

December 2015 DocID028346 Rev 1 1/18

 www.st.com

UM1948
User manual

EVALSTPM3x-3PH evaluation board firmware

Introduction
The document describes the software implementation of the EVALSTPM3X-3PH power meter based on
the STM8S903K3 microcontroller and the STPM33 and the STPM34 metrology devices, with a firmware
within 8 kilobytes.

Besides 3-phase power meter can also be used as a reference for 1-phase power meter.

The evaluation board can be supposed as a whole “chip” (virtual 3-phase IC) application, to be
connected with an STM32 family microcontroller by SPI or UART.

Setting the STM8S903K3 microcontroller dummy, the STPM34 or the STPM33 can be controlled by the
external microcontroller independently via SPI interface. In this case, the firmware in the STM8S903K3
can be ported into external microcontroller such as an STM32 family device.

This manual includes the software structure introduction, the used microcontroller resources, the main
function interfaces and the program flowchart.

Regarding to the STM8S903K3, refer to datasheet "STM8S903K3 STM8S903F3" and RM0016
reference manual for more details.

Contents UM1948

2/18 DocID028346 Rev 1

Contents

1 Overview .. 3

1.1 System architecture .. 3

1.2 Used resources ... 4

1.2.1 Hardware connections .. 4

1.2.2 Software configuration .. 5

1.2.3 MCU peripheral use .. 6

1.2.4 Firmware layer description ... 8

2 Main interfaces .. 9

2.1 Interfaces of the STPM3x driver .. 9

2.1.1 void stpm3x_HwInit(TBool bUseSPI) .. 9

2.1.2 TBool stpm3x_DataIO(TU16 nRdWtAddr,TU8*pTxDat,TBool
bUseCRC, TU8 *pRxDat) ... 9

2.1.3 void stpm3x_IO_EnableLED(TBool bEnable) 10

2.1.4 TBool stpm3x_ReadReg32(TU8 nAddr, TU8 *pnVal) 10

2.1.5 TBool stpm3x_WriteReg32(TU8 nAddr, TU8 *pnVal) 10

2.1.6 TBool stpm3x_ReadTarReg32(TU8 nTarRow, TU8 *pnVal) 10

2.1.7 TBool stpm3x_ReadRegBits(TU8 nAddr, TU8 nOffset, TU8
nBitNum, TU32 * pnVal) ... 10

2.1.8 TBool stpm3x_WriteRegBits(TU8 nAddr, TU8 nOffset, TU8
nBitNum, TU32 nVal) ... 11

2.1.9 TBool stpm3x_RegRead(TU8 nReg, TU32 *pnVal) 11

2.1.10 TBool stpm3x_RegWrite(TU8 nReg, TU32 nVal) 11

2.2 Flowchart... 12

2.3 GUI communication command .. 12

3 Software design calibration .. 13

3.1 Pulse output generation .. 13

3.2 No-load condition judgement... 14

3.3 STM8 limitation ... 14

4 Accuracy results ... 15

5 Revision history .. 17

UM1948 Overview

 DocID028346 Rev 1 3/18

Host Interface

(host_if.h, host_if.c)

Meas_app

(meas_app_3p.c,

meas_epulse_3p.c

meas_store_3p.c)

Driver / application program interface (API) layer

drv_stpm3x.c drv_stpm3x_v3p.c drv_stpm3x_reg_spi.c

Hardware abstraction layer (HAL)

STM8 utilities

(ST_hal_util.c)

Configuration (st_app_hw_def_stm8.h)

STPM3x Drv HW access on STM8S (Drv_stpm3x_reg_ spi_stm8.c)

UART HW access (host_uart_stm8.c)

SPI HW access (host_spi_stm8.c)

General HW access

(st_ha l_ge n_stm8.c)

HW accessing code STM8, STM32 or Win32

Platform independent code

Application layer code implementing 3-phase power meter functions

1 Overview

1.1 System architecture

The software is designed by following a platform independent approach. The driver and the
application layer can be ported to the other part number in the STM8, STM32 or even
Win32 platform.

The below figure shows the system architecture. It could be divided into 3 layers.

Figure 1: Project organization

The entities below the hardware abstraction layer (HAL) belong to the hardware (HW)
access layer.

