
October 2015 DocID025623 Rev 3 1/22

AN4417
Application note

SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx devices
Exception handling and single/double bit error

Introduction
This document provides an overview of SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx
exception handling with main focus on different kinds of exception that the application code
may face during the runtime like single and double bit errors in memories, MPU protection
violation, AIPS access protection violation and others.

It starts with the simple overview of Machine check interrupt highlighting important things
from an application perspective. To get detailed view and to implement low level machine
check interrupt handler, it is necessary to use Z4 Core User Manual which describes all the
details about the Core exception and interrupts.

The following part describes the reason of the exception, how to find it and what possibilities
exist to remove the fault.

www.st.com

http://www.st.com

Contents AN4417

2/22 DocID025623 Rev 3

Contents

1 Z4 Core exception overview . 5
1.1 Machine check interrupt (IVOR1) . 5

1.1.1 Machine check registers . 5

2 Machine check handler . 8
2.1 Low level handler . 8

2.1.1 Start phase . 9

2.1.2 Final phase . 9

2.1.3 Modification of the MCSRR0 register . 9

2.2 User handler . 10

3 SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception cases . 12
3.1 Flash 2b ECC error . 12

3.1.1 Cause of the exception . 12

3.1.2 Machine check exception status . 13

3.1.3 Flash 2b ECC error detection by ECSM . 13

3.1.4 ECSM_ESR.FNCE implementation note for SPC564A70 device only . 14

3.1.5 ECSM_ESR implementation for SPC56ELx/RPC56ELx devices only . 14

3.1.6 Flash 2b ECC error detection by Flash controller 14

3.1.7 Flash_x.MCR.ERR implementation note for SPC564A80/RPC564A80
device only . 15

3.1.8 User exception handler . 16

3.1.9 Error solving . 16

Appendix A Comparison of microcontroller behavior during ECC error 17

Appendix B Reference documents . 20
B.1 Acronyms. 20

Revision history . 21

DocID025623 Rev 3 3/22

AN4417 List of tables

3

List of tables

Table 1. Machine check interrupt causes . 5
Table 2. Machine check register . 6
Table 3. Machine check causes . 6
Table 4. SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception causes 12
Table 5. Flash 2b ECC - machine check exception status in core registers. 13
Table 6. Flash 2b ECC – ECSM registers related to ECC error detection . 13
Table 7. Flash 2b ECC – flash controller registers related to ECC error detection. 15
Table 8. Summary of reactions to single/double bit error . 18
Table 9. Acronyms . 20
Table 10. Revision history. 21

List of figures AN4417

4/22 DocID025623 Rev 3

List of figures

Figure 1. Machine check exception flow . 8
Figure 2. Modification of MCSRR0 register content. 10
Figure 3. Machine check exception user handler flow . 11
Figure 4. Flash 2b ECC error . 13

DocID025623 Rev 3 5/22

AN4417 Z4 Core exception overview

21

1 Z4 Core exception overview

Z4 Core used on SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx devices contains
many exception sources and sixteen interrupts to service them. Multiple exception sources
can be mapped to one interrupt handler where few supportive status registers provide flags
to find the cause of the exception in the handler.

A detailed list of the exception causes and their mapping to interrupt handlers is found in the
Z4 Core Reference Manual (see Section Appendix B: Reference documents).

This chapter gives an overview of machine check interrupt that is utilized for several
important fault states of SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx devices.

1.1 Machine check interrupt (IVOR1)
Machine check interrupt is a handler that services multiple fault events that may occur
during runtime code execution.

This interrupt is used to handle various faults generated by peripherals in the
SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx devices, like MPU protection fault, 2b
ECC error in the Flash or RAM memory etc. The reason is that most of the faults are
signaled back as an external bus error situation during the CPU-Submodule bus
transaction.

1.1.1 Machine check registers
Z4 core implements few machine check status registers that are updated upon the
exception event with some constraints stated in the Z4 Core Reference Manual (see
Section Appendix B: Reference documents). These registers are used to find the source of
the exception and based on it, it is decided how to solve it.

Table 1. Machine check interrupt causes
Interrupt type Exception conditions

Machine check

– NMI
– ISI, ITLB, Error on first instruction fetch for an exception handler
– Parity Error signaled on cache access
– External bus error

Z4 Core exception overview AN4417

6/22 DocID025623 Rev 3

Machine check syndrome register (MCSR)

This register is the first register to check additional information about the cause of the
exception. There are three groups of machine check causes.

