

July 2009 Doc ID 15783 Rev 1 1/85

UM0712
User manual

STM8S three-phase AC induction motor control
software library V1.0

Introduction
This user manual describes the alternate current induction motor (ACIM) scalar software
library developed for STM8S microcontrollers.

These 8-bit, ST microcontrollers (STM8S) come with a set of peripherals that make them
suitable for performing both PM and AC induction motor scalar control.

The present document describes the STM8S software library developed to control induction
motors in open loop or speed-closed loop depending whether they are equipped with a
tachogenerator speed sensor or not. The control of the brushless direct current (BLDC)
motor, equipped with three Hall sensors or sensorless, in six-step mode is described in
UM0708.

The ACIM motor software library is made of several C modules and is fitted with STVD
workspaces. It is used to quickly evaluate both the MCU and the available tools. When it is
used with the STM8/128-MCKIT motor control starter kit and an AC induction motor, a motor
can be made to run in a very short time. The ACIM library also eliminates the need for time-
consuming development of low-level drive and speed regulation algorithms by providing
ready-to-use functions that allow the user to concentrate on the application layer.

A prerequisite for using this library is basic knowledge of C programming, AC motor drives
and power inverter hardware. In-depth know-how of STM8S functions is only required for
customizing existing modules and for adding new ones for a complete application
development.

www.st.com

http://www.st.com

Contents UM0712

2/85 Doc ID 15783 Rev 1

Contents

1 Features . 7

1.1 Performance line STM8S features . 7

1.2 Access line STM8S features . 9

1.3 ACIM software library V1.0 features . 11

1.4 Development tools . 12

1.4.1 Toolchains . 12

1.4.2 Programming tools . 13

1.5 Reference documents . 13

2 Introduction to STM8S ACIM scalar control . 14

2.1 Introduction to ACIM theory . 14

2.2 ACIM steady state electrical circuit . 16

2.3 Electromagnetic torque characteristic curve . 17

2.4 Speed closed loop control . 19

2.4.1 V/f control and slip regulation . 19

2.4.2 Maximum torque per ampere (MTPA) control . 22

2.5 Speed open loop control . 25

2.5.1 Load compensation . 25

2.6 Startup strategy . 26

2.7 Three-phase PWM sine wave and third harmonic generation 28

2.8 Bus voltage ripple cancellation . 30

3 Running the demonstration program . 31

3.1 ACIM user interface . 31

3.2 Getting started with the ACIM user interface . 32

3.2.1 Welcome message . 32

3.2.2 Help menus . 32

3.2.3 Main menu: Changing the target and measured rotor speed 33

3.3 Using the ACIM user interface sub-menus for motor control 34

3.3.1 ACIM user interface sub-menus . 34

3.3.2 Speed regulator parameters . 35

3.3.3 Drive strategy parameters . 36

3.3.4 Startup parameters . 36

UM0712 Contents

Doc ID 15783 Rev 1 3/85

3.3.5 Control strategy parameters . 37

3.3.6 Displaying the DC bus voltage and heatsink temperature parameters . 37

3.3.7 Fault messages . 38

4 Getting started with the STM8S ACIM firmware 40

4.1 Application state machine . 40

4.1.1 Description of the states . 40

4.1.2 Description of the state machine operation . 41

4.2 Library architecture . 42

4.2.1 Virtual registers . 44

4.2.2 Virtual I/Os . 45

4.2.3 Drive structure . 46

4.3 Low-level control . 50

4.3.1 Combined utilization of ADC and TIM1 for motor driving 50

4.3.2 Tachogenerator signal reading . 55

4.3.3 Dissipative brake . 57

4.4 High-level control . 57

4.4.1 Virtual timers . 57

4.4.2 Using the ACIM virtual timers . 58

4.4.3 ACIM scalar control . 59

4.4.4 Tachogenerator signal reading . 60

5 Designing an application using the ACIM software library 62

5.1 Customizing the ACIM software library parameter file 63

5.1.1 ACIM configuration file: MC_ACIM_conf.h . 63

5.1.2 ACIM motor define statements: MC_ACIM_Motor_Param.h 64

5.1.3 ACIM drive control define statements: MC_ACIM_Drive_Param.h 64

5.1.4 Tacho sensor define statements: MC_tacho_param.h 70

5.1.5 Control stage define statements: MC_ControlStage_param.h 70

5.1.6 Power stage define statements: MC_PowerStage_Param.h 71

5.1.7 Microcontroller clock definition: MC_stm8s_clk_param.h 74

5.1.8 Microcontroller specific ACIM drive define statements:
MC_stm8s_ACIM_param.h . 74

5.1.9 Port pin definition define statements: MC_stm8s_port_param.h 76

5.1.10 Tacho param microcontroller interfaces: MC_stm8s_tacho_param.h . . 77

5.2 Setting up the system when using a brake resistor 79

Contents UM0712

4/85 Doc ID 15783 Rev 1

6 Module description . 80

6.1 High-level modules . 80

6.2 Low-level modules . 81

Appendix A Additional information. 82

A.1 DAC configuration . 82

A.2 Motor control related CPU load. 82

A.3 References . 83

A.4 STM8 motor control builder GUI . 83

Revision history . 84

UM0712 List of tables

Doc ID 15783 Rev 1 5/85

List of tables

Table 1. ROM and RAM requirements . 12
Table 2. Joystick actions and conventions . 31
Table 3. Virtual registers. 44
Table 4. Virtual I/Os . 45
Table 5. ACIM drive structure for speed closed loop control . 46
Table 6. ACIM drive structure for speed open loop control . 48
Table 7. PWM amplitude resolution @CPU frequency 24 MHz . 51
Table 8. PWM amplitude resolution @CPU frequency 16 MHz . 52
Table 9. ACIM virtual timers . 58
Table 10. Tacho input capture filter duration . 78
Table 11. Example of ACIM motor control function execution time . 82
Table 12. CPU load resulting from motor control . 83
Table 13. Document revision history . 84

List of figures UM0712

6/85 Doc ID 15783 Rev 1

List of figures

Figure 1. Simplified arrangement of windings (cross section) . 15
Figure 2. Induction motor equivalent circuit 1 . 16
Figure 3. Induction motor equivalent circuit 2 . 17
Figure 4. Electromagnetic torque-speed characteristic . 17
Figure 5. V/f regulation. 18
Figure 6. V/f and slip regulation . 20
Figure 7. V/f and slip regulation control scheme . 20
Figure 8. Flux weakening region . 21
Figure 9. MTPA mode strategy . 23
Figure 10. MTPA mode control scheme . 24
Figure 11. Speed open loop control with load compensation . 26
Figure 12. Closed loop startup strategy . 27
Figure 13. Pure sine wave modulation and equivalent with third harmonic added 28
Figure 14. Third harmonic injection with increased fundamental amplitude . 29
Figure 15. Third harmonic PWM modulation and corresponding currents. 29
Figure 16. Bus voltage ripple compensation . 30
Figure 17. ACIM user interface menu structure and navigation. 32
Figure 18. ACIM drive welcome message . 32
Figure 19. Help menu . 33
Figure 20. Main window, showing target rotor speed and measured speed . 33
Figure 21. Selecting the target rotor speed . 33
Figure 22. User interface sub-menu . 34
Figure 23. Field selected for editing. 34
Figure 24. Constant flux control and slip regulation (via PID) . 36
Figure 25. Constant slip control and flux regulation (via PID) . 36
Figure 26. Drive strategy parameters . 36
Figure 27. Startup parameters . 36
Figure 28. Control strategy parameters . 37
Figure 29. Bus voltage and heatsink temperature parameters . 37
Figure 30. Error message shown in the event of an undervoltage fault. 39
Figure 31. Main motor control state machine. 41
Figure 32. STM8S motor control library architecture: High-level/low-level interface 42
Figure 33. STM8S motor control library organization . 43
Figure 34. TIM1 initialization . 51
Figure 35. TIM1 and ADC utilization . 54
Figure 36. ACIM drive low-level module . 54
Figure 37. Tachogenerator reading method . 56
Figure 38. Tachogenerator sensing low-level module . 56
Figure 39. ACIM scalar control module . 60
Figure 40. Tachogenerator speed measurement module . 61
Figure 41. Transduction curve between the temperature sensor and the ADC converted 73
Figure 42. Brake resistor circuit . 79

UM0712 Features

Doc ID 15783 Rev 1 7/85

1 Features

1.1 Performance line STM8S features
● Core

– Advanced STM8 core with Harvard architecture and 3-stage pipeline

– fCPU up to 24 MHz setting, 0 wait state at fCPU ≤ 16 MHz

– Extended instruction set

– Maximum 20 MIPS performance at fCPU = 24 MHz

● Memories

– Program memory: Up to 128 Kbytes Flash; with 20 year data retention at 55 °C
after 10 kcycles.

– Data memory: Up to 2 Kbytes true data EEPROM; with 300 kcycle endurance

– RAM: Up to 6 Kbytes

● Clock, reset and supply management

– 2.95 to 5.5 V operating voltage

– Flexible clock control, 4 master clock sources:

Low power crystal resonator oscillator

External clock input

Internal user-trimmable 16 MHz RC

Internal low power 128 kHz RC

– Clock security system with clock monitor

– Power management:

Low power modes (wait, active-halt, halt)

Individual peripheral clock switch-off

– Permanently active, low consumption power-on and power-down reset

● Interrupt management

– Nested interrupt controller with 32 interrupts

– Up to 37 external interrupts on 6 vectors

● Timers

– 2x 16-bit general purpose timers, with 2+3 capture/compare channels (input
capture, output compare, or PWM).

– Advanced 16-bit control timer

4 capture/compare channels (input capture, output compare, PWM (edge or
center-aligned mode), single pulse output mode).

3 complementary outputs with adjustable dead-time insertion

Hardware fault protection (break input)

Flexible synchronization

– 8-bit basic timer with 8-bit prescaler

– Auto wake-up timer

– 2 watchdog timers: Window watchdog and independent watchdog

Features UM0712

8/85 Doc ID 15783 Rev 1

● Communications interfaces

– High-speed 1 Mbit/s active CAN 2.0B interface

– UART with clock output for synchronous operation, LIN master mode

– LIN 2.1 compliant UART, master/slave mode, automatic resynchronization

– SPI interface up to 10 Mbit/s

– I2C interface up to 400 Kbit/s

● 10-bit analog to digital converter (ADC) with up to 16 multiplexed channels

● I/Os

– Up to 68 I/Os on a 80-pin package including 18 high sink outputs

– Highly robust I/O design, immune against current injection

● Development support

– Embedded single wire interface module (SWIM) and debug module (DM) for fast
on-chip programming

– Non intrusive debugging

UM0712 Features

Doc ID 15783 Rev 1 9/85

1.2 Access line STM8S features
● Core

– 16 MHz advanced STM8 core with Harvard architecture and 3-stage pipeline

– Extended instruction set

● Memories

– Program memory: Up to 32 Kbytes Flash; with 20 year data retention at 55 °C
after 10 kcycles.

– Data memory: Up to 1 Kbytes true data EEPROM; with 300 kcycle endurance

– RAM: Up to 2 Kbytes

● Clock, reset and supply management

– 3.0 to 5.5 V operating voltage

– Flexible clock control, 4 master clock sources:

Low power crystal resonator oscillator

External clock input

Internal user-trimmable 16 MHz RC

Internal low power 128 kHz RC

– Clock security system with clock monitor

– Power management:

Low power modes (wait, active-halt, halt)

Individual peripheral clock switch-off

– Permanently active, low consumption power-on and power-down reset

● Interrupt management

– Nested interrupt controller with 32 interrupts

– Up to 37 external interrupts on 6 vectors

● Timers

– 2x 16-bit general purpose timers, with 2+3 capture/compare channels (input
capture, output compare, or PWM).

– Advanced 16-bit control timer

4 capture/compare channels (input capture, output compare, PWM (edge or
center-aligned mode), single pulse output mode).

3 complementary outputs with adjustable dead-time insertion

Hardware fault protection (break input)

Flexible synchronization

– 8-bit basic timer with 8-bit prescaler

– Auto wake-up timer

– 2 watchdog timers: Window watchdog and independent watchdog

● Communications interfaces

– UART with clock output for synchronous operation, Smartcard, IrDA and LIN mode

– LIN 2.1 compliant UART, master/slave mode, automatic resynchronization

– SPI interface up to 8 Mbit/s

– I2C interface up to 400 Kbit/s

Features UM0712

10/85 Doc ID 15783 Rev 1

● Analog to digital converter (ADC)

– 10-bit, ±1 LSB ADC with up to 10 multiplexed channels, scan mode and analog
watchdog.

● I/Os

– Up to 38 I/Os on a 48-pin package including 9 high sink outputs

– Highly robust I/O design, immune against current injection

● Development support

– Embedded single wire interface module (SWIM) for fast on-chip programming

– Non intrusive debugging

UM0712 Features

Doc ID 15783 Rev 1 11/85

1.3 ACIM software library V1.0 features

ACIM voltage mode scalar controls

● Speed open loop

– Adjustable target rotor speed, V/f ratio, and slip speed via the user interface (UI)

● Speed open loop and load compensation

– Adjustable target rotor speed via the UI

– Varied V/f ratio and slip speed according to the characteristic torque curve of the
load.

● Speed open loop and load compensation, tachogenerator sensing:

– Adjustable target rotor speed via the UI

– Slip speed varying according to the characteristic torque curve of the load

– Rotor speed checked to validate startup and max/min run speed

● Speed closed loop, V/f and slip control:

– Adjustable target rotor speed via the UI

– Rotor speed measured and provided as feedback of the speed loop control

– Optimized dynamics drive

– Parameters tuning mode (proportional-integral-derivative regulator (PID) gains, V/f
ratio, startup V/f ratio, startup slip).

● Speed closed loop, maximum torque per ampere (MTPA) control:

– Adjustable target rotor speed via the UI

– Rotor speed measured and provided as feedback of the speed loop control

– Optimized efficiency drive

– Parameter tuning mode (PID gains, V/f ratio, optimum slip, startup V/f ratio, startup
slip).

Additional features

● Three-phase center-aligned PWM sine waves and third harmonics synthesis,
adjustable switching frequency, dead time, output refresh rate.

● DC bus voltage measurement and ripple compensation

● Automatic drive adaptation to AC mains voltage

● Dead time effect compensation

● DC bus brake resistor management

● Heatsink temperature measurement

● Fault handling for overcurrent (shunt resistor network required), DC bus
overvoltage/undervoltage, heatsink overtemperature.

● The UI is provided through LCD and joystick

● Two-channel, virtual DAC functionality, for real-time tracing of software variables

● Firmware is compatible with STM8s motor control builder GUI

Features UM0712

12/85 Doc ID 15783 Rev 1

Required ROM/RAM

Table 1 gives the ROM and RAM requirements. These values include non motor control
related code implemented for demonstration purposes (such as ADC management or
software time bases). They serve as a rough guide since the code size produced can be
smaller or larger depending on the chosen memory model.

Library source code is released free of charge if used in the final application based on ST
products.

1.4 Development tools
The present software library has been fully validated using the STM8/128-MCKIT motor
control starter kit. This kit also includes a Raisonance R-Link hardware debugger, which
makes it an ideal solution to start a project and evaluate or use the ACIM software library.

For rapid implementation and evaluation of the ACIM library, it is recommended to acquire
the STM8/128-MCKIT motor control starter kit.

1.4.1 Toolchains

This library has been compiled using COSMIC C-toolchains, running under ST Visual
development release 4.1.2 (STVD). Free IDE and demonstration versions of third party
toolchains can be found at http://www.st.com/mcu (then select downloads).

A complete software package consists of:

● An IDE interface: STVD (free download available on internet).

● A third party C-compiler: Cosmic (a free 16 K size-limited evaluation version can be
obtained upon request. This version is sufficient to compile all stand alone firmware
configurations).

The choice of the C toolchain is up to the user. However, only COSMIC are fully supported
and the dedicated workspace, compatible with STVD, can be directly opened in the root of
the library installation folder (STM8_STVD_COSMIC.stw,
STM8_STVD_COSMIC_BLDC.stp, STM8_STVD_COSMIC_ACIM.stp).

Table 1. ROM and RAM requirements

Configuration ROM (Kbytes) RAM (Kbytes)

Speed open loop 6.13 0.18

Speed open loop, load
compensation

6.32 0.18

Speed open loop, load
compensation, tacho sensing

7.35 0.21

Speed closed loop, V/f + slip
control/MTPA control

7.78 0.21

UM0712 Features

Doc ID 15783 Rev 1 13/85

In addition, the STM8S motor control builder GUI (see Section A.4) allows these libraries to
be customized through variables corresponding to the motor you are using. This makes the
first utilization of the library significantly easier (see Section 5: Designing an application
using the ACIM software library).

1.4.2 Programming tools

To program an MCU with the generated S19 file, you should also install the ST Visual
Programmer software (STVP), and use a SWIM programming interface (Raisonance RLink).
The STVP tool provides an easy way to erase, program and verify the code programmed in
the MCU.

Go to htt://www.st.com for information on STVP and RLink.

1.5 Reference documents
● User manual UM0708: STM8S three-phase AC induction motor software library V1.0.

● Reference manual RM0016: STM8S microcontroller family

● STM8S103xxx datasheet: Access line,16 MHz STM8S 8-bit MCU, up to 8 Kbytes
Flash, data EEPROM,10-bit ADC, 3 timers, UART, SPI, I²C.

● STM8S105xx datasheet: Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbytes
Flash, integrated EEPROM,10-bit ADC, timers, UART, SPI, I²C.

● STM8S20xxx datasheet: Performance line, 24 MHz STM8S 8-bit MCU, up to 128
Kbytes Flash, integrated EEPROM,10-bit ADC, timers, 2 UARTs, SPI, I²C, CAN.

