
June 2015 DocID025805 Rev 2 1/26

1

UM1723
User Manual

STM32Cube PolarSSL example

Introduction

The STM32Cube initiative was originated by STMicroelectronics to ease developers life, by
reducing development efforts, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube Version 1.x includes:

 The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code, using graphical wizards

 A comprehensive embedded software platform, delivered per series (such as
STM32CubeF4 for STM32F4 series)

– The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across the STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics

– All embedded software utilities coming with a full set of examples.

With the increasing number of embedded devices interconnected over the network,
hardware-based cryptographic capabilities are required, to ensure secure transactions. The
integrated Ethernet MAC and cryptographic processor of the STM32, make it best fits for
such applications. The embedded Ethernet features a 10/100 Mbit/s MAC, it supports both
the Media Independent Interface (MII) and the Reduced Media Independent Interface
(RMII), giving developers the flexibility to connect to the PHY of their choice. Performance is
further enhanced through the use of a dedicated DMA controller, and hardware checksums
for the IP, UDP, TCP and ICMP protocols.

The hardware cryptographic processor supports AES/128/192/256, Triple DES, DES, SHA-
1, SHA-2, MD5 and RNG.

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) cryptographic protocols
provide security for communications over networks, such as the Internet, and allow client
and server applications to communicate in a way that is private and secure.The purpose of
this user manual is to present an SSL Client/Server example, built on top of STM32Cube
HAL drivers and the PolarSSL library (a free SSL/TLS library).

Note: This document is applicable to all STM32 Series featuring an Ethernet peripheral and
hardware cryptographic processor; for simplicity reason, STM32F4xx and STM32CubeF4
are used as reference platform within all the documents.The same description, file names
and screenshot are applicable as well to other Series offering Ethernet connectivity, such as
STM32F217xx and STM32F756xx.

To know more about the PolarSSLexample implementation on STM32 Series, refer to the
documentation provided within the associated STM32Cube firmware package.

www.st.com

http://www.st.com

Contents UM1723

2/26 DocID025805 Rev 2

Contents

1 SSL / TLS protocol overview . 5

1.1 History of the SSL / TLS protocols . 5

1.2 SSL / TLS application layers . 5

1.3 SSL / TLS sub-protocols . 6

1.3.1 SSL Handshake protocol . 7

1.3.2 SSL Record protocol . 9

1.3.3 SSL Alert protocol . 9

1.3.4 Change Cipher Spec protocol . 9

2 PolarSSL library . 10

2.1 Overview . 10

2.2 License . 10

3 STM32 hardware cryptography . 11

3.1 Cryptographic processor .11

3.2 Random number generator .11

3.3 Hash processor .11

4 Description of the package . 12

4.1 Package directories . 12

4.2 Application settings . 12

4.2.1 PHY interface configuration . 12

4.2.2 MAC and IP address settings . 13

4.3 Evaluation boards settings . 13

5 Using the applications . 14

5.1 SSL client application . 14

5.2 SSL server application . 17

6 Conclusion . 21

7 FAQ . 22

Appendix A Additional information. 23

DocID025805 Rev 2 3/26

UM1723 Contents

3

8 Revision history . 25

List of figures UM1723

4/26 DocID025805 Rev 2

List of figures

Figure 1. SSL application architecture . 6
Figure 2. SSL sub-protocols . 6
Figure 3. SSL Handshake protocol . 7
Figure 4. Handshake protocol to resume an SSL session. 9
Figure 5. SSL Record protocol. 9
Figure 6. SSL client demonstration architecture . 15
Figure 7. SSL client application . 16
Figure 8. The ssl_server application window . 16
Figure 9. HyperTerminal window . 17
Figure 10. SSL server application architecture . 18
Figure 11. The SSL server application. 19
Figure 12. HTML page displayed on successful connection . 19
Figure 13. HyperTerminal SSL server connection status . 20
Figure 14. SSL client thread flowchart . 23
Figure 15. SSL server thread flowchart . 24

DocID025805 Rev 2 5/26

UM1723 SSL / TLS protocol overview

25

1 SSL / TLS protocol overview

The Secure Socket Layer (SSL) and Transport Layer Security (TLS) protocols provide
communications security over the Internet and allow client/server applications to
communicate in a way that is private and reliable. These protocols are layered above a
transport protocol such as TCP/IP.

SSL is the standard security technology for creating an encrypted link between server and
client. This link ensures that all communication data remains private and secure.