Machine check address register (MCAR)

MCAR register contains target address reporting the fault condition. It is updated only for
Asynchronous Machine check group when MCSR.MAV bit is cleared and it is valid only if
MCSR.MAV status flag is set. Otherwise the MCAR register cannot be used in the fault
analysis.

It is important to clear MCSR.MAV bit after reading MCAR register value to enable the
capture of the address, in case of new asynchronous machine check fault.

Machine check MCSRR0 register

This register is updated by the HW at the beginning of the machine check interrupt. It stores
the address of the instruction that causes the error condition.

Table 2. Machine check register
Register Content

MCSR (syndrome register) Register indicates the source of machine check, this condition
gives the possibility to differentiate between them

MCAR (address capture)

Register contains some sort of machine check conditions, the
address for which the asynchronous type of the machine
check exception was raised.
Address valid only when MCSR.MAV bit was ‘0’ before the
exception, otherwise MCAR register is not updated.

MCSRR0 (Save/Restore register)

Address of the instruction that caused the exception. Once
the exception is finished (mcrfi instruction), program starts
execution with the same instruction, that was the cause of the
exception.

Table 3. Machine check causes
Machine check cause Brief description

Error Report Machine check
(IF,LD,ST,G)

These exceptions are directly associated with the current
instruction execution stream. They are not masked with MSRME
bit. It means that the exception is always taken whenever the
condition occurs. They differentiate among Instruction fetch, Data
store and load.

Non-maskable interrupt
(NMI)

Not MSRME gated exception occurs when NMI signaling is
enabled and NMI pin is driven low.

Asynchronous Machine check
(BUS_IREER, BUS_DRERR,
BUS_WRERR)

Exceptions reported by the subsystem, usually as bus error
termination, back to the Core. They are enabled by MSRME bit
and are cumulative. This machine check whether the exception
group triggers capture of the corresponding address to the MCAR
register and if MCSRMAV bit is cleared. If MCSRMAV was
previously set, then the MCAR register is not affected.

DocID025623 Rev 3 7/22

AN4417 Z4 Core exception overview

21

It is used at the end of the machine check when mcrfi instruction is executed to fill the
instruction pointer. The result is that code restarts the same instruction that was the cause of
the error, if additional modification of the MCSRR0 register is not explicitly done.

Machine check handler AN4417

8/22 DocID025623 Rev 3

2 Machine check handler

Machine check handler usually splits into two parts:
 Low level handler
 User handler

2.1 Low level handler
Low level handler is responsible for the first and the last part of the exception execution. It is
usually written in assembly language as it needs to execute the proper instruction sequence
before it can pass the code execution the higher level routine and accesses special purpose
Core registers.

The middle of the interrupt service routine belongs to the user handler where analysis of the
root cause of the exception and fault removal is done.

Once the user handler has finished, code execution is given back to the low level driver to
finish the interrupt and return back to the interrupt process.

Figure 1. Machine check exception flow

DocID025623 Rev 3 9/22

AN4417 Machine check handler

21

2.1.1 Start phase
In the first step the hardware (Core) carries out checks, when the machine occurs
exception. The hardware stores content of the MSR register and address of the current
instruction pointer if it is possible (precise exception), immediately low level driver starts
processing.The machine executes several steps like check status register saving, context of
the interrupted process saving and others. This part stores some additional information as
they are used by the higher layer user handler to analyze the root cause of the exception
later.

In the Z4 Core User Manual documentation there is a detailed description of the machine
check resources, their meaning and proper handling in case of interrupt. Low level handler
follows rules and recommendation described in the User Manual (see Section Appendix B:
Reference documents).

2.1.2 Final phase
Here the handler should restore the saved context of the interrupted process and return with
the mcrfi instruction.

Before mcrfi instruction is executed, which fills instruction pointer with MCSRR0 content and
MSR register with MCSRR1 content, MCSRR0 modification might be needed.

There are two cases which determine if the manipulation is needed or not. This information
is useful in the user handler to pass down to the low level driver.
1. User handler finds the cause of the machine check exception and fix it in a way that the

program can re-execute the same instruction that caused the machine check
exception.

