCi output pin:

Keeps its level (OCiM = 000),

Is set active (OCiM = 001),

Is set inactive (OCiM = 010)

Toggles (OCiM = 011)

e Aflagis setin the interrupt status register (CCilF bits in the TIM1_SR1 register).

e Aninterrupt is generated if the corresponding interrupt mask is set (CCIlE bits in the
TIM1_IER register).

DocID14587 Rev 14 ‘Yl

RMO0016

16-bit advanced control timer (TIM1)

3

The output compare mode is defined by the OCiM bits in the TIM1_CCMR registers. The
active or inactive level polarity is defined by the CCiP bits in the TIM1_CCER;/ registers.

The TIM1_CCRi registers can be programmed with or without preload registers using the
OCIPE bits in the TIM1_CCMR registers.

In output compare mode, the UEV has no effect on the OC/IREF and OCi output. The timing
resolution is one count of the counter. Output compare mode can also be used to output a
single pulse.
Procedure
1. Select the counter clock (internal, external, or prescaler).
2. Write the desired data in the TIM1_ARR and TIM1_CCRi registers.
3. Set the CCIlE bits if an interrupt request is to be generated.
4. Select the output mode as follows:
— Write OCiM = 011 to toggle the OCi output pin when CNT matches CCRi
— Write OCIPE = 0 to disable the preload register
— Write CC/P = 0 to select active high polarity
— Write CCIiE = 1 to enable the output
5. Enable the counter by setting the CEN bit in the TIMx_CR1 register
The TIM1_CCRi registers can be updated at any time by software to control the output

waveform, provided that the preload registers are not enabled (OC/PE = 0). Otherwise, the
TIMx_CCRJ/ shadow registers are updated only at the next UEV (see example in Figure 69.

Figure 69. Output compare mode, toggle on OC1

Write B201h in the CC1R register

TIMx_CNT 0039 X 003A X 003B B200 X B201)(:

‘4
TIMx_CCR1 003A ‘X B201

OC1REF=0C1 Q\d n /

Match detected on OCR1
Interrupt generated if enabled

DoclD14587 Rev 14 173/467

16-bit advanced control timer (TIM1) RMO0016

17.5.7

174/467

PWM mode

Pulse width modulation mode allows you to generate a signal with a frequency determined
by the value of the TIM1_ARR register and a duty cycle determined by the value of the
TIM1_CCRi registers.

The PWM mode can be selected independently on each channel (one PWM per OCi output)
by writing 110 (PWM mode 1) or 111 (PWM mode 2) in the OCiM bits in the TIM1_CCMRi
registers. The corresponding preload register must be enabled by setting the OC/PE bits in
the TIM1_CCMR registers. The auto-reload preload register (in up-counting or center-
aligned modes) may be optionally enabled by setting the ARPE bit in the TIM1_CR1
register.

As the preload registers are transferred to the shadow registers only when an UEV occurs,
all registers have to be initialized by setting the UG bit in the TIM1_EGR register before
starting the counter.

OCi polarity is software programmable using the CC/P bits in the TIM1_CCER/ registers. It
can be programmed as active high or active low. The OCi output is enabled by a
combination of CC/E, MOE, OISi, OSSR and OSSI bits (TIM1_CCER/and TIM1_BKR
registers). Refer to the TIM1_CCER! register descriptions for more details.

In PWM mode (1 or 2), TIM1_CNT and TIM1_CCRi are always compared to determine
whether TIM1_CCR/ <TIM1_CNT or TIM1_CNT<TIM1_CCRJ (depending on the direction
of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIM1_CR1 register.

PWM edge-aligned mode

Up-counting configuration

Up-counting is active when the DIR bit in the TIM1_CR1 register is low.
Example

This example uses PWM mode 1. The reference PWM signal, OCIREF, is high as long as
TIM1_CNT < TIM1_CCRI. Otherwise, it becomes low. If the compare value in TIM1_CCRi s
greater than the auto-reload value (in TIM1_ARR) then OC/REF is held at 1. If the compare
value is 0, OC/REF is held at 0. Figure 70 shows some edge-aligned PWM waveforms in an
example where TIM1_ARR = 8.

3

DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

Figure 70. Edge-aligned counting mode PWM mode 1 waveforms (ARR = 8)

COUNTER REGISTERT{ 0

OC/REF
CCRx=4

CCilF \

OCREF _ | L
CCilF

CCRx =8

OCREF ‘1’

cciF |
OCREF O’

CCIilF J

CCRx>8

CCRx=0

Down-counting configuration

Down-counting is active when the DIR bit in the TIM1_CR1 register is high. Refer to Down-
counting mode on page 145

In PWM mode 1, the reference signal OC/REF is low as long as TIM1_CNT> TIM1_CCR..
Otherwise, it becomes high. If the compare value in the TIM1_CCRi registers is greater than
the auto-reload value in the TIM1_ARR register, OC/REF is held at 1. Zero percent PWM is
not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in the TIM1_CR1 register are different
from 00 (all the remaining configurations have the same effect on the OC/REF/OC; signals).

The compare flag is set when the counter counts up, down, or up and down depending on
the CMS bits configuration. The direction bit (DIR) in the TIM1_CR1 register is updated by
hardware and is read-only in this mode (refer to Center-aligned mode (up/down counting) on
page 147).
Figure 71 shows some center-aligned PWM waveforms in an example where:
e TIM1_ARR =8,
e PWM mode is PWM mode 1
e The flag is set (arrow symbol in Figure 71) in three different cases:

— When the counter counts down (CMS = 01)

— When the counter counts up (CMS = 10)

— When the counter counts up and down (CMS = 11)

3

DoclD14587 Rev 14 1751467

16-bit advanced control timer (TIM1)

RM0016

176/467

Figure 71. Center-aligned PWM waveforms (ARR = 8)

COUNTERREGISTER J 0 1Y 2) 3y ay sy e 7 s 7 ey s a a2 1 o) 1|

CCRx=4

CCRx=7

CCRx=8

CCRx=8

CCRx=0

OCIREF

CCilF

OCIREF
CCilF

OCIREF

CCilF

OCIREF

CCilF

OCIREF

CCilF

]

CMS=01

CMS=10 ﬁ
CMS=11 /1

/1
/1

CMS=100r 11 |

CMS=01
CMS=10
CMS=11

CMS=01
CMS=10
CMS=11

A A TA

CMS=01

/1 CMS=10
f cMS=11

DoclD14587 Rev 14

3

RMO0016

16-bit advanced control timer (TIM1)

3

One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the clock/trigger controller. Generating the
waveform can be done in output compare mode or PWM mode. Select one-pulse mode by
setting the OPM bit in the TIM1_CR1 register. This makes the counter stop automatically at
the next UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

e In up-counting: CNT< CCRi £ ARR (in particular, 0 < CCRi),
e In down-counting: CNT> CCR/

Figure 72. Example of one-pulse mode

T2]
OC1REF

ocC1

A

TIMX_ARR
TIMx_CCR1 JJ—I
. J_HIF -
< lpplay ><—> t
teuLse

COUNTER

Example

This example shows how to generate a positive pulse on OC1 with a length of tp|; gg and
after a delay of tpg ay @s soon as a positive edge is detected on the TI2 input pin.

Follow the procedure below to use IC2 as trigger 1:

e Map IC2 on TI2 by writing CC2S = 01 in the TIM1_CCMR?2 register

e IC2 must detect a rising edge, so write CC2P = 0 in the TIM1_CCER1 register

e Configure IC2 as trigger for the clock/trigger controller (TRGI) by writing TS = 110 in the
TIM1_SMCR register.

e IC2is used to start the counter by writing SMS to 110 in the TIM1_SMCR register
(trigger mode).

DoclD14587 Rev 14 1771467

16-bit advanced control timer (TIM1) RMO0016

178/467

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler) as follows:

e Thetpg ay is defined by the value written in the TIM1_CCR1 register

e Thetpy sk is defined by the difference between the auto-reload value and the compare
value (TIM1_ARR - TIM1_CCR1).

e To build a waveform with a transition from 0 to 1 when a compare match occurs and a
transition from 1 to 0 when the counter reaches the auto-reload value, enable PWM
mode 2 by writing OC/M = 111 in the TIM1_CCMR1 register. Alternatively, enable the
preload registers by writing OC1PE = 1 in the TIM1_CCMR1 register and ARPE =0 in
the TIM1_CR1 register (optional). In this case, write the compare value in the
TIM1_CCRH1 register and write the auto-reload value in the TIM1_ARR register. Then,
generate an update by setting the UG bit and wait for an external trigger event on TI2.
CC1P is written to 0 in this example.

In the example outlined above, the DIR and CMS bits in the TIM1_CR1 register should be
low.

As only one pulse is required, write 1 in the OPM bit in the TIM1_CR1 register to stop the
counter at the next UEV (when the counter rolls over from the auto-reload value back to 0).

Particular case: OCi fast enable

In one-pulse mode, the edge detection on the Tli input sets the CEN bit which enables the
counter. Then, a comparison between the counter and the compare value makes the output
toggle. However, several clock cycles are needed for these operations and this affects the
the minimum delay (tpg oy Min) that can be obtained.

To output a waveform with the minimum delay, set the OCJFE bits in the TIM1_CCMR/
registers. OC/REF (and OCi) are forced in response to the stimulus, without taking the
comparison into account. The new level of OC/REF (and OC)j) is the same as if a compare
match had occured. The OCIJFE bits acts only if the channel is configured in PWM1 or
PWM2 mode.

Complementary outputs and deadtime insertion

TIM1 can output two complementary signals per channel. It also manages the switching-off
and switching-on instants of the outputs (see Figure 31: TIM1 general block diagram on
page 140).

This time is generally known as deadtime. Deadtimes must be adjusted depending on the
characteristics of the devices connected to the outputs (example, intrinsic delays of level-
shifters, delays due to power switches).

The polarity of the outputs can be selected (main output OCi or complementary OCi N)
independently for each output. This is done by writing to the CCi P and CCj NP bits in the
TIM1_CCER: registers.

The complementary signals OCi and OCj N are activated by a combination of several
control bits: The CCj E and CCi NE bits in the TIM1_CCER| register and, if the break feature
is implemented, the MOE, OIS/, OISi N, OSSI, and OSSR bits in the TIM1_BKR register.
Refer to Table 38: Output control for complementary OCi and OCiN channels with break
feature on page 207 for more details. In particular, the deadtime is activated when switching
to the IDLE state (when MOE falls to 0).

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

3

Deadtime insertion is enabled by setting the CCJj E and CCi NE bits, and the MOE bit if the

break circuit is present. Each channel embeds an 8-bit deadtime generator. It generates two

outputs: OCiand OCi N from a reference waveform, OCi REF. If OCi and OCi N are active

high:

e The OCi output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

e The OCi N output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCi or OCi N), the corresponding
pulse is not generated.

Figure 73, Figure 74, and Figure 75 show the relationships between the output signals of
the deadtime generator and the reference signal OC/ REF (where CCi P =0, CCi NP =0,
MOE =1, CC/E =1, and CCi NE = 1 in these examples)

Figure 73. Complementary output with deadtime insertion

OC/REF \ \

oci \ |
delay
OCIN
delay

Figure 74. Deadtime waveforms with a delay greater than the negative pulse

OCIiREF L

oCi | \

OCIN

Figure 75. Deadtime waveforms with a delay greater than the positive pulse

OCIiREF

OCi

OGIN \

-
delay

The deadtime delay is the same for each of the channels and is programmable with the
DTG bits in the TIM1_DTR register. Refer to Section 17.7.31: Deadtime register
(TIM1_DTR) on page 217 for delay calculation.

DoclD14587 Rev 14 179/467

16-bit advanced control timer (TIM1) RMO0016

Note:

180/467

Re-directing OCJ/REF to OCi or OCiN

In output mode (forced, output compare, or PWM), OC/REF can be re-directed to the OCj or
OCiN outputs by configuring the CCJ/E and CCINE bits in the corresponding TIM1_CCER/
registers. This means bypassing the deadtime generator which allows a specific waveform
(such as PWM or static active level) to be sent on one output while the complementary
output remains at its inactive level. Alternative possibilities are to have both outputs at
inactive level or both outputs active and complementary with deadtime.

When only OCiN is enabled (CCiE = 0, CCIiNE = 1), it is not complemented and becomes
active as soon as OCIREF is high. For example, if CCiNP = 0 then OCiN = OCIiREF. On the
other hand, when both OCi and OCiN are enabled (CCiE = CCIiNE = 1), OCi becomes active
when OCIREF is high whereas OCiN is complemented and becomes active when OCiREF
is low.

Six-step PWM generation for motor control

When complementary outputs are implemented on a channel, preload bits are available on
the OCi M, CCi E and CCi NE bits. The preload bits are transferred to the active bits at the
commutation event (COM). This allows the configuration for the next step to be
programmed in advance and for configuration of all the channels to be changed at the same
time. The COM event can be generated by software by setting the COMG bit in the
TIM1_EGR register or by hardware trigger (on the rising edge of TRGI).

Aflag is set when the COM event occurs (COMIF bit in the TIM1_SR register) which can
generate an interrupt (if the COMIE bit is set in the TIM1_IER register).

Figure 76 shows the behavior of the OCi and OCi N outputs when a COM event occurs, for
three different examples of programmed configurations.

3

DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

Figure 76. Six-step generation, COM example (OSSR = 1)

(CCRY) A /]
counter (CNT) / V V
OCIREF
Write COMG to 1
Commutation (COM) Il
CCiE=1 Write CCE to 0 CCiE=1
CCINE=0 CCMNE=0
OCiM=110 (PWM1) * OCiM=100
ExawpLe 1 O [L
OCMN
CCiE=1 Write CCINE to 1 CCiE=0
CCINE=0 CCINE=1
OCiM=100 (forced inactive) & OCiM=101
OCi
EXAMPLE 2
OCN |
CCiE=1 Write CCiE and CxNE to 0 CCiE=1
CCNE=1 CCINE=0
OCiM=110 (PWM1) ¥ OCM=100
OCi
EXAMPLE 3 S |
OCMN

17.5.8 Using the break function

The break function is often used in motor control. When using the break function, the output
enable signals and inactive levels are modified according to additional control bits (MOE,
OSSR and OSSI bits in the TIM1_BKR register).

When exiting from reset, the break circuit is disabled and the MOE bit is low. The break
function is enabled by setting the BKE bit in the TIM1_BKR register. The break input polarity
can be selected by configuring the BKP bit in the same register. BKE and BKP can be
modified at the same time.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIM1_BKR register). It results in some delays between the asynchronous
and the synchronous signals. For example, if MOE is written to 1 after it has been low, a
delay (dummy instruction) must be inserted before it can be read correctly.

3

DoclD14587 Rev 14 181/467

16-bit advanced control timer (TIM1) RMO0016

Note:

182/467

When a break occurs (selected level on the break input):

e The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state,
or reset state (selected by the OSSI bit). This happens even if the MCU oscillator is off.

e Each output channel is driven with the level programmed in the OISi bits in the
TIM1_OISR register as soon as MOE = 0. If OSSI = 0, the timer releases the enable
output otherwise the enable output remains high.

e When complementary outputs are implemented:

— The outputs are first put in inactive state (depending on the polarity). This is done
asynchronously so that it works even if no clock is provided to the timer.

— If the timer clock is still present, the deadtime generator is reactivated to drive the
outputs with the level programmed in the OIS/ and OIS/ N bits after a deadtime.
Even in this case, OCj and OCi N cannot be driven to their active level together.
Note that because of the resynchronization on MOE, the deadtime duration is a bit
longer than usual (around two 2 ck_tim clock cycles).

e The break status flag (BIF bit in the TIM1_SR1 register) is set. An interrupt can be
generated if the BIE bit in the TIM1_IER register is set.

e Ifthe AOE bitin the TIM1_BKR register is set, the MOE bit is automatically set again at
the next UEV. This can be used to perform a regulation. Otherwise, MOE remains low
until it is written to 1 again. In this case, it can be used for security and the break input
can be connected to an alarm from power drivers, thermal sensors, or any security
components.

The break inputs act on signal level. Thus, the MOE bit cannot be set while the break input
is active (neither automatically nor by software). In the meantime, the status flag BIF cannot
be cleared.

The break can be generated by the break input (BKIN) which has a programmable polarity
and can be enabled or disabled by setting or resetting the BKE bit in the TIM1_BKR register.

In addition to the break inputs and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows the configuration
of several parameters (OCi polarities and state when disabled, OCiM configurations, break
enable, and polarity) to be frozen. Three levels of protection can be selected using the
LOCK bits in the TIM1_BKR register. The LOCK bits can be written only once after an MCU
reset.

Figure 77 shows an example of the behavior of the outputs in response to a break.

Figure 77. Behavior of outputs in response to a break (channel without
complementary output)

BREAK (MOE 1)
OCIREF |
oGi | | |
(CCiP=0, OISi=1) |
: .
oCi
(CCiP=0, OISi=0) | | |
1
oCi
(CCiP=1, OISi=1) ‘ | |
oGi] ‘ '
(CC/P=1, OISi=0)

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

3

Figure 78 shows an example of behavior of the complementary outputs (TIM1 only) in
response to a break.

Figure 78. Behavior of outputs in response to a break (TIM1 complementary outputs)

BREAK (MOE 1)
OCi
(OCiN not implemented, CC/iP=1, OISi=0)
oci —]]
- - -

OCN delay delay delay|
(CCiE=1, CCiP=0, OISi=0, CCiNE=1,
CCiNP=0, OISiN=1)
OCi] | | |
OCMN '
(CCiE=1, CCiP=0, OISi=1, CCiNE=1, delay] [delay delay
CCiNP=1, OISiN=1)
OCi —] l—‘

g~
OCIN delay|
(CCiE=1, CCiP=0, OISi=0, CCINE=0,
CCNP=0, OISiN=1)
OCi m

g~
OCN delay
(CCiE=1, CCiP=0, OISi=1,
CCiNE=0, CCiNP=0, OISIN=0
oci S I e
OCMN
(CCiE=1, CCiP=0, CCINE=0, CCiNP=0,
OISi=0ISN=0 or OISi=0ISiN=1)

DoclD14587 Rev 14 183/467

16-bit advanced control timer (TIM1) RMO0016

17.5.9

184/467

Clearing the OCI/REF signal on an external event

The OCIREF signal of a given channel can be cleared when a high level is detected on
ETREF (if OCICE =1 in the TIM1_CCMR; registers, one enable bit per channel). The OC/REF
signal remains low until the next UEV occurs. This function can be used in output compare
mode and PWM mode only. It does not work in forced mode.

The OCIREF signal can be connected to the output of a comparator and be used for current
handling by configuring the external trigger as follows:

1. Switch off the external trigger prescaler by setting bits ETPS[1:0] in the TIM1_ETR
register to 00.

2. Disable external clock mode 2 by setting the ECE bit in the TIM1_ETR register to 0

3. Configure the external trigger polarity (ETP) and the external trigger filter (ETF) as
desired.

Refer to Figure 47: External trigger input block diagram.

Figure 79 shows the behavior of the OC/REF signal when the ETRF input becomes high, for
both values of the enable bits OCICE. In this example, the timer is programmed in PWM
mode.

Figure 79. ETR activation

(CCRx) ///I /I
counter (CNT) / V V
ETRF | | 1
OCREF
(OCICE=0)
OCREF
(OCICE-1) J LI /(! [
ETRF ETRF
becomes high still high

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

17.5.10

3

Encoder interface mode

Encoder interface mode is typically used for motor control. It can be selected by writing:
e SMS =001 in the TIM1_SMCR register if the counter is counting on T2 edges only
e SMS =010 if the counter is counting on TI1 edges only

e SMS =011 if the counter is counting on both TI1 and TI2 edges

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the
TIM1_CCER1 register. When needed, the input filter can also be programmed.

The two inputs TI1 and TI2 are used to interface an incremental encoder (see Table 37). If
the counter is enabled (when the CEN bit in the TIM1_CR1 register is written to 1), it is
clocked by each valid transition on TI1FP1 or TI2FP2 (see Figure 64: Input stage of TIM 1
channel 1). The transition sequences of the two inputs (TI11 and TI2) are evaluated and
generate count pulses and a direction signal. Depending on the sequence, the counter
counts up or down, and the DIR bit in the TIM1_CR1 register is modified accordingly by
hardware. The DIR bit is calculated at each transition based on inputs from either TI1 or TI2.
without this being dependent on whether the counter is counting pulses on TI1, TI2 or both.

Encoder interface mode acts as an external clock with direction selection. The counter
counts continuously between 0 and the auto-reload value in the TIM1_ARR register (0 to
ARR or ARR down to 0 depending on the direction). TIM1_ARR must be configured before
starting. The capture, compare, prescaler, and trigger output features continue to work as
normal in this mode. Encoder mode and external clock mode 2 are not compatible and must
not be selected together.

In encoder interface mode, the counter is modified automatically depending on the speed
and the direction of the incremental encoder. The content of the counter therefore always
represents the encoder's position. The count direction corresponds to the rotation direction
of the connected sensor. Table 37 summarizes the possible combinations of counting
directions and encoder signals, assuming that TI1 and TI2 do not switch at the same time.