It implements the clock initialization, UART initialization, GPIOs initialization, HW
connection initialization between either the STPM34 or the STPM33 and the
microcontroller, software timer implementation, interrupt setting and so on.

The whole system can work on many target controllers such as the STM32, STM8 or even
Win32, if corresponding HW access layer is implemented. In the STM8 implementation, all
the HW information is defined in st_app_hw_def_stm8.h of each project directory. User
could simply modify this file and related source files to port software on different STM8 and
even STM32 microcontrollers.

The 2nd layer, hardware independent, is the driver layer/application program interface layer.
This layer supplies all interface functions between the STPM3x and the microcontroller
(STM8), and some special function routines, which implement the controlling operation to
the STPM3x. Above this layer, the application layer develops all functions by just calling
API layer functions, without need to focus on the STPM3x details and the bottom HW
implementation.

Overview UM1948

4/18 DocID028346 Rev 1

STPM33

STPM34

STM8

USB

RS485

Energy pulses

SPI

O_MISO

ZCR1, LED1, LED2

SCS1

O_MISO ’

ZCR2, LED3, LED4

SCS2

I_MOSI, EN, SYN, SCL, 16M Hz

HW UART

HW SPI

The application layer is the final goal of the entire application design. In this software, it
includes the energy pulse generation, energy data storing in EEPROM, energy related data
collecting and implementation of UART commands from the EVALSTPM3x-3PH GUI,
which is human-machine interface. Among the energy related data, energy values only are
read from the STPM3x registers (by API layer), power values are calculated by the STM8
(not by API layer). Further necessary and important information is obtained on GUI by
accessing the STPM3x registers (by API layer) via UART commands. At the same time,
calibration information is also transferred by GUI to microcontroller, then to STMP3x
registers (by API layer).

1.2 Used resources

1.2.1 Hardware connections

The block diagram of the entire application is shown below:

Figure 2: Application block diagram

The below table describes the pin assignment of the STM8 on HW PCB V1.1.

Table 1: STM8S903K3 pin assignment

Pin Net name Description Remark

1 NRST Reset pin

2 OSCIN Resonator/ crystal in

3 OSCOUT Resonator/ crystal out

4 VSS GND

5 VCAP 1.8 V regulator capacitor

6 VDD Digital power supply

21 PC4 I_CLK_MTR Supply 16 MHz to the STPM34 and the STPM33

8 PF4 O_Q_LED

9 PB7 O_P_LED

10 PB6 I_SCS1 Pin selection for the STPM34

29 PD4 I_SCS2 Pin selection for the STPM33

11 PB5 I_SYN

UM1948 Overview

 DocID028346 Rev 1 5/18

Pin Net name Description Remark

13 PB3 I_EN

14 PB2 O_MISO

Software SPI, MISO is just for the STPM34 15 PB1 I_MOSI

16 PB0 I_SCL

25 PD0 O_MISO' MISO is just for the STPM33

19 PC2 O_ZCR1 Timer1_channel2

20 PC3 O_ZCR2 Timer1_channel3

32 PD7 O_RTS_STM8

27 PD2 I_CTS_STM8

30 PD5 O_TX_STM8
UART interface

31 PD6 I_RX_STM8

22 PC5 I_SCK_STM8

Hardware SPI (PC5,PC6,PC7) 23 PC6 I_MOSI_STM8

24 PC7 O_MISO_STM8

18 PC1 O_LED1
STPM34 LED pulse output

7 PA3 O_LED2

17 PE5 O_LED3 STPM33 LED pulse output

28 PD3 O_LED4

12 PB4 O_INTCB

26 PD1 IO_SWIM

1.2.2 Software configuration

The latest HW PCB version is V1.1, for which “HW_STPM3X_3P_V2” macro must be
defined in file st_app_hw_def.h. To be flexible and save memory, many macro definitions
could be found in file stpm3x_app_config.h. Using IAR EWSTM8 1.41.1 compiler and the
below configuration, at least 7862 bytes Flash and at least 570 bytes RAM are required
under none optimization condition.

