
May 2018 UM1915 Rev 2 1/43

1

UM1915
User manual

STM8AF safety manual

Introduction

The microcontrollers of the STM8AF Series, featuring different memory densities, packages
and peripherals, are designed for automotive applications.

This document describes how to use them in the context of a safety-related system
(STM8A-SafeASIL functional safety package), specifying the user's responsibilities for
installation and operation, in order to reach the targeted safety integrity level.

This manual applies to the following STM8AF products:

• the STM8AF62 line, which is the mainstay of the automotive STM8A 8-bit MCU:

– low density devices with 8 Kbytes of Flash memory: STM8AF6223/26

– medium density devices with 16 to 32 Kbytes of Flash memory: STM8AF624x,
STM8AF6266/68, STM8AF612x/4x and STM8AF6166/68

– high density devices with 32 to 128 Kbytes of Flash memory:STM8AF6269/8x/Ax and
STM8AF6178/99/9A

• the STM8AF52 line: STM8AF automotive MCUs with CAN:

– high density devices with 32 to 128 Kbytes of Flash memory: STM8AF52xx and
STM8AF51xx

System designers can avoid going into the details of the ISO26262 functional safety
standard application to the STM8AF microcontrollers by following the indications reported in
this manual.

This manual is written in compliance with ISO 26262. It also indicates how to use the
STM8AF MCUs in the context of other functional safety standards such as IEC 61508.

The safety analysis summarized in this manual takes into account the variation in terms of
memory size, number of internal peripherals and the different packages available among
the different part numbers of STM8AF microcontrollers.

This manual has to be read along with the technical documentation on related part numbers
available on www.st.com/stm8.

www.st.com

http://www.st.com

Contents UM1915

2/43 UM1915 Rev 2

Contents

1 About this document . 6

1.1 Purpose and scope . 6

1.2 Terms and abbreviations . 6

1.3 Reference normative . 7

1.4 Annexes . 7

2 STM8AF device development process . 8

2.1 STMicroelectronics standard development process 8

3 STM8AF safety architecture . 9

3.1 Introduction . 9

3.1.1 Definition of the SEooC . 9

3.2 STM8AF as a SEooC . 9

3.3 Assumed safety requirements . 10

3.3.1 The target safety metrics (ASIL, SPFM, LFM and PMHF) 11

3.3.2 The assumed target time intervals (FTTI and MPFDI) 12

3.4 Electrical specifications and environment limits . 13

3.5 Systematic safety integrity . 13

3.6 Safety mechanisms/measures . 13

3.6.1 STM8AF core . 13

3.6.2 Program Flash memory . 15

3.6.3 Data EEPROM . 16

3.6.4 RAM . 16

3.6.5 Boot ROM . 17

3.6.6 Basic enhanced CAN (beCAN) . 18

3.6.7 LINUART . 18

3.6.8 USART . 19

3.6.9 I2C . 20

3.6.10 SPI . 21

3.6.11 Analog to digital converter (ADC) . 21

3.6.12 Advanced control and general purpose timers (TIM 1 and TIM 2/3) . . . 22

3.6.13 Basic timer (TIM 4) . 23

3.6.14 GPIO - Ports A/B/C/D/E/F/G/H . 24

UM1915 Rev 2 3/43

UM1915 Contents

3

3.6.15 Address and Data bus . 24

3.6.16 Supply voltage system . 25

3.6.17 Reset and Clock control subsystems . 26

3.6.18 Auto-wakeup timer (AWU) . 26

3.6.19 Watchdogs (IWDG, WWDG) . 27

3.6.20 Debug/SWIM (single wire interface module) . 27

3.6.21 Interrupt controller (NVIC and EXTI) . 27

3.6.22 Latent fault detection . 28

3.6.23 Disable and periodic cross-check of unintentional activation
of unused peripherals . 28

3.7 Assumption of Use (AoU) . 29

3.7.1 List of AoUs . 29

4 Safety analysis results . 33

4.1 Hardware random failure analysis . 33

4.1.1 Safety analysis result customization . 34

4.1.2 General requirements for Freedom From Interferences (FFI) 34

4.2 Dependent failures analysis . 35

4.2.1 Power supply . 35

4.2.2 Clock . 35

5 List of evidences . 36

Appendix A Change impact analysis for other safety standards. 37

A.1 IEC 61508 . 37

A.1.1 Architectural categories . 38

A.1.2 Safety metrics re-computation . 39

A.1.3 Work products. 40

Revision history . 42

List of tables UM1915

4/43 UM1915 Rev 2

List of tables

Table 1. Terms and abbreviations . 6
Table 2. List of STM8AF assumed requirements . 11
Table 3. Target safety metric values at the item level . 11
Table 4. List of safety mechanisms . 30
Table 5. List of general requirements for FFI . 34
Table 6. Some reference architectures for IEC 61508 . 38
Table 7. Mapping between this document content and IEC 61508-2 Annex D requirements 40
Table 8. IEC 61508 work product grid . 41
Table 9. Document revision history . 42

UM1915 Rev 2 5/43

UM1915 List of figures

5

List of figures

Figure 1. Definition of the STM8AF as a SEooC . 10
Figure 2. Relationship between assumptions and SEooC development . 10
Figure 3. STM8AF FTTI allocation and cycle time. 12
Figure 4. Correlation matrix between SIL and ASIL. 38

About this document UM1915

6/43 UM1915 Rev 2

1 About this document

1.1 Purpose and scope

This document is addressed at system designers willing to evaluate the safety of their
solution. It describes how to use STM8AF microcontrollers in the context of a safety-related
system, specifying the user's responsibilities for installation and operation, to reach the
desired safety integrity level.

1.2 Terms and abbreviations

Table 1. Terms and abbreviations

Acronym Definition

AoU Assumptions to Use

ASIL Automotive Safety Integrity Level

CCF Common Cause Failure

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Diagnostic Coverage

DTI Diagnostic Test Interval

FIT Failure In Time

FTTI Fault Tolerant Time Interval

FMEA Failure Mode Effect Analysis

FMEDA Failure Mode Effect Diagnostic Analysis

HFT Hardware Fault Tolerance

HW Hardware

INTC Interrupt Controller

LFM Latent Fault Metric

MCU Microcontroller Unit

MPF Multiple Point Failures

MPFDI Multiple Point Fault Detection Interval

NVIC Nested vector interrupt controller

PMHF Probabilistic Metric for random Hardware Failures

QM Quality Management

SFF Safe Failure Fraction

SIL Safety Integrity level

SEooC Safety Element Out of Context

SPF Single Point Fault

SPFM Single Point Fault Metric

SW Software

UM1915 Rev 2 7/43

UM1915 About this document

42

1.3 Reference normative

This document is written in compliance with the ISO 26262 international standard for
functional safety of electrical and/or electronic (E/E) systems within road vehicles.

The versions used as reference are:

• ISO/IS 26262-1 – 9:2011(E)

• ISO/IS 26262-10:2012(E)

This safety manual follows the list of recommended contents in Annex A, clause A.3.10 of
ISO 26262-10.

The other functional safety standard considered in this manual is the following:

• IEC 61508:1-7 © IEC:2010.

1.4 Annexes

UM2138 is a collection of FMEDA snapshots. It is a static document reporting the safety
metrics computed for different detail levels (at microcontroller level and for microcontroller
basic functions) for a given combination of safety mechanisms, a given set of assumptions
and for a given part number. If a FMEDA computation sheet is needed, contact your local
STMicroelectronics sales representative to receive information on expected delivery dates
for specific MCU target part numbers.

UM2139 provides clarifications, guidelines and examples on how to handle the FMEDA
results for STM8AF MCUs.

[1] UM2138 FMEDA analysis for STM8AF Series MCUs

[2] UM2139 FMEDA handling for STM8AF Series MCUs

STM8AF device development process UM1915

8/43 UM1915 Rev 2

2 STM8AF device development process

The development process of a microelectronic device that is used in safety critical
application takes into account the adequate management to reduce the probability of
systematic faults introduced during the design phase.

ISO 26262-10 Annex A (“A.3.7: Example of techniques or measures to detect or avoid
systematic failures during design of a microcontroller”) act as a guidance in tailoring the
microcontroller standard design and manufacturer process to the compliance of ISO 26262
requirements. The checklist reported in the named Annex A (Table A.8) helps to collect all
related evidences of a given real process.

2.1 STMicroelectronics standard development process

STMicroelectronics (ST) serves four industry domains:

• Standard products.

• Automotive products: ST automotive products are AEC-Q100 compliant. They are
subject to specific stress testing and processing instructions in order to achieve the
required quality levels and product stability.

• Automotive safety: a subset of the automotive domain. ST uses as a reference the
ISO 26262 Road vehicles Functional safety standard. ST supports customer inquiries
regarding product failure rates and FMEDA to support hardware system compliance to
established safety goals. ST provides products that are safe in their intended use,
working in cooperation with customers to understand the mission profile, adopt
common methods and define countermeasures for residual risks.

• Medical products: ST complies with applicable regulations for medical products and
applies due diligence in the development and validation of these products.

STMicroelectronics product development process, compliant with the ISO/TS 16949
standard, is a set of interrelated activities dedicated to transform customer specification
and market or industry domain requirements into a semiconductor device and all its
associated elements (package, module, sub-system, application, hardware, software and
documentation), qualified respecting ST internal procedures and able to be manufactured
using ST internal or subcontracted technologies.

UM1915 Rev 2 9/43

UM1915 STM8AF safety architecture

42

3 STM8AF safety architecture

This section describes the safety architecture to implement when using STM8AF
microcontrollers for automotive applications.

3.1 Introduction

The STM8AF microcontroller described in this document is a Safety Element out of Context
(SEooC), that is, a safety element that can be used in different safety applications.

