f; UM1640
” life.augmented User manual

Sampling rate conversion SRC441 library
software expansion for STM32Cube

Introduction

The sampling rate conversion SRC441 library user manual describes the software interface
and its requirements. It describes how to integrate the module into a main program, like the
audio STM32Cube expansion software. It also provides a basic understanding of the
underlying algorithm.

The SRC441 library is used to convert the sampling frequency from 44.1 kHz to 48 kHz.
The SRC441 library is part of X-CUBE-AUDIO firmware package.

January 2018 DoclD024704 Rev 6 1/19

www.st.com

http://www.st.com

Contents UM1640

Contents
1 Module overview i i i s 5
1.1 Algorithm functionality 5
1.2 Module configuration 5
1.3 Resource summary 7
2 Module Interfaces it i 8
21 Y e 8
211 srcd441 resetfunction 8
21.2 src441 _setParamfunction 8
213 src441_getParamfunction 9
214 src441_setConfigfunction 9
215 src441 _getConfigfunction L 10
216 src441 processfunction 10
2.2 External definitionsand types 11
2.21 Inputand outputbuffers 11
222 Returned errorvalues i 11
2.3 Static parameters structure L. 12
24 Dynamic parameters structure 12
3 Algorithm high levelview ittt 13
3.1 Processing steps 13
3.2 Dataformats 13
3.3 Performance measurements 14
3.3.1 SINAD measurements 14
3.3.2 Frequency response measurements 14
4 System requirements and hardwaresetup 15
4.1 Recommendations foroptimalsetup, 15
411 Module integrationexample oL 15
4.1.2 Module integration summary 16
5 How to tune and run the application 17
6 Revision history i i ittt i e ieennns 18

2/19 DoclD024704 Rev 6 ‘Yl

UM1640

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

3

RESOUICE SUMMAIY. . . . it e e e e et e e e e e e e 7
SICA4T reSel. . . o 8
SICA41 _setParam 9
SIC441 _getParam 9
SIC441 setConfigo 9
Srcd41 getConfig . ..o 10
SICA4 T PrOCESS . . i ittt ettt e 10
Inputand output buffers e 11
Returned error values. e 11
Static parameters structure. 12
Dynamic parameters structure 12
SINAD ValUESo 14
Frequency response Values it e 14
Document revision history 18

DoclD024704 Rev 6 3/19

List of figures UM1640

List of figures

Figure 1. SRC441 module e e e 13
Figure 2. Basicaudio chain e 15
Figure 3. APl call procedure e 16

4/19 DocID024704 Rev 6

3

UM1640

Module overview

1.1

Note:

1.2

3

Module overview

Algorithm functionality

The SRC441 module provides functions to handle the sampling rate conversion of mono
and stereo signals from 44.1 kHz to 48 kHz.

Conversions with other ratios are handled by another module named SRC236.

Module configuration

The SRC441 module supports mono and stereo interleaved 16-bit or 32-bit I/O data, with an
input frame size of 147 samples (corresponding to 3.33 ms).

If needed, the processing can be looped three times to re-sample exactly 10 ms of data.

Several versions of the module are available depending on the I/0O format, the quality level,
the Cortex® core and the used tool chain:

e SRC441_CM4_lAR.a/ SRC441_CM4_GCC.a/ SRC441_CM4_keil.lib:
Standard configuration for low-MIPS and good quality requirements with 16-bit
input/output buffers. It runs on any STM32 microcontroller featuring an Arm® core with
Cortex®-M4 instruction set.

e SRC441HQ_CM4_lAR.a/ SRC441HQ_CM4_GCC.a/ SRC441HQ_CM4_keil.lib:
Reserved for high quality needs (consumes more MIPS and memory as well) with 16-
bit input/output buffers. It runs on any STM32 microcontroller featuring an Arm®core
with Cortex®-M4 instruction set.

e SRC441_32b_CM4_IAR.a/ SRC441_32b_CM4_GCC.a/ SRC441_32b_CM4_keil.lib:
Standard configuration for low-MIPS and good quality requirements with 32-bit
input/output buffers. It runs on any STM32 microcontroller featuring an Arm® core with
Cortex®-M4 instruction set.

e SRC441HQ_32b_CM4_lAR.a/ SRC441HQ_32b_CM4_GCC.a/
SRC441HQ_32b_CM4_keil.lib:
Reserved for high quality needs (consumes more MIPS and memory as well), with 32-
bit input/output buffers. It runs on any STM32 microcontroller featuring an Arm® core
with Cortex®-M4 instruction set.