2. User is able to find the cause of the exception, but the problem remains and re-
executing the same instruction lead to the machine check exception again =>
Modification of the MCSRR0 is needed.

2.1.3 Modification of the MCSRR0 register
In case the exception cause of the exception cannot be removed, MCSRR0 register value is
modified in a way that it takes the address of the following instruction. This prevents re-
execution of the faulty instruction and retriggering the machine check exception.

Modification has to consider VLE instruction coding in case the interrupted process is
implemented in VLE coding and the value increased according to the length of the faulty
instruction pointed by the current MCSRR0 register content, see Figure 2.

Machine check handler AN4417

10/22 DocID025623 Rev 3

Figure 2. Modification of MCSRR0 register content

2.2 User handler
Here the root cause analysis is done. Such analysis requires supportive information from
 Low level driver (MCAR, MCSR etc.)
 Peripherals status registers for further elaboration

Based on the results of analysis and the corrective actions done, user handler should pass
the information about the return type back to the low level driver; any modification to the
MCSRR0 content should be made before mcrfi instruction.

DocID025623 Rev 3 11/22

AN4417 Machine check handler

21

Figure 3. Machine check exception user handler flow

SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception cases AN4417

12/22 DocID025623 Rev 3

3 SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx
exception cases

This chapter lists the most common exception cases that application software can
experience while running code on SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx
devices.

In general all protection access exceptions and 2b ECC exception lead to the same
machine check exception because of external bus error termination. In such cases further
analysis relies on memory area check.

3.1 Flash 2b ECC error

3.1.1 Cause of the exception
Platform flash memory controller (PFLASHC) terminates bus transaction between CPU and
PFLASHC controller in case the Flash memory array signals 2b ECC problem during read
access. This leads to machine check exception because of bus_error termination.

Table 4. SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception causes
Exception

cause
Error

signaling Exception Description

Flash 2b ECC
error

External
bus error

Machine
check

Two or multiple bit error in the Flash memory leads to
the machine check exception when faulty area is
read, instruction fetch or data read.

DocID025623 Rev 3 13/22

AN4417 SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception cases

21

Figure 4. Flash 2b ECC error

3.1.2 Machine check exception status

3.1.3 Flash 2b ECC error detection by ECSM
Flash controller provides detection ability of ECC errors detection.

Table 5. Flash 2b ECC - machine check exception status in core registers
Register Description

MCSRR0 Address of the instruction that caused the exception. In case of ECC error in the
data flash area, register modification is needed.

MCSR Type of operation is highlighted here, instruction fetch, data load or data write.

MCAR Target address that was accessed, but finished with 2b ECC error. This address
can be used for further analysis.

Table 6. Flash 2b ECC – ECSM registers related to ECC error detection
Register Description

ECSM_ESR
The ECSM_ESR signals the last, properly enabled (in ECSM_ECR) memory
event to be detected. RAM and Flash single bit errors, as well as dual bit errors,
are signaled by separated status bits.

ECSM_ESR.R1BC A reportable single-bit platform RAM correction has been detected.

ECSM_ESR.RNCE A reportable non-correctable platform RAM error (2b ECC) has been detected.

SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception cases AN4417

14/22 DocID025623 Rev 3

Maintaining of ECSM_ESR register to be performed properly.

For more details see Section Appendix B: Reference documents.

3.1.4 ECSM_ESR.FNCE implementation note for SPC564A70 device only
Flash controller always reads one complete prefetch buffer line (128-bit) from flash array.
ECSM_ESR.FNCE bit detects ECC error separately for double word A (bit 0..63) and
double word B (bit 64..127) in SPC564A70 device, and it can cause an unexpected
behavior.

The following is an example to demonstrate it:
Assuming that an ECC error is present in upper word and lower word is accessed by core.
Then the ECC error is detected during complete 128-bit line reading and core Machine
check exception is invoked, but ECSM_ESR.FNCE bit is not set in this case. If Machine
check exception handler tests the ECSM_ESR.FNCE bit only in our case, then it may
unexpectedly assume that no ECC issue occurred.

Note: There is a possibility to check Flash_A.MCR.EER bit instead of the ECSM_ESR.FNCE. The
implementation depends on the application needs.

For more details see Section Appendix A: Comparison of microcontroller behavior during
ECC error.

