
September 2015 DocID028226 Rev 1 1/48

1

UM1937
User manual

STM32CubeL4 demonstration firmware for STM32L476G-EVAL
board

Introduction

The STMCube™ initiative was originated by STMicroelectronics to ease developers’ life by
reducing development efforts, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube Version 1.x includes:

• The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per series (such as
STM32CubeL4 for STM32L4 Series)

– The STM32CubeL4 HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, STMTouch and
FatFs

– All embedded software utilities coming with a full set of examples.

The STM32Cube L4 evaluation demonstration platform is built around the STM32Cube
HAL, BSP and RTOS middleware components.

With dot-matrix TFT and LCD-glass displays, two microphones, a joystick, a touch key, a
smartcard with SWP, CAN transceiver, EEPROM, IrDA, NOR and Quad-SPI Flash
memories, a ST-LINK/V2 debugger/programmer and STM32L476ZG microcontroller, this
evaluation board is the good hardware to evaluate STM32L4 ultra-low-power solutions and
audio capabilities.

The architecture was defined with the goal of making from the STM32CubeL4
demonstration core an independent central component which can be used with several
RTOS and third party firmware libraries through several abstraction layers inserted between
the STM32CubeL4 demonstration core and the several modules and libraries working
around.

The STM32CubeL4 demonstration firmware supports STM32L476xx devices and runs on
STM32L476G-EVAL board.

www.st.com

http://www.st.com

Contents UM1937

2/48 DocID028226 Rev 1

Contents

1 STM32Cube overview . 6

2 Getting started with demonstration . 7

2.1 Hardware requirements . 7

2.1.1 Hardware configuration to run the demonstration firmware 7

3 Demonstration firmware package . 9

3.1 Demonstration repository . 9

3.2 Demonstration architecture overview . 10

3.3 STM32L476G-EVAL board BSP .11

4 Demonstration functional description . 13

4.1 Kernel . 13

4.1.1 CPU usage . 14

4.1.2 Kernel log . 14

4.1.3 Process viewer . 14

4.2 Modules . 15

4.2.1 System . 15

4.2.2 Audio player . 16

4.2.3 Audio recorder . 20

4.2.4 File Browser . 21

4.2.5 Image viewer . 22

4.2.6 Idd . 24

4.2.7 USB mass storage device . 25

4.2.8 Game . 28

5 Demonstration firmware settings . 28

5.1 Clock control . 28

5.2 Peripherals . 28

5.3 Interrupts / Wakeup pins . 29

5.4 System memory configuration . 30

5.5 FreeRTOS resources . 30

5.5.1 Tasks . 30

DocID028226 Rev 1 3/48

UM1937 Contents

3

5.5.2 Message queues . 31

5.5.3 Heap . 31

5.6 Programming firmware application . 31

5.6.1 Using binary file . 32

5.6.2 Using pre-configured projects . 32

6 Kernel description . 32

6.1 Overview . 32

6.2 Kernel core files . 32

6.3 Kernel initialization . 33

6.4 Kernel processes and tasks . 34

6.5 Kernel graphical aspect . 35

6.6 Kernel menu management . 35

6.7 Modules manager . 36

6.8 Backup and settings configuration . 38

6.9 Storage units . 38

7 How to create a new module . 40

7.1 Creating the graphical aspect . 40

7.2 Graphics customization . 41

7.3 Module implementation . 42

7.4 Adding a module to the main desktop . 43

7.5 Module direct open . 43

8 Demonstration customization and configuration 44

8.1 LCD configuration . 44

8.2 Layers management . 45

8.3 Touchscreen calibration . 45

9 Revision history . 47

List of tables UM1937

4/48 DocID028226 Rev 1

List of tables

Table 1. Jumper configurations . 7
Table 2. Data structure for the audio player module. 18
Table 3. Audio player control description . 19
Table 4. Image viewer control description . 24
Table 5. USB mass storage control description . 27
Table 6. Used peripherals. 28
Table 7. Demonstration firmware interrupts . 29
Table 8. Memory configurations . 30
Table 9. Task descriptions . 30
Table 10. Message queue descriptions . 31
Table 11. Application Heap usage . 31
Table 12. Kernel core file description . 32
Table 13. File system interface functions descriptions . 38
Table 14. API functions descriptions . 39
Table 15. Document revision history . 47

DocID028226 Rev 1 5/48

UM1937 List of figures

5

List of figures

Figure 1. STM32Cube block diagram . 6
Figure 2. STM32L476G-EVAL board. 8
Figure 3. Folder structure. 9
Figure 4. Demonstration architecture overview . 10
Figure 5. EVAL BSP structure . 11
Figure 6. Main desktop (Part I) . 13
Figure 7. Main desktop (Part II) . 13
Figure 8. CPU usage . 14
Figure 9. Process viewer . 14
Figure 10. System information . 15
Figure 11. Clock settings . 15
Figure 12. Audio player module . 16
Figure 13. Audio player module architecture . 17
Figure 14. Audio recorder module . 20
Figure 15. Audio recorder with direct open for audio playback or file management 20
Figure 16. Audio recorder module architecture . 21
Figure 17. File Browser architecture . 22
Figure 18. Image viewer architecture. 23
Figure 19. Idd module . 25
Figure 20. USB device module architecture . 26
Figure 21. USB device module . 26
Figure 22. Game module application . 28
Figure 23. File system architecture . 40
Figure 24. The GUIBuilder overview . 41
Figure 25. Graphics customization . 42
Figure 26. Direct open from file browser . 43
Figure 27. LCDConf location . 44
Figure 28. k_calibration.c location . 45
Figure 29. Calibration steps . 46

STM32Cube overview UM1937

6/48 DocID028226 Rev 1

1 STM32Cube overview

The STMCube™ initiative was originated by STMicroelectronics to ease developers’ life by
reducing development efforts, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube Version 1.x includes:

• The STM32CubeMX, a graphical software configuration tool that allows generating C
initialization code using graphical wizards

• A comprehensive embedded software platform, delivered per series (such as
STM32CubeL4 for STM32L4 Series)

– The STM32CubeL4 HAL, an STM32 abstraction layer embedded software,
ensuring maximized portability across STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, TCP/IP,
Graphics

– All embedded software utilities coming with a full set of examples.