The aim of this section is to define the context of the analysis in terms of assumptions with
respect to reference safety requirements as also assumptions with respect to the design
external to that SEooC.

As a consequence of the SEooC approach, the goal is not to provide an exhaustive hazard
and risk analysis of the system around the microcontroller, but rather to list the
system-related information (such as the application-related assumptions for dangerousness
factors, frequency of failures and diagnostic coverage already guaranteed by the
application) that have been considered during the following steps of the analysis.

3.1.1 Definition of the SEooC

The automotive industry develops generic elements for different applications and for
different customers. These generic elements can be developed concurrently and by
different companies in different tiers of the supply chain, as a distributed development.
Assumptions are made both on the requirements (including safety requirements) on the
element at higher levels of design and also on the design external to the element.

In a safety context, these elements can be developed as a “Safety Element out of Context”
(SEooC), as described in ISO 26262-10, Clause 9.

According to ISO 26262, a “safety element out of context (SEooC)” is a safety-related
element that is not developed for a specific item, i.e. in the context of a particular vehicle. A
SEooC can be a system, an array of systems, a subsystem, a software component or a
hardware component.

This document considers the STM8AF as a SEooC t o whom it is required to have an
ASIL capability, up to and including ASILB, i.e. it can be used in ASILA and ASILB
environments.

3.2 STM8AF as a SEooC

The STM8AF is a general purpose RISC microcontroller, suitable for embedded
applications and, in particular, for safety related applications.

For a detailed description of the STM8AF functionality refer to the microcontroller technical
reference manuals, available on www.st.com.

In this document, the SEooC is identified as the STM8AF microcontroller (MCU),
referenced as a functional block inserted in a system defined by Figure 1. The MCU acts as
the processing unit of the system, i.e. acquiring field data from sensors, processing
them according to the implemented algorithm, and taking decisions that bring to specific

STM8AF safety architecture UM1915

10/43 UM1915 Rev 2

commands to external actuators. The MCU is connected directly or indirectly to sensors
and actuators through communication busses.

Figure 1. Definition of the STM8AF as a SEooC

Other components, like the external HW components needed to guarantee either the
functionality of the STM8AF (external memory, clock quartz) or its safety (e.g. the external
watchdog, voltage supervisors) can be connected to the SEooC.

3.3 Assumed safety requirements

A SEooC is developed, according to ISO 2626-10 clause 9, on the basis of assumptions for
its intended functionality, use and context, including external interfaces (Figure 2).

Figure 2. Relationship between assumptions and SEooC development

The validity of the aforementioned assumptions is checked, in the context of the actual
item, after the integration of the SEooC.

In this document it is assumed that the concept specification, the hazard and risk analysis,
the overall safety requirement specification and the consequent allocation have determined
the assumed safety requirements reported in Table 2.

UM1915 Rev 2 11/43

UM1915 STM8AF safety architecture

42

3.3.1 The target safety metrics (ASIL, SPFM, LFM and PMHF)

According to AR05, the target for the safety functions is ASILB; therefore every
consideration about absolute and relative safety metrics will take ASILB targets, as
reported in Table 3.

Even if safety metrics are defined at item (i.e. at car) level for ISO 26262, the
functional safety standard explicitly foresees the computation of those metrics at a lower
level.

Table 2. List of STM8AF assumed requirements

ID Assumed requirement

AR01 The SEooC is defined as the STM8AF playing the role of processing unit, as in Figure 1.

AR02

Failures in STM8AF HW part leading to wrong execution of the application program
and/or wrong data computations shall be mitigated to fulfil the ASILB capability, i.e.

– single-point fault metric at the HW part level at least 90%

– latent point fault metric at the HW part level at least 60%

AR03 The STM8AF is assumed to be integrated in a product with a lifetime up to 10 years

AR04
In accordance with ISO 26262-.5, 6.4.8 – Note 1, it is assumed that the MPFDI
(Multiple-Point Fault Detection Interval) is equal to or lower than to the item's “power-up to
power-down” cycle (i.e. 1 hour).

AR05 Safety Integrity Level required for the STM8AF is ASILB

AR06 It is assumed a FTTI budget allocated to the STM8AFof 250 msec(1)

1. FTTI value is used for reference only. The end user shall verify that the FTTI value of the final application is
compatible with the requirements in terms of execution of periodical software-based test (refer to
Section 3.6).

AR07

It is assumed that the STM8AF implements a safe state defined as one in which either:

– the application software running on the MCU is informed of the presence of a fault and a
reaction is possible(2)

, or

– if the application software cannot be informed, the MCU reset is executed(3).

2. The end user shall take into account that hardware random failures affecting the STM8AF can compromise
the MCU capability of operating properly (for example failure modes affecting the program counter prevent
the correct execution of software).

3. According to ISO 26262-1, the safe state is the operating mode of an item without unreasonable level of
risk. The ultimate definition of the safe state depends on the end user application

AR08
On the STM8AF SEooC will not be executed together ASIL, QM and/or not- safety related
software(4)

4. The possibility for the SEooC to execute either ASIL, QM and non-safety-related functions together has
been excluded because not supported by dedicated hardware.

Table 3. Target safety metric values at the item level

Safety metric defined Target value
(system level)

Target value
(SEooC level)

Metric
type

Single-point fault metric (SPFM) ≥ 90% ≥ 90% Relative

Latent-fault metric (LFM) ≥ 60% ≥ 60% Relative

Probabilistic metric for random hardware failures (PMHF) 100 FIT 10 FIT Absolute

STM8AF safety architecture UM1915

12/43 UM1915 Rev 2

In this document any claim and computation in terms of safety metrics will be done on the
activity safety scope represented by the SEooC block diagram reported in Table 1.

The budget of the PMHF given to the SEooC must be (if possible) lower than 10% of the
overall PMHF budget of the safety goal, and therefore (for ASILB) the budget for the
STM8AF is 10% * 100 FIT = 10 FIT.

3.3.2 The assumed target time intervals (FTTI and MPFDI)

As illustrated in ISO 26262-1:2001 - Figure 4 - Fault reaction time and fault tolerant time
interval, a system must be able to detect faults and move to safe state before a fault can
become a system level hazard.

In ISO 26262-1, the Fault Tolerant Time Interval (FTTI) is defined as the time span in which a
fault (or faults), can be present in a system before a hazardous event occurs.

Moreover, according to ISO 26262-1:2011, the Multiple-Point Fault Detection Interval
(MPFDI) is the time span to detect multiple-point fault before it can contribute to a
multiple-point failure.

From a system point of view, the STM8AF MCU is a safety-related element, to which a
portion of the FTTI system budget is associated. As shown in Figure 3, the portion of FTTI
assigned to a SEooC (in this case the STM8AF) strongly depends on the application.

Figure 3. STM8AF FTTI allocation and cycle time

In this document, according to ISO 26262-10, 9.2.3.3 d) it is assumed that any
implemented safety mechanisms related to the STM8AF will complete its functions in less
than the assigned FTTI budget time reported in AR06.

This value must be considered as a reference, and can be changed by the
MCU/system integrator according to its own needs.

It is worth noting that according to ISO 26262-5, 7.4.3.3 a single point fault shall be
detected within the FTTI budget allocated to the component.

In this document, in accordance with ISO 26262-.5:2011, 6.4.8 – Note 1, it is assumed that
the MPFDI is equal to or lower than the item's “power-up to power-down” cycle (i.e. one
driving cycle), AR04.

UM1915 Rev 2 13/43

UM1915 STM8AF safety architecture

42

3.4 Electrical specifications and environment limits

The user must not exceed the electrical specification and the environmental limits defined
in the list below, as reported in STM8AF datasheets, to guarantee its own safety integrity:

• absolute maximum rating

• operating conditions.

Due to the large number of STM8AF products, the related user manuals/datasheets are
not listed in this document; the user is responsible to carefully check the above reported
limits in the technical documentation on the related part number available on www.st.com.

3.5 Systematic safety integrity

Due to known device limitations for STM8AF automotive MCUs, the user must follow the
errata sheets available on www.st.com to avoid the introduction of systematic failures.

3.6 Safety mechanisms/measures

This section lists all the safety mechanisms/measures (hardware, software and application
level) considered in the safety analysis of the microcontrollers of the STM8AF Series.

According to ISO 26262-1, “…a safety mechanism is a technical solution implemented by
Electrical/Electronic (E/E) functions or elements, or by other technologies, to detect faults
or control failures in order to achieve or maintain a safe state”.

It is expected that users are familiar with the STM8AF architecture, and that this document
is used in conjunction with the related device datasheet, user manual and reference
information. Therefore, in order to avoid any mistake and reduce the amount of information
to be shown, no functional details are included in this document.

Note that the part numbers of the STM8AF series represent different combinations of
peripherals (for instance, some of them are not equipped with CAN peripheral). To reduce
the number of documents and avoid information-less repetitions, the current safety manual
addresses the overall possible peripherals available in the targeted part numbers. Users
have to select which peripherals are really available on their devices, and discard the
meaningless recommendations accordingly.

The implementation guidelines reported in the following section are for reference only. Read
the following definitions:

• end user: the final user of STM8AF, in charge of integrating the MCU in a real
application (for example an electronic control board)

• application software: the actual software running on the STM8AF, used to
implement the safety function.

3.6.1 STM8AF core

Periodical core self-test software - CPU_SM_0

Permanent faults affecting the CPU are addressed through a dedicated software test
executing a sequence of instructions and data transfers.

The software test is built around well-known techniques already addressed by ISO
26262-5, D.2.3.1 (“Self-test by software: limited number of patterns (one channel)”). The

STM8AF safety architecture UM1915

14/43 UM1915 Rev 2

processing unit (CPU) is tested for functional correctness by applying at least one
pattern per instruction. The testing of the same class of instruction with multiple not-trivial
patterns in order to involve each operand’s input and output bits, at least once equal to “0”
e once equal to “1”, is high recommended. The accumulation by means of not-trivial
computation (e.g. XOR) of the single instruction test result on the basis of the concept of
signature is high recommended. The safety analysis of the CPU hardware has shown that
a stress-test for the pipeline structure is high recommended.