Table 37. Counting direction versus encoder signals

Level on opposite TIM1FP1 signal TI2FP2 signal
. signal
Activeedse | (TPt for Tiz, Rising Falling Rising Falling
TI2FP2 for TI1)

Counting on High Down Up No count No count

TI1 only Low Up Down No count No count
Counting on High No count No count Up Down

TI2 only Low No count No count Down Up
Counting on High Down Up Up Down
both TI1 and

TI2 Low Up Down Down Up

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicates the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

DoclD14587 Rev 14 185/467

16-bit advanced control timer (TIM1) RMO0016

186/467

Figure 80 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near one of the switching points. In the
example below, configuration is as follows:

e CC1S8 =01 (TIM1_CCMRH1 register, IC1 mapped on TI1)
e (CC2S =01 (TIM1_CCMR2 register, IC2 mapped on TI2)
e CC1P =0 (TIM1_CCERT1 register, IC1 non-inverted, IC1=TI1)
e CC2P =0 (TIM1_CCER2 register, IC2 non-inverted, IC2=TI2)

e SMS =011 (TIM1_SMCR register, both inputs are active on both rising and falling
edges).

e CEN =1 (TIM1_CRH1 register, counter is enabled)

Figure 80. Example of counter operation in encoder interface mode

forward jitter backward jitter forward

COUNTER

up down up

Figure 81 gives an example of counter behavior when IC1 polarity is inverted (same
configuration as Figure 80 except that CC1P =1).

Figure 81. Example of encoder interface mode with IC1 polarity inverted

forward jitter backward jitter forward

COUNTER

down up down

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

17.6

3

When the timer is configured in encoder interface mode, it provides information on the
current position of the sensors. Dynamic information, such as speed, acceleration, and
slowdown, can be obtained by measuring the period between two encoder events using a
second timer configured in capture mode. The output of the encoder, which indicates the
mechanical zero, can be used for this purpose. Depending on the time between two events,
the counter can also be read at regular intervals. This can be done by latching the counter
value into a third input capture register, if one is available. In this case, the capture signal
must be periodic and can be generated by another timer.

TIM1 interrupts

TIM1 has eight interrupt request sources, mapped on 2 interrupt vectors:

e Break interrupt

e Trigger interrupt

e Commutation interrupt

e Capture/compare 4 interrupt

e Capture/compare 3 interrupt

e Capture/compare 2 interrupt

e Capture/compare 1 interrupt

e Update interrupt (example: overflow, underflow, and counter initialization)

To use the interrupt features for each interrupt channel used, set the desired interrupt

enable bits (BIE, TIE, COMIE, CCJlE, and UIE) in the TIM1_IER register to enable interrupt
requests.

The different interrupt sources can also be generated by software using the corresponding
bits in the TIM1_EGR register.

DoclD14587 Rev 14 1871467

16-bit advanced control timer (TIM1) RMO0016

17.7 TIM1 registers

17.71 Control register 1 (TIM1_CR1)
Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0
ARPE CMSJ[1:0] DIR OPM URS uDIS CEN
w rw rw rw w w w w

Bit 7 ARPE: Auto-reload preload enable

0: TIM1_ARR register is not buffered through a preload register. It can be written directly
1: TIM1_ARR register is buffered through a preload register

Bits 6:5 CMS[1:0]: Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).
01: Center-aligned mode 1. The counter counts up and down alternately. Output compare interrupt

flags of channels configured in output (CCiS = 00 in TIM1_CCMRi registers) are set only when the
counter is counting down.

10: Center-aligned mode 2. The counter counts up and down alternately. Output compare interrupt

flags of channels configured in output (CCiS = 00 in CCMRI registers) are set only when the counter
is counting up.

11: Center-aligned mode 3. The counter counts up and down alternately. Output compare interrupt

flags of channels configured in output (CCiS = 00 in TIM1_CCMR! registers) are set both when the

counter is counting up and down.

Note: Itis not allowed to switch from edge-aligned mode to center-aligned mode while the counter is
enabled (CEN = 1)

Encoder mode (SMS = 001, 010 or 011 in TIM1_SMCR register) must be disabled in center-
aligned mode.
Bit 4 DIR: Direction

0: Counter used as up-counter
1: Counter used as down-counter

Note: This bit is read-only when the timer is configured in center-aligned mode or encoder mode.

Bit 3 OPM: One-pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit)

3

188/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

Bit 2 URS: Update request source
0: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent when one
of the following events occurs:
- Registers are updated (counter overflow/underflow)
- UG bit is set by software
- Update event is generated through the clock/trigger controller
1: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent only when
registers are updated (counter overflow/underflow).

Bit 1 UDIS: Update disable.
0: AUEV is generated as soon as a counter overflow occurs, a software update is generated, or a
hardware reset is generated by the clock/trigger mode controller. Buffered registers are then loaded
with their preload values.
1: AUEV is not generated and shadow registers keep their value (ARR, PSC, CCRi). The counter
and the prescaler are re-initialized if the UG bit is set or if a hardware reset is received from the
clock/trigger mode controller.

Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled
Note: External clock, trigger gated mode, and encoder mode can work only if the CEN bit has been
previously set by software. However, trigger mode can set the CEN bit automatically by
hardware.

3

DoclD14587 Rev 14 189/467

16-bit advanced control timer (TIM1) RMO0016

17.7.2 Control register 2 (TIM1_CR2)
Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved MMS[2:0] COMS CCPC
Reserved Reserved
r rw | rw rw w w

Bit 7 Reserved

Bits 6:4 MMS[2:0]: Master mode selection
These bits select the information to be sent in master mode to the ADC or to the other timers for
synchronization (TRGO). The combination is as follows:
000: Reset - The UG bit from the TIM1_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in reset mode), the signal on
TRGO is delayed compared to the actual reset.
001: Enable - The counter enable signal is used as trigger output (TRGO). It is used to start several
timers or the ADC to control a window in which a slave timer or the ADC is enabled. The counter
enable signal is generated by a logic OR between the CEN control bit and the trigger input when
configured in trigger gated mode. When the counter enable signal is controlled by the trigger input,
there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description
in TIM1_SMCR register).
010: Update - The update event is selected as trigger output (TRGO)
011: Compare pulse (MATCH1) - The trigger output sends a positive pulse when the CC1IF flag is to
be set (even if it was already high), as soon as a capture or a compare match occurs (TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Bit3 Reserved, must be kept cleared.

Bit 2 COMS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC = 1), they are updated by setting the
COMG bit.

1: When capture/compare control bits are preloaded (CCPC = 1), they are updated by setting the
COMG bit or when an rising edge occurs on TRGI.

Note: This bit acts only on channels with complementary outputs.
Bit 1 Reserved, forced by hardware to 0

Bit 0 CCPC: Capture/compare preloaded control
0: The CCIE, CCINE, CCiP, and CCiNP bits in the TIM1_CCER:I registers and the OCiM bit in the
TIM1_CCMRi registers are not preloaded
1: CCiE, CCINE, CCiP, CCINP and OCiM bits are preloaded, after having been written, they are
updated only when COMG bit is set in the TIM1_EGR register.
Note: This bit acts only on channels with complementary outputs.

3

190/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

17.7.3 Slave mode control register (TIM1_SMCR)
Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0
MSM TS[2:0] Reserved SMS[2:0]
rw rw rw rw r w w rw

Bit 7 MSM: Master/slave mode
0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between TIM1 and another timer (through TRGO).

Bits 6:4 TS[2:0]: Trigger selection

This bit field selects the trigger input (TRGI) to be used to synchronize the counter.
000: Internal trigger ITRO connected to TIM6 TRGO (*)
001: Reserved
010: Reserved
011: Internal trigger ITR3 connected to TIM5 TRGO (*)
100: TI1 edge detector (TI1F_ED)
101: Filtered timer input 1 (TI1FP1)
110: Filtered timer input 2 (TI2FP2)
111: External trigger input (ETRF)

(*): 8K low-density devices only otherwise reserved.

Note: These bits must only be changed when they are not used (e.g. when SMS = 000) to avoid

incorrect edge detections at the transition.

Bit 3 Reserved.

Bits 2:0 SMSJ[2:0]: Clock/trigger/slave mode selection

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the
polarity selected on the external input (see input control register and control register description).
000: Clock/trigger controller disabled - If CEN = 1, the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up or down on TI2FP2 edge depending on TI1FP1 level
010: Encoder mode 2 - Counter counts up or down on TI1TFP1 edge depending on TI2FP2 level
011: Encoder mode 3 - Counter counts up or down on both TI1FP1 and TI2FP2 edges depending on
the level of the other input.
100: Reset mode - Rising edge of the selected trigger signal (TRGI) re-initializes the counter and
generates an update of the registers.
101: Trigger gated mode - The counter clock is enabled when the trigger signal (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the
counter are controlled.
110: Trigger standard mode - The counter starts at a rising edge of the trigger TRGI (but, it is not
reset). Only the start of the counter is controlled.
111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter

Note: Trigger gated mode must not be used if TI1TF_ED is selected as the trigger input (TS = 100).

TI1F_ED outputs 1 pulse for each transition on TI1F, whereas trigger gated mode checks the
level of the trigger signal.

3

DoclD14587 Rev 14 191/467

16-bit advanced control timer (TIM1) RMO0016

17.7.4 External trigger register (TIM1_ETR)
Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0
ETP ECE ETPS[1:0] ETF[3:0]
rw rw rw rw rw w w rw

Bit 7 ETP: External trigger polarity
This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

3

192/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

Bit 6 ECE: External clock enable

This bit enables external clock mode 2.

0: External clock mode 2 disabled

1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.

Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRG/

connected to ETRF (SMS = 111 and TS = 111 in the TIM1_SMCR register).
It is possible to simultaneously use external clock mode 2 with the following modes: Trigger
standard mode, trigger reset mode, and trigger gated mode. Nevertheless, TRGI must not be
connected to ETRF in these cases (TS bits must not be 111 in the TIM1_SMCR register).
If external clock mode 1 and external clock mode 2 are enabled at the same time, the external
clock input is ETRF.

Bits 5:4 ETPS: External trigger prescaler
The ETRP frequency must be, at most,1/4 of fyasTeR frequency. A prescaler can be enabled to
reduce ETRP frequency. It is useful when inputting fast external clocks.
00: Prescaler off
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

Bits 3:0 ETF: External trigger filter.
This bitfield defines the frequency used to sample the ETRP signal and the length of the digital filter
applied to it. The digital filter is made of an event counter in which N events are needed to validate a
transition on the output:
0000: No filter, sampling is done at fyasTER

0001: fsampLiNG=fmAsTER, N = 2
0010: fsampLinG=fmAsTER, N = 4
0011: fsampLING=TMASTER, N = 8
0100: fsampLiNG=fmASTER/2, N =
0101: fsampLinG=fmAsTER/2, N =
0110: fsampLING=TMASTER/4, N =
0111: fsampLiNG=TmasTER/4, N =
1000: fsampLING=TmASTER/8, N =
1001: fsampLING=TmASTER/8, N =
1010: fsampLING=TmasTER/16, N
1011: fsampLING=fmasTER/16, N =
1100: fsampLING=fmasTER/16, N =
1101: fsampLING=fmAsTER/32, N =
1110: fsampLinG=fMASTER/32, N =
1111 fsampLng=TmasTER/32, N =

3

DoclD14587 Rev 14 193/467

16-bit advanced control timer (TIM1)

RM0016

17.7.5

Interrupt enable register (TIM1_IER)
Address offset: 0x04

Reset value: 0x00

BIE

TIE COMIE CC4lE CC3IE CC2IE

CCI1IE

UIE

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit0

194/467

BIE: Break interrupt enable
0: Break interrupt disabled
1: Break interrupt enabled

TIE: Trigger interrupt enable
0: Trigger interrupt disabled
1: Trigger interrupt enabled

COMIE: Commutation interrupt enable
0: Commutation interrupt disabled
1: Commutation interrupt enabled

CCAIE: Capture/compare 4 interrupt enable
0: CC4 interrupt disabled
1: CC4 interrupt enabled

CC3IE: Capture/compare 3 interrupt enable
0: CC3 interrupt disabled
1: CC3 interrupt enabled

CC2IE: Capture/compare 2 interrupt enable
0: CC2 interrupt disabled
1: CC2 interrupt enabled

CCA1IE: Capture/compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled

UIE: Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

DoclD14587 Rev 14

3

RMO0016

16-bit advanced control timer (TIM1)

17.7.6

Status register 1 (TIM1_SR1)
Address offset: 0x05

Reset value: 0x00

6 5 4 3 2 1 0

BIF

TIF COMIF CC4lF CC3IF CC2IF CC1IF UIF

rc_w0

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_wO0 rc_wO0

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

3

BIF: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by software if
the break input is not active.

0: No break event has occurred

1: An active level has been detected on the break input

TIF: Trigger interrupt flag

This flag is set by hardware on a trigger event (the active edge is detected on a TRGI signal, both
edges are detected if trigger gated mode is selected). It is cleared by software.

0: No trigger event has occurred

1: Trigger interrupt pending

COMIF: Commutation interrupt flag

This flag is set by hardware on a COM (when capture/compare control bits - CC/E, CCINE, OCiM -
have been updated). It is cleared by software.

0: No COM has occurred

1: COM interrupt pending

CCAIF: Capture/compare 4 interrupt flag
Refer to CC1IF description

CC3IF: Capture/compare 3 interrupt flag
Refer to CC1IF description

DoclD14587 Rev 14 195/467

16-bit advanced control timer (TIM1) RMO0016

Bit 2 CC2IF: Capture/compare 2 interrupt flag
Refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag
If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value, with some exception in

center-aligned mode (refer to the CMS bits from TIM1_CR1 register description). It is cleared by
software.

0: No match
1: The content of the counter register TIM1_CNT matches the content of the TIM1_CCR1 register

Note: When the contents of TIMx_CCRi are greater than the contents of TIMx_ARR, the CCilF bit

goes high on the counter overflow (in up-counting and up/down-counting modes) or underflow
(in down-counting mode)

If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIM1_CCR1L
register.

0: No input capture has occurred

1: The counter value has been captured in the TIM1_CCR1 register (an edge has been detected on
IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update has occurred

1: Update interrupt pending. This bit is set by hardware when the registers are updated:
— Atoverflow or underflow if UDIS = 0 in the TIM1_CR1 register

— When CNT is re-initialized by software using the UG bit in TIM1_EGR register, if URS =0
and UDIS = 0 in the TIM1_CR1 register.

— When CNT is re-initialized by a trigger event (refer to the TIM1_SMCR register description),
if URS = 0 and UDIS = 0 in the TIM1_CR1 register.

17.7.7 Status register 2 (TIM1_SR2)
Address offset: 0x06

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved CCA4O0F CC30F CC20F CC10F Reserved
r rc_w0 rc_w0 rc_w0 rc_wO0 r

Bits 7:5 Reserved, must be kept cleared

Bit 4 CCA4OF: Capture/compare 4 overcapture flag
Refer to CC10F description

Bit 3 CC3OF: Capture/compare 3 overcapture flag
Refer to CC10F description

3

196/467 DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

Bit 2

Bit 1

Bit 0

17.7.8

CC20F: Capture/compare 2 overcapture flag
Refer to CC10F description

CC10F: Capture/compare 1 overcapture flag
This flag is set by hardware only when the corresponding channel is configured in input capture
mode. It is cleared by software by writing it to 0.
0: No overcapture has been detected
1: The counter value has been captured in TIM1_CCR1 register while CC1IF flag was already set

Reserved, must be kept cleared.

Event generation register (TIM1_EGR)
Address offset: 0x07

Reset value: 0x00

BG

TG COMG CC4G CC3G CC2G CC1G UG

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

3

BG: Break generation
This bit is set by software to generate an event. It is automatically cleared by hardware.
0: No action

1: A break event is generated. The MOE bit is cleared and the BIF flag is set. An interrupt is
generated if enabled by the BIE bit.

TG: Trigger generation
This bit is set by software to generate an event. It is automatically cleared by hardware.
0: No action
1: The TIF flag is set in TIM1_SR1 register. An interrupt is generated if enabled by the TIE bit.

COMG: Capture/compare control update generation
This bit can be set by software and is automatically cleared by hardware.
0: No action
1: When the CCPC bit in the TIM1_CR2 register is set, it allows the CC/E, CC/NE CCiP, CCiNP, and
OCiM bits to be updated.

Note: This bit acts only on channels that have a complementary output.

CCA4G: Capture/compare 4 generation
Refer to CC1G description.

CC3G: Capture/compare 3 generation
Refer to CC1G description.

DoclD14587 Rev 14 197/467

16-bit advanced control timer (TIM1) RMO0016

Bit 2 CC2G: Capture/compare 2 generation

Refer to CC1G description.

Bit 1 CC1G: Capture/compare 1 generation.

17.7.9

198/467

This bit is set by software to generate an event. It is automatically cleared by hardware.

0: No action

1: A capture/compare event is generated on channel 1:

If the CC1 channel is configured in output mode:

The CC1IF flag is set and the corresponding interrupt request is sent if enabled.

If the CC1 channel is configured in input mode:

The current value of the counter is captured in the TIM1_CCR1 register. The CC1IF flag is set, and
the corresponding interrupt request is sent if enabled. The CC10F flag is set if the CC1IF flag is
already high.

Bit 0 UG: Update generation

This bit can be set by software and is automatically cleared by hardware.

0: No action

1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is also cleared. The counter is cleared if center-aligned mode is selected or if DIR = 0 (up-
counting). Otherwise, it takes the auto-reload value (TIM1_ARR) if DIR = 1 (down-counting).

Capture/compare mode register 1 (TIM1_CCMR1)
Address offset: 0x08

Reset value: 0x00

This channel can be used in input (capture mode) or in output (compare mode). The
direction of the channel is defined by configuring the CC18S bits. All the other bits of this
register have a different function in input and output mode. For a given bit, OCii describes its
function when the channel is configured in output, ICii describes its function when the
channel is configured in input. Therefore, be aware that the same bit can have a different
meaning for the input and output stage.

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

Channel configured in output

7 6 5 4 3 2 1 0
OC1CE OC1M[2:0] OC1PE OC1FE CC18[1:0]
w w | w | w w w w | w

Bit 7 OC1CE: Output compare 1 clear enable

This bit is used to enable the clearing of the channel 1 output compare signal (OC1REF) by an
external event on the TIM1_ETR pin (see Section 17.5.9 on page 184).

0: OC1REF is not affected by the ETRF input signal (derived from the TIM1_ETR pin)

1: OC1REF is cleared as soon as a high level is detected on ETRF input signal (derived from the
TIM1_ETR pin).

Bits 6:4 OC1M: Output compare 1 mode

3

These bits define the behavior of the output reference signal, OC1REF, from which OC1 is derived.
OC1REF is active high whereas OC1 active level depends on the CC1P bit.

000: Frozen - The comparison between the output compare register TIM1_CCR1 and the counter
register TIM1_CNT has no effect on the outputs.

001: Set channel 1 to active level on match - OC1REF signal is forced high when the counter
register TIM1_CNT matches the capture/compare register 1 (TIM1_CCR1).

010: Set channel 1 to inactive level on match - OC1REF signal is forced low when the counter
register TIM1_CNT matches the capture/compare register 1 (TIM1_CCR1).

011: Toggle - OC1REF toggles when TIM1_CNT = TIM1_CCR1

100: Force inactive level - OC1REF is forced low

101: Force active level - OC1REF is forced high

110: PWM mode 1 - In up-counting, channel 1 is active as long as TIM1_CNT < TIM1_CCR1,
otherwise, the channel is inactive. In down-counting, channel 1 is inactive (OC1REF = 0) as long as
TIM1_CNT > TIM1_CCRH1, otherwise, the channel is active (OC1REF = 1).

111: PWM mode 2 - In up-counting, channel 1 is inactive as long as TIM1_CNT < TIM1_CCR1,
otherwise, the channel is active. In down-counting, channel 1 is active as long as TIM1_CNT >
TIM1_CCR1, otherwise, the channel is inactive.

Note: These bits can no longer be modified while LOCK level 3 has been programmed (LOCK bits in

TIM1_BKR register) and CC1S = 00 (the channel is configured in output).

In PWM mode 1 or 2, the OCIREF level changes only when the result of the comparison
changes or when the output compare mode switches from “frozen” mode to “PWM” mode (refer
to PWM mode on page 174 for more details).

On channels that have a complementary output, this bitfield is preloaded. If the CCPC bit is set
in the TIM1_CR2 register, the OCM active bits take the new value from the preload bits only
when a COM is generated.

DoclD14587 Rev 14 199/467

16-bit advanced control timer (TIM1) RMO0016

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIM1_CCR1 disabled. TIM1_CCR1 can be written at anytime. The new value
is taken into account immediately.

1: Preload register on TIM1_CCR1 enabled. Read/write operations access the preload register.
TIM1_CCR1 preload value is loaded in the shadow register at each UEV.

Note: These bits can no longer be modified while LOCK level 3 has been programmed (LOCK bits in

TIM1_BKR register) and CC1S = 00 (the channel is configured in output).

For correct operation, preload registers must be enabled when the timer is in PWM mode. This
is not mandatory in one-pulse mode (OPM bit set in TIM1_CR1 register).

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.

0: CC1 behaves normally depending on the counter and CCR1 values, even when the trigger is on.
The minimum delay to activate CC1 output when an edge occurs on the trigger input, is 5 clock
cycles.

1: An active edge on the trigger input acts like a compare match on the CC1 output. If this happens,
OC is set to the compare level irrespective of the result of the comparison. The delay to sample the
trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel
is configured in PWM1 or PWM2 mode.