Table 2: Macro definition

Macro Configuration Remark

STPM3x_CFG_USE_NAMED_REG Off

Used as a convenient access (registers)
method, mask the detailed info of
registers. Refer to and to Section 2.1.10:
"TBool stpm3x_RegWrite(TU8 nReg,
TU32 nVal)"

STPM3x_CFG_USE_V3P_REG Off

Used as a convenient access (registers)
method, in virtual 3-phase measurement
chip. The STPM34 and STPM33 are in a
unique virtual address, not split chips

STPM3x_CFG_USE_SW_EPULSE On
Used to select different pulse output
implementation method. Refer to Section
3.1: "Pulse output generation"

Overview UM1948

6/18 DocID028346 Rev 1

Macro Configuration Remark

STPM3x_CFG_USE_HOST_UART On
Used to select different interfaces to GUI.
In the software, UART is selected

STPM3x_CFG_USE_HOST_SPI Off
Used to select different interfaces to GUI.
If on, select SPI interface

STPM3x_CFG_USE_PACK_INIT On

Used to select different initialization
methods. If on, all registers are initialized
by 32-bit register writing method once; If
off, all registers are initialized by register
bit writing method one by one

STPM3x_CFG_CALC_ACT_POWER On
Used for power (active, reactive)
calculations. It is always on

STPM3x_CFG_POLY_PHASE On

Used to select different application
purposes. If on, 3-phase power meter is
available; if off, 1-phase power meter is
available

STPM3x_CFG_ENERGY_ACCU On
Used for energy accumulation
calculations. It is always on

1.2.3 MCU peripheral use

All used peripherals on the STM8S903K3 are described in the below table.

Table 3: Application peripheral usage

Peripherals Application Interrupt function Interrupt priority

TIMER 1

(16-bit)

STPM34 ZCR output of voltage
channel 1 or voltage channel 2

TIM1_CH2 input
capture interrupt

2

STPM33 ZCR output of voltage
channel

TIM1_CH3 input
capture interrupt

2

TIMER 5

(16-bit)

When
STPM3x_CFG_USE_SW_EPULS
E is configured as on, the timer
generates 64 ms time base to
update energy and power

Update interrupt 2

TIMER 6

(8-bit)

0.25 ms time base:

 Multiplied by 4 to get 1 ms
as system tick

 When
STPM3x_CFG_USE_SW
_EPULSE is configured
as on, it accumulates
energy fragment by 0.25
ms time slot to decide if
the generated energy
pulses

 When
STPM3x_CFG_USE_SW
_EPULSE is configured
as off, it detects 80 ms
time out for pulse width
control

Update interrupt

3
(STPM3x_CFG_USE
_SW_EPULSE on);

2
(STPM3x_CFG_USE
_SW_EPULSE off)

UM1948 Overview

 DocID028346 Rev 1 7/18

Peripherals Application Interrupt function Interrupt priority

EXTI

PC1 rising edge to indicate P
pulse from the STPM34 (used
when
STPM3x_CFG_USE_SW_EPULS
E is configured as off)

EXTI 3

PA3 rising edge to indicate Q
pulse from the STPM34 (used
when
STPM3x_CFG_USE_SW_EPULS
E is configured as off)

EXTI 3

PE5 rising edge to indicate P
pulse from the STPM33 (used
when
STPM3x_CFG_USE_SW_EPULS
E is configured as off)

EXTI 3

PD3 rising edge is to indicate Q
pulse from the STPM33 (used
when
STPM3x_CFG_USE_SW_EPULS
E is configured as off)

EXTI 3

PB4 falling edge to indicate the
STPM3x event (the STM8S
should read related registers to
inquire which event in which chip)

EXTI 2

UART UART interface to GUI UART Rx interrupt 1 (the lowest priority)

SPI SPI interface to GUI SPI Rx and Tx interrupt 1 (the lowest priority)

EEPROM
Stores energy data to EEPROM
inside the STM8

No

GPIO

 GPIO simulation of SPI to
communicate with the
STPM3x

 CCO to provide 16 MHz
to the STPM3x

 GPIO level polling to
detect CTS from GUI

 GPIO level control to
generate P and Q energy
pulses respectively

No

Overview UM1948

8/18 DocID028346 Rev 1

1.2.4 Firmware layer description

The below table lists the main files of different firmware layers.