Figure 1. STM32Cube block diagram

DocID028226 Rev 1 7/48

UM1937 Getting started with demonstration

47

2 Getting started with demonstration

2.1 Hardware requirements

The hardware requirements to start the demonstration application are as follows:

• STM32L476G-EVAL board (Figure 2) (refer to UM1855 for evaluation board
description)

• One “USB type A to type B” cable to power up the STM32 evaluation board from the
USB ST-LINK (standard-B USB connector CN17)

The STM32L476G-EVAL board helps the user to discover the ultra-low-power features and
audio capabilities of the STM32L4 Series. It offers everything required for beginners and
experienced users to get stared quickly and develop applications easily.

Based on an STM32L476ZGT6 MCU, the STM32L476G-EVAL board includes an ST-
LINK/V2-1 embedded debug tool interface, USB, USART, digital microphones, ADC and
DAC, dot-matrix TFT LCD, LCD glass module, IrDA, LDR, SRAM, NOR Flash memory
device, Quad-SPI Flash memory device, microSD card, sigma-delta modulators, smartcard
with SWP, CAN transceiver, EEPROM and RF-EEPROM.

2.1.1 Hardware configuration to run the demonstration firmware

Table 1 lists the proper jumper configuration to run the demonstration firmware on the
STM32L476G-EVAL board.

Table 1. Jumper configurations

Jumper/connector number Position(1)

JP1 1-2 (VDD_MCU)

JP2 1-2 (+3V3)

JP3 CLOSED

JP4 162 (LEFT)

JP5 1-2 (Pot)

JP6 CLOSED

JP7 1-2 (Oop/ADC)

JP8 OPENED

JP9 OPENED

JP10 1-2 (VDD_MCU)

JP11 2-3 (IDD)

JP12 1-2 (VDD)

JP13 OPENED

JP14 2-3 (MCU)

JP15 CLOSED (RS232)

JP16 2-3 (VDD)

JP17 STlink

Getting started with demonstration UM1937

8/48 DocID028226 Rev 1

LCD glass must be mounted in IO position.

Please refer to UM1855 evaluation board with STM32L476ZGT6 MCU for a complete
description of jumper settings.

Figure 2. STM32L476G-EVAL board

JP18 OPENED

JP19 CLOSED

CN10 CLOSED (ADC VREF)

1. Position 1 corresponds to jumper side with a dot marking.

Table 1. Jumper configurations (continued)

Jumper/connector number Position(1)

DocID028226 Rev 1 9/48

UM1937 Demonstration firmware package

47

3 Demonstration firmware package

3.1 Demonstration repository

The STM32CubeL4 demonstration firmware for STM32L476G-EVAL board is provided
within the STM32CubeL4 firmware package as shown in Figure 3.

Figure 3. Folder structure

The demonstration sources are located in the project folder of the STM32Cube package for
each supported board. The sources are divided into five groups described as follows:

• Binary: demonstration binary file in Hex format

• Config: all middleware components and HAL configuration files

• Core: contains the kernel files

• Modules: contains the sources files for main application top level and the application
modules

• Project settings: a folder per tool chain containing the project settings and the linker
files.

Demonstration firmware package UM1937

10/48 DocID028226 Rev 1

3.2 Demonstration architecture overview

The STM32CubeL4 demonstration firmware for STM32L476G-EVAL board is composed of
a central kernel based on a set of firmware and hardware services offered by the
STM32Cube middleware, evaluation board drivers and a set of modules mounted on the
kernel and built in a modular architecture. Each module can be reused separately in a
standalone application. The full set of modules is managed by the kernel which provides an
access to all common resources and facilitates the addition of new modules as shown in
Figure 4.

Each module should provide the following functionalities and properties:

1. Display characteristics

2. Method to startup the module

3. Method to close down the module for Low-power mode

4. The module application core (main module process)

5. Specific configuration

6. Error management

Figure 4. Demonstration architecture overview

The kernel services are described in Section 6: Kernel description.

DocID028226 Rev 1 11/48

UM1937 Demonstration firmware package

47

3.3 STM32L476G-EVAL board BSP

The board drivers are available within the stm32l476g_evalXXX.c/.h files (see Figure 5),
implementing the board capabilities and the bus link mechanism for the board components
(LEDs, buttons, audio, EEPROM, TFT LCD, glass LCD, SRAM, NOR and Quad-SPI Flash
memories, touchscreen, microSD card, etc…).

Figure 5. EVAL BSP structure

Demonstration firmware package UM1937

12/48 DocID028226 Rev 1

The components present on the STM32L476G-EVAL board are controlled by dedicated
BSP drivers. These are:

• The STMPE811 and STMPE1600 IO expanders in stm32l476g_eval_io.c/.h

• The 2 stereo WM8994 audio codec with independent audio content in
stm32l476g_eval_audio.c/.h

• the EEPROM in stm32l476g_eval_eeprom.c/.h

• The 128-Mbit (8M x 16bit) NOR Flash memory in stm32l476g_eval_nor.c/.h

• The 16-Mbit (1M x 16bit) SRAM device in stm32l476g_eval_sram.c/.h

• The 256-Mbit Micron N25Q256A Quad-SPI Flash memory in
stm32l476g_eval_qspi.c/.h

• The microSD card in stm32l476g_eval_sd.c/.h

• The built-in Idd circuitry for MCU current consumption measurement in
stm32l476g_eval_idd.c/.h

• The 40x8-segment LCD glass in stm32l476g_eval_glass_lcd.c/.h

• The 2.8-inch 320x240 dot-matrix color TFT LCD panel with resistive touchscreen in
stm32l476g_eval_lcd.c/.h and stm32l476g_eval_ts.c/.h

