
October 2012 Doc ID 023577 Rev 1 1/66

UM1566
User manual

STM32F0xx and STM32F3xx
 I2C communication peripheral application library (CPAL v2)

Introduction
The purpose of this document is to explain the architecture and the implementation of the
I2C CPAL v2 (Communication Peripheral Application Library).

The CPAL v2 provides the same high layer API implemented in CPAL v1, thus you can
migrate between these two libraries easily.

The CPAL v1 is a library which provides API for I2C peripherals of STM32F1, STM32F2,
STM32F4 and STM32L1 devices. While CPAL v2 provides API for I2C peripherals of
STM32F0 and STM32F3 devices.

It provides CPAL drivers for communication peripherals and some examples showing how to
use and customize the CPAL drivers.

The CPAL v2 drivers and examples are supplied within STM32F0xx, STM32F37x and
STM32F30x Standard Peripherals library; the drivers are under
Libraries\STM32xxxx_CPAL_Driver and the examples under
Project\STM32xxxx_StdPeriph_Examples\I2C.

Table 1 lists applicable products concerned by this user manual.

 .

Table 1. Applicable products

Type Part numbers

Microcontrollers STM32F0xxxx and STM32F3xxxx

www.st.com

http://www.st.com

Contents UM1566

2/66 Doc ID 023577 Rev 1

Contents

1 CPAL overview . 6

2 CPAL architecture description . 7

2.1 CPAL application hierarchy . 7

2.2 Communication layer . 8

2.2.1 CPAL main structures (stm32xxxx_i2c_cpal.h) . 9

2.2.2 CPAL communication functions (stm32xxxx_i2c_cpal.c) 16

2.3 User application interface . 18

2.3.1 Configuration interface . 18

2.3.2 User callback interface . 22

2.4 Low layer interface (hardware abstraction layer HAL) 24

3 CPAL functional description . 28

3.1 Configuration . 28

3.1.1 CPAL_I2C_Init() functional description . 28

3.1.2 CPAL_I2C_DeInit() functional description . 29

3.1.3 CPAL_I2C_StructInit() functional description . 31

3.2 Communication . 31

3.2.1 CPAL_I2C_Read() functional description . 32

3.2.2 CPAL_I2C_Write() functional description . 34

3.2.3 CPAL_I2C_Listen () functional description: . 35

3.2.4 CPAL_I2C_IsDeviceReady() functional description 35

3.2.5 CPAL interrupts and DMA management . 36

3.3 Event and error management (user callbacks) . 38

3.3.1 Timeout management . 40

4 How to use and customize the CPAL library (step by step) 42

4.1 Basic configuration . 42

4.1.1 Select peripherals to be used . 42

4.1.2 Configure transfer options . 43

4.1.3 Select and configure user and error callbacks . 43

4.1.4 Configure timeout management . 43

4.1.5 Set Events, Errors and DMA interrupt priorities 44

4.1.6 Configure the Log Macro . 44

UM1566 Contents

Doc ID 023577 Rev 1 3/66

4.2 Structure initialization . 45

4.3 Communication . 45

4.4 Error management . 46

4.5 Advanced configuration . 47

4.5.1 Select peripheral I/O pins . 47

4.5.2 Select TX and RX DMA channels . 47

4.5.3 Set event, error and DMA interrupt priorities . 47

5 CPAL implementation example (step by step) 49

5.1 Starting point . 49

5.2 stm32xxxx_i2c_cpal_conf.h . 49

5.3 stm32xxxx_i2c_cpal_usercallback.c . 51

5.4 main.c . 52

5.4.1 Variables and structures . 52

5.4.2 Configuration . 53

5.4.3 Communication . 54

6 CPAL Examples . 55

6.1 Wakeup from Stop mode example . 56

6.2 Two-board example . 56

6.3 Two-board Listen mode example . 57

7 Memory footprint of CPAL components . 59

8 Frequently asked questions (FAQ) . 61

9 Naming conventions . 64

10 Revision history . 65

List of tables UM1566

4/66 Doc ID 023577 Rev 1

List of tables

Table 1. Applicable products . 1
Table 2. CPAL file descriptions. 8
Table 3. CPAL_InitTypeDef structure . 10
Table 4. CPAL_Dev field values . 11
Table 5. CPAL_Direction field values . 11
Table 6. CPAL_Mode field values . 12
Table 7. CPAL_ProgModel field values . 12
Table 8. CPAL_TransferTypeDef structure fields . 12
Table 9. CPAL_State field values . 13
Table 10. wCPAL_DevError field values (for I2C peripherals) . 13
Table 11. wCPAL_Options field values . 15
Table 12. Architecture of CPAL Communication Layer functions. 16
Table 13. CPAL Communication Layer function list . 17
Table 14. CPAL configuration sections. 19
Table 15. CPAL configuration sections. 23
Table 16. HAL configuration sections . 25
Table 17. CPAL low layer interface function description . 26
Table 18. CPAL_I2C_Struct_Init() default values . 31
Table 19. I2C interrupt management order. 36
Table 20. DMA interrupt management order . 37
Table 21. CPAL I2C user callback list . 38
Table 22. Hardware resources used in CPAL examples . 55
Table 23. Memory footprint of CPAL components . 59
Table 24. Frequently asked questions . 61
Table 25. Document revision history . 65

UM1566 List of figures

Doc ID 023577 Rev 1 5/66

List of figures

Figure 1. CPAL library architecture . 7
Figure 2. CPAL driver hierarchy. 8
Figure 3. CPAL option fields . 15
Figure 4. CPAL_I2C_Init() function flowchart. 29
Figure 5. CPAL_I2C_DeInit() function flowchart . 30
Figure 6. CPAL_I2C_Read() function flowchart . 33
Figure 7. CPAL_I2C_Write() function flowchart . 34
Figure 8. CPAL_I2C_Listen () function flowchart . 35
Figure 9. CPAL I2C timeout manager flowchart . 41
Figure 10. WakeUp from stop example architecture . 56
Figure 11. Two-board example architecture . 57

CPAL overview UM1566

6/66 Doc ID 023577 Rev 1

1 CPAL overview

The purpose of this document is to explain the architecture and the implementation of the
CPAL Library (Communication Peripheral Application Library):

CPAL v2 is a Library providing high layer API for STM32F0/F3 communication peripherals
(I2C). It provides CPAL drivers for each device, some illustrating examples showing how to
use and customize the CPAL drivers.

It mainly aims to:

● Provide intuitive, easy to use and sufficient API (Init, Deinit, Read, Write):

– All configurations needed for the communication peripheral (I/O pins, Clocks,
Interrupt vectors, DMA channels …) are internally managed by the CPAL low layer
drivers.

– The communication operations are also managed internally by the CPAL drivers
(communication headers, address sending, Interrupt and/DMA control, error
management …).

– All operations are controlled and monitored through a single configuration
structure (one structure instance for each device) holding all necessary
configuration parameters (device configuration, buffers addresses and sizes…) as
well as the current communication status and error codes.

● Provide efficient and complete management of device and communication errors.
Device events and errors are managed by the CPAL low layer drivers and allow user to
integrate easily a specific code for each event and error. Communication errors are also
managed by a timeout mechanism that can be customized by user application.

● Provide high customization and integration level:

– Several static configurations allow reducing code size when some options are not
used (i.e., Reduce the number of used devices, disable management of some
modes: 10-bit addressing, General call …).

– Dynamic and easy configuration through a unique control structure allowing
dynamically enabling/disabling device and communication options.

– Several user callbacks: functions declared and called by the CPAL drivers and
implemented by user application when needed. These functions allow user
application to perform specific actions relative to specific communication
events/errors.

● Provide device abstraction layer: CPAL library supports all STM32 device families.

● Provide efficient and simple debug feature through CPAL_DEBUG option: debug
messages are sent through customizable macro. Log messages are sent at each step
of the CPAL driver (this macro can be customized to send messages through serial
interface, debug IDE interface, LCD screen…).

● In order to optimize CPAL driver performances, all operations, except device
initialization, are preformed through direct register access.

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 7/66

2 CPAL architecture description

2.1 CPAL application hierarchy
The CPAL library consists of three layers:

– User Application interface: allows the customization of CPAL library besides of
user callbacks implementation. This layer consists of files which user may modify
according to application requirements.

– Communication Layer: contains the communication API for each device (I2C).

– HAL Layer: is a Hardware Abstraction Layer (HAL) that allows controlling the
different devices registers independently of the device family.

Each layer is described in more details in the following sections.

Figure 1. CPAL library architecture

Note: The CPAL library provides template files for implementing the User Application interface.
You can modify these files or not according to your application requirements.

Each product family have a specific CPAL library package. This package consists of
STM32xxxx_CPAL_Driver folder located in the Libraries repository at the same level as
CMSIS (Cortex™ microcontroller software interface standard) and the STM32 standard
peripheral drivers. This folder contains all the CPAL drivers and header files as well as
templates for user files. Also some examples illustrating the use of CPAL drivers are located
in the project folder under folder containing examples based on the standard peripheral
drivers.

CPAL architecture description UM1566

8/66 Doc ID 023577 Rev 1

Figure 2. CPAL driver hierarchy

The library files are listed in the following table. They are described in detail in the next
sections.

2.2 Communication layer
The CPAL communication layer interface contains all the needed functions (APIs) that can
be called by the user application.

It consists of the following files:

● stm32xxxx_i2c_cpal.h

● stm32xxxx_i2c_cpal.c

Important notes:

● All I2C interrupt handlers and all the DMA-related interrupt handlers are declared and
managed exclusively by the CPAL library. The user application does not need and

Table 2. CPAL file descriptions

Layer File name Description

User Application
Interface

stm32xxxx_i2c_cpal_c
onf_template.h

User file which can be modified to customize and/or configure
the CPAL library drivers. This file is provided with each example.

stm32xxxx_i2c_cpal_u
sercallback_template
.c

User file that contains the User Callback implementations when
needed. If no callback implementation is needed, this file may be
not used (comment out the unused functions).

Communication
layer

stm32xxxx_i2c_cpal.h
Contains the main structure definitions and the global CPAL
structure declaration (as extern). It also contains all option
definitions and the peripheral-specific error definitions

stm32xxxx_i2c_cpal.c

This file contains the main operation functions for the peripheral
(Init, DeInit, Read, Write…). It also contains all the peripheral-
related interrupt handlers (peripheral and DMA interrupts) as
well as the error management functions.

Hardware
Abstraction Layer

stm32xxxx_i2c_cpal_h
al.c

This file provides low layer functions specific to the device family
for controlling the I2C peripheral.

stm32xxxx_i2c_cpal_h
al.h

This file provides low layer configuration options (I/O selection,
DMA channel selection, Interrupt configuration …) as well as low
layer macros used for peripheral control.
This file may be modified by the user when needed, to use
different I/Os, DMA channels …

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 9/66

should not declare these interrupt handlers. If these handlers are needed for other
purposes (for example a DMA interrupt shared by several peripherals…) the user
application may use the related callbacks.

● Interrupt priority groups and preemption orders are also managed by the CPAL driver.
To configure these parameters, modify the stm32xxxx_i2c_cpal_conf.h file.

2.2.1 CPAL main structures (stm32xxxx_i2c_cpal.h)

The CPAL library provides a unique structure grouping all parameters needed to:

● Configure a peripheral

● Use it for communication

● Monitor the state of the CPAL driver and the peripheral.

This structure is declared in the stm32xxxx_i2c_cpal.h file and is used as the unique
argument for all driver functions.

Each peripheral instance has a separate structure holding its configuration parameters and
all the related transfer arguments and status. These structures are declared in the driver file
and are also declared as extern in the stm32xxxx_i2c_cpal.h file (so no need for you to
declare them in your application files).

Example:

#ifdef CPAL_USE_I2C1
 extern CPAL_InitTypeDef I2C1_DevStructure;
#endif /* CPAL_USE_I2C1 */

#ifdef CPAL_USE_I2C2
 extern CPAL_InitTypeDef I2C2_DevStructure;
#endif /* CPAL_USE_I2C2 */
…

The CPAL configuration structure is defined as follows:

typedef struct
{
CPAL_DevTypeDef CPAL_Dev;
CPAL_DirectionTypeDef CPAL_Direction;
CPAL_ModeTypeDef CPAL_Mode;
CPAL_ProgModelTypeDef CPAL_ProgModel;
CPAL_TransferTypeDef* pCPAL_TransferTx;
CPAL_TransferTypeDef* pCPAL_TransferRx;
__IO CPAL_StateTypeDef CPAL_State;
__IO uint32_t wCPAL_DevError;
uint32_t wCPAL_Options;
__IO uint32_t wCPAL_Timeout;
I2C_InitTypeDef* pCPAL_I2C_Struct;

}CPAL_InitTypeDef;

CPAL architecture description UM1566

10/66 Doc ID 023577 Rev 1

The structure fields are detailed in Table 3.

Table 3. CPAL_InitTypeDef structure

Field type Field name Description

CPAL_DevTypeDef CPAL_Dev
This field specifies the peripheral to be configured and
controlled by this structure.

CPAL_DirectionTypeDef CPAL_Direction

This field specifies the transfer directions that are to be
supported for the related peripheral (transmission-only,
reception-only or both directions). This parameter does
not indicate the direction of the current transfer but only
the directions supported by the peripheral.

Any value listed in Table 5 can be assigned to this field.

CPAL_ModeTypeDef CPAL_Mode

Select the operating mode for the peripheral: Master
mode or Slave mode. This mode determines if the
peripheral initiates the transfer or waits till it receives
transfer data from another master.

Any value listed in Table 6 can be assigned to this field.

CPAL_ProgModelTypeDef CPAL_ProgModel

Select the programming model for the next transfers:
Interrupt (peripheral transfer interrupts will manage all the
transactions and peripheral and driver states) or DMA (all
data transfers are managed by DMA channels. CPU is
then free to perform other user tasks).

Any value listed in Table 7 can be assigned to this field.
Note: For I2C, when DMA mode is enabled, the

addressing phase cannot be managed by DMA but
only by interrupts.

CPAL_TransferTypeDef* pCPAL_TransferTx

This field points to a structure holding all the transmission
transfer parameters (buffer addresses and number of data
bytes).

A value can be assigned to this field as described in
Table 8.

CPAL_TransferTypeDef* pCPAL_TransferRx

This field points to a structure holding all the reception
transfer parameters (buffer addresses and number of data
bytes).

A value can be assigned to this field as described in
Table 8.

__IO CPAL_StateTypeDef CPAL_State

The state field holds the current state of the CPAL driver
for the related peripheral instantiated by the CPAL_Dev
field. These values are described in more detail in
Section 3.3.

One of the values listed in Table 9 can be assigned to this
field.

Note: After managing a peripheral error (by clearing the
error flag and returning to the transfer correct
status), update this field in order to continue
normal operations.

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 11/66

The tables below describe the possible values in detail for each structure field.

____IO uint32_t wCPAL_DevError

This field holds the peripheral-related error code
instantiated by the field CPAL_Dev.
One of the values listed in Table 10 can be assigned to
this field.
Note: After managing the peripheral error (by clearing

the error flag and returning to the transfer correct
status), update this field and set it to
CPAL_I2C_ERR_NONE in order to continue normal
operations.

uint32_t wCPAL_Options

This field allows you to configure additional options for the
transfer configuration.

These options are described in more detail in Table 11:
Any combination of the specified values can be used for
this field (with respect to the conditions related to each
option).

__IO uint32_t wCPAL_Timeout
This field is used for timeout detection. It holds the current
value of the timeout counter for the peripheral controlled
by this structure.