● STM8S903K3 datasheet: 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash, 1 Kbyte
RAM, 640 bytes EEPROM,10-bit ADC, 2 timers, UART, SPI, I²C.

● Programming manual PM0044: STM8 CPU programming manual

● User manual UM0144: ST assembler-linker

● User manual UM0036: ST Visual Develop (STVD)

● User manual UM0482: STM8/128-EVAL evaluation board (MB631)

● User manual UM0709: STM8/128-MCKIT motor control starter kit

● User manual UM0483: STM32F103xx AC induction motor IFOC software library v2.0

Introduction to STM8S ACIM scalar control UM0712

14/85 Doc ID 15783 Rev 1

2 Introduction to STM8S ACIM scalar control

2.1 Introduction to ACIM theory
An ACIM has a polyphase stator, identical to that of a synchronous machine. The windings
can be wye- or star-connected and they are embedded in slots around the inside
circumference. In a two-pole, three-phase motor, the stator windings are displaced 120 °
with respect to each other. The windings are symmetrical in that each of them has the same
number of turns and the same resistance.

Conversely, the rotor structure characterizes two different kinds of machines: A squirrel cage
induction machine and a wound rotor machine. In the squirrel cage induction machine, the
rotor consists of a series of conducting bars, short-circuited at each end by conducting end
rings. In the wound rotor machine, the rotor has a polyphase winding similar to that of the
stator (with the same number of phases and poles) and its terminals abut insulated rings
mounted on the shaft. Carbon brushes make these terminals available to the user.

Squirrel cage induction machines are, by far, the most commonly used type of electric motor
thanks to their extreme simplicity and ruggedness. The great majority of induction machines
are operated as motors.

Induction motors owe their name to their working principle that the rotor voltage, which
produces the rotor current and magnetic field, is induced in the rotor windings.

The MMF (magneto-motive force) and the magnetic flux produced by a balanced set of
three-phase steady-state currents, rotates about the air-gap at a mechanical speed of ωes/p,
where ωes is the stator current frequency and p is the number of pole pairs.

If the rotor mechanical speed (ωr) is different from the speed of this rotating air-gap flux,
three-phase currents are induced in the short-circuited rotor windings.

The frequency (ωer) of these currents is equal to the difference of the stator current
frequency and the rotor speed, so that:

Equation 1

Consequently, the rotor currents produce a rotor magnetic flux which rotates about the air-
gap at a speed which, seen from the rotor is equal to that of rotor currents, but, seen from
the stator reference frame is equal to ωes/p. The electromagnetic torque is then produced
due to the interaction of the two synchronous magnetic fields.

The difference between the air-gap flux electrical speed (ωe = ωes) and the electrical rotor
speed is the so-called slip speed of the rotor, defined in Equation 2.

Equation 2

Note: The air-gap flux electrical speed is also described as the synchronous speed.

Usually the slip is also expressed as a fraction of the synchronous speed (Equation 3).

ωer ωes ωr p×–=

ωse ωe ωrel–=

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 15/85

Equation 3

However, there is an upper limit to the motor’s speed: If the rotor is running at synchronous
speed (Equation 4) there is no induced voltage. For this reason, induction motors are also
called asynchronous motors and the torque is defined as an asynchronous torque, because
it is produced at any rotor speed except for the synchronous speed.

Equation 4

Consequently, s = 0

On the other hand, if the rotor is stationary (s = 1), rotor induced voltage has the same stator
frequency. In this case, the motor behaves as a transformer with short-circuited secondary
winding. All other working conditions fall somewhere between these two limits.

The winding arrangement of a 2-pole induction motor is shown in Figure 1.

Figure 1. Simplified arrangement of windings (cross section)

s ωe ωrel–() ωe⁄=

ωr ωes p⁄=

Introduction to STM8S ACIM scalar control UM0712

16/85 Doc ID 15783 Rev 1

2.2 ACIM steady state electrical circuit
The equivalent electrical circuit of an induction motor is very similar to that of a transformer.
Since rotor voltages and currents are induced in the same way, the only difference between
the two is that in an induction motor, the secondary winding is short-circuited and the load,
or working condition, is represented as a function of slip speed.

Figure 2 shows the equivalent T circuit of one phase of an induction motor (phase “a”).
Voltages and currents of the remaining two phases are simply shifted in time by ± 120 °. The
motor is considered to be wye-connected.

Figure 2. Induction motor equivalent circuit 1

1. Legend: Vs is the line-to-neutral stator applied voltage
Is I the stator phase current
Im the magnetizing current
Ir the referred (or equivalent) rotor current
rs is the stator resistance
r’r is the referred rotor resistance
Xls is the stator leakage reactance
Xl’r is the referred rotor leakage reactance
Xm is the magnetizing reactance
Rc is the core-loss equivalent resistance

The rotor resistance and leakage inductance (and their referred values) are not directly
measurable on squirrel cage motors. Specific measurements, such as no load and locked
rotor tests, provide methods to indirectly obtain these parameters.

In the equivalent T circuit, the stator current is divided into two components: The
magnetizing current Im and the load current I’r. The magnetizing current is required to create
the air-gap flux which is produced by the combined effect of stator and rotor currents.

The magnetizing current (Im) can be further divided into a component which is responsible
for core-losses and a pure magnetizing current.

The load current (I’r) is responsible for the rotor current. It is a function of the applied load
and the working point condition. The combined effect of load and rotor resistance appears
as the equivalent resistance r’r/s.

The equivalent circuit can be redrawn to separate representation of the rotor resistance from
the effect of applied load and working conditions (see Figure 3).

rs
jXlsI s

Vs

I m

r ’r / s

jX’lr

jXmrc

I ’r

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 17/85

Figure 3. Induction motor equivalent circuit 2

2.3 Electromagnetic torque characteristic curve
The electromagnetic torque-speed characteristic curve is shown in Figure 4 where Vs and
ωe are held constant at their nominal values.

Figure 4. Electromagnetic torque-speed characteristic

Speed is represented on a rated scale and also represented simultaneously as a function of
the slip. Torque (Te) is displayed as a fraction of its rated value.

Pull-out torque

Introduction to STM8S ACIM scalar control UM0712

18/85 Doc ID 15783 Rev 1

The curve has three peculiar regions:

● The low-slip region at the right-hand side of the curve, characterized by a linear relation
of Te and Ir with slip and negligible inductive reactance. The normal operating range of
an induction motor is inside this region, where the energy conversion efficiency is also
optimal.

● In the moderate slip region, the inductive reactance is no longer negligible, thus the
rotor current is less than proportional with slip. The displacement angle (the angle
between the rotor and air-gap flux) departs from its optimum value of 90 °. The torque
increases up to a maximum value, called pull-out torque, and then decreases. This
region can be used just for short term overloaded operations.

● The third region, characterized by high-slip, is an unstable and inefficient working area.

Figure 5. V/f regulation

Starting with the induction motor equivalent circuit (Figure 3), it can be seen that, at steady
state and within the low- and medium-slip regions, air-gap flux is directly controlled by the
ratio of stator phase voltage (Vs) and stator electrical frequency (f).

Furthermore, under a constant V/f ratio (constant air-gap flux), the electromagnetic torque
curve shifts to the right as the stator frequency is increased (Figure 5).

This concept gives rise to the drive strategy, whereby varying the frequency and the voltage
applied through a DC-AC inverter, the motor is able to supply the nominal torque at nominal
conditions of stator and rotor currents over its complete speed range.

The speed range is typically divided into two regions. In the first region (up to the nominal
speed), the motor can produce its nominal torque. The second region (beyond the nominal
speed) is characterized by constant power flow, where the torque decreases with inverse
proportionality to the speed.

ωr Rotor speed

Torque

ωe Stator Flux rotation speed

Working
points

Slip

Loading torque
(typical HVAC load)

V/f ratio is maintained: as a consequence,
the airgap flux is constant and the
electromagnetic torque curve (Te) translates
to the right when the stator frequency
increases, but its shape remains unchanged

(see equation 2)

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 19/85

Depending on the application and the availability of a speed sensor, two main operating
modes can be selected: Speed closed loop control (see Section 2.4) and speed open loop
control (see Section 2.5).

Both operating methods are described as scalar controls in voltage mode (stator current
amplitude is controlled at steady state through modulation of the applied voltage).

2.4 Speed closed loop control
Applications which demand good speed accuracy and/or fast responses to either load
torque variation or speed reference variation, require a closed loop controller and a speed
sensing device. The current ACIM firmware library (V1.0) includes a module whereby the
motor speed can be read via a tachogenerator sensor.

To enable speed closed loop mode, see Section 5.1.1: ACIM configuration file:
MC_ACIM_conf.h. Part of the drive is a negative feedback PID speed controller: the actual
rotor speed is measured and compared with a reference speed to produce the error signal.
This signal is processed by the controller to generate the command signal which keeps the
speed error to a minimum.

This firmware library provides two closed loop control modes: V/F control and slip regulation
(see Section 2.4.1) and MTPA (see Section 2.4.2).

2.4.1 V/f control and slip regulation

This control mode is designed to optimize the dynamic response of the system if the motor
is inside the first speed region (constant torque).

To configure the firmware library accordingly, see Speed closed loop mode and related
define statements in Section 5.1.3.

The operating principles and control scheme of V/f and slip regulation are shown in Figure 6
and Figure 7. To prevent the inevitable delay due to the field circuit dynamic, the
magnetizing flux is maintained at its nominal value by keeping the ratio between the
frequency and the applied stator phase voltage constant.

Under such conditions, it is possible to demonstrate, with good approximation, that the
electromagnetic torque is a function of the slip speed (see Equation 2).

Introduction to STM8S ACIM scalar control UM0712

20/85 Doc ID 15783 Rev 1

Figure 6. V/f and slip regulation

Figure 7. V/f and slip regulation control scheme

1. Legend: Vs* = Voltage amplitude
ωe* = Reference stator speed
ωse* = Slip speed reference value
ωr* = Target rotor speed
ωr = Measured rotor speed

Figure 7 shows that the output of the PID speed controller is a precise reference slip speed
value (ωse*) which, added to the measured rotor speed (ωr), is the reference stator speed
(ωe*).

ACIM
~

AC Mains
~

V measurement

PI
speed

regulation

ωse limiter
ωe limiter

3ph sine wave
generation

(+ 3rd harmonic)

Speed
Measurement

V/f calc

Control algorithm

3 phase inverter

Speed sensor

VS *

ω *e
+

+

ω *se
ω *r

ωr

(D)

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 21/85

The PID speed controller can be tuned in real-time by using the LCD user interface (see
Figure 24 and Section 3.3.2: Speed regulator parameters).

Furthermore, under nominal flux conditions, stator current increases linearly with slip speed,
therefore, the slip speed saturation block limits the stator current within its nominal value.

The resulting voltage amplitude and reference stator speed are applied to the motor by
means of pulse width modulation of the three-phase inverter. This is implemented by the
three-phase sine wave and third harmonic generation block (see Section 2.7: Three-phase
PWM sine wave and third harmonic generation).

Since the V/f ratio is kept constant, the higher the stator frequency required to reach the
target speed, the higher the applied stator phase voltage. At a certain point, under nominal
load torque, a maximum inverter modulation index (nominal motor speed) is required.
Following this, the power flow reaches its maximum.

Higher speeds can be attained but, at a cost of gradually reducing the magnetizing flux and
hence the load applied. Such operating mode, called flux weakening, is executed in the
second speed region (constant power).

In this second speed region (see Figure 8), keeping the stator phase voltage at its maximum
value progressively increases the stator frequency results in reduced V/f ratios.
Consequently, the air gap flux falls and the electromagnetic torque curves have
progressively smaller breakdown torque values.

Simultaneously, taking into account that the magnetizing current (Im) falls in proportion to
the V/f ratio, the slip speed saturation value can be increased while respecting the motor
nominal current and torque curve breakdown values.

Figure 8. Flux weakening region

Introduction to STM8S ACIM scalar control UM0712

22/85 Doc ID 15783 Rev 1

2.4.2 Maximum torque per ampere (MTPA) control

MTPA control mode is designed to optimize system energy efficiency (see Section A.3,
reference 1) as long as the motor is inside the first speed region (constant torque).

To configure the firmware library accordingly, see Speed closed loop mode and related
define statements in Section 5.1.3.

MTPA mode aims at maximizing the ratio between the electromagnetic torque produced and
copper losses.

By transforming the ACIM equations on a dq0 reference frame, synchronous with the rotor
flux, it is possible to demonstrate that the electromagnetic torque (Te) and the rotor flux slip
frequency (ωsλr) can be expressed as in Equation 5 and Equation 6 (see user manual
UM0483: STM32F103xx AC induction motor IFOC software library v2.0).

Equation 5

Equation 6

Where:
Lm = magnetizing inductance
Lr = rotor inductance
τ r = rotor electrical time constant
p = number of pole pairs
iqs and ids = the two components of the transformed three-phase stator current system

At steady state, which is the validity domain of the scalar control, the rotor flux slip frequency
is equal to the slip frequency (Equation 7).

Equation 7

Moreover, given any instantaneous motor current amplitude (Is), Equation 8 holds true.

Equation 8

Under these conditions, electromagnetic torque is maximized for Equation 9 and Equation
10.

Equation 9

Te
3
2

Lm()2

Lr
--------------- iqs ids××–=

P

ωsλ r

iqs

τ r i× ds

-------------------=

ωsλγ
ωse=

Is iqs()2 ids()2
+=

iqs ids=

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 23/85

Equation 10

Therefore, if the slip frequency is kept constant at the inverse of the rotor electrical time
constant, the MTPA target is attained. In MTPA mode, once the slip frequency is constant,
the control variable is the V/f ratio, which hence is the output of the PID speed controller.

MTPA mode and its control are shown in Figure 9 and Figure 10.

The PID gains can be tuned in real-time, by using the LCD user interface (see Figure 25 in
Section 3.3.2: Speed regulator parameters).

Figure 9. MTPA mode strategy

ωseopt
1
τ r
-----=

Closed loop speed regulation: the stator
voltage is managed by the PI(D) controler; V/f
ratio, and hence, air gap flux is handled to
regulate the electromagnetic torque

(ωr)

(ωe)

Introduction to STM8S ACIM scalar control UM0712

24/85 Doc ID 15783 Rev 1

Figure 10. MTPA mode control scheme

1. Legend: Vs* = Voltage amplitude
ωe* = Reference stator speed
ωse* = Slip speed reference value
ωr* = Target rotor speed
ωr = Measured rotor speed

The MTPA mode strategy has a clear drawback in the necessary delay needed to build up
the magnetizing flux in response to a required torque variation.

The magnetizing flux can be increased through variation of the V/f ratio, up to the point when
it assumes its nominal value (it is not convenient to increase the magnetizing flux after this
point because magnetic saturation of the stator iron occurs).

For these reasons, MTPA mode switches automatically to constant V/f and slip regulation
mode described in Section 2.4.1. The PID gains of the speed controller used in the latter
mode are taken into account and can be tuned in real-time via the LCD user interface (see
Figure 24 in Section 3.3.2: Speed regulator parameters).

However, while in constant V/f and slip regulation mode, if the required slip frequency is less
than the optimum value (ωse opt), the PID speed controller switches back to MTPA mode (the
“constant slip” area).

Such switching from one mode to another is the task of the “operation mode controller” (see
Figure 10). The LCD user interface shows, in real-time, the current operating mode (see
Section 3.3.5: Control strategy parameters).

The resulting voltage amplitude and reference stator speed are applied to the motor by
means of pulse width modulation of the three-phase inverter. This is implemented by the
three-phase sine wave and third harmonic generation block (see Section 2.7: Three-phase
PWM sine wave and third harmonic generation).

Vs*

3 phase
inverter

ACI M
~

AC Mains
~

V m easurem ent

ωse*

speed sensor

PI(D)
speed

regulat ion

Speed
Measurem ent

Vs lim iter

+

+

3 ph sine w ave
generat ion

(+ 3 rd harm onic)

Vs

ωe *

Operat ion m ode controller
(V/ f < - > MTPA)

Control a lgorithm

ωr *

ωr

ωe limiter

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 25/85

2.5 Speed open loop control
In some applications, utilization of a speed sensor is not convenient and the load torque has
a slight variation with speed. In such conditions, speed open loop control can be activated
(see Section 5.1.1: ACIM configuration file: MC_ACIM_conf.h).

To configure the firmware library accordingly, see Speed open loop mode and related define
statements in Section 5.1.3.

The drive consists of applying a constant V/f ratio, so as to supply the required magnetizing
current, and a constant slip frequency.

Motor speed variation is attained by varying the stator frequency as a function of target
speed and slip frequency according to Equation 11.

Equation 11

The V/f ratio and slip frequency applied can be modified in real-time by using the LCD user
interface (see Section 3.3.3: Drive strategy parameters).

This firmware library provides two open loop control modes:

● Pure open loop mode (described above)

● Open loop and load compensation mode (see Section 5.1.3: ACIM drive control define
statements: MC_ACIM_Drive_Param.h). This mode aims to compensate the speed
error due to a known load variation with speed.

For tuning, debug purposes, or application requirements, the tachogenerator sensing
module can be activated if a speed sensor is available. Therefore, the actual motor speed is
displayed in the LCD user interface (#define SPEED_OPEN_LOOP_TACHO_SENSING, see
Section 5.1.1)

2.5.1 Load compensation

For applications where the load torque has a known characteristic curve and the speed
accuracy is not critical, speed open loop control plus load compensation can be chosen as a
suitable drive.

To configure the firmware library accordingly, see Speed open loop mode and related define
statements in Section 5.1.3.

