
February 2014 DocID025766 Rev 1 1/62

UM1716
User manual

LIN 2.1 Driver Suite
Slave Node User’s Guide

Introduction

Purpose

The purpose of this user guide is to provide application programmers with detailed
information about the use of the STMicroelectronics LIN 2.1 driver (STSW-SPC56002FW).
A detailed description of the API implemented is provided together with some examples of
important files required for getting started and for driver configuration.

Scope

The STMicroelectronics implementation is in accordance with the LIN 2.1 specification [1].

User profile

It is expected that users of this driver are familiar with the concept of networks and in
particular LIN. As the STMicroelectronics driver is implemented in the C programming
language, users should be experienced in the development of applications in C.

References

• [1] LIN specification package, revision 2.0, 23-September-2003

• [2] LIN specification package, revision 2.1, 24-November-2006

www.st.com

http://www.st.com

Contents UM1716

2/62 DocID025766 Rev 1

Contents

1 Abbreviations . 6

2 Overview . 7

2.1 LIN concept . 7

2.2 LIN communication . 7

2.3 Signal management . 8

2.4 Using the driver . 8

2.5 Driver version . 9

3 API . 10

3.1 Data . 10

3.2 Functions . 10

3.3 CORE API . 10

3.3.1 Driver and cluster management . 10

3.3.2 Signal interaction . 11

3.3.3 Notification . 13

3.3.4 Interface management . 14

3.4 Diagnostic API . 20

3.4.1 Node configuration (diagnostic) specific API . 20

3.4.2 Diagnostic transport layer . 21

3.4.3 Diagnostic transport layer: RAW API . 23

3.4.4 Diagnostic transport layer: COOKED API . 24

3.5 Slave specific API . 26

3.5.1 Interface management . 26

3.6 STMicroelectronics extensions . 27

3.7 Implementation Notes . 28

3.7.1 API data types . 28

3.7.2 Notification flags . 28

4 Driver configuration . 30

4.1 File and directory structure . 30

4.2 Makefiles . 30

4.2.1 Top-level makefile . 30

DocID025766 Rev 1 3/62

UM1716 Contents

3

4.3 Cluster configuration . 32

4.3.1 Cluster description . 32

4.3.2 Lingen . 33

4.4 User configuration . 34

4.4.1 Timers . 34

4.4.2 General settings . 35

4.4.3 Diagnostic functions configuration . 39

4.4.4 Diagnostic class . 40

4.4.5 Callback functions . 43

4.5 Interrupt configuration . 45

5 Specification of lingen control file format . 47

5.1 lingen control file . 47

5.1.1 File definition . 47

5.1.2 Interface specification . 47

5.1.3 Default frame IDs . 47

5.2 Specification syntax . 48

6 Examples . 49

6.1 Sample control file for lingen . 49

6.2 LIN 2.0 LDF example . 49

6.3 LIN 2.1 LDF example . 56

6.4 Example implementation of IRQ callbacks . 60

7 Revision history . 61

List of tables UM1716

4/62 DocID025766 Rev 1

List of tables

Table 1. Description of abbreviated forms . 6
Table 2. LIN naming conventions . 9
Table 3. System initialization . 10
Table 4. Scalar signal read . 11
Table 5. Scalar signal write. 11
Table 6. Byte array read . 12
Table 7. Byte array write . 12
Table 8. Test flag . 13
Table 9. Clear flag . 13
Table 10. Initialise interface . 14
Table 11. Wake-up . 15
Table 12. Interface control . 15
Table 13. Character received notification . 17
Table 14. Character transmitted notification . 18
Table 15. Read interface status . 18
Table 16. Description of l_ifc_read_status returned value . 20
Table 17. Read configuration . 20
Table 18. Set configuration. 21
Table 19. Initialization . 21
Table 20. Put raw frame . 23
Table 21. Get raw frame . 23
Table 22. Query raw transmit-queue status . 23
Table 23. Query raw receive-queue status. 24
Table 24. Send message . 24
Table 25. Receive message . 25
Table 26. Get transmit-queue status . 25
Table 27. Get receive-queue status . 25
Table 28. Slave synchronise. 26
Table 29. Read by ID callout . 26
Table 30. Software Timer Function. 27
Table 31. Protocol Switch . 27
Table 32. Set baud rate . 28
Table 33. Raw Tx Frame Delete. 28
Table 34. Directory structure . 30
Table 35. Top-level makefile predefined variable definition . 31
Table 36. Disable Interrupts . 43
Table 37. Restore Interrupts . 43
Table 38. Protocol switch function callback . 44
Table 39. ld_read_by_id callback . 44
Table 40. ld_data_dump callback . 44
Table 41. Baud rate detection callback. 45
Table 42. Handler for character rx . 46
Table 43. Handler for character tx . 46
Table 44. Syntax description . 48
Table 45. Document revision history . 61

DocID025766 Rev 1 5/62

UM1716 List of figures

5

List of figures

Figure 1. Master-slave node communications . 8
Figure 2. Lingen workflow . 33

Abbreviations UM1716

6/62 DocID025766 Rev 1

1 Abbreviations

Table 1. Description of abbreviated forms

Abbreviation Description

API Application Programming Interface

CAN Controller Area Network

LDF LIN description

LIN Local Interconnect Network

RSID Response Service Identifier

SID Service Identifier

DocID025766 Rev 1 7/62

UM1716 Overview

61

2 Overview

2.1 LIN concept
LIN (Local Interconnect Network) is a concept that has been developed by a group of well-known car
manufacturers in order to produce low-cost automotive networks that complement existing networks
such as CAN. It is based on a single-wire serial communication using SCI (UART) interfaces that are
commonly available on microcontrollers. LIN is intended to be used together with CAN forming a
hierarchical vehicle network. Generally, it is used for local sub-systems where a low bit rate (up to
20kbit/s) is acceptable and no safety-critical functions are required. Typically these applications are used
for car body electronics e.g. doors, seats, air conditioning etc. These sub-units are connected as units of
a CAN network using a LIN/CAN gateway.

A LIN cluster comprises one master node and one or more slave nodes. A special feature of the LIN
concept is the synchronisation of slave nodes via the bus which means that low-cost nodes without
quartz clocking can be implemented. Also, access to the bus is controlled by the master node and so no
collision management is needed in the slave nodes. This also means that a worst-case transmission time
for signals can be guaranteed.

The slave nodes do not use any information about the LIN cluster. This means that further slave nodes
can be added to the LIN without requiring a change in the existing slave nodes. The master node
requires information for all slaves and must be re-built if new nodes are added.

The LIN standard includes the specification of the transmission protocol, the transmission medium, the
system definition language and the interface for software programming.

2.2 LIN communication
In abstract terms, communication between the application software in LIN nodes is achieved by
exchange of signals. The driver software, responsible for achieving signal exchange at a lower level,
exchanges information between nodes in terms of frames. Therefore, the driver is responsible for taking
application signals and packing these into the data section of a frame and for initiating transfer. The
frames are then transferred via the serial interface of the controller. Using this communication technique
the reading and writing of signals is asynchronous to the transfer of frames. An overview of
communication between LIN nodes is depicted in Figure 1.

All transfers are initiated by the master node -- a slave node will only transmit when required to do so.
The master node sends a message header for a frame. The frame body can be sent either by the master
or by a slave node. Together, the header and the frame body form one complete message frame. Since
the publisher for any given frame is configured before system build, there is only one possible node that
will send the frame body.

The message identifier in a frame denotes the message content and not the destination. This
communication concept means that data can be exchanged between nodes as follows:

• from a master node to one or more slave nodes

• from a slave node to the master and/or to other slave nodes

This means that communication is possible from slave to slave without routing through the master and
that the master can broadcast to all slaves in the LIN subsystem.

The order in which frames are sent is determined by a schedule table used by the master. Several tables
may be configured but only one table may be active at a time. Switching between tables can be carried
out by the application or internally by the driver. The schedule tables required by an application must be

Overview UM1716

8/62 DocID025766 Rev 1

configured by the user in the LIN description file.

Figure 1. Master-slave node communications

2.3 Signal management
Signals are transferred in the data bytes of a frame. Several signals can be packed into a frame as long
as they do not overlap each other or extend beyond the data area of the frame.

Each signal has only one producer i.e. it is always written by the same node in a cluster. Each signal that
is produced by a node must be configured by the user.

A signal is either a scalar value or a byte array. A scalar signal is between 1 and 16 bits long. A one bit
signal is called a boolean signal.

• Scalar signals between 2 bits and 16 bits long are treated as unsigned.

• A byte array is an array of between one and eight bytes.

Signals must be kept consistent by the driver. A partially updated 16-bit signal must never be passed to
an application. Consistency between signals is the responsibility of the application.

Signals are transmitted LSB first. Scalar signals may cross a byte boundary at most once. Each byte in a
byte array must be mapped to a byte in a frame by the driver.

2.4 Using the driver
The driver must first be configured and built before use. Details of the steps for general configuration are
given in this document in Section 2.5: Driver version. Architecture specific details are provided in the
relevant in Architecture Notes document supplied in addition to this user guide.

DocID025766 Rev 1 9/62

UM1716 Overview

61

The STMicroelectronics driver includes the diagnostic layer as specified in [1]. The diagnostic API is
divided between a RAW API and a COOKED API. The RAW API allows a diagnostic application to
control the contents of every frame sent while the COOKED API provides a full transport layer. The
diagnostic functions may be selectively included in the build of the driver. This is detailed in Section 4.4.3:
Diagnostic functions configuration.

Before using the driver functionality the driver itself must be initialised by calling the

Note: l_sys_init API function. Before using any interface related functions the controller
interfaces must be initialised using the l_ifc_init API function and then connected using
the l_ifc_connect function.

In addition the user should note the following naming convention that has been adopted in the
STMicroelectronics driver. The following table shows the scheme adopted:

The application must use the “LIN name” format except when calling the static functions of the API. For
example, if a signal named sigMstatus has been configured in the LDF file then the application must
use the form LIN_SIGNAL_sigMstatus for dynamic function calls:

my_sig = l_u8_rd(LIN_SIGNAL_sigMstatus);

or the form sigMstatus as used in the generation of static function names:

my_sig = l_u8_rd_sigMstatus();

If a master node is configured to use multiple interfaces then an optional tag may be specified by the user
to avoid naming conflicts. This tag will be prepended to the “item name” form given above. See
Section 4.3: Cluster configuration for details and examples.

2.5 Driver version
The driver comprises several source and header files that are versioned and whose version number is
only updated on change. Therefore, a given driver version will have files with varying version numbers.
The definition of file versions used to build a particular driver version is contained in the file
lin_version_control.h in the top level source directory. This information is used to ensure that
only consistent files are included in driver build.

