

March 2016 DocID028153 Rev 2 1/19

 www.st.com

UM1927
User manual

Getting started with the X-CUBE-SPN5 bipolar stepper motor
driver software expansion for STM32Cube

Introduction
The X-CUBE-SPN5 expansion package for STM32Cube gives you full control of stepper motor
operation. With this software running on the STM32 microcontroller of an NUCLEO-F401RE, NUCLEO-
F030R8, NUCLEO-F334R8 or NUCLEO-L053R8 board, you can build and test your applications with
ST's fully integrated L6208 stepper motor driver on an X-NUCLEO-IHM05A1 board.

The STM32Cube platform allows flexible solution design and integration in a persistent environment.
Build your own ideas from scratch or begin experimenting immediately with the included sample setup
to control a single bipolar stepper motor.

Information regarding STM32Cube is available on www.st.com at http://www.st.com/stm32cube.

Contents UM1927

2/19 DocID028153 Rev 2

Contents

1 What is STM32Cube? .. 5

1.1 STM32Cube architecture .. 5

2 X-CUBE-SPN5 software expansion for STM32Cube 7

2.1 Overview ... 7

2.2 Architecture ... 9

2.3 Folders structure ... 10

2.3.1 BSP folder .. 10

2.3.2 Projects folder ... 11

2.4 Software required resources ... 11

2.5 APIs .. 12

2.6 Sample application description .. 12

3 System setup guide ... 13

3.1 Hardware description .. 13

3.1.1 STM32 Nucleo platform .. 13

3.1.2 X-NUCLEO-IHM05A1 bipolar stepper motor driver expansion board13

3.1.3 Miscellaneous hardware components .. 14

3.2 Software description .. 14

3.3 Hardware and software setup ... 14

3.3.1 Setup to drive 1 motor .. 15

4 Acronyms and abbreviations ... 17

5 Revision history .. 18

UM1927 List of tables

 DocID028153 Rev 2 3/19

List of tables

Table 1: Required resources for the X-CUBE-SPN5 software ... 11
Table 2: Acronyms and abbreviations .. 17
Table 3: Document revision history .. 18

List of figures UM1927

4/19 DocID028153 Rev 2

List of figures

Figure 1: Firmware architecture .. 5
Figure 2: Overall software architecture ... 9
Figure 3: STM32 Nucleo board ... 13
Figure 4: X-NUCLEO-IHM05A1 bipolar stepper motor driver expansion board 14
Figure 5: X-NUCLEO-IHM05A1 stepper motor driver configuration for STM32 Nucleo based on
STM32F030 .. 15
Figure 6: Board connections ... 16

UM1927 What is STM32Cube?

 DocID028153 Rev 2 5/19

1 What is STM32Cube?

STMCube™ represents the STMicroelectronics initiative to make developers’ lives easier
by reducing development effort, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube version 1.x includes:

 STM32CubeMX, a graphical software configuration tool that allows the generation of
C initialization code using graphical wizards.

 A comprehensive embedded software platform specific to each series (such as the
STM32CubeF4 for the STM32F4 series), which includes:

 the STM32Cube HAL embedded abstraction-layer software, ensuring maximized
portability across the STM32 portfolio

 a consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics

 all embedded software utilities with a full set of examples

1.1 STM32Cube architecture

The STM32Cube firmware solution is built around three independent levels that can easily
interact with one another, as described in the diagram below:

Figure 1: Firmware architecture

Level 0: This level is divided into three sub-layers:

 Board Support Package (BSP): this layer offers a set of APIs relative to the hardware
components in the hardware boards (Audio codec, IO expander, Touchscreen, SRAM
driver, LCD drivers. etc…) and composed of two parts:

What is STM32Cube? UM1927

6/19 DocID028153 Rev 2

 Component: is the driver relative to the external device on the board and not
related to the STM32, the component driver provides specific APIs to the external
components of the BSP driver, and can be ported on any other board.

 BSP driver: links the component driver to a specific board and provides a set of
easy to use APIs. The API naming convention is BSP_FUNCT_Action(): e.g.,
BSP_LED_Init(), BSP_LED_On().

It is based on modular architecture allowing is to be easily ported on any hardware by just
implementing the low level routines.

 Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries
and stacks). It provides generic, multi-instance and function-oriented APIs to help
offload user application development time by providing ready to use processes. For
example, for the communication peripherals (I2S, UART, etc.) it provides APIs for
peripheral initialization and configuration, data transfer management based on polling,
interrupt or DMA processes, and communication error management. The HAL Drivers
APIs are split in two categories: generic APIs providing common, generic functions to
all the STM32 series and extension APIs which provide special, customized functions
for a specific family or a specific part number.

 Basic peripheral usage examples: this layer houses the examples built around the
STM32 peripherals using the HAL and BSP resources only.

Level 1: This level is divided into two sub-layers:

 Middleware components: set of libraries covering USB Host and Device Libraries,
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interaction among the
components in this layer is performed directly by calling the feature APIs, while vertical
interaction with low-level drivers is managed by specific callbacks and static macros
implemented in the library system call interface. For example, FatFs implements the
disk I/O driver to access a microSD drive or USB Mass Storage Class.

 Examples based on the middleware components: each middleware component comes
with one or more examples (or applications) showing how to use it. Integration
examples that use several middleware components are provided as well.

Level 2: This level is a single layer with a global, real-time and graphical demonstration
based on the middleware service layer, the low level abstraction layer and basic peripheral
usage applications for board-based functions.

UM1927 X-CUBE-SPN5 software expansion for
STM32Cube

 DocID028153 Rev 2 7/19

2 X-CUBE-SPN5 software expansion for STM32Cube

2.1 Overview

This software is based on the STM32CubeHAL hardware abstraction layer for the STM32
microcontroller. The package extends STM32Cube by providing a board support package
(BSP) for the STM32 expansion board based on the L6208.

It allows complete management of the L6208 through a comprehensive set of APIs, and
gives you access to the following features:



The software implements pseudo registers and motion commands:

 By configuring PWMs to generate step clocks and voltage references for micro-
stepping

 By managing acceleration, deceleration, min and max speed, positions at speed
profile boundaries, mark position, micro-stepping samples, micro-stepping mode,
direction, current decay mode, velocity or position mode, motion state, etc. in the form
of device parameters

The software implements a tick timer. At the end of each tick timer pulse, a callback is
executed to call the tick handler which controls motor motion via:

 The step clock signal falling and rising edges

 In full step or half step mode, a rising edge command is generated each time the
position computation equals a new full or half step (relevant bit toggling is checked)

 In micro-stepping mode, a rising edge command is generated each time a quarter
period of the reference sine-wave voltages has elapsed (relevant bit toggling is
checked)

 The micro-stepping sample generation by setting the duty cycles on the PWMs for the
two bridges

 The motor direction by a GPIO level

 The motor position which is varied by the speed (steps per tick)

 The speed which is varied by acceleration or deceleration (steps per tick²)

 the motion state in positioning or velocity modes (e.g., the motor is stopped when it
reaches target position).

The speed is a linear function of the step clock frequency.

The software is currently able to divide a single step into up to 16 micro-steps; this is
obtained through a lookup table.

To use the L6208 driver library, you must first call the initialization function to:

 Set up the required GPIOs to handle the bridge enable pin EN, the CONTROL pin for
current decay mode selection, the half/full pin for stepping or micro-stepping mode
selection, the CW/CCW pin for motor direction selection, the CLOCK pin for step clock
management, the RESET pin, the Flag interrupt which reports overcurrent detection or
thermal protection, and the PWMs for VREFA and VREFB pin reference voltage
generation

 Set up the tick timer

 Load the driver parameters with predefined values from "l6208_target_config.h"
(acceleration, deceleration, minimum and maximum speed, step mode, decay mode,
stop mode, PWM frequency, etc.)