Speed open loop control with load compensation control scheme is shown in Figure 11.

The correct slip speed frequency for each target rotor speed is selected via a look up table
which has been built offline by the STM8s motor control builder GUI (see Section A.4). The
look up table is based on the specific load torque characteristic curve provided by the user.

The resulting reference stator speed (ωe*) and the voltage amplitude (Vs*), calculated
according to the settled V/f ratio, are applied to the motor by means of pulse width
modulation of the three-phase inverter. This is implemented by the three-phase sine wave
and third harmonic generation block (see Section 2.7: Three-phase PWM sine wave and
third harmonic generation).

ωe ωt etarg ωse+=

Introduction to STM8S ACIM scalar control UM0712

26/85 Doc ID 15783 Rev 1

Figure 11. Speed open loop control with load compensation

1. Legend: Vs* = Voltage amplitude
ωe* = Reference stator speed
ωse* = Slip speed reference value
ωr* = Target rotor speed

2.6 Startup strategy
The closed loop startup strategy implemented is displayed in Figure 12.

A constant slip frequency, equal to that specified in define statement STARTUP_SLIP (see
Section 5.1.3: ACIM drive control define statements: MC_ACIM_Drive_Param.h) is applied
to the motor. The resulting stator frequency applied is given in Equation 12.

Equation 12

The stator voltage (Vs) increases linearly as a function of time as long as the relation below
holds true:

The voltage boost, required at low-motor frequencies to compensate for stator voltage drop,
is specified through the define statement STARTUP_V0 (see Section 5.1.2: ACIM motor
define statements: MC_ACIM_Motor_Param.h).

As soon as the rotor measured speed is greater than STARTUP_VAL_SPEED (see Startup
phase related define statements in Section 5.1.3), the drive switches from start to run state
and the control schemes explained in Section 2.4: Speed closed loop control are executed.

If the validation speed explained above is not measured within a period defined by the
define statement STARTUP_DURATION, an error message “startup failed” is generated and
the state machine moves from START state to FAULT state.

3 phase
inverter

ACI M

~

AC Mains

~

Voltage
m easurem ent

+

+

3 ph sine w ave
generat ion

(+ 3 rd harm onic)

Vs*

V/ f calc

Look Up
Table

Control a lgorithm

*ωse

*ωe*ωr

limiterωe

ωs ωse ωr_measured+=

Vs

ωs
------ STARTUP_V_F_RATIO<

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 27/85

Figure 12. Closed loop startup strategy

1. Legend: ωr = Actual rotor speed
ωr_meas = Measured rotor speed
Vs = Stator voltage amplitude

ω

ω

ω

Introduction to STM8S ACIM scalar control UM0712

28/85 Doc ID 15783 Rev 1

2.7 Three-phase PWM sine wave and third harmonic generation
To fulfill the basic AC induction motor voltage needs, the reference PWM modulating signal
can be a pure sine wave (left graph of Figure 13). However, this kind of modulation makes
poor usage of the DC bus voltage.

If we consider Vbus as the bus voltage after mains rectification, the maximum available
voltage on a motor using a standard three-phase power inverter is around 86% of Vbus.

Equation 13

with

Adding a third harmonic modulation to the reference sine wave fundamental, decreases the
overall amplitude of the resulting PWM modulation. PWM duty cycle reaches neither 0% nor
100% (right graph of Figure 13). This is due to the fact that the minimum of the third
harmonic corresponds to the maximum of the fundamental and vice versa.

Figure 13. Pure sine wave modulation and equivalent with third harmonic added

Consequently, this allows the fundamental and the resulting third harmonic signal amplitude
to be increased up to the point were the modulating signal reaches the DC bus limits (100%
PWM modulation): See Figure 14.

By applying an appropriate coefficient to the third harmonic component, the fundamental
amplitude can be further increased by 15 %.

Vphase neutral– Vbus 2⁄=

Vneutral Vbus 2⁄=

Vphase phase– 3 Vpk× 3() 2⁄ Vbus×= =

Sinewave modulation with 3rd harmonic injection
equivalent to pure sinewave modulation

-20

0

20

40

60

80

100

120

PW
M

 d
ut

y
cy

cl
e

(fu
ll

m
od

ul
at

io
n)

PWM Modulation

Third harmonic

Uncompensated
Fundamental

Sinewave modulation

-20

0

20

40

60

80

100

120

PW
M

 d
ut

y
cy

cl
e

(fu
ll

m
od

ul
at

io
n)

PWM Modulation

UM0712 Introduction to STM8S ACIM scalar control

Doc ID 15783 Rev 1 29/85

Figure 14. Third harmonic injection with increased fundamental amplitude

Finally, when considering phase to phase voltage on the motor, third harmonic components
are mutually cancelled out (a 120 ° phase-shift on the fundamental corresponds to a 360 °
shift for the third harmonic). This results in the following:

● Sinusoidal voltage (and currents) on the motor, meaning no extra iron losses due to
current harmonics.

● Phase to phase voltage which is 15% higher than with pure sine wave PWM
modulation.

Figure 15 (top curve) shows the filtered PWM modulation on one of the three half-bridges.
while Figure 15 (bottom curve) shows the corresponding currents in the three motor phases.

Figure 15. Third harmonic PWM modulation and corresponding currents

To summarize, third harmonic injection allows:

● A decrease in the diameter of the copper winding in the motor for a given power rating

● An increase in the current in the motor for a given frequency, therefore providing more
output power.

● An increase in the maximum reachable speed for a given motor, as long as the
mechanics (mainly ball-bearings) are suited for higher speed operations.

Sinewave modulation with 3rd harmonic injection

-20

0

20

40

60

80

100

120

PW
M

 d
ut

y
cy

cl
e

(fu
ll

m
od

ul
at

io
n)

PWM Modulation

Third harmonic

Fundamental + 15%

Introduction to STM8S ACIM scalar control UM0712

30/85 Doc ID 15783 Rev 1

2.8 Bus voltage ripple cancellation
The motor control software can be configured to continuously measure the DC bus voltage
(see Section 5.1.6: Power stage define statements: MC_PowerStage_Param.h). Since the
sampling frequency is equal to the inverter PWM switching frequency, the DC bus ripple can
be compensated with a very high resolution, thus generating clean phase voltages.

Figure 16 shows a power-demanding operating condition to highlight such functionality. C3
measures the DC bus, F4 is the duty cycle applied to a phase, and C4 is the phase current.
The duty cycle applied is considerably distorted due to the very high oscillation of the DC
voltage.

Figure 16. Bus voltage ripple compensation

UM0712 Running the demonstration program

Doc ID 15783 Rev 1 31/85

3 Running the demonstration program

The ACIM motor control software library includes a demonstration program which allows a
SELNI AC induction motor to be driven by the user in sensored mode. In this way a set of
parameters can be changed via a user interface.

3.1 ACIM user interface
The ACIM user interface has been developed to display drive variables and to customize the
application by changing parameters and disabling/enabling options in real-time.

The interface is composed of:

● A 2x15 character LCD screen

● A joystick (see Table 2 for the list of joystick actions and conventions)

● A push button (KEY button)

The demonstration program user interface is based on a circular navigation menu, with
submenus, item selection and back capability.

Figure 17 shows the menu structure.

To navigate the help menus and sub-menus, perform the following actions as required:

● RIGHT: Navigates to the next menu or sub-menu on the right

● LEFT: Navigates to the next menu or sub-menu on the left

Table 2. Joystick actions and conventions

Keyword User action

UP Joystick pressed up

DOWN Joystick pressed down

LEFT Joystick pressed to the left

RIGHT Joystick pressed to the right

JOYSEL Joystick pushed

KEY Press the KEY push button

Running the demonstration program UM0712

32/85 Doc ID 15783 Rev 1

Figure 17. ACIM user interface menu structure and navigation.

3.2 Getting started with the ACIM user interface

3.2.1 Welcome message

After the STM8/128-MCKIT motor control starter kit is powered on or reset, a welcome
message is displayed on the LCD screen to inform the user about the firmware code loaded
on the board. Refer to Figure 18 for the ACIM drive welcome message.

Figure 18. ACIM drive welcome message

3.2.2 Help menus

After a few seconds, the LCD screen displays the first help message (see Figure 19). The
user can navigate to the next help menu by pressing the joystick RIGHT. To go back to the
previous help menu, press the joystick LEFT.

The KEY button can be pressed any time to start and stop the ACIM motor. When the KEY
button is pressed, the user interface is automatically switched to the run motor menu. This
action can be performed regardless of which sub-menu is selected.

ai15066

�
�
�

�

�� �LEFT/ RIGHT

WELCOME
MESSAGE

HELP
MENU 1

MAIN
MENU

A few seconds delay

RIGHT KEY�HELP
MENU 2

HELP
MENU 3

(Start/stop motor)

LEFT/ RIGHT

LEFT

Speed regulator
sub-menu

LEFT/
 RIGHT

Drive strategy
sub-menu

LEFT/
RIGHT

Startup
sub-menu

LEFT/
 RIGHT

LEFT/
RIGHT

LEFT/
RIGHT

Bus voltage and Heatsink
sub-menu

LEFT/
 RIGHT

K
E

Y

K
E

Y

K
E

Y

K
E

Y

K
E

Y

K
E

Y

Control strategy
sub-menu

LEFT

KEY KEY

KEY

STM8 – MCKi t
ACI M ver 1.0

UM0712 Running the demonstration program

Doc ID 15783 Rev 1 33/85

Figure 19. Help menu

3.2.3 Main menu: Changing the target and measured rotor speed

To enter the main menu, press the joystick RIGHT once more from help menu 3 (see
Figure 17). The main menu function is the same as the other sub-menus except that the
system is automatically switched to the main menu when the motor is started or stopped.
Once in the main menu, the target rotor speed and the measured speed can be displayed
(see Figure 20).

Figure 20. Main window, showing target rotor speed and measured speed

1. To set the target rotor speed, press JOYSEL when the Targ.rpm function is active (
displayed and blinking).

2. After pressing JOYSEL, the arrow changes in to a double arrow to indicate that the
value can be changed (see Figure 21).

3. Press the joystick UP and DOWN to increase and decrease the value.

Figure 21. Selecting the target rotor speed

When the motor is still, enter a negative target rotor speed to run the motor in the opposite
direction.

change tab
change field

JoySel select
change value

Key run m otor

��

��

�
�

HELP MENU 1

HELP MENU 3

HELP MENU 2

��

�

Targ.rpm xxxxx
Meas.rpm xxxxx

�

Targ.rpm
Meas.rpm

xxxxx
xxxxx

�

Running the demonstration program UM0712

34/85 Doc ID 15783 Rev 1

3.3 Using the ACIM user interface sub-menus for motor control

3.3.1 ACIM user interface sub-menus

Press the joystick RIGHT or LEFT to navigate between sub-menus.

Each sub-menu of the user interface is composed of two fields, which are in turn composed
of one label, one value and the corresponding unit (for example, ampere, voltage,
temperature). Figure 22 shows the structure of a typical sub-menu, however, the
corresponding unit is not displayed in this case.

The field can be editable or read-only:

● An editable field can be selected and modified by the user when the cursor () is
displayed beside the field.

● A read-only field is used to display a value. The user can neither select it nor modify it

Figure 22. User interface sub-menu

To select and modify an editable field, the following steps are required:

1. Press the joystick UP or DOWN to navigate between the editable fields of the sub-
menu. The cursor blinks when the field is active.

2. Press JOYSEL to select an active field. The cursor changes to an up/down arrow ()

3. Change the value by pressing the joystick UP or DOWN (see Figure 23)

4. To exit from edit mode, press JOYSEL again or change sub-menu

Figure 23. Field selected for editing

Each sub-menu is related to a specific issue of ACIM motor control. The following sections
provide a detailed description of the sub-menus. Users with less experience in ACIM motor
control are advised to jump to Section 4: Getting started with the STM8S ACIM firmware.

LABEL 1 xxxxx
LABEL 2 xxxxx

�

Labels (max 8 char)

Field active when blinking

Editable field

Read-only field

LABE L 1 xxxxx
LABEL 2 xxxxx

Selected field

Editable field

Read-only field�

UM0712 Running the demonstration program

Doc ID 15783 Rev 1 35/85

3.3.2 Speed regulator parameters

Overview

Two different speed closed loop mode drive are implemented and selectable (see
Section 2.4: Speed closed loop control):

● V/f control and slip regulation

● MTPA control

Before starting the motor, either mode can be activated via the user interface (see
Section 3.3.5: Control strategy parameters).

If MTPA is enabled (optimized drive efficiency), both the PI regulators should be tuned (see
Figure 24 and Figure 25), and both the optimum slip and V/f ratio should be settled (see
Section 3.3.3: Drive strategy parameters).

If MTPA is disabled (optimized drive dynamics), only one PI regulator should be tuned (see
Figure 24), and only V/f ratio should be settled (see Section 3.3.3).

For both situations, startup parameters should be specified (see Section 3.3.4: Startup
parameters).

Note: Both the proportional and integral gains can be adjusted via the LCD user interface. The
differential gain cannot be adjusted in this way. It is configured through VF_KD and/or
MTPA_KD define statements in MC_ACIM_Drive_Param.h (see Section 5.1.3).

Configuring the speed regulator

When the firmware is configured in speed closed loop mode, the user can adjust the speed
regulator parameters while the motor is running. The speed regulator implemented can be a
proportional-integral (PI) regulator, or a proportional-integral-derivative (PID) regulator. The
regulator acts on the control variable minimizing the error between the target speed and the
measured speed.

PID regulator parameter adjustment is performed by means of two sub-menus which are
displayed in succession. The first sub-menu is used to configure constant flux control and
slip regulation (see Figure 24 below) via the PID regulator in the control scheme of Figure 7:
V/f and slip regulation control scheme. The second sub-menu is used to configure constant
slip control and flux regulation (see Figure 25 below) via the PID regulator in the control
scheme of Figure 10: MTPA mode control scheme.

The PID gains applied, are the ratio between the values defined through the LCD screen
and the divisors settled in the MC_ACIM_Drive_Param.h file (Section 5.1.3).

Example

#define VF_KP_DIVISOR 128 // (unit none)
#define VF_KI_DIVISOR 512 // (unit none)
#define VF_KD_DIVISOR 16 // (unit none)

Running the demonstration program UM0712

36/85 Doc ID 15783 Rev 1

Figure 24. Constant flux control and slip regulation (via PID)

Figure 25. Constant slip control and flux regulation (via PID)

3.3.3 Drive strategy parameters

The sub-menu shown in Figure 26 can be configured only when the firmware is in speed
closed loop mode. This menu allows the parameters related to drive strategy to be adjusted
while the motor is running (seeSection 2.4.1: V/f control and slip regulation and
Section 2.4.2: Maximum torque per ampere (MTPA) control).

Figure 26. Drive strategy parameters

“MTPA slip” is displayed as one tenth of a Hertz, while the “V/f ratio” value is multiplied by
1000.

3.3.4 Startup parameters

The sub-menu shown in Figure 27 can be configured in both speed open loop and speed
closed loop modes. This menu allows the parameters related to the startup phase to be
adjusted while the motor is running.

Figure 27. Startup parameters

V/F KP xxx�
V/F xxx�KI

MTPA KP xxx�
MTPA xxx�KI

xxx�MTPAsl i p
xxx�Vf rat io

StUpVfR xxx�
StUpSl p xxx�i

UM0712 Running the demonstration program

Doc ID 15783 Rev 1 37/85

When the firmware is configured in speed closed loop mode, the “StUpVfR” parameter
represents the maximum V/f ratio applied during startup. When the firmware is configured in
speed open loop mode, StUpVfR is a constant ratio.

The “StUpSlip” parameter is the slip frequency maintained during startup (see Section 2.6:
Startup strategy for further details about the startup procedure).

3.3.5 Control strategy parameters

The sub-menu shown in Figure 28 can be configured only when the firmware is in speed
closed loop mode. This menu allows the user to select a control strategy between MTPA
(optimized efficiency) and V/f and slip regulation (optimized dynamics). Such a choice can
be made only when the state machine is in idle state (before sending a start command).

In Figure 28, “MTPA mode” is editable and allows the control strategy to be selected. Switch
it on, to enable the MTPA control. Switch it off to enable V/f and slip regulation.

The second line "MTPA" shows the mode which is currently in use.

Figure 28. Control strategy parameters

3.3.6 Displaying the DC bus voltage and heatsink temperature parameters

The sub-menu in Figure 29 shows the measured DC bus voltage and the heatsink
temperature. No parameters are selectable.

Figure 29. Bus voltage and heatsink temperature parameters

The “BUS DC” value is the rectified input voltage expressed in volts. The “Heatsink” value is
the temperature measured by the negative temperature coefficient (NTC) resistor when it is
placed on the power stage close to the heatsink of the power switches. Heatsink is
expressed in degrees Celsius.

MTPAMo xxx�ed
MTPA xxx

 sBu DC xxxV
Heatsink xxxC

Running the demonstration program UM0712

38/85 Doc ID 15783 Rev 1

3.3.7 Fault messages

This section provides a description of all the fault messages that can be displayed on the
LCD screen when using the ACIM firmware together with the STM8/128-MCKIT motor
control starter kit.

There are seven different fault sources when using the ACIM firmware in conjunction with
the STM8/128-MCKIT motor control starter kit:

Over current error

If a low-level is detected on the PWM-peripheral-dedicated pin (BKIN) while the STM8/128-
MCKIT motor control starter kit is being used, either the hardware over temperature
protection or the hardware overcurrent protection has been triggered.

Over temperature error

This fault message is displayed when an over temperature has been detected on the
dedicated analog channel. The intervention threshold (NTC_THRESHOLD_C) and the
related hysteresis (NTC_HYSTERESIS_C) are specified in the MC_PowerStage_Param.h
header file (see Section 5.1.6).