Table 2. LIN naming conventions

Item type Item name LIN name

Signal sigName LIN_SIGNAL_sigName

Frame frameName LIN_FRAME_frameName

Flag flagName LIN_FLAG_flagName

Schedule table tabName LIN_TAB_tabName

Node nodeName LIN_NODE_nodeName

API UM1716

10/62 DocID025766 Rev 1

3 API

3.1 Data
The following data types must be defined for the driver:

• l_bool

• l_u8

• l_u16

• l_u32

• l_ioctl_op.

• l_irqmask

• l_ifc_handle

Since these are hardware dependent they are defined in the architecture specific file
lin_def_archname_gen.h located in the architecture specific directory.

3.2 Functions
The numbering in the description sections below refers to the LIN API Specification section where the
corresponding function is described.

3.3 CORE API

3.3.1 Driver and cluster management

Table 3. System initialization

l_sys_init(void)

Prototype l_bool l_sys_init(void);

Availability Master and slave nodes

Include lin.h

Description

Performs the initialisation of the LIN core (LIN API 7.2.1.1). The scope of the
initialization is the physical node (i.e. the complete node), (see [2] section 9.2.3.3).
The call to the l_sys_init is the first call a user must use in the LIN core before using
any other API functions.

Parameters None

Return
zero if initialisation succeeded

non-zero if initialisation failed

DocID025766 Rev 1 11/62

UM1716 API

61

3.3.2 Signal interaction

Scalar signal read

Table 4. Scalar signal read

l_bool_rd, l_u8_rd, l_u16_rd

Prototype
(dynamic)

l_bool l_bool_rd (l_signal_handle signalId);

l_u8 l_u8_rd (l_signal_handle signalId);

l_u16 l_u16_rd (l_signal_handle signalId);

Availability Master and slave nodes

Include lin.h

Description Reads and returns the current value of the signal specified (see [2] section 7.2.2.2)

Parameters
signalId – the name of the signal to be read e.g. for the configured signal status
then LIN_SIGNAL_status

Return
l_bool – boolean signal value or 0 if signalId invalid
l_u8 – 8 bit signal value or 0 if signalId invalid
l_u16 – 16 bit value or 0 if signalId invalid

Prototype
(static)

l_bool l_bool_rd_sss (void);

l_u8 l_u8_rd_sss (void);

l_u16 l_u16_rd_sss (void);

where sss denotes the name of the signal that is to be read e.g. for the configured
boolean signal status then the prototype:

l_bool l_bool_rd_status(void);

Table 5. Scalar signal write

l_bool_wr, l_u8_wr, l_u16_wr

Prototype
(dynamic)

void l_bool_wr (l_signal_handle signalId, l_bool val);

void l_u8_wr (l_signal_handle signalId, l_u8 val);

void l_u16_wr (l_signal_handle signalId, l_u16 val);

Availability Master and slave nodes

Include lin.h

Description
Sets the current value of the signal specified to the value val (see [2] section
7.2.2.3)

Parameters
signalId – the signal to be set e.g. for the configured signal status then
LIN_SIGNAL_status

val – the value to which the signal is to be set

API UM1716

12/62 DocID025766 Rev 1

Return None

Prototype

(static)

void l_bool_wr_sss (l_bool val);

void l_u8_wr_sss (l_u8 val);

void l_u16_wr_sss (l_u16 val);

where sss denotes the name of the signal whose value is to be set to val e.g. for
the configured boolean signal status then the prototype:

void l_bool_wr_status (l_bool val);

Table 6. Byte array read

l_bytes_rd

Prototype
(dynamic)

void l_bytes_rd (l_signal_handle signalId,

 l_u8 start, l_u8 count

 l_u8* const data);

Availability Master and slave nodes

Include lin.h

Description
Reads and returns the current value of the selected bytes in the specified signal (see
[2] section 7.2.2.4). The sum of start and count shall never be greater than the length
of the byte array.

Parameters

signalId – the signal to be read e.g. for the configured signal user_data then
LIN_SIGNAL_user_data

start – the first byte to be read
count – the number of bytes to be read
data – the area where the bytes will be written

Return None

Prototype
(static)

void l_bytes_rd_sss (l_u8 start, l_u8 count, l_u8* const
data);

where sss denotes the name of the signal to be read e.g. for the configured signal
user_data then the prototype:

void l_bytes_rd_user_data(l_u8 start, l_u8 count,

 l_u8* const data);

Table 7. Byte array write

l_bool_wr, l_u8_wr, l_u16_wr

Prototype

(dynamic)

void l_bytes_wr (l_signal_handle signalId,

 l_u8 start, l_u8 count,

 const l_8* const data);

Availability Master and slave nodes

Include lin.h

Table 5. Scalar signal write (continued)

l_bool_wr, l_u8_wr, l_u16_wr

DocID025766 Rev 1 13/62

UM1716 API

61

3.3.3 Notification

Description
Sets the current value of the selected bytes in the signal specified to the values given
in data (see [2] section 7.2.2.5). The sum of start and count shall never be greater
than the length of the byte array.

Parameters

signalId – the signal to be written e.g. for the configured signal user_data then
LIN_SIGNAL_user_data

start – the first byte to be written
count – the number of bytes to be written

data – the area where the bytes will be read from

Return None

Prototype
(static)

void l_bytes_wr_sss (l_u8 start, l_u8 count,

 const l_u8* const data);

where sss denotes the name of the signal to be written e.g. for the configured signal
user_data then the prototype:

void l_bytes_wr_user_data (l_u8 start, l_u8 count,

 const l_u8* const data);

Table 8. Test flag

l_flg_tst

Prototype
(dynamic)

l_bool l_flg_tst (l_flag_handle flag);

Availability Master and slave nodes

Include lin.h

Description
Returns the state of the flag specified i.e. zero if cleared, non-zero otherwise. (see [2]
section 7.2.3.1)

Parameters
flag – the flag whose state is to be returned e.g. for the configured flag Txerror
then LIN_FLAG_Txerror

Return Zero if flag is clear, non-zero otherwise

Prototype
(static)

l_bool l_flg_tst_fff (void);

where fff denotes the name of the flag to be tested e.g. for the configured flag
Txerror then the prototype:

l_bool l_flg_tst_Txerror (void);

Table 9. Clear flag

l_flg_clr

Prototype
(dynamic)

void l_flg_clr (l_flag_handle flag);

Availability Master and slave nodes

Include lin.h

Table 7. Byte array write (continued)

l_bool_wr, l_u8_wr, l_u16_wr

API UM1716

14/62 DocID025766 Rev 1

3.3.4 Interface management

Connect interface

l_ifc_connect() function becomes obsolete for LIN 2.1 protocol and will not be used.

Disconnect interface

l_ifc_disconnect() function becomes obsolete for LIN 2.1 protocol and will not be used.

Description Sets the value of the flag specified to zero (see [2] section 7.2.3.2)

Parameters
flag – the flag to be cleared e.g. for the configured flag Txerror then
LIN_FLAG_Txerror

Return None

Prototype
(static)

l_bool l_flg_clr_fff (void);

where fff denotes the name of the flag to be cleared e.g. for the configured flag
Txerror then the prototype:

l_bool l_flg_clr_Txerror (void);

Table 10. Initialise interface

l_ifc_init

Prototype

(dynamic)

l_bool l_ifc_init (l_ifc_handle ifc);

Availability Master and slave nodes

Include lin.h

Description

Initialises the interface specified (e.g. baud rate). The default schedule set will be
L_NULL_SCHEDULE where no frames will be sent or received. The interfaces are
listed by name in the file lin_def.h.
See Section 4.3: Cluster configuration and User configuration for details.

This function must be called before using any other interface related to API functions.
(see [2] section 7.2.5.1)

Parameters ifc – the interface to be initialised

Return Zero if initialisation was successful, non-zero if failed.

Prototype
(static)

l_bool l_ifc_init_iii (void);

where iii denotes the interface to be initialised e.g. for the configured interface
SCI0 then the prototype:

l_bool l_ifc_init_SCI0 (void);

Table 9. Clear flag (continued)

l_flg_clr

DocID025766 Rev 1 15/62

UM1716 API

61

Table 11. Wake-up

l_ifc_wake_up

Prototype
(dynamic)

void l_ifc_wake_up (l_ifc_handle ifc);

Availability Master and slave nodes

Include lin.h

Description

Issues a wake-up signal on the interface given. (See [2] section 7.2.5.3).
The wake-up signal (0xF0 byte, i.e. a dominant pulse of between 250 µsec and 5 ms
depending on the configured bit rate) will be transmitted directly when this function is
called.
It is the responsibility of the application to retransmit the wake up signal according to
the wake up sequence (See [2] section 2.6.2.).

Parameters ifc – interface handle

Return None

Prototype
(static)

void l_ifc_wake_up_iii (void);

where iii denotes the interface to be woken up e.g. for the configured interface
SCI0 then the prototype:

void l_ifc_wake_up_SCI0 (void);

Table 12. Interface control

l_ifc_ioctl

Prototype
(dynamic)

l_u16 l_ifc_ioctl (l_ifc_handle ifc, l_ioctl_op

 operation, void* pParams);

Availability Master and slave nodes

Include lin.h

Description

Controls functionality that is not covered by the other API calls. It is used for protocol
specific parameters or hardware specific functionality. Example of such functionality
can be to switch on/off the wake up signal detection.

It controls protocol and interface specific parameters. The operations supported
depend on the interface type. The parameter block pParams is optional, set to null if
not needed otherwise to be interpreted as specified below. (See [2] section 7.2.5.4)
This function is currently implemented to support the operations listed below.

Parameters
ifc – interface to which the operation is to be applied
operation – the operation to be applied

pParams – optional parameter block

Return This depends on the operation requested

Prototype
(static)

l_u16 l_ifc_ioctl_iii (l_ioctl_op operation, void* pParams);
where iii denotes the interface to which the operation is to be applied e.g. for the
configured interface SCI0 then the prototype:

l_u16 l_ifc_ioctl_SCI0 (l_ioctl_op operation, void* pParams);

API UM1716

16/62 DocID025766 Rev 1

Operation

LIN_IOCTL_DRIVER_STATE

Returns in 16 bits two values; in the lower 8 bits the state of the driver and in the
upper 8 bits either the protected identifier of the frame currently being transferred or
0xff. The protected identifier is returned if the state is either
LIN_STATE_SEND_DATA or LIN_STATE_RECEIVE_DATA. Note that the definition
of driver states is currently located in the file lin_types.h.