I2C_InitTypeDef* pCPAL_I2C_Struct
This field points to a peripheral configuration structure as
defined in the standard peripheral library. Only one value
can be assigned to this field.

Table 3. CPAL_InitTypeDef structure (continued)

Field type Field name Description

Table 4. CPAL_Dev field values

Field value Description

CPAL_I2Cx
- x = peripheral instance (1 or 2 or 3 …)

The possible values for this field depend on the peripherals available in the microcontroller
and the enabled defines (CPAL_USE_I2Cx) in the stm32xxxx_i2c_cpal_conf.h file.

Table 5. CPAL_Direction field values

Field value Description

CPAL_DIRECTION_TX This value allows only transmission transfers for the selected peripheral.

CPAL_DIRECTION_RX This value allows only reception transfers for the selected peripheral.

CPAL_DIRECTION_TXRX This value allows both transmission and reception transfers for the selected peripheral.

CPAL architecture description UM1566

12/66 Doc ID 023577 Rev 1

Table 6. CPAL_Mode field values

Field value Description

CPAL_MODE_MASTER
When this value is selected for the peripheral, then it is configured in Master mode and it
initiates the transfers (for example, generate the communication clock, the slave
address…)

CPAL_MODE_SLAVE
When this value is selected for the peripheral, then it is configured in Slave mode and it
waits till a master initiates the transfer.

Table 7. CPAL_ProgModel field values

Field value Description

CPAL_PROGMODEL_
INTERRUPT

When this value is selected for the peripheral, then all data transfer is managed by the
peripheral interrupt IRQ handlers (implemented in the CPAL library). The user application
then only has to monitor the status of the transfer through the status fields.

CPAL_PROGMODEL_
DMA

When this value is selected for the peripheral, then all data transfer is managed by the
peripheral-related DMA channel. This is the most optimized transfer mode which allows
high transfer rates and frees the CPU for other user application tasks.

In this case, the user application has to monitor DMA channel flags or interrupts (CPAL
provides appropriate callbacks for managing DMA events).

Note: For I2C peripherals, DMA cannot handle1-byte buffer transfers. So when DMA
mode is configured and the buffer size is equal to 1, then DMA mode is disabled
and interrupt mode is enabled for this transfer. At the end of the 1-byte transfer,
DMA mode is re-enabled and interrupt mode is disabled.

Table 8. CPAL_TransferTypeDef structure fields

Field type Field name Description

uint8_t* pbBuffer

This field should contain the pointer to the buffer to be written to
or read from. Even when the transfer buffer format is not Byte
format, this pointer should be casted to Byte format. The user
has to set the value of this field at the start of each transfer.
Then the CPAL drivers update it according to the current
transfer status.

In Interrupt mode: this field is updated (incremented) at each
data transmission or reception.

In DMA mode: this field is updated only at the end of the current
transfer.

uint32_t wNumData

This field should contain the number of data to be transferred
(regardless of their format: Byte or Half-Word or Word). The
number of data to be transferred is related only to the peripheral
format configuration (8-bit or 16-bit or 32-bit). The user has to
set the value of this field at the start of each new transfer. Then
the CPAL drivers update it according to the current operations.
You can check this field to know how many data have been
transferred.
In Interrupt mode: this field is updated (decremented) by the
CPAL drivers at each data transmission or reception.
In DMA mode: this field is updated by the CPAL drivers only at
the end of the transfer.

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 13/66

uint32_t* wAddr1

In Master mode: this field specifies the address of the slave to
communicate with.
In Slave mode: This field is not used.

uint32_t* wAddr2

In Master mode: this field specifies the physical/register address
to be written to or read from into the slave (for example for
memory devices …).

In Slave mode: this field is not used.

Table 8. CPAL_TransferTypeDef structure fields

Field type Field name Description

Table 9. CPAL_State field values

Field value Description

CPAL_STATE_DISABLED
This state is the default state of the CPAL driver. It is set when the related peripheral
is disabled (not initialized) and all related resources are free.

CPAL_STATE_READY
This state is set when the related peripheral is initialized and all its resources are
assigned.

CPAL_STATE_READY_TX
This state is set when the related peripheral has triggered the communication
procedure for transmission.

CPAL_STATE_READY_RX
This state is set when the related peripheral has triggered the communication
procedure for reception.

CPAL_STATE_BUSY
This state is set when a write or read operation has been started (but effective
transfer on the peripheral has not started yet).

CPAL_STATE_BUSY_TX This state is set when a transmission transfer is ongoing for the related peripheral.

CPAL_STATE_BUSY_RX This state is set when a reception transfer is ongoing for the related peripheral.

CPAL_STATE_ERROR
This state is set when an error occurs on the related peripheral or at CPAL driver
level. When this state is set, the user application can check the wCPAL_DevError
field to determine which error occurred.

Table 10. wCPAL_DevError field values (for I2C peripherals)

Field value Description

CPAL_I2C_ERR_NONE This is the default state of the error field. It indicates that no peripheral error occurred.

CPAL_I2C_ERR_TIMEOU
T

This state indicates that a timeout occurred during the communication or configuration
phase. Thus a specific time has elapsed without correct response/event from the
peripheral or the slave (in Master mode).

CPAL_I2C_ERR_BERR

A bus error is detected when a START or a STOP condition is detected and is not
located after a multiple of 9 SCL clock pulses. A START or a STOP condition is
detected when a SDA edge occurs while SCL is high.
The bus error flag is set only in case the I2C is involved in the transfer as master or
addressed slave (i.e not during address phase in slave mode).
In case of a misplaced START or ReSTART detection in slave mode, the I2C enters
address recognition state as for a correct START condition.
When a bus error is detected, BERR flag is set in I2C_ISR register, and an interrupt is
generated if ERRIE is set in I2C_CR1 register.
It is cleared by software by setting BERRCF bit.

CPAL architecture description UM1566

14/66 Doc ID 023577 Rev 1

The wCPAL_Options field in the CPAL device structure can be used to manage additional
configuration options for peripheral initialization and communications.

The options are bit-field values (each option is coded on 1 bit into the 32-bit word-field
wCPAL_Options). Multiple options may be assigned to the wCPAL_Options field at the
same time.

CPAL_I2C_ERR_ARLO

An arbitration loss is detected when a high level is sent on SDA, but a low level is
sampled on the SCL rising edge.
– In master mode, the arbitration loss is detected during address phase, data phase

and data acknowledge phase. In that case, SDA and SCL lines are released, START
control bit is cleared by hardware and the master switches automatically to slave
mode.

– In slave mode, arbitration loss is detected during data phase and data acknowledge
phase. In that case, the transfer is stopped, and SCL and SDA lines are released.

When an arbitration loss is detected, ARLO flag is set in I2C_ISR register, and an
interrupt is generated if ERRIE is set in I2C_CR1 register.

It is cleared by software by setting ARLOCF bit.

CPAL_I2C_ERR_AF

Not Acknowledge is detected as an error only in master mode when a NACK is
received after sending slave address.
NACKF flag is set in I2C_ISR register, and an interrupt is generated if NACKIE is set in
I2C_CR1 register.

It is cleared by software by setting NACKCF bit.

CPAL_I2C_ERR_OVR

An overrun or underrun error is detected in slave mode when NOSTRETCH=1 and:

– In reception when a new byte is received and the RXDR register has not been read
yet. New received byte is lost, and a NACK is automatically sent as a response to
the new byte.

– In transmission:

– when STOPF=1 and the first data should be sent. The content of TXDATA is sent if
TXE=0, 0xFF if not.

– when a new byte should be sent and the TXDR register has not been written yet.
0xFF is sent.

When an overrun or underrun error is detected, OVR flag is set in I2C_ISR register,
and an interrupt is generated if ERRIE is set in I2C_CR1 register.

It is cleared by software by setting OVRCF bit.

Table 10. wCPAL_DevError field values (for I2C peripherals) (continued)

Field value Description

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 15/66

Figure 3. CPAL option fields

The table below describes in detail the meaning of each bit-field.

● When a bit is set to 1, the related option is enabled.

● If it is reset, the related option is disabled (except for the bits [1..7] which hold the 7-bit
address).

Table 11. wCPAL_Options field values

Field value Description

CPAL_OPT_I2C_DUALADDR Enable the I2C Dual Addressing mode for the related peripheral(1).

7 Bit Address
This is the value of the Own Address 2. This value will be configured and
used only if the CPAL_OPT_I2C_DUALADDR option is enabled.

CPAL_OPT_DMATX_HTIT
Enable the DMA Tx Half Transfer Complete interrupt for the related
peripheral.

CPAL_OPT_DMARX_HTIT
Enable the DMA Rx Half Transfer Complete interrupt for the related
peripheral.

CPAL_OPT_DMATX_CIRCULAR Enable the Circular mode for the Tx DMA transfers on the related peripheral.

CPAL_OPT_DMARX_CIRCULAR Enable the Circular mode for the Rx DMA transfers on the related peripheral.

CPAL_OPT_NO_MEM_ADDR
Enable No Memory addressing mode for the peripheral-related I2C. This
means that the master sends only the peripheral slave address (no physical
addresses into the slave). (2)

CPAL_OPT_16BIT_REG
Enable 16-bit register addressing mode. Thus the register/physical address
(sent after the peripheral slave address) is considered as a 2-byte address.(3)

CPAL_OPT_I2C_GENCALL Enable the I2C General Call mode for the related peripheral.

CPAL_OPT_I2C_AUTOMATIC_END Enable Automatic end mode of STOP generation for master.

CPAL_OPT_I2C_ERRIT_DISABLE
Disable the I2C error interrupt (Bus error, Arbitration loss, Acknowledge
failure and Overrun/Underrun errors). By default the error interrupts are
enabled.

CPAL architecture description UM1566

16/66 Doc ID 023577 Rev 1

2.2.2 CPAL communication functions (stm32xxxx_i2c_cpal.c)

All Communication Layer interface functions are built following the scheme detailed in the
following table.

CPAL_OPT_I2C_NOSTOP

Disable the sending of STOP condition at the end of the current buffer
transfer for the relative I2C device. This option may be enabled when multiple
packets have to be sent consecutively without STOP generation. This option
can be used only if software end mode is selected
(CPAL_OPT_I2C_AUTOMATIC_END option is disabled).

CPAL_OPT_I2C_NOSTOP_MODE
Start communication in No STOP generation mode and close communication
by Generating stop

CPAL_OPT_I2C_OA2_MASK Contain Own Address 2 Mask (OA2MSK is coded on 3 bit)

CPAL_OPT_I2C_10BIT_HEADR
Enable the send of slave address-10bit-header only when switching from
master transmitter to master receiver mode with No stop generation option
enabled

CPAL_OPT_I2C_WAKEUP_STOP Enable the WakeUp from stop capability for the I2C slave device

CPAL_OPT_I2C_NACK_ADD
Enable the Initialization of the I2C Slave device without enabling the
acknowledgement of its own address. This option must not be used with No
Stop generation mode

Reserved All reserved bits values are ignored. Their use is reserved for future needs.

1. To enable this option, proceed as follows to assign the Own Address 2 and enable other options:
wCPAL_Options = Own_Address_2_Value | CPAL_OPT_I2C_DUALADDR | Other Options

2. This option is available only for I2C peripherals in Master mode. The physical address is an address into the slave
peripheral into/from which the write/read operation is performed (that is, memory address / physical register address).

3. This option is available only when CPAL_OPT_NO_MEM_ADDR is disabled. Otherwise, when
CPAL_OPT_NO_MEM_ADDR is enabled, this option is ignored.

Table 11. wCPAL_Options field values (continued)

Field value Description

Table 12. Architecture of CPAL Communication Layer functions

(Type) Returned value Name (Type) Arguments

uint32_t

Result of the operation CPAL_PASS
if operation is successful and a
different value if operation failed).

CPAL_I2C_xxxx

Where xxxx the operation
name (i.e., Init, Read, Write…).

CPAL_InitTypeDef* pDevInitStruct

All functions accept one single argument:
the pointer to the CPAL peripheral
configuration structure.

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 17/66

The CPAL Communication Layer functions are described in the following table.

Table 13. CPAL Communication Layer function list

Function name Description

CPAL_I2C_Init()
This function initializes the related peripheral and all needed resources (GPIOs, clocks,
DMA and interrupts …) depending on the parameters configured in the configuration
structure pointed by pDevInitStructure.

CPAL_I2C_DeInit()

This function frees the resources used by the related peripheral (GPIOs, clocks, DMA,
interrupts …) and disables then deinitializes the peripheral itself. Thus every used
resource is configured to its default state.

If a resource has not been used by the peripheral, then it is not deinitialized. Thus, if a
peripheral is configured in DMA mode then configured again in Interrupt mode, when this
function is called, it only deinitializes interrupt-related resources (DMA resources will
remain configured).

Note: When calling this function, make sure that any resource shared between multiple
peripherals are correctly configured after deinitialization (i.e., if a DMA channel TC
interrupt is used by I2C and one other peripheral, then make sure to re-enable this
DMA channel and its interrupt after calling CPAL_I2C_DeInit function).

CPAL_I2C_StructIn
it()

This function initializes the related peripheral structure (pointed by pDevInitStruct) by
filling all fields with their default values.

Caution: Pointer fields are filled with CPAL local variable pointers. To avoid any risks, it is
recommended to declare application local/global variables and fill these fields
with their pointers.

CPAL_I2C_Read()

This function reads/receives a data buffer through the related peripheral. All information
on the read transfer parameters and current status are extracted from the
pCPAL_TransferRx field described in Table 8. In each step of communication, the
CPAL_State field of the structure pointed by pDevInitStruct is continuously updated
to report the current state and the potential errors.(1)

CPAL_I2C_Write()

This function writes/sends a data buffer through the related peripheral. All information on
the write transfer parameters and current status are extracted from pCPAL_TransferTx
field described in Table 8. In each step of communication, the CPAL_State field of the
structure pointed by pDevInitStruct is continuously updated to report the current
state and the potential errors.(2)

CPAL_I2C_Listen()

This function allows a slave to start a communication without knowing in advance the type
of operation (Read or Write). The slave enters in an idle state and waits until it is
addressed.Depending on the requested operation, User Callbacks specific to this mode
are called. All information required for transfer (read and write parameters), DMA and
Interrupts configuration must be implemented in these Callbacks by the user.

CPAL_I2C_IsDevice
Ready()

This function can be used to:

– Wait until the target peripheral is ready for communication (i.e., for memories).
– Verify that the external slave peripheral is connected to the bus (using its address).

This function sends the peripheral slave address on the bus then waits till the peripheral
responds to this address (meaning that the previous operation was successfully
completed or/and the peripheral is connected to the bus). If no response is received after
a timeout period the function exits and returns the CPAL_FAIL result. If the peripheral
responds correctly, then the function exits and returns the CPAL_PASS result.

This function can be called once to verify that the Slave peripheral is connected, or is in a
loop to wait till the peripheral responds correctly.

1. When CPAL_I2C_Read() function is called, the user application may perform other tasks while the transfer is ongoing and
the CPAL_State field can be used to monitor transfer.

CPAL architecture description UM1566

18/66 Doc ID 023577 Rev 1

Note: It is possible to configure and use more than one peripheral simultaneously since each
peripheral has its own state control.

2.3 User application interface
The user application interface consists of two files (stm32xxxx_i2c_cpal_conf.h and
stm32xxxx_i2c_cpal_usercallback.c) which are described in the following sections.

These files may be modified by the user for each application need. The CPAL library only
provides templates for these files, then the user should copy these templates into his project
and optionally modify them according to the application needs.