DocID028226 Rev 1 13/48

UM1937 Demonstration functional description

47

4 Demonstration functional description

4.1 Kernel

The main desktop is built around two main graphical components:

• The status bar: indicates the storage units connection status, the current time, date and
a system utilities button to allow getting system information like (running task, CPU
usage, and kernel log)

• The icon view widget: contains the icons associated to added modules. The user can
launch a module by a simple click on the module icon (see Figure 6 and Figure 7)

Figure 6. Main desktop (Part I)

Figure 7. Main desktop (Part II)

The system utilities are accessible during the STM32CubeL4 demonstration running time,
using the system button (ST Logo) in top left of the main desktop. The system utilities button
offers the following services:

• CPU Usage history

• Kernel log messages

• Current running processes viewer

Demonstration functional description UM1937

14/48 DocID028226 Rev 1

4.1.1 CPU usage

The CPU usage utility provides a graphical representation of the CPU usage evolution
(Figure 8) during the demonstration run time starting for the first time it was launched. Note
that once launched the CPU usage utilities keep running in background and can be restored
any time.

Figure 8. CPU usage

4.1.2 Kernel log

The kernel log utility gathers all the kernel and module messages and save them into a
dedicated internal buffer. The log messages can be visualized any time during the
demonstration run time.

4.1.3 Process viewer

The process viewer (Figure 9) allows to check and to display the status of the on-going
tasks (FreeRTOS) any time during the demonstration run time. It shows the following
information:

1. On-going tasks names

2. On-going tasks priorities

3. On-going tasks states

Figure 9. Process viewer

DocID028226 Rev 1 15/48

UM1937 Demonstration functional description

47

4.2 Modules

4.2.1 System

Overview

The system module provides three control tabs: system information, general settings and
clock settings to set the global demonstration settings. The system module retrieves
demonstration information from internal kernel setting data structures and acts on several
kernel services to change settings.

Functional description

The system module provides two graphical views:

1. Demonstration global information

This first page shows the main demonstration informations such as: Used board, STM32
core part number, current CPU clock and demonstration revision

2. Clock settings.

The clock setting panel allows to adjust the demonstration time and date by changing the
RTC configuration of the kernel

Figure 10. System information

Figure 11. Clock settings

Demonstration functional description UM1937

16/48 DocID028226 Rev 1

4.2.2 Audio player

Overview

The audio player module provides a complete audio solution based on the
STM32L476ZGT6 MCU and delivers a high-quality music experience. It supports playing
music in WAV format but may be extended to support other compressed formats such as
MP3 and WMA audio formats.

Figure 12. Audio player module

Functional description

The audio player initialization is done in startup step. In this step the audio player state, the
speaker and the volume value are initialized, the process is started only once the play
button in the audio player interface is pressed.

There are two ways to start audio player module:

• From main desktop menu as shown in Figure 12

• Through the file browser contextual menu: direct open feature

When the audio player is started, the following actions are executed:

• The graphical components are initialized:

– The audio frame

– The control buttons

– The list box field

• An additional memory is allocated to keep the audio list (pWavList) and the audio file
information (pFileInfo).

DocID028226 Rev 1 17/48

UM1937 Demonstration functional description

47

Architecture

Figure 13 shows the different audio player parts and their connections and interactions with
the external components.

Figure 13. Audio player module architecture

Demonstration functional description UM1937

18/48 DocID028226 Rev 1

Data structure used

Table 2 contains the different data structures used in the audio player module and a brief de-
scription

 .
Table 2. Data structure for the audio player module

Structure description

WAV_InfoTypedef Contains the wave file information extracted from wave file header.

AUDIOPLAYER_ProcessTypdef
Contains the audio player state, the speaker state, the volume
value and pointer to the audio buffer.

AUDIOPLAYER_StateTypdef

Contains the different audio player state:

AUDIOPLAYER_STOP

AUDIOPLAYER_START

AUDIOPLAYER_PLAY

AUDIOPLAYER_PAUSE

AUDIOPLAYER_EOF

AUDIOPLAYER_ERROR

AUDIOPLAYER_ErrorTypdef

Contains the different possible error:

AUDIOPLAYER_ERROR_NONE

AUDIOPLAYER_ERROR_IO

AUDIOPLAYER_ERROR_HW

AUDIOPLAYER_ERROR_MEM

AUDIOPLAYER_ERROR_FORMAT_NOTSUPPORTED

BUFFER_StateTypeDef

Contains the different buffer state:

BUFFER_OFFSET_NONE

BUFFER_OFFSET_HALF

BUFFER_OFFSET_FULL

DocID028226 Rev 1 19/48

UM1937 Demonstration functional description

47

Audio player Control

 l

Table 3. Audio player control description

Button Preview Brief description

Play button

– Changes the audio player state to “AUDIOPLAYER_PLAY”

– Reads the wave file from storage unit

– Sets the frequency

– Starts or resumes the audio task

– Starts playing audio stream from a data buffer using

– “BSP_AUDIO_OUT_Play” function in BSP audio driver.

– Replaces play button by pause button

Pause
button

– Suspends the audio task

– Pauses the audio file stream

– Replaces pause button by play button

Stop button

– Closes the wave file from storage unit

– Suspends the audio task

– Stops audio playing

– Changes the audio player state to “AUDIOPLAYER_STOP”

Previous
button

Points to the previous wave file

Stops audio playing

Starts playing the previous wave file if play button is pressed

Next button

- Points to the next wave file

- Stops audio playing

- Starts playing the next wave file if play button is pressed

Add file to
playlist
button

- Opens file browser window and choose wave file to be added
to playlist

Add folder
button

 - Opens file browser window and choose entire folder to be
added to playlist

Repeat
button

At the end of file:

- If repeat all is selected the next wave file is selected and
played

- If repeat once is selected the played wave file is repeated

- If repeat off is selected the audio player stops

Speaker
button

- Sets the volume at mute (first press)

- Sets the volume at value displayed in volume slider (second
press)

Volume
slider

- Sets the volume value

Progress
slider

- Sets the desired position in the wave file

Close
button

- Closes the audio player module

Demonstration functional description UM1937

20/48 DocID028226 Rev 1

4.2.3 Audio recorder

Overview

The audio recorder module application allows to demonstrate the audio recording capability
of the STM32L476G-EVAL board thanks to the MP34DT01embedded digital microphone.