Operation

LIN_IOCTL_READ_FRAME_ID

The parameter referenced by *pParams must match the type
l_frameMessageId_t defined in the file lin.h. The function sets the frame
identifier pParams->frameId and the frame index pParams->frameIndex that
matches the message ID
pParams->messageId. Returns 0 if successful or 1 if the message was not found.

Operation

LIN_IOCTL_READ_MESSAGE_ID

The parameter referenced by *pParams must match the type l_frameMessage_t
defined in the file lin.h. The function sets the message ID pParams->messageId
and the frame index
pParams->frameIndex that matches the message ID
pParams->messageId. Returns 0 if successful or 1 if the message ID was not
found.

Operation

LIN_IOCTL_READ_FRAME_ID_BY_INDEX

The parameter referenced by *pParams must match the type
l_frameMessageId_t defined in the file lin.h. The function sets the frame ID
pParams->frameId and the message ID
pParams->messageId for the frame indexed by
pParams->frameIndex. Returns 0 if successful or 1 if the index is invalid.

Operation

LIN_IOCTL_SET_FRAME_ID

The parameter referenced by *pParams must match the type
l_frameMessageId_t defined in the file lin.h. The function sets the frame ID for
the frame matching pParams->messageId to that given by pParams->frameId.
Returns 0 if success otherwise 1.

Operation
LIN_IOCTL_FORCE_BUSSLEEP

Forces the driver into sleep mode.

Operation

LIN_IOCTL_SET_VARIANT_ID

Sets the Variant ID part of the Product ID in a slave node. The default Variant ID
used for a slave node on startup is that which is given in the LDF.
The parameter referenced by *pParams must be of type l_u8.

Operation
LIN_IOCTL_READ_VARIANT_ID

Return the current value of the Variant ID. The parameter given by pParams is not
used and may be set to 0 in the function call.

Table 12. Interface control (continued)

l_ifc_ioctl

DocID025766 Rev 1 17/62

UM1716 API

61

Operation

LIN_IOCTL_READ_CONFIG_FLAGS

Returns a 16-bit value indicating which configuration flags are set. These flags are
set on successful completion of the corresponding diagnostic service. The flags are
only cleared when read using this operation.
Flags set are:

LIN_DIAG2_FLAGS_ASSIGN_FRAME_ID

LIN_DIAG2_FLAGS_ASSIGN_NAD

LIN_DIAG2_FLAGS_COND_CHANGE_NAD

LIN_DIAG2_FLAGS_READ_BY_ID

LIN_DIAG2_FLAGS_DATA_DUMP

Operation
LIN_IOCTL_READ_NAD

Returns a 16-bit value, the lower 8 bit being the diagnostic node address (NAD)
currently configured. pParams is not used and may be set to 0 in the function call.

Operation

LIN_IOCTL_WRITE_NAD

Sets the diagnostic node address (NAD) of the slave node to the l_u8 value of
*pParams. All values are accepted, values from 1 to 126 are specified by the
standard as the values to be used for diagnostic node addresses. Always returns
success i.e. 0.

Operation

LIN_IOCTL_WRITE_INITIAL_NAD

Sets the initial diagnostic node address (NAD) of the slave node to the l_u8 value of
*pParams. All values are accepted, values from 1 to 126 are specified by the
standard as values to be used for diagnostic node addresses. Always returns
success i.e. 0.

Note: this function shall be called after l_sys_init() but before
l_ifc_init() otherwise the initial NAD set with the call will
not be used by the driver to initialise the “current” NAD.

Table 13. Character received notification

l_ifc_rx

Prototype
(dynamic)

void l_ifc_rx (l_ifc_handle ifc);

Availability Master and slave nodes

Include lin.h

Description

To be called when the interface specified receives one character of data (See [2]
section 2.5.5).
The application program is responsible for binding the interrupt and for setting the
correct interface handle (if interrupt is used).
For UART based implementations it may be called from a user-defined interrupt
handler triggered by a UART when it receives one character of data. In this case the
function will perform necessary operations on the UART control registers. For more
complex LIN hardware it may be used to indicate the reception of a complete frame.
See also Section 4.5: Interrupt configuration.

Parameters ifc – the interface that received the data

Table 12. Interface control (continued)

l_ifc_ioctl

API UM1716

18/62 DocID025766 Rev 1

Return None

Prototype
(static)

void l_ifc_rx_iii (void);

where iii denotes the interface that received data e.g. for the configured interface
SCI0 then the prototype:

void l_ifc_rx_SCI0 (void);

Table 14. Character transmitted notification

l_ifc_rx

Prototype
(dynamic)

void l_ifc_tx (l_ifc_handle ifc);

Availability Master and slave nodes

Include lin.h

Description

To be called when the interface specified transmits one character of data (See [2]
section 7.2.5.6).
The application program is responsible for binding the interrupt and for setting the
correct interface handle (if interrupt is used).
For UART based implementations it may be called from a user-defined interrupt
handler triggered by a UART when it has transmitted one character of data.
In this case the function will perform necessary operations on the UART control
registers. For more complex LIN hardware it may be used to indicate the
transmission of a complete frame.
See also Section 4.5: Interrupt configuration.

Parameters ifc – the interface that sent the data

Return None

Prototype

(static)

void l_ifc_tx_iii (void);

where iii denotes the interface that transmitted data e.g. for the configured
interface SCI0 then the prototype;

void l_ifc_tx_SCI0 (void);

Table 15. Read interface status

l_ifc_read_status

Prototype
(dynamic)

l_u16 l_ifc_read_status (l_ifc_handle ifc);

Availability Master and slave nodes. The behaviour is different for master and slave nodes.

Include lin.h

Description Returns a 16-bit status frame for the specified interface.

Parameters ifc – the interface whose status is to be returned (See [2] section 7.2.5.8)

Table 13. Character received notification (continued)

l_ifc_rx

DocID025766 Rev 1 19/62

UM1716 API

61

Return

The status of the previous communication. Returned value is a status word (16 bit
frame): it’s only set based on a frame transmitted or received by the node (except
bus activity).

The call is a read-reset call; meaning that after the call has returned, the status word
is set to 0.

In the Master node the status word will be updated in the l_ifc_sch_tick() function.
In the slave node the status word is updated latest when the next frame is started.
The status word returned is defined as follows (bit 15 is MSB, bit 0 is LSB) see
Table 16:
bit0 – error in response: set if a frame error is detected in the frame response, e.g.
checksum error, framing error, etc. An error in the header results in the header not
being recognized and thus, the frame is ignored. It will not be set if there was no
response on a received frame. Also, it will not be set if there is an error in the
response (collision) of an event triggered frame.
bit1 – successful transfer: set if a frame has been transmitted/received without an
error
bit2 – overrun: set if two or more frames are processed since the last call to this
function. If set, bit0 and bit1 represent ‘OR’ed values for all processed frames
bit3 – go to sleep: set in a slave node if a go to sleep command has been received,
and set in a Master node when the go to sleep command is successfully transmitted
on the bus. After receiving the go to sleep command the power mode will not be
affected. This must be done in the application.

bit4 – bus activity: set if the node has detected bus activity on the bus. A slave node
is required to enter bus sleep mode after a period of bus inactivity on the bus: this
can be implemented by the application monitoring the bus activity.
(Bus inactivity in response: set if a frame error is detected in the frame response,
e.g. checksum error, framing error, etc. An error in the header results in the header
not being recognized and thus, the frame is ignored. It will not be set if there was no
response on a received frame. Also, it will not be set if there is an error in the
response (collision) of an event triggered frame.
bit1 – successful transfer: set if a frame has been transmitted/received without an
error
bit2 – overrun: set if two or more frames are processed since the last call to this
function. If set, bit0 and bit1 represent ‘OR’ed values for all processed frames
bit3 – goto sleep: set in a slave node if a go to sleep command has been received,
and set in a Master node when the go to sleep command is successfully transmitted
on the bus. After receiving the go to sleep command the power mode will not be
affected. This must be done in the application.

bit4 – bus activity: set if the node has detected bus activity on the bus. A slave node
is required to enter bus sleep mode after a period of bus inactivity on the bus: this
can be implemented by the application monitoring the bus activity.
(Bus inactivconfiguration: is set when the save configuration request has been
successfully received. It is set only in the slave node, in the Master node it is always
0 (zero).
bit7 – value 0
bit8-bit15 – last frame protected identifier: the protected identifier last detected on
the bus and processed in the node. If the overrun bit i.e. bit2 is set, only the last
value is maintained.

Table 15. Read interface status (continued)

l_ifc_read_status

API UM1716

20/62 DocID025766 Rev 1

3.4 Diagnostic API

3.4.1 Node configuration (diagnostic) specific API

Prototype
(static)

l_u16 l_ifc_read_status_iii (void);

where iii denotes the interface whose status is to be read e.g. for the configured
interface SCI0 then the prototype:

void l_ifc_read_status_SCI0 (void);

Table 16. Description of l_ifc_read_status returned value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Last frame PID 0
Save

configura
-tion

Event-
triggered

frame

collision

Bus

activity

Go to

sleep
Overrun

Successful

transfer

Response

error

Table 17. Read configuration

ld_read_configuration

Prototype

l_u8 ld_read_configuration (l_ifc_handle ifc,

 l_u8 *const data,

 l_u8 *const length);

Availability Slave node only

Include lin.h

Description

It serializes the current configuration and copy it to the area (data pointer) provided
by the application. It will not transport anything on the bus.
(See [2] section 7.3.1.6)

To be called when the save configuration request flag is set in the status register
(See [2] section 7.2.5.8).

After the call is finished the application is responsible to store the data in appropriate
memory.

The caller shall reserve bytes in the data area equal to length, before calling this
function.

The function will set the length parameter to the actual size of the configuration.
In case the data area is too short the function will return with no action.
In case the NAD has not been set by a previous call to ld_set_configuration or the
master node has used the configuration services, the returned NAD will be the initial
NAD.
The data contains the NAD and the PIDs and occupies one byte each. The structure
of the data is: NAD and then all PIDs for the frames. The order of the PIDs is the
same as the frame list in the LDF and NCF (See [2] section 9.2.2.2 and section 8.2.5
respectively).

Table 15. Read interface status (continued)

l_ifc_read_status

DocID025766 Rev 1 21/62

UM1716 API

61

3.4.2 Diagnostic transport layer

Parameters

ifc – the interface to address
data – structure that will contain the NAD and all the n PIDs for the frames of the
specified NAD
length – length of data (1+n, NAD+PIDs)

Return
LD_READ_OK If the service was successful.
LD_LENGTH_TOO_SHORT If the configuration size is greater than the length. It
means that the data area does not contain a valid configuration.