Table 4: Main files

Layer File name Brief

Hardware

abstraction

layer

Host_spi_stm8.c STM8 SPI based communication with GUI

Host_uart_stm8.c STM8 UART based communication with GUI

St_hal_gen_stm8.c HAL implementation on the STM8

Drv_stpm3x_reg_spi_stm8.c STPM3x SPI initialization for the STM8

St_hal_util.c
Utility function implementation to software timer and
other utilities

Driver

layer

Drv_stpm3x.c Definition of the STPM3x driver

Drv_stpm3x_reg_spi.c STPM3x register SPI access implementation

Drv_stpm3x_v3p.c Virtual 3-ph metering IC based on the STPM3x

Application

layer

Host_if.c HOST communication demo with private protocol

Meas_app_3p.c 3-ph meter measurement based on the STPM3x

Meas_epulse_3p.c
3-ph energy pulse generation operations based on the
STPM3x

Meas_store_3p.c
3-ph meter storage definition for the STPM3x base
meter

Interrupt Stm8s_it.c Main interrupt service routines

.h files

Stpm3x_app_config.h Configuration file of the STPM3x application

St_app_hw_def.h Hardware definition on the STM8

Drv_stpm3x.h Definition of the STPM3x driver

Drv_stpm3x_reg.h Definition of the STPM3x register operations

Drv_stpm3x_v3p.h Virtual 3-ph metering IC based on the STPM3x

Stpm3x_app_config.h is the basic system function configuration file. Different
options may change the software implementation methods, or select different
applications, or mask some unimportant functions to save memory according to
applications. Please refer to Table 2: "Macro definition" for detailed description.

St_app_hw_def.h is the hardware definition file related to connection. It is
necessary to change it accordingly if some pin connection has changed (and
possibly, it is also necessary to change some routines in Stm8s_it.c).

Drv_stpm3x.h is the STPM3x driver prototype definition file. In the file, all interface
functions between the STPM3x and MCU are declared. Drv_stpm3x_v3p.h is the
driver prototype definition file (based on Drv_stpm3x.h) when all the STPM3x
chips are looked as a whole, that is, a virtual 3-ph metering chip.

UM1948 Main interfaces

 DocID028346 Rev 1 9/18

2 Main interfaces

2.1 Interfaces of the STPM3x driver

The interface to application layer is mainly driver layer since it involves the communication
between the STPM3x and microcontroller. It can also be used by other applications based
on different platforms. Besides, some initialization functions related to platform are also
introduced here because of their importance.

2.1.1 void stpm3x_HwInit(TBool bUseSPI)

Description: hardware initialization of pins connected to the STPM3x and setting of the
STPM3x communication interface.

Parameters:

 bUseSPI

 True, sets SPI interface

 False, sets UART interface

Return value: none.

Remarks: the timing sequence is strict, so control if different system clocks or platforms
are used.

2.1.2 TBool stpm3x_DataIO(TU16 nRdWtAddr,TU8*pTxDat,TBool bUseCRC,
TU8 *pRxDat)

Description: GPIO simulation of SPI communication (4-line) with the STPM3x. If CRC is
used, 5-byte frame is sent and 5-byte frame is received.

Parameters:

 nRdWrAddr: register address for read or write

 High byte stores write address

 Low byte stores read address

 When read, it sets high byte to 0xFF

 When write, it sets low byte to 0xFF

 *pTxDat: stores the 5-byte frame to be sent

 *pRxDat: stores the 5-byte frame to be received

 bUseCRC

 True, the frame is 5 bytes

 False, the frame is 4 bytes

Return value: true, CRC of received frame is right; false, CRC of received frame is wrong.

Remarks: SCL simulation should be 50% duty.

Main interfaces UM1948

10/18 DocID028346 Rev 1

2.1.3 void stpm3x_IO_EnableLED(TBool bEnable)

Description: Enable EXTI for LED pins. EXTI can only be enabled after the STPM3x
register initialization.

Parameters:

 bEnable

 True, enable EXTI

 False, disable EXTI

Return value: none.

2.1.4 TBool stpm3x_ReadReg32(TU8 nAddr, TU8 *pnVal)

Description: Read 32-bit data of some registers.

Parameters:

 nAdd: register address (even number), listed in the register map of datasheet

 *pnVal: 32-bit data read from the register

Return value: true, success; false, fail.

2.1.5 TBool stpm3x_WriteReg32(TU8 nAddr, TU8 *pnVal)

Description: write 32-bit data to some registers.