Figure 14. Audio recorder module

Figure 15. Audio recorder with direct open for audio playback or file management

Features

• 8 kHz, 16 kHz, 44,1 kHz or 48 kHz audio recording in .wav format

• Audio file stored in the microSD Card

DocID028226 Rev 1 21/48

UM1937 Demonstration functional description

47

Architecture

Figure 16 shows the different audio recorder parts and their connections and interactions
with the external components.

Figure 16. Audio recorder module architecture

4.2.4 File Browser

Overview

The file browser module application is a system module that allows exploring the connected
storage unit(s), deleting or opening a selected file. The file list structure is built during the
media connection and updated after a connection status change of one of the used medium.

Functional description

The file browser is mainly used for standard file operations: explore folder, file information,
file deletion and opening supported extension file when a file type is linked to the direct open
file feature of the kernel. Note that read-only file cannot be deleted physically from media.

Demonstration functional description UM1937

22/48 DocID028226 Rev 1

Figure 17. File Browser architecture

To open the contextual file menu, the user has to select a file. Note that selecting a folder
has no effect. The following actions are accessible through the contextual menu:

a) Open file: if a file extension is linked to the direct open file feature of the kernel, the
associated application with this extension is launched and the file is opened
automatically

b) Delete file: selecting a file for deletion will display a confirmation message box to
confirm the deletion operation. Note that Read-Only file cannot be deleted
physically from media

c) Properties: the file browser can be used to check file properties such as current
location, size, and creation date

Note: the file browser can explore up to four levels, the maximum explorer level is hardly coded in
the kernel files (k_storage.h).

4.2.5 Image viewer

Overview

The image viewer module allows displaying bmp and jpg pictures. It is possible to load the
full image list from a folder or to add the images manually to the playlist. Once the playlist is
created, the navigation between pictures can be done either via next and previous buttons
or by enabling the slide show mode. The slide show timer can be changed on the fly (there
is no need to restart the module).

DocID028226 Rev 1 23/48

UM1937 Demonstration functional description

47

Architecture

Figure 18 shows the different image viewer parts and their respective connections and
interactions with the external components.

Figure 18. Image viewer architecture

Functional description

There are two ways to start the image viewer module:

• Either by touching the image viewer icon

• Or by using the file browser contextual menu: direct open feature

When the image viewer is started, the following actions are executed:

• The graphical components are initialized:

– The image frame

– The control buttons

– The list box field

• Memory is allocated to save the image list (pImageList) and the file information
(pFileInfo)

• The saved parameters are restored from the RTC backup register

Demonstration functional description UM1937

24/48 DocID028226 Rev 1

Table 4 summarizes the different actions behind each control button:

4.2.6 Idd

Overview

The Idd module application measures and displays in real time the MCU current
consumption depending on the selected power mode. The current is measured and
calculated thanks to a built-in circuit on the STM32L476G-EVAL board allowing to measure
the current consumption (Idd) in Run and Low-power modes, except for Shutdown mode.

For the measurement to be precise, it is mandatory to perform a calibration before the
measurement. The calibration allows subtracting the offset of the differential amplifier
output: please refer to UM1855 for Idd measurement principle.

The demonstration firmware guides the user to perform the Idd calibration procedure thanks
to JP11 jumper settings.

Table 4. Image viewer control description

Button Preview Brief Description

Close
– Free allocated memory

– Ends the module dialog

Previous

– Closes the current image

– Opens the previous image

– Refreshes the image frame

– Updates the selection in the playlist

Start slideshow

– Closes the current image

– Opens the next image

– Refreshes the image frame

– Creates the slideshow timer

Next

– Closes the current image

– Opens the next image

– Refreshes the image frame

– Updates the selection in the playlist

Settings – Creates and show the settings dialog

Add folder
– Opens the directory chooser to allow selection of an entire

folder and then add all the images included in this folder to the
playlist.

Add file
– Opens the file chooser to allow selection of an image which will

be added to the playlist.

DocID028226 Rev 1 25/48

UM1937 Demonstration functional description

47

Figure 19. Idd module

Idd measurement results are displayed either in milliampere (mA), microampere (µA) or
nanoampere (nA).

Features

• Run mode at 80 MHz (voltage range 1), PLL on, RTC/LSE on, Flash ART on

• Sleep mode at 80 MHz (voltage range 1), PLL on, RTC/LSE on, Flash ART on

• Stop 2 mode, RTC/LSE on, Flash ART on

• Calibration procedure with parameters saved in RTC backup registers

Functional description

Selection of an Idd measurement with the available power mode buttons executes the
following sequence:

• Enter HW components in Low-power mode (IO configured in Analog mode)

• Enter MCU in Low-power mode

• Wait for automatic wakeup through an external event on EXTI 5. This event is the end
of the Idd measurement done by the ADC

• Display the measured current value on the display

4.2.7 USB mass storage device

Overview

The USB device module includes mass storage device application using the microSD
memory. It uses the USB OTG FS peripheral.

Architecture

Figure 20 shows the different USB device module parts and their respective connections
and interactions with the external components.

Demonstration functional description UM1937

26/48 DocID028226 Rev 1

Figure 20. USB device module architecture

Functional description

Run USB device demonstration by clicking USB device icon in the main desktop.