The major objectives of SSL/TLS are:

 Provide data integrity between two communicating applications.

 Protect information transmitted between server and client.

 Authenticate the server to the client.

 Allow the client and server to select the cryptographic algorithms that they both
support.

 Optionally authenticate the client to the server.

 Use public-key encryption techniques to generate shared secrets.

 Establish an encrypted SSL connection.

1.1 History of the SSL / TLS protocols

SSL was developed by Netscape in 1994 to secure transactions over the Internet. Soon
after, the Internet Engineering Task Force (IETF) began work to develop a standard protocol
to provide the same functionality.

 SSL 1.0 (Netscape, 1993): Internal Netscape design

 SSL 2.0 (Netscape, 1994): This version contained a number of security flaws

 SSL 3.0 (Netscape, 1996): All Internet browsers support this version of the protocol

 TLS 1.0 (IETF, 1999): This version was defined in RFC 2246 as an upgrade to SSL 3.0
“The differences between this protocol and SSL 3.0 are not dramatic, but they are
significant enough that TLS 1.0 and SSL 3.0 do not inter-operate”

 TLS 1.1 (IETF, 2006): This version was defined in RFC 4346. It is an update from TLS
version 1.0

 TLS 1.2 (IETF, 2008): This version was defined in RFC 5246. It is based on the earlier
TLS 1.1

Note: The “SSL/TLS” protocols are referred by “SSL” throughout this document.

1.2 SSL / TLS application layers

An application using SSL / TLS protocol consists generally of five layers:

 Application layer: the Application Layer refers to the higher-level protocols used by
most applications for network communication

 SSL/TLS layer: the SSL/TLS layer provides security communication over the Internet

SSL / TLS protocol overview UM1723

6/26 DocID025805 Rev 2

 TCP layer: the Transport Layer responsibilities include end-to-end message transfer
capabilities independent of the underlying network, along with error control,
segmentation, flow control, congestion control, and application addressing

 IP layer: the Internet Protocol layer is responsible for addressing hosts and routing
packets from a source host to the destination host

 Physical layer: the Physical Layer consists of the basic hardware transmission
technologies of a network

Figure 1. SSL application architecture

1.3 SSL / TLS sub-protocols

The SSL / TLS protocol includes four sub-protocols: the SSL Record protocol, the SSL
Handshake protocol, the SSL Alert protocol and the SSL Change Cipher Spec protocol.

Figure 2. SSL sub-protocols

DocID025805 Rev 2 7/26

UM1723 SSL / TLS protocol overview

25

1.3.1 SSL Handshake protocol

The SSL session state is controlled by the SSL Handshake protocol. This protocol uses the
SSL Record protocol to exchange a series of messages between SSL server and SSL
client, when they first start communicating. This message exchanging is designed to
facilitate the following actions:

 The protocol version

 Allow the client and server to select the cryptographic algorithms, or ciphers, that they
both support

 Authenticate the server to the client

 Optionally authenticate the client to the server

 Use public-key encryption techniques to generate shared secrets

 Establish an encrypted SSL connection

Figure 3. SSL Handshake protocol

The following description is the procedure for SSL Handshake protocol:

1. The client sends a ClientHello message specifying the highest SSL protocol version it
supports, a random number, a list of cipher suites and compression methods

2. Server responds with a ServerHello message that contains the chosen protocol
version, another random number, cipher suite and compression method from the
choices offered by the client, and the session ID

Note: The client and the server must support at least one common cipher suite, or else the
Handshake protocol fails. The server generally chooses the strongest common cipher suite
they both support.

3. The server sends its digital certificate in an optional certificate message, for example,
the server uses X.509 digital certificates

4. If no certificate is sent, an optional ServerKeyExchange message is sent containing the
server public information

SSL / TLS protocol overview UM1723

8/26 DocID025805 Rev 2

5. If the server requires a digital certificate for client authentication, an optional
CertificateRequest message is appended

6. The server sends a ServerHelloDone message indicating the end of this phase of
negotiation

7. If the server has sent a CertificateRequest message, the client must send its X.509
client certificate in a Certificate message

8. The client sends a ClientKeyExchange message. This message contains the
premaster secret number used in the generation of the symmetric encryption keys and
the message authentication code (MAC) keys. The client encrypts pre-master secret
number with the public key of the server

Note: The public key is sent by the server in the digital certificate or in ServerKeyExchange
message.