Bus over voltage error

This fault message is displayed only if the DISSIPATIVE_BRAKE definition is commented
(default setting) in the MC_PowerStage_Param.h configuration header file (see
Section 5.1.6). It means that an over voltage has been detected on the dedicated analog
channel. The intervention threshold (MAX_BUS_VOLTAGE) is specified in the
MC_PowerStage_Param.h header file.

If the DISSIPATIVE_BRAKE definition is not commented in the MC_PowerStage_Param.h
configuration header file, it is assumed that a resistor with a high power dissipation
capability was connected, in parallel to the bus capacitors, through a switch. In this case, the
over voltage does not generate a fault event because the resistor is supposedly able to
dissipate the excess voltage across the bus capacitors.

Bus undervoltage error

A fault is detected when the bus voltage is below 18 V DC. This threshold is specified in the
MC_PowerStage_Param.h header file by the MIN_BUS_VOLTAGE define statement.

Startup failed error

This fault message is displayed only if the firmware is configured in speed sensor mode. It
signals that the startup output condition has not been fulfilled during motor acceleration (see
also Section 2.6: Startup strategy).

Speed feedback error

An error on the speed/position feedback has occurred.

Motor running error

This fault can occur only if the firmware is in speed sensor mode. It signals that the user is
trying to start the motor when it is not still.

Figure 30 shows a typical error message, displayed on the LCD screen.

UM0712 Running the demonstration program

Doc ID 15783 Rev 1 39/85

Figure 30. Error message shown in the event of an undervoltage fault

The message “FAULT CONDITION” is visible when the fault condition is still present.

The message “FAULT OCCURRED” is visible if the source of the fault has disappeared. This
indicates to the user that the fault has occurred.

If several fault conditions occur concurrently, they are displayed in the LDC screen one after
the other.

If the source of all faults disappears, pressing the KEY button causes the main state
machine to switch from the fault to the idle state.

FAULT CONDI TI ON
UNDER VOLTAGE

FAULT OCCURRED
UNDER VOLTAGE

Getting started with the STM8S ACIM firmware UM0712

40/85 Doc ID 15783 Rev 1

4 Getting started with the STM8S ACIM firmware

4.1 Application state machine
The motor control firmware library was developed around the state machine which is
presented in Figure 31. The state machine is implemented in MC_StateMacchine.c
module. It is composed of the following states: Reset, idle, start init, start, run, stop, wait,
fault and fault over.

4.1.1 Description of the states

Reset

The system is in reset state once after the main reset. This state is used to perform the main
initializations.

Idle*

When the system is in idle state, the motor is stopped, and is waiting for a startup to be
executed.

Start init

The start init state is executed at every restart of the motor. It is used for specific
initializations.

Start*

In this state the motor ramps up

Run*

After the end of the startup phase, the motor is in normal run state. The user can interact
with the system, change parameters in real-time, or issue a stop request.

Stop

The system is in stop state when the motor is stopped.

Wait*

The system is in wait state when the motor is stopped. It remains in this state until a required
condition for a new restart is present.

Fault*

The system goes into fault state when an error condition occurs. It remains in this state
while the fault condition is present.

Fault over*

When the fault condition disappears, the system enters fault over state to indicate which
error occurred. The system also waits for user action.

Note: The states marked with an asterisk are executed continuously until an event occurs (user
action or fault condition).

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 41/85

4.1.2 Description of the state machine operation

Each state corresponds to the execution of the related state machine function. The change
of state is performed according to the value returned by that state machine function.

The returned value of a state machine function can be one of the following:

● State remain: No change in state is required by the state machine function

● Next state: The natural flow of the state machine is being followed (for example, idle ->
init start -> start -> run). The natural flow is symbolized by green lines in Figure 31

● Optional jump: A path deviation caused by user action has occurred (for example,
start -> stop). Optional jumps are symbolized by blue lines in Figure 31.

● Error condition: A fault condition has occurred (for example startup failure, hardware
fault). The error conditions are symbolized by red lines.

Each state machine function make calls to the related drive functions, to the user interface
interaction functions, and to the error check functions. It executes the action on the basis of
the outputs of these functions.

Figure 31. Main motor control state machine

I D LE

S T AR T I NI T S T AR T

R UN

S T OP
W AI T

FAULT

Us er inter fa ce
S T AR T

Us er inter fa ce
S T OP

E nd of
I NI T

E nd of
S T AR T

E nd of
S T OP

E nd of
W AI T

Fa ult
condition

Fa ult
condition

Fa ult
condition

Fa ult
conditionFa ult

condition
R es ta rt
C om m .

R E S E T

FAULT
OV E R

Us er inter fa ce
S T OP

Nex t s ta te
E rror condition
Optiona l Jum p

Getting started with the STM8S ACIM firmware UM0712

42/85 Doc ID 15783 Rev 1

4.2 Library architecture
The STM8S ACIM motor control library has been logically divided into three different parts
(Figure 32):

● MC_FWLIB_SCALAR, containing the high-level motor control modules

● STM8_FWLIB, containing the STM8 standard libraries

● STM8_MC_FRAMEWORK, containing the low-level motor control routines

Figure 32. STM8S motor control library architecture: High-level/low-level interface

Each part of the library is in turn divided into is divided in three sublevels as shown in
Figure 33:

● Inc folder, containing the prototype definitions (.h files)

● Src folder, containing the implementation files (.c files)

● Param folder, containing the configuration files (.h file). The configuration files contain
everything necessary to customize the motor control drives. The param folder is not
present in the STM8_FWLIB.

STM8_MC_FRAMEWORK

MC_FWLIB_SCALAR

STM8_FWLIB

Dev ice d ep en d an t

Dev ice in d ep en d en t

High level

Low level

Vir tual registers Dr ive st ructureVir tual I / Os

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 43/85

Figure 33. STM8S motor control library organization

The high-level modules contain the device-independent algorithms, while the low-level
modules contain the hardware-dependent code. This means that only the low-level modules
interact directly with the peripherals and the interrupt service routines of the microcontroller.
The high-level modules interact with the low-level modules mainly through three interfaces
(see Figure 32):

● The virtual registers

● The virtual I/Os

● The drive structure.

STM8_STVD_COSMIC.stw
STM8_BLDC
STM8_ACIM

MC_FWLIB_SCALAR
Inc
Param
Src

STM8_FWLIB
Inc
Src

STM8_MC_FRAMEWORK
Inc
Param
Src

Getting started with the STM8S ACIM firmware UM0712

44/85 Doc ID 15783 Rev 1

4.2.1 Virtual registers

The virtual registers are composed of two sets of 8-bit and 16-bit registers. Refer to Table 3
for a description of the virtual registers implemented in the ACIM firmware.

Table 3. Virtual registers

Name Size Description

VDEV_REG8_TACHO_PRESCALER 8 bit
Contains the prescaler value used in the speed
measurement performed with the Tacho sensor

VDEV_REG8_TACHO_PULSE_NUMBER 8 bit
Contains the number of pulses to be taken into
account for the speed measurement using the
Tacho sensor

VDEV_REG8_ACIM_MODULATION_INDEX 8 bit
Contains the modulation index to be applied for the
ACIM drive

VDEV_REG8_ACIM_MAX_MODULATION_INDEX 8 bit
Contains the maximum modulation index applicable
for the ACIM drive

VDEV_REG8_HEATSINK_TEMPERATURE 8 bit Contains the measured heat sink temperature

VDEV_REG16_ACIM_FREQUENCY 16 bit
Contains the reference stator frequency to be
applied to the motor

VDEV_REG16_HALL_TACHO_COUNTS 16 bit
Contains the number of time counts between the
first and last tacho signal edges, as measured in
the last time period

VDEV_REG16_BOARD_BUS_VOLTAGE 16 bit
Contains the measured bus voltage expressed in
volts

VDEV_REG16_HW_ERROR_OCCURRED 16 bit
Each bit represents an error condition that has
already occurred

VDEV_REG16_HW_ERROR_ACTUAL 16 bit Each bit represents a current error condition

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 45/85

4.2.2 Virtual I/Os

The virtual I/Os are low-level functions that are called by the high-level modules. For
instance, if a high-level module wants to set a GPIO high-level output as test pin, it should
call the virtual I/O: Device.ios.out8(VDEV_OUT8_LED_1, LED_ON) instead of driving
directly the microcontroller register itself. The virtual I/Os implemented in the ACIM firmware
are summarized in Table 4.

Table 4. Virtual I/Os

Name Description

out8(VDEV_OUT8_DISPLAY_FLUSH,none) Call used to invoke a refresh of the LCD screen

out8(VDEV_OUT8_DISPLAY_PRINTCH,none)
Call used to refresh the cursor displayed on the LCD
(for example blinking).

out8(VDEV_OUT8_LED_1,command)

Call used to drive the virtual LED 1 which is mapped to a real H0
pin of the MB631 evaluation board.
The command can take one of the values below, and is used to
drive the HO pin in question:

LED_ON: Sets a high state to the output turning on the related
LED.
LED_OFF: Sets a low state to the output turning off the related
LED.
LED_TOGGLE: Performs a toggle on the output switching it on
or off.

out8(VDEV_OUT8_LED_2,command)
Same as above but, related to virtual LED 2 (H1 pin of the MB631
evaluation board).

out8(VDEV_OUT8_LED_3,command)
Same as above but, related to virtual LED 3 (H2 pin of the MB631
evaluation board).

out8(VDEV_OUT8_LED_4,command)
Same as above but, related to virtual LED 4 (H3 pin of the MB631
evaluation board).

inp8(VDEV_INP8_USER_INPUT,none)
Call used to get the input from the user interface (joystick and key
button in the implementation of the MB631 evaluation board).

Getting started with the STM8S ACIM firmware UM0712

46/85 Doc ID 15783 Rev 1

4.2.3 Drive structure

The drive structure contains the variables and parameters related to the motor and the drive.
The ACIM drive structure for speed closed loop control is shown in Table 5.

Table 5. ACIM drive structure for speed closed loop control

Name Type Description

Control_Mode Enum variable
Specifies the control mode selected:
SPEED_CLOSEDLOOP_MTA or
SPEED_CLOSEDLOOP_VF

Actual_Control_Mode Enum variable

Specifies the actual control mode depending
on the control mode selected and actual
operating conditions:
SPEED_CLOSEDLOOP_MTA or
SPEED_CLOSEDLOOP_VF

hTarget_rotor_speed_RPM Variable 16bit
Contains the target mechanical rotor speed,
expressed in rpm

hTarget_rotor_speed_HzEl Variable 16bit
Contains the target electrical rotor speed
expressed in Hz*10

bDirection Variable 8bit Stores the spin direction selected at startup

hMeasured_rotor_speed_RPM Variable 16bit
Contains the measured mechanical rotor
speed, expressed in rpm

hMTPAslip Variable 16bit
Contains the optimum slip to be maintained in
the first control area of the MTPA drive

hVFConstant Variable 16bit Contains the V/f ratio conversion constant

hStartUpVFConstant Variable 16bit
Contains the startup V/f ratio conversion
constant

hStartUpSlip Variable 16bit
Contains the slip frequency to be applied at
startup

hBusVoltage Variable 16bit
Contains the measured bus voltage expressed
in volts

bHeatsinkTemp Variable 8bit
Contains the measured heat sink temperature
expressed in degrees Celsius

hUserADC Variable 16bit
Contains the A/D conversion result of the user-
selected channel

hPWM_Frequency Constant 16bit
#define PWM_FREQUENCY: See description
in MC_ACIM_Drive_Param.h

bPWM_RefreshRate Constant 8bit
#define PWM_REFRESH_RATE: See
description in MC_ACIM_Drive_Param.h)

hPWM_Prescaler Constant 16bit
Contains the correct TIM1 prescaler to
maintain the PWM resolution between 8 and 9
bits (depending on selected PWM frequency)

hPWM_Timer_ARR Constant 16bit

Contains the correct TIM1 reload register to
maintain the PWM resolution between 8 and 9
bits and unbiased output (depending on
selected PWM frequency)

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 47/85

bPWM_Timer_MMI Constant 8bit
Contains the maximum PWM output
resolution, i.e. the maximum modulation index
(depending on selected PWM frequency)

bPWM_DeadTime Constant 8bit
Specifies the parameter to be written in the
TIM1 dead-time register (TIM1_DTR)
according to #define DEAD_TIME_NS

hV_Constant Constant 16bit
Contains the conversion factor to transform
volts to a PWM modulation index

hHz_to_DPP_Conv Constant 16bit
Contains the conversion factor to transform
electrical Hz*10 to DPP (digits per PWM)

bMotor_Pole_Pairs Constant 8bit Expresses the number of motor pole pairs

bRPM_to_Hz_Conv Constant 8bit
Contains the conversion factor to transform
rpm to electrical Hz*10

hRPM_to_Hz_Ampl Constant 16bit
Contains the amplification factor to enhance
the rpm to electrical Hz*10 conversions

hDigit_to_BusV_Conv Constant 16bit
Contains the conversion factor for DC bus
voltage measurements

bNTC_alpha Constant 8bit
#define TEMP_SENS_ALPHA: See
description in MC_PowerStage_Param.h

bNTC_beta Constant 8bit
#define TEMP_SENS_BETA: See description
in MC_PowerStage_Param.h

bStartup_Vo Constant 8bit
#define STARTUP_VO: See description in
MC_ACIM_Motor_Param.h

hMax_Speed Constant 16bit
#define MAX_SPEED_RPM: See description
in MC_ACIM_Motor_Param.h

hMin_run_speed Constant 16bit
#define MIN_RUN_SPEED: See description
in MC_ACIM_Drive_Param.h

hStall_speed Constant 16bit
#define STALL_SPEED: See description in
MC_ACIM_Drive_Param.h

hStartup_val_speed Constant 16bit
#define STARTUP_VAL_SPEED: See
description in MC_ACIM_Drive_Param.h

hStartup_duration Constant 16bit
#define STARTUP_DURATION: See
description in MC_ACIM_Drive_Param.h

hStartUpFinalSpeed_HzEl Constant 16bit
#define STARTUP_FINAL_SPEED: See
description in MC_ACIM_Drive_Param.h

bControlLoop_Period_ms Constant 8bit
Expresses the PID regulator action interval
expressed in milliseconds

pPID_VF_Struct Constant pointer Pointer to the speed PID structure

pPID_MTPA_Struct Constant pointer Pointer to the speed PID structure

Table 5. ACIM drive structure for speed closed loop control (continued)

Name Type Description

Getting started with the STM8S ACIM firmware UM0712

48/85 Doc ID 15783 Rev 1

The ACIM drive structure for speed open loop control is show in Table 6.

Table 6. ACIM drive structure for speed open loop control

Name Type Description

Control_Mode Enum variable
Specifies the control mode selected:
SPEED_OPENLOOP or
SPEED_OPENLOOP_LOAD_COMPENSATION

hTarget_rotor_speed_RPM Variable 16bit
Contains the target mechanical rotor speed,
expressed in rpm

hTarget_rotor_speed_HzEl Variable 16bit
Contains the target electrical rotor speed
expressed in Hz*10

bDirection Variable 8bit Stores the spin direction selected at startup

hMeasured_rotor_speed_RPM Variable 16bit
Contains the measured mechanical rotor speed,
expressed in rpm

hActual_rotor_speed_HzEl Variable 16bit
Contains the estimated electrical rotor speed
expressed in Hz*10

hAccelerationSlope Variable 16bit

Defines the acceleration slope constant, which is
a function of selected acceleration (#define
OPEN_LOOP_ACCELERATION_SLOPE), motor
pole pairs, and control loop period

hSlip Variable 16bit Defines the slip frequency (Hz*10) to be applied

hVFConstant Variable 16bit Contains the V/f ratio conversion constant

hStartUpVFConstant Variable 16bit Contains the startup V/f ratio conversion constant

hStartUpSlip Variable 16bit
Contains the slip frequency to be applied at
startup

hBusVoltage Variable 16bit
Contains the measured bus voltage expressed in
volts

bHeatsinkTemp Variable 8bit
Contains the measured heat sink temperature
expressed in degrees Celsius

hUserADC Variable 16bit
Contains the A/D conversion result of the
user-selected channel

hPWM_Frequency Constant 16bit
#define PWM_FREQUENCY: See description in
MC_ACIM_Drive_Param.h)

bPWM_RefreshRate Constant 8bit
#define PWM_REFRESH_RATE: See description
in MC_ACIM_Drive_Param.h

hPWM_Prescaler Constant 16bit
Contains the correct TIM1 prescaler to maintain
the PWM resolution between 7 and 8 bits
(depending on selected PWM frequency)

hPWM_Timer_ARR Constant 16bit

Contains the correct TIM1 reload register to
maintain the PWM resolution between 7 and 8
bits and unbiased output (depending on selected
PWM frequency)

bPWM_Timer_MMI Constant 8bit
Contains the maximum PWM output resolution,
i.e. the maximum modulation index (depending
on selected PWM frequency)

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 49/85

bPWM_DeadTime Constant 8bit
Specifies the parameter to be written in the TIM1
dead-time register (TIM1_DTR) according to
#define DEAD_TIME_NS

hV_Constant Constant 16bit
Contains the conversion factor to transform volts
to a PWM modulation index

hHz_to_DPP_Conv Constant 16bit
Contains the conversion factor to transform
electrical Hz*10 to DPP (digits per PWM)

bMotor_Pole_Pairs Constant 8bit Expresses the number of motor pole pairs

bRPM_to_Hz_Conv Constant 8bit
Contains the conversion factor to transform rpm
to electrical Hz*10

hRPM_to_Hz_Ampl Constant 16bit
Contains the amplification factor to enhance the
rpm to electrical Hz*10 conversions

hDigit_to_BusV_Conv Constant 16bit
Contains the conversion factor for DC bus voltage
measurements

bNTC_alpha Constant 8bit
#define TEMP_SENS_ALPHA: See description
in MC_PowerStage_Param.h

bNTC_beta Constant 8bit
#define TEMP_SENS_BETA: See description in
MC_PowerStage_Param.h

bStartup_Vo Constant 8bit
#define STARTUP_VO: See description in
MC_ACIM_Motor_Param.h

hMax_Speed Constant 16bit
#define MAX_SPEED_RPM: See description in
MC_ACIM_Motor_Param.h

hMin_run_speed Constant 16bit
#define MIN_RUN_SPEED: See description in
MC_ACIM_Drive_Param.h

hStall_speed Constant 16bit
#define STALL_SPEED: See description in
MC_ACIM_Drive_Param.h

hStartup_val_speed Constant 16bit
#define STARTUP_VAL_SPEED: See
description in MC_ACIM_Drive_Param.h

hStartup_duration Constant 16bit
#define STARTUP_DURATION: See description
in MC_ACIM_Drive_Param.h

hStartUpFinalSpeed_HzEl Constant 16bit
#define STARTUP_FINAL_SPEED: See
description in MC_ACIM_Drive_Param.h

bControlLoop_Period_ms Constant 8bit
Expresses the periodicity of the open loop control
in milliseconds

Table 6. ACIM drive structure for speed open loop control (continued)

Name Type Description

Getting started with the STM8S ACIM firmware UM0712

50/85 Doc ID 15783 Rev 1

4.3 Low-level control
This section describes the implementation of the low-level drive, which is interfaced with the
microcontroller (peripheral, memory,...).