Figure 21. USB device module

DocID028226 Rev 1 27/48

UM1937 Demonstration functional description

47

Table 5 summarizes the different actions behind each control button

 :

Table 5. USB mass storage control description

Button Preview Brief description

Connect USB Button

- Changes the USB logo as follow:

- Changes the USBD status as
CONNECTED

Disconnect USB
Button

- Changes the USB logo as follow:

- Changes the USBD status as
DISCONNECTED

Insert microSD card NA

- Changes the microSD logo as follow:

Remove microSD
card

NA

- Changes the microSD logo as follow:

Close button

- Closes USBD module

Demonstration firmware settings UM1937

28/48 DocID028226 Rev 1

4.2.8 Game

Overview

The game module application is based on the Reversi game. It is a strategy board game for
two players, played on an 8×8 board. The goal of the game is to have the majority of disks
turned to display user’s color when the last playable empty square is filled.

In this STM32Cube demonstration STM32 MCU is one of the two players. The GUI will ask
the user to start a new game when the ongoing game is over.

Figure 22. Game module application

5 Demonstration firmware settings

5.1 Clock control

The following clock configurations are used in the demonstration firmware:

• SYSCLK: 80 MHz (PLL) from HSE 8 MHz (RUN voltage range 1).

The following oscillators and PLL are used in the demonstration firmware:

• HSE (8 MHz) as PLL source clock

• LSE as RTC clock source

• PLL main output at 80 MHz

• PLLSAI1 output at 48 MHz (PLL48M2CLK) for USB/SDMMC and configurable
frequencies (PLLSAI1CLK) for SAI1

5.2 Peripherals

The following peripherals are used in the demonstration firmware

 :

Table 6. Used peripherals

Used peripherals Application/module

ADC Idd application

CORTEX NVIC services

DocID028226 Rev 1 29/48

UM1937 Demonstration firmware settings

47

5.3 Interrupts / Wakeup pins

The following interrupts are used in the demonstration firmware

 :

DFSDM Audio record and system temperature applications

DMA
Audio application and all applications with storage unit accesses
on microSD card

EXTI Pushbutton and Idd application

FLASH System settings

GPIO All applications

I2C IO expander usage on board

NOR External NOR Flash memory (graphical resources)

PCD USB device application

PWR System and Idd application

RCC System application and BSP drivers (SD/Audio)

RTC System application and kernel backup service

SAI Audio applications

SD All applications with storage unit accesses

TIM System temperature application (PWM)

Table 6. Used peripherals (continued)

Used peripherals Application/module

Table 7. Demonstration firmware interrupts

Interrupts Application/module
Priority, SubPriority

(highest=0,0)

DFSDM0_IRQn
System temperature application (PT100 thermal
sensor with dual-channel sigma-delta modulator)

1,0

DMA1 Channel4 Audio record applications (DFSDM0 / left audio in) 6,0

DMA1 Channel5 Audio record applications (DFSDM0 / right audio in) 6,0

DMA2 Channel2 Audio player applications (SAI1) 5,0

DMA2 Channel4 SD card data transfer in application with storage 4,0

EXTI Line 5 Idd application (wakeup Interrupt) 0,0

EXTI Line 8 SD card pin detection 5,0

EXTI Line 13 Pushbutton used for Idd application calibration 15,0

OTG_FS_IRQn USB device application 4,0

SAI1_IRQn Audio applications 5,0

SDMMC1_IRQn All applications with microSD storage 5,0

SysTick CortexM4 system timer for OS tick 15, 0

Demonstration firmware settings UM1937

30/48 DocID028226 Rev 1

5.4 System memory configuration

The following system memory areas are used in the demonstration firmware

 :

5.5 FreeRTOS resources

The STM32L476G-EVAL firmware demonstration is designed on top of CMSIS-OS drivers
based on FreeRTOS. Resources used in the firmware demonstration are listed hereafter.

As a reminder FreeRTOS configuration is described in FreeRTOSConfig.h file.

5.5.1 Tasks

Stack size: 128 is the value defined for config MINIMAL_STACK_SIZE in
FreeRTOSConfig.h.

Table 8. Memory configurations

Memory Start Address Application

Internal Flash 0x80000000 Demonstration firmware run code and constants

Internal SRAM1 0x20000000
Demonstration firmware data (FreeRTOS heap
included)

Internal SRAM2 0x10000000
Kernel memory area (64Kbytes)

for kernel graphics and log management

External NOR 0x64000000
External NOR memory Flash where graphical
resources are located (bitmaps)

Table 9. Task descriptions

Task entry point Description
Function

(File)
Stack size

(words)
Priority

StartThread
Main application core

(kernel)
Main.c 2 * 128 osPriorityNormal

AudioPlayer_Thread Audio player application
AUDIOPLAYER_I

nit()
(Audioplayer.c)

4 * 128 osPriorityHigh

AudioRecorder_Thr
ead

Audio recorder
application

AudioRecorder_In
it()

(Audiorecorder_a
pp.c)

4 * 128 osPriorityHigh

GUIThread GUI core (STemWin)
StartThread()

(main.c)
16 * 128 osPriorityHigh

StorageThread
Storage management

(kernel)
k_Storage_Init()

(k_storage.c)
2 * 128 osPriorityHigh

Idle task
(FreeRTOS)

Idle task (background) - 128 osPriorityHigh

DocID028226 Rev 1 31/48

UM1937 Demonstration firmware settings

47

5.5.2 Message queues

5.5.3 Heap

The FreeRTOS heap size is defined in FreeRTOSConfig.h as follows:

Heap usage in the firmware demonstration is dedicated to:

• OS resources (tasks, queues, mutexes, memory allocation)

• Application memory allocations requirements

The demonstration firmware implements a hook in main.c to control memory allocation in
the heap

5.6 Programming firmware application

First of all install the ST-LINK/V2.1 driver available on ST website.

There are two ways of programming the STM32L476G-EVAL board.