9. If the client sent a digital certificate to the server, the client sends a CertificateVerify
message signed with the client's private key. By verifying the signature of this
message, the server can explicitly verify the ownership of the client digital certificate

10. The client sends a ChangeCipherSpec message announcing that the new parameters
(cipher method, keys) have been loaded

11. The client sends a finished message; it is the first message encrypted with the new
cipher method and keys

12. The server responds with a ChangeCipherSpec and a finished message from its end

13. The SSL Handshake protocol ends and the encrypted exchange of application data
can be started

Resuming SSL session

When the client and the server decide to resume a previous session or to duplicate an
existing session (instead of negotiating new security parameters), the message flow is as
follows:

1. The client sends a ClientHello message using the Session ID of the session to be
resumed

2. The server checks its session cache for a match. If a match is found, and the server is
willing to re-establish the connection under the specified session state, it sends a
ServerHello message with the same Session ID value

3. Both client and server must send ChangeCipherSpec messages and proceed directly
to the finished messages

4. Once the re-establishment is complete, the client and server may begin to exchange
encrypted application data

Note: If a Session ID match is not found, the server generates a new session ID and the client and
server perform a full Handshake protocol [1]: RFC 5246: The TLS protocol version 1.2.

DocID025805 Rev 2 9/26

UM1723 SSL / TLS protocol overview

25

Figure 4. Handshake protocol to resume an SSL session

1.3.2 SSL Record protocol

The Record protocol takes messages to be transmitted, fragments the data into
manageable blocks, optionally compresses the data, applies a MAC, encrypts, and
transmits the results.The received data is decrypted, verified, decompressed, and
reassembled, then delivered to higher level clients.

Figure 5. SSL Record protocol

1.3.3 SSL Alert protocol

The SSL Alert protocol signals problems with the SSL session, ranging from simple
warnings (unknown certificate, revoked certificate, expired certificate) to fatal error
messages that immediately terminate the SSL connection.

1.3.4 Change Cipher Spec protocol

The SSL Change Cipher Spec protocol consists of a single message that indicates the end
of the SSL Handshake protocol.

PolarSSL library UM1723

10/26 DocID025805 Rev 2

2 PolarSSL library

2.1 Overview

PolarSSL is a light-weight open source cryptographic and SSL/TLS library written in C. This
library contains all needed functions to implement an SSL/TLS server or client. It contains
also a set of hashing functions and cryptographic algorithms.

Library features:

 SSL 3.0, TLS 1.0 TLS 1.1 and TLS 1.2 client/server support

 Symmetric encryption algorithms: AES, Blowfish, Triple-DES (3DES), DES, ARC4,
Camellia, XTEA

 Modes of operation: ECB, CBC, CFB, CTR, GCM

 Hash algorithms: MD2, MD4, MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

 Software random number generator: HAVEGE, CTR-DRBG

 X509 certificates, CRLs, Keys and ASN.1

 Public key cryptography: RSA and Diffie-Hellman (DHM) key exchange

The source code of the PolarSSL library can be downloaded from this link:

http://polarssl.org/

2.2 License

PolarSSL is licensed according to the dual licensing model. PolarSSL is available under the
open source GPL version two license, as well as under a commercial license for closed
source projects.

For detailed information about licensing, please refer to this link:

https://polarssl.org/

DocID025805 Rev 2 11/26

UM1723 STM32 hardware cryptography

25

3 STM32 hardware cryptography

As described in Section 2: PolarSSL library, the PolarSSL library contains a set of
symmetric encryption algorithms (AES 128/192/256, Triple DES), hashing functions (MD5,
SHA-1, SHA-2) and a software random number generator. All these functions and
algorithms are needed to implement SSL/TLS applications.

To off-load the CPU from encryption/decryption, hash and RNG (random number generator)
tasks, all these functions and algorithms are implemented using the hardware acceleration
AES 128/192/256, Triple DES, MD5, SHA-1, SHA-2 and analog RNG through the
STM32Cube HAL APIs.