3.1.5 ECSM_ESR implementation for SPC56ELx/RPC56ELx devices only
SPC56ELx/RPC56ELx devices have been designed with functional safety in mind. In case
the reporting of dual bit errors is enabled in the ECSM, the device reacts in one of the safest
way, i.e. a critical fault is triggered by the FCCU. The outcome of this critical fault is a
functional reset of the device without any exception triggered to the core. Rationale for this
severe reaction is that since the dual bit error cannot be corrected, software is not able to
recover it. Then the safest reaction is assumed to be a reset.

Nevertheless this reset reaction prevents most of the flash EEPROM emulation drivers from
working correctly. An ECC error is a standard error situation during read in flash area used
for data EEPROM emulation. This situation is handled by the driver accordingly.

In case of a dual bit error, reporting is disabled in the ECMS and then a core exception is
invoked instead of the reset. Core exception handler gives the possibility to the flash
EEPROM emulation driver to react accordingly.

3.1.6 Flash 2b ECC error detection by Flash controller
Flash controller provides detection ability of ECC errors detection.

ECSM_ESR.F1BC A reportable single-bit platform flash correction has been detected.

ECSM_ESR.FNCE A reportable non-correctable platform flash error (2b ECC) has been detected.

Table 6. Flash 2b ECC – ECSM registers related to ECC error detection (continued)
Register Description

DocID025623 Rev 3 15/22

AN4417 SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception cases

21

For more details see Section Appendix B: Reference documents.

3.1.7 Flash_x.MCR.ERR implementation note for SPC564A80/RPC564A80
device only
SPC564A80/RPC564A80 contains two different flash modules. Each of them contains its
own Flash_x.MCR.EER bit. The decision to address a particular flash module depends on
accessed address from a flash address range. For more details see Section Appendix B:
Reference documentsl.

Flash controller always reads one complete prefetch buffer line (128-bit) from flash array.
Flash_x.MCR.EER bit is always set, if ECC error is detected in any of double word A (bit
0..63) or double word B (bit 64..127). In contrast, core Machine check exception is invoked
only if the accessed one double word contains ECC error in SPC564A80/RPC564A80
device, and it can cause an unexpected behavior.

Th following is an example to demonstrate it:
Assuming that an ECC error is present in upper word and lower word is accessed by core.
The ECC error is detected during complete 128 bit line reading and core Machine check
exception is NOT invoked, but Flash_x.MCR.EER bit is set in this case (and it is not cleared
automatically). Let us assume, that Machine check exception is invoked later on caused by
another reason (e.g. due to memory protection by MPU). If the Machine check exception
handler tests the Flash_x.MCR.EER bit only, then it may unexpectedly assume that flash
ECC error has occurred instead. However the Machine check exception handler routine
may handle this situation by cross-checking the data coming from FLASH AR and MCAR.

Note: There is also a possibility to check ECSM_ESR.FNCE bit instead of the Flash_x.MCR.EER
registers. The implementation depends on the application needs.

For more details see Section Appendix A: Comparison of microcontroller behavior during
ECC error.

Table 7. Flash 2b ECC – flash controller registers related to ECC error detection
Register Description

Flash_x.MCR.EER
(Flash.MCR.ERR
for SPC56ELxx/

RPC56ELxx
devices)

EER provides information on previous reads. If a double bit detection occurred,
the EER bit is set to a 1.This bit must then be cleared, or a reset must occur
before this bit returns to a 0 state.

Flash_x.AR
(Flash.ADR for
SPC56ELxx/
RPC56ELxx

devices)

The ADDR field provides the first failing address in the event of ECC event error
(MCR[EER] set), single bit correction (MCR[SBC] set), as well as providing the
address of a failure that may have occurred in a state machine operation
(MCR[PEG] cleared).
Note: Flash controller always reads one complete prefetch buffer line (128-bit)
from flash array. The first failing address stored in the AR register could be
anywhere inside the flash prefetch line address range and can differ from the
address originally accessed.

x
x = A for SPC564A70 device
x = A and/or B for SPC564A74, SPC564A80/RPC564A80 devices, because
flash address range is covered by two flash modules flash_A and flash_B.

SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception cases AN4417

16/22 DocID025623 Rev 3

3.1.8 User exception handler
 Handler has to analyze the following:
 Type of access, instruction fetch, data read, and data write. Only instruction fetch or

data read access is expected in case of 2b ECC Flash error.
 Memory range

Memory access must be within the area belonging to the Flash memory. User has to
know which part belongs to the code flash and which part belongs to the data flash
memory.