4.3.1 Combined utilization of ADC and TIM1 for motor driving

The STM8S ADC and advanced timer (TIM1) peripherals are used in close combination in
the current firmware library example. Their utilization is explained jointly below.

The low-level shell of the driving strategy is implemented in the firmware library source file
MC_stm8s_ACIM_drive.c.

In the ACIM motor control firmware library, the generated PWM pattern is center-aligned.
This is the best arrangement for reducing magnetostriction noise and switching losses. In
addition, TIM1 has edge aligned PWM capability.

The three-phase sine wave with third harmonic injection is updated (duty cycles are
updated) with a frequency related to the selected PWM frequency and the define statement
PWM_REFRESH_RATE. The sine wave reference look up table is stored in the Flash memory
(const u8 SINE3RDHARM[256], MC_stm8s_ACIM_Param.h). It has an 8-bit resolution
(± 127).

TIM1 has 16-bit resolution and a maximum frequency which is tied to the CPU frequency
(24 MHz max for performance line STM8s, 16 MHz max for access line STM8s).

The maximum duty cycle resolution achievable using the current firmware library ranges
from 8 bits to 9 bits. This range allows the generation of a complete array of PWM
frequencies (according to user needs), while simultaneously maintaining fixed and speed
optimized PWM output calculation.

Example

When the CPU frequency is 24 MHz, the total number of timer counts required to generate a
12-kHz PWM frequency is 2000. In this case, the timer reload register (ARR) is 2000 due to
the center-aligned pattern. Therefore, the offset value to have a zero output, is 500. This
gives an output resolution of approximately 10 bits (± 500) but, using 24-bit calculations.

On the other hand, by keeping the output resolution between 8 and 9 bits, the calculations
required for PWM update can be sped up. Figure 34 shows that by decreasing the TIM1
speed to 12 MHz (with a prescaler value TIM1_PSCR =1), the reload register is 500 and the
output resolution is about 9 bits. This allows 16-bit intermediate calculations.

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 51/85

Figure 34. TIM1 initialization

1. Legend: PWM frequency = 12 kHz
PWM period = 83.3 µs
CPU frequency = 24 MHz
TIM1 frequency = 12 MHz (TIM1_PSCR = 1)
Total TIM1 counts required = 1000

According to the specified PWM frequency (as specified in Section 5.1.3: ACIM drive control
define statements: MC_ACIM_Drive_Param.h), the timer prescaler is automatically chosen
in accordance with Table 7 and Table 8. For instance, if the CPU frequency is 16 MHz and
the desired PWM frequency is 6 kHz, the prescaler adopted is automatically 2. The
amplitude resolution can be calculated using Equation 14.

Equation 14

Table 7. PWM amplitude resolution @CPU frequency 24 MHz

PWM frequency (Hz) 9-bit resolution @ Hz Min resolution (counts) TIM_PSCR used

23437-46875 23437 ±128 @ 46875 Hz 0

11718-23436 11718 ±128 @ 23436 Hz 1

7812-11717 7812 ±170 @ 11717 Hz 2

5859-7811 5859 ±192 @ 7811 Hz 3

4687-5858 4687 ±204 @ 5858 Hz 4

3906-4686 3906 ±213 @ 4686 Hz 5

3348-3905 3348 ±219 @ 3905 Hz 6

PWM amplitude resolution CPUfrequency
4 PWMfrequency× TIM1_PSCR 1+()×
--- 222counts±= =

Getting started with the STM8S ACIM firmware UM0712

52/85 Doc ID 15783 Rev 1

The output frequency resolution can be calculated using Equation 15.

Equation 15

Clearly, the higher the PWM_REFRESH_RATE define statement (which can be adjusted as
explained in Section 5.1.3: ACIM drive control define statements:
MC_ACIM_Drive_Param.h), the better the resolution, but the lower the maximum achievable
stator frequency.

Example

To synthesize a three-phase sine wave with at least 12 points having selected a PWM
frequency of 16 kHz, and a PWM refresh rate of 3, the maximum stator frequency is about
444 Hz.

Figure 35 shows the scheme adopted in the current firmware library for ADC and TIM1
peripheral management. The output compare registers, TIM1_CCR1-2-3, containing the
new PMW duty cycles, are updated automatically at counter underflow and in consideration
of the PWM_REFRESH_RATE define statement. If TIM1 is configured in center-aligned mode,
it is capable of a double update (counter overflow and underflow events). This feature of
TIM1 can be used to improve the frequency resolution. However, it has not been used in this
version of the ACIM firmware library.

Figure 36 shows the most important functions implemented in the current firmware, together
with their connections. It also shows the main connections with other modules.

The TIM1 update interrupt function (TIM1_UPD_OVF_TRG_BRK_IRQHandler) is used to
run the ADC manager routine. Depending on the HEATSINK_SAMPLING_FREQUENCY and
USER_ADC_SAMPLING_FREQUENCY define statements (see Section 5.1.8: Microcontroller
specific ACIM drive define statements: MC_stm8s_ACIM_param.h), it evaluates whether or
not to convert the heatsink temperature and/or the user defined signal in the next PWM
period. Conversions are started as soon as their sequence is established.

Table 8. PWM amplitude resolution @CPU frequency 16 MHz

PWM frequency (Hz) 9-bit resolution @ Hz Min resolution (counts) TIM_PSCR used

15625-31250 15625 ±128 @ 31250 Hz 0

7812-15624 7812 ±128 @ 15624 Hz 1

5208-7811 5208 ±170 @ 7811 Hz 2

3906-5207 3906 ±192 @ 5207 Hz 3

3125-3905 3125 ±204 @ 3905 Hz 4

2604-3124 2604 ±213 @ 3124 Hz 5

2232-2603 2232 ±219 @ 2603 Hz 6

PWM frequency resolution PWMfrequency
PWM_REFRESH_RATE 65536×
--=

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 53/85

An ADC end-of-conversion interrupt (ADC2_IRQHandler function) is awakened after each
single conversion has finished. The purpose of the handler, in this case, is to store the result
of the conversion and to start a single conversion if instructed by the ADC manager routine.
Following this and with reference to the BUS_SAMPLING_FREQUENCY define statement
(Section 5.1.3: ACIM drive control define statements: MC_ACIM_Drive_Param.h), the
measured DC bus voltage is averaged. Buffer length is defined by the
BUSVOLT_BUFFER_SIZE define statement (see Section 5.1.8: Microcontroller specific
ACIM drive define statements: MC_stm8s_ACIM_param.h).

It is placed in the VDEV_REG16_BOARD_BUS_VOLTAGE virtual register. Meanwhile, the
measured heatsink temperature is checked against its upper threshold and stored in the
VDEV_REG8_HEATSINK_TEMPERATURE virtual register.

Conversely, TIM1_CCR4 is used to trigger the A/D conversion of the DC bus voltage. Since
the center of the PWM pattern is mainly clear from power device switching, this area is
chosen for bus voltage reading by selecting TIM1_CCR4 = TIM1_ARR -1.

As soon as the triggered conversion has finished, the related ADC EOC handler is entered.
Its assigned tasks in this case are:

● Compensate the DC bus ripple through variation of the modulation index required by
the drive (received through the function dev_driveRun and the virtual register
VDEV_REG8_ACIM_MODULATION_INDEX).

● Update the three-phase sine wave generated on the basis of the electrical frequency
required by the drive (received through the function dev_driveRun and the virtual
register VDEV_REG16_ACIM_FREQUENCY).

● Update the corresponding TIM1 output compare registers: TIM1_CCR1-2-3

● Check if the converted DC bus voltage is higher than the overvoltage threshold defined
in MC_PowerStage_Param.h (see Section 5.1.6: Power stage define statements:
MC_PowerStage_Param.h).

Note: The brake resistor is switched on (hysteresis control) or a fault (overvoltage) is
generated depending on whether DISSIPATIVE_BRAKE is commented.

Getting started with the STM8S ACIM firmware UM0712

54/85 Doc ID 15783 Rev 1

Figure 35. TIM1 and ADC utilization

Figure 36. ACIM drive low-level module

Virtual
registers

VDEV_REG8_ACIM_MODULATION_INDEX

VDEV_REG16_ACIM_FREQUENCY

VDEV_REG16_BOARD_BUS_VOLTAGE

module
initialization

Request for updated
3-phase sinewave

MC_ACIM_Drive.c module

MC_stm8s_ACIM_Drive.c module

ADCx_IRQHandler

TIM1_UPD_OVF_TRG_BRK_IRQHandler

dev_driveRun

dev_driveInit()
stm8_TIM1_ADCx_Init()

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 55/85

4.3.2 Tachogenerator signal reading

The low-level shell of the measurement method is implemented in the ACIM firmware library
source file MC_stm8s_tacho.c.

Motor speed is read via a frequency measurement of the signal coming from the
tachogenerator sensor. TIM1 is used for this purpose. One channel is configured in input
capture mode with falling edge detection capability. Note that STM8s timers have both rising
and falling edge detection capability, which can be used to enhance the resolution.

Figure 37 shows the measurement method which has been implemented in the current
firmware.

Figure 38 shows the most important functions implemented in the current firmware, together
with their connections. It also shows the main connections with other modules.

Two registers, register 0 and register 1, are defined which are used alternatively, during
each period, to store the captured values of the timer. Each register has three locations
which are called 0a/0b/index0 (register 0) or 1a/1b/index1 (register 1). The first location (0a
or 1a respectively) is used to store the earliest capture which has occurred after a TIMx
update (where x stands for the timer number selected to read the period of the tacho signal).
The second location (0b or 1b respectively) is rewritten each time a new capture arrives.
The third location (index0 or index1 respectively) counts the number of captures that have
occurred in that timer period.

Four basic operations of tachogenerator signal reading

● On a capture event, the corresponding interrupt handler is entered. The captured value
of TIMx is written in a register location (see above). The index variable is incremented.

● On a timer update event, the corresponding interrupt handler is entered. Pointing to
registers is alternated (context switching). For example, if register 1 was used to store
captures in the previous period, register 0 is used in the next period while register 1 is
being analyzed (see below).

● The timer prescaler (TIMx_PSCR) is managed and configured to detect a number of
captures equal to the user-defined define statement, TACHO_PULSE_AVERAGED (see
Section 5.1.4: Tacho sensor define statements: MC_tacho_param.h), during the next
timer period.

● Captures that occurred in the last timer period (register 1, following the example above)
are processed to calculate the tacho signal period. Three sets of information are
entered into the virtual registers (see Table 3: Virtual registers): the number of timer
counts between the first and last captures are stored in register
VDEV_REG16_TACHO_COUNTS, the number of captures occurred is stored in
register VDEV_REG8_TACHO_PULSES, while the timer prescaler used for that
particular measurement is stored in VDEV_REG8_TACHO_PRESCALER. On the
basis of these data, the high-level section of the tachogenerator signal measurement
module calculates the motor speed. It takes into account the tachogenerator pole
number and timer clock frequency (see Section 4.4.4: Tachogenerator signal reading).

Getting started with the STM8S ACIM firmware UM0712

56/85 Doc ID 15783 Rev 1

Figure 37. Tachogenerator reading method

Figure 38. Tachogenerator sensing low-level module

TIMx_UPD_OVF_BRK_IRQHandler

TIMx_CAP_COM_IRQ_IRQHandler

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 57/85

4.3.3 Dissipative brake

The ACIM motor is able to transform kinetic energy into electrical energy just like a dynamo.

This situation occurs when the control tries to decelerate the motor, particularly, when the
stator frequency applied is lower than the rotor speed resulting in a negative slip speed
being applied.

In this situation, the inverter bulk capacitor is charged unless the power system used has
regenerative capabilities. The voltage across the bulk capacitors could increase to a
destructive level depending on the amount of energy transferred.

A strategy for somehow dissipating the generated electrical energy is thus necessary.

Different methods could be implemented to do so, but one of them in particular, the
utilization of a brake resistor, is supported by the library presented in this user manual.

In the firmware this strategy has been implemented using the analog to digital conversion of
the bus voltage value to determine if a voltage level beyond the threshold is present in the
bus voltage. If this condition occurs and the brake management is enabled in the firmware
the “over voltage” fault is not generated. Instead the break control pin is driven to turn on the
external brake resistor to dissipate the extra energy.

If the brake resistor is active, it is expected that the bus voltage level will decrease.
Consequently, the bus voltage value is monitored with the ADC conversion, to detect the
dissipative brake action condition to stop.

If the value falls below a certain threshold, the dissipative brake is stopped. To add a
hysteresis between such switching on and off, the turn “off” threshold is reduced compared
to the turn “on” threshold.

See Section 5.1.6: Power stage define statements: MC_PowerStage_Param.h for details on
how to enable or disable this feature. See Section 5.2: Setting up the system when using a
brake resistor for details on the hardware setup required to use this feature.

4.4 High-level control
This section explains how to implement a high-level ACIM drive algorithm independently
from the microcontroller peripheral definitions.

4.4.1 Virtual timers

Virtual timers are high-level hardware-independent general purpose counters. They are
used to manage the execution of the code performed at specified time intervals, for
example, the speed regulation algorithm that must be performed at fixed time intervals.

Implementation of these virtual timers is based on a physical layer that uses the resources
of the STM8S microcontroller. The virtual timers are implemented using the TIM4
peripheral. TIM4 is configured to generate an interrupt each millisecond, and is used as a
time base to update each virtual timer.

The virtual timers can be used in two modes:

● Polling mode: The end of counting has to be checked using a specific function call.
Execution of the code is subject to the value returned by this function.

● Automatic mode: At the end of counting, the specified function is automatically
executed.

Getting started with the STM8S ACIM firmware UM0712

58/85 Doc ID 15783 Rev 1

The virtual timers are implemented in “one-shot”. This means the counting must be
restarted each time, whatever the mode.

A set of virtual timers are implemented inside each “drive firmware”. Each virtual timer is
dedicated to specific operations. It is identified by a name, VTIMx, where x is the number of
the virtual timer. Virtual timer names can be customized through a define statement. For
example, timer number 0 can be named VTIM_KEY by using the define statement:
#define VTIM_KEY VTIM0

4.4.2 Using the ACIM virtual timers

The list of virtual timers used by the ACIM drive is given in Table 9.

Table 9. ACIM virtual timers

Name Type Description

VTIM_KEY Polling

This virtual timer is used for two purposes:
- It counts the duration of the welcome message.
- It counts the time interval for the key repetition function.
When the joystick is set in one position or the button is
pressed, a fixed delay time (KEY_HOLD_TIME = 300 ms) is
respected before repeating this function
(KEY_REPEAT_TIME = 100 ms). This can be used to
increase or decrease a field value by keeping the joystick
pressed UP or DOWN.

VTIM_DISPLAY_BLINK Polling
This virtual timer is used to count the cursor blinking frequency
(DISPLAY_BLINKING_TIME300ms).

VTIM_DISPLAY_REFRESH Polling
This virtual timer is used to count the LCD refresh frequency
(DISPLAY_REFRESH_TIME300ms).

VTIM_USER_INTERFACE_REFRESH Polling
This virtual timer is used to count the delay time between the
visualization of the error messages when several faults occur
simultaneously. This delay is set as 1 s by the firmware.

V_TIM_ACIMDRIVE Automatic
This virtual timer is used to call the ACIM_drive function (see
Section 4.4.3: ACIM scalar control).

V_TIM_ACIMSTARTUP Automatic This virtual timer is used to time out the startup procedure

V_TIM_ACIMUPDATEINFO Polling
This virtual timer defines the refresh rate of the information
sent to the LCD and DAC.

V_TIM_ACIMSTARTUPINIT Polling
This virtual timer is used to define the duration of the high side
driver bootstrap capacitor-charging phase, executed before
each motor startup

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 59/85

4.4.3 ACIM scalar control

The high-level shell of the ACIM scalar control drive is implemented in the current firmware
library source file MC_ACIM_Drive.c.

This module implements the control schemes explained in Section 2.4: Speed closed loop
control and Section 2.5: Speed open loop control.