3.1 Cryptographic processor

The cryptographic processor can be used to both encipher and decipher data using the
Triple-DES or AES algorithm. It is a fully compliant implementation of the following
standards:

 The data encryption standard (DES) and Triple-DES (TDES) as defined by the Federal
Information Processing Standards Publication “FIPS PUB 46-3, 1999 October 25”. It
follows the American National Standards Institute (ANSI) X9.52 standard

 The advanced encryption standard (AES) as defined by Federal Information
Processing Standards Publication “FIPS PUB 197, 2001 November 26”

The CRYP processor may be used for both encryption and decryption in the Electronic
codebook (ECB) mode, the Cipher block chaining (CBC) mode or the Counter (CTR) mode
(in AES only).

3.2 Random number generator

The RNG processor is a random number generator based on a continuous analog noise,
that provides a random 32-bit value to the host when it is read.

3.3 Hash processor

The hash processor is a fully compliant implementation of the SHA (secure hash algorithm),
the (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message
authentication code) algorithm suitable for a variety of applications.It computes a message
digest (160 bits for the SHA-1 algorithm, 256 bits for the SHA-256 algorithm and 224 bits for
the SHA-224 algorithm,128 bits for the MD5 algorithm) for messages of up to (2^64 - 1) bits,
while HMAC algorithms provide a way of authenticating messages by means of hash
functions. HMAC algorithms consist in calling the SHA-1, SHA-224, SHA-256 or MD5 hash
function twice.

Note: For more detailed information, refer to the CRYP, HASH and RNG sections of the STM32
device Reference Manual

Description of the package UM1723

12/26 DocID025805 Rev 2

4 Description of the package

This package contains two applications running on top of the PolarSSL library and LwIP
stack in RTOS mode:

 SSL_Client: This application proves the ability of the STM32F4xx device to exchange
messages with a server over TCP/IP connectivity through a SSL connection. This
application allows the user to connect the STM324xx-EVAL board to a secure web
server with SSL protocol

 SSL_Server: This application is a combination of HTTP with SSL protocol to provide
encryption and secure identification of the server. This application allows the user to
connect from a web browser to a STM324xx-EVAL evaluation board using SSL
protocol

These two applications are located under:
Projects\STM324xx_EVAL\Applications\PolarSSL\, where STM324xx_EVAL refers to
STM32F4xx evaluation board such as STM324xG_EVAL for STM32F407xx/417xx devices.

4.1 Package directories

The package contains two applications running on top of PolarSSL, LwIP, FreeRTOS and
STM32F4Cube HAL and BSP drivers. The firmware is composed from the following
modules:

 Drivers: contains the SMT32Cube drivers of the MCU

– CMSIS

– BSP drivers

– HAL drivers

 Middleware: contains libraries and protocol components

– LwIP TCP/IP stack

– PolarSSL library

– FreeRTOS

 Projects: contains the source file and configurations of each application

4.2 Application settings

4.2.1 PHY interface configuration

The Ethernet peripheral is interfaced with an external PHY to provide physical layer
communication. The PHY registers definition are located under the HAL configuration file
“stm32f4xx_hal_conf.h”.

The PHY operates following two modes, MII and RMII; to select the required mode user has
to fill the “MediaInterface” parameter of “Init” structure when initializing the Ethernet
peripheral.

Note: Refer to the readme file provided within PolarSSL example of the device, to know about the
available PHY interface modes on the supported boards

DocID025805 Rev 2 13/26

UM1723 Description of the package

25

4.2.2 MAC and IP address settings

The default MAC address is set to: 00:00:00:00:00:02. To change this address, modify the
six bytes defined in the stm32f4xx_hal_conf.h file.

The default IP address is set to: 192.168.0.10. To change this address, modify the six bytes
defined in the main.h file.

4.3 Evaluation boards settings

Before running the PolarSSL example, have a look on the associated readme file, to know
how to configure the board jumpers for correct operation.

Using the applications UM1723

14/26 DocID025805 Rev 2

5 Using the applications

5.1 SSL client application

This demonstration consists of using the STM324xx-EVAL evaluation board as a client, that
connects to a secure server to provide the SSL Handshake protocol.

Architecture of the application

The SSL client demonstration, as shown in Figure 6 contains five threads:

 LED task: blink LED4 every 200 ms

 Ethernet input thread: the low-level layer was set to detect the reception of frames by
interrupts. So, when the Ethernet controller receives a valid frame, it generates an
interrupt. In the handling function of this interrupt, a binary semaphore is created to
wake up the Ethernet task. This task transfers the input frames to the TCP/IP stack

 Ethernet link thread: handles Ethernet cable connection and disconnection process

 TCP/IP thread: all packet processing (input and output) is done inside this thread. The
application threads communicate with this thread using message boxes and
semaphores.