3.1.9 Error solving
Flash 2b ECC error can be solved only with erase of the flash sector containing the cell with
2b ECC error. It is usually not done in the exception handler itself, because it takes a
significant amount of time.

The decision on what to do in case of 2b ECC error is application specific. Whether to go to
degraded mode or to continue (i.e. the case of EEPROM emulation) and solve the issue
later in the application.

If the decision is to continue, user handler has to request a modification of the MCSRR0
register to continue the program flow with th next instruction. Otherwise the program would
be stuck in the reading of the fault flash address invoking machine checks.

DocID025623 Rev 3 17/22

AN4417 Comparison of microcontroller behavior during ECC error

21

Appendix A Comparison of microcontroller behavior
during ECC error

Table 8 is a summary of the behavior of different 90nm microcontrollers in case of either
single or double bit error in the flash. To understand the table, the user should keep in mind
that flash is accessed in word line of 128-bit. Each time a master would like to access (read
/ code fetch) a location, which belongs to a certain word line, the whole word line is read out
of the flash. The word line consists of two double-words A and B. Each double-word
contains its own ECC. Even there is always read complete word line, behavior of
microcontroller can differ regarding which double-word is addressed and which one contains
an ECC error.

One concrete word line starting at address 0x00030000 is chosen as an example.

The first 2 columns of the table represent the address location which can be accessed and
can be affected by single/double bit error. Each row represents a combination of access and
an ECC error:
 The marked cells in the first 2 columns are affected by an ECC error.
 Cells with the text ‘Accessed by master’ are actually accessed by one of the crossbar

master.
 In addition, few cells are marked to highlight some differences in terms of behavior.

The other columns contain reactions of selected registers, - separately for each
microcontroller.

C
om

parison of m
icrocontroller behavior during EC

C
 error

A
N

4417

18/22
D

ocID
025623 R

ev 3

Table 8. Summary of reactions to single/double bit error
FLASH line (128bit)

e.g. ADDRESS =
0x30000

means addr.range:
0x30000..0x3000F

SPC564A70 SPC564Axx/RPC564Axx SPC563M SPC56EL/RPC56EL
family SPC560P family

double
word A

e.g. addr.

range:
0x30000..
0x30007

double
word B

e.g. addr.
range:

0x30008..
0x3000F FL

A
SH

 M
C

R
 E

ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

IV
O

R
1

EX
C

EP
TI

O
N

 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

IV
O

R
1

EX
C

EP
TI

O
N

 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

IV
O

R
1

EX
C

EP
TI

O
N

 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

B
U

S
ER

R
O

R
 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

B
U

S
ER

R
O

R
 /

R
ES

ET

 Accessed
by master 0 No

change 0 NO 0 No
change 0 NO 0 No

change 0 NO 0 No
change 0 NO 0 No

change 0 NO

Accessed
by master 0 No

change 0 NO 0 No
change 0 NO 0 No

change 0 NO 0 No
change 0 NO 0 No

change 0 NO

 Accessed
by master 1 0x30000 0 YES 1 0x30000 0 NO 1 0x30000 1 YES 1 0x30000 0 NO 1 0x30000 1 YES

Accessed
by master 1 0x30000 1 YES 1 0x30000 1 YES 1 0x30000 1 YES 1 0x30000 1

YE
S

1 0x30000 1 YES

 Accessed
by master 1 0x30008 1 YES 1 0x30008 1 YES 1 0x30008 1 YES 1 0x30008 1 YE

S 1 0x30008 1 YES

Accessed
by master 1 0x30008 0 YES 1 0x30008 0 NO 1 0x30008 1 YES 1 0x30008 0 NO 1 0x30008 1 YES

A
N

4417
C

om
parison of m

icrocontroller behavior during EC
C

 error

D
ocID

025623 R
ev 3

19/22

Note: Marking in the first 2 columns of the table represents the address locations which are affected by an ECC error.

Accessed by the master means address location accessed (read or write or core instruction fetch) by crossbar (XBAR) master.
Microcontroller core is only one of the XBAR masters.