Figure 39 shows the functions implemented in the current firmware, together with their
connections. It also shows the main connections with other modules.

The core function is ACIM_Drive() which is awakened automatically by the virtual timer
V_TIM_ACIM_DRIVE. The periodicity is fixed by the CONTROL_LOOP_PERIOD define
statement (see Section 5.1.3: ACIM drive control define statements:
MC_ACIM_Drive_Param.h).

This function can be divided into three successive stages:

1. A request for the rotor speed measurement to be updated: The
Tacho_CalcSpeed_HzMec function is called using the MC_tacho.c module.

2. The three-phase sine wave voltage and frequency to be calculated in the next control
period. This is done according to the current state of the application state machine (if in
idle, start, or run state).

a) If in idle state: No operations

b) If in start state: ACIM_StartUp_ClosedLoop or ACIM_StartUp_OpenLoop
functions are called.

c) If in run state:

Closed loop mode: ACIM_MTPA_Control or ACIM_VF_Control functions are
called according to the actual drive strategy. For example, ACIM_VF_Control
implements the control scheme shown in Figure 7: V/f and slip regulation control
scheme while ACIM_MTPA_Control implements the scheme shown in Figure 10:
MTPA mode control scheme. The PID linear regulators are executed by the
PID_Regulator function (MC_pid_regulators.c module).

If in open loop mode: The ACIM_OpenLoop function is called. If open loop mode
with load compensation functionality is enabled, the ACIM_LoadCompensation
function is also called. These functions implement the control scheme shown in
Figure 11: Speed open loop control with load compensation. The
ACIM_LoadCompensation function executes the required look up table.

3. A request to update the three-phase sine wave with the calculated voltage and
frequency. The dev_driveRun function is called using the MC_stm8s_ACIM_drive.c
module.

Getting started with the STM8S ACIM firmware UM0712

60/85 Doc ID 15783 Rev 1

Figure 39. ACIM scalar control module

4.4.4 Tachogenerator signal reading

The high-level shell of the tachogenerator signal reading is implemented in the current
firmware library source file MC_tacho.c (see Figure 40).

This module’s operations rely on measurements performed by the low-level shell (see
Section 4.3.2: Tachogenerator signal reading) which are subsequently stored in virtual
registers. The operations take account of define statements which are related to the specific
tachogenerator sensor in use. They also take into account the timer clock frequency. For
example, motor speed is calculated using Equation 16.

Equation 16

ACIM_MTPA_Control
MC_PID_regulators.c module

Motorspeed STM8_FREQ VDEV_TACHO_PULSE_NUMBER×
VDEV_TACHO_COUNTS VDEV_PRESC ALER TACHO_PULSE_PER_REV××
---=

UM0712 Getting started with the STM8S ACIM firmware

Doc ID 15783 Rev 1 61/85

Figure 40. Tachogenerator speed measurement module

Tacho_CalcSpeed_HzMec

Tacho_GetSpeed_RPM

Tacho_GetSpeed_HzMec

Designing an application using the ACIM software library UM0712

62/85 Doc ID 15783 Rev 1

5 Designing an application using the ACIM software
library

It is relatively easy to set up an operational evaluation platform with a drive system that
includes the STM8/128-MCKIT motor control starter kit (featuring the STM8S
microcontroller on which the software runs) and a permanent-magnet motor.

This section explains how to quickly configure your system and, if necessary, customize the
library accordingly.

Follow the steps below to accomplish this task:

1. Collect all the information needed regarding the hardware in use (motor parameters,
power device features, speed/position sensor parameters, current sensors
transconductance).

2. Edit, using an integrated development environment (IDE), the following high-level
parameter files present in the folder STM8-MC_KIT\MC_FWLIB_SCALAR\param:

– MC_ACIM_conf.h (see Section 5.1.1)

– MC_ACIM_Motor_Param.h (see Section 5.1.2)

– MC_ACIM_Drive_Param.h (see Section 5.1.3)

3. If the drive is being performed using a tachogenerator sensor, setup the parameter
header file:

– MC_tacho_param.h (see Section 5.1.4)

4. If working with different hardware that is compatible with the STM8/128-MCKIT motor
control starter kit, edit (using an IDE) the following parameter header files too:

– MC_ControlStage_param.h (see Section 5.1.5),

– MC_PowerStage_Param.h (see Section 5.1.6)

5. It is also necessary to edit the following low-level parameter files present in the folder
STM8-MC_KIT\STM8_MC_FRAMEWORK\param:

– MC_stm8s_clk_param.h (see Section 5.1.7)

– MC_stm8s_ACIM_param.h (see Section 5.1.8)

– MC_stm8s_port_param.h (see Section 5.1.9)

– MC_stm8s_tacho_param.h (see Section 5.1.10)

6. Re-build the project and download it on the STM8S microcontroller.

Note: These modifications can be performed automatically using the
STM8S_MC_Firmware_Library builder.

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 63/85

5.1 Customizing the ACIM software library parameter file

5.1.1 ACIM configuration file: MC_ACIM_conf.h

The purpose of this file is to declare the compiler conditional compilation keys, that are used
throughout the entire library compilation process, to select the actual speed/position sensor.

If this header file is not edited appropriately (no choice or undefined choice), you receive an
error message when building the project. Note that you do not receive an error message if
the configuration described in this header file does not match the hardware that is actually in
use, or in case of wrong wiring.

The speed/position sensor choice, depending on requirements, includes speed closed loop,
speed open loop, and tacho sensing:

● #define SPEED_CLOSED_LOOP

Uncomment the above statement when a tachogenerator sensor is being used to
detect rotor speed.

Based on this feedback, speed closed loop control is carried out as explained in
Section 2.4.

Fill out MC_tacho_param.h and MC_stm8s_tacho_param.h (see Section 5.1.4
and Section 5.1.10) which concern the define statements related to speed sensing.

Fill out MC_ACIM_Drive_Param.h and MC_ACIM_Motor_param.h (see
Section 5.1.3 and Section 5.1.2 respectively) which concern the define statements
related to drive method selection.

● #define SPEED_OPEN_LOOP

Uncomment the above statement when a speed sensor is not being used to control or
detect rotor speed.

Speed open loop control is carried out as explained in Section 2.5.

Fill out MC_ACIM_Drive_Param.h and MC_ACIM_Motor_param.h (see
Section 5.1.3 and Section 5.1.2 respectively) which concern the parameters related to
drive method selection.

● #define SPEED_OPEN_LOOP_TACHO_SENSING

Uncomment the above statement when a speed sensor is not being used to control
rotor speed.

Speed open loop control is carried out as explained in Section 2.5. The tachogenerator
signal is processed to check operating conditions or for debug purposes.

Fill out MC_tacho_param.h and MC_stm8s_tacho_param.h (see Section 5.1.4
and Section 5.1.10) which concern the define statements related to speed sensing.

Fill out MC_ACIM_Drive_Param.h and MC_ACIM_Motor_param.h (see
Section 5.1.3 and Section 5.1.2 respectively) which concern the define statements
related to drive method selection.

Designing an application using the ACIM software library UM0712

64/85 Doc ID 15783 Rev 1

5.1.2 ACIM motor define statements: MC_ACIM_Motor_Param.h

The MC_ACIM_Motor_Param.h header file includes define statements related to the
motor. They are:

● #define MOTOR_POLE_PAIRS

Defines the number of motor pole pairs

● #define MAX_SPEED_RPM

Defines the maximum rotor speed, expressed in rpm

● #define V_F_RATIO

This statement is used to set the nominal V/f ratio the drive applies to the motor. It can
be expressed as a decimal number which is calculated as a ratio of motor nominal
phase voltage (expressed in volts, 0 V to peak) and nominal electrical frequency
(expressed in Hertz). This define statement is directly linked to the motor air-gap flux
and hence, to the motor magnetizing current (see Section 2.3: Electromagnetic torque
characteristic curve).

● #define MAX_V_F_SLIP

Defines, in one tenth of a Hertz, the maximum slip frequency (fsl) that can be applied by
the drive when accelerating in speed closed loop, V/f mode (see Section 2.4.1: V/f
control and slip regulation). This define statement is linked, in association with the
magnetizing current, to the maximum stator current allowed (see Section 2.3:
Electromagnetic torque characteristic curve). It must be chosen to avoid running next to
the pull-out torque condition.

● #define MIN_V_F_SLIP

Defines, in one tenth of a Hertz, the maximum negative slip frequency (fsl) that can be
applied by the drive when decelerating in speed closed loop, V/f mode (see Section
2.4.1: V/f control and slip regulation). This parameter is linked, in association with the
magnetizing current, to the maximum stator current allowed (see Section 2.3:
Electromagnetic torque characteristic curve). It must be chosen to avoid running next to
the pull-out torque condition.

● #define MTPA_SLIP

Defines, in one tenth of a Hertz, the optimum slip frequency (fsl) that is applied by the
drive when in speed closed loop, MTPA mode, fixed slip region (see Section 2.4.2:
Maximum torque per ampere (MTPA) control).

● #define STARTUP_V0

Defines, in one tenth of a volt, the voltage boost required at startup to compensate for
stator voltage drop (see Section 2.6: Startup strategy).

5.1.3 ACIM drive control define statements: MC_ACIM_Drive_Param.h

The MC_ACIM_Drive_Param.h header file includes define statements related to:

● General drive define statements

● Speed closed loop mode and related define statements

● Speed open loop mode and related define statements

● Open loop load compensation mode define statements

● Operation speed checks define statements

● Startup phase related define statements

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 65/85

General drive define statements

● #define CONTROL_LOOP_PERIOD

Defines the speed regulation frequency expressed in milliseconds

● #define TARGET_ROTOR_SPEED

Defines the default mechanical rotor speed set point when in run state. Expressed in
rpm.

● #define PWM_FREQUENCY

Defines the PWM switching frequency applied to the power stage. Expressed in Hertz.

● #define PWM_REFRESH_RATE

Defines the repetition rate as a number of full PWM periods, at which point new duty
cycle command values are calculated and refreshed in output. The higher the refresh
rate the lower the CPU load and the better the output resolution achievable. However,
maximum achievable frequency and DC bus ripple compensation are negatively
affected (see Section 4.3.1: Combined utilization of ADC and TIM1 for motor driving).

● #define DEAD_TIME_NS

Defines the dead time duration, expressed in nanoseconds, to avoid a shoot-through
condition.

● #define DEAD_TIME_COMPENSATION

Uncomment this define statement to enable the dead time compensation feature

● #define BUS_SAMPLING_FREQ

Defines the DC bus voltage sampling frequency required. Expressed in Hertz

Speed closed loop mode and related define statements

In conjunction with the configuration selected in MC_ACIM_conf.h (Section 5.1.1), the
following define statements are available if SPEED_CLOSED_LOOP is uncommented:

● #define CLOSEDLOOP_CONTROLMODE SPEED_CLOSEDLOOP_MTA

Uncomment above statement to enable the “most efficient” MTPA control strategy

Fill the parameters of both the linear regulators for MTPA and V/f control areas (see
Section 2.4.2: Maximum torque per ampere (MTPA) control).

● #define CLOSEDLOOP_CONTROLMODE SPEED_CLOSEDLOOP_VF

Uncomment above statement to enable the “most dynamic” V/f and slip control
strategy.

Fill the parameters of the V/f control area linear regulator only (Section 2.4.1: V/f
control and slip regulation).

● #define CLOSEDLOOP_TUNING

Define statement valid only in speed closed loop mode

Comment above statement to minimize the set of parameters that can be changed, in
real-time, by using the LCD user interface. This define statement has a positive effect in
reducing the application code size.

● #define VF_PID_TYPE

Define statement valid only in speed closed loop mode

It is used to configure the type of speed controller used when in the V/f and slip control
area. There are two possible settings: PI or PID. PI sets the proportional integral
regulator while PID sets the proportional integral derivative regulator.

Designing an application using the ACIM software library UM0712

66/85 Doc ID 15783 Rev 1

● #define VF_KP

Defines the proportional gain of the speed controller (16-bit value, adjustable from 0 to
32767) in the V/f and slip control area.

● #define VF_KI

Defines the integral gain of the speed controller (16-bit value, adjustable from 0 to
32767) in the V/f and slip control area.

● #define VF_KD

Defines the derivative gain of the speed controller (16-bit value, adjustable from 0 to
32767) in the V/f + slip control area. This define statement is used only if the PID
controller is selected.

● #define VF_KP_DIVISOR

Defines the scaling factor of the proportional gain of the speed controller (16-bit power-
of-two value) in the V/f + slip control area.

● #define VF_KI_DIVISOR

Defines the scaling factor of the integral gain of the speed controller (16-bit power-of-
two value) in the V/f + slip control area.

● #define VF_KD_DIVISOR

Defines the scaling factor of the differential gain of the speed controller (16-bit power-
of-two value) in the V/f + slip control area. This define statement is used only if the PID
controller is selected.

● #define VF_OUT_MAX

This define statement sets the positive saturation value of the speed controller output in
the V/f + slip control area. The default value is MAX_V_F_SLIP (see Section 5.1.2)

● #define VF_OUT_MIN

This define statement sets the negative saturation value of the speed controller output
in the V/f and slip control area. The default value is -MAX_V_F_SLIP (see
Section 5.1.2). Setting this define statement to zero keeps the controller from applying
a negative/braking torque.

● #define VF_INTERM_MIN

This define statement sets the negative saturation value of the speed controller integral
action in the V/f + slip control area. The default value is
VF_KI_DIVISOR*VF_OUT_MIN.

● #define VF_INTERM_MAX

This define statement sets the positive saturation value of the speed controller integral
action in the V/f and slip control area. the default value is
VF_KI_DIVISOR*VF_OUT_MIN.

● #define MTPA_PID_TYPE

This define statement is valid only in speed closed loop mode when MTPA control
strategy is enabled. It is used to configure the type of speed controller used when in the
MTPA control area. There are two possible settings: PI or PID. PI sets the proportional
integral regulator while PID sets the proportional integral derivative regulator.

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 67/85

● #define MTPA_KP

Defines the proportional gain of the speed controller (16-bit value, adjustable from 0 to
32767) in the MTPA control area.

● #define MTPA_KI

Defines the integral gain of the speed controller (16-bit value, adjustable from 0 to
32767) in the MTPA control area.

● #define MTPA_KD

Defines the derivative gain of the speed controller (16-bit value, adjustable from 0 to
32767) in the MTPA control area. This define statement is used only if the PID
controller is selected.

● #define MTPA_KP_DIVISOR

Defines the scaling factor of the proportional gain of the speed controller (16-bit power-
of-two value) in the MTPA control area.

● #define MTPA_KI_DIVISOR

Defines the scaling factor of the integral gain of the speed controller (16-bit power-of-
two value) in the MTPA control area.

● #define MTPA_KD_DIVISOR

Defines the scaling factor of the differential gain of the speed controller (16-bit power-
of-two value) in the MTPA control area. This define statement is used only if the PID
controller is selected.

● #define MTPA_OUT_MAX

This define statement sets the positive saturation value of the speed controller output in
the MTPA control area. The default value is 255 (full DC bus voltage exploitation is
allowed).

● #define MTPA _OUT_MIN

This define statement sets the negative saturation value of the speed controller output
in the MTPA control area. The default value is 0 and only non-negative values are
allowed. This is because the controller is unable to apply a negative/braking torque
when in the MTPA control area.

● #define MTPA _INTERM_MIN

This define statement sets the negative saturation value of the speed controller integral
action in the MTPA control area. The default value is
MTPA_KI_DIVISOR*MTPA_OUT_MIN.

● #define MTPA _INTERM_MAX

This define statement sets the positive saturation value of the speed controller integral
action in the MTPA control area. The default value is
MTPA_KI_DIVISOR*MTPA_OUT_MAX.

Designing an application using the ACIM software library UM0712

68/85 Doc ID 15783 Rev 1

Speed open loop mode and related define statements

In conjunction with the configuration selected in MC_ACIM_conf.h (Section 5.1.1), the
following define statements are available if SPEED_OPEN_LOOP or
SPEED_OPEN_LOOP_TACHO_SENSING are uncommented:

● #define OPENLOOP_CONTROLMODE SPEED_OPENLOOP

Uncomment above statement to enable a pure speed open loop V/f control with a real-
time adjustable V/f ratio and a foreseen slip frequency (see Section 2.5).

● #define OPENLOOP_CONTROLMODE SPEED_OPENLOOP_LOAD_COMPENSATION

Uncomment above statement to enable a speed open loop V/f control with automatic
load compensation (see Section 2.5.1).

Note: A look-up table that matches the foreseen load characteristic curve must exist.
Such a look up table is calculated automatically by the STM8S_MC_Firmware_Library
builder (see Section A.4).

● #define OPEN_LOOP_ACCELERATION_SLOPE

Defines the acceleration slope to be imposed during target speed variations, both in
start and run state. Expressed in rpm/s.

● #define OPENLOOP_SLIP

Defines, in one tenth of a Hertz, the default slip frequency (fsl) that is applied by the
drive during run state if the selected operating mode is speed open loop with no load
compensation.

Open loop load compensation mode define statements

The define statements of this section (SEGDIV, ANGC, OFST) are automatically worked-out
by the STM8S_MC_Firmware_Library builder. Please refer to Section 2.5.1: Load
compensation for a more detailed explanation of speed open loop, load compensation
mode.

Operation speed check define statements

● #define MIN_RUN_SPEED

This define statement is valid in speed closed loop mode, speed open loop mode, and
tacho sensing mode.

It defines the minimum speed below which speed feedback is unrealistic in the
application (in run state). Expressed in rpm. This allows a low frequency to be
discerned. This value is set to 200 rpm by default and depends on sensor and signal
conditioning stage characteristics. Typically, the tacho signal is too weak at very low
speeds to trigger input capture on the MCU.