Table 10. Message queue descriptions

QueueId Description Function (File) Queue depth (word)

StorageEvent
Queue to receive storage

event
K_StorageInit()

(k_storage.c)
10

AudioEvent Audio player input event
AUDIOPLAYER_Init()

(Audioplayer.c)
1

AudioRecordEvent Audio recorder input event
AudioRECORDER_Init(

)

(Audiorecorder.c)
1

Table 11. Application Heap usage

Applications Description Function (File)
Memory requirements

(bytes)

USB Device
Mass storage class

handle
USBD_MSC_Init()

(usbd_msc.c)
< 10 Kbytes

Kernel description UM1937

32/48 DocID028226 Rev 1

5.6.1 Using binary file

Upload the binary STM32CubeDemo_STM32L476G_EVAL-VX.Y.Z.hex from the firmware
package available under Projects\STM32L476G_EVAL\Demonstrations\MB1144\Binary
using user’s preferred in-system programming tool.

Make sure that the external loader for M29W128GL_STM32L476G_EVAL is selected to
program the graphical resources in the external NOR flash.

5.6.2 Using pre-configured projects

Choose one of the supported tool chains and follow the steps below:

• Open the application folder: Projects\STM32L476G_EVAL\Demonstrations\MB1144

• Choose the desired IDE project (EWARM for IAR, MDK-ARM for Keil)

• Double click on the project file (for example Project.eww for EWARM)

• Rebuild all files: go to Project and select Rebuild all

• Load the project image: go to Project and select Debug

• Run the program: go to Debug and select Go

6 Kernel description

6.1 Overview

The role of the demonstration kernel is mainly to provide a generic platform that controls
and monitors all the application processes with a minimum memory consumption. The
kernel provides a set of friendly services that simplify module implementation by allowing
access to all the hardware and firmware resources through the following tasks and services:

• Hardware and modules initialization:

– BSP initialization (LEDs, touchscreen, LCD, RTC, audio, SRAM and NOR)

• Graphical and main menu management

• Memory management

• Storage management (microSD card)

• System monitoring and settings

• CPU utilities (CPU usage, running tasks)

6.2 Kernel core files

Table 12. Kernel core file description

Function Description

main.c Main program file

stm32l4xx_it.c Interrupt handlers for the application

k_calibration.c Touchscreen kernel calibration manager

DocID028226 Rev 1 33/48

UM1937 Kernel description

47

6.3 Kernel initialization

The first task of the kernel is to initialize the hardware and firmware resources to make them
available to its internal processes and the modules around it. The kernel starts by initializing
the HAL, system clocks and then the hardware resources needed during the middleware
components:

• LEDs

• Pushbutton

• Touchscreen

• IO expanders

• SRAM

• NOR Flash

• RTC

Once the low level resources are initialized, the kernel performs the STemWin GUI library
initialization and prepares the following common services:

• Memory manager

• Storage unit

• Module manager

• Kernel log

Upon full initialization phase, the kernel adds and links the system and user modules to the
demonstration core.

k_mem.c Kernel memory manager

k_menu.c Kernel menu and desktop manager

k_module.c Module manager

k_module_res.c Module graphical resources manager

k_res.c Kernel resources manager

k_rtc.c Real-time clock manager

k_sd_diskio.c microSD card manager

k_startup.c Demonstration startup windowing process

k_storage.c Storage manager

k_temperature.c Temperature monitoring manager

Table 12. Kernel core file description (continued)

Function Description

Kernel description UM1937

34/48 DocID028226 Rev 1

6.4 Kernel processes and tasks

The kernel is composed of a two resources managed by FreeRTOS through the CMSIS-OS
wrapping layer:

• GUI Thread: this task initializes the main menu demonstration and then handles the
graphical background task when requested by the STemWin.

• Timer object: this resource contains a callback managing periodically the touchscreen
screen. The timer callback is called every 40 milliseconds

DocID028226 Rev 1 35/48

UM1937 Kernel description

47

6.5 Kernel graphical aspect

The STM32Cube demonstration is built around the STemWin graphical library, based on
SEGGER emWin one. STemWin is a professional graphical stack library, enabling graphical
user interfaces (GUI) building up with any STM32, any LCD and any LCD controller, taking
benefit from STM32 hardware accelerations, whenever possible.
The graphical aspect of the STM32Cube demonstration is divided into two main graphical
components:

• The startup window: showing the progress of the hardware and software initialization.

• The main desktop that handles the main demonstration menu and the numerous kernel
and modules control, see Section 4.1: Kernel

6.6 Kernel menu management

The main demonstration menu is initialized and launched by the GUI thread. Before the
initialization of the menu the following actions are performed:

• Draw the background image

• Restore general settings from backup memory

• Setup the main desktop callback to manage main window messages

The icon view widget: contains the icons associated to added modules. The user can launch
a module by a simple click on the module icon.

Kernel description UM1937

36/48 DocID028226 Rev 1

A module is launched on a simple click on the associated icon by calling the startup function
in the module structure; this is done when a WM_NOTIFICATION_RELEASED message
arrives to the desktop callback with ID_ICONVIEW_MENU:

6.7 Modules manager

The main demonstration menu is initialized and launched by the start thread.

The modules are managed by the kernel; this later is responsible of initializing the modules,
initializing hardware and GUI resources relative to the modules and initializing the common
resources such as the storage unit the graphical widgets and the system menu.

Each module should provide the following functionalities and properties:

1. Icon and graphical component structure

2. Method to startup the module

3. Method to close down safely the module (example; hot unplug for MS Flash disk)

4. Method to manage Low-power mode (optional)

5. The application task

6. The module background process (optional)

7. Specific configuration

8. Error management

DocID028226 Rev 1 37/48

UM1937 Kernel description

47

The modules could be added in run time to the demonstration and can use the common
kernel resources. The following code shows how to add a module to the demonstration:

A module is a set of function and data structures that are defined in a data structure that
provides all the information and pointers to specific methods and functions to the kernel.
This later checks the integrity and the validity of the module and inserts its structure into a
module table. Each module is identified by a unique ID. When two modules have the same
ID, the kernel rejects the second one. The module structure is defined as follows:

• id: unique module identifier

• name: pointer to module name

• icon: pointer to module icon frame (bitmap in array)

• Startup: the function that creates the module frame and control buttons

• DirectOpen: the function that creates the module frame and launch the media
associated to the file name selected in the file browser linked to a specific file extension

Kernel description UM1937

38/48 DocID028226 Rev 1

6.8 Backup and settings configuration

The STM32L476G-EVAL firmware demonstration saves the kernel and modules settings in
the RTC backup registers (32-bit data width). Data to be saved may be defined as a bit field
structure, example:

The following APIs allows to save or restore it from the backup area.