The overall test software suite is assumed to be periodically executed with a time period
compatible with the ISO 26262 requirements for the relationship between FTTI and the
diagnostic test interval (DTI).

Control flow monitoring in application software - CPU_SM_1

A significant part of the failure distribution of STM8AFcore for permanent faults is related to
failure modes directly related to program counter loss of control or hang-up. Due to their
intrinsic nature, such failure modes are not addressed by a standard software test method
based on the execution of sequences of instruction/data access and consequent checks.
Therefore it is necessary to implement a run-time control of the application software flow, in
order to monitor and detect deviation from the expected behavior. Linking this mechanism
to watchdog firing assures that severe loss of control (or, in the worst case, a program
counter hang-up) will be detected within DTI.

This diagnostic measure also contributes to the transient fault detection affecting the
program counter and branch execution subpart in STM8AFcore.

The guidelines for the implementation of the method are the following:

• The different internal states of the application software is well documented and
described (the use of a dynamic state transition graph is encouraged).

• The monitoring of the correctness of each transition between different states of the
application software is implemented.

• The transition through all expected states during the normal application software
program loop is checked.

• The function in charge of triggering the system watchdog is implemented in order to
constrain the triggering (preventing the watchdog reset) also to the correct
execution of the above-described method for program flow monitoring.

The use of the window feature of the independent watchdog (IWDG) (or an external one)
helps to implement a more robust control flow mechanism fed by a different clock source.
In any case the safety metrics do not depend on the watchdog in use (the adoption of
independent or external watchdog contributes to the mitigation of dependent failures, see
Section 4.2.2: Clock).

Double computation in application software - CPU_SM_2

A timing redundancy for safety-related computation is considered to detect transient faults
affecting the STM8AFsubparts devoted to mathematical computations and data access.

UM1915 Rev 2 15/43

UM1915 STM8AF safety architecture

42

The guidelines for the implementation of the method are the following:

• The requirement needs to be applied only to safety-relevant computation, that is those
that can interfere with the system safety functions. Such computation needs to be
therefore carefully identified in the original application software source code.

• Both mathematical operation and comparison are intended as computation.

• The redundant computation for comparison could be implemented according to the
following template:

– Original code:
If (VarA > VarB) then { (execute function) }

– Modified code:
copyVarA:=VarA; copyVarB:=VarB;

If (VarA > VarB) then {

If (copyVarA <= copyVarB) then { (signal_error);

break } (execute function)

}

• The redundant computation is implemented by using copies of the original data for
second computation, and by using an equivalent formula if possible.

• End users are responsible to carefully avoid that the optimization features of the
used compiler removes the timing redundancy introduced according to this current
condition of use.

Stack hardening for application software - CPU_SM_3

The stack hardening method is required to address faults affecting the CPU register bank.
This method is based on source code modification, introducing information redundancy in
register-passed information to the called functions.

The guidelines for the implementation of the method are the following:

• Pass also the redundant copy of the passed parameters values (possibly inverted)
and execute a coherence check in the function.

• Pass also the redundant copy of the passed pointers and execute a coherence check
in the function.

For the parameters that are not protected by redundancy, it is recommended to implement
defensive programming techniques (plausibility check of passed values). For example
enumerated fields are to be checked for consistency.

Independent watchdog - CPU_SM_4

Using an external watchdog for the control flow monitoring method (CPU_SM_1)
contributes to further reduce potential common cause failures, because the external
watchdog will be clocked and supplied independently from the STM8AF.

3.6.2 Program Flash memory

Periodical software test for Flash memory - FLASH_SM_0

Permanent faults affecting the system Flash memory (memory cells and address decoder)
are addressed through a dedicated software test that checks the memory cell contents
versus the expected value, using signature-based techniques. The use of CRC-based
encryption for signature is encouraged.

STM8AF safety architecture UM1915

16/43 UM1915 Rev 2

Without information about the frequency of usage of different occupied Flash memory
sections, in principle, all the area used by the Flash memory is assumed to be tested
with a time period compatible with the ISO 26262 requirements for the relationship
between FTTI and the diagnostic test interval (DTI).

Control flow monitoring in application software - FLASH_SM_1

Permanent and transient faults affecting the system Flash memory (that is the memory
cells and address decoder) can interfere with the access operation by the CPU, leading to
wrong data or instruction fetches. Such wrong data and operation, if able to heavily
interfere with the expected flow of the application software, are detected by strong control
flow mechanism linked to a system watchdog. For more detailed implementation guidelines
for such technique refer to safety mechanism CPU_SM_1.

Note: The implementation of the CPU_SM_1 automatically involves the FLASH_SM_1
implementation.

3.6.3 Data EEPROM

Information redundancy - EEP_SM_0

To address permanent faults affecting the internal EEPROM bank it is required to
implement information redundancy techniques. Possible techniques are:

• use redundant copies of safety relevant data and perform coherence check before
use

• organize data in arrays and compute and check checksum field before use.

Due to their nature, data stored in EEPROM are typically managed directly by the end user
application software, therefore it is reasonable to rely on methods implemented in the final
software solution.

Software read-back after write operation - EEP_SM_1

To address missing writes on EEPROM cells, it is required that the application software
executes a read-back of written data after an update of the EEPROM values. Missing
writes will be handled as a hardware fault.

3.6.4 RAM

Periodical software test for RAM - RAM_SM_0

To address permanent faults affecting RAM data cells and address decoder it is required to
execute a periodical software test on the system RAM. The selection of the algorithm
ensures the target coverage for both the RAM cells and the address decoder. The end
user provides also evidences of the effectiveness of the coverage of the selected method.

The overall test software suite is assumed to be periodically executed with a time period
compatible with the ISO 26262 requirements for the relationship between FTTI and the
diagnostic test interval (DTI).

Stack hardening for application software - RAM_SM_1

The stack hardening method is used to enhance the application software robustness to
RAM faults affecting the address decoder. The method is based on source code
modification, introducing information redundancy in the stack-passed information to the

UM1915 Rev 2 17/43

UM1915 STM8AF safety architecture

42

called functions. This method is relevant in case the combination between the final
application software structure and the compiler settings requires a significant use of the
stack for passing function parameters.

The guidelines for the implementation of the method are the following:

• Pass also the redundant copy of the passed parameters values (possibly inverted)
and execute a coherence check in the function.

• Pass also the redundant copy of the passed pointers and execute a coherence
check in the function.

• For parameters that are not protected by redundancy, implement defensive
programming techniques such as the plausibility check of the passed values (for
example to check the consistency of enumerated fields).

Information redundancy for safety-related variables in application software -
RAM_SM_2

To address transient faults affecting RAM controller and RAM cells, it is required to
implement information redundancy of the safety-related system variables stored in the
RAM.

The guidelines for the implementation of this method are the following:

• The system variables that are safety-related (in the sense that a wrong value read
in the RAM affects the safety functions) are well-identified and documented.

• The arithmetic computation and/or decision based on such variables are/is executed
twice and the two final results are compared.

• Non-numeric variables uses enumerated-type constant values for coding, avoiding
trivial patterns (all-0x00 or all-0xFF); application software checks for consistence
the value assumed by the variables, when used

• Numeric variables are grouped and protected by means of a checksum (for
instance, computed by XOR), updated each variable overwriting and checked at least
once per FTTI.

Note that the implementation of this safety method shows a partial overlap with an already
planned method for STM8AFcore (CPU_SM_1); optimizations in implementing both
methods are therefore possible (see the description of the CPU_SM_1).

3.6.5 Boot ROM

Control flow monitoring in application software - ROM_SM_0

The boot loader starts executing after reset. Permanent and transient faults affecting the
boot ROM can leads to wrong execution of the application software at the end of the boot
procedure. Such alteration is detected by a strong control flow mechanism linked to a
system watchdog. For more detailed implementation guidelines o f this technique refer to
safety mechanism CPU_SM_1.

Note: The implementation of the CPU_SM_1 automatically involves the ROM_SM_0
implementation.

STM8AF safety architecture UM1915

18/43 UM1915 Rev 2

3.6.6 Basic enhanced CAN (beCAN)

Periodical read-back of configuration registers - CAN_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
beCAN peripheral respect to its expected value that is previously stored in the RAM and
adequately updated after each configuration change. It mainly addresses the transient
faults affecting the configuration registers, detecting bit flips . The register test is executed
at least once per DTI in order to be able to claim the related diagnostic coverage.

Protocol error signals - CAN_SM_1

The CAN protocol error counters, which are entirely managed by the module at hardware
level despite being conceived to detect network-related abnormal conditions, are able to
contribute to the detection of the faults leading to error messages generation.

Handling such error signals at application level of is a common technique in embedded
applications.

Information redundancy techniques on messages, including End to End
safing - CAN_SM_2

The CAN communications are protected by addressing both the permanent and transient
faults with the redundant information technique that includes the End to End Safing.

For the implementation of redundant information, it is possible to adopt a different
approach:

• Multiple sending of the same message, with comparison of the received results.

• Addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for
checksum computation will ensure a similar protection against message corruption as the
one ensured by a full redundancy.

For End to End Safing, additional measures are implemented:

• Additional field in payload allowing the unique identification of sender/receiver, and
coherence check by receiver side.

• Timing monitoring of the message exchange (for example check the message arrival
within the expected time window)

• Check of the message consistence using a message counter in the additional payload
field and checking the right sequence of messages on the receiver side.

The use of a safe communication protocol such as PROFIsafe is recommended for the
correct implementation of this safety mechanism.