Important notes:

● All I2C interrupt Handlers and all the DMA-related interrupt Handlers are exclusively
declared and managed by the CPAL library. The user application does not need and
should not declare these interrupt handlers. If these handlers are needed for other
purposes (i.e., DMA interrupt shared between several peripherals…), the user
application may use the related callbacks.

● Interrupt priority groups and preemption orders are also managed by the CPAL driver.
To configure these parameters, modify the stm32xxxx_i2c_cpal_conf.h file.

2.3.1 Configuration interface

The configuration interface allows you to customize the library for your application needs.
This is not mandatory to modify this file: the default configuration may be used without any
modification. Only some parameters can be modified.

To configure this single file (stm32xxxx_i2c_cpal_conf.h), you should enable, disable
or modify some options or group of options by un-commenting, commenting or modifying
values of the related defines.

The CPAL configuration steps are grouped in sections and detailed in the following table:

● Section 1: Peripheral selection

● Section 2: Transfer option configuration

● Section 3: User callback configuration

● Section 4: Timeout configuration

● Section 5: Interrupt priority selection

● Section 6: CPAL debug configuration

2. When CPAL_I2C_Write() function is called, the user application may perform other tasks while the transfer is ongoing
and the CPAL_State field can be used to monitor transfer.

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 19/66

Table 14. CPAL configuration sections

Section Options Description

Section 1:
Peripheral
selection

CPAL_USE_I2CX

- X = device instance: 1 or 2 or 3 ...
Uncomment a define to enable the related peripheral. When
commented, the peripheral cannot be used and all related
resources are not declared by the CPAL library. Thus, less
memory space is used).

Section 2:
Transfer
option
configuration

The following options are static configurations allowing you to reduce the code size when some
features are not used by the application.

CPAL_I2C_MASTER_MODE
Uncomment this define to enable Master mode use for I2C
peripherals. When this define is commented, none of Master
mode features and operations can be called.

CPAL_I2C_SLAVE_MODE
Uncomment this define to enable Slave mode use for I2C
peripherals. When this define is commented, none of slave
mode features and operations can be called.

CPAL_I2C_LISTEN_MODE

Uncomment this define to enable Listen mode for use by I2C
slave peripherals by calling the CPAL_I2C_Listen()
function. When this define is uncommented,
CPAL_I2C_Read() and CPAL_I2C_Write() functions can
be used only with master mode.

CPAL_I2C_DMA_PROGMODEL
Uncomment this define to enable the use of DMA for data
transfers. When this define is commented, DMA programming
model cannot be used.

CPAL_I2C_IT_PROGMODEL

Uncomment this define to enable the use of Interrupt mode for
data turnovers. When this define is commented, all interrupt
management code is disabled except for events and error
management.

CPAL_I2C_10BIT_ADDR_MODE

This option is used to allow the code to handle10-bit
addressing mode. When this option is enabled, it does not
mean that all I2C peripherals communicate in 10-bit addressing
mode: to select this mode for an I2C peripheral, the user has to
enable the related option in the CPAL structure field.

CPAL_16BIT_REG_OPTION

This option is valid only when CPAL_OPT_NO_MEM_ADDR
option is disabled. It enables the code managing the 16-bit
addressing mode for the register/physical address into slave
memory. When this option is enabled, it does not mean that all
devices will communicate in 16-bit register/physical addressing
mode: to select this mode for a peripheral, the user has to
enable the related option in the CPAL structure field.

Section 3:
User
callback
configuration

Generic description: this section contains all User Callbacks defined in the CPAL library. User
Callbacks are functions that are called from CPAL library internal layers and may be implemented by
the user in order to perform specific actions after specific events. Only their prototypes are declared
in the CPAL library.
To enable and use a callback, comment the related define in stm32xxxx_i2c_cpal_conf.h file,
then implement the callback body into stm32xxxx_i2c_cpal_usercallback.c file (callback
prototype is already declared in CPAL library).

For more details about callbacks, refer to Section 2.3.2

Caution: Most of these functions (except error callbacks) are intended to perform short actions.
Implementing functions with a too long execution time may cause communication errors.

CPAL architecture description UM1566

20/66 Doc ID 023577 Rev 1

Section 4:
Timeout
configuration

CPAL_TIMEOUT_INIT()

This macro is used by the CPAL drivers to configure and enable
a timeout countdown mechanism (i.e., using SysTick). It is
called at each initialization of a CPAL peripheral (when calling
CPAL_I2C_Init() function).
The timeout counter functions as follows:
– The counter generates fixed-period ticks and calls
CPAL_I2C_TIMEOUT_Manager() callback at each tick.

– The CPAL_I2C_TIMEOUT_Manager() checks the value of
wCPAL_Timeout of all the available I2C peripheral
structures:

– If wCPAL_Timeout = CPAL_I2C_TIMEOUT_DEFAULT then
no action is performed.

– If wCPAL_Timeout = CPAL_I2C_TIMEOUT_MIN then the
CPAL structure state is set to CPAL_STATE_ERROR and
CPAL_TIMEOUT_UserCallback() is called to manage the
error.

– If wCPAL_Timeout has any other value, the function
decrements its value by 1 and exit.

– The User may implement his own timeout mechanism (i.e.,
using SysTick timer or other timers).

The counting unit should preferably be set to 1 millisecond
(ms).
This function should configure the counting unit and enable the
counting start.
Other timeout initialization procedures may be implemented
depending on application needs.

CPAL_TIMEOUT_DEINIT()

This macro is used to deinitialize the countdown mechanism. It
is called whenever a peripheral is deinitialized (when calling
CPAL_I2C_DeInit() function).
Other timeout initialization procedures may be implemented
depending on application needs.This function may be
performed for each peripheral separately.

Table 14. CPAL configuration sections (continued)

Section Options Description

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 21/66

Section 4:
Timeout
configuration
(continued)

CPAL_I2C_TIMEOUT_Manager

This define may be used when SysTick timer (or one other
timer) is managed (in interrupt mode) for the timeout
procedure. It routes the SysTick (or the timer) interrupt to the
CPAL_I2C_TIMEOUT_UserCallback function handling
timeout errors.
In case of multiple peripheral types managed by the same
interrupt handler, an intermediate function may be
implemented and called into the interrupt handler.
Example:
In stm32xxxx_i2c_cpal_conf.h:

#define CPAL_I2C_TIMEOUT_Manager
UserFunction1

In stm32fxxx_it.c file:
void SysTick_Handler(void)
{ …..
UserFunction1();
….
}
When another timeout mechanism (based on interrupt) is
implemented, the user should route the interrupt IRQ handler
to the same callback CPAL_I2C_TIMEOUT_Manager.

CPAL_I2C_TIMEOUT_MIN
The minimum timeout value for the peripheral timeout counter
when enabled (this value is applied to the device structure
timeout field wCPAL_Timeout).

CPAL_I2C_TIMEOUT_DEFAULT
The default value for the timeout counter. When the counter is
set to this value, no decrement is performed on the field
wCPAL_Timeout of the peripheral structure.

CPAL_I2C_TIMEOUT_WWW

Where WWW can be replaced by the peripheral event (i.e., SB,
ADDR …)
These defines determine the maximum timeout allowed for the
specified event (this value is added to the
CPAL_I2C_TIMEOUT_MIN to calculate the allowed timeout
period).
The user may specify different timeout periods for each event in
order to meet the requirements and constraints of the
application.

Table 14. CPAL configuration sections (continued)

Section Options Description

CPAL architecture description UM1566

22/66 Doc ID 023577 Rev 1

2.3.2 User callback interface

The callback interface (stm32xxxx_i2c_cpal_usercallback.c) allows the
implementation of user callbacks when needed. A template file is provided in the library
(stm32xxxx_i2c_cpal_usercallback_template.c) with empty callback functions.
This file contains all supported user callbacks.

It is not mandatory to implement callbacks. Only callbacks that are needed by the user
application may be implemented, the other ones may be kept commented (If a callback is
implemented, then its related define in the stm32xxxx_i2c_cpal_conf.h file should be
commented).

Section 5:
Interrupt
priority
selection

CPAL_NVIC_PRIOGROUP

Uncomment one of the available defines to set the level of
preemption and sub-priority groups. This configuration is
applied to all interrupt handlers. If the user application modifies
the interrupt priority group configuration in other locations, then
it impacts the CPAL functions.

I2CX_IT_OFFSET_PREPRIO

Modify the related define value to set the level of interrupt
preemption priority. All preemption priorities of the I2Cx
peripheral will be set in the HAL layer relatively to this offset
value for example:
#define I2C1_IT_EVT_PREPRIO I2C1_IT_OFFSET_PREPRIO
+ 0
#define I2C1_IT_ERR_PREPRIO I2C1_IT_OFFSET_PREPRIO
+ 2
#define I2C1_IT_DMATX_PREPRIO
I2C1_IT_OFFSET_PREPRIO + 1
…

I2CX_IT_OFFSET_SUBPRIO

Modify the related define value to set the level of interrupt sub-
priority offset. All sub-priorities of the I2Cx peripheral are set in
the HAL layer relatively to this offset value for example:
#define I2C1_IT_EVT_SUBPRIO I2C1_IT_OFFSET_SUBPRIO
+ 0
#define I2C1_IT_ERR_SUBPRIO I2C1_IT_OFFSET_SUBPRIO
+ 0
#define I2C1_IT_DMATX_SUBPRIO
I2C1_IT_OFFSET_SUBPRIO + 0
…

Section 6:
CPAL debug
configuration

CPAL_DEBUG

Uncomment this define to enable an event log coded into the
CPAL drivers. The event log can be re-directed through the
CPAL_LOG(Str) macro.

When this define is enabled, then an additional time is inserted
in several places in the code, which may affect the performance
of the library and even the correctness of the communication.

CPAL_LOG(Str)

This macro is valid only when the CPAL_DEBUG define is
enabled. It allows you to re-direct the logging function to the
user-defined output stream (i.e., using printf() and re-
directing printf to the USART peripheral or IDE tool log
window).

Table 14. CPAL configuration sections (continued)

Section Options Description

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 23/66

All Callbacks (except when otherwise mentioned) accept a single argument: the pointer to
the CPAL peripheral structure (CPAL_InitTypeDef*). Thus, it is possible to identify which
peripheral called the function (using field CPAL_Dev) and to determine the current state and
error (using fields: CPAL_State and wCPAL_DevError). All Callbacks return a void value:
void CPAL_I2C_XXXX_UserCallabck(CPAL_InitTypeDef* pDevInitStruct);

Caution: Most of these functions (except error callbacks) are intended to perform rapid actions.
Implementing functions with a too long execution time may cause communication errors.

Table 15. CPAL configuration sections

Callback Description

Transfer callbacks

CPAL_I2C_ZZ_UserCal
lback

– Where ZZ is the transfer direction: TX or RX.

These functions are called before transmitting data (TX) and after receiving data (RX) on
I2C peripheral.

CPAL_I2C_ZZTC_User
Callback

– Where ZZ is the transfer direction: TX or RX.

These functions are called when the Transfer is completed in DMA or Interrupt
programming model.

CPAL_I2C_DMAZZTC_
UserCallback

– Where ZZ is the transfer direction: TX or RX.

These functions are called when the Transfer Complete interrupt occurs for the related
transfer direction DMA channel.

CPAL_I2C_DMAZZHT_
UserCallback

– Where ZZ is the transfer direction: TX or RX.

These functions are called when a Half Transfer interrupt occurs for the related transfer
direction DMA channel.

CPAL_I2C_DMAZZTE_
UserCallback

– Where ZZ is the transfer direction: TX or RX.
These functions are called when a Transfer Error interrupt occurs for the related transfer
direction DMA channel.

CPAL_I2C_SLAVE_ZZ
_UserCallback

– Where ZZ is the transfer direction: Read or Write.

These functions are called when the slave receives its own address in listen mode.

Error Callbacks

For the error callbacks, there are two possible configurations depending on two exclusive defines (only one of these
defines should be enabled, never both of them):
USE_SINGLE_ERROR_CALLBACK

USE_MULTIPLE_ERROR_CALLBACK

Enable USE_SINGLE_ERROR_CALLBACK to use only one callback for all peripheral errors. The User must check
which error caused a call of the error function by using the related error status fields in the CPAL structure. When
this define is enabled, only CPAL_I2C_ERR_UserCallback can be activated.

Enable USE_MULTIPLE_ERROR_CALLBACK to use a separate error callback for each peripheral error event.
When this define is enabled, CPAL_I2C_ERR_UserCallback is not available.

CPAL_I2C_ERR_User
Callback

This callback is valid only when USE_SINGLE_ERROR_CALLBACK option is enabled.
CPAL accepts two arguments to this function:

– pDevInstance: instance of the related peripheral (i.e., CPAL_I2C1)

– DeviceError: error code (i.e., CPAL_I2C_ERR_BERR)
This function is called when any error occurs on the I2C peripheral. All peripherals of the
same type (i.e., all I2C peripherals) share the same error callback. The user has to check
which peripheral caused the entering in this callback.

CPAL architecture description UM1566

24/66 Doc ID 023577 Rev 1

2.4 Low layer interface (hardware abstraction layer HAL)
The low layer interface is a hardware abstraction layer allowing the CPAL library to be
hardware independent and allowing the user to modify, update or configure hardware
sections easily and efficiently.

It consists of the following files (where xxxx the family identifier, for example stm32f0xx):

● stm32xxxx_i2c_cpal_hal.c

● stm32xxxx_i2c_cpal_hal.h

All hardware components (i.e., I/O pin names, clock enable defines, DMA channels…) are
stored in different tables (one table for each parameter and one cell for each device). This
allows hardware configuration to be easily updated regardless of hardware modifications
and supported device numbers.

Some hardware configurations may be modified using the stm32xxxx_i2c_cpal_hal.h
configuration sections.

CPAL_I2C_WWW_Use
rCallback

– Where WWW is the peripheral error (i.e., BERR, ARLO, OVR …).

These callbacks are valid only when USE_MULTIPLE_ERROR_CALLBACK option is
enabled.

These functions are called when the related error occurs on the I2C peripheral. All
peripherals of the same type (i.e., all I2C peripherals) share the same error callback. The
user has to check which peripheral caused the entry into this callback.

Address mode callbacks

CPAL_I2C_GENCALL_
UserCallback

This callback is valid only when CPAL_OPT_I2C_GENCALL is enabled (see Section 3:
CPAL functional description) and when I2C is configured in Slave mode.
This function is called when a General call event occurs on an I2C peripheral.

CPAL_I2C_DUALF_Us
erCallback

This callback is valid only when CPAL_OPT_I2C_DUALADDR is enabled (see Section 3:
CPAL functional description).

This function is called when a slave I2C peripheral is configured to support dual
addressing mode and receives correctly its second address from the master.

Listen Mode callbacks

CPAL_I2C_SLAVE_XX
XX_UserCallback

– Where XXXX is the requested operation: Read or Write.

These functions are called when Slave is in Listen mode and receives its own address.

Table 15. CPAL configuration sections (continued)

Callback Description

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 25/66

The supported configurations are listed in the following table:

Table 16. HAL configuration sections

Section Options Description

Section 1: Peripheral pin
selection

CPAL_I2CX_YYY_GPIO_PORT – Where X is the peripheral instance (1, 2 or
3...), YYY is the pin function (i.e. SCL, SDA
for I2C peripheral).

For each parameter, set the define value to use
the related configuration, i.e:
#define CPAL_I2C1_SCL_GPIO_PORT
GPIOB
#define CPAL_I2C1_SCL_GPIO_CLK
RCC_APB2Periph_GPIOB
#define CPAL_I2C1_SCL_GPIO_PIN
GPIO_Pin_6
#define CPAL_I2C1_SCL_GPIO_PINSOURCE
GPIO_PinSource6

For each I/O, one single configuration is
allowed. A table in the stm32xxxx_i2c_cpal.h
file shows the possible configurations for each
I/O and each peripheral.