Table 18. Set configuration

ld_set_configuration

Prototype
l_u8 ld_set_configuration (l_ifc_handle ifc,

const l_u8 *const data, l_u16 length);

Availability Slave node only

Include lin.h

Description

It configures the NAD and the PIDs according to the configuration given by data. It
will not transport anything on the bus. (See [2] section 7.3.1.7)
To be called when it wants to restore a saved configuration or set an initial
configuration (e.g. coded by I/O pins).It shall be called after calling l_ifc_init().
The caller shall set the size of the data area before calling it.

The data contains the NAD and the PIDs and occupies one byte each.
The structure of the data is: NAD and then all PIDs for the frames.
The order of the PIDs is the same as the frame list in the LDF and NCF (See [2]
section 9.2.2.2 and section 8.2.5 respectively).

Parameters

ifc – the interface to address
data – structure containing the NAD and all the n PIDs for the frames of the
specified NAD
length – length of data (1+n, NAD+PIDs)

Return

LD_SET_OK
If the service was successful.

LD_LENGTH_NOT_CORRECT
If the required size of the configuration is not equal to the given length.

LD_DATA_ERROR
The set of configuration could not be made.

Table 19. Initialization

ld_init

Prototype void ld_init (l_ifc_handle ifc);

Availability Master and slave nodes

Include lin.h

Table 17. Read configuration (continued)

ld_read_configuration

API UM1716

22/62 DocID025766 Rev 1

Description

(Re)Initialize the raw and the cooked layers on the interface ifc.
All transport layer buffers will be initialized (See [2] section 7.4.2)

If there is an ongoing diagnostic frame transporting a cooked or raw message on the
bus, it will not be aborted.

Parameters ifc – the interface handle

Return None

Table 19. Initialization (continued)

ld_init

DocID025766 Rev 1 23/62

UM1716 API

61

3.4.3 Diagnostic transport layer: RAW API

Table 20. Put raw frame

ld_put_raw

Prototype void ld_put_raw (l_ifc_handle ifc, const l_u8* const pData);

Include lin.h

Description
Queue a raw diagnostic frame for transmission. (LIN API 4.1.1)
Note: the application should check ld_raw_tx_status before attempting to queue
a frame – if no space is available data is discarded

Parameters
ifc – the interface handle
pData – pointer to the data to be queued

Return None

Table 21. Get raw frame

ld_get_raw

Prototype void ld_get_raw (l_ifc_handle ifc, l_u8* const pData);

Include lin.h

Description
Copy the oldest frame on the receive-stack to the buffer provided (LIN API 4.1.2).
ld_raw_rx_status should be checked first as the ld_get_raw function does not
report whether a frame has been copied or not.

Parameters
ifc – interface handle
pData – pointer to the buffer into which the frame is to be copied

Return None

Table 22. Query raw transmit-queue status

ld_raw_tx_status

Prototype l_u8 ld_raw_tx_status (l_ifc_handle ifc);

Include lin.h

Description Return the status of the raw frame transmission queue. (LIN API 4.1.3)

Parameters ifc – interface handle

Return

LD_QUEUE_FULL – transmit-queue is full and cannot accept further frames
LD_QUEUE_EMPTY – transmit-queue is empty i.e. all frames have been
transmitted
LD_QUEUE_READY – transmit-queue is ready to receive further frames for
transmission
LD_TRANSFER_ERROR – LIN protocol errors occurred during transfer, abort and
re-try

API UM1716

24/62 DocID025766 Rev 1

3.4.4 Diagnostic transport layer: COOKED API

Table 23. Query raw receive-queue status

ld_raw_rx_status

Prototype l_u8 ld_raw_rx_status (l_ifc_handle ifc);

Include lin.h

Description Return the status of the raw frame receive-queue. (LIN API 4.1.4)

Parameters ifc – interface handle

Return

LD_DATA_AVAILABLE – receive-queue contains data that can be read

LD_QUEUE_EMPTY – receive-queue does not contain any data
LD_TRANSFER_ERROR – LIN protocol errors occurred during transfer, abort and
re-try

Table 24. Send message

ld_send_message

Prototype

void ld_send_message (l_ifc_handle ifc, l_u16 length,

 l_u8 nad, const l_u8* const

 pData);

Include lin.h

Description

Pack the information given by data and length into one or more diagnostic frames
and send. If called from a master node the frames are sent to the node with address
nad. If called from a slave node the frames are sent to the master. (LIN API 4.2.1)
The call returns immediately.

Parameters

ifc – interface handle
length – in range 1 - 4095 bytes
nad – address of node

pData – pointer to the data to be sent

Return None

DocID025766 Rev 1 25/62

UM1716 API

61

Table 25. Receive message

ld_receive_message

Prototype

void ld_receive_message (l_ifc_handle ifc, l_u16*

 length, l_u8* nad, l_u8*

 const pData);

Include lin.h

Description

Prepare the module to receive one message and store it in the buffer given. When
the call is made, length specifies the maximum length allowed. After the call, length
specifies the actual length and if called from a master node, then nad is assigned the
value of the nad in the message. (LIN API 4.2.2)

The call returns immediately. The buffer should not be changed by the application as
long as ld_rx_status returns LD_IN_PROGRESS.

Note: SID (or RSID) must be the first byte in the data area and is included in the
length.

Parameters

ifc – interface handle
length – in range 1 - 4095

nad – address of node
pData – pointer to buffer into which the data will be written

Return None

Table 26. Get transmit-queue status

ld_tx_status

Prototype l_u8 ld_tx_status (l_ifc_handle ifc);

Include lin.h

Description Return the status of the last call made to ld_send_message (LIN API 4.2.3)

Parameters ifc – interface handle

Return

LD_IN_PROGRESS – transmission not yet completed

LD_COMPLETED – transmission completed successfully
LD_FAILED – transmission ended with an error, data partially sent

Table 27. Get receive-queue status

ld_rx_status

Prototype l_u8 ld_rx_status (l_ifc_handle ifc);

Include lin.h

Description
Return the status of the last call made to ld_receive_message. (See [2] section
7.2.5.7)

Parameters ifc – interface handle

Return

LD_IN_PROGRESS – reception not yet complete

LD_COMPLETED – reception completed successfully
LD_FAILED – reception ended with an error, data partially received

API UM1716

26/62 DocID025766 Rev 1

3.5 Slave specific API

3.5.1 Interface management

Table 28. Slave synchronise

l_ifc_aux

Prototype
(dynamic)

void l_ifc_aux (l_ifc_handle ifc);

Availability Slave node only

Include lin.h

Description

Synchronizes to the BREAK and SYNC characters sent by the master on the
interface specified. (see [2] section 7.2.5.7)

Note: This function is redundant for the currently delivered drivers and
is therefore implemented as a null function.

Parameters ifc – interface handle

Return None

Prototype
(static)

void l_ifc_aux_iii (void);

where iii denotes the interface e.g. for the configured interface SCI0 then the
prototype:
void l_ifc_aux_SCI0 (void);

Table 29. Read by ID callout

ld_read_by_id_callout

Prototype

l_u8 ld_read_by_id_callout (l_ifc_handle ifc,

 l_u8 id,

 l_u8* data);

Availability
Slave node only (optional: if it’s used, the slave node application must implement this
callout).

Include lin.h

Description

To be used when the master node transmits a read by identifier request with an
identifier in the user defined area.
The slave node application will be called from the driver when such request is
received.
(see [2] section 7.3.3.2)

DocID025766 Rev 1 27/62

UM1716 API

61

3.6 STMicroelectronics extensions

Parameters

ifc – interface handle
id – the identifier in the user defined area (32 to 63), from the read by id
configuration request. (see [2] Table 4.19)
data – pointer to a data area with 5 bytes. This area will be used by the application
to set up the positive response (see [2], the user defined area in Table 4.20).

Return

The driver will act according to the following return values from the application:
LD_NEGATIVE_RESPONSE The slave node will respond with a negative
 response (see [2] , Table 4.21). In this

 case the data area is not considered.
LD_POSTIVE_RESPONSE The slave node will setup a positive response
 using the data provided by the application.

LD_NO_RESPONSE The slave node will not answer.

Table 30. Software Timer Function

l_timer_tick

Prototype void l_timer_tick (void);

Include lin.h

Description

Handles a software timer interrupt. Internal LIN timers are advanced and expired
timers are evaluated.

This function should be called every LIN_TIME_BASE_IN_MS ms by the user’s
application if a hardware timer has not been configured. See also Section 4.4: User
configuration.

Parameters None

Return None

Table 31. Protocol Switch

 l_protocol_switch

Prototype
void l_protocol_switch (l_ifc_handle ifc; l_bool

 linEnable);

Include lin.h

Description

Switches the LIN protocol on or off for a specified interface. This function provides
the possibility to use an alternative protocol on a given interface. The ISR checks to
see if LIN is enabled. If not, a callback function that is provided as an entry point to
the alternative protocol handler will be called. This callback must be configured as
described in Section 4.4.5: Callback functions.

Parameters
ifc – interface handle
linEnable – if 1 then switch LIN on, if 0 then off

Return None

Table 29. Read by ID callout (continued)

ld_read_by_id_callout

API UM1716

28/62 DocID025766 Rev 1

3.7 Implementation Notes

3.7.1 API data types

Certain types defined as part of the standard API are not supported by the driver. This means that the
application may not define variables to be of these types directly. The types that are not defined are
l_signal_handle, l_frame_handle and l_flag_handle.

Note that the application may only use the signals, frames and schedules by their name as defined in the
LDF when calling the dynamic interface. The interface name to be used is as defined in the lingen control
file. Flag names are based on the signals and frames defined in the LDF.

Please also refer to Section 2.4: Using the driver for naming conventions used by the driver.

3.7.2 Notification flags

The notification flags are used to indicate signal or frame updates i.e. that the transfer of signal or frames
has taken place.

Due to the asynchronous nature of the execution of the application and driver, it is possible that
unexpected behaviour may occur as shown by the following example:

Table 32. Set baud rate

 l_change_baudrate

Prototype
void l_change_baudrate (l_ifc_handle ifc, l_u16

 baudrate);

Include lin.h

Description

Sets the baudrate for the specified interface. This function should only be called from
the callback function that is invoked by the driver when an incorrect (too high)
baudrate is detected. The callback function must be configured as described in
Section 4.4.5: Callback functions.

Parameters
ifc – interface handle

baudrate – the baudrate to set for the interface

Return None

Table 33. Raw Tx Frame Delete

ld_raw_tx_delete

Prototype void ld_raw_tx_frame_delete(l_ifc_handle ifc);

Include lin.h

Description
This function removes the oldest Raw Tx frame that has been put on the Tx stack
using ld_put_raw().

Parameters ifc – interface handle

Return 1 if a frame has been removed, 0 if no Raw Tx frame was on the stack.