e SRC441_CM7_lAR.a/ SRC441_CM7_GCC.a/ SRC441_CM7_keil.lib:
Standard configuration for low-MIPS and good quality requirements with 16 bits
input/output buffers. It runs on any STM32 microcontroller featuring an Arm® core with
Cortex®-M7 instruction set.

e SRC441HQ_CM7_lAR.a/ SRC441HQ_CM7_GCC.a / SRC441HQ_CM7_keil.lib:
Reserved for high quality needs (consumes more MIPS and memory as well) with 16
bits input/output buffers. It runs on any STM32 microcontroller featuring an Arm® core
with Cortex®-M7 instruction set.

e SRC441_32b_CM7_IAR.a/ SRC441_32b_CM7_GCC.a/ SRC441_32b_CM7_keil.lib:
Standard configuration for low-MIPS and good quality requirements with 32 bits
input/output buffers, it runs on any STM32 microcontroller featuring an Arm® core with
Cortex®-M7 instruction set.

e SRC441HQ_32b_CM7_IAR.a/ SRC441HQ_32b_CM7_GCC.a/
SRC441HQ_32b_CM7_keil.lib:
Reserved for high quality needs (consumes more MIPS and memory as well) with 32

DocID024704 Rev 6 5/19

Module overview UM1640

bits input/output buffers. It runs on any STM32 microcontroller featuring an Arm® core
with Cortex®-M7 instruction set.

3

6/19 DoclD024704 Rev 6

UM1640 Module overview

1.3 Resource summary
Table 1 contains the module requirements for the Flash, stack and RAM memories and
frequency (MHz).
Table 1. Resource summary
Flash code Flash Persistent| Scratch Frequency
Version | User Case | Core (text) data Stack RAM RAM™ (MHz)
(.rodata)
3184
M4 Bytes 9.9
Mono
M7 Sasz 5.4
Standard ytes 8 80 232 3228
Bytes Bytes Bytes Bytes
3184
M4 14
Bytes
Stereo 2442
M7 Bytes 7.5
3878
M4 Bytes 15.3
Mono
M7 o4 7.9
High ytes 8 80 360 3676
quality 3878 Bytes Bytes Bytes Bytes
M4 B 20.7
ytes
Stereo
3848
M7 Bytes 10.8
3204
M4 Bytes 9.8
Mono
3678
M7 5.3
Standard Bytes 8 80 232 3228
32-bit 110 3204 Bytes Bytes Bytes Bytes
M4 13.7
Bytes
Stereo 3678
M7 Bytes 7.3
3894
M4 Bytes 15.2
Mono
4096
; M7 7.9
q':'aﬁ'i';y Bytes 8 80 360 3676
32-pit /O M4 3894 Bytes Bytes Bytes Bytes 0.4
Bytes)
Stereo
4096
M7 Bytes 10.7

1. Scratch RAM is the memory that can be shared with other process running on the same priority level. This memory is not
used from one frame to another by SRC441 routines.

Note: The footprints are measured on board, using IAR Embedded Workbench for Arm® v7.40
(IAR Embedded Workbench common components v7.2). The footprints on STM32F7 are
measured with stack and heap sections located in DTCM memory.

‘Yl DoclD024704 Rev 6 7/19

Module Interfaces UM1640

2

Module Interfaces

Two files are needed to integrate the SRC441 module: SRC441 xxx_CMy_zzz.a/.lib library
and the src441_glo.h header file. They contain all definitions and structures to be exported
to the framework.

Note: The audio_fw_glo.h file is a generic header file common to all audio modules; it must be
included in the audio framework.

2.1 API
Six generic functions have a software interface to the main program:
e srcd441_reset
e src441_setParam
e src441_getParam
e src441_setConfig
e src441_getConfig
e src441_process

211 src441_reset function
This procedure initializes the persistent memory of the SRC441 module and initializes static
and dynamic parameters with default values.
int32_t srcd44dl_reset (void *persistent_mem ptr, void *scratch_mem_ ptr) ;

Table 2. src441_reset
110 Name Type Description

Input persistent_mem_ptr void * Pointer to internal persistent memory

Input scratch_mem_ptr void * Pointer to internal scratch memory

Returned value |- int32_t Error value
This routine must be called at least once at initialization time, when the real time processing
has not started.