Bits 1:0 CC18[1:0]: Capture/compare 1 selection

200/467

This bitfield defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output

01: CC1 channel is configured as input, IC1 is mapped on TI1FP1

10: CC1 channel is configured as input, IC1 is mapped on TI2FP1

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register).

Note: CC1S bits are writable only when the channel is off (CC1E = 0 in TIM1_CCER1).

3

DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

Channel configured in input

IC1F[3:0] IC1PSC[1:0] CC1S[1:0]

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bitfield defines fsampLing, the frequency used to sample TI1 input and the length of the digital

filter applied to TI1. The digital filter is made of an event counter in which N events are needed to

validate a transition on the output:

0000: No filter, fSAMPUNG: fMASTER

0001: fsampLING=fmasTER: N = 2

0010: fsampLING=fMASTER. N = 4

0011: fsampLNG=fMASTER, N = 8

0100: fsampLING=fmaSTER/2, N = 6

0101: fsampLING=fmaSTER/2, N = 8
0110: fsampLING=fMASTER/4, N = 6
0111: fsampLING=fmasTER/4. N = 8
1000: fsampLING=fmASTERS, N = 6
1001: fsampLING=fmASTER/S, N = 8
1010: fsampLNG=fmaSTER/16. N = 5
1011: fsampLING=fMASTER/16, N = 6
1100: fsampLING=fMASTER/16, N = 8
1101: fsampLING=fMASTER/32, N = 5
1110: fsampLING=fmAsTER/32, N = 6
1111: fsampLING=fmasTER/32, N = 8

Note: Even on channels that have a complementary output, this bit field is not preloaded and does

not take into account the content of the CCPC bit (in the TIM1_CR2 register).

Bits 3:2 IC1PSC[1:0]: Input capture 1 prescaler
This bitfield defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as
soon as CC1E = 0 (TIM1_CCER register).
00: No prescaler, capture is made each time an edge is detected on the capture input
01: Capture is made once every 2 events
10: Capture is made once every 4 events
11: Capture is made once every 8 events

Bits 1:0 CC18[1:0]: Capture/compare 1 selection
This bitfield defines the direction of the channel (input/output) and the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1FP1
10: CC1 channel is configured as input, IC1 is mapped on TI2FP1
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register).
Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIM1_CCER1).

3

DoclD14587 Rev 14 201/467

16-bit advanced control timer (TIM1) RMO0016

17.7.10 Capture/compare mode register 2 (TIM1_CCMR2)
Address offset: 0x09
Reset value: 0x00
Channel configured in output
7 6 5 4 3 2 1 0
OC2CE OC2M[2:0] OC2PE OC2FE CC28[1:0]
w rw | w rw w w w w
Bit 7 OC2CE: Output compare 2 clear enable
Bits 6:4 OC2M(2:0]: Output compare 2 mode
Bit 3 OC2PE: Output compare 2 preload enable
Bit 2 OC2FE: Output compare 2 fast enable
Bits 1:0 CC2S[1:0]: Capture/compare 2 selection
This bitfield defines the direction of the channel (input/output) and the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2
11: Reserved
Note: CC2S bits are writable only when the channel is off (CC2E and CC2NE = 0 and updated in
TIM1_CCER1).
Channel configured in input
7 6 5 4 3 2 1 0
IC2F[3:0] IC2PSC[1:0] CC2S[1:0]
Bits 7:4 IC2F: Input capture 2 filter
Bits 3:2 1C2PSC(1:0]: Input capture 2 prescaler
Bits 1:0 CC28[1:0]: Capture/compare 2 selection
This bitfield defines the direction of the channel (input/output) and the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register).
Note: CC2S bits are writable only when the channel is off (CC2E and CC2NE = 0 and updated in
TIM1_CCER1).
202/467 DoclD14587 Rev 14 Kys

RMO0016 16-bit advanced control timer (TIM1)

17.7.11 Capture/compare mode register 3 (TIM1_CCMR3)
Address offset: 0x0A

Reset value: 0x00

Refer to the CCMR1 register description above.

Channel configured in output

7 6 5 4 3 2 1 0
OC3CE OC3M[2:0] OC3PE OC3FE CC38[1:0]
w w | w w w w w w

Bit 7 OC3CE: Output compare 3 clear enable
Bits 6:4 OC3M[2:0]: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC38S[1:0]: Capture/compare 3 selection
This bitfield defines the direction of the channel (input/output) and the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3FP3
10: CC3 channel is configured as input, IC3 is mapped on TI4FP3
11: Reserved
Note: CC3S bits are writable only when the channel is off (CC3E and CC3NE = 0 and updated in
TIM1_CCER?2).

Channel configured in input

IC3F[3:0] IC3PSC[1:0] CC38[1:0]

| 'w | 'w 'w w w w w

Bits 7:4 IC3F: Input capture 3 filter
Bits 3:2 IC3PSCJ[1:0]: Input capture 3 prescaler

Bits 1:0 CC38[1:0]: Capture/compare 3 selection
This bitfield defines the direction of the channel (input/output) and the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3FP3
10: CC3 channel is configured as input, IC3 is mapped on TI4FP3
11: Reserved
CC3S bits are writable only when the channel is off (CC3E and CC3NE = 0 and updated in
TIM1_CCER?2).

3

DoclD14587 Rev 14 203/467

16-bit advanced control timer (TIM1) RMO0016

17.7.12

Capture/compare mode register 4 (TIM1_CCMR4)
Address offset: 0xB

Reset value: 0x00

Refer to the CCMR1 register description above.

Channel configured in output

6 5 4 3 2 1 0

OCA4CE

0OC4M[2:0] OC4PE OC4FE CC48[1:0]

w | w w w w w w

Bit 7
Bits 6:4
Bit 3
Bit 2
Bits 1:0

OCA4CE: Output compare 4 clear enable
OC4M[2:0]: Output compare 4 mode
OCA4PE: Output compare 4 preload enable
OC4FE: Output compare 4 fast enable

CC4S][1:0]: Capture/compare 4 selection
This bitfield defines the direction of the channel (input/output) and the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4FP4
10: CC4 channel is configured as input, IC4 is mapped on TI3FP4
11: Reserved
Note: CC4S bits are writable only when the channel is off (CC4E and CC4NE = 0 and updated in
TIM1_CCER?2).

Channel configured in input

IC4F[3:0] IC4PSCI[1:0] CC4S[1:0]

| 'w | 'w 'w w w w w

Bits 7:4
Bits 3:2
Bits 1:0

204/467

IC4F: Input capture 4 filter
IC4PSC[1:0]: Input capture 4 prescaler

CC48[1:0]: Capture/compare 4 selection
This bitfield defines the direction of the channel (input/output) and the used input.
00: CC4 channel is configured as output.
01: CC4 channel is configured as input, IC4 is mapped on TI4FP4.
10: CC4 channel is configured as input, IC4 is mapped on TI3FP4.
11: Reserved
Note: CC4S bits are writable only when the channel is off (CC4E and CC4NE = 0 and updated in
TIM1_CCER?2).

3

DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)
17.7.13 Capture/compare enable register 1 (TIM1_CCER1)
Address offset: 0x0C
Reset value: 0x00
7 6 5 4 3 2 1 0
CC2NP CC2NE cc2pP CC2E CCINP CC1NE CC1P CC1E
rw rw rw rw rw w w rw
Bit 7 CC2NP: Capture/compare 2 complementary output polarity
Refer to CC1NP description.
Bit 6 CC2NE: Capture/compare 2 complementary output enable
Refer to CC1NE description.
Bit 5 CC2P: Capture/compare 2 output polarity
Refer to CC1P description.
Bit4 CC2E: Capture/compare 2 output enable
Refer to CC1E description.
Bit 3 CC1NP: Capture/compare 1 complementary output polarity

3

0: OC1N active high
1: OC1N active low

Note: This bit is no longer writable while LOCK level 2 or 3 have been programmed (LOCK bits in

TIM1_BKR register) and CC1S = 00 (the channel is configured in output).

On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in
the TIM1_CR2 register, the CC1NP active bit takes the new value from the preload bit only

when a COM is generated.

DoclD14587 Rev 14

205/467

16-bit advanced control timer (TIM1) RMO0016

Bit 2 CC1NE: Capture/compare 1 complementary output enable

0: Off - OC1N is not active. OC1N level is then a function of the MOE, OSSI, OSSR, OIS1, OIS1N

and CC1E bits.

1: On - OC1N signal is output on the corresponding output pin depending on the MOE, OSSI,

OSSR, 0OIS1, OIS1N and CC1E bits.

Note: On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in

the TIM1_CR2 register, the CC1NE active bit takes the new value from the preload bit when a
COM is generated.

Bit 1 CC1P: Capture/compare 1 output polarity

CC1 channel configured as output:

0: OC1 active high

1: OC1 active low

CC1 channel configured as input for trigger function (see Figure 64):

0: Trigger on a high level or rising edge of TI1F

1: Trigger on a low level or falling edge of TI1F

CC1 channel configured as input for capture function (see Figure 64):

0: Capture on a rising edge of TI1F or TI2F

1: Capture on a falling edge of TI1F or TI2F

Note: This bit is no longer writable while LOCK level 2 or 3 have been programmed (LOCK bits in

TIM1_BKR register).
On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in
the TIM1_CR2 register, the CC1P active bit takes the new value from the preload bit when a
COM is generated.

Bit 0 CC1E: Capture/compare 1 output enable
CC1 channel is configured as output:

0: Off - OC1 is not active. OC1 level is then a function of the MOE, OSSI, OSSR, OIS1, OIS1N and

CC1NE bits.

1: On - OC1 signal is output on the corresponding output pin depending on the MOE, OSSI, OSSR,

OIS1, OIS1N and CC1NE bits.

CC1 channel is configured as input:

This bit determines if a capture of the counter value can be made in the input capture/compare

register 1 (TIM1_CCR1) or not.

0: Capture disabled

1: Capture enabled

Note: On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in

the TIM1_CR2 register, the CC1E active bit takes the new value from the preload bit only when
a COM is generated.

3

206/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

Table 38. Output control for complementary OCi and OCiN channels with break feature(!)

Control bits Output states
MOE ossli OSSR CCiE | CCIiNE OCi OCiN
0 0 0 Output disabled Output disabled
(not driven by the timer) (not driven by the timer)
0 0 1 Output disabled OCIREF + polarity OCIN =
(not driven by the timer) OCIREF xor CCIiNP
0 1 0 OCIREF + polarity OCj = Output disabled
OCIREF xor CCiP (not driven by the timer)
Complementary to OC/REF
0 1 1 OCIREF + polarity + deadtime | (not OC/REF) + polarity +
deadtime
1 x(2) 1 0 0 Output disabled Output disabled
(not driven by the timer) (not driven by the timer)
Off state . . o
1 0 1 | (output enabled with inactive 88.EEE ;oﬁc’c';aé'l.R'Ff)C’N =
state) OCi = CCiP
. . . Off state
1 1 0 88;25:; :('OF;OéaC;litF))’ OCi= (output enabled with inactive
state) OCIN = CCiNP
Complementary to OC/REF
1 1 1 OCIREF + polarity + deadtime | (not OC/REF) + polarity +
deadtime
0
0
0 Output disabled (not driven by the timer)
0
0 x® X X
1 Off state (output enabled with inactive state)
1 Asynchronously: OCi= CC/jP and OC/N = CC/NP
Then if the clock is present: OCi = OISjand OCIN = OISIN after
1 a deadtime, assuming that OISj and OIS/N do not correspond
1 with OCjand OCIN in active state

1. Never set CCiE = CCNiE = 0 when the channel is used. When the channel is not used, program CCiP = CCiNP = OISi =
OISiN = 0 otherwise.

2. Don't care

Note: The state of the external I/O pins connected to the OCi channels depends on the OCi
channel state and the GPIO registers.

3

DoclD14587 Rev 14 207/467

16-bit advanced control timer (TIM1)

RM0016

17.7.14 Capture/compare enable register 2 (TIM1_CCER2)
Address offset: 0x0D

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved CC4P CC4E CC3NP CC3NE CC3P CC3E
r rw rw w w w w
Bits 7:6 Reserved
Bit 5 CC4P: Capture/compare 4 output polarity
Refer to CC1P description.
Bit 4 CCA4E: Capture/compare 4 output enable
Refer to CC1E description.
Bit 3 CC3NP: Capture/compare 3 complementary output polarity
Refer to CC1NP description.
Bit 2 CC3NE: Capture/compare 3 complementary output enable
Refer to CC1NE description.
Bit 1 CC3P: Capture/compare 3 output polarity
Refer to CC1P description.
Bit 0 CC3E: Capture/compare 3 output enable
Refer to CC1E description.
17.7.15 Counter high (TIM1_CNTRH)
Address offset: OxOE
Reset value: 0x00
7 6 5 4 3 2 1 0
CNT[15:8]

Bits 7:0 CNT[15:8]: Counter value (MSB)

208/467 DoclD14587 Rev 14

3

RMO0016 16-bit advanced control timer (TIM1)

17.7.16 Counter low (TIM1_CNTRL)
Address offset: OxOF

Reset value: 0x00

CNT[7:0]

Bits 7:0 CNT[7:0]: Counter value (LSB).

17.7.17 Prescaler high (TIM1_PSCRH)
Address offset: 0x10

Reset value: 0x00

PSC[15:8]

PSC[15:8]: Prescaler value (MSB)

The prescaler value divides the CK_PSC clock frequency. The counter clock frequency fck onT IS

Bits 7:0 equal to fck_psc / (PSCR[15:0]+1). PSCR contain the value which is loaded in the active prescaler
register at each UEV (including when the counter is cleared through the UG bit of the TIM1_EGR
register or through the trigger controller when configured in trigger reset mode). A UEV must be
generated so that a new prescaler value can be taken into account.

17.7.18 Prescaler low (TIM1_PSCRL)
Address offset: Ox11

Reset value: 0x00

PSC[7:0]

Bits 7:0 PSC[7:0]: Prescaler value (LSB)
The prescaler value divides the CK_PSC clock frequency. The counter clock frequency fck onT IS
equal to fok psc / (PSCR[15:0]+1). PSCR contains the value which is loaded in the active prescaler
register at each UEV (including when the counter is cleared through the UG bit of the TIM1_EGR
register or through the trigger controller when configured in trigger reset mode).
A UEV must be generated so that a new prescaler value can be taken into account.

3

DoclD14587 Rev 14 209/467

16-bit advanced control timer (TIM1) RMO0016

17.7.19 Auto-reload register high (TIM1_ARRH)
Address offset: 0x12

Reset value: OxFF

ARR[15:8]

Bits 7:0 ARR[15:8]: Auto-reload value (MSB)

ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 17.3: TIM1 time
base unit on page 141 for more details about ARR update and behavior. The counter is blocked
while the auto-reload value is null.

17.7.20 Auto-reload register low (TIM1_ARRL)
Address offset: 0x13

Reset value: OxFF

ARR([7:0]

Bits 7:0 ARR([7:0]: Auto-reload value (LSB).

17.7.21 Repetition counter register (TIM1_RCR)
Address offset: 0x14

Reset value: 0x00

REP[7:0]

Bits 7:0 REP[7:0]: Repetition counter value.

When the preload registers are enabled, these bits allow the user to set up the update rate of the
compare registers (periodic transfers from preload to shadow registers) as well as the update
interrupt generation rate if the update interrupt is enabled (UIE=1).
Each time the REP_CNT related down-counter reaches zero, a UEV is generated and it restarts
counting from the REP value. As REP_CNT is reloaded with the REP value only at the repetition
update event U_RC, any write to the TIM1_RCR register is not taken into account until the next
repetition update event.
In PWM mode (REP+1) corresponds to:

— The number of PWM periods in edge-aligned mode

— The number of half PWM periods in center-aligned mode

3

210/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)

17.7.22 Capture/compare register 1 high (TIM1_CCR1H)

Address offset: 0x15

Reset value: 0x00

CCR1[15:8]

Bits 7:0 CCR1[15:8]: Capture/compare 1 value (MSB)
If the CC1 channel is configured as output (CC1S bits in TIM1_CCMR1 register):
The value of CCR1 is loaded permanently into the actual capture/compare 1 register if the preload
feature is enabled (OC1PE bit in TIMx_CCMR1). Otherwise, the preload value is copied in the active
capture/compare 1 register when a UEV occurs. The active capture/compare register contains the
value which is compared to the counter register, TIMx_CNT, and signalled on the OC1 output.
If the CC1 channel is configured as input (CC18S bits in TIM1_CCMR1 register):
The value of CCR1 is the counter value transferred by the last input capture 1 event (IC1). In this
case, these bits are read only.

17.7.23 Capture/compare register 1 low (TIM1_CCR1L)

Address offset: 0x16

Reset value: 0x00

CCRI[7:0]

3

Bits 7:0 CCR1[7:0]: Capture/compare 1 value (LSB)

DoclD14587 Rev 14 211/467

16-bit advanced control timer (TIM1) RMO0016

17.7.24 Capture/compare register 2 high (TIM1_CCR2H)

Address offset: 0x17

Reset value: 0x00

CCR2[15:8]

Bits 7:0 CCR2[15:8]: Capture/compare 2 value (MSB)
If the CC2 channel is configured as output (CC2S bits in TIM1_CCMR2 register):
The value of CCR2 is loaded permanently into the actual capture/compare 2 register if the preload
feature is not enabled (OC2PE bit in TIM1_CCMR2). Otherwise, the preload value is copied in the
active capture/compare 2 register when a UEV occurs.The active capture/compare register contains
the value which is compared to the counter register, TIM1_CNT, and signalled on the OC2 output.
If the CC2 channel is configured as input (CC2S bits in TIM1_CCMR2 register):
The value of CCR2 is the counter value transferred by the last input capture 2 event (IC2). In this
case, these bits are read only.

17.7.25 Capture/compare register 2 low (TIM1_CCR2L)

Address offset: 0x18

Reset value: 0x00

CCR2[7:0]

212/467 DoclD14587 Rev 14

Bits 7:0 CCR2[7:0]: Capture/compare value (LSB)

3

RMO0016 16-bit advanced control timer (TIM1)

17.7.26 Capture/compare register 3 high (TIM1_CCR3H)

Address offset: 0x19

Reset value: 0x00

CCR3[15:8]

Bits 7:0 CCR3[15:8]: Capture/compare value (MSB)
If the CC3 channel is configured as output (CC3S bits in TIM1_CCMRS3 register):
The value of CCR3 is loaded permanently into the actual capture/compare 3 register if the preload
feature is not enabled (OC3PE bit in TIM1_CCMR3). Otherwise, the preload value is copied in the
active capture/compare 3 register when a UEV occurs.The active capture/compare register contains
the value which is compared to the counter register, TIM1_CNT, and signalled on the OC3 output.
If the CC3 channel is configured as input (CC3S bits in TIM1_CCMRS register):
The value of CCR3 is the counter value transferred by the last input capture 3 event (IC31).

17.7.27 Capture/compare register 3 low (TIM1_CCR3L)

Address offset: Ox1A

Reset value: 0x00

CCR3[7:0]

3

Bits 7:0 CCR3[7:0]: Capture/compare value (LSB)

DoclD14587 Rev 14 213/467

16-bit advanced control timer (TIM1) RMO0016

17.7.28 Capture/compare register 4 high (TIM1_CCR4H)
Address offset: Ox1B

Reset value: 0x00

CCR4[15:8]

Bits 7:0 CCR4[15:8]: Capture/compare value (MSB)
If the CC4 channel is configured as output (CC4S bits in TIM1_CCMR4 register):
The value of CCR4 is loaded permanently into the actual capture/compare 4 register if the preload
feature is not enabled (OC4PE bit in TIM1_CCMRA4). Otherwise, the preload value is copied in the
active capture/compare 4 register when a UEV occurs.The active capture/compare register contains
the value which is compared to the counter register, TIM1_CNT, and signalled on the OC4 output.
If the CC4 channel is configured as input (CC4S bits in TIM1_CCMR4 register):
The value of CCR4 is the counter value transferred by the last input capture 4 event (IC4).

17.7.29 Capture/compare register 4 low (TIM1_CCRA4L)
Address offset: 0x1C

Reset value: 0x00

CCR4[7:0]

Bits 7:0 CCR4[7:0]: Capture/compare value (LSB)

3

214/467 DoclD14587 Rev 14

RMO0016 16-bit advanced control timer (TIM1)
17.7.30 Break register (TIM1_BKR)
Address offset: 0x1D
Reset value: 0x00
7 6 5 4 3 2 1 0
MOE AOE BKP BKE OSSR 0ssl LOCK
w rw rw rw w w w w
Bit 7 MOE: Main output enable
This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by
software or automatically depending on the AOE bit. It acts only on the channels which are
configured in output.
0: OC and OCN outputs are disabled or forced to idle state
1: OC and OCN outputs are enabled if their respective enable bits are set (CCJE in TIM1_CCER/
registers).
See OC/OCN enable description for more details (Section 17.7.13 on page 205).
Bit 6 AOE: Automatic output enable
0: MOE can be set only by software
1: MOE can be set by software or automatically at the next UEV (if the break input is not active)
Note: This bit can no longer be modified while LOCK level 1 has been programmed (LOCK bits in the
TIM1_BKR register).
Bit 5 BKP: Break polarity
0: Break input BKIN is active low
1: Break input BKIN is active high
Note: This bit can no longer be modified while LOCK level 1 has been programmed (LOCK bits in the
TIM1_BKR register).
Bit 4 BKE: Break enable

3

0: Break input (BKIN) disabled
1: Break input (BKIN) enabled

Note: This bit can no longer be modified while LOCK level 1 has been programmed (LOCK bits in the
TIM1_BKR register).