DocID025766 Rev 1 29/62

UM1716 API

61

1. The driver (master or slave) detects that a frame must be sent and composes its frame buffer. It will
copy the current values of the signals into the frame buffer and start transmission.

2. The user application writes a signal that is contained in the frame currently being transferred.
Perhaps it even resets the Tx flag to be notified when the signal has been sent. However, the
transfer of the frame is still in progress!

3. The driver finishes the transfer of the frame (successfully). It will then mark the frame and all signals
within as transferred.

4. The user application polls the Tx flag and receives 1. It will then of course suppose that the value
just written has been transferred. Instead, the value that was originally valid has been transferred.

A possible workaround would be to use the l_ifc_ioctl() function to query the driver state before
writing new signal values. If a frame is in transfer then the query returns the pID as well as the driver state
and so the application can check if the signal to be written is part of the current frame transfer or not. See
Section 3.3.4: Interface management for further details of the l_ifc_ioctl() function.

Driver configuration UM1716

30/62 DocID025766 Rev 1

4 Driver configuration

This section describes the configuration and build of the driver including hardware specific settings
required.

4.1 File and directory structure
The LIN driver consists of four different groups of source files:

• Generic files for all architectures

• Hardware specific files

• User configurable files

• Configuration files generated by the tool lingen (supplied)

The user configurable files, the tool lingen, the control file and the LDF files required for generation may
be located in a directory of the user's choice. This must then be specified in the top-level makefile as
described in the Section 4.2: Makefiles.

The driver specific makefile Make_LIN (delivered) assumes a particular directory structure. The top-level
directory is referred to by the variable LIN_SRC_PATH and must be configured in the top-level makefile,
see Section 4.2: Makefiles. Its sub-directories are expected in Table 34:

4.2 Makefiles
The LIN driver is delivered together with two makefiles that can be used to build a library containing the
required functionality.

• These are the files Make_LIN and an example top-level makefile. The top-level makefile includes
the settings for environment variables, see Section 4.2.1: Top-level makefile.

• The file Make_LIN controls the build process and is designed to be included in the toplevel makefile.

4.2.1 Top-level makefile

This file must include definitions for the following variables:

Table 34. Directory structure

Top directory Subdirectory Comment

LIN_SRC_PATH

node_type
node_type is “master” if master node
otherwise “slave”

general as given

diag as given

timer as given

arch/ arch_name
arch_name specifies the specific
architecture for which the driver will be built

DocID025766 Rev 1 31/62

UM1716 Driver configuration

61

In addition, the optional makefile variable LIN_LDF_FILES may be set by the user. This can be used to
list the LDF filename(s) to be included in the dependency checks during the make process.

Following the definitions of the variables the file Make_LIN should be included:
include < path_to_MakeLIN > /Make_LIN

where < path_to_MakeLIN > specifies the location of Make_LIN.

The generation of the LIN library can then be included as follows:
make $(LIN_OBJ_PATH)/lin.lib

or by including $(LIN_OBJ_PATH/lin.lib in the target build instruction.

A sample makefile is delivered with the driver. This can be used as a basis for development purposes.

Table 35. Top-level makefile predefined variable definition

Name Description

LIN_NODE_IDENTITY this must be set to MASTER_NODE for a master node driver or
SLAVE_NODE for a slave node driver

LIN_CC compiler command

LIN_CC_OPT compiler options

LIN_CC_INC include directories for the compilation process

LIN_MAKE_PATH path to Make_LIN file

LIN_OBJ_PATH path in which to generate object files

LIN_LIB the lib generation tool

LIN_TMP_FILE the name for temporary file

LIN_SRC_PATH top-level directory of the LIN driver

LIN_CFG_PATH the directory containing the configuration information for the cluster
and the driver. The lingen control file and the files lin_def.h and
lin_def.c and lin_def_archname.h must be located in this directory.
The file lin_def_archname.h is the architecture specific user
configuration file – archname refers to the specific architecture
name.

LIN_GEN_PATH the directory in which generated files are written. This is used for the
–o option for lingen in the file Make_LIN

LIN_LINGEN_BIN the command used to invoke lingen

LIN_NODE the name of the node as is defined in the LDF. If multiple interfaces
are defined for a master node then the name given in the associated
LDF files should be the same throughout.

LIN_LINGEN_CONTROL the name of the control file used by lingen

LIN_LINGEN_OPTS options to be used by the lingen tool. Details of options are given in
Section 4.3: Cluster configuration

Driver configuration UM1716

32/62 DocID025766 Rev 1

4.3 Cluster configuration

4.3.1 Cluster description

The description of the node and cluster must be provided in a LIN description file (LDF) in accordance
with the LIN 2.1 standard. An example LIN 2.0 LDF is provided in Section 6.2: LIN 2.0 LDF example. The
lingen tool delivered with the driver suite can be used to convert the information given in the LDF into the
appropriate format used internally by the driver.

In addition to the cluster description, the user must specify which hardware interface(s) are to be used –
this information is specified in the lingen control file that is used as input to the lingen tool.

A slave node only supports one interface and therefore only one LDF file is needed for a slave. The
lingen control file is then used to specify this interface and the name of the LDF file to be used.

In addition to this interface definition, the user may also specify the use of default frame identifiers in the
lingen control file for a slave. In this case, the default values given in the LDF file will be used for all slave
frames. This means that the slave nodes may start communicating without having been first configured
by the master node. This behaviour is then no longer in conformance with the standard.

The format of the lingen control file is specified in Section 5.1: lingen control file and is shown in the
following example:

//

// lingen control file defining one interface

//

Interfaces

{

SCI0: “/home/LIN/src/lin_config/lin_sci0.ldf”, “IFC0”;

}

//

//specify that slave nodes will start with default frame IDs

//

LIN_use_default_frame_ids;

The interface entries consist of three parts: the interface name, the LDF file to be associated with this
interface and an optional tag field.

The location of the LDF file should be completely specified i.e. the absolute path should be given.

The tag entry is concatenated with all frame names and signal names when lingen processes the LDF
files. For example, a signal name “s1_sig1” in the LDF file lin_sci0.ldf listed above will appear in
code as “LIN_SIGNAL_IFC0_s1_sig1”.

The interface name given in the control file depends on the actual hardware used. Following the interface
definition the user may specify the use of default frame IDs as described earlier.

If the lingen tool is to be called from within the make process then the name of the control file must be
set by the user in the top-level makefile as described in Section 4.2.1: Top-level makefile.

DocID025766 Rev 1 33/62

UM1716 Driver configuration

61

4.3.2 Lingen

From the information given in the lingen control file and the associated LDF file, a set of configuration
files can be generated using the lingen tool provided. Inputs and outputs for lingen are depicted in
Figure 2: Lingen workflow.

Figure 2. Lingen workflow

The file lin_cfg_types.h contains the type definitions needed for the driver. lin_cfg.h contains
static macros e.g. for accessing configured signals and lin_cfg.c contains initialised data structures in
accordance with the information given in the LDF.

lingen is started automatically from the makefile but can be manually executed using the following
command format:

lingen nodeIdentifier [options] lingen_control_file

where

nodeIdentifieris the name of the node given in the LDF files for which the driver is to be built (in the case
of a master this must be the same in all ldfs – in the case of a slave there is only one ldfsupported)

lingen_control_fileis the name of the control unit input to lingen

Driver configuration UM1716

34/62 DocID025766 Rev 1

The following options are currently supported:

• options

• -c configurationspecifies which of the possible configurations given in the LDF is to be used for the
build

• -o outputDirectoryspecifies the destination for the configuration files that are to be generated

• -r receiveChecksumselects the checksum model to be used for receiving frames. Possible values
are: ldf – the lingen tool determines the checksum model from the information given in the LDF.
This is the default. both – the driver accepts either model for all frames

• -s sendChecksumselects the checksum model to be used for sending frames. Possible values are:
ldf – the lingen tool determines the checksum model from the information given in the LDF. This is
the default. classic – the driver sends all frames using the classic checksum

• -vverbose mode, details from lingen will be output to the shell

Note: That the option -o is set in the file Make_LIN and should not be set in the top-level makefile.
The -o option is set to LIN_GEN_PATH and it is not recommended that this setting be
changed by the user unless the file Make_LIN is to be replaced.

4.4 User configuration
There are two header files that contain settings that must be configured by the user; lin_def.h and
lin_def_archname.h where archname refers to a specific architecture.

The architecture dependent settings contained in lin_def_archname.h are described in the
corresponding Architecture Notes document.

The following sections list the settings that must be configured and which are contained in the header file
lin_def.h.

4.4.1 Timers

The LIN driver uses a timer for monitoring bus activity e.g. while sending frames or checking for bussleep
conditions. This may be a hardware timer or a software timer and must be configured by the user in the
architecture specific configuration file lin_def_archname.h.

If a hardware timer is selected then the timer number must also be configured according to the
architecture in use. The architecture specific notes describe which values may be used.

A time base for the timer must be configured in the file lin_def.h. This time base specifies the
frequency at which the driver's timer routine must be called.

If a software timer is used then this time base gives the frequency at which the API function
l_timer_tick() must be called by the user's application or OS.

If a hardware timer interrupt has been configured then the driver sets the timer so that the timer ISR will
be called at this frequency.

The recommended value for the time base is either 1 or 2ms and is set as follows:
/***

 *

 * Set the time base of the lin timer in ms.

 * This is the time base of the timer ticks of the application

 * driven timer or the time base of the hardware timer

 *

DocID025766 Rev 1 35/62

UM1716 Driver configuration

61

 **/

#define LIN_TIME_BASE_IN_MS 1

Further details concerning the use of a hardware timer are described in the architecture specific notes.

4.4.2 General settings

Further settings that must be specified by the user are described below.

Checking function parameters

The driver may be built either for development or for production purposes.

The development version includes a more extensive check on parameters passed to functions. These
may not be necessary for a production version and so the checking may be reduced if desired by
changing the following switch:

/***

 * Set the driver for development or production:

 *

 *

 * For development:

 * #define LIN_DEVELOPMENT, several checks of input parameters

 * are performed. This will be quite useful for debugging

 * during the development phase.

 *

 * For production:

 * #undef LIN_DEVELOPMENT, only a few checks on the input

 * parameters of the functions are performed. Activate this

 * for smaller and faster code for the production phase after

 * development.