X-CUBE-SPN5 software expansion for
STM32Cube

UM1927

8/19 DocID028153 Rev 2

Following initialization, you can modify the driver parameters by calling specific functions.
The user can also write callback functions and attach them to:

 The Flag interrupt handler depending on the actions to be performed when an
overcurrent or thermal alarm is signaled

 The Error handler called by the library when it reports an error

You can then proceed to invoke motor control commands:

 BSP_MotorControl_Move to move for a given number of steps in a specific

direction

 BSP_MotorControl_GoTo, BSP_MotorControl_GoHome, and

BSP_MotorControl_GoMark to take the shortest direction to a specific position

 BSP_MotorControl_CmdGoToDir to move in a set direction to a specific position

 BSP_MotorControl_Run to run until a new instruction is received

The speed profile is completely handled by the microcontroller. The motor starts moving at

the set minimum speed (BSP_MotorControl_SetMinSpeed). At each step, the motor is

accelerated or decelerated according to relevant settings

(BSP_MotorControl_SetAcceleration and

BSP_MotorControl_SetDeceleration).

The velocity versus time function is trapezoidal if the target position is far enough for the
motor to reach and maintain maximum speed:

 Acceleration phase governed by BSP_MotorControl_SetAcceleration

 Steady phase where the motor turns at maximum speed

(BSP_MotorControl_SetMaxSpeed).

 Deceleration phase governed by (BSP_MotorControl_SetDeceleration)

 Stop at target position

The velocity versus time function is triangular if the target position is not far enough to
reach maximum speed::

 Acceleration phase governed by BSP_MotorControl_SetAcceleration

 Deceleration phase governed by (BSP_MotorControl_SetDeceleration)

 Stop at target position

A motion command can be stopped at any moment with a progressive 'soft stop'

(BSP_MotorControl_SoftStop) involving deceleration, or an immediate 'hard stop'

(BSP_MotorControl_HardStop). When the motor is stopped, the power bridge is

automatically disabled if the stop mode parameter (BSP_MotorControl_SetStopMode)

is set to HIZ_MODE.

Direction, speed, acceleration and deceleration can be changed either when the motor is

stopped or when motion is requested via the BSP_MotorControl_Run function.

To ensure new commands do not interrupt current instructions, the

BSP_MotorControl_WaitWhileActive command locks program execution until the

motor stops moving.

The library also lets you change the step mode from full step to 1/16th step mode with

BSP_MotorControl_SelectStepMode). When the step mode is changed, the device

and the current position and speed are automatically reset.

For more information regarding APIs, see Section 2.5: "APIs".

UM1927 X-CUBE-SPN5 software expansion for
STM32Cube

 DocID028153 Rev 2 9/19

2.2 Architecture

This software is an expansion for STM32Cube, and as such it fully complies with the
architecture of STM32Cube and expands it in order to enable development of applications
using stepper motor drivers. Please see the previous chapter for an introduction to the
STM32Cube architecture.

The software is based on the STM32CubeHAL, the hardware abstraction layer for the
STM32 microcontroller. The package extends STM32Cube by providing a board support
package (BSP) for the motor control expansion board and a BSP component driver for the
L6208 motor driver.

The software layers used by the application software to access and use the stepper motor
driver expansion board are the following:

 STM32Cube HAL layer: The HAL driver layer provides a generic multi-instance simple
set of APIs (application programming interfaces) to interact with the upper layers
(application, libraries and stacks). It is composed of generic and extension APIs. It is
directly built around a generic architecture and allows the layers that are built upon,
such as the middleware layer, to implement their functionalities without dependency
on the specific hardware configuration for a given microcontroller unit (MCU). This
structure improves library code reusability and guarantees easy portability to other
devices.

 Board support package (BSP) layer: The software package needs to support the
peripherals on the STM32 Nucleo board apart from the MCU. This software is
included in the board support package (BSP). This is a limited set of APIs which
provides a programming interface for certain board specific peripherals, e.g. the LED,
user button, etc. The interface also helps in identifying the specific board version. If
using motor control expansion boards, the motor control BSP provides the
programming interface for various motor driver components. In the X-CUBE-SPN5
software, it is associated with the BSP component for the L6208 motor driver.

The following diagram outlines the software architecture of the package:

Figure 2: Overall software architecture

X-CUBE-SPN5 software expansion for
STM32Cube

UM1927

10/19 DocID028153 Rev 2

2.3 Folders structure

The software code is located in two main folders:

 A Drivers folder with:

 STM32Cube HAL files: in the STM32L0xx_HAL_Driver,
STM32F0xx_HAL_Driver, STM32F3xx_HAL_Driver and
STM32F4xx_HAL_Driver subfolders. These files represent the STM32Cube
framework subset required to run the sample motor driver applications.