CPAL_I2CX_YYY_GPIO_CLK

CPAL_I2CX_YYY_GPIO_PIN

CPAL_I2CX_YYY_GPIO_PINS
OURCE

Section 2: DMA Channels
selection

CPAL_I2CX_DMA_ZZ_Channel

– Where X is the peripheral instance (1, 2 or
3...) and ZZ is the transfer direction: TX or
RX.

Set the define values to configure the DMA
channels for each peripheral and direction.
Only one define should be used for each
peripheral channel direction. A table in the
stm32xxxx_i2c_cpal.h file shows the possible
configurations for each DMA channel.

Preemption- and Sub-priorities are set depending on priority offsets: I2CX_IT_OFFSET_PREPRIO and
I2CX_IT_OFFSET_SUBPRIO defined in the stm32xxxx_i2c_cpal_conf.h file.
Generally, I2C Error interrupts should have the highest priority level, then the DMA Transfer complete interrupts and
finally the I2C Event interrupts.

Section 3: Peripheral and DMA
interrupts priority selection

I2CX_IT_WWW_SUBPRIO

– Where X is the peripheral instance (1, 2 or
3...) and WWW is the peripheral interrupt or
DMA channel interrupt (i.e. EVT, ERR,
DMATX, DMARX…).

Modify the related define value to set the level
of interrupt sub-priority.

I2CX_IT_WWW_PREPRIO

– Where X is the peripheral instance (1, 2 or
3...) and WWW is the peripheral interrupt or
DMA channel interrupt (i.e. EVT, ERR,
DMATX, DMARX…).

Modify the related define value to set the level
of interrupt sub-priority.

CPAL architecture description UM1566

26/66 Doc ID 023577 Rev 1

The HAL layer provides basic functions enabling the control and configuration of all
components required for communication. These functions are detailed in the following table.

Table 17. CPAL low layer interface function description

Function name Argument type
Argument

name
Description

CPAL_I2C_HAL_CLKInit CPAL_DevTypeDef Device
This function configures and
enables all I2C peripheral clocks.

CPAL_I2C_HAL_CLKDeInit CPAL_DevTypeDef Device
This function disables the I2C
peripheral clock.

CPAL_I2C_HAL_GPIOInit CPAL_DevTypeDef Device

This function configures and
enables all the I/O pins used by the
I2C peripheral as well as the GPIO
port clocks.

CPAL_I2C_HAL_GPIODeInit CPAL_DevTypeDef Device

This function de-initializes all the I/O
pins used by the I2C peripheral,
configure them to their default
values. The related GPIO port
clocks are not disabled.

CPAL_I2C_HAL_DMAInit

CPAL_DevTypeDef Device This function initializes the DMA
channels required for the buffer
Tx/Rx transfers related to the I2C
peripheral and specified by
Direction and Option fields. This
function also configures and
enables the required DMA clocks.

CPAL_DirectionTypeDef Direction

uint32_t Options

CPAL_I2C_HAL_DMADeInit

CPAL_DevTypeDef Device This function de-initializes the DMA
channels used by the I2C peripheral
and configures them to their default
values.
The DMA clocks are not disabled by
this function.

CPAL_DirectionTypeDef Direction

CPAL_I2C_HAL_DMATXConfig
CPAL_I2C_HAL_DMARXConfig

CPAL_DevTypeDef Device This function configures the DMA
channels specific for Tx/Rx transfer
by setting the buffer address and
the number of data to be transferred
through the I2C peripheral.

This function checks the following
options:
CPAL_OPT_DMATX_CIRCULAR

CPAL_TransferTypeDef*
TransParam
eter

uint32_t Options

CPAL_I2C_HAL_ITInit

CPAL_DevTypeDef Device This function configures and
enables the NVIC interrupt
channels used by the I2C peripheral
according to the enabled options
(Interrupt/DMA mode)

This function checks the following
options:
CPAL_OPT_I2C_ERRIT_DISABLE
CPAL_OPT_DMATX_HTIT

CPAL_OPT_DMARX_HTIT

uint32_t Options

CPAL_DirectionTypeDef Direction

CPAL_ProgModelTypeDef ProgModel

UM1566 CPAL architecture description

Doc ID 023577 Rev 1 27/66

CPAL_ I2C_HAL_ITDeInit

CPAL_DevTypeDef Device This function disables the NVIC
interrupt channels used by the I2C
peripheral in the current
configuration and according to the
enabled options (interrupt/DMA
mode).

This function checks the following
options:
CPAL_OPT_I2C_ERRIT_DISABLE
CPAL_OPT_DMATX_HTIT

CPAL_OPT_DMARX_HTIT

uint32_t Options

CPAL_DirectionTypeDef Direction

CPAL_ProgModelTypeDef ProgModel

Table 17. CPAL low layer interface function description (continued)

Function name Argument type
Argument

name
Description

CPAL functional description UM1566

28/66 Doc ID 023577 Rev 1

3 CPAL functional description

3.1 Configuration
The whole CPAL configuration mechanism is based on a single structure
(CPAL_InitTypeDef) holding all needed configuration information for each peripheral
(one structure for each peripheral) as well as the current state of the communication and of
the peripheral.

A default structure is declared by the CPAL for each peripheral. And these default structures
should be used by the customer application to configure and to monitor the peripheral.

Example: the following structures are declared in stm32xxxx_i2c_cpal.h file for the I2C
peripherals:
 extern CPAL_InitTypeDef I2C1_DevStructure;

 extern CPAL_InitTypeDef I2C2_DevStructure;

 …

The functions related to the configuration are:

● CPAL_I2C_Init()

● CPAL_I2C_DeInit()

● CPAL_I2C_StructInit()

Note: It is possible to configure and use more than one peripheral simultaneously since each
peripheral has its own state control.

3.1.1 CPAL_I2C_Init() functional description

CPAL_I2C_Init() function should be called at the startup of the application before
performing any communication operations. It should be called after filling the related I2Cx
peripheral structure fields (I2Cx_DevStructure) with the required parameters.

The CPAL_I2C_Init() function performs the following actions:

● Disable the I2Cx peripheral and reset its APB clock.

● Disable then enable and configure the GPIO ports and pins used for the I2Cx
peripheral.

● Enable and initialize the I2Cx peripheral according to parameters in initialization
structure pointed by the pCPAL_I2C_Struct field and the additional configuration set
into the field wCPAL_Options (General Call mode, Dual Address mode…).

● Enable the DMA and/or the interrupts and their related clocks and channels according
to the values in the fields CPAL_Direction, CPAL_ProgModel and
wCPAL_Options.

Initialize the Timeout mechanism as described in Section 3.3.1.

This function can be called as many times as required (i.e. when some configuration
parameters are modified), but in all cases it must be called at least once before starting any
communication operation.

UM1566 CPAL functional description

Doc ID 023577 Rev 1 29/66

Figure 4. CPAL_I2C_Init() function flowchart

3.1.2 CPAL_I2C_DeInit() functional description

When the communication transfer is over, or when the application has to abort the
peripheral operations, the CPAL_I2C_DeInit() function can be called to free all the
resources used by the peripheral in the current configuration and return to default values.

no

Return
CPAL_FAIL

Configure and enable all IO
Ports and pins used by I2Cx

device

Disable the I2Cx device
and all ressources clocks

CPAL_I2C_Init ()

State is
Disabled/Ready/Error ?

Configure I2Cx device

Initialize Timeout
mechanism

Return
CPAL_PASS

DMA
Programming

Model?

Configure and Enable
DMA channels used by

I2Cx device

Configure and Enable
Interrupt channels used by

I2Cx device

no

yes

CPAL functional description UM1566

30/66 Doc ID 023577 Rev 1

The CPAL_I2C_DeInit() function performs the following actions:

● Check the state of the CPAL peripheral:

– If the state is: CPAL_STATE_READY or CPAL_STATE_ERROR or
CPAL_STATE_DISABLED the operation is performed and then the function exits
and returns CPAL_PASS value.

– If the state is different from the states above, then the function exits and returns
CPAL_FAIL value.

● Disable the GPIO ports and pins used for the I2Cx peripheral (reset to default state).

● Disable the I2Cx peripheral and its APB clock.

● Disable the DMA and/or the interrupts and their related clocks and channels depending
on the current values of fields CPAL_Direction, CPAL_ProgModel and
wCPAL_Options.

Figure 5. CPAL_I2C_DeInit() function flowchart

no

Return
CPAL_FAIL

Configure all IO pins used by
I2Cx device to their default

state

Disable the I2Cx device
and all ressources clocks

CPAL_I2C_DeInit ()

State is
Disabled/Ready/Error ?

DeInitialize Timeout
mechanism

Return
CPAL_PASS

DMA
Programming

Model?

Deinitialize DMA
channels used by I2Cx

device

Deinitialize Interrupt
channels used by I2Cx

device

no

yes

UM1566 CPAL functional description

Doc ID 023577 Rev 1 31/66

3.1.3 CPAL_I2C_StructInit() functional description

The default values could be used for the peripheral configuration by setting the
I2Cx_DevStructure structure fields to their default values using the function
CPAL_I2C_StructInit().

This function sets the default values as detailed in the following table.

3.2 Communication
Once the configuration step is performed successfully, the application is able to perform
communication operations using the functions:

● CPAL_I2C_Read()

● CPAL_I2C_Write()

● CPAL_I2C_Listen()

● CPAL_I2C_IsDeviceReady()

The CPAL_I2C_Read() and CPAL_I2C_Write() functions require that the peripheral
transfer structures should be already configured as described in Table 8:
CPAL_TransferTypeDef structure fields.

Transfer structures which are used with CPAL_I2C_Listen() function may be configured
before calling this function or after calling it in CPAL_I2C_SLAVE_WRITE_UserCallback
or CPAL_I2C_SLAVE_READ_UserCallback.

Table 18. CPAL_I2C_Struct_Init() default values

Field Default value

CPAL_Dev CPAL_I2C1

CPAL_Direction CPAL_DIRECTION_TXRX

CPAL_Mode CPAL_MODE_MASTER

CPAL_ProgModel CPAL_PROGMODEL_DMA

CPAL_State CPAL_STATE_DISABLED

wCPAL_DevError CPAL_I2C_ERR_NONE

wCPAL_Options 0x00000000 (all options disabled)

wCPAL_Timeout CPAL _TIMEOUT_DEFAULT

pCPAL_TransferTx pNull

pCPAL_TransferRx pNull

pCPAL_I2C_Struct

I2C_Timing 0

I2C_Mode I2C_Mode_I2C

I2C_AnalogFilter I2C_AnalogFilter_Enable

I2C_DigitalFilter 0

I2C_OwnAddress1 0x00

I2C_Ack I2C_Ack_Enable

I2C_AcknowledgedAddress I2C_AcknowledgedAddress_7bit

CPAL functional description UM1566

32/66 Doc ID 023577 Rev 1

It is advised that these fields point to local or global variables initialized by the application, in
order to avoid risks due to non-initialized pointers and memory allocation errors.

Once the CPAL_I2C_Read(), CPAL_I2C_Write() and CPAL_I2C_Listen() function
is called, the user application may:

● Wait till the end of transfer by monitoring:

– the wCPAL_State field value

– or the number of data in the wNumData field of the pCPAL_TransferRx or
pCPAL_TransferTx structure

– or the DMA transfer complete callbacks

– or the interrupt transfer callbacks.

● Perform other tasks while the transfer is ongoing (transfer is handled by interrupts or
DMA channels) and check periodically the state of the transfer (as explained above).

● Move to other tasks and control the CPAL transfer only through DMA Transfer complete
callbacks (described in Section 2.3.2). This method is preferred for continuous
communication with DMA circular mode option enabled.

The CPAL_I2C_Read(), CPAL_I2C_Write() and CPAL_I2C_Listen() functions just
prepare and configure the communication.

The effective transfer operation (transmission, reception, event management, error
management …) is handled by interrupts and DMA functions as described in Section 3.2.5.

3.2.1 CPAL_I2C_Read() functional description

The CPAL_I2C_Read() function use the information configured in the peripheral structure
and the information pointed by pCPAL_TransferRx to perform the read of the received
buffer through the selected I2Cx peripheral.

UM1566 CPAL functional description

Doc ID 023577 Rev 1 33/66

Figure 6. CPAL_I2C_Read() function flowchart

Master + Mem
Addr Mode ?

CPAL_I2C_Read ()

State is
Ready ?

no

no

yes

Send Target Memory
Addressno

Prog
 Model ?

Enable Interrupt Enable RX DMA
Request

Interrupt DMA

yes

Return
CPAL_FAIL

Return
CPAL_PASS

Set State to Ready_Rx

DMA Prog
 Model ?

Configure RX DMA
ChannelNo

Yes

yes

Set State to Busy_Rx

Master
Mode ?

Configure Slave
address and

Generate Start

yes

CPAL functional description UM1566

34/66 Doc ID 023577 Rev 1

3.2.2 CPAL_I2C_Write() functional description

The CPAL_I2C_Write() function uses the information configured in the peripheral
structure and the information pointed by pCPAL_TransferTx to perform the write of the
selected buffer through the selected I2Cx peripheral.

Figure 7. CPAL_I2C_Write() function flowchart

Master + Mem
Addr Mode ?

CPAL_I2C_Write ()

State is
Ready ?

no

no

yes

Send Target Memory
Addressno

Prog
 Model ?

Enable Interrupt Enable TX DMA
Request

Interrupt DMA

yes

Return
CPAL_FAIL

Return
CPAL_PASS

Set State to Ready_Tx

DMA Prog
 Model ?

Configure TX DMA
ChannelNo

Yes

yes

Set State to Busy_Tx

Master
Mode ?

Configure Slave
address and

Generate Start

yes

UM1566 CPAL functional description

Doc ID 023577 Rev 1 35/66

3.2.3 CPAL_I2C_Listen () functional description:

The CPAL_I2C_Listen () function is only used with slave device when Listen mode is
activated. If this function is called in master mode the device is forced to slave mode.

CPAL_I2C_Listen() function replace CPAL_I2C_Read() and CPAL_I2C_Write()
functions for Slave mode. Code source overload of CPAL Library is reduced when Listen
mode is used (when Master mode is disabled code source will decrease significantly).

When CPAL_I2C_Listen() function is called, slave enters in idle state and waits until it
receive its own address.

In ADDR routine of the slave mode, CPAL_I2C_SLAVE_READ_UserCallback or
CPAL_I2C_SLAVE_WRITE_UserCallback is called, depending on type of received
request. In these Callbacks, user must configure transfer parameters and DMA or Interrupts
in accordance with selected programming model.

Figure 8. CPAL_I2C_Listen () function flowchart

3.2.4 CPAL_I2C_IsDeviceReady() functional description

The CPAL_I2C_IsDeviceReady() function can be called by Master device to verify that a
Slave device is connected to the bus or to check if/when the last operation has been
successfully completed (i.e. for memory devices).

Thus, it could be called once or into a loop. It sends the communication headers (depending
on the peripheral mode and the configuration) with the peripheral address and waits for the
slave to respond.

CPAL_I2C_Listen ()

State is
Ready ?

no

Switch to Slave mode

Enable Transfer
Interrupt

noMaster
Mode ?

Set State to Busy

Return
CPAL_FAIL

Return
CPAL_PASS

yes

yes

no

CPAL functional description UM1566

36/66 Doc ID 023577 Rev 1

If the peripheral responds correctly to this address, the function exits and returns
CPAL_PASS.