 **/

#define LIN_DEVELOPMENT

The maximum time for transfer of a frame can also be configured as a percentage of the nominal transfer
time (the default setting of 140 corresponds to that specified in the LIN2.0 standard):
/***

 *

 * select the maximum frame transfer time in multiples of the

 * nominal time (*100)

 *

 **/

#define LIN_FRAME_TIME_MULTIPLIER 140

The number of bits to be used for a normal break signal can be configured by changing the following
setting. However, it is not normally recommended to change this value from the LIN standard value of 13
bits.
/***

 *

Driver configuration UM1716

36/62 DocID025766 Rev 1

 * length of the break signal in bit times (nr of bits)

 * recommended is 13

 * Please adjust LIN_FRAME_TIME_MULTIPLIER if necessary

 *

 **/

#define LIN_BREAK_DURATION_BITS 13

According to the LIN 2.0 standard, a slave node shall be able to detect a BREAK at any time. The current
frame processing shall be interrupted and the new frame shall then be processed. A BREAK is detected
by the driver through a framing error. This may occur at any time i.e. during the transmission of a data
byte or between transmissions of data bytes. The following switch allows the user to decide if all framing
errors should be treated as a possible BREAK or not. Defining the switch will force the driver to examine
the information last received over the bus. Only a BREAK character that does not occur during the
transmission of a data byte will be accepted as a valid BREAK.

/***

 * The slave driver is able to detect a new BREAK character

 * during an ongoing frame transfer (if supported by

 * hardware). This is detected through a framing error and may

 * occur at any time.

 * If LIN_FORCE_STANDALONE_BREAK is *not* defined, any framing

 * error will be considered as a possible BREAK character,

 * even if this occurs during the transmission of a data byte.

 * Otherwise a framing error will only be considered as a

 * possible break if it occurs between transmission of data

 * bytes.

 *

 **/

#undef LIN_FORCE_STANDALONE_BREAK

Additionally, a longer break signal is required for drivers in a Cooling V2.0 network and so the standard
13 bit break signal can be lengthened to 36 bits for a 19,200 baudrate network or 18 bits in a 9,600
baudrate network or equivalent.

If the Cooling feature is to be used then it must be activated:

/***

 *

 * Activate the Cooling option with #define LIN_USE_COOLING

 * Deactivate it with #undef LIN_USE_COOLING

 *

 **/

#define LIN_USE_COOLING

and the break length to be used set:
#ifdef LIN_USE_COOLING

 /***

 *

DocID025766 Rev 1 37/62

UM1716 Driver configuration

61

 * length of the break signal in bit times (nr of bits)

 * Please adjust LIN_FRAME_TIME_MULTIPLIER if necessary

 *

 **/

 #define LIN_COOLING_BREAK_DURATION_BITS 36

#endif

Activating Cooling provides the user with an additional interface function l_ifc_set_cooling_break
that may be called from the application when a longer break is needed. This interface function may be
used to toggle the length of the break between the configured cooling break length and the configured
normal break length as required.

The start-up behaviour of LIN nodes can be influenced by two settings. The first option is to start the
slave node's bussleep timer going when a slave node connects to the network. If this is set then the slave
will enter sleep mode if no activity is detected.

Additionally, a master node can be set up to send a wakeup signal on connecting to the network. Note
that if a slave is set up to start the bussleep timer on connect then the master should be set to send a
wakeup. If not, and the master does not start to send within 4 seconds, then the slave will enter sleep
mode. In this case the slave node will not be ready to receive frames as it expects to receive a wakeup
signal first.

The following two settings can be used for this purpose:
/***

 *

 * select whether the slave node will start the bussleep timer

 * on connect

 * Note: The slave may lose the first frame if the master

 * node does not start with a Wakeup signal followed by

 * 100ms silence

 *

 ***/

#define LIN_START_BUSSLEEP_TIMER_ON_CONNECT

/***

 *

 * select whether the master node should start a wakeup

 * sequence on connect

 *

 **/

#define LIN_SEND_WAKEUP_SIG_ON_CONNECT

When receiving frames, pIDs are validated against stored pIDs. However, there is no validation of pIDs
when assigned by the master or by the slave application. Therefore an option to validate pIDs on
assignment is provided. The following definition can be used for this purpose:
#define LIN_INCLUDE_PID_PARITY_CHECK

Driver configuration UM1716

38/62 DocID025766 Rev 1

Note: That validation is only carried out on assignment and not on reception of each frame.

In LIN 1.2/1.3 nodes, the API functions l_ifc_goto_sleep() and l_ifc_wake_up() were not
defined. Use the following definition if LIN 1.2/1.3 nodes built should include these two API functions:
/***

 * LIN 1.2/1.3 specific setting

 * #define this if you want to use LIN 2.x goto sleep/wakeup

 * API for LIN 1.2/1.3

 **/

#define LIN_INCLUDE_2x_SLEEP_MODE_API

The default value for bussleep timeout is given in the LIN2.x standard as 4 seconds. For a wakeup
request issued by a node, the period between successive retries is 150ms. After three failed attempts the
node must wait 1.5s before issuing further wakeup requests. These values may be configured by the
user as follows:
/***

 * LIN 2.x specific setting

 * The value for the bussleep timeout is configurable here (in

 * milliseconds). The recommended default value given in the

 * standard is 4secs.

 * The other two definitions give the period between the

 * signals in milliseconds, the standard demands 150 and 1500

 * msecs

 **/

#ifndef LIN_13

 #define LIN_BUSSLEEP_TIMEOUT_VAL(IFC) (l_u16) 4000

 #define LIN_WAKEUP_TIMEOUT_VAL_SHORT(IFC) (l_u16) 150

 #define LIN_WAKEUP_TIMEOUT_VAL_LONG(IFC) (l_u16) 1500

#endif

The maximum number of retries that may be attempted may also be configured:
/***

 * The number of wakeup retries to send

 * If after a wakeup signal from the slave the master does not

 * start to send frame headers, the slave may retry to send

 * the wakeup signal. The define gives the maximum number of

 * retries

 **/

#define LIN_WAKEUP_RETRIES_MAX 3

Note: Setting this value to zero means that the driver will not stop sending wakeup signals when
there is no response from the master.

DocID025766 Rev 1 39/62

UM1716 Driver configuration

61

4.4.3 Diagnostic functions configuration

The functions of the diagnostic module can be individually selected as detailed below. The default
settings on delivery of the driver reflect the requirements in the standard. The following definitions are
used for this purpose:

/***

 *

 * Configuration features. Select by define'ing.

 * Default values match the mandatory services defined by the

 * standard

 *

 **/

/***

 * service Assign Frame Id (mandatory for LIN 2.0, obsolete

 * for LIN 2.1)

 **/

#undef LIN_INCLUDE_ASSIGN_FRAME_ID

/***

 * service Assign NAD (optional for LIN 2.x)

 **/

#define LIN_INCLUDE_ASSIGN_NAD

Also if the “Assign NAD” service is optional, it’s enabled because it’s called in the
Initialization table of the demo present in the LDF file of the LIN 2.1 package and is
required to configure slave nodes.

/***

 * service Read By Id (mandatory for LIN 2.x)

 **/

#define LIN_INCLUDE_READ_BY_ID

/***

 *service Conditional Change NAD (optional for LIN 2.x)

 **/

#undef LIN_INCLUDE_COND_CHANGE_NAD

/***

 * service Data Dump (optional for LIN 2.x))

 * Note: The standard strongly discourages use of this service

 * in operational LIN clusters

Driver configuration UM1716

40/62 DocID025766 Rev 1

 **/

#undef LIN_INCLUDE_DATA_DUMP

/***

 *

 * choose Serial Number (optional for Slave node)

 * Slave node may have a serial number to identify a specific

 * instance of a slave node product. The serial number is 4

 * bytes long.

**/

#define SERIAL_NUMBER 0xFFFF

Following services (Save Configuration and Assign Frame Id Range) are valid only for LIN 2.1:

#ifdef LIN_21

/***

 * service Save Configuration (optional for LIN 2.1)

 **/

#define LIN_INCLUDE_SAVE_CONFIGURATION

/***

 * service Assign Frame Id Range (mandatory for LIN 2.1)

 **/

#define LIN_INCLUDE_ASSIGN_FRAME_ID_RANGE

Also if the “Save Configuration” service is optional, it’s enabled because it’s called
in the Initialization table of the demo present in the LDF file of the LIN 2.1 package.

4.4.4 Diagnostic class

Diagnostic class is valid and mandatory only for LIN 2.1 slave nodes, and will be used to:

• Do a cross check between LDF and the same class, to understand if the slave node is able to do
diagnostic;

• Understand which diagnostic services, the slave node will be able to respond to;

• Know which Configuration and Identification services will be supported;

• Understand if the slave node is able to support the Transport

• Protocol;

• Understand if the slave node is able to be reprogrammed (only class 3).

/***

 * choose Diagnostic Class (mandatory for LIN 2.1 slave node)

 * LIN 2.1 slave nodes must have a Diagnostic Class value

DocID025766 Rev 1 41/62

UM1716 Driver configuration

61

 * defined.

 * This value can be: 1,2 or 3 (other values will involve in

 * an error).

 **/

/*

 * DIAGNOSTIC_CLASS 1: Only the node configuration services

 * are supported.

 * The slave does not support any other diagnostic services.

 * Single frames (SF) transport protocol support is

 * sufficient.

 * Node Identification is limited to the mandatory read by

 * identifier service.

 *

 * DIAGNOSTIC_CLASS 2: Node configuration and identification

 * services are supported.

 * Full transport layer implementation is required to support

 * multi-frame transmissions.

 * Node Identification is extended to all the Read By Id

 * services. Slave-nodes will support a set of ISO 14229-1

 * diagnostic services like Node identification (SID 0x22),

 * Reading data parameter (SID 0x22) if applicable, Writing

 * parameters (SID 0x2E) if applicable.

 *

 * DIAGNOSTIC_CLASS 3: Node configuration and identification

 * services are supported.

 * Full transport layer implementation is required to support

 * multi-frame transmissions.

 * Node Identification is extended to all the Read By Id

 * services. Slave-nodes shall support all services as of

 * Class II.

 * Additionally, other services may be supported depending on

 * the features which are implemented by the slave node:

 * for example Session control (SID 0x10), I/O control by

 * identifier (0x2F), Read and clear DTC (SID 0x19, 0x14).

 * Only class 3 slave nodes can reprogram the application via

 * the LIN bus.

 **/

#define LIN_DIAGNOSTIC_CLASS 1

 #ifdef LIN_SLAVE_NODE

 #ifndef LIN_DIAGNOSTIC_CLASS

 #error "For a LIN 2.1 slave node, LIN Diagnostic Class is

 mandatory and must be defined!"

 #endif

Driver configuration UM1716

42/62 DocID025766 Rev 1

 #if ((LIN_DIAGNOSTIC_CLASS < 1) ||

 (LIN_DIAGNOSTIC_CLASS > 3))

 #error "LIN 2.1 Diagnostic Class value can be 1,2 or 3!"