21.2 src441_setParam function
This procedure writes module static parameters from the main framework to the module’s
internal memory. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters (i.e. the parameters with values which cannot
be changed during the module processing).
int32_t src44l_setParam(srcd44l_static_param_t *input_static_param_ptr, void
*persistent_mem_ptr) ;

8/19 DoclD024704 Rev 6 Kys

UM1640 Module Interfaces
Table 3. src441_setParam
110 Name Type Description
Input input_static_param_ptr | src441_static_param_t* Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value |- int32_t Error value

Note: There is currently no static parameter, so no reason to call this routine in this module
version.
21.3 src441_getParam function
This procedure gets the module static parameters from the module internal memory to the
main framework. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters (i.e. the parameters with values which cannot
be changed during the module processing).
int32_t src44l_getParam(srcd44l_static_param_t *input_static_param ptr, void
*persistent_mem_ptr) ;
Table 4. src441_getParam
110 Name Type Description
Input input_static_param_ptr |src441_static_param_t * Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value |- int32_t Error value

214 src441_setConfig function
This procedure sets the module dynamic parameters from the main framework to the
module internal memory. It can be called at any time during processing (after reset and
setParam routines).
int32_t src44l_setConfig(srcd44l_dynamic_param_t *input_dynamic_param_ptr,
void *persistent_mem_ptr) ;
Table 5. src441_setConfig
110 Name Type Description
Input input_dynamic_param_ptr | src441_dynamic_param_t * | Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value | - int32_t Error value

Note:

3

There is currently no dynamic parameter, so no reason to call this routine in this module

version.

DoclD024704 Rev 6

9/19

Module Interfaces UM1640
215 src441_getConfig function
This procedure gets module dynamic parameters from the internal persistent memory to the
main framework. It can be called at any time during processing (after the reset and
setParam routines).
int32_t src44l_getConfig(srcd44l_dynamic_param_t *input_dynamic_param ptr,
void *static_mem_ptr) ;
Table 6. src441_getConfig
/10 Name Type Description
Input input_dynamic_param_ptr | src441_dynamic_param_t * | Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value | - int32_t Error value

21.6 src441_process function

This procedure is the module’s main processing routine.

It should be called at any time, to process each frame.

int32_t src44l_process (buffer_t *input_buffer, buffer_t *output_buffer,

void *persistent_mem_ptr) ;

Table 7. src441_process
/10 Name Type Description

Input input_buffer buffer_t * Pointer to input buffer structure
Output output_buffer buffer_t* Pointer to output buffer structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value - int32_t Error value

10/19

This process routine cannot run in place; the input_buffer data is modified during
processing, thus it cannot be used as it is after any call to the src441_process() routine.

DocID024704 Rev 6

3

UM1640 Module Interfaces
2.2 External definitions and types
221 Input and output buffers
The SRC441 library uses extended /O buffers, which contain, in addition to the samples,
some useful information on the stream, such as the number of channels, the number of
bytes per sample and the interleaving mode.
An I/O buffer structure type, as described below, must be followed and filled each time,
before calling the processing routine, otherwise an error will be returned:
typedef struct {
int32_t nb_channels;
int32_t nb_bytes_per_Sample;
void *data_ptr;
int32_t buffer_size;
int32_t mode;
} buffer_t;
Table 8. Input and output buffers
Name Type Description
nb_channels int32_t | Number of channels in data: 1 for mono, 2 for stereo
nb_bytes_per_Sample |int32_t | 16-bit = 2, 24-bit = 3, 32-bit = 4
data_ptr void * | Pointer to data buffer (must be allocated by the main framework)
buffer_size int32_t | Number of samples per channel in the data buffer
. In case of stereo stream, left and right channels can be interleaved.
mode int32_t . .
— |0 = not interleaved, 1 = interleaved.
222 Returned error values

Table 9 lists the possible returned error values:

Table 9. Returned error values

Definition Value Description

SRC441_ERROR_NONE

0 OK - no error detected

SRC441_UNSUPPORTED_MODE -1 If input data is not interleaved
SRC441_BAD_FRAME_SIZE -2 If the number of input samples is not 147
SRC441_WRONG_NBBYTES_PER_SAMPLES -3 Input data is neither 16-bit nor 32-bit value
SRC441_UNSUPPORTED_NB_CHANNELS -4 Input data is neither mono nor stereo
SRC441_UNSUPPORTED_INPLACE_PROCESSING -5 If input and output buffers are not different

SRC441_BAD_HW

May happen if the library is not used with the
right hardware

3

DoclD024704 Rev 6 11/19

Module Interfaces UM1640

2.3 Static parameters structure

There is no static parameter to be used.
For compatibility with other structures, the static parameter structure contains a dummy
field.
struct src44l_static_param {
int32_t empty;
}
typedef struct srcd44l_static_param srcd4dl_static_param_t;

Table 10. Static parameters structure

Name Type Description
empty int32_t Dummy field - just required to have a non-empty structure
2.4 Dynamic parameters structure

There is no dynamic parameter to be used.
For compatibility with other structures, the dynamic parameter structure contains a dummy
field.
struct src44l_dynamic_param {
int32_t empty;
}

typedef struct src44l_dynamic_param src44l_dynamic_param_t;

Table 11. Dynamic parameters structure

Name Type Description
empty int32_t Dummy field - just required to have a non-empty structure
12/19 DoclD024704 Rev 6 Kys

UM1640

Algorithm high level view

3

3.1

3.2

3

Algorithm high level view

Processing steps

The SRC441 module is a re-sampler based on a two-stage polyphase filter. This
implementation has been optimized for Cortex® M4 and M7 cores using SIMD instructions
set.