 SSL client thread: this task handles the SSL Handshake protocol. It connects to an
SSL server and performs the following:

– Initializes SSL structures (SSL context, SSL session, SSL RNG)

– Connects to a SSL server

– Sets up the SSL session

– Handles the SSL Handshake protocol

– Writes a message to the server

– Reads a message from the server

– Sends these messages through USART

– Closes the connection

– Cleans all SSL structures

DocID025805 Rev 2 15/26

UM1723 Using the applications

25

Figure 6. SSL client demonstration architecture

How to use the application

First, connect the STM324xx-EVAL evaluation board as follows:

 Ethernet link: connect to a remote PC (through a crossover Ethernet cable) or to the
local network (through a straight Ethernet cable)

 RS232 link (used with HyperTerminal like application to display debug messages):
connect a null-modem female/female RS232 cable between the USART connector of
the STM324xx -EVAL evaluation board and the PC serial port

To run the SSL client example, proceed as follows:

 Build and program the SSL client code in the STM32F4xx Flash

 Run the SSL server application on the remote PC, and run “ssl_server.exe“ under
Utilities\PC_Software\ssl_server. This application then waits for a client connection on
https port 443

 Start the STM324xx -EVAL evaluation board

 Monitor the connection status in the SSL server application window and HyperTerminal
window

Note: Ensure that the remote PC IP address is the same address as defined in “ssl_client.c” file
(#define SSL_SERVER_NAME “192.168.0.1”).
If a firewall is used, the user must be sure that the “ssl_server” application accepts
connection requests. If it does not, the firewall will reject the client requests.

Using the applications UM1723

16/26 DocID025805 Rev 2

Figure 7. SSL client application

The ssl_server.exe application window is shown in Figure 8. The SSL server application
displays the connection request status; all exchanged messages between the server and
the client, are displayed.

Figure 8. The ssl_server application window

HyperTerminal

HyperTerminal window (Figure 9) displays the status of the SSL client application running
on the STM32F4xx device (write and read messages):

 Status of SSL structures (SSL context, SSL session, SSL RNG)

 Client request to the server: “GET”

 The received message contains the result of Handshake protocol: for example
“Successful connection using: SSL_EDH_RSA_AES_256_SHA”.

DocID025805 Rev 2 17/26

UM1723 Using the applications

25

Figure 9. HyperTerminal window

5.2 SSL server application

This demonstration consists of setting up the STM32 device as an SSL server, that waits for
a SSL client request to make the connection.

Architecture of the application

The SSL server demonstration contains six threads:

The LED, Ethernet input, Ethernet link, and TCP_IP threads are the same as the SSL
client application threads.

SSL server thread: this thread creates an SSL connection and waits for the client request
to make the secure connection. When the connection is established, the client sends Get
request to load the html page. This page contains information about the tasks running in this
demonstration. The SSL server task also sends the status of the connection through the
USART.

DHCP_Client thread: This thread is used to configure the IP address by DHCP. To enable
the DHCP client, uncomment the define USE_DHCP in main.h file.

Using the applications UM1723

18/26 DocID025805 Rev 2

Figure 10. SSL server application architecture

How to use the application

First, connect the STM324xx-EVAL evaluation board as follows:

 Ethernet link: connect to a remote PC (through a crossover Ethernet cable) or to the
local network (through a straight Ethernet cable)

 RS232 link (used with HyperTerminal-like application to display debug messages):

To run the SSL server demonstration:

 Build and program the SSL server code in the STM32F4xx Flash

 Start the STM324xx-EVAL board

 Open a web browser such as Internet Explorer or Firefox, and type https:// followed by
the IP address of the board in the browser, by default type “https//192.168.0.10”

Note: If a firewall is present, user must be sure that the HTTPS port accepts the connection
requests. If it does not, the firewall will reject the connection.

DocID025805 Rev 2 19/26

UM1723 Using the applications

25

Figure 11. The SSL server application

On successful connection, a page is displayed showing the running tasks and their status.
This page contains also the number of page hits and the list of cipher suites, used in the
connection.