DoclD14587 Rev 14 215/467

16-bit advanced control timer (TIM1) RMO0016

Bit 3

Bit 2

Bits 1:0

Note:

216/467

OSSR: Off state selection for Run mode
This bit is used when MOE = 1 on channels with a complementary output which are configured as
outputs. See OC/OCN enable description for more details (Section 17.7.13).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal = 0)
1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CC/E = 1 or
CCINE =1, after which the OC/OCN enable output signal = 1

Note: This bit can no longer be modified while LOCK level 2 has been programmed (LOCK bits in

TIM1_BKR register).

OSSI: Off state selection for idle mode
This bit is used when MOE = 0 on channels configured as outputs. See OC enable description for
more details (Section 17.7.13).
0: When inactive, OCi outputs are disabled (OC/ enable output signal = 0)
1: When inactive, OCi outputs are forced first with their idle level as soon as CC/E = 1 (OC enable
output signal = 1)

Note: This bit can no longer be modified while LOCK level 2 has been programmed (LOCK bits in the

TIM1_BKR register).

LOCK]|1:0]: Lock configuration
These bits offer a write protection against software errors.
00: LOCK off - No bits are write protected
01: LOCK level 1 - OISi bitin TIM1_OISR register and BKE/BKP/AOE bits in TIM1_BKR register can
no longer be written.
10: LOCK level 2 - LOCK level 1 + CC polarity bits (CC/P bits in TIM1_CCERI registers, as long as
the related channel is configured in output through the CCiS bits) as well as the OSSR and OSSI
bits can no longer be written.
11: LOCK Level 3 - LOCK level 2 + CC control bits (OCiM and OCIPE bits in TIM1_CCMR:i registers,
as long as the related channel is configured in output through the CCiS bits) can no longer be
written.

Note: The LOCK bits can be written only once after reset. Once the TIM1_BKR register has been

written, their content is frozen until the next reset.

As the bits AOE, BKP, BKE, OSSR, and OSSI can be write-locked depending on the LOCK
configuration, it is necessary to configure all of them during the first write access to the
TIM1_BKR register.

3

DoclD14587 Rev 14

RMO0016

16-bit advanced control timer (TIM1)

17.7.31 Deadtime register (TIM1_DTR)
Address offset: Ox1E
Reset value: 0x00
7 6 5 4 3 2 1 0
DTG7:0]

Bits 7:0 DTG[7:0]: Deadtime generator set-up

3

This bitfield defines the duration of the deadtime inserted between the complementary outputs. DT
corresponds to this duration. tck psc is the TIM1 clock pulse.

DTG[7:5] = Oxx => DT= DTG[7:0] x tatg With tatg = tex_psc (1)

DTG[7:5] = 10x => DT= (64 + DTG[5:0]) X tgtg With t4q= 2 X tck_psc (f2)
DTG[7:5] = 110 => DT = (32 + DTG[4:0]) X tgg with tgiq= 8 X tck_psc (f3)
DTG[7:5] = 111 => DT = (32 + DTG[4:0]) X tgtg With tyg = 16 X tck_psc (4)
Example

If tck psc= 125 ns (8 MHz), deadtime possible values are:

DTG[7:0] = 0 x 0 to 0 x 7F from 0 to 15875 ns in 125 ns steps (refer to 1)
DTG[7:0] = 0 x 80 to 0 x BF from 16 ps to 31750 ns in 250 ns steps (refer to f2)
DTG[7:0] = 0 x CO to O x DF from 32 ps to 63 us in 1us steps (refer to f3)
DTG[7:0] = 0 x EO to 0 x FF from 64 us to 126 us in 2 us steps (refer to f4)

Note: This bitfield can not be modified while LOCK level 1, 2, or 3 have been programmed (LOCK bits

in the TIM1_BKR register).

DoclD14587 Rev 14 217/467

16-bit advanced control timer (TIM1) RMO0016
17.7.32 Output idle state register (TIM1_OISR)
Address offset: Ox1F
Reset value: 0x00
7 6 5 4 3 2 1 0
Reserved 0Ol1s4 OIS3N 0OIS3 OIS2N 0182 OIS1N OlIs1
r rw rw rw w w w w

Bit 7 Reserved, forced by hardware to 0

Bit 6 OIS4: Output idle state 4 (OC4 output)
Refer to OIS1 bit

Bit 5 OIS3N: Output idle state 3 (OC3N output)
Refer to OIS1N bit

Bit 4 OIS3: Output idle state 3 (OC3 output)
Refer to OIS1 bit

Bit 3 OIS2N: Output idle state 2 (OC2N output)
Refer to OIS1N bit

Bit 2 OIS2: Output idle state 2 (OC2 output)
Refer to OIS1 bit

Bit 1 OIS1N: Output idle state 1 (OC1N output).
0: OC1N = 0 after a deadtime when MOE =0
1: OC1N = 1 after a deadtime when MOE =0

Note: This bit can no longer be modified while LOCK level 1, 2 or 3 have been programmed (LOCK

bits in the TIM1_BKR register).
Bit 0 OIS1: Output idle state 1 (OC1 output).

0: OC1=0 (after a deadtime if OC1N is implemented) when MOE=0
1: OC1=1 (after a deadtime if OC1N is implemented) when MOE=0

Note: This bit can no longer be modified while LOCK level 1, 2 or 3 have been programmed (LOCK

bits in the TIM1_BKR register).

218/467 DoclD14587 Rev 14

3

RMO0016

16-bit advanced control timer (TIM1)

17.7.33 TIM1 register map and reset values

Table 39. TIM1 register map

Address Register 7 6 5 4 3 2 1 0
offset name
TIM1_CR1 ARPE CMS1 CMS0 DIR OPM URS uDIS CEN
0x00
Reset value 0 0 0 0 0 0 0 0
TIM1_CR2 - MMS2 MMS1 MMS0 - COMS - CCPC
0x01
Reset value 0 0 0 0 0 0 0 0
TIM1_SMCR MSM TS2 TS1 TSO - SMS2 SMSH1 SMS0
0x02
Reset value 0 0 0 0 0 0 0 0
TIM1_ETR ETP ECE ETPS1 ETPSO EFT3 EFT2 EFT1 EFTO
0x03
Reset value 0 0 0 0 0 0 0 0
TIM1_IER BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE
0x04
Reset value 0 0 0 0 0 0 0 0
TIM1_SR1 BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF
0x05
Reset value 0 0 0 0 0 0 0 0
TIM1_SR2 - - - CC40F cc3oF | CC20F | cc1oF -
0x06
Reset value 0 0 0 0 0 0 0 0
TIM1_EGR BG TG COMG CC4G CC3G CC2G CC1G uG
0x07
Reset value 0 0 0 0 0 0 0 0
TIM1_CCMR1 | oc1CE OC1M2 OC1M1 OC1MO ociPE | OC1FE | cc1s1 CC1S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x08
TIM1_CCMR1 | IC1F3 IC1F2 IC1F1 IC1FO IC1 TSC IC1(F;SC CC181 CC1S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM1_CCMR2| oc2cE 0oCc2Mm2 oc2m1 0C2M0 oc2PE | OC2FE | ccast CC2S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x09
TIM1_CCMR2 | IC2F3 IC2F2 IC2F1 IC2F0 IC2$SC ICZESC CC281 CC2S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM1_CCMR3 | oc3cE OC3M2 0OC3M1 OC3M0 oc3PE | OC3FE | cc3st CC3s0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x0A
TIM1_CCMR3 | IC3F3 IC3F2 IC3F1 IC3FO0 IC3TSC IC3(F;SC CC381 CC3S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
Kys DoclD14587 Rev 14 219/467

16-bit advanced control timer (TIM1) RMO0016
Table 39. TIM1 register map (continued)
Address Register 7 6 5 4 3 2 1 0
offset name
TIM1_CCMR4 | oc4cE 0C4Mm2 0C4Mm1 0C4MO oc4PE | OC4FE | cc4st CC4S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x0B
TIM1_CCMR4 | IC4F3 IC4F2 IC4F1 IC4FO0 IC4TSC |C4(F;SC CC481 CC4S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM1_CCER1 CC2NP CC2NE CC2P CC2E CC1INP CCINE CC1P CC1E
0x0C -
Reset value 0 0 0 0 0 0 0 0
TIM1_CCER2 - - cc4pP CC4E CC3NP | CC3NE CC3P CC3E
0x0D
Reset value 0 0 0 0 0 0 0 0
TIM1_CNTRH CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
0x0E —
Reset value 0 0 0 0 0 0 0 0
TIM1_CNTRL CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
O0xOF -
Reset value 0 0 0 0 0 0 0 0
TIM1_PSCRH PSC15 PSC14 PSC13 PSC12 PSC11 PSC10 PSC9 PSC8
0x10 —
Reset value 0 0 0 0 0 0 0 0
TIM1_PSCRL PsSC7 PSC6 PSC5 PSC4 PSC3 pPsc2 PSC1 PSCO
0x11
Reset value 0 0 0 0 0 0 0 0
TIM1_ARRH ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS
0x12
Reset value 1 1 1 1 1 1 1 1
TIM1_ARRL ARR7 ARRG6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
0x13 "
Reset value 1 1 1 1 1 1 1 1
TIM1_RCR REP7 REP6 REP5 REP4 REP3 REP2 REP1 REPO
0x14
Reset value 0 0 0 0 0 0 0 0
ox15 TIM1_CCR1H | CCR115 | CCR114 | CCR113 | CCR112 CCR111 CCR110 CCR19 CCR18
Reset value 0 0 0 0 0 0 0 0
TIM1_CCR1L CCR17 CCR16 CCR15 CCR14 CCR13 CCR12 CCRM CCR10
0x16 =
Reset value 0 0 0 0 0 0 0 0
0x17 TIM1_CCR2H | CcCR215 | CCR214 | CCR213 | CCR212 CCR211 CCR210 CCR29 CCR28
Reset value 0 0 0 0 0 0 0 0
0x18 TIM1_CCR2L | ccRr27 CCR26 CCR25 CCR24 CCR23 CCR22 CCR21 CCR20
Reset value 0 0 0 0 0 0 0 0
0x19 TIM1_CCR3H | CCR315 | CCR314 | CCR313 | CCR312 | CCR311 CCR310 CCR39 CCR38
Reset value 0 0 0 0 0 0 0 0
TIM1_CCR3L | ccR37 CCR36 CCR35 CCR34 CCR33 CCR32 CCR31 CCR30
0x1A
Reset value 0 0 0 0 0 0 0 0
0x1B TIM1_CCR4H | CCR415 | CCR414 | CCR413 | CCR412 CCR411 CCR410 CCR49 CCR48
Reset value 0 0 0 0 0 0 0 0
TIM1_CCRA4L CCR47 CCR46 CCR45 CCR44 CCR43 CCR42 CCR41 CCR40
0x1C =
Reset value 0 0 0 0 0 0 0 0
220/467 DoclD14587 Rev 14 ‘Yl

RMO0016 16-bit advanced control timer (TIM1)

Table 39. TIM1 register map (continued)

Address Register 7 6 5 4 3 2 1 0

offset name

TIM1_BKR MOE AOE BKP BKE OSSR oSSl LOCK LOCK
0x1D =

Reset value 0 0 0 0 0 0 0 0

TIM1_DTR DTG7 DTG6 DTG5 DTG4 DTG3 DTG2 DTG1 DTGO
Ox1E

Reset value 0 0 0 0 0 0 0 0

TIM1_OISR - 0ls4 OIS3N 01S3 OIS2N 0ls2 OIS1N ols1
Ox1F

Reset value 0 0 0 0 0 0 0 0

3

DoclD14587 Rev 14 221/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

18

18.1

18.2

222/467

16-bit general purpose timers (TIM2, TIM3, TIM5)

TIM2, TIM3 and TIMS5 introduction

This chapter describes TIM2, TIM3 and TIMS which are identical timers, with the exception
that TIM2 has three channels and TIM3 has two channels. TIMS is also described below. It
is identical to TIM2 except that it has two additional registers to support timer
synchronization and chaining.

Each timer consists of a 16-bit up-counting auto-reload counter driven by a programmable

prescaler.

It may be used for a variety of purposes, including:

e Time base generation

e Measuring the pulse lengths of input signals (input capture)

e Generating output waveforms (output compare, PWM and One-pulse mode)

e Interrupt capability on various events (capture, compare, overflow)

e Synchronization with other timers or external signals (external clock, reset, trigger and
enable) (in devices with TIM5).

The timer clock can be sourced from internal clocks.

Only the main features of the general purpose timers are given in this chapter.
Refer to the corresponding paragraphs of Section 17: 16-bit advanced control timer (TIM1)
on page 138 for more details on each feature.

TIM2/TIM3 main features

TIM2/TIM3 features include:
e 16-bit up counting auto-reload counter.

e 4-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any power of 2 from 1 to 32768.

e 3independent channels for:
— Input capture
— Output compare
— PWM generation (edge-aligned mode)
e Interrupt request generation on the following events:
— Update: counter overflow, counter initialization (by software)
— Input capture
— Output compare

3

DoclD14587 Rev 14

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.3 TIM5 main features

TIMS5 features include:
e 16-bit up counting auto-reload counter.

e 4-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any power of 2 from 1 to 32768.

¢ 3 independent channels for:
— Input capture
— Output compare
— PWM generation (edge-aligned mode)
— One-pulse mode output

e Synchronization circuit to control the timer with external signals and to interconnect
several timers (See Section 17.4.6 on page 159)

e External trigger input TIM1_ETR (shared with TIM1)

e Interrupt generation on the following events:
— Update: counter overflow, counter initialization (by software)
— Input capture
— Output compare

18.4 TIM2/TIM3/TIM5 functional description

Figure 82. TIM2/TIM3 block diagram

TIME BASE UNIT

fi CK_CNT
MASTER CK—PSE Prescaler H’ UP-DOWN COUNTER }‘—{ Auto-reload register .

4
CAPTURE COMPARE ARRAY
/\'CCH
™ IC1 | 1ps”Ev‘* OC1REF
TiMx_GH1[F—— W[Froscalor [CapturciCompare 1 Register
'—D ?}D TIMx_CH1
~ OUTPUT
INPUT o
Ic2 Ic2ps UEVA
Tivx cHa — 2 STAGE 4> Capture/Compare 2 Register i—ioczns STAGE 92y Tk oH2
/\;CQI
ic3 icaps UEVR
TIM_CHEL——] —b Capture/Compare 3 Register h—;ocma 93 BT TiMe CHa
Legend:
Preload registers transferred
to shadow registers on update
event (UEV) according to
control bit
~h event
/\’ interrupt
Kys DoclD14587 Rev 14 223/467

16-bit general purpose timers (TIM2, TIM3, TIM5)

RM0016

18.4.1

224/467

Figure 83. TIM5 block diagram

fmasTeR »
S ETR N TAGO to TIM/TIMS timers
CLOCK/TRIGGER CONTROLLER
TREO from other T timers— INTX
TRC 4 Clock/reset/enable
TIME BASE UNIT
C’K—Psgl Prescaler ILCNTA UP-DOWN COUNTER |1—| Auto-reload register |
v
CAPTURE COMPARE ARRAY
ceil
<7 UEV-sh
(3]
Tivs_CHILT— g P Froscaer | 1PS [CaptrarGompars 1 Rager } octre
oct
;- QUTPUT
INPUT | UEV-ah
s crzt— T2l STAGE Ic2 Ic2ps STAGE

TIM5_CH3[———P»

T3

OC2RE
4’|ﬂl—b Capture/Compare 2 Register
CC3l
003FIE5

e
1c3 |c3ps UEVA

4’@,—b| Capture/Compare 3 Register

oc3

————{ 1 TIM5_CH1

%j TIMS_CH2

————[] TIM5_CH3

Legend:

control bit
~d evem
o et

[Reg Jj Freload registers wransferred
to shadow registers on update
event (UEV) according to

Time base unit

The timer has a time base unit that includes:

16-bit up counter

16-bit auto-reload register
4-bit programmable prescaler

There is no repetition counter.

The clock source for is the internal clock (fyyasTeR)- It is connected directly to the CK_PSC
clock that feeds the prescaler driving the counter clock CK_CNT.

Figure 84. Time base unit

CK_PSC Prescaler CK_CNT

TIMx_PSCR

TIMx_ARRH, ARRL

UEV-a| Auto-Reload Register

16-bit Counter ‘

TIMx_CNTRH, CNTRL

Legend:

contro bit
~ et
P

Preload registers transiemed
J o shadow registers on update:
event (UEV) according to

DoclD14587 Rev 14

3

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
For more details refer to Section 17.3: TIM1 time base unit on page 141.
Prescaler
The prescaler implementation is as follows:
e The prescaler is based on a 16-bit counter controlled through a 4-bit register (in the
TIMx_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any power of 2 from 1 to 32768.
The counter clock frequency is calculated as follows:
fok_onT = fok_psc/2(PSCRE0D
The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.
The new prescaler value is taken into account in the following period (after the next counter
update event).
Read operations to the TIMx_PSCR registers access the preload registers, so no special
care needs to be taken to read them.
Counter operation
Refer to Section 17.3.4: Up-counting mode on page 143.
18.4.2 Clockl/trigger controller

3

A clock/trigger controller and the associated TIMx_CR2 and TIMx_SMCR registers are not
implemented in TIM2/TIM3, only in TIM5. Refer to Section 17.4: TIM1 clock/trigger
controller on page 151

DoclD14587 Rev 14 225/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016
18.4.3 Capture/compare channels
Input stage
Refer to Section 17.5: TIM1 capture/compare channels on page 166.
There are two input channels, as shown in Figure 85: Input stage block diagram.
Figure 85. Input stage block diagram
THF_ED TRC
to clock/Arigger controller
TI = THFP1 [e3]
TIMx_CHI [| InputFiter& Iqpss—11 = o |
Edge Detector e
TRC |
|
: TI2FP1—N IC2
TIMx_CH2 D—leb Elzr:j%:l ggz;ir TI2FP2 — | o capture/compare channels
TRC— |
: ics |
TI3 Input Filter &
& Oo—> —
TGS Edge Detector |
Figure 86. Input stage of TIM 2 channel 1
THF_ED
to the clock/trigger controller
TH THF_rising 0
O———— filter THF | Edge) THFP 0l
fmasTER |down-counte Detector| TIF_falling
TI2FP1 IC1 | dwider | '°PS
110 1,12, 14, /8 >
TIM2_CCMR{ TIM2_CCER{
TI2F_rising (from (Izlloc;k.v‘triggs r
(from channel 2) controller 2 3
ToF Eiling |cc15[1,0]| ICPS[1:0] | \Cc1E|
(from channel 2) | ! TIM2_CCMR1 TIM2_CCER{
226/467 DoclD14587 Rev 14 Kys

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
Output stage
Refer to Section 17.5.4: Output stage on page 171, Section 17.5.5: Forced output mode on
page 172, Section 17.5.7: PWM mode on page 174.

Note: As the clock/trigger controller and the associated TIMx_CR2 and TIMx_SMCR registers are

not implemented in TIM2/TIM3, the one-pulse mode (described in Section 17.5.7: PWM
mode) is not available in TIM2/TIM3.

As shown in Figure 87. TIMx outputs have no deadtime or complementary outputs.

Figure 87. Output stage

channels

from capture/compare

output

] TIMx_CH1

[TIMx_CH2

OC1REF
" |control ocH
OC2REF | output
control| QC2
QC3REF N output|

control

—— »{ | TIMx_CH3
0Cc3

The output stage generates an intermediate waveform which is then used for reference:
OCxREF (active high). Polarity acts at the end of the chain (see Figure 88).

Figure 88. Output stage of channel 1

Counter > CCR1
Counter = CCR1

QOutput Mode|

OC1REF

Controller

OCIM[2:0]

TIMx_CCMRA1

Output
Enable
Circuit

ocH

CC1P
TIMx_CCERT

TIMx_CCER1

3

DoclD14587 Rev 14

227/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

18.5 TIM2/TIM3/TIMS interrupts

The timers have 4 interrupt request sources:
e Capture/compare 3 interrupt

e Capture/compare 2 interrupt

e Capture/compare 1 interrupt

e Update interrupt

e Trigger interrupt (TIM5 only)

To use the interrupt features, for each interrupt channel used, set the desired CC3IE and/or
CC2IE and/or CC1IE bits in the TIMx_IER register to enable interrupt requests.

The different interrupt sources can be also generated by software using the corresponding
bits in the TIMx_EGR register.

3

228/467 DoclD14587 Rev 14

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6 TIM2/TIM3/TIMS5 registers

18.6.1 Control register 1 (TIMx_CR1)
Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0
ARPE Reserved OPM URS uDIS CEN
w r w w w w

Bit 7 ARPE: Auto-reload preload enable
0: TIMx_ARR register is not buffered through a preload register. It can be written directly
1: TIMx_ARR register is buffered through a preload register

Bits 6:4 Reserved

Bit 3 OPM: One-pulse mode ()
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit)

Bit 2 URS: Update request source

0: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent when one
of the following events occurs:

- Registers are updated (counter overflow/underflow)
— UG bit is set by software
- Update event is generated through the clock/trigger controller

1: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent only when
registers are updated (counter overflow/underflow).