 CMSIS folder: containing the CMSIS (Cortex® microcontroller software interface
standard) files from ARM. These files form a vendor-independent hardware
abstraction layer for the Cortex-M processor series. This folder is also unchanged
from the STM32Cube framework.

 BSP (board support package) folder: with the code required for the X-
NUCLEO-IHM05A1 configuration and the L6208 driver and the motor control API.
see Section 2.3.1: "BSP folder".

 A Project folder with several use examples of the L6208 motor driver for different
Nucleo platforms.

2.3.1 BSP folder

The following board support packages are included in the X-CUBE-SPN5 software.

2.3.1.1 STM32L0XX-Nucleo/STM32F0XX-Nucleo/STM32F3XX-Nucleo/STM32F4XX-
Nucleo BSPs

These BSPs provide an interface to configure and use the Nucleo peripherals with the X-
NUCLEO-IHM05A1 expansion board. In each compatible STM32 Nucleo board subfolder,
there are two .c/.h file pairs:

 stm32XXxx_nucleo.c/h: these files come from the STM32Cube framework without
modification and provide the functions to handle the user button and the LEDs of the
corresponding Nucleo board.

 stm32XXxx_nucleo_ihm05a1.c/h: these files are dedicated to the configuration of
the PWMs, the GPIOs and interrupt enabling/disabling for the proper operation of the
X_NUCLEO_IHM05A1 expansion board.

2.3.1.2 Motor control BSP

This BSP provides a common interface to access the driver functions of various motor
drivers such as the L6474, L6206 and L6208, via the MotorControl/motorcontrol.c/h file
pair. These files define all the motor driver configuration and control functions, which are
then mapped to the functions of the motor driver component used on the given expansion

board in the motorDrv_t (defined in Components\Common\motor.h.) structure. This

structure defines a list of function pointers which are filled during its instantiation in the
corresponding motor driver component.

For the X-CUBE-SPN5, the structure is called l6208Drv (refer to the

BSP\Components\l6208\l6208.c file).

As the motor control BSP is common for all motor driver expansion boards, not all of its
functions are available for a given expansion board. During the instantiation of the

motorDrv_t structure in the driver component, unavailable functions are replaced by a

null pointer.

UM1927 X-CUBE-SPN5 software expansion for
STM32Cube

 DocID028153 Rev 2 11/19

2.3.1.3 L6208 BSP component

The L6208 BSP component provides the driver functions of the L6208 motor driver in the
stm32_cube\Drivers\BSP\Components\L6208 folder. This folder has the following files:

 l6208.c: core functions of the L6208 driver

 l6208.h: declaration of the L6208 driver functions and their associated definitions

 l6208_target_config.h: predefined values for the L6208 parameters and for the motor
device context

2.3.2 Projects folder

For each Nucleo platform, one sample project is available in
stm32_cube\Projects\Multi\Examples\MotionControl\:

 IHM05A1_ExampleFor1Motor: example of control functions in a single motor
configuration

Each example has a target IDE folder:

 EWARM with the project files for IAR

 MDK-ARM with the project files for Keil

 SW4STM32 with the project files for OpenSTM32

Each example also has the following code files:

 inc\main.h: Main header file

 inc\ stm32xxxx_hal_conf.h: HAL configuration file

 inc\stm32xxxx_it.h: header for the interrupt handler

 src\main.c: main program (code of the example which is based on the motor control
library for L6208)

 src\stm32xxxx_hal_msp.c: HAL initialization routines

 src\stm32xxxx_it.c: interrupt handler

 src\system_stm32xxxx.c: system initialization

 src\clock_xx.c: clock initialization

2.4 Software required resources

Microcontroller management of the L6208 device and communication between the two is
accomplished through GPIOs. This requires the use of six GPIOs for the EN, CONTROL,
HALF/FULL, CLOCK, RESET, CW/CCW pins and two PWMs for the VREFA and VREFB
pins.

To handle the overcurrent and the overtemperature alarms, the X-CUBE-SPN5 software
uses an external interrupt, configured on the GPIO used for the EN pin after it has been
used to either enable or disable the power bridges.