Example:

6.9 Storage units

The STM32Cube demonstration kernel offers a storage unit that could be used to retrieve
image and audio media. The storage unit is initialized during the platform startup and thus it
is available to all the modules during the STM32Cube demonstration run time provided the
media component is present (Unit 0: microSD card).

The unit is accessible through the standard I/O operations offered by the FatFS used in the
development platform. The microSD card Flash unit is identified as the Unit 0 and available
only if a microSD card disk Flash is inserted on the CN18 connector. The unit is mounted
automatically when the physical media is connected. The implemented functions in the file
system interface to deal with the physical storage unit are:

Table 13. File system interface functions descriptions

Function Description

disk_initialize Initialize disk drive

disk_read Interface function for a logical page read

disk_write Interface function for a logical page write

disk_status Interface function for testing if unit is ready

disk_ioctl Control device dependent features

DocID028226 Rev 1 39/48

UM1937 Kernel description

47

The full APIs functions set given by the file system interface are:

For the FAT FS file system, the page size is fixed to 512 bytes.

Table 14. API functions descriptions

Function Description

f_mount Registers/unregisters a work area

f_open Opens/creates a file

f_close Closes a file

f_read Reads file

f_write Writes file

f_lseek Moves read/write pointer, expands file size

f_truncate Truncates file size

f_sync Flushes cached data

f_opendir Opens a directory

f_readdir Reads a directory item

f_getfree Gets free clusters

f_stat Gets file status

f_mkdir Creates a directory

f_unlink Removes a file or directory

f_chmod Changes attribute

f_utime Changes timestamp

f_rename Renames/Moves a file or directory

f_mkfs Creates a file system on the drive

f_forward Forwards file data to the stream directly

f_chdir Changes current directory

f_chdrive Changes current drive

f_getcwd Retrieves the current directory

f_gets Reads a string

f_putc Writes a character

f_puts Writes a string

f_printf Writes a formatted string

How to create a new module UM1937

40/48 DocID028226 Rev 1

The software architecture is described in Figure 23.

Figure 23. File system architecture

7 How to create a new module

A module is composed of two main parts:

• Graphical aspect: the main window frame and module’s controls

• Functionalities: module functions and internal processes

7.1 Creating the graphical aspect

The graphical aspect consists of the main frame window in addition to the set of the visual
elements and controls (buttons, checkboxes, progress bars…) used to control and monitor
the module functionalities.

The STM32Cube demonstration package provides a PC tool; the GUIBuilder (Figure 24)
that allows easily and quickly to create the module frame window and all its components in
few steps. For more information about the GUIBuilder, refer to the emwin user and
reference guide (UM03001).

DocID028226 Rev 1 41/48

UM1937 How to create a new module

47

Figure 24. The GUIBuilder overview

The GUIBuilder only takes few minutes to totally design the module appearances using
“drag and drop” commands and then generate the source code file to be included into the
application.

The file generated is composed of the following main parts:

• A resource table: it’s a table of type GUI_WIDGET_CREATE_INFO, which specifies all
the widgets to be included in the dialog and also their respective positions and sizes

• A dialog callback routine: described more in detail in section (it is referred to as “main
module callback routine”)

7.2 Graphics customization

After the basic module graphical appearance is created, it is then possible to customize
some graphical elements, such as the buttons, by replacing the standard aspect by the user
defined image. To do this, a new element drawing callback should be created and used
instead of the original one.

Below is an example of a custom callback for the play button:

How to create a new module UM1937

42/48 DocID028226 Rev 1

On the code portion above, the _OnPaint_play routine contains just the new button drawing
command.

Note that the new callback should be associated to the graphical element at the moment of
its creation, as shown below:

Figure 25. Graphics customization

7.3 Module implementation

Once the graphical part of the module is finalized, the module functionalities and processes
could be added then. It begins with the creation of the main module structure as defined in
Section 7.1: Creating the graphical aspect. Then, each module has its own Startup function
which simply consists of the graphical module creation, initialization and link to the main
callback:

In the example above cbDialog refers to the main module callback routine. Its general
skeleton is structured like the following:

DocID028226 Rev 1 43/48

UM1937 How to create a new module

47

The list of windows messages presented in the code portion above (WM_INIT_DIALOG and
WM_NOTIFY_PARENT) is not exhaustive, but it represents the essential message IDs
used:

• WM_INIT_DIALOG: allows to initialize the graphical elements with their respective
initial values. It is also possible here to restore the backup parameters (if any) that will
be used during the dialog procedure

• WM_NOTIFY_PARENT: describes the dialog procedure, for example: define the
behavior of each button.

The full list of window messages can be found in the WM.h file.

7.4 Adding a module to the main desktop

Once the module appearance and functionality are defined and created, the next step is to
add the module to the main desktop view, this is done by adding it to the list (structure) of
menu items: module_prop[], defined into k_module.h.

To do this, k_ModuleAdd() function should be called just after the module initialization into
the main.c file.

Note that the maximum modules number in the demonstration package is limited to 15; this
value can be changed by updating MAX_MODULES_NUM defined into k_module.c.

7.5 Module direct open

If there is a need to launch the module directly from the file browser contextual menu, an
additional method should be added in the module structure for the direct open feature. This
callback is often named _ModuleName_DirectOpen.

Figure 26 shows an example of how to open a file using the adequate module from the file
browser.