Bit 1 UDIS: Update disable
0: AUEV is generated as soon as a counter overflow occurs or a software update is generated or an
hardware reset is generated by the clock/trigger mode controller. Buffered registers are then loaded
with their preload values.
1: AUEV is not generated, shadow registers keep their value (ARR, PSC, CCRJ). The counter and
the prescaler are re-initialized if the UG bit is set.

Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled

1. One-pulse mode is not available on TIM2/TIM3 but the OPM bit can be used for other purposes (for example, to stop the
counter properly).

3

DoclD14587 Rev 14 229/467

16-bit general purpose timers (TIM2, TIM3, TIM5)

RM0016

18.6.2 Control register 2 (TIM5_CR2)
Address offset: 0x01
Reset value: 0x00
7 6 5 4 3 0
Reserved MMS[2:0] Reserved
r rw w rw r
Note: This register is only available in TIM5, see Table 42 on page 250.

Bit 7 Reserved, must be kept cleared

Bits 6:4 MMS[2:0]: Master mode selection
These bits select the information to be sent in master mode to TIM1 and TIM2for synchronization
(TRGO). The combination is as follows:
000: Reset - the UG bit from the TIM5_EGR register is used as a trigger output (TRGO). If the reset
is generated by the trigger input (clock/trigger mode controller configured in trigger reset mode), the

Bits 3:0 Reserved, must be kept cleared

230/467

signal on TRGO is delayed compared to the actual reset.

001: Enable - the counter enable signal is used as a trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The counter enable
signal is generated by a logic OR between the CEN control bit and the trigger input when configured
in gated mode. When the counter enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in TIM5_SMCR

register).

010: Update - The update event is selected as a trigger output (TRGO)

011: Reserved
100: Reserved
101: Reserved
111: Reserved

DoclD14587 Rev 14

3

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
18.6.3 Slave mode control register (TIM5_SMCR)
Address offset: 0x02
Reset value: 0x00
7 6 5 4 3 2 1 0
MSM TS[2:0] Reserved SMS[2:0]
w rw rw rw r w w w
Note: This register is only available in TIM5, see Table 42 on page 250.

Bit 7 MSM Master/slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).

Bits 6:4 TS[2:0] Trigger selection

This bit field selects the trigger input to be used to synchronize the counter.

000: Internal trigger ITRO connected to TIM6 TRGO (*)
001: Internal trigger ITR1 connected to TIM6 TRGO (*)
010: Reserved
011: Reserved
100: Reserved
101: Reserved
110: Reserved
111: Reserved
(*) 8K low-density devices unless otherwise specified.
Note: These bits must only be changed when they are not used (e.g. when SMS = 000) to avoid
wrong edge detections at the transition.

Bit 3 Reserved.
Bits 2:0 SMS[2:0] Clock/trigger/slave mode selection

3

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the
polarity selected on the external input (see Input Control register and Control Register description).
000: Clock/trigger controller disabled - if CEN = 1 then the prescaler is clocked directly by the
internal clock.

001, 010 and 011: Reserved

100: Trigger reset mode - Rising edge of the selected trigger signal (TRGI) reinitializes the counter
and generates an update of the registers.

101: Gated mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both the start and stop of the counter are
controlled.

110: Trigger mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.

111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter

DoclD14587 Rev 14 231/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

18.6.4 Interrupt enable register (TIMx_IER)

Address offset: 0x01 or 0x03 (TIM2), 0x01 (TIM3), 0x03 (TIM5); for TIM2 address see
Section

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved TIE Reserved CC3IE CC2IE CC1IE UIE
r w r r'w 'w w w

Bits 7 Reserved

Bit 6 TIE: Trigger interrupt enable
0: Trigger interrupt disabled
1: Trigger interrupt enabled
Note: In TIM2/TIM3 this bit is reserved.

Bits 5:4 Reserved, must be kept cleared

Bit 3 CC3IE: Capture/compare 3 interrupt enable
0: CC3 interrupt disabled
1: CC3 interrupt enabled

Bit 2 CC2IE: Capture/compare 2 interrupt enable
0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CCA1IE: Capture/compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

3

232/467 DoclD14587 Rev 14

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.5 Status register 1 (TIMx_SR1)

Address offset: 0x02 or 0x04 (TIM2), 0x02 (TIM3), 0x04 (TIM5); for TIM2 address see
Section

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved TIF Reserved CC3IF CC2IF CC1IF UIF
r rc_w0 r rc_w0 rc_wO0 rc_w0 rc_w0

Bit 7 Reserved

Bit 6 TIF: Trigger interrupt flag
This flag is set by hardware on a trigger event (active edge is detected on TRGI signal and both
edges are detected when gated mode is selected). It is cleared by software.
0: No trigger event has occurred
1: Trigger interrupt pending
Note: In TIM2/TIM3 this bit is reserved.

Bits 5:4 Reserved, must be kept cleared

BIt 3 CC3IF: Capture/compare 3 interrupt flag
Refer to CC1IF description.

Bit 2 CC2IF: Capture/compare 2 interrupt flag
Refer to CC1IF description.

Bit 1 CCA1IF: Capture/compare 1 interrupt flag
If channel CC1 is configured as output.
This flag is set by hardware when the counter matches the compare value. It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT has matched the content of the TIMx_CCR1 register
If channel CC1 is configured as input.
This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1L
register.
0: No input capture has occurred

1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1
which matches the selected polarity).

Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.
0: No update has occurred
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
— At overflow if UDIS = 0 in the TIMx_CR1 register

— When CNT is re-initialized by software using the UG bit in TIMx_EGR register, if URS = 0 and
UDIS = 0 in the TIMx_CR1 register.

3

DoclD14587 Rev 14 233/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

18.6.6 Status register 2 (TIMx_SR2)

Address offset: 0x03 or 0x05 (TIM2), 0x03 (TIM3), 0x05 (TIM5); for TIM2 address see
Section

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved CC30F CC20F CC10F Reserved
r rc_wo0 rc_w0 rc_w0 r

Bits 7:4 Reserved

Bit 3 CC3OF: Capture/compare 3 overcapture flag
Refer to CC10F description

Bit 2 CC20F: Capture/compare 2 overcapture flag
Refer to CC10F description

Bit 1 CC10F: Capture/compare 1 overcapture flag
This flag is set by hardware only when the corresponding channel is configured in input capture
mode. It is cleared by software by writing it to 0.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set

Bit 0 Reserved, forced by hardware to 0

3

234/467 DoclD14587 Rev 14

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.7

7

Event generation register (TIMx_EGR)

Address offset: 0x04 or 0x06 (TIM2), 0x04 (TIM3), 0x06 (TIM5); for TIM2 address see
Section

Reset value: 0x00
6 5 4 3 2 1 0

Reserved

TG Reserved CC3G CC2G CC1G UG

r

w r w w w w

Bit 7
Bit 6

Bits 5:4
Bit 3

Bit 2

Bit 1

Bit0

3

Reserved

TG: Trigger generation

This bit is set by software to generate an event. It is automatically cleared by hardware.

0: No action

1: The TIF flag is set in TIM5_SR1 register. An interrupt is generated if enabled by the TIE bit
Note: In TIM2/TIM3 this bit is reserved.

Reserved

CC3G: Capture/compare 3 generation
Refer to CC1G description

CC2G: Capture/compare 2 generation
Refer to CC1G description

CC1G: Capture/compare 1 generation
This bit is set by software to generate an even. It is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1:

— If the CC1 channel is configured in output mode. In this case, the CC1IF flag is set, and the
corresponding interrupt request is sent if enabled.

— If the CC1 channel configured in input mode. In this case, the current value of the counter is
captured in the TIMx_CCR1 register. The CC1IF flag is set, and the corresponding interrupt request
is sent if enabled. The CC10F flag is set if the CC1IF flag is already high.

UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action

1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is also cleared.

DoclD14587 Rev 14 235/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

18.6.8 Capture/compare mode register 1 (TIMx_CCMR1)

The channel can be used in input (capture mode) or in output (compare mode). The
direction of the channel is defined by configuring the CC1S bits. All the other bits of this
register have a different function in input and in output mode. For a given bit, OC/ describes
its function when the channel is configured in output and ICi describes its function when the
channel is configured in input. Therefore, be aware that the same bit can have a different
meaning for the input stage and for the output stage.
Address offset: 0x05 or 0x07 (TIM2), 0x05 (TIM3), 0x07 (TIM5); for TIM2 address see
Section
Reset value: 0x00
Channel configured in output

7 6 5 4 3 2 1 0

Reserved OC1M[2:0] OC1PE Reserved CC18[1:0]
r rw ‘ rw rw w r w rw

Bit 7 Reserved
Bits 6:4 OC1M[2:0]: Output compare 1 mode

236/467

These bits defines the behavior of the output reference signal OC1REF from which OC1 is derived.

OC1REEF is active high whereas OC1 active level depends on the CC1P bit.

000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter

TIMx_CNT has no effect on the outputs

001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter

TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter

TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1

100: Force inactive level - OC1REF is forced low

101: Force active level - OC1REF is forced high

110: PWM mode 1 - In up-counting, channel 1 is active as long as TIMx_CNT< TIMx_CCR1.

Otherwise, channel 1 is inactive. In down-counting, channel 1 is inactive (OC1REF = 0) as long as

TIMx_CNT> TIMx_CCR1. Otherwise, channel 1 is active (OC1REF = 1).

111: PWM mode 2 - In up-counting, channel 1 is inactive as long as TIMx_CNT< TIMx_CCR1.

Otherwise, channel 1 is active.

Note: In PWM mode 1 or 2, the OCIREF level changes only when the result of the comparison

changes or when the output compare mode switches from “frozen” mode to “PWM” mode.
Refer to Section 17.5.7 on page 174 for more details.

3

DoclD14587 Rev 14

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime. The new value
is taken into account immediately.

1: Preload register on TIMx_CCR1 enabled. Read/write operations access the preload register.
TIMx_CCR1 preload value is loaded in the shadow register at each update event.

Note: For correct operation, preload registers must be enabled when the timer is in PWM mode. This
is not mandatory in one-pulse mode (OPM bit set in TIMx_CR1 register).

Bit 2 Reserved

Bits 1:0 CC1S[1:0]: Capture/compare 1 selection
This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1FP1
10: CC1 channel is configured as input, IC1 is mapped on TI2FP1
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM5_SMCR register).

Note: CC1S bits are writable only when the channel is off (CC1E = 0 and is updated in
TIMx_CCER1).

3

DoclD14587 Rev 14 237/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

Channel configured in input

IC1F[3:0] IC1PSC[1:0] CC1S[1:0]

Bits 7:4 1C1F[3:0]: Input capture 1 filter
This bitfield defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N events are needed to validate a
transition on the output:
0000: No filter, sampling is done at fyasTER

0001: fsampLING= fmasTER, N =2
0010: fsampLING= fmasTER, N = 4
0011: fsampLING= fmasTER, N =8
0100: fsampLING= fMAsTER/2, N =6

0101: fsampLiNG= fmasTER/2Z, N =8
0110: fsampLING= fmasTER/4, N = 6
0111: fsampLiNG= fmasTER/4, N = 8
1000: fsampLING= fmasTER/8, N = 6
1001: fsampLING= fmasTER/8, N = 8
1010: fsampLING= fuasTER/16, N =5
1011: fsampLiNG= fMasTER/16, N = 6
1100: fsampLiING= fMasTER/16, N = 8

1101: fsampLing™ fmasTER/32, N = 5
1110: fsampLING= fmasTER/32, N = 6
1M11: fsampLING™ fvasTER/32, N = 8

Bits 3:2 IC1PSC[1:0]: Input capture 1 prescaler

This bitfield defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as

soon as CC1E = 0 (TIMx_CCER register).

00: no prescaler, capture is done each time an edge is detected on the capture input

01: Capture is done once every 2 events

10: Capture is done once every 4 events

11: Capture is done once every 8 events

Note: The internal event counter is not reset when IC1PSC is changed on the fly. In this case the old

value is used until the next capture occurs. To force a new value to be taken in account
immediately, the CC1E bit can be cleared and set again.

Bits 1:0 CC1S[1:0]: Capture/compare 1 selection
This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1FP1
10: CC1 channel is configured as input, IC1 is mapped on TI2FP1

11: Reserved
Note: CC18S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER1 and
updated).

3

238/467 DoclD14587 Rev 14

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.9 Capture/compare mode register 2 (TIMx_CCMR?2)

Note: Refer to Capture/compare mode register 1 (TIMx_CCMR1) on page 236 for details on using
these bits.

Address offset: 0x06 or 0x08 (TIM2), 0x06 (TIM3), 0x08 (TIM5); for TIM2 address see
Section

Reset value: 0x00

Channel configured in output

7 6 5 4 3 2 1 0
Reserved OC2M[2:0] OC2PE Reserved CC2SI[1:0]
r rw ‘ rw rw w r w

Bit 7 Reserved

Bits 6:4 OC2M[2:0]: Output compare 2 mode
Bit 3 OC2PE: Output compare 2 preload enable
Bit 2 Reserved

Bits 1:0 CC2S[1:0]: Capture/compare 2 selection
This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2
11:CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM5_SMCR register).
Note: CC2S bits are writable only when the channel is off (CC2E = 0 in TIMx_CCER1).

3

DoclD14587 Rev 14 239/467

16-bit general purpose timers (TIM2, TIM3, TIM5)

RM0016

Channel configured in input

IC2F[3:0]

IC2PSCI[1:0]

CC2S[1:0]

Bits 7:4 1C2F[3:0]: Input capture 2 filter
Bits 3:2 IC2PCS[1:0]: Input capture 2 prescaler
Bits 1:0 CC2S[1:0]: Capture/compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output

01: CC2 channel is configured as input, IC2 is mapped on TI2FP2
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2

11: Reserved

Note: CC2S bits are writable only when the channel is off (CC2E = 0 in TIMx_CCER1).

18.6.10 Capture/compare mode register 3 (TIMx_CCMR3)

Refer to Capture/compare mode register 1 (TIM1_CCMR1) on page 198 for details on using

these bits.

Address offset: 0x07 or 0x09 (TIM2), 0x09 (TIM5); for TIM2 address see Section

Reset value: 0x00

Channel configured in output

7 6 5 4 3 2 0
Reserved OC3M[2:0] OC3PE Reserved CC38SJ1:0]
r rw rw rw w r rw
Note: This register is not available in TIM3.

Bit 7 Reserved

Bits 6:4 OC3M[2:0]: Output compare 3 mode
Bit 3 OC3PE: Output compare 3 preload enable
Bit 2 Reserved

Bits 1:0 CC38[1:0]: Capture/compare 3 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output

01: CC3 channel is configured as input, IC3 is mapped on TI3FP3

10: Reserved
11: Reserved

Note: CCS3S bits are writable only when the channel is off (CC3E = 0 in TIMx_CCER2).

240/467 DoclD14587 Rev 14

3

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
Channel configured in input
7 6 5 4 1 0
IC3F[3:0] IC3PSC[1:0] CC3S[1:0]
w rw w rw w w
Note: This register is not available in TIM3.

Bits 7:4 IC3F[3:0] Input capture 3 filter
Bits 3:2 IC3PSC(1:0]: Input capture 3 prescaler
Bits 1:0 CC3S[1:0]: Capture/compare 3 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3FP3

10: Reserved
11: Reserved

Note: CC3S bits are writable only when the channel is off (CC3E = 0 in TIMx_CCER2).

18.6.11 Capture/compare enable register 1 (TIMx_CCER1)

Address offset: 0x08 or Ox0A (TIM2), 0x07 (TIM3), Ox0A (TIM5); for TIM2 address see

Section

Reset value: 0x00

7 6 5 4 1 0
Reserved CC2pP CC2E Reserved CC1P CC1E
r rw rw r w w
Bits 6:7 Reserved
Bit 5 CC2P: Capture/compare 2 output polarity
Refer to CC1P description
Bit 4 CC2E: Capture/compare 2 output enable
Refer to CC1E description.
1S7 DocID14587 Rev 14 241/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

Bits 2:3 Reserved

Bit 1 CC1P: Capture/compare 1 output polarity
CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input for capture function (see Figure 64):
0: Capture is done on a rising edge of TI1F or TI2F
1: Capture is done on a falling edge of TI1F or TI2F

Bit 0 CC1E: Capture/Compare 1 output Enable.
CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
In this case, this bit determines if a capture of the counter value can be made in the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

18.6.12 Capture/compare enable register 2 (TIMx_CCER2)
Address offset: 0x09 or 0x0B (TIM2), 0x0B (TIM5); for TIM2 address see Section

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved CC3P CC3E
r rw rw
Note: This register is not available in TIM3.

Bits 7:2 Reserved

Bit 1 CC3P: Capture/compare 3 output polarity
Refer to CC1P description.

Bit 0 CC3E: Capture/compare 3 output enable
Refer to CC1E description.

18.6.13 Counter high (TIMx_CNTRH)

Address offset: 0xOA or 0x0C (TIM2), 0x08 (TIM3), 0x0C (TIM5); for TIM2 address see
Section

Reset value: 0x00
7 6 5 4 3 2 1 0

CNT[15:8]

Bits 7:0 CNT[15:8]: Counter value (MSB)

3

242/467 DoclD14587 Rev 14

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.14 Counter low (TIMx_CNTRL)

Address offset: 0xOB or 0x0D (TIM2), 0x09 (TIM3), 0x0D (TIMS5); for TIM2 address see
Section

Reset value: 0x00

CNT[7:0]

Bits 7:0 CNT[7:0]: Counter value (LSB)

3

DoclD14587 Rev 14 243/467

16-bit general purpose timers (TIM2, TIM3, TIM5)

RM0016

18.6.15 Prescaler register (TIMx_PSCR)
Address offset: 0xOC or 0x0E (TIM2), Ox0A (TIM3), OxOE (TIMS5); for TIM2 address see
Section
Reset value: 0x00
7 6 5 4 3 2 1 0
Reserved PSC[3:0]
r w w w w
Bits 7:3 Reserved
Bits 2:0 PSC[3:0]: Prescaler value
The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency fok o is equal to fox_psc / 2PSCI30D. PSC[7:4] are forced to 0 by
hardware.
PSCR contains the value which is loaded in the active prescaler register at each update event
(including when the counter is cleared through the UG bit of the TIMx_EGR register).
This means that a UEV must be generated so that a new prescaler value can be taken into account.
18.6.16 Auto-reload register high (TIMx_ARRH)
Address offset: 00x0D or 0x0F (TIM2), 0x0B (TIM3), OxOF (TIM5); for TIM2 address see
Section
Reset value: OxFF
7 6 5 4 3 2 1 0
ARR[15:8]
Bits 7:0 ARR[15:8]: Auto-reload value (MSB)
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 17.3: TIM1 time base unit on page 141 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is 0.
244/467 DoclD14587 Rev 14 Kys

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.17 Auto-reload register low (TIMx_ARRL)

Address offset: 00xOE or 0x10 (TIM2), 0x0C (TIM3), 0x10 (TIM5); for TIM2 address see
Section

Reset value: OxFF
6 5 4 3 2 1 0

ARR([7:0]

Bits 7:0 ARR([7:0]: Auto-reload value (LSB)

18.6.18 Capture/compare register 1 high (TIMx_CCR1H)
Address offset: 00xOF or 0x11 (TIM2), 0x0D (TIM3), 0x11 (TIM5); for TIM2 address see
Section
Reset value: 0x00
7 6 5 4 3 2 1 0
CCRI1[15:8]

Bits 7:0 CCR1[15:8]: Capture/compare 1 value (MSB)

3

If the CC1 channel is configured as output (CC1S bits in TIMx_CCMR1 register):

The value of CCR1 is loaded permanently into the actual capture/compare 1 register if the preload
feature is not enabled (OC1PE bit in TIMx_CCMR1). Otherwise, the preload value is copied in the
active capture/compare 1 register when a UEV occurs. The active capture/compare register
contains the value which is compared to the counter register, TIMx_CNT, and signalled on the OC1
output.

If the CC1 channel is configured as input (CC1S bits in TIMx_CCMR1 register):

The value of CCR1 is the counter value transferred by the last input capture 1 event (IC1). In this
case, these bits are read only.

DoclD14587 Rev 14 245/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

18.6.19 Capture/compare register 1 low (TIMx_CCR1L)

Address offset: 00x10 or 0x12 (TIM2), OxOE (TIM3), 0x12 (TIM5); for TIM2 address see
Section

Reset value: 0x00
7 6 5 4 3 2 1 0

CCRI[7:0]

w ‘ rw ‘ rw ‘ rw ‘ w w w w

Bits 7:0 CCR1[7:0]: Capture/compare 1 value (LSB)

18.6.20 Capture/compare register 2 high (TIMx_CCR2H)

Address offset: 00x11 or 0x13 (TIM2), 0x0F (TIM3), 0x13 (TIM5); for TIM2 address see
Section

Reset value: 0x00
7 6 5 4 3 2 1 0

CCR2[15:8]

Bits 7:0 CCR2[15:8]: Capture/compare 2 value (MSB)
If the CC2 channel is configured as output (CC2S bits in TIMx_CCMR?2 register):
The value of CCR2 is loaded permanently into the actual capture/compare 2 register if the preload
feature is not enabled (OC2PE bit in TIMx_CCMR?2). Otherwise, the preload value is copied in the
active capture/compare 2 register when a UEV occurs. The active capture/compare register
contains the value which is compared to the counter register, TIMx_CNT, and signalled on the OC2
output.
If the CC2 channel is configured as input (CC2S bits in TIMx_CCMR?2 register):
The value of CCR2 is the counter value transferred by the last input capture 2 event (IC2).