If an incorrect answer is received or no answer is received during the timeout period, then
the timeout mechanism is triggered and used to exit the function with CPAL_FAIL value.

In case of success, the function closes the communication so that a new communication can
start with the selected peripheral.

This function does not use or affect the transfer parameters of reception or transmission
(structures pointed by pCPAL_TransferTx and pCPAL_TransferTx fields).

3.2.5 CPAL interrupts and DMA management

Once the CPAL_I2C_Read() and CPAL_I2C_Write() functions are called, the
communication is configured and prepared (DMA or interrupt channels enabled,
communication header sent in Master mode …). Then the effective transmission/reception
operations as well as the event and error management is performed by interrupts and DMA
functions.

These operations are different according to the peripheral mode (Master, Slave), the
programming model (Interrupt, DMA) and the option configuration (No memory addressing
mode, General call mode, …).

Regardless of the selected programming model (CPAL_PROGMODEL_DMA or
CPAL_PROGMODEL_INTERRUPT), the event and error interrupts are always enabled and
used to control the communication flow. Transfer interrupt will be enabled only when
CPAL_PROGMODEL_INTERRUPT mode is selected.

The priority of events and error management corresponds to the order in which they are
tested into the interrupt functions:

Table 19. I2C interrupt management order

Interrupt Details Callback

TXIS
Manages the event “Transmit Interrupt Status” which
means a new data shall be written in the I2C data register
for the next transfer.

CPAL_I2C_TX_UserCallback

RXNE
Manages the event “Receive Buffer Not Empty” which
means a data has been received and should be read from
the data register.

CPAL_I2C_RX_UserCallback

CPAL_I2C_RXTC_UserCallback

TCR

Available in Master mode only.

Manages Transfer Complete Reload event which means
the master or slave received or transmitted nbytes and
Reload =1.

NA

TC

Available in Master mode only.
Manages Transfer Complete event which means the
master received or transmitted all data and
communication will be closed (Generate stop) or another
one will start (Repeated start).

CPAL_I2C_TXTC_UserCallback

CPAL_I2C_RXTC_UserCallback

UM1566 CPAL functional description

Doc ID 023577 Rev 1 37/66

For I2C peripherals, the Error interrupt has a dedicated IRQ channel different from the Event
interrupt. This means that errors can be managed asynchronously and independently of the
communication events.

When DMA mode is selected with DMA interrupt options, the following DMA interrupts are
handled: Transfer Complete interrupt, Half Transfer Complete interrupt and Transfer Error
interrupt.

All errors lead to a single operation: call CPAL_I2C_ErrorHandler().

The CPAL_I2C_ErrorHandler() function handles all peripheral errors and timeout errors
(DMA errors are managed by CPAL_I2C_DMATXTE_UserCallback() and
CPAL_I2C_DMARXTE_UserCallback() functions). This function performs the basic error
recovery operations (clears the error flag and source if possible, resets the CPAL peripheral
state …) and then calls the user error callback.

ADDR
Manages the event “Address phase done” which means
that the device in mode slave received start bit followed by
its own address and acknowledged it.

CPAL_I2C_GENCALL_UserCallback

CPAL_I2C_DUALF_UserCallback

CPAL_I2C_SLAVE_READ_UserCallback

CPAL_I2C_SLAVE_WRITE_UserCallbac
k

NACK

Manages the event “Not Acknowledge received flag”
which means the device received a NACK. In master
mode this flag indicates an error (slave don’t respond to
sent address). In slave mode, when master received all
data it send NACK to indicate to slave that all data are
received.

CPAL_I2C_AF_UserCallback

CPAL_I2C_ERR_UserCallback

CPAL_I2C_TXTC_UserCallback

STOP
Manages the event “Stop bit received” which means that
the master has closed the communication.

CPAL_I2C_TXTC_UserCallback

CPAL_I2C_RXTC_UserCallback

Table 19. I2C interrupt management order

Interrupt Details Callback

Table 20. DMA interrupt management order

Order Interrupt Details Callback

1 TC
Manages the DMA event “Transfer Complete” which
means that all data programmed in DMA controller
have been transferred (transmitted/received).

CPAL_I2C_DMATXTC_UserCallback

CPAL_I2C_DMARXTC_UserCallback

2 HT

Manages the DMA event “Half Transfer Complete”
which means that half of the data programmed in
DMA controller has been transferred
(transmitted/received).

CPAL_I2C_DMATXHT_UserCallback

CPAL_I2C_DMARXHT_UserCallback

3 TE
Manages the event “DMA Transfer Error” which
means that an error occurred during the DMA
transfer.

CPAL_I2C_DMATXTE_UserCallback

CPAL_I2C_DMARXTE_UserCallback

CPAL functional description UM1566

38/66 Doc ID 023577 Rev 1

3.3 Event and error management (user callbacks)
As mentioned in previous sections, the CPAL allows the user application to control the
communication and to perform specific actions triggered by specific communication/errors
events through the callback functions.

Into all CPAL communication layer drivers, in strategic places some functions are called.
The prototypes of these functions are declared into the CPAL drivers but they are not
implemented. The user application may implement and use them when needed (refer to
Section 3: User callback configuration for more details about callback configurations). To
know at which level a callback function is called, refer to Section 3.2.5.

All User Callbacks are optional: if a callback is not implemented (its define should be
uncommented in the stm32xxxx_i2c_cpal_conf.h file) then it will be defined as a void
function and will not impact the code or the functionality of the driver.

All Callbacks accept a single argument: the pointer to the CPAL Peripheral structure
(CPAL_InitTypeDef*). Thus, it is possible to identify which peripheral called the function
(using field CPAL_Dev) and to determine the current state and error (using fields:
CPAL_State and wCPAL_DevError). All Callbacks return a void value:

void CPAL_I2C_XXXX_UserCallback(CPAL_InitTypeDef* pDevInitStruct);

Caution: Callbacks (except error callbacks) are used to perform short operations. If a callback
function takes a too long execution time, it may lead to communication errors due to the
inserted delay. This is not applicable for Error callbacks since in this case communication is
already stopped.

The list of all available callbacks and their description is provided in the following table.

Table 21. CPAL I2C user callback list

Callback name Description

Communication User Callbacks
These functions are called when correct communication events occur. They are generally used to prepare data
before transmitting or processing them after reception. Thus, they should be as short as possible in order to avoid
affecting the communication process.

CPAL_I2C_TX_UserCallback

This function is called when the TXE interrupt handler is entered and
before writing data to the peripheral DR register.

This callback shall be used to prepare the next data to be sent.

CPAL_I2C_RX_UserCallback

This function is called when the RXNE interrupt handler is entered and
after reading the received data from the peripheral DR register.

This callback shall be used to manage the last received data.

CPAL_I2C_TXTC_UserCallback
This function is called when data transmission is completed and
communication is closed in the Interrupt and DMA Programming model.

CPAL_I2C_RXTC_UserCallback
This function is called when data reception is completed and
communication is closed in Interrupt and DMA Programming Model.

CPAL_I2C_DMATXTC_UserCallbac
k DMA TX callbacks are available if the DMA programming model is selected

for at least one peripheral. These functions are called when a DMA
interrupt is entered for the configured DMA channel and the related event
has occurred for the transmitting direction DMA channel: TC (Transfer
Complete), HT (Half Transfer Complete) or TE (DMA Transfer Error).

CPAL_I2C_DMATXHT_UserCallbac
k

CPAL_I2C_DMATXTE_UserCallbac
k

UM1566 CPAL functional description

Doc ID 023577 Rev 1 39/66

CPAL_I2C_DMARXTC_UserCallbac
k DMA RX callbacks are available if the DMA programming model is selected

for at least one peripheral. These functions are called when a DMA
interrupt is entered for the configured DMA channel and the related event
has occurred for the receiving direction DMA channel: TC (Transfer
Complete), HT (Half Transfer Complete) or TE (DMA Transfer Error).

CPAL_I2C_DMARXHT_UserCallbac
k

CPAL_I2C_DMARXTE_UserCallbac
k

CPAL_I2C_GENCALL_UserCallbac
k

General Call event callback is available only when the option
CPAL_OPT_I2C_GENCALL is enabled for the peripheral. This function is
called when a General Call address is correctly received for a slave I2C
peripheral.

CPAL_I2C_DUALF_UserCallback

Dual Address Flag callback is available only when the option
CPAL_OPT_I2C_DUALADDR is enabled for the peripheral. This function is
called when the peripheral (in Slave mode) receives correctly a header with
its second address.

CPAL_I2C_SLAVE_WRITE_UserCal
lback

This function is called in slave listen mode when a master device requests
a Write operation.
This callback must be implemented to configure pCPAL_TransferTX with
transfer parameters. DMA and interrupts must be also configured in this
callback depending on the selected programming model. User should call
CPAL_I2C_HAL_DMATXConfig(),
__CPAL_I2C_HAL_ENABLE_DMATX() and
__CPAL_I2C_HAL_ENABLE_TXDMAREQ() in DMA mode. In interrupt
mode only __CPAL_I2C_HAL_ENABLE_SLAVE_TXIT() should be called.

In these cases these functions should be called after configuring Transfer
parameters.

CPAL_I2C_SLAVE_READ_UserCall
back

This function is called in slave listen mode when a master device requests
a Read operation.

This callback must be implemented to configure pCPAL_TransferRX with
transfer parameters. DMA and interrupts must also be configured in this
callback depending on the selected programming model. User should call
CPAL_I2C_HAL_DMARXConfig(),
__CPAL_I2C_HAL_ENABLE_DMARX() and
__CPAL_I2C_HAL_ENABLE_RXDMAREQ() in DMA mode. In interrupt
mode only __CPAL_I2C_HAL_ENABLE_SLAVE_RXIT() should be called.
In these cases these functions should be called after configuring Transfer
parameters (pDevInitStruct).

Error User Callbacks
These functions are called when an error occurs during communication. The user application should implement
these functions to recover from the error and restore communication. Basic recovery operations are already
performed by the CPAL drivers before calling the error Callbacks (clear error flag and source when possible, reset
the CPAL state fields and timeout mechanism). The user application should then try to restore lost buffers/data or
reset the whole system when recovery is not possible.

CPAL_I2C_BERR_UserCallback Multiple Error callbacks are available only when the define
USE_MULTIPLE_ERROR_CALLBACK is enabled in the file
stm32xxxx_i2c_cpal_conf.h. Each function is called when the
peripheral error interrupt is entered and the error is identified to be one of
the following: BERR (Bus Error), ARLO (Arbitration Loss), OVR (Overrun or
Underrun) and AF (Acknowledge Failure).

CPAL_I2C_ARLO_UserCallback

CPAL_I2C_OVR_UserCallback

CPAL_I2C_AF_UserCallback

Table 21. CPAL I2C user callback list

Callback name Description

CPAL functional description UM1566

40/66 Doc ID 023577 Rev 1

3.3.1 Timeout management

For a communication to start, in most cases, the application must wait until some events
occur. These events may depend on external devices and may not occur in case of a
device- or bus-failure. In this case the only way to detect the error is to limit the time during
which the system can wait for the event to occur. CPAL drivers implement a Timeout
mechanism used to achieve this control and prevent the application from being blocked
because of any communication failure.

The timeout mechanism is based on three elements:

● Timeout counter: A peripheral/function should be used to count and generate periodic
and equal ticks (i.e. SysTick or Timer). This peripheral/function may generate an
interrupt (or be scheduled for a specified period of time) and call the CPAL peripheral
timeout manager function: CPAL_I2C_TIMEOUT_Manager() at each tick. The
initialization of the counter mechanism is performed by the callback
CPAL_TIMEOUT_INIT() which should be implemented by the user application. It
triggers all initialization procedures required for the counter peripheral/function (i.e.
configure and enable the SysTick timer and its interrupt). This function is called in
CPAL_I2C_Init() function. One other callback is available to free the counter
resource: CPAL_TIMEOUT_DEINIT() and is called in the CPAL_I2C_Init()
function.

● The Timeout Manager: This function is implemented in the CPAL driver. The Timeout
Manager checks all the I2C peripheral structures and verify the value of
wCPAL_Timeout. If it is different from CPAL_I2C_TIMEOUT_DEFAULT and other than
0, it decrements the wCPAL_Timeout value by 1. If it reaches 0 then the specified

CPAL_I2C_ERR_UserCallback

Single Error callback is available only when the define
USE_SINGLE_ERROR_CALLBACK is enabled in the
stm32xxxx_i2c_cpal_conf.h file. This function is called when the
peripheral error interrupt is entered and before identifying the error source
(BERR, ARLO, OVR or AF). The user application may check the error using
the parameter passed to the callback (pointer to the peripheral structure).

Timeout User Callbacks
Timeout functions are called by the CPAL drivers when detection of failures within a defined time-frame is required.
When an operation takes more time than expected, the timeout user callback function is called. Basic recovery
operations are already performed by the CPAL drivers before calling this function (clear error sources when
possible, stop communication, reset the CPAL state fields …). The user application should then try to restore lost
buffers/data or reset the whole system when recovery is not possible.

CPAL_TIMEOUT_INIT

This callback is used to configure and enable the timeout counter
peripheral/function used to generate periodic ticks/interrupts (i.e. enable
and configure SysTick timer and its related interrupt). This function is called
into CPAL_I2C_Init() function.

CPAL_TIMEOUT_DEINIT
This callback is used to free the counter resource when the peripheral is
de-initialized (i.e. disable SysTick timer and its interrupt). This function is
called into CPAL_I2C_DeInit() function.

CPAL_TIMEOUT_UserCallback
This function is called when a timeout condition occurs for a peripheral. It is
not called when timeout occurs simultaneously with a peripheral error
(BERR, OVR…) because in this case only the error callback is called.

Table 21. CPAL I2C user callback list

Callback name Description

UM1566 CPAL functional description

Doc ID 023577 Rev 1 41/66

delay has been elapsed and the CPAL_TIMEOUT_UserCallback() function is
called. This function is already implemented in the CPAL library and could be called
directly by the user application or mapped to an interrupt or a user function through the
define in the stm32xxxx_i2c_cpal_conf.h file (i.e. #define
CPAL_I2C_TIMEOUT_Manager SysTick_Handler).

● The timeout user callback (CPAL_TIMEOUT_UserCallback()): this function is called
when the timeout condition occurs for any peripheral. The user application may clear
reset communication or peripheral or microcontroller depending on the situation.

Figure 9. CPAL I2C timeout manager flowchart

no

Set CPAL_State to
CPAL_STATE_ERROR

Set wCPAL_Timeout to
CPAL_I2C_TIMEOUT_DEFAULT

CPAL_I2C_TIMEOUT_Manager()

wCPAL_Timeout == 0 ?

Set wCPAL_DevError to
CPAL_I2C_ERR_TIMEOUT

End

wCPAL_DevError
== CPAL_I2C_ERR_NONE

?

yes

All devices
checked?

Call
CPAL_TIMEOUT_UserCallback()

wCPAL_Timeout !=
CPAL_I2C_TIMEOUT_DE

FAULT?

Decrement
wCPAL_Timeout

no

no

How to use and customize the CPAL library (step by step) UM1566

42/66 Doc ID 023577 Rev 1

4 How to use and customize the CPAL library (step by
step)

The CPAL library offers several configuration and customization levels. Some configurations
are static (defines in stm32xxxx_i2c_cpal_conf.h file) and others are dynamic
(peripheral configuration structure field assignment).

Most configuration and customization steps are optional (default configuration or a subset of
default configuration may be used instead of setting all parameter values).

The following sections explain all the steps needed to configure, customize and implement
the CPAL library into a user application.