Figure 1 shows an example of re-sampling from 44.1 kHz to 48 kHz with a scheduling of
3.33 ms.

Figure 1. SRC441 module

< W
| Input Size — ex: 147 samples
Input Buffer [
|
1
i
Intermediate Buffer1 [~"""""""TTTTT
___________) d
: Previous data Group delay
l
|
- Y
o M
e s
< L N P
1 N N ~
| N N AN
: N AN ~N
| AN N ~N
Intermediate Buffer 2 | 1
| I
) e [< >
| Frevious data ; Group delay 2
|
|
A I &
L | M
| i A :
H ! H
& | H
NV T v
e | / e
I I I)
| i I
| | | //
|
| | I /
| ! /
| | /
Output Buffer ! 1
»
Output Size: 160 samples
MS32308V1

Data formats

The module supports fixed point data, in Q15 or Q31 format, with a mono or stereo
interleaved pattern.

The input buffer size is fixed at 147 samples and will generate 160 output samples per
frame.

DoclD024704 Rev 6 13/19

Algorithm high level view UM1640

3.3 Performance measurements
3.31 SINAD measurements
Quality measurement is done on a 16-bit input signal with 16-bit I/O library versions and on
a 32-bit input signal (derived from a 24-bit input signal) with 32-bit I/O library versions.
THDN (Total Harmonic Distortion + Noise) corresponds to the reverse of SINAD (Signal to
Noise And Distortion ratio) in case of a pure frequency tone input. The measurements below
estimate that the SRC quality follows the AES 17-1998 (r2004) recommendations, by
injecting a sine-wave, filtering the output with a standard notch filter (quality factor Q = 5)
and the following computing ratio:
SINAD = 1/THDN = (Power of Input) / (Power of notched filtered output)
Table 12 summarizes the SINAD values in dB.
Table 12. SINAD values
Amp (dBFS) | -0.1 -1 -1 -1 -1 -1 -1 -1 -1
Tests
Freq (Hz) 997 40 160 640 1280 | 2560 | 5120 | 10240 | 15997
Standard 95.2 94.2 94.3 941 94.0 94.1 945 | 94.6 94.6
High quality 95.4 94 .4 94.2 94.0 94 .1 945 | 948 | 955 94.8
441 to 48 kHz
Standard, 32 bits 1071 | 107.2 | 107.2 | 1071 | 107.2 | 108 |108.7 | 107.1 | 107.6
High quality, 32 bits 131 1324 | 1324 | 1315 | 131.1 | 132.7 | 132.3 | 131.2 126
Note: No windowing is applied in the measurements above and A-Law usage shows a gain of
about 2-3 dBs between 600 Hz and 8 kHz and a loss of several dBs outside this range due
to the A-Law shape that will bring the signal to analyze closer to the noise floor.
3.3.2 Frequency response measurements
The frequency response analysis gives information on in-band ripple, frequency cut at -1
and -3 dB and filter group delay (the filters used have a linear phase). Table 13 summarizes
the data with a standard or a high quality version.
Table 13. Frequency response values
Tests Freq Max. ripple | Min. ripple | Frequency cut | Frequency cut | Filter group
(Hz) (dB) (dB) at-1dB at-3dB delay (ms)
Standard 0.1 -0.07 16200 17300 0.3
High quality 0.13 -0.05 17400 18400 0.47
44 1 to 48 kHz
Standard, 32 bits 0.1 -0.07 16200 17300 0.3
High quality, 32 bits 0.13 -0.05 17400 18400 0.47

14/19

3

DocID024704 Rev 6

UM1640

System requirements and hardware setup

4

4.1

41.1

3

System requirements and hardware setup

SRC441 libraries are built to run either on a Cortex® M4 or on a Cortex® M7 core, without
FPU usage. They can be integrated and run on microcontrollers of STM32F4/STM32L4 or
STM32F7 series, respectively. There is no other hardware dependency.