● #define MAX_SPEED_FEEDBACK

This define statement is valid in speed closed loop or in speed open loop with tacho
sensing mode. It defines the maximum speed above which speed feedback is
unrealistic in the application (in run state). It is expressed in rpm.

● #define STALL_SPEED

This define statement is valid in speed closed loop mode, speed open loop mode, and
tacho sensing mode.

It defines the maximum motor speed allowable to begin the startup procedure (see
Section 2.6). Expressed in rpm.

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 69/85

Startup phase related define statements

● #define STARTUP_VAL_SPEED

In speed closed loop mode or in speed open loop mode with tacho sensing mode, this
define statement configures the minimum measured rotor speed at which the startup
phase is validated, so that the control can switch to run state (see Section 2.6: Startup
strategy).

In speed open loop mode (without tacho sensing mode), it defines the target speed of
the startup phase acceleration. This parameter defines the maximum duration of the
startup acceleration in conjunction with the OPEN_LOOP_ACCELERATION_SLOPE
parameter. It is expressed in rpm.

● #define STARTUP_DURATION

In speed closed-loop mode, this define statement configures the maximum duration of
the startup procedure expressed in milliseconds. This is the longest time the controller
waits for the exit condition (STARTUP_VAL_SPEED define statement) to be verified.

In speed open loop mode and tacho sensing, it defines the duration of the startup
procedure expressed in milliseconds. At the end of this duration the controller checks if
the exit condition (STARTUP_VAL_SPEED define statement) is verified.

In speed open loop mode, it defines the duration of the startup procedure expressed in
milliseconds. At the end of this duration, unless other errors have occurred, the
controller switches from start to run state.

● #define STARTUP_V_F_RATIO

This define statement can be expressed as a decimal number. It is used to set the V/f
ratio the drive applies to the motor during the startup phase. STARTUP_V_F_RATIO
can be calculated as a ratio of motor phase voltage (expressed in volts, 0 V to peak)
and electrical frequency (expressed in Hertz). If the selected operating mode is speed
closed loop, this define statement defines maximum applicable V/f ratio. However, if in
speed open loop, it defines the fixed V/f ratio to be applied. When the motor and the
inverter being used are working in conditions where they can withstand a current
overload, this define statement (in association with #define STARTUP_SLIP) can
help produce the extra starting torque many applications require (see Section 2.6:
Startup strategy).

● #define STARTUP_SLIP

Defines, in one tenth of a Hertz, the slip frequency (fsl) that is applied by the drive
during the startup procedure. When the motor and the inverter being used are working
in conditions where they can withstand a current overload, this define statement (in
association with #define STARTUP_V_F_RATIO) can help produce the extra starting
torque many applications require (see Section 2.6: Startup strategy).

Designing an application using the ACIM software library UM0712

70/85 Doc ID 15783 Rev 1

5.1.4 Tacho sensor define statements: MC_tacho_param.h

The MC_tacho_param.h header file includes define statements related to the
tachogenerator sensor. These settings are used only in sensored configurations (speed
closed loop or speed open loop and tacho sensing modes). In conjunction with these define
statements, the user should fill the MC_stm8s_tacho_param.h header file.

The tacho sensor define statements comprise:

● #define TACHO_PULSE_PER_REV

Defines the number of pulses per revolution given by the tachogenerator

● #define TACHO_PULSE_AVERAGED

Defines the target number of tacho periods to be captured during each speed
measurement cycle. This define statement determines the (fractional) number of rotor
revolutions (TACHO_PULSE_AVERAGED / TACHO_PULSE_PER_REV) over which
the average motor speed is calculated.

5.1.5 Control stage define statements: MC_ControlStage_param.h

The MC_ControlStage_param.h header file contains the parameters related to the
control stage. These settings must be modified if the firmware is used with a customized
hardware different from the one of the kit, or to disable some library features in order to
reduce code size and CPU occupation:

● #define DISPLAY

Uncomment this define statement to select the control board LCD as display.

● #define DAC_FUNCTIONALITY

The DAC functionality is a debug option which can be used to analyze the behaviors of
up to two variables inside the code. The variables to be analyzed should not vary more
than 20 kHz. See Section A.1 for details on how to customize it.

Note: The DAC functionality cannot be set together with the dissipative brake option.

● #define TIM1_CHxN_REMAP

Uncomment this define statement to remap the TIM1_CH1N, TIM1_CH2N,
TIM1_CH3_N and TIM1_ETR pins. This remapping is necessary if the STM8S features
less than 80 pins.

● #define BKIN

Comment this define statement to disable the emergency input feature of the advanced
control timer.

● #define JOYSTICK

Comment this define statement to disable the joystick input.

● #define SET_TARGET_SPEED_BY_POTENTIOMETER

Uncomment this define statement to use the potentiometer RV1 available on the
MB631. This potentiometer allows to set the target rotor speed. In this case the rotor
speed cannot be modified using the joystick.

● #define AUTO_START_UP

Uncomment this define statement to disable the KEY button management. The motor
is start to run automatically few second after the reset.

● #define ENABLE_OPTION_BYTE_PROGRAMMING

Comment this define statement to disable in-application option-byte re-programming.

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 71/85

Note: Disabling this option allows to decrease the firmware size. In this case the option bytes can
be programmed off-line by using the STVP tool.

5.1.6 Power stage define statements: MC_PowerStage_Param.h

The MC_PowerStage_param.h header file includes define statements related to the
power stage. These settings must be modified if the firmware is used with a customized
hardware different from the one of the kit, or to enable/disable unused library features.

The power stage define statements comprise:

● #define RS_M

This define statement is not used in the STM8S ACIM control software library V1.0

● #define AOP

This define statement is not used in the STM8S ACIM control software library V1.0

● #define DISSIPATIVE_BRAKE

Uncomment this define statement to enable the dissipative brake function (see
Section 4.3.3). The next define statement must be edited when this feature is enabled.

● #define DISSIPATIVE_BRAKE_POL

This define statement is used to set the polarity of the dissipative brake signal. It should
be set according to the dissipative brake hardware implementation. This setting is not
used if the dissipative brake function is disabled. There are two available options:

– DISSIPATIVE_BRAKE_ACTIVE_HIGH: The braking action is triggered by a high
logic level of the dissipative brake control signal.

– DISSIPATIVE_BRAKE_ACTIVE_LOW: The braking action is triggered by a low
logic level of the dissipative brake control signal.

● #define BUS_VOLTAGE_MEASUREMENT

This define statement is used to configure the firmware to perform DC bus voltage
measurement. If the hardware does not support bus voltage measurement, or if you
want to disable this feature, leave this define statement uncommented. The bus voltage
will not be measured by the firmware, and will be assumed constant and equal to the
value specified in the next define statement.

● #define BUS_VOLTAGE_VALUE

Defines the constant value of the bus voltage if the bus voltage measurement feature
has been disabled. This setting is not used if the bus voltage measurement function is
enabled.

● #define BUS_ADC_CONV_RATIO

Defines the DC bus voltage partitioning ratio performed by the hardware to allow the
bus voltage measurement. This setting is not used if the bus voltage measurement
function is disabled.

Designing an application using the ACIM software library UM0712

72/85 Doc ID 15783 Rev 1

● #define EXPECTED_MCU_VOLTAGE

Defines the reference value of ADC conversions. ADC conversions are usually
performed using a voltage reference that is identical to the microcontroller power
supply voltage (5 V). To increase the resolution, it is possible to design a customized
hardware that uses a lower ADC reference value. In this case
EXPECTED_MCU_VOLTAGE contains the required value used for the computation of
the converted values. The precision of the measurement can also be improved by
setting EXPECTED_MCU_VOLTAGE to the appropriate value. For example if the
microcontroller measured power supply voltage is 5.1 V, it is possible to set
EXPECTED_MCU_VOLTAGE to 5.1 to maximize the precision in the computation of the
converted values.

● #define MAX_BUS_VOLTAGE

#define MIN_BUS_VOLTAGE

These two values (expressed in volts) set the bus DC voltage range. If the bus voltage
exceeds OVERVOLTAGE_THRESHOLD_V or is below UNDERVOLTAGE_THRESHOLD_V,
the corresponding error event is generated and is kept as long as the bus voltage
remains outside the allowed range.

In addition, if DISSIPATIVE_BRAKE is defined, an overvoltage event is handled by
activating the brake resistor, and the corresponding error message is not issued.

● #define NTC_THRESHOLD_C

#define NTC_HYSTERIS_C

These two values (expressed in °C) are used to set the power device operating
temperature range (measured at heatsink). If the measured temperature exceeds
NTC_THRESHOLD_C, the corresponding error event is generated and is kept as long as
the measured temperature remains above
NTC_THRESHOLD_C - NTC_HYSTERESIS_C.

● #define TEMP_SENS_ALPHA

#define TEMP_SENS_BETA

#define TEMP_T0

These three values are used to characterize the transduction curve between
temperature sensor value (expressed in °C) and the ADC converted value. This curve
is assumed to be linear (see Figure 41).

● #define BKIN_POLARITY

When the firmware runs on a customized hardware, this define statement allows the
polarity of the break input to be configured. The polarity can be set to ACTIVE_HIGH or
ACTIVE_LOW.

#define PWM_U_LOW_SIDE_POLARITY

#define PWM_U_HIGH_SIDE_POLARITY

#define PWM_V_LOW_SIDE_POLARITY

#define PWM_V_HIGH_SIDE_POLARITY

#define PWM_W_LOW_SIDE_POLARITY

#define PWM_W_HIGH_SIDE_POLARITY

When the firmware runs on a customized hardware, these define statements allow the
polarity of the PWM output to be configured. The polarity can be set to ACTIVE_HIGH
or ACTIVE_LOW.

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 73/85

● #define PWM_U_HIGH_SIDE_IDLE_STATE

#define PWM_U_LOW_SIDE_IDLE_STATE

#define PWM_V_HIGH_SIDE_IDLE_STATE

#define PWM_V_LOW_SIDE_IDLE_STATE

#define PWM_W_HIGH_SIDE_IDLE_STATE

#define PWM_W_LOW_SIDE_IDLE_STATE

When the firmware runs on a customized hardware, these define statements allow the
status of the PWM output during the idle state to be configured. The status can be set
to ACTIVE or INACTIVE.

● #define HEAT_SINK_TEMPERATURE_MEASUREMENT

This define statement is used to configure the firmware to perform heat sink
temperature measurement. If the hardware does not support this feature, or if you want
to disable it, leave this define statement uncommented. The heat sink temperature will
not be measured by the firmware, and will be assumed constant and equal to the value
specified in the next define statement.

● #define HEAT_SINK_TEMPERATURE_VALUE

Defines the constant value of the heat sink temperature if the heat sink temperature
measurement feature has been disabled. This setting is not used if the heat sink
temperature measurement function is enabled.

● #define PWM_LOWSIDE_OUTPUT_ENABLE

Comment this define statement to disable the complementary output control of TIM1. In
this case, the required deadtime should be managed by the power device drivers.

Figure 41. Transduction curve between the temperature sensor and the ADC
converted

This curve represents Equation 17, where α is defined using TEMP_SENS_ALPHA, β is
defined using TEMP_SENS_BETA and T0 is defined using TEMP_T0.

β

ADC converted value

Temperature (°C)
TO

α

Designing an application using the ACIM software library UM0712

74/85 Doc ID 15783 Rev 1

Equation 17 Transduction equation

5.1.7 Microcontroller clock definition: MC_stm8s_clk_param.h

The MC_stm8s_clk_param.h header file contains the following define statement strictly
related to the microcontroller and its peripherals. For this reason the name of the
microcontroller is present in the name of the file.

● #define STM8_FREQ_MHZ

This define statement is used to set the CPU frequency in mega Hertz. Either 16 MHz
or 24 MHz can be chosen.

Note: If 24Mhz is chosen, the firmware is configured to use the external oscillator with 1
wait state for the Flash latency. Otherwise the internal oscillator with 0 wait state is
used.

5.1.8 Microcontroller specific ACIM drive define statements:
MC_stm8s_ACIM_param.h

The MC_stm8s_ACIM_param.h header file contains the following define statements
related to the ACIM drive.

● #define BUS_ADC_CHANNEL

#define BUS_ADC_PORT

#define BUS_ADC_PIN

The ADC channel to be used for the bus DC sampling and its related GPIO port and pin
can be configured using the above define statements if the firmware runs on
customized hardware.

Note: The PIN description can be read from the appropriate STM8S datasheets. The
pins should not be used for other purpose inside the firmware and should never be
configured as outputs.

● #define HEATSINK_ADC_CHANNEL

#define HEATSINK _ADC_PORT

#define HEATSINK _ADC_PIN

The ADC channel to be used for the heatsink temperature sampling and its related
GPIO port and pin can be configured using the above define statements if the firmware
runs on customized hardware.

Note: The PIN description can be read from the appropriate STM8S datasheets. The
pins should not be used for other purpose inside the firmware and should never be
configured as outputs.

ADC α t×() β α T0×–+=

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 75/85

● #define USER1_ADC_CHANNEL

#define USER1_ADC_PORT

#define USER1_ADC_PIN

The ADC channel to be used for a user defined A/D conversion and its related GPIO
port and pin can be configured using the above define statements if the firmware runs
on customized hardware.

Note: The PIN description can be read from the appropriate STM8S datasheets. The
pins should not be used for other purpose inside the firmware and should never be
configured as outputs.

● #define SINE3RDHARM

This define statement is the sine wave reference look-up table that is stored in the
Flash memory. It contains third harmonic by default which allows approximately 15%
more voltage to be obtained on a motor from a given DC bus compared to pure sine
(see Section 2.7: Three-phase PWM sine wave and third harmonic generation).

● #define BUSVOLT_BUFFER_SIZE

Defines the buffer size utilized for averaging bus voltage measurement. Maximum
buffer size is 255.

Note: The DC bus voltage is sampled at a frequency defined by
BUS_SAMPLING_FREQ (MC_ACIM_Drive_Param.h).

● #define HEATSINK_SAMPLING_FREQ

Defines the heatsink temperature sampling frequency required. Expressed in Hertz.

● #define USERADC_SAMPLING_FREQ

Defines the user-defined AD conversion sampling frequency required. Expressed in
Hertz.

● #define STARTUP_ANGLE

Defines the initial angle of the three-phase voltage system. This angle is expressed in
unsigned 16-bit format, where 0-65535 corresponds to 0-2 π radians.

Designing an application using the ACIM software library UM0712

76/85 Doc ID 15783 Rev 1

5.1.9 Port pin definition define statements: MC_stm8s_port_param.h

The MC_stm8s_port_param.h header file contains the define statements related to the
definitions of the pins and ports used for the motor control related signals:

● #define DEBUGx_PORT

#define DEBUGx_PIN

When the firmware runs on a customized hardware, these define statements can be
used to configure the ports and pins used for the debug signals.

The first define statement specifies the port: Replace the x character in the GPIOx
string by the correct letter. For instance, set GPIOH if port H is used.

The second define statement specifies the pin: Replace the x character in the
GPIO_PIN_x string with the correct number. For instance, set GPIO_PIN_1 if pin 1 is
used.

● #define KEY_UP_PORT

#define KEY_UP_BIT

#define KEY_DOWN_PORT

#define KEY_DOWN_BIT

#define KEY_LEFT_PORT

#define KEY_LEFT_BIT

#define KEY_RIGHT_PORT,
#define KEY_RIGHT_BIT

#define KEY_UP_PORT

#define KEY_UP_BIT

#define USER_BUTTON_PORT

#define USER_BUTTON_BIT

When the firmware runs on a customized hardware, these define statements can be
used to configure the ports and pins used for the user interface input signals (joystick
and button).

Define the port by setting the xxx_PORT define statements to GPIOx, where x
specifies the port. For instance, set GPIOH if port H is used.

Define the pin by setting the xxx_BIT define statements to GPIO_PIN_x, where x with
specifies the pin. For instance, set GPIO_PIN_1 if pin 1 is used.

● #define DISSIPATIVE_BRAKE_PORT

#define DISSIPATIVE_BRAKE_BIT

When the firmware runs on a customized hardware, these define statements can be
used to configure the port and pin used for the dissipative brake signal (see
Section 4.3.3).

In the first define statement, set the port by replacing the x character in the GPIOx
string with the correct letter. For instance, set GPIOH if port H is used.

In the second define statement, specify the pin by replacing the x character in the
GPIO_PIN_x string with the correct number. For instance set GPIO_PIN_1 if pin 1 is
used.

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 77/85

5.1.10 Tacho param microcontroller interfaces: MC_stm8s_tacho_param.h

The MC_stm8s_tacho_param.h header file contains the following define statements
related to low-level operations of the tachogenerator signal processing:

● #define TACHO_TIMERx_CHANNELy

The default choice is TACHO_TIMER2_CHANNEL2 (the tacho signal is routed to Tim2,
input capture 2 in the STM8/128-MCKIT motor control starter kit). If the firmware runs
on customized hardware, the correct statement, which reflects the actual timer/input
capture selection, should be uncommented.

● #define TACHO_IC_PORT
#define TACHO_IC_PIN

The corresponding GPIO port and pin must be declared for the timer/input capture
selected for tacho signal processing (see Section 5.1.9).

Note: The PIN description can be read from the appropriate STM8S datasheets. The
pins should not be used for other purpose inside the firmware and should never be
configured as outputs. GPIO alternate function remapping of TIM2/TIM3 channels
should also be considered.

● #define IC_FILTER_DURATION

Defines the length of the digital filter to be applied at the input stage of the selected
timer channel.