4.1 Basic configuration
The first step (optional) is to set the configuration of the peripheral and the CPAL driver.

This step can be done through the modification of the stm32xxxx_i2c_cpal_conf.h
(refer to Section 2.2.1 for detailed description) file which contains all the configurable
parameters of the peripheral and CPAL library.

Important notes:

● All I2C interrupt Handlers and all the related DMA interrupt Handlers are exclusively
declared and managed by the CPAL library. The user application does not need and
should not declare these interrupt handlers. If these handlers are needed for other
purposes (i.e. DMA interrupt shared between several peripheral, etc.) the user
application may use the related callbacks.

● Interrupt priority groups and preemption orders are also managed by the CPAL driver.
To configure these parameters, modify the stm32xxxx_i2c_cpal_conf.h file.

The stm32xxxx_i2c_cpal_conf.h file is divided into independent sections:

● Section 1: Select peripherals to be used

● Section 2: Configure transfer options

● Section 3: Select and configure user and error callbacks

● Section 4: Configure timeout management.

● Section 5: Global interrupt priority offsets

● Section 6: Configure the log macro

4.1.1 Select peripherals to be used

The first section of stm32xxxx_i2c_cpal_conf.h allows a selection of the peripherals
which will be used and enabled by the CPAL library. When a peripheral is not used, its
related define should be commented in order to save memory space and execution time.

Example:

I2C1 used and I2C2 not used:

#define CPAL_USE_I2C1 /*<! Uncomment to use I2C1 peripheral */
//#define CPAL_USE_I2C2 /*<! Uncomment to use I2C2 peripheral */

UM1566 How to use and customize the CPAL library (step by step)

Doc ID 023577 Rev 1 43/66

4.1.2 Configure transfer options

This section allows a choice of some transfer options. Transfer options are different from the
options set to the wCPAL_Options field of the CPAL peripheral structures. The transfer
options are static defines which are used to remove the section of code handling the related
communication option (and thus to reduce the code size). When a transfer option is
disabled, all the related code in the CPAL driver is disabled, so the option is no more
available for the wCPAL_Options field.

For example, if the CPAL_16BIT_REG_OPTION option is disabled (related define is
commented in stm32xxxx_i2c_cpal_conf.h file):
//#define CPAL_16BIT_REG_OPTION

Then, setting the option CPAL_OPT_16BIT_REG to the wCPAL_Options has no effect.

4.1.3 Select and configure user and error callbacks

This section allows a selection of the callbacks which will be implemented by the user
application. To implement a callback in your application: comment the related callback
define in this section and then implement the body of the callback in your application (the
prototype is already declared in the CPAL driver).

For more details about user callbacks refer to Section 3.3.

4.1.4 Configure timeout management

This section is used to configure the timeout mechanism. Timeout mechanism may be not
used: in this case, CPAL will not handle communication errors and will handle only
peripheral errors which generate error interrupts. In this case, you have to define the timeout
callbacks as void functions (i.e. #define CPAL_TIMEOUT_UserCallback (void)).

To use the Timeout mechanism (which offers a higher level of communication security), a
counter peripheral/function should be used in order to call the
CPAL_I2C_TIMEOUT_Manager() function at each tick (preferably each 1 ms, and through
a high priority interrupt).

Caution: If the counter is implemented using an interrupt, then the associated interrupt channel must
be set to a priority level strictly higher than all the CPAL interrupt channels priorities.

To configure the timeout mechanism correctly, three steps can be followed:

● Set the Initialization and De-Initialization functions: map the CPAL_TIMEOUT_INIT()
and CPAL_TIMEOUT_DEINIT() functions to a counter initialization function (i.e.
SysTick_Config((SystemCoreClock / 1000)) and SysTick->CTRL = 0). These
functions will be called respectively in CPAL_I2C_Init() and CPAL_I2C_DeInit()
functions.

● Map the CPAL_I2C_TIMEOUT_Manager function to a user function (ideally, this
function could be directly mapped to the counter interrupt in order to be called each
time the specified period of time has elapsed: that is, #define
CPAL_I2C_TIMEOUT_Manager SysTick_Handler).

● Then it is possible (optionally) to modify the maximum timeout value associated to each
operation in order to meet the application constraints. To modify the maximum timeout
value for an operation, set the required value in ms to the define related to this
operation (for example: if the application should wait a maximum of 10 ms for the Start
Bit flag: #define CPAL_I2C_TIMEOUT_BUSY 5).

How to use and customize the CPAL library (step by step) UM1566

44/66 Doc ID 023577 Rev 1

Example:

Timeout mechanism implemented through SysTick interrupt configured to be generated
each 1 ms:
#define CPAL_TIMEOUT_INIT() SysTick_Config((SystemCoreClock / 1000))
#define CPAL_TIMEOUT_DEINIT() SysTick->CTRL = 0

#define CPAL_I2C_TIMEOUT_Manager SysTick_Handler

#define CPAL_I2C_TIMEOUT_TC 5
#define CPAL_I2C_TIMEOUT_TCR 5
#define CPAL_I2C_TIMEOUT_TXIS 5
#define CPAL_I2C_TIMEOUT_BUSY 5

4.1.5 Set Events, Errors and DMA interrupt priorities

This section can be used to configure the global priority level offset for each I2Cx peripheral.
This offset sets the peripheral interrupt priority levels in the file stm32xxxx_i2c_cpal.h
file.

If the Timeout mechanism is implemented with an interrupt channel, then make sure that its
interrupt priority is higher than any other CPAL interrupt priority.

4.1.6 Configure the Log Macro

The CPAL library offers an internal debugging mechanism based on messages printed for
most operations performed by CPAL driver. The printed messages may be mapped to an
IDE log window, to an LCD screen, to a USART interface (RS232)…

To enable this feature, the define CPAL_DEBUG should be enabled and the log macros
CPAL_LOG() should be mapped to a user printing function.

Be aware that using this feature may slow down the execution of the CPAL operations and
may even affect in some cases the communication. The CPAL_LOG function should be
optimized to perform fast print operation in order to minimize the impact of this feature on
the communication.

Example:

Implementation of CPAL_LOG with printf function modified to send data through a USART
interface to a “Hyperterminal” application:
#define CPAL_DEBUG

#ifdef CPAL_DEBUG
#define CPAL_LOG(Str) printf(Str)
#else
#define CPAL_LOG(Str) ((void)0)
#endif /* CPAL_DEBUG */

And in the user application, define the printf function:
#ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
 set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */

UM1566 How to use and customize the CPAL library (step by step)

Doc ID 023577 Rev 1 45/66

4.2 Structure initialization
All CPAL functions use peripheral configuration structures (I2Cx_DevStructure) to
control and monitor all communication and configuration operations. Consequently, before
using any function of the CPAL, the related peripheral structure has to be set.

For each peripheral a predefined structure is declared into the CPAL driver. This structure
has to be used into the application for any configuration or monitoring purposes (no
declaration is needed for these structures as they are already exported by CPAL drivers).

Example:
CPAL_InitTypeDef I2C1_DevStructure;
CPAL_InitTypeDef I2C2_DevStructure;
…

There are three ways to set configuration structures:

● Use default configuration: to use the predefined default configuration, call the function
CPAL_I2C_StructInit() which will set the default values detailed in Table 18:
CPAL_I2C_Struct_Init() default values.

● Modify only some fields after calling CPAL_I2C_StructInit().

Example:

CPAL_I2C_StructInit(&I2C1_DevStructure)

I2C1_DevStructure CPAL_Direction = CPAL_DIRECTION_RX

I2C1_DevStructure CPAL_Mode = CPAL_MODE_SLAVE

CPAL_I2C_Init(&I2C1_DevStructure)

● Set all fields of the structure to required values.

After setting the configuration structure values, user application should call
CPAL_I2C_Init() function in order to configure the peripheral and all related peripherals
(I/Os, interrupts, DMA, clocks …) with the required settings.

Caution: The fields pCPAL_TransferTx and pCPAL_TransferRx are set by default to local
structures with null pointers. In order to avoid issues due to memory overflow or addressing
errors, these two fields should be set to point to valid structures declared in the user
application.

When the device has to be stopped, the CPAL_I2C_DeInit() function can be called in
order to free all resources used by this peripheral (I/Os, interrupts, DMA …). In this case, the
configuration structure keeps the last used values.

4.3 Communication
After the configuration phase, peripherals are ready to be used for communication.

Before starting to communicate with an external device, the application may check its
availability on the bus using the function CPAL_I2C_IsDeviceReady(). If this function
returns the CPAL_PASS value, then the external device is ready to communicate. Otherwise,
the external device is not ready or the bus is not free (device error may be set in this case
and the related callback may be used to manage the error).

Then to send or receive data, follow the steps below:

● (Re-)configure the structures pointed by pCPAL_TransferTx / pCPAL_TransferRx
with the valid values of: buffer pointer, number of data and optional addresses. (refer to

How to use and customize the CPAL library (step by step) UM1566

46/66 Doc ID 023577 Rev 1

Table 8: CPAL_TransferTypeDef structure fields for more details). If the structure is
already prepared or when DMA circular mode option is enabled, there is no need to
perform this operation.

● Check the state of the peripheral (wCPAL_State field of the I2Cx_DevStructure). If
this state is different from CPAL_STATE_READY, then either the peripheral is
communicating or an error occurred. In both cases, it is not possible to use the
peripheral in the current state. The application may call CPAL_I2C_DeInit() in this
case to return to its default state and restart communication. It is also possible to check
the state by directly calling CPAL_I2C_Read()/CPAL_I2C_Write() function: if this
function returns a value different from CPAL_PASS, then the current state does not
allow communication or an error occurred, as explained above.

● Call CPAL_I2C_Read()/CPAL_I2C_Write() function to start read/write operation.
After calling this function, the transfer starts through the related peripheral using the
interrupts or DMA (depending on the programming model set). In addition, the
application may perform other parallel tasks while the CPAL driver is handling transfer
through DMA or interrupts.

● Monitor the end of transfer: this can be performed using two basic methods:

– Directly monitor the state of the peripheral through the wCPAL_State field. The
communication is completed when the state returns to CPAL_STATE_READY.

– Use the CPAL_I2C_TXTC_UserCallback() and/or
CPAL_I2C_RXTC_UserCallback () callback functions which are called when
transfer is completed in both DMA and interrupt modes

● Two other advanced possibilities exist (provide more control on data handling):

– If DMA mode is selected, the Transfer complete interrupt callbacks
CPAL_I2C_DMATXTC_UserCallback() and
CPAL_I2C_DMARXTC_UserCallback() may be used. They are called when the
DMA has completed the transfer operation (but transfer is still not completed on
the I2C bus).

– If the Interrupt mode is selected, the CPAL_I2C_TX_UserCallback() and
CPAL_I2C_RX_UserCallback() callbacks may be used to monitor the number
of remaining data.

● At the end of the transfer, a new transfer may be started, or the peripheral may be de-
initialized (and free all the used resources) using the function CPAL_I2C_DeInit().

4.4 Error management
CPAL drivers aim at managing all possible types of errors in order to offer the possibility for
the application to handle them and for communication recovery when possible.

There are three types of error management:

● Peripheral errors: errors managed by the peripheral (an interrupt is generated when the
error occurs). These errors are monitored by the CPAL driver and the application may
use Error callbacks in order to perform specific actions for each error (refer to
Section 3.3 for more details about the error callbacks).

● Communication errors: they cannot be detected by the peripheral (no interrupt/flag
generated when the error occurs). Example: external device disconnected in the middle
of a communication session, external device blocked by the last operation… These
errors are detected by the CPAL driver through the timeout mechanism (refer to
Section 3.3.1 for more details). When a timeout is detected, the

UM1566 How to use and customize the CPAL library (step by step)

Doc ID 023577 Rev 1 47/66

CPAL_TIMEOUT_UserCallback() function is called and then application may
perform through this function the necessary operations used to recover from an error
and restart communication correctly.

4.5 Advanced configuration
In addition to the basic configuration, some other parameters may be modified to customize
the CPAL library. These parameters are related to each device family so they are located in
the stm32xxxx_i2c_cpal_hal.h file (which is specific for each device family).

Note that a modification in this file applies to all programs using CPAL drivers.

stm32xxxx_i2c_cpal_hal.h file configuration is divided into independent sections:

● Select Peripheral I/O pins.

● Select TX and RX DMA Channels.

● Set Events, Errors and DMA Interrupts Preemption and Sub-Priorities.

4.5.1 Select peripheral I/O pins

This section allows a selection of the I/O pins which will be used for each peripheral. For
each pin, set the define value to use the related configuration. Only one configuration may
be used for each I/O pin.

Example:

PB6 and PB7 used for I2C SCL and SDA pins:
#define CPAL_I2C1_SCL_GPIO_PORT GPIOB
#define CPAL_I2C1_SCL_GPIO_CLK RCC_APB2Periph_GPIOB
#define CPAL_I2C1_SCL_GPIO_PIN GPIO_Pin_6
#define CPAL_I2C1_SCL_GPIO_PINSOURCE GPIO_PinSource6

#define CPAL_I2C1_SDA_GPIO_PORT GPIOB
#define CPAL_I2C1_SDA_GPIO_CLK RCC_APB2Periph_GPIOB
#define CPAL_I2C1_SDA_GPIO_PIN GPIO_Pin_7
#define CPAL_I2C1_SDA_GPIO_PINSOURCE GPIO_PinSource7

4.5.2 Select TX and RX DMA channels

This section is used to select which DMA channels will be used for each peripheral direction.
Only one define should be used for each peripheral direction.

Example:

DMA1 Channel6 and Channel7 used for I2C1 peripheral:

/* I2C1 peripheral */

#define CPAL_I2C1_DMA_TX_Channel DMA1_Channel6

#define CPAL_I2C1_DMA_RX_Channel DMA1_Channel7

4.5.3 Set event, error and DMA interrupt priorities

This section is used to set individual interrupt channel priorities for all used interrupts.
Interrupt priorities are configured relatively to an offset defined in
stm32xxxx_i2c_cpal_conf.h file (I2CX_IT_OFFSET_SUBPRIO and
I2CX_IT_OFFSET_PREPRIO).

How to use and customize the CPAL library (step by step) UM1566

48/66 Doc ID 023577 Rev 1

Generally the following interrupt priority order should be applied:

For I2C peripherals: error interrupts should have the highest priority level, then DMA
interrupts (allowing the application to close communication) and finally the I2C event
interrupts.

If the Timeout mechanism is implemented with an interrupt channel, then make sure that its
interrupt priority is higher than any other CPAL interrupt priority.

UM1566 CPAL implementation example (step by step)

Doc ID 023577 Rev 1 49/66

5 CPAL implementation example (step by step)

This section describes all steps for using and customizing CPAL library to build a project
from scratch. It uses a real example: an application with the requirements described below.

● Use two I2Cs (I2C1 and I2C2) to control an EEPROM memory and a temperature
sensor (each on separate I2C bus).

● EEPROM memory is used for read/write at fixed addresses.

● Temperature sensor has a unique register (temperature value).

● Both interfaces are used simultaneously.

● EEPROM interface uses DMA mode.

● Temperature Sensor interface uses Interrupt mode.

Note: The CPAL package already provides ready-to-use EEPROM and Temperature Sensor
drivers with more advanced features, as well as examples showing how to use them. This
section just provides illustrating implementation example from scratch.

5.1 Starting point
The typical starting point is one of the example provided within the CPAL package
(Project\STM32_CPAL_Template\). This folder contains all needed template files as well as
the project files for different IDEs.

In this folder, three files should be modified:

● stm32xxxx_i2c_cpal_conf.h: this file is updated according to the needs of the
application (in order to reduce code size and meet the required features)

● stm32xxxx_i2c_cpal_usercallback.c: this file is updated to implement the
functions needed by the user application and that will be called by CPAL drivers.