Recommendations for optimal setup

The sampling rate conversion algorithm should be placed quite early in the audio chain, for
instance just after the audio decoder in order to get all the audio streams at the same
sampling frequency. If needed, streams can be mixed now, or a post-processing can be
applied. Samples are then played on the audio DAC. Refer to Figure 2: Basic audio chain.

Figure 2. Basic audio chain

Stream
Acquisition

Audio
Decoder

SRC441

Audio Post
Processing

%
%

MSv39441V1

Module integration example

Cube expansion SRC441 integration examples are provided on STM32F746G-Discovery
and STM32F469I-Discovery boards. Refer to provided integration code for more details.

DoclD024704 Rev 6

15/19

System requirements and hardware setup UM1640

4.1.2 Module integration summary

Figure 3. API call procedure

Memory allocation
CRC enable and reset

'

src441 _reset()

3 audio stream read
input_buffer preparation
4
src441_process()
5
Audio stream write
6

Memory freeing

MS32309V2

1. As explained above, SRC441 scratch and persistent memories have to be allocated,
as well as the input and output buffer. Also, SRC441 library must run on STM32
devices so that CRC HW block must be enable and reset.

2. Once the memory has been allocated, the call to src441_reset() function will initialize
the internal variables.

3. The audio stream is read from the proper interface and the input_buffer structure has to
be filled in according to the stream characteristics (number of channels, sample rate,
interleaving and data pointer). The output buffer structure has to be set as well.

4. A call to the process will re-sample the stream in the output buffer.
The output audio stream can now be written in the proper interface.
6. Once the processing loop is over, the allocated memory has to be freed.

o

3

16/19 DoclD024704 Rev 6

UM1640 How to tune and run the application

5 How to tune and run the application

There is no tuning available for the SRC441 module.

The only available choice is to link the right SRC441_xxx_CMy_zzz.a/.lib library with the
src441_glo.h header file.

Once the module has been integrated into an audio framework to play samples at 48kHz,
launch a player with a 44.1 kHz input sampling frequency file. The output file will be
decoded and played at 48 kHz without returning any error message.

DoclD024704 Rev 6 17/19

3

Revision history

UM1640

6

18/19

Revision history

Table 14. Document revision history

Date

Revision

Changes

7-Jun-2013

1

Initial release.

26-Aug-2013

Changed all “stereo” occurrences into “mono and stereo”.
Added “mono” values to Table 1: Resource summary.

28-Nov-2014

Classification changed from ST Restricted to public.
Replaced the reference STSW-STM32APP by STM32-AUDIO100A.

08-Jan-2016

Updated:
— Table 1: Resource summary

— Section 4.1.1: Module integration example

— Section 5: How to tune and run the application
— Figure 3: API call procedure

Added:

— Figure 2: Basic audio chain

21-Jan-2016

Updated Section 5: How to tune and run the application

09-Jan-2018

Updated:

— Introduction

— Section 1.2: Module configuration

— Section 2: Module Interfaces

— Section 4.1.1: Module integration example

— Section 5: How to tune and run the application
— Table 1: Resource summary

— Table 13: Frequency response values

3

DoclD024704 Rev 6

UM1640

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

3

DoclD024704 Rev 6 19/19

	1 Module overview
	1.1 Algorithm functionality
	1.2 Module configuration
	1.3 Resource summary
	Table 1. Resource summary

	2 Module Interfaces
	2.1 API
	2.1.1 src441_reset function
	Table 2. src441_reset

	2.1.2 src441_setParam function
	Table 3. src441_setParam

	2.1.3 src441_getParam function
	Table 4. src441_getParam

	2.1.4 src441_setConfig function
	Table 5. src441_setConfig

	2.1.5 src441_getConfig function
	Table 6. src441_getConfig

	2.1.6 src441_process function
	Table 7. src441_process

	2.2 External definitions and types
	2.2.1 Input and output buffers
	Table 8. Input and output buffers

	2.2.2 Returned error values
	Table 9. Returned error values

	2.3 Static parameters structure
	Table 10. Static parameters structure

	2.4 Dynamic parameters structure
	Table 11. Dynamic parameters structure

	3 Algorithm high level view
	3.1 Processing steps
	Figure 1. SRC441 module

	3.2 Data formats
	3.3 Performance measurements
	3.3.1 SINAD measurements
	Table 12. SINAD values

	3.3.2 Frequency response measurements
	Table 13. Frequency response values

	4 System requirements and hardware setup
	4.1 Recommendations for optimal setup
	Figure 2. Basic audio chain
	4.1.1 Module integration example
	4.1.2 Module integration summary
	Figure 3. API call procedure

	5 How to tune and run the application
	6 Revision history
	Table 14. Document revision history