Table 1: Required resources for the X-CUBE-SPN5 software

Resources

F4xx

Resources

F3xx

Resources

F0xx

Resources

L0xx
Pin Features

Port A GPIO 10

External line 10
D2

EN and Flag

interrupt (OCD,

OVT)

Port B GPIO 3

Timer2 Ch2

Port B GPIO 3

Timer2 Ch2

Port B GPIO 3

Timer2 Ch2
D3 VREFA

Port B GPIO 5

D4 HALF/FULL

Port B GPIO 4

D5 CONTROL

X-CUBE-SPN5 software expansion for
STM32Cube

UM1927

12/19 DocID028153 Rev 2

Resources

F4xx

Resources

F3xx

Resources

F0xx

Resources

L0xx
Pin Features

Port B GPIO 10

D6 CLOCK

Port A GPIO 8

D7 CW/CCW (DIR)

Port A GPIO 9

D8 RESET

Port C GPIO 7

Timer3 Ch2

Port C GPIO 7

Timer3 Ch2

Port C GPIO 7

Timer3 Ch2

Port C GPIO 7

Timer22 Ch2
D9 VREFB

Port A GPIO 7

Timer14 Ch2
D11 VREFA

2.5 APIs

The X-CUBE-SPN5 API is defined in the Motor Control BSP. Its functions are prefixed with

BSP_MotorControl_.

not all the functions of this module are available on the L6208 device and hence
on the expansion board X-NUCLEO-IHM05A1.

Detailed technical information regarding the APIs available to the user can be found in a
compiled HTML file in the package Documentation folder, where all the functions and
parameters are fully described.

2.6 Sample application description

A sample application using the X-NUCLEO-IHM05A1 STM32 expansion board with a
compatible STM32 Nucleo board is provided in the "Projects" directory. Ready-to-build
projects are available for multiple IDEs (see Section 2.3.2: "Projects folder").

UM1927 System setup guide

 DocID028153 Rev 2 13/19

3 System setup guide

3.1 Hardware description

This section describes the hardware components needed to develop a bipolar stepper
motor driver-based application.

The following subsections describe the individual components.

3.1.1 STM32 Nucleo platform

The STM32 Nucleo boards provide an affordable and flexible way for users to try out new
ideas and build prototypes with any of the STM32 microcontroller lines. The Arduino™
connectivity support and ST Morpho headers make it easy to expand the functionality of
the STM32 Nucleo open development platform with a wide choice of specialized expansion
boards. The STM32 Nucleo board does not require any separate probes as it integrates the
ST-LINK/V2-1 debugger/programmer. The STM32 Nucleo board comes with the STM32
comprehensive software HAL library together with various packaged software examples.

Information about the STM32 Nucleo boards is available on www.st.com at
www.st.com/stm32nucleo

Figure 3: STM32 Nucleo board

3.1.2 X-NUCLEO-IHM05A1 bipolar stepper motor driver expansion board

The X-NUCLEO-IHM05A1 is a bipolar stepper motor driver expansion board based on the
L6208. It provides an affordable and easy-to-use solution for driving a stepper motor in
your STM32 Nucleo project.

The X-NUCLEO-IHM05A1 is compatible with the Arduino UNO R3 connector, and supports
the addition of other boards.

http://www.st.com/
http://www.st.com/stm32nucleo

System setup guide UM1927

14/19 DocID028153 Rev 2

Figure 4: X-NUCLEO-IHM05A1 bipolar stepper motor driver expansion board

Information about the X-NUCLEO-IHM05A1 expansion board is available on www.st.com
at http://www.st.com/x-nucleo.

3.1.3 Miscellaneous hardware components

To complete the hardware setup, you will need:

 1 bipolar stepper motor.

 an external DC power supply with 2 electrical cables for the X-NUCLEO-IHM05A1
board.

 a USB cable type A to mini-B to connect the STM32 Nucleo to a PC.

3.2 Software description

The following software components are needed in order to set up a suitable development
environment for creating applications based on the motor driver expansion board:

 X-CUBE-SPN5: an expansion for STM32Cube dedicated to L6208 motor driver
application development. The X-CUBE-SPN5 firmware and related documentation is
available on www.st.com.