● main.c: this file contains the main program of the application.

5.2 stm32xxxx_i2c_cpal_conf.h
In order to optimize the code size of the CPAL library, this file is used to disable the unused
features.

Section 1

The application needs two I2Cs. Consequently, CPAL_USE_I2C1 and CPAL_USE_I2C2
defines are kept enabled.

Section 2

Slave mode is not needed. Consequently, CPAL_I2C_SLAVE_MODE can be commented.

Both DMA and Interrupt modes are needed. But the application does not need to read less
than one byte from the EEPROM memory. So CPAL_I2C_DMA_PROGMODEL and
CPAL_I2C_IT_PROGMODEL must be kept enabled.

Both I2Cs use simple 7-bit addressing. Consequently, CPAL_I2C_10BIT_ADDR_MODE can
be commented. In the same way, if EEPROM locations and the Temperature Sensor register

CPAL implementation example (step by step) UM1566

50/66 Doc ID 023577 Rev 1

are addressed through 8 bits only (memory size < 0xFF)n there is no need for
CPAL_16BIT_REG_OPTION. It can then be commented.

Section 3

If no specific error management is required, the application may just reset the system
whatever the error type. Consequently, USE_MULTIPLE_ERROR_CALLBACK can be
commented. Then CPAL_I2C_ERR_UserCallback define should be uncommented and
CPAL_I2C_ERR_UserCallback define should be commented.

For EEPROM, DMA mode is used for both directions (read and write) and for Temperature
Sensor, Interrupt mode is used only in reception direction. So, it is easier to use the
callbacks common to DMA and Interrupt: CPAL_I2C_TXTC_UserCallback and
CPAL_I2C_RXTC_UserCallback defines should then be commented.

Section 4

No need to modify this section for this application. Note that it is strongly recommended to
use CPAL_TIMEOUT_UserCallback function. For this application, it could just reset the
system.

In other cases, if the application is implemented with RTOS structure or if the SysTick timer
is already used for other purposes, then this section can be modified as follows:

Define new macro for the timeout initialization (_CPAL_TIMEOUT_INIT) and the timeout
de-initialization (_CPAL_TIMEOUT_DEINIT). Example: use the TIM3 timer to generate
regular ticks interrupts managing timeout mechanism:

#define _CPAL_TIMEOUT_INIT() APP_InitTimer() /* No initialization needed */
#define _CPAL_TIMEOUT_INIT() APP_DeInitTimer() /* No deinitialization needed */
#define CPAL_I2C_TIMEOUT_Manager TIM3_IRQHandler /* Use the IRQ handler of TIM3 */
void APP_InitTimer(void); /* User function declaration */
void APP_DeInitTimer(void); /* User function declaration */

In this case, two functions should be implemented in the user application:
APP_InitTimer() and APP_DeInitTimer(). They can be implemented using standard
peripheral library drivers (refer to the Timer TimeBase example for more details).

Finally, adjust the values of CPAL_TIMEOUT_WWW (where WWW is the I2C event (i.e. SB,
ADDR …) according to the timebase value).

Section 5

No need to modify this section for this application.

In other cases, when multiple interrupts are managed by the application, the interrupt group
and priority configuration may be adjusted in this section.

Section 6

No need to modify this section for this application.

In other cases, where debug tools are not available, the CPAL debug feature may be
enabled using the USART or LCD interface. For the USART and LCD, you need to enable
the define CPAL_DEBUG and then, in the user application, the printf function must be
retargeted to the USART or LCD.

UM1566 CPAL implementation example (step by step)

Doc ID 023577 Rev 1 51/66

Example for USART interface:
#ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
 set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */

/**
 * @brief Retargets the C library printf function to the USART.
 * @param None
 * @retval None
 */
PUTCHAR_PROTOTYPE
{
 /* Place your implementation of fputc here */
 /* e.g. write a character to the USART */
 USART_SendData(EVAL_COM1, (uint8_t) ch);

 /* Loop until the end of transmission */
 while (USART_GetFlagStatus(EVAL_COM1, USART_FLAG_TC) == RESET)
 {}

 return ch;
}

Note: The debug feature uses a large amount of Flash memory space due to the debug message
definitions. Also, if the USART/LCD interface is too slow, it may significantly impact the
behavior of the CPAL driver (in some cases, communication may be corrupted). So make
sure that the debug interface (USART/LCD/..) is fast enough to avoid impacting the behavior
of the CPAL driver.

5.3 stm32xxxx_i2c_cpal_usercallback.c
In this file, all used callbacks should be implemented. In this application, 4 callbacks are
used: CPAL_I2C_ERR_UserCallback, CPAL_I2C_TXTC_UserCallback,
CPAL_I2C_RXTC_UserCallback and CPAL_TIMEOUT_UserCallback.

As detailed above, the error callbacks just have to reset the system in case of errors:
/**
 * @brief User callback that manages the Timeout error.
 * @param pDevInitStruct .
 * @retval None.
 */
uint32_t CPAL_TIMEOUT_UserCallback(CPAL_InitTypeDef* pDevInitStruct)
{
 NVIC_SystemReset(); /* Generate a system reset */
 return CPAL_PASS; /* This statement will not be reached */
}

/**
 * @brief User callback that manages the I2C peripheral errors.
 * @note Make sure that the define USE_SINGLE_ERROR_CALLBACK is uncommented in

* the stm32xxxx_i2c_cpal_conf.h file, otherwise this callback will not be
functional.

 * @param pDevInitStruct.
 * @param DeviceError.

CPAL implementation example (step by step) UM1566

52/66 Doc ID 023577 Rev 1

 * @retval None
 */
uint32_t CPAL_I2C_ERR_UserCallback (CPAL_InitTypeDef* pDevInitStruct)
{
 NVIC_SystemReset(); /* Generate a system reset */
 return CPAL_PASS; /* This statement will not be reached */
}

The Rx and Tx transfer complete callbacks may be used to inform the user application layer
that the transfer is completed in order to start a new transfer:
/**
 * @brief Manages the End of Rx transfer event.
 * @param pDevInitStruct .
 * @retval None.
 */
void CPAL_I2C_RXTC_UserCallback (CPAL_InitTypeDef* pDevInitStruct)
{
 APPTransferComplete = 1; /* assuming that APPTransferComplete is global variable

used by the application */
 APP_ToggleLED(); /* User application function that informs user of the end of

an operation by toggling LEDs */
 return;
}

/**
 * @brief Manages the End of Tx transfer event.
 * @param pDevInitStruct .
 * @retval None.
 */
void CPAL_I2C_TXTC_UserCallback (CPAL_InitTypeDef* pDevInitStruct)
{
 APPTransferComplete = 1; /* assuming that APPTransferComplete is global variable

used by application
APP_ToggleLED(); /* User application function that informs user of the end of

an operation by toggling LEDs */
return;
}

All other non-used callbacks should be kept commented.

5.4 main.c
In this file, the application uses the CPAL driver functions to configure the I2C interface and
then control it to communicate with the EEPROM and Temperature Sensor.

5.4.1 Variables and structures

In order to send and receive data, the application needs local transfer structures:
/* CPAL local transfer structures: 2 structures for EEPROM and 1 Rx structure for
Temperature Sensor */
CPAL_TransferTypeDef sEERxStructure, sEETxStructure, sTSRxStructure;
uint8_t tEERxBuffer[255], tEETxBuffer[255], TSData;

UM1566 CPAL implementation example (step by step)

Doc ID 023577 Rev 1 53/66

5.4.2 Configuration

First, the transfer and configuration structures should be filled:
/* Initialize local Reception structures for EEPROM */
 sEERxStructure.pbBuffer = tEERxBuffer; /* EEPROM Receive buffer */
 sEERxStructure.wAddr1 = EE_ADDRESS; /* EEPROM Address */

/* Initialize local Transmission structures for EEPROM */
 sEETxStructure.pbBuffer = tEETxBuffer; /* EEPROM Tx buffer */
 sEETxStructure.wAddr1 = EE_ADDRESS; /* EEPROM Address */

/* Initialize local Transmission structures for Temperature Sensor */
 sTSRxStructure.pbBuffer = TSData /* Temperature Sensor Receive buffer:

one byte needed */
 sTSRxStructure.wAddr1 = TS_ADDRESS; /* Temperature Sensor Address */

Then, the CPAL I2C structures should be initialized (note that for each I2C peripheral, a
structure is already declared by CPAL drivers and exported as extern to application layer):
/* Configure the peripheral structure */
 CPAL_I2C_StructInit(&I2C1_DevStructure); /* Set all fields to default values */
 I2C1_DevStructure.CPAL_Mode = CPAL_MODE_MASTER;
 I2C1_DevStructure.wCPAL_Options = CPAL_OPT_NO_MEM_ADDR;
 I2C1_DevStructure.CPAL_ProgModel = CPAL_PROGMODEL_DMA;
 I2C1_DevStructure.pCPAL_I2C_Struct->I2C_Timing = 0xC062121F;
 I2C1_DevStructure.pCPAL_TransferRx = & sEERxStructure;
 I2C1_DevStructure.pCPAL_TransferTx = & sEETxStructure;
/* Initialize CPAL peripheral with the selected parameters */
 CPAL_I2C_Init(&I2C1_DevStructure);

/* Configure the peripheral structure */
 CPAL_I2C_StructInit(&I2C2_DevStructure); /* Set all fields to default values */
 I2C2_DevStructure.CPAL_Mode = CPAL_MODE_MASTER;

I2C2_DevStructure.CPAL_ProgModel = CPAL_PROGMODEL_INTERRUPT;
 I2C2_DevStructure.pCPAL_I2C_Struct->I2C_Timing = 0xC062121F; /* 50 KHz */
 I2C2_DevStructure.pCPAL_TransferRx = & sEERxStructure;
 I2C2_DevStructure.pCPAL_TransferTx = pNULL; /* Not needed */
/* Initialize CPAL peripheral with the selected parameters */
 CPAL_I2C_Init(&I2C2_DevStructure);

CPAL implementation example (step by step) UM1566

54/66 Doc ID 023577 Rev 1

5.4.3 Communication

In the example below, each peripheral communication will be managed in separate code
sections. Then each section could be implemented in a single infinite loop, in separate
interrupt handlers, in tasks … This only depends on the application architecture.
/* Write 100 data to EEPROM at address 0x30 */
 sEETxStructure.wNumData = 100; /* Number of data to be written */
 sEETxStructure.wAddr2 = 0x30; /* Address into EEPROM */
 if (CPAL_I2C_Write(&I2C1_DevStructure) != CPAL_PASS)
 {
/* I2C bus or peripheral is not able to start communication: Error management */
 }

/* Wait the end of transfer */
 while(I2C1_DevStructure-> CPAL_State != CPAL_STATE_READY)
 {
 /* Read temperature value */
 sTSRxStructure.wNumData = 1;
 if (CPAL_I2C_Read(&I2C2_DevStructure) != CPAL_PASS)
 {
/* I2C bus or peripheral is not able to start communication: Error management */
 }

/* Wait for the end of transfer */
 while(I2C2_DevStructure-> CPAL_State != CPAL_STATE_READY)
 {
 }

/* Check the temperature value range */
 if (sTSRxStructure.pbBuffer[0] == CRITICAL_VALUE)
 {
/* Stop communication or switch to low power mode */
 }
 }

/* Read back the 100 data from EEPROM at address 0x30 */
 sEERxStructure.wNumData = 100; /* Number of data to be read */
 sEERxStructure.wAddr2 = 0x30; /* Address into EEPROM */
 if (CPAL_I2C_Read(&I2C1_DevStructure) != CPAL_PASS)
 {
/* I2C bus or peripheral is not able to start communication: Error management */
 }

/* Wait the end of transfer */
 while(I2C1_DevStructure-> CPAL_State != CPAL_STATE_READY)
 {
/* Application may perform other tasks while CPAL read operation is ongoing */
 }
/* At this point, data has been received, they can be used by the application
(compare, process…) */

UM1566 CPAL Examples

Doc ID 023577 Rev 1 55/66

6 CPAL Examples

In addition to the CPAL firmware library, the CPAL package provides a set of examples for
I2C peripheral, aiming at providing different levels of implementation complexity.

This release comes with three examples running on STM320518-EVAL (STM32F0xx),
STM32373C-EVAL (STM32F37x) and STM32303C-EVAL (STM32F30x) evaluation boards
and can be easily tailored to any other supported device and development board.

The following table shows the hardware resources used in these four examples.

Table 22. Hardware resources used in CPAL examples

Example Board
Used Resources

LCD Buttons LED

WakeUp from Stop
mode

STM320518_EVAL

X X XSTM32373C_EVAL

STM32303C_EVAL

Two Boards

STM320518_EVAL

X X XSTM32373C_EVAL

STM32303C_EVAL

Two Boards Listen
mode

STM320518_EVAL

X X XSTM32373C_EVAL

STM32303C_EVAL

CPAL Examples UM1566

56/66 Doc ID 023577 Rev 1

6.1 Wakeup from Stop mode example
This example shows how to use the Wakeup from Stop feature implemented in I2C
peripheral using the CPAL drivers.

Figure 10. WakeUp from stop example architecture

One of the STM32 devices is configured as slave and the other one as master. At the
example startup, the slave enters in Stop mode and wait until it detects its own address on
the I2C bus line. User should push button key of the master board to send slave address and
data. When the slave board detects its own address, it wakes up from Stop, shows a
message on LCD display, then returns to Stop mode.

For more details about the hardware requirements and the supported devices and boards,
refer to the readme file located in the example directory.

6.2 Two-board example
This example shows how two microcontrollers may communicate on the same I2C bus using
the CPAL drivers.

This example shows how the I2C bus arbitration between multiple masters can be managed
with the CPAL library and how the errors can be managed and recovered using the CPAL
error callbacks and timeout mechanism.

UM1566 CPAL Examples

Doc ID 023577 Rev 1 57/66

Figure 11. Two-board example architecture

The two STM32 devices are configured as Slaves at the example startup. When the user
pushes Key or Tamper push buttons, the activated STM32 device switches to Master mode
and remains in this mode till the next reset. It periodically sends status messages to the
other Slave. The period of these messages depends on the last pushed button. If a device
receives a message while it is not configured yet in Master mode, it remains in Slave mode
till the next reset.

When a button is pushed, the activated STM32 device sends a message specific to each
button and different from the status message.

The message reception and transmission status as well as the error detection and recovery
status are displayed on the LCD screen.

For more details about the hardware requirements and the supported devices and boards,
refer to the readme file located in the example directory.

6.3 Two-board Listen mode example
This example shows how two microcontrollers can communicate on the same I2C bus using
the CPAL drivers and how a slave device communicates in Listen mode. Also it shows how
the I2C bus arbitration between multiple masters can be managed with the CPAL library and
how errors can be managed and recovered using the CPAL error callbacks and timeout
mechanism.

This example use the same architecture as the Two-board example in Section 6.2 (refer to
Figure 11 for more details).

CPAL Examples UM1566

58/66 Doc ID 023577 Rev 1

The two STM32 devices are configured as slaves in listen mode at the startup of the
example.

When the user pushes the Key button the activated STM32 device switches to master
transmitter mode.

It periodically sends a request to transmit status messages to the other slave. When the
user pushes the Tamper button the activated STM32 device switches to master receiver
mode. It periodically sends a request to receive status messages from the other slave. If a
device receives a message while it is not configured yet in master mode, it remains in slave
mode till the next reset.

When a button is pushed, the activated STM32 device sends or receives a message specific
to each button and different from the status message.