3.6.7 LINUART

Periodical read-back of configuration registers - LINUART_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
LINUART respect to their expected value (previously stored in RAM and adequately
updated after each configuration change). It mainly addresses transient faults affecting the

UM1915 Rev 2 19/43

UM1915 STM8AF safety architecture

42

configuration registers, detecting bit flips . The registers test is executed at least once per
DTI.

Protocol error signal - LINUART_SM_1

The LIN protocol errors signals (if used) despite being conceived to detect physical layer
related abnormal conditions, are able to contribute to the detection to faults leading to error
messages generation. For instance, option parity bit in data byte frame, overrun error.

Handling such error signals at application level is a common technique in embedded
applications.

Information redundancy techniques on messages - LINUART_SM_2

The redundant information technique is used to protect the LIN/UART communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this technique:

• multiple sending of the same message, with comparison of the received results

• addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for
checksum computation will ensure a similar protection against message corruption as the
one ensured by a full redundancy. Theoretical demonstrations on coverage capability are
admitted, the use of CRC coding is anyway suggested.

The above-reported approaches are equivalent; an additional criterion for the selection of
the approach is the availability of a quick hardware support on the MCU platform, and the
evaluation of the computation capability of the external device exchanging data with
STM8AF.

3.6.8 USART

Periodical read-back of configuration registers - UART_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
USART respect to their expected value (previously stored in RAM and adequately updated
after each configuration change). It mainly addresses transient faults affecting the
configuration registers, detecting bit flips. The registers test is executed at least once per
DTI.

Protocol error signals - UART_SM_1

The UART protocol errors signals (if used) are conceived to detect physical layer related
abnormal conditions, and are able to contribute to the detection of faults leading to error
messages generation (such as option parity bit in data byte frame, overrun error).
Handling such error signals at application level is a common technique in embedded
applications.

STM8AF safety architecture UM1915

20/43 UM1915 Rev 2

Information redundancy techniques on messages - UART_SM_2

The redundant information technique is used to protect the USART communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this technique:

• multiple sending of the same message, with comparison of the received results

• addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for
checksum computation will ensure a similar protection against message corruption as the
one ensured by a full redundancy. Theoretical demonstrations on coverage capability are
admitted – the use of CRC coding is anyway suggested.

The above-reported approaches are equivalent; an additional criterion for the selection of
the approach is the availability of a quick hardware support on the MCU platform, and the
evaluation of the computation capability of the external device exchanging data with
STM8AF.

3.6.9 I2C

Periodical read-back of configuration registers - IIC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of I2C
respect to their expected value (previously stored in RAM and adequately updated after
each configuration change). It mainly addresses transient faults affecting the configuration
registers, detecting bit flips . The registers test is executed at least once per DTI.

Protocol error signals - IIC_SM_1

The I2C protocol errors signals, despite being conceived to detect physical layer related
abnormal conditions, are able to contribute to the detection of faults leading to error
messages generation such as for instance the ACK assertion phase, and related checks.

Handling such error signals at application level is a common technique in embedded
applications.

Information redundancy techniques on messages - IIC_SM_2

The redundant information technique is used to protect the I2C communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this method:

• multiple sending of the same message, with comparison of the received results

• addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for
checksum computation will ensure a similar protection against message corruption as the
one ensured by a full redundancy. Theoretical demonstrations on coverage capability are
admitted – the use of CRC coding is anyway suggested (also looking for the availability of a
quick hardware support on the MCU platform).

UM1915 Rev 2 21/43

UM1915 STM8AF safety architecture

42

The above-reported approaches are equivalent; an additional criterion for the selection is
the evaluation of the computation capability of the external device exchanging data with
STM8AF.

3.6.10 SPI

Periodical read-back of configuration registers - SPI_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of SPI
respect to their expected values previously stored in RAM and adequately updated after
each configuration change. It mainly addresses transient faults affecting the configuration
registers, detecting bit flips. The registers test is executed at least once per DTI.

Protocol error signals - SPI_SM_1

The SPI protocol errors signals, despite being conceived to detect physical layer related
abnormal conditions, are able to contribute to the detection to faults leading to error
messages generation such as, for instance, FIFO overrun and Mode error flags.

Handling such error signals at application level is a common technique in embedded
applications.

Information redundancy techniques on messages - SPI_SM_2

The redundant information technique is used to protect the SPI communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this method:

• multiple sending of the same message, with comparison of the received results

• addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for
checksum computation will ensure a similar protection against message corruption as the
one ensured by a full redundancy. Theoretical demonstrations on coverage capability are
admitted, the use of the hardware CRC computation unit built into SPI module is highly
suggested.

The above-reported approaches are equivalent; an additional criterion for the selection is
the evaluation of the computation capability of the external device exchanging data with
STM8AF.

3.6.11 Analog to digital converter (ADC)

Periodical read-back of configuration registers - ADC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of ADC
respct to their expected values , previously stored in RAM and adequately updated after
each configuration change. It mainly addresses transient faults affecting the configuration
registers, detecting bit flips. The registers test is executed at least once per DTI.

STM8AF safety architecture UM1915

22/43 UM1915 Rev 2

Multiple acquisitions by application software - ADC_SM_1

To address the transient faults that affect the ADC module, it is required to implement a
timing information redundancy scheme that executes multiple acquisitions of the same
signal. This recommendation will most probably be satisfied by the end user application
software. The usage of multiple acquisitions followed by average operations is a common
technique in industrial applications where it is needed to survive with spurious EMI disturbs
on sensor lines.

Range check by application software - ADC_SM_2

To address permanent faults affecting ADC module, and also to address failure modes
affecting the analogue section, it is required that the application software executes a range

/plausibility checks on the measures coming from ADC acquisitions. The guidelines for the
implementation of the method are the following:

• The expected data range to be acquired is investigated and adequately
documented. Note that in a well-designed application it is unlikely that during
normal operation an input signal has a value very close to or over the upper and
below the lower rail limit (saturation in signal acquisition).

• If the application software is aware of the state of the system, this information has to be
used in the range check implementation. For example, if the ADC value is the
measurement of a current through a power load, reading an abnormal value (for
instance a current flowing in opposite direction versus the load supply) may indicate a
fault in the acquisition module.

• As the ADC module is shared between different possible external sources, the
combination of plausibility checks on the different signals acquired helps to cover the
whole input range in a very efficient way.

Note: The implementation of this safety mechanism is strongly application-dependent.

Periodical software test for ADC - ADC_SM_3

To address permanent faults affecting ADC module, and also to address failure modes
affecting the analogue section, it is required to execute a periodical test on the ADC
acquisition section. The method is implemented by acquiring either the internal reference
voltage or, alternatively, a reference voltage coming from the external (board) and
connected to an input pin, and comparing to the expected value. This test is executed
periodically at least once per DTI.

3.6.12 Advanced control and general purpose timers (TIM 1 and TIM 2/3)

As the advanced control and general purpose timers are equipped with different channels,
each independent from the others, and possibly programmed to realize different features,
the safety mechanism is selected individually for each channel.

Periodical read-back of configuration registers –TIM_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
TIMER respect to their expected values ,previously stored in RAM and adequately updated
after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips. The registers test is executed at least once per
DTI.

UM1915 Rev 2 23/43

UM1915 STM8AF safety architecture

42

Dual channel redundancy for counting timers –TIM_SM_1

This method provides a high level of coverage for both permanent and transient faults on
the addressed timers. The method is conceived to protect the timers with counting features,
for example the timers dedicated to maintain a system time base and/or to generate a
timed interrupt for the execution of service routines (like for instance general timing
counters update/increase).

The guidelines for the implementation of the method are the following:

• In case of timer used as a time base, use one of the timers as time-base source in the
application software, and the other one just for check. In that case the coherence
check for the dual channel redundancy will be done at application level.

• In case of interrupt generation usage, use the first timer as main interrupt source for
the service routines, and use the second timer to activate a “checking routine” that
cross-checks the coherence between the timers.

Dual channel redundancy for input capture timers - TIM_SM_2

This method, based on dual channel redundancy scheme, provides a high level of
coverage for both the permanent and transient faults on the addressed timers. It is
conceived to protect the timers used for external signal acquisition and measurement, like
“input capture” and “encoder reading”. The implementation is easy as it simply requires
connecting the external signals also to the redundant timer, and performs a coherence
check on the measured data at application level. To reduce the potential effect of the
common cause failure, it is suggested, for redundancy, to use a channel belonging to a
different timer module and mapped to not-adjacent pins on the device package.

Loop-back scheme for PWM outputs –TIM_SM_3

This method uses a loop-back scheme to detect permanent and transient faults on the timer
channels used for output waveform generations (output compare, PWM and one-pulse
mode). It is implemented by connecting the output signal to a separate channel, either in
the same or in another timer, to acquire the generated waveform characteristics.

The guidelines for the implementation of the method for the PWM signal are the following:

• Both frequency and duty cycle of PWM are measured and checked versus the
expected value.

• To reduce the potential effect of common cause failure, it is suggested to use for the
loop-back check a channel belonging to a different timer module and mapped to not-
adjacent pins on the device package.

This measure can be replaced, under the end-user responsibility, by different loop-back
schemes already in place in the final application and rated as equivalent. For example, if
the PWM is used to drive an external power load, the measurement of the on-line current
value can be used instead of the PWM frequency one.

3.6.13 Basic timer (TIM 4)

Periodical read-back of configuration registers - BTIM_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
TIMER respect to their expected values, previously stored in RAM and adequately updated
after each configuration change. It mainly addresses transient faults affecting the

STM8AF safety architecture UM1915

24/43 UM1915 Rev 2

configuration registers, detecting bit flips. The registers test is executed at least once per
DTI.