 Accessed
by master 1 0x30000 1 YES 1 0x30000 1 YES 1 0x30000 1 YES 1 0x30000 1

YE
S

1 0x30000 1 YES

Accessed
by master 1 0x30000 1 YES 1 0x30000 1 YES 1 0x30000 1 YES 1 0x30000 1

YE
S

1 0x30000 1 YES

Table 8. Summary of reactions to single/double bit error (continued)
FLASH line (128bit)

e.g. ADDRESS =
0x30000

means addr.range:
0x30000..0x3000F

SPC564A70 SPC564Axx/RPC564Axx SPC563M SPC56EL/RPC56EL
family SPC560P family

double
word A

e.g. addr.

range:
0x30000..
0x30007

double
word B

e.g. addr.
range:

0x30008..
0x3000F FL

A
SH

 M
C

R
 E

ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

IV
O

R
1

EX
C

EP
TI

O
N

 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

IV
O

R
1

EX
C

EP
TI

O
N

 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

IV
O

R
1

EX
C

EP
TI

O
N

 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

B
U

S
ER

R
O

R
 /

FL
A

SH
 M

C
R

 E
ER

FL
A

SH
 A

R

EC
SM

 E
SR

 F
N

C
E

B
U

S
ER

R
O

R
 /

R
ES

ET

Reference documents AN4417

20/22 DocID025623 Rev 3

Appendix B Reference documents

 Z4d Core Reference Manual
 SPC56EL60 32-bit MCU family built on the embedded Power Architecture® (RM0032,

Doc ID 15265)
 SPC56XL70xx 32-bit MCU family built on the embedded Power Architecture®

(RM0042, Doc ID 023986)
 SPC564A74xx, SPC564A80xx 32-bit MCU family built on the embedded Power

Architecture® (RM0029, Doc ID 15177)
 SPC564A70B4, SPC564A70L7 32-bit MCU family built on the embedded Power

Architecture® (RM0068, Doc ID 18132)

B.1 Acronyms

Table 9. Acronyms

Acronym Name

ECC Error Correction Code

EDC Error Detection Code

2b ECC double bit error (it is only detected by the ECC/EDC hardware)

1b ECC Single bit error (it’s detected and correct by the ECC/EDC hardware.

NMI Non maskable interrupt

DocID025623 Rev 3 21/22

AN4417 Revision history

21

Revision history

Table 10. Revision history
Date Revision Changes

12-Dec-2013 1 Initial release

19-Dec-2013 2 Modified Table 8.

06-Oct-2015 3 Robust root part numbers added.

AN4417

22/22 DocID025623 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 Z4 Core exception overview
	1.1 Machine check interrupt (IVOR1)
	Table 1. Machine check interrupt causes
	1.1.1 Machine check registers
	Table 2. Machine check register
	Table 3. Machine check causes

	2 Machine check handler
	2.1 Low level handler
	Figure 1. Machine check exception flow
	2.1.1 Start phase
	2.1.2 Final phase
	2.1.3 Modification of the MCSRR0 register
	Figure 2. Modification of MCSRR0 register content

	2.2 User handler
	Figure 3. Machine check exception user handler flow

	3 SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception cases
	Table 4. SPC564Axx/RPC564Axx/SPC56ELxx/RPC56ELxx exception causes
	3.1 Flash 2b ECC error
	3.1.1 Cause of the exception
	Figure 4. Flash 2b ECC error

	3.1.2 Machine check exception status
	Table 5. Flash 2b ECC - machine check exception status in core registers

	3.1.3 Flash 2b ECC error detection by ECSM
	Table 6. Flash 2b ECC – ECSM registers related to ECC error detection (continued)

	3.1.4 ECSM_ESR.FNCE implementation note for SPC564A70 device only
	3.1.5 ECSM_ESR implementation for SPC56ELx/RPC56ELx devices only
	3.1.6 Flash 2b ECC error detection by Flash controller
	Table 7. Flash 2b ECC – flash controller registers related to ECC error detection

	3.1.7 Flash_x.MCR.ERR implementation note for SPC564A80/RPC564A80 device only
	3.1.8 User exception handler
	3.1.9 Error solving

	Appendix A Comparison of microcontroller behavior during ECC error
	Table 8. Summary of reactions to single/double bit error (continued)

	Appendix B Reference documents
	B.1 Acronyms
	Table 9. Acronyms

	Revision history
	Table 10. Revision history