The message reception and transmission status as well as the error detection and recovery
status are displayed on the LCD screen.

For more details about the hardware requirements and the supported devices and boards,
refer to the readme file located in the example directory.

UM1566 Memory footprint of CPAL components

Doc ID 023577 Rev 1 59/66

7 Memory footprint of CPAL components

The table below details the footprint of each CPAL component in terms of Flash size and
RAM size.

These figures have been determined using the IAR EWARM 6.40 tool with High Size
optimization level, and are valid for STM32F37x devices. The footprint may change slightly
for other devices.

All options are controlled by the defines listed in table below. All these defines are located in
the stm32xxxx_i2c_cpal_conf.h file (that should be extracted from
stm32xxxx_i2c_cpal_conf_template.h file).

Notes

1 “Option” means all controlling defines listed below except CPAL_USE_I2Cx (where x can be
1 or 2 for the I2C peripheral instance).

2 When not specified, the options are independent of the number of supported devices
(CPAL_USE_I2Cx)

3 All options are enabled by uncommenting the related define and disabled by commenting
the related define.

4 The main configurations (all options disabled and all options enabled) are greyed.

5 Except for addressing mode options (CPAL_16BIT_REG_OPTION and
CPAL_I2C_10BIT_ADDR_MODE): for all other option groups, it is mandatory to select at
least one of the provided options (i.e. in Mode option group, it is mandatory to enable Master
mode or Slave mode or both. It is not allowed to disable both).

Table 23. Memory footprint of CPAL components

Options Define
Code Size (Bytes)

Flash RAM

CPAL Core (All options disabled)

1 Device
CPAL_USE_I2C1
All other options disabled

1692 96

2 Devices
CPAL_USE_I2C1
CPAL_USE_I2C2

All other options disabled

1748 128

Mode Option(1)

Master CPAL_I2C_MASTER_MODE 1408 4

Slave without
Listen mode

CPAL_I2C_SLAVE_MODE 496 0

Slave with
Listen mode

CPAL_I2C_SLAVE_MODE

CPAL_I2C_LISTEN_MODE
88 0

Programming Model Option (1)
DMA CPAL_I2C_DMA_PROGMODEL 1005 68

Interrupt CPAL_I2C_IT_PROGMODEL 332 0

Memory footprint of CPAL components UM1566

60/66 Doc ID 023577 Rev 1

Addressing Mode Option(1)

Memory
Address

CPAL_16BIT_REG_OPTION 608 0

16 Bit CPAL_16BIT_REG_OPTION 344 0

10 Bit CPAL_I2C_10BIT_ADDR_MODE 76 0

All Options enabled (Full
CPAL set)

1 Device
CPAL_USE_I2C1

All other options enabled
4806 168

2 Devices (with listen
mode)

CPAL_USE_I2C1

CPAL_USE_I2C1
All other options enabled

4779 200

2 Devices
CPAL_USE_I2C1
CPAL_USE_I2C1

All other options enabled

4691 200

Master Mode disabled, All other options enabled(2) CPAL_I2C_MASTER_MODE

disabled
3283 196

Slave Mode disabled, All other options enabled(2) CPAL_I2C_SLAVE_MODE

disabled
4195 200

Slave in Listen Mode disabled, All other options
enabled(2)

CPAL_I2C_LISTEN_MODE

disabled
4691 200

DMA Mode disabled, All other options enabled(2) CPAL_I2C_DMA_PROGMODEL

disabled
3686 132

Interrupt Mode disabled, All other options enabled(2) CPAL_I2C_IT_PROGMODEL

disabled
4359 200

Memory Address mode disabled, All other options
enabled(2) CPAL_I2C_MEM_ADDR disabled 4083 200

16 Bit Addressing mode disabled, All other options
enabled(2)

CPAL_16BIT_REG_OPTION

disabled
4347 200

10 Bit Addressing mode disabled, All other options
enabled(2)

CPAL_I2C_10BIT_ADDR_MODE

disabled
4615 200

1. Only option code size is taken into consideration (considering configuration for 2 devices).

2. All options enabled for 2 devices.

Table 23. Memory footprint of CPAL components (continued)

Options Define
Code Size (Bytes)

Flash RAM

UM1566 Frequently asked questions (FAQ)

Doc ID 023577 Rev 1 61/66

8 Frequently asked questions (FAQ)

This section gathers some of the most frequent questions CPAL users may ask. It gives
some solutions and tips:

Table 24. Frequently asked questions

No. Question Possible answers / solutions

Topic 1: General

1
Why would I use the CPAL driver rather than a
standard peripheral library?

The main advantage of using the CPAL library is the ease
of use: you can use CPAL driver to control the I2C
interface without any knowledge about I2C protocol.
CPAL library also offers a higher level of abstraction
allowing the “transparent” management of:
- Hardware components used by communication
peripherals (I/Os, DMA, interrupts …)
- Transfer buffers and status (managed through
independent structures).
- Peripheral states (i.e. event management for I2C
peripheral …)
- Error detection and recovery when possible (through
peripheral error detection and timeout mechanism).
- Bug fixes and workaround selection.

- Different device families.

2
What is the cost of using CPAL drivers in term of
code size and performance?

As a generic driver, CPAL may involve a significant
firmware overhead. But different customization levels
allow you to reduce code size by removing any unused
feature.

CPAL drivers use the standard peripheral drivers only for
initialization phase. For the communication phase, only
direct register access (using macros) is used, which
improves significantly the driver performance.

3

How many files should I modify to configure the
CPAL drivers?

CPAL library offers multiple levels of customization:

- 0 file: No file needs to be modified: you can use the one
of the provided examples without any modification in
configuration files. In this case, the code size of the
application may be too large. To reduce CPAL code size
you may check the next case.
- 1 file: In most cases, only one file needs to be modified:
stm32xxxx_i2c_cpal_conf.h. You can modify this
file by disabling unused features, or adjusting some
parameters (i.e. interrupt priority groups, timeout
mechanism …).
- 2 files: In addition to the
stm32xxxx_i2c_cpal_conf.h file, you can customize
the CPAL library hardware layer by modifying the file
stm32f30x_i2c_cpal_hal.h. Through this file you
can modify the I/O selection, the DMA channels, the
interrupt priorities…

Frequently asked questions (FAQ) UM1566

62/66 Doc ID 023577 Rev 1

4
Which header files should I include in my
application in order to use the CPAL library?

Only stm32xxxx_i2c_cpal.h file has to be included.

Topic 2: Configuration

5
How many fields are mandatory to fill for the
CPAL initialization structure?

The easiest way is to call the function
CPAL_I2C_StructInit() to initialize the structure with
default values. Then you have to set the following fields:
pCPAL_TransferTx and/or pCPAL_TransferRx
should be filled with pointers to the Tx/Rx transfer
structures. These structures should be updated during
execution with new values of buffers and addresses.

For all other fields, you can keep default values in most
cases (check Section 2.3.2) for more details on default
values.

6

I use more than one I2C peripherals and they
are not configured correctly after I call the
CPAL_I2C_StructInit()
CPAL_I2C_Init() functions.

The CPAL drivers use a unique structure for each
peripheral. These structures are exported as external
variables to the user application code. In this structure,
some fields are pointers to initialization structures. When
you call CPAL_StructInit() functions, all fields are set
to default values, but pointers are set as follows:

– Transfer structure pointers are set to Null value.
– I2C initialization structure pointer

(pCPAL_I2C_Struct) is set to a local structure
containing default values for the I2C. So this structure
will be used by all I2C peripherals at the same time. Any
modification on it will affect all I2C peripherals.

To make sure that each peripheral is correctly configured,
declare a local structure for each one and assign it to the
field pCPAL_I2C_Struct after calling
CPAL_I2C_StructInit() function.

Topic 3: Interrupts

7

My program uses multiple interrupts. When
adding CPAL drivers to the application, some/all
interrupts do not work correctly or do not work at
all.

Priority group configuration may be modified by the CPAL
driver. To make sure that the priority group configuration
corresponds to what you expect, set its value in
stm32xxxx_i2c_cpal_conf.h Section 5: Interrupt
priority selection (CPAL_NVIC_PRIOGROUP) and remove
any other settings of this parameter in your application.

CPAL Priority level is too high compared to other
application interrupts that need to be processed faster. In
this case, modify the offset value of the CPAL interrupt in
stm32xxxx_i2c_cpal_conf.h file Section 5: Interrupt
priority selection (i.e., I2CX_IT_OFFSET_SUBPRIO)

Table 24. Frequently asked questions (continued)

No. Question Possible answers / solutions

UM1566 Frequently asked questions (FAQ)

Doc ID 023577 Rev 1 63/66

8
I cannot find I2C interrupt handler in the
stm32xxxx_it.c file, and if I add it, I have
compiler warnings/errors.

CPAL drivers already declare and implement internally all
needed interrupt handlers for the communication
peripheral (i.e. I2C: I2Cx_EV_IRQHandler and
I2Cx_ER_IRQHandler).
There is no need for additional configuration. You just
have to use the CPAL callbacks provided for this
peripheral in cpal_usercallbacks.c file and
comment the related callback define in
stm32xxxx_i2c_cpal_conf.h file section 3.

9
When I implement CPAL drivers into my
application, I have warnings/errors related to I2C
interrupt

10
I need to use a DMA interrupt handler but if I
implement it, I have compiler warnings/errors.

As for communication peripheral IRQ handlers, CPAL
drivers already declare and implement internally all
needed interrupt handlers for the used DMA channels (i.e.
DMAx_Channely_IRQHandler if DMAx_Channely is used
by CPAL drivers). This is true only if DMA configuration is
enabled in stm32xxxx_i2c_cpal_conf.h file,
CPAL_I2C_DMA_PROGMODEL.

If these handlers are needed only for the communication
peripheral controlled by the CPAL driver, then there is no
need for any additional configuration. If you want to use
this handler, you can implement related DMA callbacks in
stm32xxxx_i2c_cpal_usercallback.c file
(CPAL_I2C_DMATXTC_UserCallback …)
If these handlers are needed for other purposes, then try
to change the configuration of the DMA channels in
cpal_ppp_stm32xxxx.h file configuration section 2 in
order to free the requested channels.

11
When I implement CPAL drivers into my
application, I have warnings/errors related to
DMA interrupt handlers.

12
How /Why can I select the right interrupt priority
level for communication peripherals?

I2C peripherals require specific interrupt scheme: Error
interrupts should have the highest priority (and should be
able to interrupt other processes). Then DMA interrupts (if
DMA mode is enabled) have the second priority level
because they are used for closing communication and this
phase is time-sensitive. Finally I2C event interrupts may
have the lowest priority and may be interruptible.
Regarding other interrupts, the interrupt order and
grouping entirely depend on application requirements and
environment.

Topic 3: Hardware

13
Which STM32F0/F3 series devices are
supported by the CPAL Library?

Refer to the Release Notes of the CPAL package for the
complete list of supported STM32F0/F3 series devices.

Table 24. Frequently asked questions (continued)

No. Question Possible answers / solutions

Naming conventions UM1566

64/66 Doc ID 023577 Rev 1

9 Naming conventions

The communication peripheral access library (CPAL) uses the following device naming
conventions:

● STM32F37x is used to refer to STM32F37x and STM32F38x devices.

● STM32F30x is used to refer to STM32F30x and STM32F31x devices.

● STM32F3 is used to refer to STM32F37x and STM32F30x.

● STM32xxxx is used to refer to STM32F0xx, STM32F37x and STM32F30x devices.

UM1566 Revision history

Doc ID 023577 Rev 1 65/66

10 Revision history

Table 25. Document revision history

Date Revision Changes

25-Oct-2012 1 Initial release.

UM1566

66/66 Doc ID 023577 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Table 1. Applicable products
	1 CPAL overview
	2 CPAL architecture description
	2.1 CPAL application hierarchy
	Figure 1. CPAL library architecture
	Figure 2. CPAL driver hierarchy
	Table 2. CPAL file descriptions

	2.2 Communication layer
	2.2.1 CPAL main structures (stm32xxxx_i2c_cpal.h)
	Table 3. CPAL_InitTypeDef structure
	Table 4. CPAL_Dev field values
	Table 5. CPAL_Direction field values
	Table 6. CPAL_Mode field values
	Table 7. CPAL_ProgModel field values
	Table 8. CPAL_TransferTypeDef structure fields
	Table 9. CPAL_State field values
	Table 10. wCPAL_DevError field values (for I2C peripherals)
	Figure 3. CPAL option fields
	Table 11. wCPAL_Options field values

	2.2.2 CPAL communication functions (stm32xxxx_i2c_cpal.c)
	Table 12. Architecture of CPAL Communication Layer functions
	Table 13. CPAL Communication Layer function list

	2.3 User application interface
	2.3.1 Configuration interface
	Table 14. CPAL configuration sections

	2.3.2 User callback interface
	Table 15. CPAL configuration sections

	2.4 Low layer interface (hardware abstraction layer HAL)
	Table 16. HAL configuration sections
	Table 17. CPAL low layer interface function description

	3 CPAL functional description
	3.1 Configuration
	3.1.1 CPAL_I2C_Init() functional description
	Figure 4. CPAL_I2C_Init() function flowchart

	3.1.2 CPAL_I2C_DeInit() functional description
	Figure 5. CPAL_I2C_DeInit() function flowchart

	3.1.3 CPAL_I2C_StructInit() functional description
	Table 18. CPAL_I2C_Struct_Init() default values

	3.2 Communication
	3.2.1 CPAL_I2C_Read() functional description
	Figure 6. CPAL_I2C_Read() function flowchart

	3.2.2 CPAL_I2C_Write() functional description
	Figure 7. CPAL_I2C_Write() function flowchart

	3.2.3 CPAL_I2C_Listen () functional description:
	Figure 8. CPAL_I2C_Listen () function flowchart

	3.2.4 CPAL_I2C_IsDeviceReady() functional description
	3.2.5 CPAL interrupts and DMA management
	Table 19. I2C interrupt management order
	Table 20. DMA interrupt management order

	3.3 Event and error management (user callbacks)
	Table 21. CPAL I2C user callback list
	3.3.1 Timeout management
	Figure 9. CPAL I2C timeout manager flowchart

	4 How to use and customize the CPAL library (step by step)
	4.1 Basic configuration
	4.1.1 Select peripherals to be used
	4.1.2 Configure transfer options
	4.1.3 Select and configure user and error callbacks
	4.1.4 Configure timeout management
	4.1.5 Set Events, Errors and DMA interrupt priorities
	4.1.6 Configure the Log Macro

	4.2 Structure initialization
	4.3 Communication
	4.4 Error management
	4.5 Advanced configuration
	4.5.1 Select peripheral I/O pins
	4.5.2 Select TX and RX DMA channels
	4.5.3 Set event, error and DMA interrupt priorities

	5 CPAL implementation example (step by step)
	5.1 Starting point
	5.2 stm32xxxx_i2c_cpal_conf.h
	5.3 stm32xxxx_i2c_cpal_usercallback.c
	5.4 main.c
	5.4.1 Variables and structures
	5.4.2 Configuration
	5.4.3 Communication

	6 CPAL Examples
	Table 22. Hardware resources used in CPAL examples
	6.1 Wakeup from Stop mode example
	Figure 10. WakeUp from stop example architecture

	6.2 Two-board example
	Figure 11. Two-board example architecture

	6.3 Two-board Listen mode example

	7 Memory footprint of CPAL components
	Table 23. Memory footprint of CPAL components

	8 Frequently asked questions (FAQ)
	Table 24. Frequently asked questions

	9 Naming conventions
	10 Revision history
	Table 25. Document revision history