Dual channel redundancy for counting timers - BTIM_SM_1

This method provides a high level of coverage for both permanent and transient faults on
the addressed timers. The method is conceived to protect the timers with counting features,
for example the timers dedicated to maintain a system time base and/or to generate a
timed interrupt for the execution of service routines (like for instance general timing
counters update/increase).

The guidelines for the implementation of the method are the following:

• In case of timer used as a time base, use one of the timers as time-base source in the
application software, and the other one just for check. In that case the coherence
check for the dual channel redundancy will be done at application level.

• In case of interrupt generation usage, use the first timer as main interrupt source for
the service routines, and use the second timer to activate a “checking routine” that
cross-checks the coherence between the timers.

3.6.14 GPIO - Ports A/B/C/D/E/F/G/H

Periodical read-back of configuration registers - GPIO_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of GPIO
respect to their expected values, previously stored in RAM and adequately updated after
each configuration change. It mainly addresses transient faults affecting the configuration
registers, detecting bit flips. The registers test is executed at least once per DTI.

Dual channel redundancy for input GPIO lines - GPIO_SM_1

To address both permanent and transient faults on GPIO lines used as input, it is required
to implement a dual channel redundancy scheme by connecting the external
safety-relevant signal to two independent GPIO lines. To reduce the potential impact of
common cause failure, it is suggested to use GPIO lines belonging to different I/O ports (for
example PORT A and B) and mapped to not-adjacent pins on the device package.

Loop-back configuration for output GPIO lines - GPIO_SM_2

To address both permanent and transient faults on GPIO lines used as output, it is required
to implement a loop-back scheme, connecting the output to a different GPIO line
programmed as input and used to check the expected value on output port. To reduce the
potential impact of common cause failure, it is suggested to use GPIO lines belonging to
different I/O ports (for example PORT A and B) and mapped to not-adjacent pins on the
device package.

3.6.15 Address and Data bus

Periodical software test for interconnections - BUS_SM_0

The intra-chip connection resources need to be periodically tested for permanent faults
detection. Note that STM8AF MCUs have no hardware safety mechanism to protect these
structures. The test executes a connectivity test of these shared resources, including the

UM1915 Rev 2 25/43

UM1915 STM8AF safety architecture

42

testing of the arbitration mechanisms between peripherals. This method, based on the
periodical execution of software-based tests is executed at least once per DTI.

Note that the implementation of this safety method is overlapped by already planned
methods for the configuration register checks for the STM8AF peripherals (e.g. CAN_SM_0).

Implementation of all such methods is equivalent to the implementation of BUS_SM_0.

Information redundancy in intra-chip data exchanges - BUS_SM_1

Both permanent and transient faults affecting the intra-chip connection features are
addressed by information redundancy techniques implemented on the messages
exchanged inside the MCU.

Note that the implementation of this safety method is overlapped by already planned
methods related to information redundancy for the STM8AF peripherals (e.g. CAN_SM_2).

Implementation of all such methods is equivalent to the implementation of BUS_SM_1.

3.6.16 Supply voltage system

Periodical read-back of configuration registers - VSUP_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
Power Control logic respect to their expected values, previously stored in RAM and
adequately updated after each configuration change. It mainly addresses transient faults
affecting the configuration registers, detecting bit flips. The registers test is executed at
least once per DTI.

Supply voltage monitoring - VSUP_SM_1

It is required to detect early the under voltage and overvoltage conditions that are potential
sources of failure at MCU level. The power supply values close to the operating limits
reported in device datasheet are considered at the same level as hardware faults and lead
to similar recovery actions by the application software.

The usage of an external monitoring power supply device outside the MCU can ensure the
protection against potential common cause failures.

Warning: In order to reduce the risk of an overvoltage condition, it is
highly recommended the end users to respect the absolute
maximum ratings for voltage (see Section 3.4: Electrical
specifications and environment limits).

Independent watchdog - VSUP_SM_2

The independent watchdog is fed directly by VDD; therefore, major failures in the 1.8 V
supply for digital logic (core/peripherals) will not affect its behavior but may lead to a
violation of the IWDG window for the key value writing by the application software, leading
to a system reset.

STM8AF safety architecture UM1915

26/43 UM1915 Rev 2

3.6.17 Reset and Clock control subsystems

Periodical read-back of configuration registers - CLK_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
Reset and Clock Control logic respect to their expected values (previously stored in RAM
and adequately updated after each configuration change). It mainly addresses transient
faults affecting the configuration registers, detecting bit flips. The registers test is executed
at least once per DTI.

Clock Security System (CSS) - CLK_SM_1

The Clock Security System (CSS) detects the loss of HSE and LSE clock activity and
executes the corresponding recovery action, e.g. switch-off HSE and commute on the HSI.
For this reason it is able to detect potential abnormal situations:

• Loss of external clock,

• Abnormal activation of HSE (or LSE) despite being disabled by design.

The CSS detection of abnormal condition is considered as equivalent to hardware faults
and brings to similar recovery actions by the application software.

Independent watchdog - CLK_SM_2

The independent watchdog is fed by a dedicated oscillator; therefore, major failures on
clock generation at system level will not affect its behavior but may lead to a violation of the
IWDG window for the key value write by the application software, leading to a system reset.
Note that the efficiency of this safety mechanism is strongly dependent on the correct
window setting and handling for the IWDG. The refresh of the IWDG has to be
implemented to bring alteration of the program flow able to bypass the time window limit.

3.6.18 Auto-wakeup timer (AWU)

The AWU is used to provide an internal wakeup time base that is used when the MCU
goes into Active-halt power saving mode.

Periodical read-back of configuration registers - AWU _SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
watchdogs respect to their expected values (previously stored in RAM and adequately
updated after each configuration change). It mainly addresses transient faults affecting the
configuration registers, detecting bit flips. The registers test is executed at least once per
DTI.

Software test for auto-wakeup timer at startup - AWU _SM_1

This safety mechanism ensures the right functionality of the auto-wakeup timer. At startup,
the software test programs the auto-wakeup timer with the required time interval, stores a
specific flag in the RAM and waits for the reset signal. After the wake-up, the software
understands that the AWU has correctly triggered, and does not execute the procedure
again. This method has to be applied only in case the implemented safety goal will plan the
use of the auto-wakeup feature.

UM1915 Rev 2 27/43

UM1915 STM8AF safety architecture

42

3.6.19 Watchdogs (IWDG, WWDG)

Periodical read-back of configuration registers - WDG_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
watchdogs respect to their expected values (previously stored in RAM and adequately
updated after each configuration change). It mainly addresses transient faults affecting the
configuration registers, detecting bit flips. The registers test is executed at least once per
DTI.

Software test for watchdog at startup - WDG_SM_1

This safety mechanism ensures the right functionality of the internal watchdogs in use. At
startup, the software test programs the watchdog with the required expiration timeout,
stores a specific flag in the RAM and waits for the reset signal. After the watchdog reset,
the software understands that the watchdog has correctly triggered, and does not execute
the procedure again.

3.6.20 Debug/SWIM (single wire interface module)

Independent watchdog - DBG_SM_0

The debug unintentional activation due to hardware random fault will result in the massive
disturbance of the independent watchdog or alternately, the other system watchdog
WWDG or an external one.

3.6.21 Interrupt controller (NVIC and EXTI)

Periodical read-back of configuration registers - INTC _SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” is implemented by executing a periodical check of the
configuration registers of each used system peripheral respect to its expected value,
previously stored in RAM and adequately updated after each configuration change. It
mainly addresses the transient faults that affect the configuration registers, by detecting bit
flips. The register test is executed at least once per DTI.

Expected and unexpected interrupt check - INTC_SM_1

According to ISO 26262-5 Table D.1 recommendations, a safety mechanism/measure for
incorrect interrupt executions and for omission of or continuous interrupts must be
implemented. The method of expected and unexpected interrupt check is implemented at
application software level. It contributes to detect both permanent and transient fault for all
the above-reported failure modes affecting interrupt handling.

The guidelines for the implementation of the method are the following:

• The list of the implemented interrupt for the MCU is well documented, reporting also
the expected frequency of each request when possible (for example the interrupts
related to ADC conversion completion, therefore coming on a deterministic way).

• Individual counters are maintained for each served interrupt request, in order to detect
in a given time frame the cases of a) no interrupt at all b) too many interrupt requests
(“babbling idiot” interrupt source). The control of the time frame duration shall be

STM8AF safety architecture UM1915

28/43 UM1915 Rev 2

regulated according to the individual interrupt expected frequency.

• Interrupt vectors related to unused interrupt source point to a default handler that will
report, in case of triggering, a faulty condition (unexpected interrupt).

• In case an interrupt service routine is shared between different sources, a plausibility
check on the caller identity is implemented.

• Interrupt requests related to not-safety-relevant peripherals are handled with the same
method here described, despite their originator safety classification; in order to
decrease the complexity of this method implementation, the use of polling instead of
interrupt for not-safety-relevant peripherals is suggested.

3.6.22 Latent fault detection

ISO 26262 considers also a metric for “latent” faults. The latent fault is a multiple-point fault
which presence is not detected by a safety mechanism nor perceived by the driver within
the multiple-point fault detection interval. In practical words, the latent fault is a combination
of a fault in a safety mechanism - that by itself will NOT cause the violation of the safety
goal (function) - and a fault in the mission logic supervised by that safety mechanism.

The following reported methods mainly address latent fault for the planned safety
mechanism at MCU level.

Independent Watchdog - LAT_SM_0

Each safety mechanism implemented as periodical software testing runs on the CPU.
Possible faults in the safety mechanism are therefore faults in the “support” for the
execution that is the CPU. The independent watchdog is considered here as safety
mechanism addressing the program counter failures due to the CPU hardware random
faults.

Periodical core self-test software - LAT_SM_1

As the major part of the safety mechanism described in this safety manual is implemented
by software, the periodical core self-test software execution able to detect faults in the
STM8 CPU acts as safety mechanism for latent faults. For implementation details refer to
the description of CPU_SM_0 safety mechanism.