Parameters:

 nAddr: register address (even number), listed in register map of datasheet

 *pnVal: 32-bit data to be written to the register

Return value: true, success; false, fail.

2.1.6 TBool stpm3x_ReadTarReg32(TU8 nTarRow, TU8 *pnVal)

Description: read 32-bit data of some registers from the STPM34 or STPM33.

Parameters:

 nTarRow: MSB indicates which chip to choose, other bits are register’s row address,
listed in the register map of datasheet

 *pnVal: 32-bit data read from the register

Return value: true, success; false, fail.

2.1.7 TBool stpm3x_ReadRegBits(TU8 nAddr, TU8 nOffset, TU8 nBitNum,
TU32 * pnVal)

Description: some continuous bits of the register 32-bit data are read.

Parameters:

 nAddr: register address (even number), listed in the register map of datasheet

 nOffset: offset of the 32-bit data, the value can be 0 to 31

 nBitNum: bit number beginning from the offset of 32-bit data, the value can be 1 to 32

 *pnVal: data read from the register with the offset and bit number setting

Return value: true-success; false-fail.

UM1948 Main interfaces

 DocID028346 Rev 1 11/18

2.1.8 TBool stpm3x_WriteRegBits(TU8 nAddr, TU8 nOffset, TU8 nBitNum,
TU32 nVal)

Description: some continuous bits are written to the register position beginning from
offset.

Parameters:

 nAddr: register address (even number), listed in register map of datasheet

 nOffset: offset of the 32-bit data, the value can be 0 to 31

 nBitNum: bit number beginning from the offset of 32-bit data, the value can be 1 to 32

 nVal: data to be written to the register with the offset and bit number setting

Return value: true-success; false-fail.

2.1.9 TBool stpm3x_RegRead(TU8 nReg, TU32 *pnVal)

Description: some continuous bits of the register predefined by the array and index are
read. The detailed information (register address, offset and bit number) is encapsulated
inside the array.

Parameters:

 nReg: element index of the predefined array. The value is related to some enum
definition, showing the register meaning

 *pnVal: data readout

Return value: true-success; false-fail.

2.1.10 TBool stpm3x_RegWrite(TU8 nReg, TU32 nVal)

Description: some continuous bits are written to the register predefined by the array and
index. The detailed information (register address, offset and bit number) is encapsulated
inside the array.

Parameters:

 nReg: element index of the predefined array. The value is related to some enum
definition, showing the register meaning

 nVal: data to be written

Return value: true-success; false-fail.

Main interfaces UM1948

12/18 DocID028346 Rev 1

2.2 Flowchart

Figure 3: Application flowchart

2.3 GUI communication command

GUI command frame format:

TX: { STX | Target(4b):Func(4b) | Addr | Val[2] (LSBF) | Addr2 | 00 | CS8 }

RX: { STX | Target(4b):Func(4b) | ErrCode | Val[4] (LSBF) | CS8 }

STX: 0x68

Target: 01/02/03/08, to the STPM34/STPM33/both/virtual 3-PH, @refer ESTPM3xTar

Func: 00/01/02/03/04, /Reset/Latch/Direct IO/Read/Write, @refer ESTPM3xFunc

Addr: 255 x 4B STPM3x RAM/virtual 3-PH RAM (needs to be even number to read)

Val[2]: the value to be written, LSBF

Addr2: only available in direct IO mode, when Addr is ReadAddr and Addr2 is WriteAddr

Val[4]: the value read, LSBF

CS8: 8-bit check sum of the frame

UM1948 Software design calibration

 DocID028346 Rev 1 13/18

3 Software design calibration

3.1 Pulse output generation

Pulse output generation is a key point of the application, since accuracy tests are carried
out using the pulses/kWh produced by the power meter.

There are two methods to generate the energy pulses.

 Software pulse method (STPM3x_CFG_USE_SW_EPULSE is configured as on)

The pulse is generated by adding up the energy (DeltaE) every time slot (0.25 ms) when
the current time slot elapses one by one. Once the accumulated energy exceeds the
threshold, which represents the energy of just one pulse, MCU outputs 80 ms-width pulse
to light P LED or Q LED. Obviously, the shorter time slot, the more accurate the
measurement results. However, a tradeoff between the time slot and MCU efficiency is
necessary, since too short time slot leads to a heavy MCU workload.