In the STM32CubeL476G-EVAL demonstration, there are two modules that are linked to the
file browser contextual menu:

• The image browser, supporting the formats:

– jpg

– bmp

• The audio player, supporting the format:

– wav

Figure 26. Direct open from file browser

Demonstration customization and configuration UM1937

44/48 DocID028226 Rev 1

Then, to link the module to the file browser open menu, the command
k_ModuleOpenLink() is called after adding the module.

8 Demonstration customization and configuration

8.1 LCD configuration

The LCD is configured through the LCDConf.c file, see Figure 27. The main configuration
items are listed below:

• Multiple layers:

– The number of layers to be used defined using GUI_NUM_LAYERS.

• Multiple buffering:

– If NUM_BUFFERS is set to a value “n” higher than 1, it means that “n” frame
buffers will be used for drawing operation

• Virtual screens:

– If the display area is higher than the physical size of the LCD, NUM_VSCREENS
should be set to a value greater than 1. Note that the virtual screens and multi
buffers are not allowed together

• Frame buffers locations:

– The physical location of the frame buffer is defined through
LCD_LAYERX_FRAME_BUFFER.

Figure 27. LCDConf location

DocID028226 Rev 1 45/48

UM1937 Demonstration customization and configuration

47

8.2 Layers management

In the STM32CubeL4 demonstration package with the STM32L476G-EVAL,
GUI_NUM_LAYERS is set to 1: Layer 0 is dedicated to background display

More layers are not recommended to lighten the CPU load during the refresh tasks.

8.3 Touchscreen calibration

When the demonstration is launched for the first time, the touchscreen needs to be
calibrated. A full set of dedicated routines is included in the demonstration package and
regrouped into k_calibration.c file.

Figure 28. k_calibration.c location

To do this, after the startup screen is displayed, the user has to follow the displayed
calibration instructions by touching the screen at the indicated positions (Figure 29). This
will allow getting the physical touchscreen values that will be used to calibrate the screen.

Demonstration customization and configuration UM1937

46/48 DocID028226 Rev 1

Figure 29. Calibration steps

Once this runtime calibration is done, the touchscreen calibration parameters are saved to
the RTC backup data registers: RTC_BKP_DR0, RTC_BKP_DR1, RTC_BKP_DR2 and
RTC_BKP_DR3, so the next time the application is restarted, these parameters are
automatically restored and there is no need to re-calibrate the touchscreen.

DocID028226 Rev 1 47/48

UM1937 Revision history

47

9 Revision history

Table 15. Document revision history

Date Revision Changes

01-Sep-2015 1 Initial release.

UM1937

48/48 DocID028226 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 STM32Cube overview
	Figure 1. STM32Cube block diagram

	2 Getting started with demonstration
	2.1 Hardware requirements
	2.1.1 Hardware configuration to run the demonstration firmware
	Table 1. Jumper configurations (continued)
	Figure 2. STM32L476G-EVAL board

	3 Demonstration firmware package
	3.1 Demonstration repository
	Figure 3. Folder structure

	3.2 Demonstration architecture overview
	Figure 4. Demonstration architecture overview

	3.3 STM32L476G-EVAL board BSP
	Figure 5. EVAL BSP structure

	4 Demonstration functional description
	4.1 Kernel
	Figure 6. Main desktop (Part I)
	Figure 7. Main desktop (Part II)
	4.1.1 CPU usage
	Figure 8. CPU usage

	4.1.2 Kernel log
	4.1.3 Process viewer
	Figure 9. Process viewer

	4.2 Modules
	4.2.1 System
	Figure 10. System information
	Figure 11. Clock settings

	4.2.2 Audio player
	Figure 12. Audio player module
	Figure 13. Audio player module architecture
	Table 2. Data structure for the audio player module
	Table 3. Audio player control description

	4.2.3 Audio recorder
	Figure 14. Audio recorder module
	Figure 15. Audio recorder with direct open for audio playback or file management
	Figure 16. Audio recorder module architecture

	4.2.4 File Browser
	Figure 17. File Browser architecture

	4.2.5 Image viewer
	Figure 18. Image viewer architecture
	Table 4. Image viewer control description

	4.2.6 Idd
	Figure 19. Idd module

	4.2.7 USB mass storage device
	Figure 20. USB device module architecture
	Figure 21. USB device module
	Table 5. USB mass storage control description

	4.2.8 Game
	Figure 22. Game module application

	5 Demonstration firmware settings
	5.1 Clock control
	5.2 Peripherals
	Table 6. Used peripherals (continued)

	5.3 Interrupts / Wakeup pins
	Table 7. Demonstration firmware interrupts

	5.4 System memory configuration
	Table 8. Memory configurations

	5.5 FreeRTOS resources
	5.5.1 Tasks
	Table 9. Task descriptions

	5.5.2 Message queues
	Table 10. Message queue descriptions

	5.5.3 Heap
	Table 11. Application Heap usage

	5.6 Programming firmware application
	5.6.1 Using binary file
	5.6.2 Using pre-configured projects

	6 Kernel description
	6.1 Overview
	6.2 Kernel core files
	Table 12. Kernel core file description (continued)

	6.3 Kernel initialization
	6.4 Kernel processes and tasks
	6.5 Kernel graphical aspect
	6.6 Kernel menu management
	6.7 Modules manager
	6.8 Backup and settings configuration
	6.9 Storage units
	Table 13. File system interface functions descriptions
	Table 14. API functions descriptions
	Figure 23. File system architecture

	7 How to create a new module
	7.1 Creating the graphical aspect
	Figure 24. The GUIBuilder overview

	7.2 Graphics customization
	Figure 25. Graphics customization

	7.3 Module implementation
	7.4 Adding a module to the main desktop
	7.5 Module direct open
	Figure 26. Direct open from file browser

	8 Demonstration customization and configuration
	8.1 LCD configuration
	Figure 27. LCDConf location

	8.2 Layers management
	8.3 Touchscreen calibration
	Figure 28. k_calibration.c location
	Figure 29. Calibration steps

	9 Revision history
	Table 15. Document revision history