18.6.21 Capture/compare register 2 low (TIMx_CCR2L)

Address offset: 00x12 or 0x14 (TIM2), 0x10 (TIM3), 0x14 (TIM5); for TIM2 address see
Section

Reset value: 0x00
7 6 5 4 3 2 1 0

CCR2[7:0]

246/467 DoclD14587 Rev 14

Bits 7:0 CCR2[7:0]: Capture/compare value (LSB)

3

RMO0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
18.6.22 Capture/compare register 3 high (TIMx_CCR3H)
Address offset: 00x13 or 0x15 (TIM2), 0x15 (TIM5); for TIM2 address see Section
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR3[15:8]
w rw rw ‘ rw ‘ w w w w
Note: This register is not available in TIM3.
Bits 7:0 CCR3[15:8]: Capture/compare value (MSB)
If the CC3 channel is configured as output (CC3S bits in TIMx_CCMR3 register):
The value of CCR3 is loaded permanently into the actual capture/compare 3 register if the preload
feature is not enabled (OC3PE bit in TIMx_CCMR3). Otherwise, the preload value is copied in the
active capture/compare 3 register when a UEV occurs. The active capture/compare register
contains the value which is compared to the counter register, TIMx_CNT, and signalled on the OC3
output.
If the CC3 channel is configured as input (CC3S bits in TIMx_CCMR3 register):
The value of CCR3 is the counter value transferred by the last input capture 3 event (IC3).
18.6.23 Capture/compare register 3 low (TIMx_CCR3L)
Address offset: 00x14 or 0x16 (TIM2), 0x16 (TIM5); for TIM2 address see Section
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR3[7:0]
Note: This register is not available in TIM3.
Bits 7:0 CCR3[7:0]: Capture/compare value (LSB)

TIM2/TIM3/TIMS5 register map and reset values

In some STM8S and STMB8AF devices, TIM2 register locations at offset 0x01 and 0x02 are
reserved. In this case the TIM2_IER and subsequent registers in the TIM2 block are offset
by 2 more bytes. Refer to the datasheet for the product-specific register map.

Table 40. TIM2 register map

Address offset Register
(product 9 7 6 5 4 3 2 1 0
name
dependent)
0x00 0x00 TIM2_CR1 ARPE - - - OPM URS uDIS CEN
Reset value 0 0 0 0 0 0 0 0
- 0x01 Reserved
- 0x02 Reserved
‘Yl DoclD14587 Rev 14 2471467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016

Table 40. TIM2 register map (continued)

Address offset Reaqister
(product ngme 7 6 5 4 3 2 1 0
dependent)
0X01 0x03 TIM2_IER - - - - CC3IE CC2IE CC1IE UIE
Reset value 0 0 0 0 0 0 0 0
0x02 0x04 TIM2_SR1 - - - - CC3IF CC2IF CC1IF UIF
Reset value 0 0 0 0 0 0 0 0
0x03 0x05 TIM2_SR2 - - - - cc3oF | CC20F | cc1oF -
Reset value 0 0 0 0 0 0 0 0
0x04 0X06 TIM2_EGR - - - - CC3G CC2G CC1G uG
Reset value 0 0 0 0 0 0 0 0
TIM2_CCMR
1 - 0C1M2 OC1M1 OC1MO OC1PE - CC181 CC1S0
(output
mode) 0 0 0 0 0 0 0 0
0x05 0x07 Reset value
T|M2—1CCMR IC1F3 IC1F2 IC1F1 IC1FO ICTSC IC1ESC CC181 CC1S80
(input mode)
Reset value 0 0 0 0 0 0 0 0
TIM2_
CCMR2 - 0oC2M2 oc2Mm1 0C2M0 OC2PE - CC2S1 CC2S0
(output
mode) 0 0 0 0 0 0 0 0
ox06 | oxos | Resetvalue
T|M2—2C CMR IC2F3 IC2F2 IC2F1 IC2F0 |021PSC IngSC CC2s1 CC2S0
(input mode)
Reset value 0 0 0 0 0 0 0 0
TIM2_CCMR
3 - 0C3M2 0OC3M1 OC3M0 OC3PE - CC381 CC3S0
(output
mode) 0 0 0 0 0 0 0 0
0x07 0x09 Reset value
Tle—??CMR IC3F3 IC3F2 IC3F1 IC3F0 ICSTSC IngSC CC3s1 CC3S0
(input mode)
Reset value 0 0 0 0 0 0 0 0
TIM2_CCER CC2P CC2E CC1P CC1E
0x08 0x0A 1 A A
0 0 0 0 0 0 0 0
Reset value
TIM2_CCER) ccap CC3E
0x09 0x0B 2 -
0 0 0 0 0 0 0 0
Reset value
TIM2_CNTR CNT15 CNT14 CNT13 CNT12 CNTM CNT10 CNT9 CNT8
0x0A | 0Ox0C H
0 0 0 0 0 0 0 0
Reset value
248/467 DoclD14587 Rev 14 ‘Yl

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

Table 40. TIM2 register map (continued)

Address offset Reaqister
(product 9 7 6 5 4 3 2 1 0
name
dependent)
TIM2_CNTR CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
0x0B 0x0D L
0 0 0 0 0 0 0 0
Reset value
0x0C | OxOE TIM2_PSCR - - - - Psc3 PSC2 PSC1 PSCO
Reset value 0 0 0 0 0 0 0 0
0x0D OXOF TIM2_ARRH | ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS8
Reset value 1 1 1 1 1 1 1 1
OXOE 0x10 TIM2_ARRL ARR7 ARR6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
Reset value 1 1 1 1 1 1 1 1
TIM2_CCR1 CCR115 | CCR114 | CCR113 | CCR112 | CCR111 | CCR110 CCR19 CCR18
0xOF 0x11 H
0 0 0 0 0 0 0 0
Reset value
TIM2_CCR1 CCR17 CCR16 CCR15 CCR14 CCR13 CCR12 CCR11 CCR10
0x10 0x12 L
0 0 0 0 0 0 0 0
Reset value
TIM2_CCR2
CCR215 | CCR214 | CCR213 | CCR212 | CCR211 | CCR210 CCR29 CCR28
0x11 0x13 H
0 0 0 0 0 0 0 0
Reset value
TIM2_CCR2 CCR27 CCR26 CCR25 CCR24 CCR23 CCR22 CCR21 CCR20
0x12 0x14 L
0 0 0 0 0 0 0 0
Reset value
TIM2_CCR3 CCR315 | CCR314 | CCR313 | CCR312 | CCR311 | CCR310 CCR39 CCR38
0x13 0x15 H
0 0 0 0 0 0 0 0
Reset value
TIM2_CCR3 CCR37 CCR36 CCR35 CCR34 CCR33 CCR32 CCR31 CCR30
0x14 0x16 L
0 0 0 0 0 0 0 0
Reset value
Table 41. TIM3 register map
Address Register name 7 (] 5 4 3 2 1 0
offset
TIM3_CR1 ARPE - - - OPM URS uDIS CEN
0x00
Reset value 0 0 0 0 0 0 0 0
TIM3_IER - - - - CC2IE CC1IE UIE
0x01 -
Reset value 0 0 0 0 0 0 0 0
TIM3_SR1 - - - - CC2IF CC1IF UIF
0x02
Reset value 0 0 0 0 0 0 0 0
TIM3_SR2 - - - - - CC20F | cci1oF -
0x03
Reset value 0 0 0 0 0 0 0 0
TIM3_EGR - - - - CC2G CC1G UG
0x04 -
Reset value 0 0 0 0 0 0 0 0
‘Yl DoclD14587 Rev 14 249/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016
Table 41. TIM3 register map (continued)
Address | oo gister name 7 6 5 4 3 2 1 0
offset
TIM3_CCMR1 OC1M2 OC1M1 OC1MO OC1PE - cc1s1 CC1S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x05
TIM3_CCMR1 | IC1F3 | IC1F2 | IC1F1 | IC1FO 'CTSC '01580 ccist | cetso
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM3_ CCMR2 oc2m2 oc2m1 0OC2M0 OC2PE - CC2s1 CC2S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x06
TIM3_CCMR2 IC2F3 IC2F2 IC2F1 IC2F0 IC25’SC ICZESC CC2s1 CC2S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM3_CCER1 - - CC2P CC2E - - cc1pP CC1E
0x07 —
Reset value 0 0 0 0 0 0 0 0
TIM3_CNTRH CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
0x08
Reset value 0 0 0 0 0 0 0 0
TIM3_CNTRL CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
0x09 -
Reset value 0 0 0 0 0 0 0 0
TIM3_PSCR - - - - Psc3 Psc2 PSC1 PSCO
0x0A
Reset value 0 0 0 0 0 0 0 0
TIM3_ARRH ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS
0x0B
Reset value 1 1 1 1 1 1 1 1
TIM3_ARRL ARR7 ARR6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
0x0C -
Reset value 1 1 1 1 1 1 1 1
TIM3_CCR1H CCR115 | CCR114 | CCR113 | CCR112 | CCR111 CCR110 CCR19 CCR18
0x0D -
Reset value 0 0 0 0 0 0 0 0
TIM3_CCRI1L CCR17 CCR16 CCR15 CCR14 CCR13 CCR12 CCR11 CCR10
O0x0E
Reset value 0 0 0 0 0 0 0 0
OXOF TIM3_CCR2H CCR215 | CCR214 | CCR213 | CCR212 | CCR211 | CCR210 | CCR29 CCR28
Reset value 0 0 0 0 0 0 0 0
TIM3_CCR2L CCR27 CCR26 CCR25 CCR24 CCR23 CCR22 CCR21 CCR20
0x10h -
Reset value 0 0 0 0 0 0 0 0
Table 42. TIM5 register map
Address Register name 7 6 5 4 3 2 1 0
TIM5_CR1 ARPE - - - OPM URS uDIS CEN
0x00
Reset value 0 0 0 0 0 0 0 0
TIM5_CR2 - MMS2 MMS1 MMSO - COMS - CCPC
0x01
Reset value 0 0 0 0 0 0 0 0
250/467 DoclD14587 Rev 14 Kyy

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

Table 42. TIM5 register map (continued)

Address Register name 7 6 5 4 3 2 1 0
TIM5_SMCR MSM TS2 TS1 TS0 - SMS2 SMS1 SMS0
0x02
Reset value 0 0 0 0 0 0 0 0
TIM5_IER - TIE - - CC3IE CC2IE CC1IE UIE
0x03
Reset value 0 0 0 0 0 0 0 0
TIM5_SR1 - TIF - - CC3IF CC2IF CC1IF UIF
0x04
Reset value 0 0 0 0 0 0 0 0
TIM5_SR2 - - - - cc3oF | CC20F | cc1oF -
0x05
Reset value 0 0 0 0 0 0 0 0
TIM5_EGR - TG - - CC3G CC2G CC1G uG
0x06
Reset value 0 0 0 0 0 0 0 0
TIM5_CCMR1 OC1M2 OC1M1 OC1MO OC1PE - CcCc1s1 CC1S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x07
TIM5_CCMRA1 IC1F3 IC1F2 IC1F1 IC1FO IC1 1PSC |C1SSC CC181 CC1S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM5_ CCMR2 0oc2m2 oc2m1 0C2M0 OC2PE - CC2s1 CC2S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x08
TIM5_CCMR2 IC2F3 IC2F2 IC2F1 IC2F0 |025>SC ICZ(I?SC CC2s1 CC2S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM5_CCMR3 0OC3M2 0C3M1 OC3M0 OC3PE - CC3S1 CC3S0
(output mode)
Reset value 0 0 0 0 0 0 0 0
0x09
TIM5_CCMR3 IC3F3 IC3F2 IC3F1 IC3F0 ICSTSC lCSESC CC3S1 CC3S0
(input mode)
Reset value 0 0 0 0 0 0
0 0
TIM5_CCER1 - - cc2p CC2E - - CC1P CC1E
0x0A -
Reset value 0 0 0 0 0 0 0 0
TIM5_CCER2 - - - - - - CC3P CC3E
0x0B
Reset value 0 0 0 0 0 0 0 0
TIM5_CNTRH CNT15 CNT14 CNT13 CNT12 CNT1 CNT10 CNT9 CNT8
0x0C
Reset value 0 0 0 0 0 0 0 0
TIM5_CNTRL CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
0x0D
Reset value 0 0 0 0 0 0 0 0
TIM5_PSCR - - - - Psc3 pPsc2 PSC1 PSCO
0xO0E
Reset value 0 0 0 0 0 0 0 0
TIM5_ARRH ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS
0xOF
Reset value 1 1 1 1 1 1 1 1
Kys DoclD14587 Rev 14 251/467

16-bit general purpose timers (TIM2, TIM3, TIM5) RMO0016
Table 42. TIM5 register map (continued)
Address Register name 7 6 5 4 3 2 1 0
TIM5_ARRL ARR7 ARRG ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
0x10 "
Reset value 1 1 1 1 1 1 1 1
0x11 TIM5_CCR1H CCR115 | CCR114 | CCR113 | CCR112 | CCR111 | CCR110 CCR19 CCR18
Reset value 0 0 0 0 0 0 0 0
TIM5_CCRI1L CCR17 CCR16 CCR15 CCR14 CCR13 CCR12 CCR11 CCR10
0x12
Reset value 0 0 0 0 0 0 0 0
0x13 TIM5_CCR2H CCR215 | CCR214 | CCR213 | CCR212 | CCR211 | CCR210 | CCR29 CCR28
Reset value 0 0 0 0 0 0 0 0
Ox14 TIM5_CCR2L CCR27 CCR26 CCR25 CCR24 CCR23 CCR22 CCR21 CCR20
Reset value 0 0 0 0 0 0 0 0
0x15 TIM5_CCR3H CCR315 | CCR314 | CCR313 | CCR312 | CCR311 | CCR310 CCR39 CCR38
Reset value 0 0 0 0 0 0 0 0
0x16 TIM5_CCR3L CCR37 CCR36 CCR35 CCR34 CCR33 CCR32 CCR31 CCR30
Reset value 0 0 0 0 0 0 0 0
252/467 DoclD14587 Rev 14 Kys

RMO0016

8-bit basic timer (TIM4, TIM6)

19

19.1

3

8-bit basic timer (TIM4, TIMG6)

TIM4, TIM6 introduction

The timer consists of an 8-bit auto-reload up-counter driven by a programmable prescaler. It
can be used for time base generation, with interrupt generation on timer overflow.

TIM®6 is implemented with the clock/trigger controller for timer synchronization and chaining.

Refer to Section 17.3 on page 141 for the general description of the timer features.

Figure 89. TIM4 block diagram

TIME BASE UNIT

UEV Auto-reload register UIF
~

Stop or Clear l VEVR
CK_PSC
fmasTER —p;p‘ Prescaler | CKCNT UP-COUNTER
Legend:

Reg || Freload registers transferred
to shadow registers on update
event (UEV) according to
control bit

~h event
A et

Figure 90. TIM6 block diagram

TmasTeR

»
P

e CLOCK/TRIGGER CONTROLLER MEwe o

TRGO from TIM5 (ITR2) ITR =THC = TRGI ~
TRGO from TIM1 (ITR3)

To TIM1/TIMS timers

TIME BASE UNIT

UEV Auto-reload register UIF
e

Legend:
Preload registers ransferred l
to shadow registers on update P ‘ D UEV <
event (UEV) accerding to | e & .
controi bit > UP-COUNTER
~h event
/\’ interrupt

DoclD14587 Rev 14 253/467

8-bit basic timer (TIM4, TIM6) RMO0016

19.2

19.3

19.4

19.5

254/467

TIM4 main features

The main features include:
e 8-bit auto-reload up counter

e 3-bit programmable prescaler which allows dividing (also “on the fly”) the counter clock
frequency by 1, 2, 4, 8, 16, 32, 64 and 128.

e Interrupt generation
— On counter update: Counter overflow

TIM6 main features

The main features include:
e 8-bit auto-reload up counter

e 3-bit programmable prescaler which allows dividing (also “on the fly”) the counter clock
frequency by 1, 2, 4, 8, 16, 32, 64 and 128.

e Synchronization circuit to control the timer with external signals and to interconnect
several timers (See Section 17.4.6 on page 159).

e Interrupt generation
— On counter update: Counter overflow
— On trigger input

TIM4/TIMG6 interrupts

The timer has 2 interrupt request sources:
e Update interrupt (overflow, counter initialization)
e Trigger input (TIM6 only)

TIM4/TIM6 clock selection

The clock source for the timer is the internal clock (fyyaster)- It is connected directly to the
CK_PSC clock that feeds the prescaler driving the counter clock CK_CNT.

Prescaler

The prescaler implementation is as follows:

e The prescaler is based on a 7-bit counter controlled through a 3-bit register (in the
TIMx_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any power of 2 from 1 to 128.

The counter clock frequency is calculated as follows:
1:CK_CNT = fCK_PSC/Z(PSCR[Z:O])

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used, is loaded as soon as the LS byte has been written.

Read operations to the TIMx_PSCR registers access the preload registers, so no special
care needs to be taken to read them.

DocID14587 Rev 14 ‘Yl

RMO0016 8-bit basic timer (TIM4, TIM6)

19.6 TIM4/TIM6 registers

19.6.1 Control register 1 (TIMx_CR1)

Address offset: 0x00
Reset value: 0x00

7 6 5 4 3 2 1 0
ARPE Reserved OPM URS uDIS CEN
w r w w w w

Bit 7 ARPE: Auto-reload preload enable
0: TIM4_ARR register is not buffered through a preload register. It can be written directly
1: TIM4_ARR register is buffered through a preload register

Bits 6:4 Reserved, must be kept cleared

Bit 3 OPM: One-pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit)

Bit 2 URS: Update request source
0: When enabled, an update interrupt request is sent as soon as registers are updated (counter
overflow).
1: When enabled, an update interrupt request is sent only when the counter reaches the
overflow/underflow.

Bit 1 UDIS: Update disable

0: AUEV is generated as soon as a counter overflow occurs or a software update is generated.
Buffered registers are then loaded with their preload values.

1: AUEV is not generated, shadow registers keep their value (ARR, PSC). The counter and the
prescaler are re-initialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disable
1: Counter enable

3

DoclD14587 Rev 14 255/467

8-bit basic timer (TIM4, TIM6) RMO0016
19.6.2 Control register 2 (TIM6_CR2)
Address offset: 0x01
Reset value: 0x00
7 6 5 4 3 1 0
Reserved MMS[2:0] Reserved
r rw rw rw r
Note: This register is not available in TIM4.

Bit 7 Reserved, must be kept cleared

Bits 6:4 MMS[2:0]: Master mode selection
These bits are used to select the information to be sent in master mode to for synchronization
(TRGO). The combination is as follows:
000: Reset - the UG bit from the TIM6_EGR register is used as a trigger output (TRGO). If the reset
is generated by the trigger input (clock/trigger mode controller configured in trigger reset mode), the

signal on the TRGO is delayed compared to the actual reset.

001: Enable - the counter enable signal is used as a trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The counter enable
signal is generated by a logic OR between the CEN control bit and the trigger input when configured
in gated mode. When the counter enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIM6_SMCR

register).

010: Update - The update event is selected as trigger output (TRGO)

011: Reserved
100: Reserved
101: Reserved
111: Reserved

Bits 3:0 Reserved, must be kept cleared

19.6.3 Slave mode control register (TIM6_SMCR)
Address offset: 0x02
Reset value: 0x00
7 6 5 4 3 1 0
MSM TS[2:0] Reserved SMS[2:0]
rw rw rw rw r w w
Note: This register is not available in TIMA4.
256/467 DoclD14587 Rev 14 ‘Yl

RMO0016 8-bit basic timer (TIM4, TIM6)

Bit 7 MSM: Master/slave mode
0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).

Bits 6:4 TS[2:0]: Trigger selection

This bit field selects the trigger input to be used to synchronize the counter.
000: Reserved
001: Internal trigger ITR1 connected to TIM1 TRGO (*)
010: Reserved
011: Internal trigger ITR3 connected to TIM5 TRGO (*)
100: Reserved
101: Reserved
110: Reserved
111: Reserved

(*) 8K low-density devices unless otherwise specified.

Note: These bits must only be changed when they are not used (e.g. when SMS = 000) to avoid

wrong edge detections at the transition.

Bit 3 Reserved.

Bits 2:0 SMS[2:0]:Clock/trigger/slave mode selection
When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the
polarity selected on the external input (see Input control register and control register description).
000: Clock/trigger controller disabled - If CEN = 1, the prescaler is clocked directly by the internal
clock.
001: Reserved
010: Reserved
011: Reserved
100: Trigger reset mode - The rising edge of the selected trigger signal (TRGI) reinitializes the
counter and generates an update of the registers.
101: Gated mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are
controlled.
110: Trigger mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.
111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

3

DoclD14587 Rev 14 257/467

8-bit basic timer (TIM4, TIM6) RMO0016

19.6.4 Interrupt enable register (TIMx_IER)
Address offset: 0x01 or 0x03 (TIM4), 0x03 (TIM6); for TIM4 address see Section 19.6.10

Reset value: 0x00

7 6 5 4 3 2 1 0
Reserved TIE Reserved UIE
r w r w

Bit 7 Reserved, must be kept cleared

Bit 6 TIE: Trigger interrupt enable
0: Trigger Interrupt disabled
1: Trigger Interrupt enabled
Note: In TIM4 this bit is reserved.