3.6.23 Disable and periodic cross-check of unintentional activation
of unused peripherals

This section reports the safety mechanism that addresses peripherals not used by the
safety application, or not used at all.

Unused peripherals disable - FFI_SM_0

This method contributes to the reduction of the probability of cross-interferences caused by
peripherals not used by the software application. It is implemented by end users, taking
care of disabling by software (for instance during the system boot) each peripheral that is
not used.

Periodical read-back of interference avoidance registers - FFI_SM_1

This method contributes to the reduction of the probability of cross-interferences between
peripherals that can potentially conflict on the same output pins, including for instance
unused peripherals (refer to FFI_SM_0). This diagnostic measure executes a periodical

UM1915 Rev 2 29/43

UM1915 STM8AF safety architecture

42

check of the below described registers respect to their expected values (previously stored
in RAM and adequately updated after each configuration change). The register test is
executed at least once per DTI.

The configuration registers to be tested with this method are those related to clock disabling
features for peripherals and those related to the enabling of alternate functions on I/O pins.

3.7 Assumption of Use (AoU)

This section describes the Assumptions of Use (AoU) of the STM8AF that the MCU/system
integrator will consider (together with the requirements listed in Table 2: List of STM8AF
assumed requirements) with respect to its intended use.

The AoUs are different from the HW safety requirements of STM8AF. The AoUs are
requirements for the MCU/system integrator.

3.7.1 List of AoUs

The following tables summarize the Assumptions of Use (AoU) to be fulfilled by users of
the STM8AF MCUs.

The results shown in Section 4: Safety analysis results are valid under the condition that the
AoU, described herein, and the assumed requirements listed in Table 2, are fulfilled by the
STM8AF MCU/system integrator.

The following table lists the assumptions of use and for each of them shows the degree of
recommendation using the typical ISO 26262 coding in order to keep the text consistent
with the standard and to facilitate their interpretation by the user. For each AoU, the
degree of recommendation to use the corresponding method depends on the ASIL and is
categorized as follows:

• “++” indicates that the assumption is highly recommended for the identified ASIL

• “+” indicates that the assumption is recommended for the identified ASIL

• “o” indicates that the assumption has no recommendation for or against its usage for
the identified ASIL.

Table 4 provides a summary of the safety concept recommendations reported in
Section 3.6.

The assumptions of use are reported in the form of safety mechanism (SM) requirements.

The “X” marker in the Perm and Trans columns of Table 4 indicates that the related safety
mechanism is effective for such fault model.

STM8AF safety architecture UM1915

30/43 UM1915 Rev 2

Table 4. List of safety mechanisms

STM8AF
function

Diagnostic Description
ASIL

B
Perm Trans

STM8 core

CPU_SM_0 Periodical core self-test software ++ X -

CPU_SM_1 Control flow monitoring in application
software

++ X X

CPU_SM_2 Double computation in application ++ - X

CPU_SM_3 Stack hardening for application software + X X

CPU_SM_4 Independent watchdog o X X

Program
Flash memory

FLASH_SM_0 Periodical software test for Flash memory ++ X -

FLASH_SM_1 Control flow monitoring in application
software

+ X X

FLASH_SM_3 Option byte write protection M - -

Data EEPROM
EEP_SM_0 Information redundancy ++ X -

EEP_SM_1 Software read-back after write operation + X X

RAM

RAM_SM_0 Periodical software test for RAM ++ X -

RAM_SM_1 Stack hardening for application software + X X

RAM_SM_2 Information redundancy for system
variables in application software

++ X X

Boot ROM ROM_SM_0 Control flow monitoring in application
software

++ X -

beCAN

CAN_SM_0 Periodical read-back of configuration
registers

++ X X

CAN_SM_1 Protocol error signals + X X

CAN_SM_2
Information redundancy techniques on
messages, including End to End safing

++ X X

LINUART

LINUART_SM_0 Periodical read-back of configuration
registers

++ X -

LINUART_SM_1 Protocol error signals + X X

LINUART_SM_2
Information redundancy techniques on
messages

++ X X

UART

UART_SM_0 Periodical read-back of configuration
registers

++ X X

UART_SM_1 Protocol error signals + X X

UART_SM_2 Information redundancy techniques on
messages

++ X X

I2C

IIC_SM_0 Periodical read-back of configuration
registers

++ X X

IIC_SM_1 Protocol error signals + X X

IIC_SM_2 Information redundancy techniques on
messages

++ X X

UM1915 Rev 2 31/43

UM1915 STM8AF safety architecture

42

SPI

SPI_SM_0 Periodical read-back of configuration
registers

++ X X

SPI_SM_1 Protocol error signals + X X

SPI_SM_2 Information redundancy techniques on
messages

++ X X

ADC

ADC_SM_0 Periodical read-back of configuration
registers

++ X X

ADC_SM_1 Multiple acquisition by application
software

++ - X

ADC_SM_2 Range check by application software ++ X X

ADC_SM_3 Periodical software test for ADC + X -

TIM1
and

TIM2/3

TIM_SM_0 Periodical read-back of configuration
registers

++ X X

TIM_SM_1 Dual channel redundancy for counting
timers

++ X X

TIM_SM_2 Dual channel redundancy for input
capture timers

++ X X

TIM_SM_3 Loop-back scheme for PWM outputs ++ X X

TIM4

BTIM_SM_0 Periodical read-back of configuration
registers

++ X X

BTIM_SM_1 Dual channel redundancy for counting
timers

++ X X

GPIO

GPIO_SM_0 Periodical read-back of configuration
registers

++ X X

GPIO_SM_1 Dual channel redundancy for input GPIO
lines

++ X X

GPIO_SM_2 Loop-back scheme for output GPIO lines ++ X X

GPIO_SM_3 GPIO port configuration lock register + - -

Address
and

Data bus

BUS_SM_0 Periodical software test for
interconnections

++ X -

BUS_SM_1 Information redundancy in intra-chip data
exchanges

++ X X

Supply voltage
system

VSUP_SM_0 Periodical read-back of configuration
registers

++ X X

VSUP_SM_1 Supply voltage monitoring ++ X -

VSUP_SM_2 Independent watchdog ++ X -

Clock
and

Reset

CLK_SM_0 Periodical read-back of configuration
registers

++ X X

CLK_SM_1 CSS (Clock Security System) ++ X -

CLK_SM_2 Independent watchdog ++ X -

CLK_SM_3 Internal clock cross-measure + X -

Table 4. List of safety mechanisms (continued)

STM8AF
function

Diagnostic Description
ASIL

B
Perm Trans

STM8AF safety architecture UM1915

32/43 UM1915 Rev 2

The above-described safety mechanism/measures are implemented with different levels of
abstraction, depending on their nature: the more a safety mechanism is implemented as
application-independent, the wider is its possible use on a wide range of end-user
applications.

WAURTC

WAU_SM_0 Periodical read-back of configuration
registers

++ X X

WAU_SM_1 Software test for auto-wakeup timer at
startup

+ X X

WWDG
and

IWDG

WDG_SM_0 Periodical read-back of configuration
registers

++ X X

WDG_SM_1 Software test for watchdog at startup o X -

Debug DBG_SM_0 Independent watchdog ++ X X

Interrupt
controller

INTC_SM_0
Periodical read-back of configuration
registers

++ X X

INTC_SM_1 Expected and unexpected interrupt
check by application software

++ X X

Software-
based
safety

LAT_SM_0 Independent watchdog + X -

LAT_SM_1 Periodical core self-test software + X -

Part separation
(no

interference)

FFI_SM_0 Unused peripherals disable ++ - -

FFI_SM_1 Periodical read-back of interference
avoidance registers

++ - -

Table 4. List of safety mechanisms (continued)

STM8AF
function

Diagnostic Description
ASIL

B
Perm Trans

UM1915 Rev 2 33/43

UM1915 Safety analysis results

42

4 Safety analysis results

This section reports the results of the safety analysis of the STM8AF MCU, according to
ISO 26262 (in particular ISO 26262-10 Annex A).

ISO 26262-10 Annex A is a guideline about how to perform a safety analysis of a
microcontroller according to ISO 26262.

Shortly, the ISO 26262 has three main objectives:

• To improve functional safety by reducing the HW random failures, i.e. failures that
can occur unpredictably during the lifetime of a hardware element and that follow a
probability distribution. They are quantified using safety “metrics”, as described in
Section 3.3.1: The target safety metrics (ASIL, SPFM, LFM and PMHF).

• To improve functional safety by reducing or avoiding dependent failures, i.e. failures
whose probability of simultaneous or successive occurrence cannot be expressed
simply as the product of the unconditional probability of each failure. They include
common cause failures and cascading failures. They are analyzed in a qualitative
way by means of checklists, as described in Section 4.2: Dependent failures
analysis.

• To reduce or avoid the systematic failures, i.e. failures, related in a deterministic
way to a certain cause, that can only be eliminated by a change of the design or of
the manufacturing process, operational procedures, documentation or other relevant
factors.

As mentioned before, the target for the safety functions is ASILB; therefore every
consideration about absolute and relative safety metrics will take ASILB targets.

It is worth to recap here that ASILB report as target limits 90% for SPF (overall system) and
100 FIT for PMHF (100 FIT is indeed the overall budget available for the system, therefore
for STM8AF the allocated budget will be lower).

4.1 Hardware random failure analysis

The analysis for random hardware failures of STM8AF devices reported in this safety
manual is executed according to ISO 26262 and to the following steps.

The STM8AF has been divided into parts and sub-parts according to the procedure defined
in ISO 26262-10. Then, for each part and sub-part, the failure modes have been
identified starting from the ones specified by ISO 26262-5, Annex D and then significantly
extended based on detailed analyses.