 A development toolchain and compiler. Three toolchains are supported:

 Keil RealView Microcontroller Development Kit (MDK-ARM) toolchain V5.12

 IAR Embedded Workbench for ARM (EWARM) toolchain V7.20

 OpenSTM32 System Workbench for STM32 (SW4STM32)

3.3 Hardware and software setup

This section describes the hardware and software setup procedure to execute the
examples provided, and to develop new applications based on the motor driver expansion
board.

http://www.st.com/
http://www.st.com/x-nucleo
http://www.st.com/

UM1927 System setup guide

 DocID028153 Rev 2 15/19

3.3.1 Setup to drive 1 motor

The STM32 Nucleo must be configured with the following jumper positions:

 JP1 off

 JP5 (PWR) on UV5 side

 JP6 (IDD) on

X-NUCLEO-IHM05A1 expansion board configuration:

 When using an STM32 Nucleo based on the STM32F334: none

 When using an STM32 Nucleo based on the STM32F401: none

 When using an STM32 Nucleo based on the STM32L053: none

 When using an STM32 Nucleo based on the STM32F030: pin 4 of the CN5 connector
must be connected to pin 4 of the CN9 connector, as shown below.

Figure 5: X-NUCLEO-IHM05A1 stepper motor driver configuration for STM32 Nucleo based on
STM32F030

Once the board is properly configured:

 Plug the X-NUCLEO-IHM05A1 expansion board on top of the STM32 Nucleo using
the Arduino UNO R3 connectors.

 Connect the STM32 Nucleo board to a PC with the USB cable through USB connector
CN1 to power the board.

 Power-on the X-NUCLEO-IHM05A1 expansion board by connecting its connectors Vin
and GND to the DC power supply. The DC supply must be set to deliver the required
voltage to the stepper motor.

 Connect the stepper motor to the X-NUCLEO-IHM05A1 bridge connectors A+/- and
B+/-

System setup guide UM1927

16/19 DocID028153 Rev 2

Figure 6: Board connections

Once system setup is complete:

 Open your preferred toolchain (MDK-ARM from Keil, EWARM from IAR, or
SW4STM32 from OpenSTM32)

 Depending on the STM32 Nucleo board used, open the software project from:

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM05A1_ExampleFor1Mot
or\YourToolChainName\STM32L053R8-Nucleo for Nucleo STM32L053

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM05A1_ExampleFor1Mot
or\YourToolChainName\STM32F401RE-Nucleo for Nucleo STM32F401

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM05A1_ExampleFor1Mot
or\YourToolChainName\STM32F030R8-Nucleo for Nucleo STM32F030

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM05A1_ExampleFor1
Motor\YourToolChainName\STM32F334R8-Nucleo for Nucleo STM32F334

 In order to adapt the default parameters used by the L6208 to your stepper motor, use
either:

 the BSP_MotorControl_Init function with the NULL pointer and modify

stm32_cube\Drivers\BSP\Components\l6208\l6208_target_config.h parameters
accordingly

 the BSP_MotorControl_Init function with the address of the

initDevicesParameters structure with values modified accordingly

 Rebuild all files and load your image into target memory.

 Run the sample application; your motor will start automatically (find program sequence
details in main.c)

UM1927 Acronyms and abbreviations

 DocID028153 Rev 2 17/19

4 Acronyms and abbreviations
Table 2: Acronyms and abbreviations

Term Description

API Application programming interface

BSP Board support package

CMSIS Cortex® microcontroller software interface standard

HAL Hardware abstraction layer

IDE Integrated development environment

LED Light emitting diode

Revision history UM1927

18/19 DocID028153 Rev 2

5 Revision history
Table 3: Document revision history

Date Revision Changes

07-Aug-2015 1 Initial release.

10-Mar-2016 2

Text changes throughout document

Updated Figure 2: "Overall software architecture"

Removed API details (now available in a compiled HTML file inside the

package “Documentation” folder).

Added STM32F3xx compatibility information.

Replaced TrueStudio with System Workbench for STM32

(SW4STM32).

UM1927

 DocID028153 Rev 2 19/19

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