The digital filter contains an event counter in which N events are needed to validate a
transition of the output. Valid filter values are summarized in Table 10.

Designing an application using the ACIM software library UM0712

78/85 Doc ID 15783 Rev 1

● #define TACHO_TIMER_ARR

Defines the reload register value for the timer that handles the tachogenerator signal.
This define statement is involved in the automatic prescaler adaptation to the motor
speed according to Equation 18 approximated to the next greatest power of two.

● #define MAX_ERROR_NUMBER

Defines the maximum number of times the timer (which is reading the tacho signal
period) can reach the overflow without having captured a number of tacho pulses equal
to TACHO_PULSE_AVERAGED (MC_tacho_param.h). At this point, a fault message
is issued (SPEED FEEDBACK).

Equation 18

The refresh rate of the low-level section of the speed measurement process can also
be calculated, using Equation 19 below and considering the formula above with a given
motor speed.

Table 10. Tacho input capture filter duration

#define
IC_FILTER_DURATION

Sampling
frequency

Events
N

µsec filter
F_CPU 16 Mhz

µsec filter
F_CPU 24 Mhz

0x00 No filter No filter 0.0625 0.0417

0x01 F_CPU 2 0.1250 0.0833

0x02 F_CPU 4 0.2500 0.1667

0x03 F_CPU 8 0.5000 0.3333

0x04 F_CPU/2 6 0.7500 0.5000

0x05 F_CPU/2 8 1.0000 0.6667

0x06 F_CPU/4 6 1.5000 1.0000

0x07 F_CPU/4 8 2.0000 1.3333

0x08 F_CPU/8 6 3.0000 2.0000

0x09 F_CPU/8 8 4.0000 2.6667

0x0a F_CPU/16 5 5.0000 3.3333

0x0b F_CPU/16 6 6.0000 4.0000

0x0c F_CPU/16 8 8.0000 5.3333

0x0d F_CPU/32 5 10.0000 6.6667

0x0e F_CPU/32 6 12.0000 8.0000

0x0f F_CPU/32 8 16.0000 10.67

Prescaler cpu_frequency TACHO_PULSE_AVERAGED× 60×
TACHO_TIMER_ARR motor_speed(RPM)× TACHO_PULSE_PER_REV×
---=

UM0712 Designing an application using the ACIM software library

Doc ID 15783 Rev 1 79/85

Equation 19

● #define MAX_PRESCALER

Defines the maximum prescaler value for the timer that handles the tachogenerator
signal.

Effectively, this defines the lowest speed that can be measured, according to Equation
20.

Equation 20

5.2 Setting up the system when using a brake resistor
To make the STM8/128-MCKIT motor control starter kit board suitable for the management
of a brake resistor, some additional components must be soldered onto its wrapping area.
Figure 42 gives an example of the circuit to be used for hardware implementation of the
brake.

Figure 42. Brake resistor circuit

1. The size of the resistor in terms of both resistance and sustainable power should be carefully dimensioned.

2. In the STM8/128-MCKIT motor control starter kit, pin 23 of the MC connector (J7) that carries the signal for brake
implementation is positioned close to the wrapping area.

Refresh rate (s)
Prescaler

cpu_frequency
--------------------------------------- TACHO_TIMER_ARR×=

Min speed (RPM) cpu_frequency(Hz) 60 TACHO_PULSE_AVERAGED××
MAX_PRESCALER TACHO_TIMER_ARR× TACHO_PULSE_PER_REV×
---=

+15 V

R1, 1 kΩ

R2, 6.8 kΩ

R4, 1 kΩ

R7, 100 kΩ

Q2, BC547B

Q1, BC557B

+15 V Vbus

R6, 220 kΩ

R5, 1 kΩ

R3, 100 Ω, 20 W

Z1 STGFNC60HD

BRAKE_GPIO_PORT

BRAKE_GPIO_PIN

Module description UM0712

80/85 Doc ID 15783 Rev 1

6 Module description

The current firmware is comprised of a set of modules that are subdivided logically into
three groups:

● High-level MC modules

● Low-level MC modules

● Standard library

The last two groups contain functions related to the microcontroller (see Section 4.3: Low-
level control) while the first group contains hardware independent functions as described in
Section 4.4: High-level control.

6.1 High-level modules
The high-level MC modules are stored in the MC_FWLIB_SCALAR folder and include the
following:

● MC_ACIM_Drive: This module contains all functions related to the electrical drive and
engine control (see Section 4.4.3: ACIM scalar control).

● MC_tacho.c: This module contains all functions related to rotor speed measurement
via a tachogenerator sensor (see Section 4.4.4: Tachogenerator signal reading).

● MC_ACIM_Motor: This module is the holder of the drive structure. It contains all
functions used to interact (get or set parameters) with the ACIM drive structure or to get
a reference of that structure for other modules.

● MC_ACIM_User_Interface: This module is the holder of the user interface specific
for the ACIM drive. It contains a function used to provide the reference of that structure
for other modules. Interaction with the structure is managed by
MC_User_Interface.c.

● MC_User_Interface: This module is used to manage the user interface (see
Section 3.1: ACIM user interface) which interacts with MC_keys and MC_display
modules. The user interface is specifically defined according to the drive of the
MC_ACIM_User_Interface module.

● MC_dev: This module is an interface between the high-level and low-level modules. For
example, it is used to initialize the low-level modules by calling each specific
initialization function (dev_clkInit, dev_portInit, ...).

● MC_display: This module is used to manage user display information. In the firmware
the display is implemented using an LCD screen of 15 rows x 2 lines.

Note: This module is developed over the low-level virtual I/O functions (see Section 4.2:
Library architecture).

● MC_Keys:

This module manages the button and joystick (4 directions plus a center button). It is
developed over the low level virtual I/Os functions (see Section 4.2: Library
architecture).

UM0712 Module description

Doc ID 15783 Rev 1 81/85

● MC_pid_regulators: This module is used to manage all the regulators needed by
the application. They can be proportional integral derivative (PID) or proportional
integral regulators (PIR). The MC_pid_regulator module is used to instance a
regulator structure and to execute it.

● MC_StateMachine: This module is used to manage the main application state
machine. The only interface with it, is the StateMachineExec function that is used to
execute the state machine.

● MC_vtimer: This module is used to manage the virtual timers as explained in
Section 4.4.1: Virtual timers.

● Main: This is the main application firmware module. In the actual implementation it is
used to execute the state machine in an infinite loop.

6.2 Low-level modules
The low-level MC modules are stored in the folder STM8_MC_FRAMEWORK and include
the following:

● MC_stm8s_ACIM_drive: This module contains all functions related to the low-level
electrical drive and engine control.

● MC_stm8s_tacho.c: This module contains all functions related to the low-level shell
of the rotor speed measurement method via a tachogenerator sensor (see
Section 4.3.2: Tachogenerator signal reading).

● MC_stm8s_ACIM_it: This module contains all the interrupt service routines defined
inside the interrupt vector that are NOT used by the firmware. The interrupt service
routine used by the firmware is defined inside each module that uses it.

● MC_stm8s_clk: This module manages the function responsible for setting the
microcontroller clock.

● MC_stm8s_DAC: This module manages the digital to analog function implemented for
debugging purposes. It use TIM3 as described in Section A.1.

● MC_stm8s_display: This module contains the low-level functions that interact with
the LCD display. It has been developed on top of the mono_lcd module. Exported
functions include dev_displayInit (used to configure the hardware for the LCD
visualization), dev_displayClear (used to clear the LCD screen), dev_displayFlush
(displays the data that have already been formatted by the MC_display module),
dev_displayPrintch (used to refresh the cursor.)

● MC_stm8s_keys: This module is used to initialize the hardware (dev_keysInit)

● MC_stm8s_port: This module is used to initialize the GPIOs of the microcontroller
required for configuration.

● MC_stm8s_vtimer: This module is used to implement management of the low-level
virtual timer so it is used only for initialization of the hardware (dev_vtimerInit) and
contains the interrupt service routine of TIM4.

● vdev_ios: This module is used to manage the low-level input output functionality (see
Table 3: Virtual registers).

Additional information UM0712

82/85 Doc ID 15783 Rev 1

Appendix A Additional information

A.1 DAC configuration
In the current firmware library, the DAC functionality is implemented using two output
compare channels (PD2 and PD0 pins) of TIM3 and modulating the duty cycle of the
generated 62.5 kHz PWM signal. To filter the generated signals without introducing
significant delays on the waveforms, use a first order low-pass filter (for example, with a 1 kΩ
resistor and a 33 nF capacitor).

In the ACIM drive firmware, both DAC outputs are used. The first, monitors the stator voltage
amplitude and the second monitors the slip frequency controller outputs.

It is also possible to use the DAC outputs to monitor two user defined variables (example,
user_var1 and user_var2) by modifying the statements below that are present in the
MC_ACIM_Drive.c file:

#ifdef DAC_FUNCTIONALITY
dev_DACUpdateValues(DAC_CH_1,(u8)(user_var1));
dev_DACUpdateValues(DAC_CH_2,(u8)(user_var2));
#endif

As the implemented DAC functionality has an 8-bit resolution, a suitable scaling factor
should be applied to user defined variables.

Note: It is not possible to use the DAC functionality with the dissipative brake function.

See Section 5.1.5: Control stage define statements: MC_ControlStage_param.h for details
on how to enable he DAC functionality.

A.2 Motor control related CPU load
Table 11 gives the estimated execution time for a set of ACIM motor control library functions,
while Table 12 give an estimate of the CPU load during ACIM motor control software
execution.

Table 11. Example of ACIM motor control function execution time

Function Source file
Estimated execution

time (µs)
Priority

level

ACIM_Drive() MC_ACIM_Drive.c 250 1

ADCx_IRQHandler() MC_stm8s_ACIM_drive.c 13.7 3

TIM1_UPD_OVF_TRG_BRK_IRQHandler() MC_stm8s_ACIM_drive.c 4.4 3

TIMx_UPD_OVF_TRG_BRK_IRQHandler()(1) MC_stm8s_tacho.c 3.4 1

TIMx_CAP_COM_IRQHandler()(1) MC_stm8s_tacho.c 2.4 2

1. See Figure 38: Tachogenerator sensing low-level module

UM0712 Additional information

Doc ID 15783 Rev 1 83/85

A.3 References
1. Cacciato M, Consoli A, Scarcella G, Scelba G, and Testa A (2006) Efficiency

optimization techniques via constant optimal slip control of induction motor drives,
Proceedings of SPEEDAM.

2. Mohan N, Undeland TM, and Robbins WP (1995) Power electronics: Converters,
Applications and Design. Wiley, second edition.

3. Fitzgerald AE, Kingsley Jr. C, and Umans SD (1990) Electric Machinery, 5th edition,
McGraw-Hill, New York.

4. Chapman SJ (1999) Electric Machinery Fundamentals, 3rd edition. McGraw-Hill,
NewYork.

5. Krause PC, Wasynczuk O, and Sudhoff SD (2002) Analysis of Electric Machinery and
Drive Systems. Wiley-IEEE Press.

A.4 STM8 motor control builder GUI
The STM8 motor control builder GUI is not part of the motor control kit. Please check
http://www.st.com/mcu/inchtml-pages-stm8.html for availability.

Table 12. CPU load resulting from motor control

Parameter Value CPU load (in %)

Speed loop control frequency 200 Hz 5

PWM and sine waves control frequency 8 KHz 14.5

Motor speed 3000 RPM

0.1
Number of tachogenerator pole pairs 8

TACHO_PULSE_AVERAGED
(see Section 5.1.4: Tacho sensor define

statements: MC_tacho_param.h)
3

Total estimated CPU load 19.6

Revision history UM0712

84/85 Doc ID 15783 Rev 1

Revision history

Table 13. Document revision history

Date Revision Changes

01-Jul-2009 1 Initial release

UM0712

Doc ID 15783 Rev 1 85/85

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Features
	1.1 Performance line STM8S features
	1.2 Access line STM8S features
	1.3 ACIM software library V1.0 features
	Table 1. ROM and RAM requirements

	1.4 Development tools
	1.4.1 Toolchains
	1.4.2 Programming tools

	1.5 Reference documents

	2 Introduction to STM8S ACIM scalar control
	2.1 Introduction to ACIM theory
	Figure 1. Simplified arrangement of windings (cross section)

	2.2 ACIM steady state electrical circuit
	Figure 2. Induction motor equivalent circuit 1
	Figure 3. Induction motor equivalent circuit 2

	2.3 Electromagnetic torque characteristic curve
	Figure 4. Electromagnetic torque-speed characteristic
	Figure 5. V/f regulation

	2.4 Speed closed loop control
	2.4.1 V/f control and slip regulation
	Figure 6. V/f and slip regulation
	Figure 7. V/f and slip regulation control scheme
	Figure 8. Flux weakening region

	2.4.2 Maximum torque per ampere (MTPA) control
	Figure 9. MTPA mode strategy
	Figure 10. MTPA mode control scheme

	2.5 Speed open loop control
	2.5.1 Load compensation
	Figure 11. Speed open loop control with load compensation

	2.6 Startup strategy
	Figure 12. Closed loop startup strategy

	2.7 Three-phase PWM sine wave and third harmonic generation
	Figure 13. Pure sine wave modulation and equivalent with third harmonic added
	Figure 14. Third harmonic injection with increased fundamental amplitude
	Figure 15. Third harmonic PWM modulation and corresponding currents

	2.8 Bus voltage ripple cancellation
	Figure 16. Bus voltage ripple compensation

	3 Running the demonstration program
	3.1 ACIM user interface
	Table 2. Joystick actions and conventions
	Figure 17. ACIM user interface menu structure and navigation.

	3.2 Getting started with the ACIM user interface
	3.2.1 Welcome message
	Figure 18. ACIM drive welcome message

	3.2.2 Help menus
	Figure 19. Help menu

	3.2.3 Main menu: Changing the target and measured rotor speed
	Figure 20. Main window, showing target rotor speed and measured speed
	Figure 21. Selecting the target rotor speed

	3.3 Using the ACIM user interface sub-menus for motor control
	3.3.1 ACIM user interface sub-menus
	Figure 22. User interface sub-menu
	Figure 23. Field selected for editing

	3.3.2 Speed regulator parameters
	Figure 24. Constant flux control and slip regulation (via PID)
	Figure 25. Constant slip control and flux regulation (via PID)

	3.3.3 Drive strategy parameters
	Figure 26. Drive strategy parameters

	3.3.4 Startup parameters
	Figure 27. Startup parameters

	3.3.5 Control strategy parameters
	Figure 28. Control strategy parameters

	3.3.6 Displaying the DC bus voltage and heatsink temperature parameters
	Figure 29. Bus voltage and heatsink temperature parameters

	3.3.7 Fault messages
	Figure 30. Error message shown in the event of an undervoltage fault

	4 Getting started with the STM8S ACIM firmware
	4.1 Application state machine
	4.1.1 Description of the states
	4.1.2 Description of the state machine operation
	Figure 31. Main motor control state machine

	4.2 Library architecture
	Figure 32. STM8S motor control library architecture: High-level/low-level interface
	Figure 33. STM8S motor control library organization
	4.2.1 Virtual registers
	Table 3. Virtual registers

	4.2.2 Virtual I/Os
	Table 4. Virtual I/Os

	4.2.3 Drive structure
	Table 5. ACIM drive structure for speed closed loop control
	Table 6. ACIM drive structure for speed open loop control

	4.3 Low-level control
	4.3.1 Combined utilization of ADC and TIM1 for motor driving
	Figure 34. TIM1 initialization
	Table 7. PWM amplitude resolution @CPU frequency 24 MHz
	Table 8. PWM amplitude resolution @CPU frequency 16 MHz
	Figure 35. TIM1 and ADC utilization
	Figure 36. ACIM drive low-level module

	4.3.2 Tachogenerator signal reading
	Figure 37. Tachogenerator reading method
	Figure 38. Tachogenerator sensing low-level module

	4.3.3 Dissipative brake

	4.4 High-level control
	4.4.1 Virtual timers
	4.4.2 Using the ACIM virtual timers
	Table 9. ACIM virtual timers

	4.4.3 ACIM scalar control
	Figure 39. ACIM scalar control module

	4.4.4 Tachogenerator signal reading
	Figure 40. Tachogenerator speed measurement module

	5 Designing an application using the ACIM software library
	5.1 Customizing the ACIM software library parameter file
	5.1.1 ACIM configuration file: MC_ACIM_conf.h
	5.1.2 ACIM motor define statements: MC_ACIM_Motor_Param.h
	5.1.3 ACIM drive control define statements: MC_ACIM_Drive_Param.h
	5.1.4 Tacho sensor define statements: MC_tacho_param.h
	5.1.5 Control stage define statements: MC_ControlStage_param.h
	5.1.6 Power stage define statements: MC_PowerStage_Param.h
	Figure 41. Transduction curve between the temperature sensor and the ADC converted

	5.1.7 Microcontroller clock definition: MC_stm8s_clk_param.h
	5.1.8 Microcontroller specific ACIM drive define statements: MC_stm8s_ACIM_param.h
	5.1.9 Port pin definition define statements: MC_stm8s_port_param.h
	5.1.10 Tacho param microcontroller interfaces: MC_stm8s_tacho_param.h
	Table 10. Tacho input capture filter duration

	5.2 Setting up the system when using a brake resistor
	Figure 42. Brake resistor circuit

	6 Module description
	6.1 High-level modules
	6.2 Low-level modules

	Appendix A Additional information
	A.1 DAC configuration
	A.2 Motor control related CPU load
	Table 11. Example of ACIM motor control function execution time
	Table 12. CPU load resulting from motor control

	A.3 References
	A.4 STM8 motor control builder GUI

	Revision history
	Table 13. Document revision history