 #endif

 #else

 #if ((!defined(LIN_MASTER_ONLY)) ||

 (!defined(LIN_SLAVE_ONLY)))

 #error "A master node must support the Interleaved

 Diagnostics schedule Mode (mandatory)!"

 #endif

 #endif

#endif /* LIN_21 */

/***

 *

 * LIN TP features. Select by define'ing.

 * TP is disabled by default

 *

 **/

/***

 * the cooked diagnostic TP

 **/

#undef LIN_INCLUDE_COOKED_TP

/***

 * the raw diagnostic TP

 **/

#undef LIN_INCLUDE_RAW_TP

For the Raw TP the size of the Rx and Tx FIFO stack can be configured using the definition:
/***

 * define the stack size of the raw tp fifo stacks

 * (in numbers of frames)

 **/

#define LIN_DIAG3_FIFO_SIZE_MAX 1

DocID025766 Rev 1 43/62

UM1716 Driver configuration

61

4.4.5 Callback functions

Interrupt callback functions

Two callback functions must also be provided by the user: these allow the driver to enable or disable
interrupts in the system. The function prototypes are described below and their implementations must be
provided by the user. This could be, for example, in the lin_def.c file located in the user's configuration
directory. The function prototypes are defined as follows.

An example implementation that could be used is given in Section 6.4: Example implementation of IRQ
callbacks.

The LIN driver will use these user-defined functions in each call to an API function. Interrupts will be
disabled on entering the API function and then re-enabled before returning. This means that the callback
functions provided for the driver must handle nested calls. In the case where an API function is called
and interrupts have already been disabled, interrupts shall only be re-enabled at the outermost call to the
l_sys_irq_restore() function.

The OSEK functions SuspendOSInterrupts and RestoreOSInterrupts shown in example
Section 6.4: Example implementation of IRQ callbacks satisfy this criterion.

Protocol switch callback function

It is possible to change the protocol in use for a particular interface that is usually operating with LIN. This
is done by the application using the l_protocol_switch() function with its parameter set to disable
LIN. When LIN is disabled a callback function is used by the ISR as an entry to the alternative protocol.
This callback function must be provided by the user and comply with the prototype given in Table 38.

Table 36. Disable Interrupts

l_sys_irq_disable

Prototype l_irqmask l_sys_irq_disable (void);

Description Achieves a state in which no controller interrupts may occur

Parameters None

Return interrupt mask describing the state of the interrupts at time of call

Table 37. Restore Interrupts

 l_sys_irq_restore

Prototype void l_sys_irq_restore (l_irqmask irqMask);

Description Restores the state of interrupts as given by irqMask

Parameters irqMask – mask containing state of interrupts to be restored

Return None

Driver configuration UM1716

44/62 DocID025766 Rev 1

To enable the use of this feature the following line must also be included in lin_def.h:
#define LIN_PROTOCOL_SWITCH

Diagnostic callback functions

For the diagnostic service ld_read_by_id() (when used for user-defined ids) and for the service
ld_data_dump() two callback functions must be configured for slave nodes. These have the following
prototype forms:.

Table 38. Protocol switch function callback

l_protocol_callback_iii

Prototype
void l_protocol_callback_iii (void);

where iii denotes configured interfaces SCI0 .. SCIn

Description

Provides the entry point to an alternative protocol handler. This is called by the ISR
when an interrupt occurs after the application has called the
l_protocol_switch() API function to disable LIN. The callback is interface
specific and so for each interface the user must provide a corresponding callback.

Parameters None

Return None

Table 39. ld_read_by_id callback

ld_readByIdCallback

Prototype l_bool ld_readByIdCallback(l_u8 id, l_u8* pBuffer);

Description

Provides a response in accordance with the id request sent from the master. This
callback will be called by the slave driver when the id given lies in the range allocted
for user-defined ids i.e. 32 – 63. If a non-zero value is returned then the driver
sends the buffer back to the master. The user application receives the complete
frame buffer and may write up to 5 bytes response into the buffer starting at location
pBuffer[3]. The application is responsible for setting the PCI byte i.e.
pBuffer[1] correctly. This must be set to the number of valid data bytes written
plus one. Since the buffer is pre-set to 0xff, the unused bytes will have this value.

Parameters
id – the id sent by the master
pBuffer – the buffer into which the user application must write a response

Return non-zero if buffer to be sent back to master

Table 40. ld_data_dump callback

ld_dataDumpCallback

Prototype l_bool ld_dataDumpCallback(l_u8* sendBuf, l_u8* recBuf);

Description

Provides a response to a data dump request from the master. This callback is called
by the slave driver and must write 5 bytes in response starting at recBuf[0] and
then return non-zero to the driver. If no response is to be sent then return zero to the
driver.
Note: When a response is to be returned, 5 bytes will always be transferred.

DocID025766 Rev 1 45/62

UM1716 Driver configuration

61

For these two callbacks, empty implementations are included in the file lin_def.c. These must be
replaced by the user to provide the functionality required.

Baud rate detection callback function

Baudrate detection for slave nodes can be configured. When this feature is enabled, a callback function
is invoked by the driver when an incorrect baudrate is detected. From this callback, the application can
then call the l_change_baudrate() function to reduce the current baudrate. The baudrate detection
works by the principle that the application starts with the highest possible baudrate and then repeatedly
tries by lowering the baudrate until communication is established.

This feature must be enabled in the file lin_def.h by:
#define LIN_BAUDRATE_DETECT

4.5 Interrupt configuration
The STMicroelectronics driver provides functions to handle interrupts occurring when a character is
received or transmitted on specific interface. These functions must be called from the user-defined
interrupt handlers that are actually called when an interrupt is triggered. Since the driver functions
completely handle the interrupts, any further handling should not be implemented by the user.

Note: The driver's use of these functions is architecture dependent -- it may be the case that only
the Rx handler is used and so the user should not call the Tx handler. The user should refer
to the architecture notes for exact details.

The functions have the following interfaces:.

Parameters
sendBuf – the buffer sent by the master
recBuf – the buffer into which the application can write its response

Return non-zero if the driver is to send a response back to the master

Table 41. Baud rate detection callback

l_baudrate_callback_III

Prototype void l_baudrate_callback_iii (l_u16 baudrate);

Description

Sets the baudrate for the given interface by calling the l_change_baudrate() API
function. This callback will be called if an incorrect (too high) baudrate is detected by
the slave driver. The callback is interface specific and so for each interface the user
must provide a corresponding callback.

Parameters
ifc – interface handle
baudrate – the baudrate currently detected (i.e. the incorrect baudrate) on the
interface

Return None

Table 40. ld_data_dump callback (continued)

ld_dataDumpCallback

Driver configuration UM1716

46/62 DocID025766 Rev 1

Table 42. Handler for character rx

l_ifc_rx

Prototype void l_ifc_rx (l_ifc_handle ifc);

Description Handles the interrupt when a character is received

Parameters ifc – the interface on which the interrupt occurred

Return None

Interface

specific
protoytpe

void l_ifc_rx_iii (void);

Description handles the interrupt for the interface given by iii

Include lin.h

Table 43. Handler for character tx

l_ifc_tx

Prototype void l_ifc_tx (l_ifc_handle ifc);

Description Handles the interrupt

Parameters ifc – the interface on which the interrupt occurred

Return None

Interface

specific
prototype

void l_ifc_tx_iii (void);

Description handles the interrupt for the interface given by iii

Include lin.h

DocID025766 Rev 1 47/62

UM1716 Specification of lingen control file format

61

5 Specification of lingen control file format

5.1 lingen control file
A special control file is used by lingen to determine which interfaces are to be used and which LDF file is
associated with the interface chosen. The following specifies the content of this control file. Note that
C/C++ style comments may be used in the lingen control file. The possibilities for these are not included
in the specification below. An explanation of the syntax used is given in Section 5.2: Specification syntax.

5.1.1 File definition

<lingen_control_file> ::=Interfaces

{
[<interface_spec>]

}
(LIN_use_default_frame_ids ;)

5.1.2 Interface specification

<interface_spec> ::= <interface_id>:<ldf_file_name> (,<tag_id>);

<interface_id::= identifier

Currently the driver supports interface identifiers SCI0 to SCI9. However, the interface identifier used
here should match the specific interface as defined in the architecture notes delivered with the driver.

<ldf_file_name> ::= string

The string should specify the filename of the LIN description file. This string may include the full path
specification of the file, relative path to the file or just the filename if the file is located in the current
directory. Note that it is recommended that the full path specification be used especially if lingen is
executed from a makefile.

<tag_id> ::= “tag_identifier”

The tag identifier is intended for avoiding naming conflicts and will be concatenated with C identifiers
internally. Therefore it should include a legal sequence of characters following C identifier rules. See for
example Section 4.3: Cluster configuration.

5.1.3 Default frame IDs

The optional keyword LIN_use_default_frame_ids is intended for use with slave nodes only. If included,
the default frame identifiers given in the LDF will be used for all slave frames. Slaves may start
communication without having been configured by the master.

Specification of lingen control file format UM1716

48/62 DocID025766 Rev 1

5.2 Specification syntax
The following syntax has been used for the specification of the lingen control file. This has been kept
consistent with the syntax used for specifying LIN description files as described in the LIN2.0 standard
[1].