Bits 5:1 Reserved, must be kept cleared

Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

19.6.5 Status register 1 (TIMx_SR)
Address offset: 0x02 or 0x04 (TIM4), 0x04 (TIM6); for TIM4 address see Section 19.6.10

Reset value: 0x00
7 6 5 4 3 2 1 0

TIF UIF

Reserved Reserved
rc_w0 rc_w0

Bit 7 Reserved, must be kept cleared

Bit 6 TIF: Trigger interrupt flag.
This flag is set by hardware on a trigger event (the active edge is detected on the TRGI signal,
both edges are detected if gated mode is selected). It is cleared by software.
0: No trigger event has occurred
1: Trigger interrupt pending.
Note: In TIM4 this bit is reserved.

Bits 5:1 Reserved, must be kept cleared

Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.
0: No update has occurred
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
— At overflow if UDIS = 0 in the TIM4_CR1 register
— When CNT is re-initialized by software using the UG bit in the TIM4_EGR register, if URS = 0
and UDIS = 0 in the TIM4_CRH1 register.

3

258/467 DoclD14587 Rev 14

RMO0016 8-bit basic timer (TIM4, TIM6)

19.6.6 Event generation register (TIMx_EGR)
Address offset: 0x03 or 0x05 (TIM4), 0x05 (TIM6); for TIM4 address see Section 19.6.10

Reset value: 0x00

7 6 5 4 3 2 1 0
TG UG
Reserved Reserved
w w

Bit 7 Reserved, must be kept cleared

Bit 6 TG: Trigger generation
This bit is set by software to generate an event. It is automatically cleared by hardware.
0: No action
1: The TIF flag is set in TIM6_SR register. An interrupt is generated if enabled by the TIE bit
Note: In TIM4 this bit is reserved.

Bits 5:1 Reserved, must be kept cleared

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action

1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is also cleared.

19.6.7 Counter (TIMx_CNTR)
Address offset: 0x04 or 0x06 (TIM4), 0x06 (TIM6); for TIM4 address see Section 19.6.10

Reset value: 0x00
7 6 5 4 3 2 1 0

CNT[7:0]

Bits 7:0 CNT[7:0]: Counter value

19.6.8 Prescaler register (TIMx_PSCR)
Address offset: 0x05 or 0x07 (TIM4), 0x07 (TIM6); for TIM4 address see Section 19.6.10

Reset value: 0x00

7 6 5 4 3 2 1 0
PSC[2:0]
Reserved
rw w w

3

DoclD14587 Rev 14 259/467

8-bit basic timer (TIM4, TIM6)

RMO0016

Bits 7:3 Reserved, must be kept cleared

Bits 2:0 PSC[2:0]: Prescaler value

The prescaler value divides the CK_PSC clock frequency. The counter clock frequency fck onT IS
equal to fCK PSC / 2(PSCJ[2:0)).
PSC contains the value which is loaded into the active prescaler register at each UEV (including
when the counter is cleared through the UG bit of TIM4_EGR).
Consequently, a UEV must be generated so that a new prescaler value can be taken into account.

19.6.9 Auto-reload register (TIMx_ARR)
Address offset: 0x06 or 0x08 (TIM4), 0x08 (TIM6); for TIM4 address see Section 19.6.10
Reset value: OxFF
7 6 5 2 0
ARR([7:0]
w w w rw w rw

Bits 7:0 ARR[7:0]: Auto-reload value

19.6.10 TIM4/TIM6 register map and reset values
In some STM8S and STM8AF devices, TIM4 register locations at offset 0x01 and 0x02 are
reserved. In this case the TIM4_IER and subsequent registers in the TIM4 block are offset
by 2 more bytes. Refer to the datasheet for the product-specific register map.
Table 43. TIM4 register map
Address
offset Register 7 6 5 4 3 2 1 0
(product name
dependent)
0x00 | 0x00 TIM4_CR1 ARPE - - - OPM URS uDIS CEN
Reset value 0 0 0 0 0 0 0 0
- 0x01 Reserved
- 0x02 Reserved
0x01 | 0x03 TIM4_IER - - - - - - - UIE
Reset value 0 0 0 0 0 0 0 0
0x02 | 0x04 TIM4_SR - - - - - - - UIF
Reset value 0 0 0 0 0 0 0 0
0x03 | 0x05 TIM4_EGR - - - - - - - UG
Reset value 0 0 0 0 0 0 0 0
0x04 | 0x06 TIM4_CNTR CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
Reset value 0 0 0 0 0 0 0 0
0x05 | 0x07 TIM4_PSCR - - - - - Psc2 PSC1 PSCO
Reset value 0 0 0 0 0 0 0 0
0x06 | 0x08 TIM4_ARR ARR7 ARR6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
Reset value 1 1 1 1 1 1 1 1
260/467 DoclD14587 Rev 14 Kys

RMO0016 8-bit basic timer (TIM4, TIM6)
Table 44. TIM6 register map
Address Register name 7 6 5 4 3 2 1 0
offset
TIM6_CR1 ARPE - - - OPM URS uDIS CEN
0x00
Reset value 0 0 0 0 0 0 0 0
TIM6_CR2 - MMS2 MMS1 MMSO0 - - - -
0x01 —
Reset value 0 0 0 0 0 0 0 0
TIM6_SMCR MSM TS2 TS1 TSO - SMS2 SMSH1 SMS0
0x02
Reset value 0 0 0 0 0 0 0 0
0x03 TIM6_IER - TIE - - - - - UIE
Reset value 0 0 0 0 0 0 0 0
0x04 TIM6_SR1 - TIF - - - - - UIF
Reset value 0 0 0 0 0 0 0 0
0X05 TIM6_EGR - TG - - - - - UG
Reset value 0 0 0 0 0 0 0 0
TIM6_CNTR CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
0x06
Reset value 0 0 0 0 0 0 0 0
TIM6_PSCR - - - - - pPsc2 PSC1 PSCO
0x07 -
Reset value 0 0 0 0 0 0 0 0
TIM6_ARR ARR7 ARRG6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
0x08 =
Reset value 1 1 1 1 1 1 1 1
‘Yl DoclD14587 Rev 14 261/467

Serial peripheral interface (SPI) RMO0016

20 Serial peripheral interface (SPI)

20.1 SPI introduction

The serial peripheral interface (SPI) allows half/ full duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multi-master configuration.

It may be used for a variety of purposes, including simplex synchronous transfers on 2 lines
with a possible bidirectional data line or reliable communication using CRC checking.

20.2 SPI main features

262/467

Full duplex synchronous transfers (on 3 lines)

Simplex synchronous transfers on 2 lines with or without a bidirectional data line
Master or slave operation

8 Master mode frequencies (fyasTer/2 max.)

Slave mode frequency (fyaster/2 max.)

Faster communication - Maximum SPI speed: 10 MHz

NSS management by hardware or software for both master and slave
Programmable clock polarity and phase

Programmable data order with MSB-first or LSB-first shifting
Dedicated transmission and reception flags with interrupt capability
SPI bus busy status flag

Master mode fault and overrun flags with interrupt capability
Hardware CRC feature for reliable communication:

— CRC value can be transmitted as last byte in Tx mode

— CRC error checking for last received byte

Wakeup capability:
The MCU wakes up from Low power mode in full or half duplex transmit-only modes

3

DoclD14587 Rev 14

RMO0016 Serial peripheral interface (SPI)

20.3 SPI functional description

20.3.1 SPI general description
The block diagram of the SPI is shown in Figure 91.

Figure 91. SPI block diagram

) ADDRESS AND DATA BUS >
ﬁREAD
RX BUFFER
MOSILT ‘4 7'y ‘TT
J TXIE [RXIE | ERR|wKIg]
[| |SHIFTREGISTER IE ocjojo| o
MISOL] > -
ﬁ LSBFirst
CR
OVR|MOD WK TXE |RXNE
‘L TX BUFFER BSY| Flc |up|®
‘TWRITE
» COMMUNICATION 0
. CONTROL ;
MASTER
SCKT BAUD RATE GENERATOR :— BR[2:0]
+ &+ 2
LSB
o | SPE| BR2 | BR1| BRO |MSTRCPOLICPHA
Y | —
L{ MASTER CONTROL LOGIC Bl | BDICR CR| o |RX
MODEOE v ONLY SSM | SS
¥ v VEN Next ¥
NSST

The SPI is connected to external devices through four pins:

e MISO: Master In / Slave Out data (port C7). This pin can be used to transmit data in
slave mode and receive data in master mode.

e MOSI: Master Out / Slave In data (port C6). This pin can be used to transmit data in
master mode and receive data in slave mode.

e SCK: Serial Clock output (port C5) for SPI masters and Serial Clock input for SPI
slaves.

e NSS: Slave select (port E5). This is a optional pin to select a slave device. This pin acts
as a ‘chip select’ to let the SPI master communicate with slaves individually and to
avoid contention on the data lines. Slave NSS inputs can be driven by standard I/O
ports on the master device. When configured in master mode (MSTR bit =1) and if NSS
is pulled low, the SPI enters master mode fault state: the MSTR bit is automatically
reset and the device is configured in slave mode (refer to Section 20.3.9: Error flags on
page 279).

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 92.

3

DoclD14587 Rev 14 263/467

Serial peripheral interface (SPI) RMO0016

Note: When using the SPI in High-speed mode, the I/Os where SPI outputs are connected should
be programmed as fast slope outputs in order to be able to reach the expected bus speed.

Figure 92. Single master/ single slave application

MASTER SLAVE
MSBit ¢——— LSBit MSBit ¢——— LSBit
8-BIT SHIFT REGISTER ‘4—[JMISO UL {7 I 8-BIT SHIFT REGISTER ‘
A A W
[]MOS[MOS!D
SPI
cLock i SCK L
GENERATOR
NSS,y,, Nss
_ Not used if NSS is managed
\;// by software

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via MOSI pin, the slave device responds the MISO pin. This implies
full duplex communication with both data out and data in synchronized with the same clock
signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

A hardware or software slave select management configuration can be set using the
Software slave select management (SSM) bit from the SPI_CR2 register.

e Software NSS management (SSM = 1): with this configuration, slave select
information is driven internally by the Internal slave select (SSI) bit value in the
SPI_CR2 register.The external NSS pin remains free for other application uses.

e Hardware NSS management (SSM = 0): For devices set as master, this configuration
allows multimaster capability. For devices set as slave, the NSS pin works as a
classical NSS input. The slave is selected when the NSS line is in low level and is not
selected if the NSS line is in high level.

Note: When the master is communicating with SPI slaves which need to be deselected between
transmissions, the NSS pin must be configured as a GPIO.

3

264/467 DoclD14587 Rev 14

RMO0016

Serial peripheral interface (SPI)

Note:

Note:

3

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits. The CPOL (clock polarity) bit controls the steady state value of the clock when no data
is being transferred. This bit affects both master and slave modes. If CPOL is reset, SCK pin
has a low level idle state. If CPOL is set, SCK pin has a high level idle state.

Make sure the SPI pin is configured at the idle state level of the SPI in order to avoid
generating an edge on the SPI clock pin when enabling or disabling the SPI cell.

If CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the CPOL
bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data is latched on
the occurrence of the first clock transition. If CPHA bit is reset, the first edge on the SCK pin
(falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the MSBit capture strobe.
Data is latched on the occurrence of the second clock transition.

The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 93 shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin,
the MISO pin, the MOSI pin are directly connected between the master and the slave
device.

Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.
Master and slave must be programmed with the same timing mode.

The idle state of SCK must correspond to the polarity selected in the SPI_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

DoclD14587 Rev 14 265/467

Serial peripheral interface (SPI) RMO0016

Figure 93. Data clock timing diagram

CPHA =1

CPOL=1 }] 1 1]

oL
MISO w ESBIIX Bl:tf:‘. / BthX B|t4;(Blti’: >\ B|t2 X B|t1 X L$Blt\

wosi T s o x)r;(" S T
|

NSS "\

(to slave) | ! | X

1

1

1
CAPTURE STROBE ‘] 1 ‘ ‘ 1 ‘

1 1
CPOL=0 ; }]

MISO X}{XX MEBltX B¢6 X an)(Blt4x Hns K th \!(Bn1 XLQ:;BHX

— \ ! |
Mosl — Msalit :(Bit 6 / BltSX B|t4)»/ aits X B|t2 \}{ Bm)\ lesutw
NSS N | . !

(to slave)

—

/

1 |

| 1 1

1 ! 1

! : !

CAPTURE STROBE ‘ ‘] | ‘ | ‘

1. These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.
Frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 Register.

3

266/467 DoclD14587 Rev 14

RMO0016

Serial peripheral interface (SPI)

20.3.2

Note:

20.3.3

3

Configuring the SPI in slave mode

In slave configuration, the serial clock is received on the SCK pin from the master device.
The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data transfer
rate.

Follow the procedure below to configure the SPI in slave mode:

1. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 93). For correct data transfer, the CPOL
and CPHA bits must be configured in the same way in the slave device and the master
device.

2. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be the same as the master device.

3. In Hardware mode (refer to Slave select (NSS) pin management on page 264), the
NSS pin must be connected to a low level signal during the complete data transmit
sequence. In NSS Software mode, set the SSM bit and clear the SSI bit in the
SPI_CR2 register.

4. Clear the MSTR bit and set the SPE bit to assign the pins to alternate functions.
In this configuration the MOSI pin is a data input and the MISO pin is a data output.

In applications with a parallel multi-slave structure, with separate NSS signals and the slave
MISO outputs connected together, the corresponding GPIO registers must be configured
correctly. The SPI_MISO pin is controlled by the SPI peripheral only when the NSS signal is
active and the device is selected as slave. When the NSS signal is released, the pin is
driven by GPIO register settings only. To function correctly, the GPIO has to be configured in
input pull-up mode with no interrupt. This configuration is done using the GPIO_DDR,
GPIO_CR1 and GPIO_CR2 registers - see Section 11.8.1: Alternate function output.

Configuring the SPI master mode

In a master configuration, the serial clock is generated on the SCK pin.

Follow the procedure below to configure the SPI in master mode:
1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 93).

3. Configure the LSBFIRST bit in the SPI_CR1 register to define the frame format.

4. In Hardware mode, connect the NSS pin to a high-level signal during the complete data
transmit sequence. In software mode, set the SSM and SSI bits in the SPI_CR2
register.

5. Setthe MSTR and SPE bits (they remain set only if the NSS pin is connected to a high-
level signal).

In this configuration the MOSI pin is a data output and to the MISO pin is a data input.

DoclD14587 Rev 14 267/467

Serial peripheral interface (SPI) RMO0016

20.3.4

20.3.5

268/467

Configuring the SPI for simplex communications

The SPI is capable of operating in simplex mode in 2 configurations.
e 1 clock and 1 bidirectional data wire
e 1 clock and 1 data wire (Receive-only or Transmit-only)

1 clock and 1 bidirectional data wire

This mode is enabled by setting the BDM bit in the SPI_CR2 register. In this mode SCK is
used for the clock, and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/output) is selected by the BDOE bit in the
SPI_CR2 register. When this bit is set to 1, the data line is output, otherwise it is input.

1 clock and 1 unidirectional data wire (BDM = 0)
In this mode, the application can use the SPI either in transmit-only mode or in receive-only
mode:

e Transmit-only mode is similar to full-duplex mode (BDM = 0, RXONLY = 0): the data is
transmitted to the transmit pin (MOSI in master mode or MISO in slave mode) and the
receive pin (MISO in master mode or MOSI in slave mode) can be used as general
purpose I/O. In this case, the application just needs to ignore the Rx buffer (if the data
register is read, it does not contain the received value).

¢ Inreceive-only mode, the application can disable the SPI output function by setting the
RXONLY bit in the SPI_CR2 register. In this case, it frees the transmit I/O pin (MOSI in
master mode or MISO in slave mode) so it can be used for other purposes.

To start the communication in receive-only mode, configure and enable the SPI:

¢ In master mode, the communication starts immediately and stops when the SPE bit is
reset and the current reception stops. There is no need to read the BSY flag in this
mode. It is always set when an SPI communication is ongoing.

¢ In slave mode, the SPI continues to receive as long as the NSS is pulled down (or the
SSI bit is reset in NSS software mode) and the SCK is running.

Data transmission and reception procedures

Rx and Tx buffer

In reception, data are received and then stored into an internal Rx buffer while In
transmission, data are first stored into an internal Tx buffer before being transmitted.

Aread access of the SPI_DR register returns the Rx buffered value whereas a write access
of the SPI_DR stores the written data into the Tx buffer.

Start sequence in master mode

e Infull-duplex (BDM = 0 and RXONLY = Q)
— The sequence begins when data is written into the SPI_DR register (Tx buffer).

— The data is then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

— At the same time, the received data on MISO pin is shifted in serially to the 8-bit
shift register and then parallel loaded into the SPI_DR register (Rx Buffer).

DocID14587 Rev 14 ‘Yl

RMO0016

Serial peripheral interface (SPI)

3

e Inunidirectional receive-only mode (BDM = 0 and RXONLY = 1)

The sequence begins as soon as the bit SPE = 1
Only the receiver is activated and the received data on MISO pin is shifted in

serially to the 8-bit shift register and then parallel loaded into the SPI_DR register
(Rx Buffer).

e In bidirectional mode, when transmitting (BDM = 1 and BDOE = 1)

The sequence begins when a data is written into the SPI_DR register (Tx buffer).

The data is then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

No data is received.

¢ In bidirectional mode, when receiving (BDM = 1 and BDOE = 0)

The sequence begins as soon as SPE = 1 and BDOE = 0.

The received data on MOSI pin is shifted in serially to the 8-bit shift register and
then parallel loaded into the SPI_DR register (Rx Buffer).

The transmitter is not activated and no data is shifted out serially to the MOSI pin.

Start sequence in slave mode

In full-duplex (BDM=0 and RXONLY=0)

The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The remaining 7 bits are loaded into the shift
register.

At the same time, the data is parallel loaded from the Tx buffer into the 8-bit shift
register during the first bit transmission and then shifted out serially to the MISO
pin. The software must have written the data to be sent before the SPI master
device initiates the transfer.

e Inunidirectional receive-only mode (BDM = 0 and RXONLY = 1)

The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The remaining 7 bits are loaded into the shift
register.

The transmitter is not activated and no data is shifted out serially to the MISO pin.

e In bidirectional mode, when transmitting (BDM = 1 and BDOE = 1)

The sequence begins when the slave device receives the clock signal and the first
bit of the Tx buffer is transmitted to the MISO pin.

The data is then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MISO pin. The
software must have written the data to be sent before the SPI master device starts
the transfer.

no data is received.

e In bidirectional mode, when receiving (BDM = 1 and BDOE = 0)

The sequence starts when the slave device receives the clock signal and the first
bit of the data to its MISO pin.

The data received on MISO pin is shifted in serially to the 8-bit shift register and
then parallel loaded into the SPI_DR register (Rx Buffer).

The transmitter is not activated and no data is shifted out serially to the MISO pin.

DoclD14587 Rev 14 269/467

Serial peripheral interface (SPI) RMO0016

Note:

270/467

Handling data transmission and reception

The TXE flag (Tx buffer empty) is set when the data is transferred from the Tx buffer to the
shift register. It indicates that the internal Tx buffer is ready to be loaded with the next data.
An interrupt can be generated if TXIE bit in the SPI_ICR register is set.

The software must ensure that TXE flag is set to 1 before attempting to write into the Tx
buffer. Otherwise, it will overwrite the data which was previously written in the Tx buffer.

The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data
is transferred from the shift register to the Rx buffer. It indicates that a data is ready to be
read from the SPI_DR register. An interrupt can be generated if RXIE bit in the SPI_ICR
register is set. Clearing the RXNE bit is performed by reading the SPI_DR register.

In some configurations, the BSY flag can be used during the last data transfer to wait until
the completion of the transfer.

Full Duplex Transmit and receive procedure in master or slave mode
(BDM=0 and RXONLY = 0)

1. Enable the SPI by setting the SPE bit
2. Write the first data to be transmitted in the SPI_DR register (this clears the TXE flag).

3. Wait until TXE =1 and write the second data to be transmitted. Then wait until RXNE =
1 and read the SPI_DR to get the first received data (this clears the RXNE bit). Repeat
this operation for each data to be transmitted/received until the n-1 received data.

4. Wait until RXNE = 1 and read the last received data.
5. Wait until TXE = 1 and then wait until BSY = 0 before disabling the SPI.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edge of RXNE or TXE flags.