Each failure mode has been analyzed in terms of its “end effect” at the STM8AF I/O level.
Detailed results of the qualitative analysis are reported in [2].

About safety metrics, both relative (SPFM, LFM) and absolute (PMHF) have been
computed. The results are not reported in this section but in [2].

In summary, with the adoptions of the safety mechanism and conditions of use reported in
Section 3.7: Assumption of Use (AoU), it is possible for the STM8AF family devices to
achieve the ASILB target.

Safety analysis results UM1915

34/43 UM1915 Rev 2

4.1.1 Safety analysis result customization

The safety analysis executed for STM8AF devices and contained in this safety manual is
considered to be safety relevant, that is able to interfere with the safety function, to all
microcontroller parts, with no exclusion. This is in line with the conservative approach to be
followed during the analysis of a general-purpose microcontroller, in order to be agnostic
versus the final application. This means that no STM8AF module has been declared as “non
safety-related”, and therefore all STM8AF modules are included in SPF computations.

In end-user applications, not all the STM8AF parts/modules are used for the
implementation of the safety function. Requiring the implementation of the respective safety
mechanism for those parts could result in overkill; as a consequence, a dedicated analysis
has been done. According to this analysis, the end user can define the selected STM8AF
parts as “non safety-related” under the following conditions:

• collect rationales and evidences that the parts play no role in safety function
implementation

• collect rationales and evidences that the parts do not interfere with the safety
function during normal operation

• fulfill the below-reported general condition for the mitigation of the intra-MCU
interferences (Table 5)

The end user is allowed for “non safety-related” parts to do the following:

• discard the part contribution from metrics computations in FMEDA

• not implement the related safety mechanisms listed in Table 3.

See [1] for more information.

4.1.2 General requirements for Freedom From Interferences (FFI)

A dedicated analysis has highlighted a list of general requirements to be followed by end
users in order to be authorized to declare selected STM8AF parts as “not safety relevant”.
The analysis considers two situations: the part that is not used at all (disabled) or the part is
used for a function that is not safety-related (for example a GPIO port driving a “power-on”
signaling led on the electronic board), and considers the possible interferences due to
hardware random faults affecting not-safety-relevant parts.

The requirement for the end user is to implement the safety mechanism detailed in
Diagnostic despite any evaluation about their contribution for the safety metrics
computations. Those safety mechanisms are reported in Table 5.

Table 5. List of general requirements for FFI

Diagnostic Description

INTC_SM_0 Periodical read-back of configuration registers

INTC_SM_1 Expected and unexpected interrupt check by application software

FFI_SM_0 Unused peripheral disable

FFI_SM_1 Periodical read-back of interference avoidance registers

BUS_SM_0 Periodical software test for interconnections

GPIO_SM_1 Dual channel redundancy for input GPIO lines

GPIO_SM_2 Loop-back configuration for output GPIO lines

UM1915 Rev 2 35/43

UM1915 Safety analysis results

42

AR08 is a consequence of the performed FFI analysis.

4.2 Dependent failures analysis

The analysis of dependent failures is important for microcontrollers. The main sub-classes
of dependent failures are the Common Cause Failures (CCF).

According to ISO 26262 they need to be addressed on a qualitative basis (ISO 26262-
9:2011, 7.4.1 Note3) but an evaluation can be supported by appropriate checklists.

Measures for the resolution of CCF need to include the measures for preventing their root
causes, or for controlling their effects, or for reducing the coupling factors. The ISO 26262-
10:2011, Annex A includes a paragraph dedicated to initiators and measures for dependent
failures. The ISO 26262-9:2011, 7.4.4 Note1 says that IEC 61508 provides information that
can be used as a basis to establish such checklists. Anyway, as there are no on-chip
redundancies on STM8AF devices, the CCF quantification through BetaIC computation
method is not required.

The STM8AF device architecture and structure are potential sources of dependent failures.
These are analyzed in the following sections. The referred safety mechanisms are
described in detail in Section 3.6: Safety mechanisms/measures.

4.2.1 Power supply

Power supply is a potential source of dependent failures, because any alteration of the
power the supply can affect many parts, leading to not-independent failures. The following
safety mechanisms address and mitigate those dependent failures:

• VSUP_SM_1: detection of abnormal value of supply voltage;

• VSUP_SM_2: the independent watchdog has a different supply source from the digital
core of the MCU, and this diversity helps to mitigate dependent failures related to the
main supply alterations.

The adoption of such safety mechanisms is therefore strongly recommended despite their
minor contribution to the safety metrics to reach the required safety integrity level. Refer to
Section 3.6.16: Supply voltage system for the detailed safety mechanism descriptions.

4.2.2 Clock

System clocks are a potential source of dependent failures, because alterations in the clock
characteristics (frequency, jitter) can affect many parts, leading to not-independent failures.
The following safety mechanisms address and mitigate those dependent failures:

• CLK_SM_1: the clock security system is able to detect hard alterations (stop) of
system clock and activate the adequate recovery actions.

• CLK_SM_2: the independent watchdog has a dedicated clock source. The frequency
alteration of the system clock leads to the watchdog window violations by the
triggering routine on the application software, leading to the MCU reset by watchdog.

The adoption of such safety mechanism is therefore strongly recommended despite their
minor contribution to the safety metrics to reach the required safety integrity level. In
particular, the use of system watchdog WWDG increases the overall capability to keep the
program flow under control.

Refer to Section 3.6.17 for detailed safety mechanisms description.

List of evidences UM1915

36/43 UM1915 Rev 2

5 List of evidences

The Safety Case stores all the information related to the safety analysis performed to
derive the results and conclusions reported in this safety manual.

These contents are not public, but can be made available for possible competent bodies
audit and inspections.

UM1915 Rev 2 37/43

UM1915 Change impact analysis for other safety standards

42

Appendix A Change impact analysis for other safety
standards

The safety analysis reported in this user manual is carried out according to ISO 26262 safety
norm. In this appendix a change impact analysis with respect to different safety standard is
performed. The following topics are considered for each addressed safety norm:

• Differences in the suggested hardware architecture (architectural categories), and how
to map what is foreseen in the new safety norm on the standard safety
architectures of ISO 26262.

• Differences in the safety integrity level definitions and metrics computation methods,
and how to recompute and judge the safety performances of STM8AF devices
according to the new standard.

• Work products required by the new safety norms, and how to remap or rework if
needed existing ones resulting as output of the ISO 26262 compliance activity.

The safety standard examined within this change impact analysis is the following:

• IEC 61508:1-7 – ed. 2 ©IEC: 2010: Functional safety of
electrical/electronic/programmable electronic safety-related systems.

A.1 IEC 61508

The IEC 61508 is the international norm for functional safety of
electrical/electronic/programmable electronic (E/E/PE) safety-related systems.

The ISO 26262 standard is derived from the IEC 61508 standard.

As ISO 26262, the IEC 61508 standard defines four safety integrity levels (SILs), based on
the assessment of the hazard and risk analysis, with SIL1 being the lowest and SIL4 being
the highest.

Despite Automotive Level of Safety Integrity (ASIL) defined in ISO 26262 (with a scale from
A, the lowest level, to D, the highest level), comes from its parent standard SIL definition,
there is no direct correlation between IEC 61508 and ISO 26262 ASIL levels as the ASIL in
ISO 26262 is not stated in probabilistic terms while the SIL in IEC 61508 it is.

A correlation matrix between SIL and ASIL values has been empirically identified by TÜV
SÜD and is illustrated in Figure 4.

Change impact analysis for other safety standards UM1915

38/43 UM1915 Rev 2

Figure 4. Correlation matrix between SIL and ASIL

In the IEC 61508 scope, end-users can rely on SIL decomposition to define system
architectures where the highest SIL requirements are fulfilled by using lower SILs
redundant sub systems but respecting the requirements in part 2 §7.4.4.2.4. Following the
rules, an SIL3 safety goal can be decomposed leading to an item made of two SIL2
independent elements. Thus, end-users can positively match SEooC assumptions in the
form of STM8AF AoU (refer to Section 3.7: Assumption of Use (AoU)). Then the safety
requirements of the system under development can integrate the STM8AF MCU together
with the related safety mechanisms defined in this manual, in items performing up to SIL3
safety functions.

A.1.1 Architectural categories

IEC 61508-6, Annex B requires representing a safety system by means of subsystem block
diagram and representing each subsystem as one or more 1oo1, 1oo2, 2oo2, 1oo2D, 1oo3
or 2oo3 voted groups.

In principle, the safety architectures targeted in this document can be mapped to “1oo1”
or “1oo1d” if HFT = 0 is selected, or “1oo2” or “1oo2d if HFT = 1 if selected (see Table 6).

Table 6. Some reference architectures for IEC 61508

Architecture
Hardware fault
tolerance (HFT)

Description

1oo1 0
Architecture of a single set of components/ component having no hardware fault
tolerance.

Failure of a unit can lead to a loss of the safety function.

1oo1d 0
Architecture of a single set of components/ component with a diagnostic
section, having no hardware fault tolerance.

Failure of a unit can lead to a loss of the safety function.

1oo2 1
Architecture of two set of components/ component connected in parallel,
having a hardware fault tolerance of 1.

Failure of a unit does not lead to a loss of the safety function.

UM1915 Rev 2 39/43

UM1915 Change impact analysis for other safety standards

42

Even if the ISO 26262 does not define any reference architecture, the description of the
SEooC made in this document (Section 3.2: STM8AF as a SEooC) and its representation
by means of the block diagram represented in Figure 1, allow mapping the SEooC to the
1oo1 architecture, including the STM8AF microcontroller as compliant item.

The reference block diagram of such architecture will be the same represented in Figure 1,
simply replacing the word “SEooC” with “Compliant item”.