Table 44. Syntax description

Symbol Meaning

::= is defined to be

<> delimits an object specified later

[] delimits an object that shall appear one or more times

() delimits an object that is optional

bold text keyword or symbol, use directly as given

identifier identifies an object, c-style identifier rules apply

string any c-style string

tag_identifier use to extend identifiers, c-style identifier rules apply

DocID025766 Rev 1 49/62

UM1716 Examples

61

6 Examples

6.1 Sample control file for lingen
A special control file is used by lingen to determine which interfaces are to be used and which LDF file is
associated with the interface chosen. This example shows a slave interface configuration and the use of
default frame IDs:

//

// lingen control file defining one interface

//

Interfaces

{

 SCI0: "/home/LIN/src/lin_config/lin_sci0.ldf", "IFC0";

}

//

// specify that slave nodes will start with default frame IDs

//

LIN_use_default_frame_ids;

6.2 LIN 2.0 LDF example
The format and full details for a LIN description file are given in the LIN configuration language
specification part in [1]. This example shows a configuration with one master and two slaves. The first
slave is set up according to LIN 2.0, the second according to LIN 1.2.
//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

Examples UM1716

50/62 DocID025766 Rev 1

//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

DocID025766 Rev 1 51/62

UM1716 Examples

61

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

////

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

{

//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Examples UM1716

52/62 DocID025766 Rev 1

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

DocID025766 Rev 1 53/62

UM1716 Examples

61

//

// signal definition: standard signals

////

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

{

 LIN_protocol = 1.2;

 // the startup diagnostic address
 configured_NAD = 2;
//

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

Examples UM1716

54/62 DocID025766 Rev 1

//

// signal definition: standard signals

////

// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

Assig//
// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

nFr//
// global definitions

DocID025766 Rev 1 55/62

UM1716 Examples

61

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

ameId{slave1, frmM3 } delay 20 ms;

 AssignF//
// global definitions

//

LIN_description_file;

LIN_protocol_version = "2.0";

LIN_language_version = "2.0";

LIN_speed = 19.2 kbps;

//

// node definition: participating nodes

//

Nodes

{

 Master: master, 10 ms, 0.1 ms;

 Slaves: slave1, slave2;

}

//

// signal definition: standard signals

//

rameId{slave1, frmS11 } delay 20 ms;

 AssignFrameId{slave1, frmS12 } delay 20 ms;

 AssignFrameId{slave1, frmS13 } delay 20 ms;

 AssignFrameId{slave1, frmS21 } delay 20 ms;

 AssignFrameId{slave1, frmS22 } delay 20 ms;

 AssignFrameId{slave1, frmS23 } delay 20 ms;

Examples UM1716

56/62 DocID025766 Rev 1

 }

 //

 // the normal signals are transferred using this schedule

 // table

 //

 schTab1

 {

 frmM1 delay 20 ms;

 frmS11 delay 20 ms;

 frmS21 delay 20 ms;

 frmM2 delay 20 ms;

 frmM3 delay 20 ms;

 frmS13 delay 20 ms;

 frmS23 delay 20 ms;

 }

}

6.3 LIN 2.1 LDF example
The format and full details for a LIN description file are given in the LIN configuration language
specification part in [2]. This example shows a configuration with one master and two slaves. Both slaves
are set up according to LIN 2.1.
LIN_description_file;

LIN_protocol_version = “2.1”;

LIN_language_version = “2.1”;

LIN_speed = 19.2 kbps;

Channel_name = “DB”;

Nodes

{

 Master: CEM, 5 ms, 0.1 ms;

 Slaves: LSM, RSM;

}

Node_attributes

{

 LSM

 {

 LIN_protocol = “2.1”;

 configured_NAD = 0x20;

 initial_NAD = 0x01;

 product_id = 0x4A4F, 0x4841;

 response_error = LSMerror;

DocID025766 Rev 1 57/62

UM1716 Examples

61

 fault_state_signals = IntTest;

 P2_min = 150 ms;

 ST_min = 50 ms;

 configurable_frames

 {

 CEM_Frm1; LSM_Frm1; LSM_Frm2;

 }

 }

 RSM

 {

 LIN_protocol = “2.0”;

 configured_NAD = 0x20;

 product_id = 0x4E4E, 0x4553, 1;

 response_error = RSMerror;

 P2_min = 150 ms;

 ST_min = 50 ms;

 configurable_frames

 {

 CEM_Frm1 = 0x0001; LSM_Frm1 = 0x0002; LSM_Frm2 = 0x0003;
 }

 }

}

Signals

{

 IntLightsReq: 2, 0, CEM, LSM, RSM;

 RightIntLightsSwitch: 8, 0, RSM, CEM;

 LeftIntlLightsSwitch: 8, 0, LSM, CEM;

 LSMerror, 1, 0, LSM, CEM;

 RSMerror, 1, 0, LSM, CEM;

 IntTest, 2, 0, LSM, CEM;

}

Frames

{

 CEM_Frm1: 0x01, CEM, 1

 {

 InternalLightsRequest, 0;

 }

 LSM_Frm1: 0x02, LSM, 2

 {

 LeftIntLightsSwitch, 0;

Examples UM1716

58/62 DocID025766 Rev 1

 }

 LSM_Frm2: 0x03, LSM, 1

 {

 LSMerror, 0;

 IntError, 1;

 }

 RSM_Frm1: 0x04, RSM, 2

 {

 RightIntLightsSwitch, 0;

 }

 RSM_Frm2: 0x05, RSM, 1

 {

 RSMerror, 0;

 }

}

Event_triggered_frames

{

 Node_Status_Event : Collision_resolver, 0x06, RSM_Frm1,

 LSM_Frm1;

}

Schedule_tables

{

 Configuration_Schedule

 {

 AssignNAD {LSM} delay 15 ms;

 AssignFrameIdRange {LSM, 0} delay 15 ms;

 AssignFrameId {RSM, CEM_Frm1} delay 15 ms;

 AssignFrameId {RSM, RSM_Frm1} delay 15 ms;

 AssignFrameId {RSM, RSM_Frm2} delay 15 ms;

 }

 Normal_Schedule

 {

 CEM_Frm1 delay 15 ms;

 LSM_Frm2 delay 15 ms;

 RSM_Frm2 delay 15 ms;

 Node_Status_Event delay 10 ms;

 }

 MRF_schedule

DocID025766 Rev 1 59/62

UM1716 Examples

61

 {

 MasterReq delay 10 ms;

 }

 SRF_schedule

 {

 SlaveResp delay 10 ms;

 }

 Collision_resolver

 { // Keep timing of other frames if collision

 CEM_Frm1 delay 15 ms;

 LSM_Frm2 delay 15 ms;

 RSM_Frm2 delay 15 ms;

 RSM_Frm1 delay 10 ms; // Poll the RSM node

 CEM_Frm1 delay 15 ms;

 LSM_Frm2 delay 15 ms;

 RSM_Frm2 delay 15 ms;

 LSM_Frm1 delay 10 ms; // Poll the LSM node

 }

}

Signal_encoding_types

{

 Dig2Bit

 {

 logical_value, 0, "off";

 logical_value, 1, "on";

 logical_value, 2, "error";

 logical_value, 3, "void";

 }

 ErrorEncoding

 {

 logical_value, 0, “OK”;

 logical_value, 1, “error”;

 }

 FaultStateEncoding

 {

 logical_value, 0, “No test result”;

 logical_value, 1, “failed”;

 logical_value, 2, “passed”;

 logical_value, 3, “not used”;

 }

Examples UM1716

60/62 DocID025766 Rev 1

 LightEncoding

 {

 logical_value, 0, “Off”;

 physical_value, 1, 254, 1, 100, “lux”;

 logical_value, 255, “error”;

 }

}

Signal_representation

{

 Dig2Bit: InternalLightsRequest;

 ErrorEncoding: RSMerror, LSMerror;

 FaultStateEncoding: IntError;

 LightEncoding: RightIntLightsSwitch, LefttIntLightsSwitch;

}

6.4 Example implementation of IRQ callbacks
Example implementation for OSEK:
l_irqmask l_sys_irq_disable (void)

{

 SuspendOSInterrupts();

 return 0;

}

void l_sys_irq_restore (l_irqmask irqmask)

{

 ResumeOSInterrupts();

 return ;

}

The user can locate these implementations in an application specific file that includes the corresponding
operating system header file. For example, in an OSEK implementation include ''os.h''.

DocID025766 Rev 1 61/62

UM1716 Revision history

61

7 Revision history

Table 45. Document revision history

Date Revision Changes

04-Feb-2014 1 Initial release.

UM1716

62/62 DocID025766 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Abbreviations
	Table 1. Description of abbreviated forms

	2 Overview
	2.1 LIN concept
	2.2 LIN communication
	Figure 1. Master-slave node communications

	2.3 Signal management
	2.4 Using the driver
	Table 2. LIN naming conventions

	2.5 Driver version

	3 API
	3.1 Data
	3.2 Functions
	3.3 CORE API
	3.3.1 Driver and cluster management
	Table 3. System initialization

	3.3.2 Signal interaction
	Table 4. Scalar signal read
	Table 5. Scalar signal write (continued)
	Table 6. Byte array read
	Table 7. Byte array write (continued)

	3.3.3 Notification
	Table 8. Test flag
	Table 9. Clear flag (continued)

	3.3.4 Interface management
	Table 10. Initialise interface
	Table 11. Wake-up
	Table 12. Interface control (continued)
	Table 13. Character received notification (continued)
	Table 14. Character transmitted notification
	Table 15. Read interface status (continued)
	Table 16. Description of l_ifc_read_status returned value

	3.4 Diagnostic API
	3.4.1 Node configuration (diagnostic) specific API
	Table 17. Read configuration (continued)
	Table 18. Set configuration

	3.4.2 Diagnostic transport layer
	Table 19. Initialization (continued)

	3.4.3 Diagnostic transport layer: RAW API
	Table 20. Put raw frame
	Table 21. Get raw frame
	Table 22. Query raw transmit-queue status
	Table 23. Query raw receive-queue status

	3.4.4 Diagnostic transport layer: COOKED API
	Table 24. Send message
	Table 25. Receive message
	Table 26. Get transmit-queue status
	Table 27. Get receive-queue status

	3.5 Slave specific API
	3.5.1 Interface management
	Table 28. Slave synchronise
	Table 29. Read by ID callout (continued)

	3.6 STMicroelectronics extensions
	Table 30. Software Timer Function
	Table 31. Protocol Switch
	Table 32. Set baud rate
	Table 33. Raw Tx Frame Delete

	3.7 Implementation Notes
	3.7.1 API data types
	3.7.2 Notification flags

	4 Driver configuration
	4.1 File and directory structure
	Table 34. Directory structure

	4.2 Makefiles
	4.2.1 Top-level makefile
	Table 35. Top-level makefile predefined variable definition

	4.3 Cluster configuration
	4.3.1 Cluster description
	4.3.2 Lingen
	Figure 2. Lingen workflow

	4.4 User configuration
	4.4.1 Timers
	4.4.2 General settings
	4.4.3 Diagnostic functions configuration
	4.4.4 Diagnostic class
	4.4.5 Callback functions
	Table 36. Disable Interrupts
	Table 37. Restore Interrupts
	Table 38. Protocol switch function callback
	Table 39. ld_read_by_id callback
	Table 40. ld_data_dump callback (continued)
	Table 41. Baud rate detection callback

	4.5 Interrupt configuration
	Table 42. Handler for character rx
	Table 43. Handler for character tx

	5 Specification of lingen control file format
	5.1 lingen control file
	5.1.1 File definition
	5.1.2 Interface specification
	5.1.3 Default frame IDs

	5.2 Specification syntax
	Table 44. Syntax description

	6 Examples
	6.1 Sample control file for lingen
	6.2 LIN 2.0 LDF example
	6.3 LIN 2.1 LDF example
	6.4 Example implementation of IRQ callbacks

	7 Revision history
	Table 45. Document revision history