3

DoclD14587 Rev 14

RMO0016

Serial peripheral interface (SPI)

Figure 94. TXE/RXNE/BSY behavior in full duplex mode (RXONLY = 0).
Case of continuous transfers

Example in Master Mode with CPOL=1, CPHA=1

SCK U UL O T WU I Wi Ly
DATA1 = 0xF1 DATA2 = OxF2 DATA3 = 0xF3
MISO/MOSI (out) b0 [b1 |b2 | 63| b4 b5 |6 | 67| b0 [b1 {62 {63 [b4 [bs | b6 | b7] b0 b1 62| b3] baf LS| bE] b7
set by hw set by hw
TXE flag r\-l_ _\cleared by sw _\ cleared by sw V set by hw
_ TxBuffer OxF 1 0xF2 x OxF3
(write SPI_DR)
1 1
- |
BSY flag | sét| by hw || reset by hw
| -
{ / DATA1 = OxA1 DATA 2 = 0xA2 DATA 3 = 0xA3
MISOMOSI n) [op [o1 [b2 b3 bs]bs [os[o7 bofbr |62 [b3[s]vs [o[b7] bo[o1 [b2] baf vaf s ve] 47
/ -
set by hw cleared by sw
RXNE flag // / v\ | Y \
Rx Buffer / gﬁxA'I 0xA2 0xA3

(read Spy/ /q / 4

software software waits software waits | software waits until lsoftware waits until software waits until

writes 0xF1 | juntil TXE=1 and until RXNE=1 [TXE=1 and writes RXNE=1 and reads 0xA2 | RXNE=1 and reads

n SPI_DR | |writes 0xF2in and reads 0xA1 | 0xF3 in SPI_DR from SPI_DR 0xA3 from SPI_DR

SFlI DR lfrom SPI DR

Figure 95. TXE/RXNE/BSY behavior in slave / full duplex mode
(BDM = 0, RXONLY = 0). Case of continuous transfers

Example in Slave Mode with CPOL=1, CFHA=1

SCK UL U O I O U U L L
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = OxF3
MISO/MOSI (out) b0 [b1 [b2]b3[b4[bs|b6] 67[b0[b1 |62 |63] ba [65 [b6] b7] do[b1 | b2 53] b4] b5 [6] 47
—_— set by hw set by hw
TXE flag r -|— -\ cleared by sw ﬂ-\ cleared by sw set by hw
_Tx Buffer OxF 1} 0xF2) 0xF3
(write SPI_DR)
7 i
| /
BSY flag |'II et by hw reset by hw
,l'l DATA 1 = 0xA1 | DATA 2 = 0xA2 DATA 3 = 0xA3
MISO/MOSI (in) / bf [b1 |2 | 63| b4 b5 |6 | 67| up[b1 [b2 | 63| b4|b5] b6 | 67 b0 b1 |02] 63] 4|05 [[7
t T L
/ t by hy leared by sw V-
RXNE flag _ / setby -\|| cleared by s \
Rx Buffer x | oxai X 0xA2 x 0xA3
(read SPI_DR /' h
/ f /
software software waits lsoftware waits | software waits | software waits until software waits until
fwrites 0xF1 | juntil TXE=1 and until RXNE=1 until TXE=1 and | RXNE=1 and reads OxA2 | [RXNE=1 and reads
n SPI_DR | |writes 0xF2in land reads 0xA1 | writes 0xF3 in | from SPI_DR 0xA3 from SPI_DR
SFlI DR from SPI DR ||SPI DR

S74

DoclD14587 Rev 14

271/467

Serial peripheral interface (SPI) RMO0016

Note:

1

Transmit-only procedure (BDM = 0 RXONLY = 0)

In this mode, the procedure can be reduced as described below and the BSY bit can be
used to wait until the effective completion of the transmission (see Figure 94 and Figure 95):

1. Enable the SPI by setting the SPE bit

2. Write the first data to send in the SPI_DR register (this clears the TXE bit).

3. Wait until TXE = 1 and write the next data to be transmitted. Repeat this step for each
data to be transmitted.

4. After writing the last data in the SPI_DR register, wait until TXE = 1 and then wait until
BSY=0 which indicates that the transmission of the last data is complete.

This procedure can be also implemented using dedicated interrupt subroutines launched at
each rising edge of TXE flag.

In master mode, during discontinuous communications, there is a 2 CPU clock period delay
between the write operation to SPI_DR and the BSY bit setting. As a consequence, in
transmit-only mode, it is mandatory to wait first until TXE is set and then until BSY is reset
after having written the last data.

After transmitting two data in transmit-only mode, the OVR flag is set in the SPI_SR register
since the received data are never read.

Figure 96. TXE/BSY in master transmit-only mode
(BDM = 0 and RXONLY = 0). Case of continuous transfers

Example in master mode with CPOL=1, CPHA=1

MISO/MOSI (out) bi

sec U UL U U U Ui U

DATA 1 = OxF1 DATA 2 = 0xF2 DATA 3 = OxF3
b1 [z | vafva]os Jus | 7o foi [v2 | va]vafos fus | b7]vo b1 fuz fuafvafus Jos|u7

=]
=]

set by hw setby hw

TXE ﬂag r | cleared by SwW -\ cleared D\«' sSw set L)y hw
.4 f
Tx Buffer OxF1 0xF2 0xF3
(write SPI_DR) :x- f x /

a /
BSY flag _#et by hw reset by hw

software software waits until | jsoftware waits until

SPI_DR DxF2 in SPI_DR in SPI_DR [TXE=1

!

vrites OxF1 in | [TXE=1 and writes | TXE=1 and writes 0xF3| [software waits until software waits until BSY=0

272/467

3

DoclD14587 Rev 14

RMO0016

Serial peripheral interface (SPI)

Figure 97. TXE/BSY in slave transmit-only mode (BDM = 0 and RXONLY = 0).
Case of continuous transfers

Example in slave mode with CPOL=1, CPHA=1

[T

DATA 1 = OxF1

SCK

DATA 2 = OxF2

[T

DATA 3 = OxF3

T

MISO/MOSI (out)

TXE flag

b

=]

b1 Ib2|b3|bd|b5|ba|b? b

=]

b1 Ib2|b3|b4|b5|b6|b7

=3
o

b1 IbQIbSID:lIbS IbG Ib?

set by hw

set by hw
-\ cleared by sw

set by hw

4‘\ cleared by sw

Tx Buffer
(write SPI_DR)

oxF1y

0xF2

1 0xF3

;i

/

]

BSY flag ﬂset by hw / Z{
software software waits until | software waits until
writes OxF1 in | TXE=1 and writes | [TXE=1 and writes oftware waits until koftware waits until BSY=0
ISP1_DR 0xF2 in SPI_DR DxF3in SPI_DR TXE=1

reset by hw

Note:

Bidirectional transmit procedure (BDM =1 and BDOE = 1)

In this mode, the procedure is similar to the Transmit-only procedure except that the BDM
and BDOE bits must both be set in the SPI_CR2 register before enabling the SPI.

Unidirectional receive-only procedure (BDM = 0 and RXONLY = 1)

In this mode, the procedure can be reduced as described below (see Figure 98):
1. Set the RXONLY bit in the SPI_CR2 register
2. Enable the SPI by setting bit SPE to 1:

a) In master mode, this immediately activates the generation of the SCK clock, and
data is received serially until the SPI is disabled (SPE = 0).

b) Inslave mode, data are received when the SPI master device drives NSS low and
generates the SCK clock.

3. Wait until RXNE =1 and read the SPI_DR register to get the received data (this clears
the RXNE bit). Repeat this operation for each data to be received.

This procedure can be also implemented using dedicated interrupt subroutines launched at
each rising edge of the RXNE flag.

If it is required to disable the SPI after the last transfer, follow the recommendation

described in Section 20.3.8: Disabling the SPI on page 277.

3

DoclD14587 Rev 14

273/467

Serial peripheral interface (SPI) RMO0016

Figure 98. RXNE behavior in receive-only mode (BDM = 0 and RXONLY = 1).
Case of continuous transfers

Example with CPOL=1, CPHA=1, RXONLY=1

see T HTUUU LU LUy
DATA 1 = OxA1 DATA 2 = OxA2 DATA 3 = 0xA3
MISO/MOSI (in) bo [b1 Jb2 Jb3] bafbs [bsb7fvo]u1 Jv2 [ba] p4]bs] be| b7 fuo Jor Joz [oa Jb4 Jos Joe Jor
set by hw cleared by sw
RXNE flag -\ .\ -_

; d?‘F'IBLng; %A1 0xA2 [oxas
read S -
' i A

software waits until software waits until oftware waits until

RXNE=1 and reads 0xA1 RXNE=1 and reads 0xA2| [RXNE=1 and reads 0xA3

from SPI_DR from SPI_DR from SPI_DR

Bidirectional receive procedure (BDM =1 and BDOE = 0)

In this mode, the procedure is similar to the Receive-only procedure except that the BDM bit
must be set and the BDOE bit must be reset in the SPI_CR2 register before enabling the
SPI.

Continuous and discontinuous transfers

When transmitting data in master mode, if the software is fast enough to detect each TXE
rising edge (or TXE interrupt) and to immediately write the SPI_DR register before the
ongoing data transfer is complete, the communication is said to be continuous. In this case,
there is no discontinuity in the generation of the SPI clock between each data and the BSY
bit will never be reset between each data transfer.

On the contrary, if the software is not fast enough, this can lead to some discontinuities in
the communication. In this case, the BSY bit is reset between each data transmission (see
Figure 99).

In master receive-only mode (BDM = 0 and RXONLY = 1) or in bidirectional receive mode
(BDM = 1 and BDOE = 0), the communication is always continuous and the BSY flag is
always read at 1.

In slave mode, the continuity of the communication is decided by the SPI master device. But
even if the communication is continuous, the BSY flag goes low between each transfer for a
minimum duration of one SPI clock cycle (see Figure 95).

3

DoclD14587 Rev 14

RMO0016 Serial peripheral interface (SPI)

Figure 99. TXE/BSY behavior when transmitting (BDM = 0 and RXLONY = 0).
Case of discontinuous transfers

Example with CPOL=1, CPHA =1

DATA 1 = 0xF1 DATA 2 = DxF2 DATA 3 = DxF3
MOSI (out) b0 Jo1 [b2 [pa]oa]os [os [o7 b0 o1 Jvz] va]va]os fos | o7 b0 Jo1 Jvz [b3] ba]us s | o7
TXE flag / [/
4

Tx buffer 0xF1 0xF2 | 0xF3
(write SPI_DR) "

BSY flag ,‘ |/ /‘ [)
software writes 0xF1 | software waits until TXE=1 | software waits until TXE=1| |software waits | |software waits until
nto SPI_DR but is late to write 0xF2 into utis late to writes 0xF3 until TXE=1 BSY=0

SPI_DR nto SPILDR

20.3.6 CRC calculation

A CRC calculator has been implemented for communication reliability. Separate CRC
calculators are implemented for transmitted data and received data. The CRC is calculated
using a programmable polynomial serially on each bit. The CRC is calculated on the
sampling clock edge defined by the CPHA and CPOL bits in the SPI_CR1 register.

CRC calculation is enabled by setting the CRCEN bit in the SPI_CR1 register. This action
resets the CRC registers (SPI_RXCRCR and SPI_TXCRCR). When the CRCNEXT bit in
SPI_CR2 is set, the SPI_TXCRCR value is transmitted at the end of the current byte
transmission.

If a byte is present in the Tx buffer, the CRC value is transmitted only after the transmission
of this byte. During the transmission of CRC, the CRC calculator is switched off and the
register value remains unchanged.

The CRCERR flag in the SPI_SR register is set if the value received in the shift register
during the SPI_TXCRCR value transmission does not match the SPI_RXCRCR value.

3

DoclD14587 Rev 14 275/467

Serial peripheral interface (SPI) RMO0016

Note:

276/467

SPI communication using CRC is possible through the following procedure:

Program the CPOL, CPHA, LSBfirst, BR, SSM, SSI and MSTR values.

Program the polynomial in the SPI_CRCPR register

Enable the CRC calculation by setting the CRCEN bit in the SPI_CR1 register. This
also clears the SPI_RXCRCR and SPI_TXCRCR registers

Enable the SPI by setting the SPE bit in SPI_CR1

Start the communication and sustain the communication until all but one byte has been
transmitted or received.

On writing the last byte to the Txbuffer, set the CRCNext bit in the SPI_CR2 register to
indicate that after transmission of the last byte, the CRC should be transmitted. The
CRC calculation will be frozen during the CRC transmission.

After transmitting the last byte, the SPI transmits the CRC. CRCNext bit is reset. The
CRC is also received and compared against the SPI_RXCRCR value. If the value does
not match, the CRCERR flag in SPI_SR is set and an interrupt can be generated when
the ERRIE in the SPI_ICR register is set.

With high bit rate frequencies, the user must take care when transmitting CRC. As the
number of used CPU cycles has to be as low as possible in the CRC transfer phase, the
calling of software functions in the CRC transmission sequence is forbidden to avoid errors
in the last data and CRC reception.

3

DoclD14587 Rev 14

RMO0016 Serial peripheral interface (SPI)
20.3.7 Status flags
There are three status flags to allow the application to completely monitor the state of the
SPI bus.
Tx buffer empty flag (TXE)
When set, this flag indicates that the Tx buffer is empty and that the next data to be
transmitted can be loaded into the buffer. The TXE flag is reset when writing the SPI_DR
register.
Rx buffer not empty (RXNE)
When set, this flag indicates that there is a valid received data in the Rx buffer. This flag is
reset when SPI_DR is read.
Busy flag (BSY)
This BSY flag is set and reset by hardware (writing to this flag has no effect). The BSY flag
indicates the state of the communication layer of the SPI.
When BSY is set, it indicates that the SPI is busy communicating. There is one exception in
master mode / bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0) where the
BSY flag is kept low during the reception.
The BSY flag is useful to detect the end of a transfer if the software wants to disable the SPI
and enters Halt mode (or disable the peripheral clock). This will avoid corrupting the last
transfer. For this, the procedure described below must be strictly respected.
The BSY flag is also useful to avoid write collisions in a multimaster system.
The BSY flag is set when a transfer starts with the exception of master mode / bidirectional
receive mode (MSTR =1 and BDM = 1 and BDOE = 0).
Itis reset:
e when a transfer is finished (except in master mode if the communication is continuous)
e when the SPl is disabled
e when a master mode fault occurs (MODF = 1)
When communication is not continuous, the BSY flag is low between each communication.
When communication is continuous, in master mode, the BSY flag is kept high during the
whole transfers.
When communication is continuous, in slave mode, the BSY flag goes back to low state for
one SPI clock cycle between each transfer.
Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use
TXE and RXNE flags instead.
20.3.8 Disabling the SPI

3

When a transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by resetting the SPE bit.

For some configurations, disabling the SPI and entering Halt mode while a transfer is on-
going, can cause the current transfer to be corrupted and/or it can happen that the BSY flag
becomes unreliable.

DoclD14587 Rev 14 277/467

Serial peripheral interface (SPI) RMO0016

To avoid any of these effects, it is recommended to respect the following procedure when
disabling the SPI:

In master or slave full duplex mode (BDM = 0, RXONLY = 0):

Wait until RXNE = 1 to receive the last data
Wait until TXE =1
Then wait until BSY =0

Disable the SPI (SPE = 0) and eventually enter Halt mode (or disable the peripheral
clock).

Ao N =

In master or slave unidirectional transmit-only mode (BDM = 0, RXONLY = 0)
or bidirectional transmit mode (BDM = 1, BDOE = 1):

After the last data is written in the SPI_DR register:
1. Wait until TXE = 1
2. Then wait until BSY =0

3. Disable the SPI (SPE = 0) and, if desired, enter Halt mode (or disable the peripheral
clock).

In master unidirectional receive-only mode (MSTR =1, BDM = 0, RXONLY =1)
or bidirectional receive mode (MSTR =1, BDM = 1, BDOE = 0):

This case must be managed in a particular way to ensure that the SPI does not initiate a
new transfer:

1. Wait for the second to last occurrence of RXNE =1 (n-1)

2. Then wait for one SPI clock cycle (using a software loop) before disabling the SPI

(SPE =0)
3. Then wait for the last RXNE=1 before entering Halt mode (or disabling the peripheral
clock).
Note: In master bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0), the BSY flag is

kept low during a transfer.

In slave receive-only mode (MSTR = 0, BDM = 0, RXONLY = 1) or bidirectional
receive mode (MSTR = 0, BDM =1, BDOE = 0):

1. You can disable the SPI (write SPE = 1) whenever you want: the current transfer will
complete before being effectively disabled.

2. Then, if you want to enter Halt mode, you must first wait until BSY = 0 before entering
Halt mode (or disabling the peripheral clock).

3

278/467 DoclD14587 Rev 14

RMO0016

Serial peripheral interface (SPI)

20.3.9

3

Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in NSS
hardware mode) or SSI bit low (in NSS software mode), this automatically sets the MODF
bit. Master mode fault affects the SPI peripheral in the following ways:

e The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

e The SPE bit is reset. This blocks all output from the device and disables the SPI
interface.

e The MSTR bit is reset, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:
1. Make a read or write access to the SPI_SR register while the MODF bit is set.
2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence.

As a security, hardware does not allow you to set the SPE and MSTR bits while the MODF
bit is set.

In a slave device the MODF bit cannot be set. However, in a multi-master configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates
that there might have been a multimaster conflict for system control. You can use an
interrupt routine to recover cleanly from this state by performing a reset or returning to a
default state.

Overrun condition

An overrun condition occurs, when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

e OVRbitis set and an interrupt is generated if the ERRIE bit is set.
In this case, the receiver buffer contents will not be updated with the newly received data

from the master device. A read to the SPI_DR register returns this byte. All other
subsequently transmitted bytes are lost.

Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read
access to the SPI_SR register.

CRC error

This flag is used to verify the correctness of the value received when the CRCEN bit in the
SPI_CR2 register is set. The CRCERR flag in the SPI_SR register is set if the value
received in the shift register after the SPI_TXCRCR value transmission does not match the
SPI_RXCRCR value. Refer to Chapter 20.3.6: CRC calculation.

DoclD14587 Rev 14 279/467

Serial peripheral interface (SPI)

RM0016

20.3.10 SPI low power modes

20.3.11

280/467

Table 45. SPI behavior in low power modes

Mode Description

No effect on SPI.

Wait SPl interrupt events cause the device to exit from Wait mode.

SPI registers are frozen.

In Halt mode, the SPl is inactive. If the SPI is in master mode, then
communication resumes when the device is woken up by an interrupt with
“wakeup from Halt mode” capability.

If the SPl is in slave mode, then it can wake up the MCU from Halt mode after

Halt

detecting the first sampling edge of data.

Using the SPI to wake up the device from Halt mode

When the microcontroller is in Halt mode, the SPI is still capable of responding as a slave
provided the NSS pin is tied low or the SSI bit is reset before entering Halt mode.

When the first sampling edge of data (as defined by the CPHA bit) is detected:

e The WKUP bit is set in the SPI_SR register

e Aninterrupt is generated if the WKIE bit in the SPI_ICR register is set.

e This interrupt wakes up the device from Halt mode.

e Due to the time needed to restore the system clock, the SPI slave sends or receives a
few data before being able to communicate correctly. It is then mandatory to use the
following protocol:

— A specific value is written into the SPI_DR before entering Halt mode. This value
indicates to the external master that the SPI is in Halt mode

— The external master sends the same byte continuously until it receives from the
SPI slave device a new value other than the unique value indicating the SPI is in
Halt mode. This new value indicates the SPI slave has woken-up and can
correctly communicate.

Restrictions in receive-only modes

The wakeup functionality is not guaranteed in receive-only modes (BDM = 0 and

RXONLY =1 or BDM = 1 and BDOE = 0) since the time needed to restore the system clock
can be greater than the data reception time. A loss of data in reception would then be
induced and the slave device can not indicate to the master which data has been properly
received.

SPI interrupts

Table 46. SPI interrupt requests

Enable Exit Exit
Event
Interrupt event fla control from from
9 bit Wait Halt
Transmit buffer empty flag TXE TXIE Yes No
Receive buffer not empty flag RXNE RXIE Yes No

3

DoclD14587 Rev 14

RMO0016

Serial peripheral interface (SPI)

3

Table 46. SPI interrupt requests (continued)

Enable Exit Exit
Event

Interrupt event fla control from from

9 bit Wait Halt

Wakeup event flag WKUP WKIE Yes Yes
Master mode fault event MODF Yes No
Overrun error OVR ERRIE Yes No
CRC error flag CRCERR Yes No

DoclD14587 Rev 14 281/467

Serial peripheral interface (SPI)

RM0016

20.4

20.4.1

7

SPI registers

SPI control register 1 (SPI_CR1)

Address offset: 0x00
Reset value: 0x00

6 5 4

LSBFIRST

SPE BR [2:0]

MSTR

CPOL

CPHA

w

w 'w

Bit 7

Bit 6

Bits 5:3

Bit 2

Bit1

Bit 0

1. This bit should not be changed when the communication is ongoing.
2. When disabling the SPI, follow the procedure described in Section 20.3.8: Disabling the SPI on page 277

282/467

LSBFIRST: Frame format (*)
0: MSB is transmitted first
1: LSB is transmitted first

SPE: SPI enable (?)
0: Peripheral disabled
1: Peripheral enabled

BR[2:0]: Baud rate control
000: fMASTER/Z

001: fMASTER/4
010: fMASTER/S

011: fMASTER/16
100: fMASTER/32

101: fMASTER/64
110: fMASTERM 28
111: fMASTER/256

Note: These bits should not be changed when the communication is ongoing.

MSTR: Master selection (1)
0: Slave configuration
1: Master configuration

CPOL.: Clock polarity (1)
0: SCK to 0 when idle
1: SCK to 1 when idle

CPHA: Clock phase ()

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

DoclD14587 Rev 14

3

RMO0016

Serial peripheral interface (SPI)

20.4.2

SPI control register 2 (SPI_CR2)

Address offset: 0x01
Reset value: 0x00

6 5 4 3 2 1 0

BDM

BDOE CRCEN CRCNEXT Reserved RXOnly SSM SSlI

w 'w 'w w w w w

Bit7

Bit 6

Bit5

Bit4

Bit3
Bit2

Bit 1

Bit 0

3

BDM: Bidirectional data mode enable
0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

BDOE: Input/Output enable in bidirectio