If a mapping to a different architecture (1oo2, 1oo2d or 2oo2 architecture) is required, the
user has to make reference to the part 6 of the IEC 61508 (IEC 61508-8).

A.1.2 Safety metrics re-computation

Hardware metrics in IEC 61508 standard have been defined with a slightly different
perspective with respect to the ISO 26262.

IEC 61508 is mainly focused on the capability of identification of the safe failure
fraction (SFF), defined as the percentages of failures that are safe or detected and so do not
lead to the violation of a safety goal. The mathematic definition for SFF is identical to the one
for SPF in ISO 26262.

Latent faults are Not Applicable, as IEC 61508 does not define this metric.

Considering the metrics computation, the main differences between IEC 61508 and ISO
26262 are related to how the safe faults are computed and how the failure rate of
diagnostic is computed with the mission.

The differences in failure rates related to hardware diagnostics are assumed to be
negligible; hardware-native safety failures in STM8AF are very few, and with very little
weight in terms of gate count. Therefore, the safety analysis already performed for SPF
target can be reused for the SFF targets in IEC.

For such kind of Commercial Off-the-Shelf (COTS) microcontroller, the natural target in IEC
scenario is 1oo1 SIL 2 (90% is the SFF target for permanent and transient). As these are
the same targets for ASILB case, one can assume that the same set of conditions of
use/safety mechanisms apply.

Metrics computations are detailed in [2].

1oo2d 1
Architecture of two set of components / component connected in parallel with
a diagnostic section, having a hardware fault tolerance of 1.

Failure of a unit does not lead to a loss of the safety function.

2oo2 0
Architecture of two set of components/ component connected in parallel,
having no hardware fault tolerance.

In 2oo2 the diagnostic section is optional.

Table 6. Some reference architectures for IEC 61508 (continued)

Architecture
Hardware fault
tolerance (HFT)

Description

Change impact analysis for other safety standards UM1915

40/43 UM1915 Rev 2

A.1.3 Work products

Table 7, mapping this document content with respect to the requirements listed in the IEC
61508-2 Annex D, acts as a checklist in guidance in providing the evidences of the
compliance of the IEC 61508 requirements.

Table 8 lists the work products required by the IEC 61508 standard and their mapping with
the work products from ISO 26262 compliance activity:

Table 7. Mapping between this document content and IEC 61508-2 Annex D requirements

IEC 61508 requirement (part 2 annex D) Reference

D2.1 a) a functional specification of the functions capable of being performed
Section 3: STM8AF safety
architecture

D2.1 b) identification of the hardware and/or software configuration of
the compliant item

Section 3.2: STM8AF as a SEooC

D2.1 c) constraints on the use of the compliant item and/or assumptions on
which analysis of the behavior or failure rates of the item are based

Section 3.2: STM8AF as a SEooC

D2.2 a) the failure modes of the compliant item due to random hardware
failures, that result in a failure of the function and that are not detected by
diagnostics internal to the compliant item;

Section 3.7: Assumption of Use
(AoU)

D2.2 b) for every failure mode in a), an estimated failure rate;

D2.2 c) the failure modes of the compliant item due to random hardware
failures, that result in a failure of the function and that are detected by
diagnostics internal to the compliant item;

D2.2 d) the failure modes of the diagnostics, internal to the compliant item
due to random hardware failures, that result in a failure of the diagnostics to
detect failures of the function;

D2.2 e) for every failure mode in c) and d), the estimated failure rate;

D2.2 f) for every failure mode in c) that is detected by diagnostics internal to
the compliant item, the diagnostic test interval;

Section 3.3: Assumed safety
requirements

D2.2 g) for every failure mode in c) the outputs of the compliant item initiated by
the internal diagnostics;

Section 3.2: STM8AF as a SEooC

D2.2 h) any periodic proof test and/or maintenance requirements;

Section 3.7: Assumption of Use
(AoU)

D2.2 i) for those failure modes, in respect of a specified function, that are
capable of being detected by external diagnostics, sufficient information shall
be provided to facilitate the development of an external diagnostics capability.

D2.2 j) the hardware fault tolerance;
Section 3: STM8AF safety
architectureD2.2 k) the classification as type A or type B of that part of the compliant item

that provides the function (see 7.4.4.1.2 and 7.4.4.1.3);

UM1915 Rev 2 41/43

UM1915 Change impact analysis for other safety standards

42

Table 8. IEC 61508 work product grid

IEC 61508 ISO 26262

Information to be provided
IEC

61508-2 Reference
Part 4
Clause

Document

Design requirements
specification

7.2.2

Technical safety
requirements specification

6.5.1 Safety manual

Design requirements
specification relating to safety
functions

7.2.3.2

Design requirements
specification relating to safety
integrity

7.2.3.3

Safety validation planning 7.3.2 Validation plan 6.5.3

End user
responsibility

E/E/PE system design and
development

7.4.2 to
7.4.11

System design
7.5.1 to
7.5.4

Integration 7.5.2

Item integration and testing
plan Integration testing

specification(s) Integration
testing report(s)

8.5.1 to
8.5.3

E/E/PE system installation,
commissioning, operation and
maintenance procedures

7.6.2 - -

E/E/PE system safety validation 7.7.2 Validation report 9.5.2

E/E/PE system modification 7.8.2 - -

E/E/PE system verification 7.9.2 System verification report 6.5.2

Functional safety assessment 8
Functional safety

assessment report
10.5.1

Revision history UM1915

42/43 UM1915 Rev 2

Revision history

Table 9. Document revision history

Date Revision Changes

07-Jul-2015 1 Initial version.

18-May-2018 2

Updated Introduction, Section 1.3: Reference normative, Section 1.4:
Annexes, Section 3.4: Electrical specifications and environment
limits, Section 3.6: Safety mechanisms/measures, Section 4: Safety
analysis results, Section 4.1: Hardware random failure analysis,
Section 4.1.1: Safety analysis result customization, Section 4.1.2:
General requirements for Freedom From Interferences (FFI),
Section 4.2: Dependent failures analysis, Section 5: List of
evidences, Appendix A: Change impact analysis for other safety
standards and its subsections.

Updated Table 2: List of STM8AF assumed requirements, Table 4:
List of safety mechanisms, Table 6: Some reference architectures
for IEC 61508 and Table 8: IEC 61508 work product grid.

Updated Figure 1: Definition of the STM8AF as a SEooC, Figure 2:
Relationship between assumptions and SEooC development,
Figure 3: STM8AF FTTI allocation and cycle time and Figure 4:
Correlation matrix between SIL and ASIL.

Removed former Section 2.2: YOGITECH fRMethodology process,
Appendix A: Overview of fRMethodology, B.1: IEC 60730-1:2010,
B.2: Architectural categories, B.3: Safety metrics re-computation
and B.4: Work products.

Minor text edits across the whole document.

UM1915 Rev 2 43/43

UM1915

43

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 About this document
	1.1 Purpose and scope
	1.2 Terms and abbreviations
	Table 1. Terms and abbreviations

	1.3 Reference normative
	1.4 Annexes

	2 STM8AF device development process
	2.1 STMicroelectronics standard development process

	3 STM8AF safety architecture
	3.1 Introduction
	3.1.1 Definition of the SEooC

	3.2 STM8AF as a SEooC
	Figure 1. Definition of the STM8AF as a SEooC

	3.3 Assumed safety requirements
	Figure 2. Relationship between assumptions and SEooC development
	Table 2. List of STM8AF assumed requirements
	3.3.1 The target safety metrics (ASIL, SPFM, LFM and PMHF)
	Table 3. Target safety metric values at the item level

	3.3.2 The assumed target time intervals (FTTI and MPFDI)
	Figure 3. STM8AF FTTI allocation and cycle time

	3.4 Electrical specifications and environment limits
	3.5 Systematic safety integrity
	3.6 Safety mechanisms/measures
	3.6.1 STM8AF core
	3.6.2 Program Flash memory
	3.6.3 Data EEPROM
	3.6.4 RAM
	3.6.5 Boot ROM
	3.6.6 Basic enhanced CAN (beCAN)
	3.6.7 LINUART
	3.6.8 USART
	3.6.9 I2C
	3.6.10 SPI
	3.6.11 Analog to digital converter (ADC)
	3.6.12 Advanced control and general purpose timers (TIM 1 and TIM 2/3)
	3.6.13 Basic timer (TIM 4)
	3.6.14 GPIO - Ports A/B/C/D/E/F/G/H
	3.6.15 Address and Data bus
	3.6.16 Supply voltage system
	3.6.17 Reset and Clock control subsystems
	3.6.18 Auto-wakeup timer (AWU)
	3.6.19 Watchdogs (IWDG, WWDG)
	3.6.20 Debug/SWIM (single wire interface module)
	3.6.21 Interrupt controller (NVIC and EXTI)
	3.6.22 Latent fault detection
	3.6.23 Disable and periodic cross-check of unintentional activation of unused peripherals

	3.7 Assumption of Use (AoU)
	3.7.1 List of AoUs
	Table 4. List of safety mechanisms (continued)

	4 Safety analysis results
	4.1 Hardware random failure analysis
	4.1.1 Safety analysis result customization
	4.1.2 General requirements for Freedom From Interferences (FFI)
	Table 5. List of general requirements for FFI

	4.2 Dependent failures analysis
	4.2.1 Power supply
	4.2.2 Clock

	5 List of evidences
	Appendix A Change impact analysis for other safety standards
	A.1 IEC 61508
	Figure 4. Correlation matrix between SIL and ASIL
	A.1.1 Architectural categories
	Table 6. Some reference architectures for IEC 61508 (continued)

	A.1.2 Safety metrics re-computation
	A.1.3 Work products
	Table 7. Mapping between this document content and IEC 61508-2 Annex D requirements
	Table 8. IEC 61508 work product grid

	Revision history
	Table 9. Document revision history