Figure 12. HTML page displayed on successful connection

The user can monitor the connection status of the SSL server application, running on
STM32F4xx device, using the HyperTerminal window. This window (Figure 13) shows:

 The status of connection, SSL structures and Handshake protocol

 The size of the client request message

 The size of the server response (html page)

Using the applications UM1723

20/26 DocID025805 Rev 2

Figure 13. HyperTerminal SSL server connection status

Note: The first time that the user connects to the server, he receives a warning message from the
browser about the certificate presented. This warning occurs when the certificate has been
issued by a certification authority (CA), that is not recognized by the browser or when the
certificate was issued to a different web address.

DocID025805 Rev 2 21/26

UM1723 Conclusion

25

6 Conclusion

This user manual describes two STM32F4xx applications that implement the PolarSSL
library with the STM32Cube drivers.

The first one demonstrates the ability of the STM32F4xx devices to exchange messages
with a server through an SSL connection. This application allows the STM32 to connect to a
secure web server.

The second one is a combination of HTTP with SSL protocol to provide encryption and
secure identification of the server. This application allows the user to connect to an STM32
using the SSL protocol from a web browser.

FAQ UM1723

22/26 DocID025805 Rev 2

7 FAQ

How to choose between static or dynamic (DHCP) IP address allocation?

When the macro #define USE_DHCP located in “main.h” is commented, a static IP
address is assigned to the STM32 microcontroller (by default 192.168.0.10, this value can
be modified from “main.h” file).

If the macro #define USE_DHCP is uncommented, the DHCP protocol is enabled, and the
STM32 will act as a DHCP client

How the application behaves when the Ethernet cable is disconnected?

When the cable is disconnected the Ethernet peripheral stops both transmission and
reception traffics, also the network interface will be set down. If an LCD controller is used a
message is displayed to inform the user that the cable is not connected, else the Red LED
of the evaluation board will turn on.

When the user connects again the cable, the Ethernet traffic will resume and network
interface will be set up. If an LCD controller is used, a message is displayed to inform user
about the new IP address, either with static or dynamic allocation, otherwise the Yellow LED
of the evaluation board will turn on.

How to port the application on a different hardware?

When another hardware platform is used, the user has to check the GPIO configuration into
the HAL_ETH_MspInit() function for the Ethernet peripheral, also HAL_PPP_MspInit() or
HAL_MspInit() if the application needs more PPP peripheral.

DocID025805 Rev 2 23/26

UM1723 Additional information

25

Appendix A Additional information

Figure 14. SSL client thread flowchart

Additional information UM1723

24/26 DocID025805 Rev 2

Figure 15. SSL server thread flowchart

DocID025805 Rev 2 25/26

UM1723 Revision history

25

8 Revision history

Table 1. Document revision history

Date Revision Changes

27-Mar-2014 1 Initial release.

5-Jun-2015 2

Updated:

Section 3: STM32 hardware cryptography,

Section 4: Description of the package,

Section 4.2.1: PHY interface configuration

Section 4.3: Evaluation boards settings,

Section 5.1: SSL client application

UM1723

26/26 DocID025805 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 SSL / TLS protocol overview
	1.1 History of the SSL / TLS protocols
	1.2 SSL / TLS application layers
	Figure 1. SSL application architecture

	1.3 SSL / TLS sub-protocols
	Figure 2. SSL sub-protocols
	1.3.1 SSL Handshake protocol
	Figure 3. SSL Handshake protocol
	Figure 4. Handshake protocol to resume an SSL session

	1.3.2 SSL Record protocol
	Figure 5. SSL Record protocol

	1.3.3 SSL Alert protocol
	1.3.4 Change Cipher Spec protocol

	2 PolarSSL library
	2.1 Overview
	2.2 License

	3 STM32 hardware cryptography
	3.1 Cryptographic processor
	3.2 Random number generator
	3.3 Hash processor

	4 Description of the package
	4.1 Package directories
	4.2 Application settings
	4.2.1 PHY interface configuration
	4.2.2 MAC and IP address settings

	4.3 Evaluation boards settings

	5 Using the applications
	5.1 SSL client application
	Figure 6. SSL client demonstration architecture
	Figure 7. SSL client application
	Figure 8. The ssl_server application window
	Figure 9. HyperTerminal window

	5.2 SSL server application
	Figure 10. SSL server application architecture
	Figure 11. The SSL server application
	Figure 12. HTML page displayed on successful connection
	Figure 13. HyperTerminal SSL server connection status

	6 Conclusion
	7 FAQ
	Appendix A Additional information
	Figure 14. SSL client thread flowchart
	Figure 15. SSL server thread flowchart

	8 Revision history
	Table 1. Document revision history