 Hardware pulse method (STPM3x_CFG_USE_SW_EPULSE is configured as off)

The pulse is generated by external interrupts from 4 LED pins of the STPM34 and
STPM33.

In the interrupt service routine, when the number of active energy LED pulses exceeds the
threshold, MCU outputs 80 ms-width pulse to P LED (and the same for reactive energy to
Q LED).

The number of pulses/kWh from all LED pin STPM3x chips is the threshold for the 3-ph
power meter to output just one active energy pulse on LED P. This threshold depends on
the application design and particularly from analog font end component choice.
Microcontroller continuously counts interrupt occurrences to light P or Q LED at proper
time.

Note:

1. The threshold is clearly different in two methods. In software pulse method, it indicates
a fixed energy value. In hardware pulse method, it indicates a fixed number derived
from pulse constant (imp/kwh). However, the threshold is both determined by
hardware parameters (R1, R2, kS) and software configuration (LEDPWM in DSP_CR1
and DSP_CR2), just different in unit (ws or impulse number).

2. To obtain better accuracy, the operation of ending P and Q pulse after 80 ms is also in
0.25 ms interrupt service routine, since both of edges need to be accurate.

3. As explained in the application peripheral usage table, the used MCU resources are
different between the two methods. In the hardware pulse method, the pulse output
depends on 4-pin interrupt number, so 4 EXTI are necessary. However, in the
software method, the energy is calculated by adding up the “energy fragment” after
each time slot, so the 4-pin interrupt is not needed. But a proper time slot (0.25 ms) is
necessary; moreover, the “energy fragment” must be updated in a short interval if the
current power changes fast. It is 64 ms (2^6) generated from hardware timer so that
the interrupt and processing timing is in good condition and the power of two is
convenient for multiplication and division on the STM8 platform. It is less than the
shortest interval (about 124 ms) at maximum power load (3*100A, 110%Un).

4. Only 0.25 ms and 64 ms timings are coming from MCU timer directly, while all other
timers (second, minute, hour, day, week, month and year) are software timers, derived
indirectly from 0.25 ms.

5. In the above 2 methods, the accuracy influence factors are different:

Software design calibration UM1948

14/18 DocID028346 Rev 1

 In the hardware pulse method, setting the highest EXTI priority, and the interval
time (longer or shorter) of energy register reading is an important factor for the
accuracy of energy displayed on GUI.

 In software pulse method, the fixed time slot interrupt and the time interval
accuracy of energy register reading (update energy fragment) have the highest
impact on accuracy.

3.2 No-load condition judgement

When STPM3x_CFG_CALC_ACT_POWER is configured as on, if active power is less than
2.2 W (PowerThreshold*Plsb) on A, B, C single phase or 3-ph totally, a no-load flag is set
to 1.

When STPM3x_CFG_CALC_ACT_POWER is configured as off, no-load condition is
determined through apparent power, Vrms*Irms (please note Vlsb*Ilsb=Plsb>>2.2 W).

3.3 STM8 limitation

Some application attention points are reported below:

1. The STM8 is MSBF, but the STPM3x is LSBF, by default, this has to be taken into
account in data conversion between the STM8 and the STPM3x.

2. Considering that the STM8 is 8-bit microcontroller, single byte variable is proper in
most cases.

3. The STM8 computation performance is poor, especially the float number multiplication
and division. Only the power calculation is finished by STM8, which is well done by left
and right shift according to proper time slot (2N). Other calculations, for example,
frequencies, phase angle, power factor are calculated on GUI.

4. In hardware pulse method, O_LED1, O_LED2, O_LED3 and O_LED4 are located in
different ports (port A, port C, port D, port E respectively). This is necessary because
pins of the same port share the same interrupt by logical OR, so in some cases it is
impossible to distinguish them correctly, if they are very close to each other.

UM1948 Accuracy results

 DocID028346 Rev 1 15/18

4 Accuracy results

With the above firmware implementation and after the device calibration, the following
accuracy curves, for active power, have been taken on P LEDs.

Testing conditions are:

VN = 230 V

IN = 5 A

fline = 50 Hz

CP = 400 pulses/kWh

In figures below, accuracy results are benchmarked with IEC 62053-22 normative
requirement for class 0.2 meters.

Table 5: Active power error overcurrent

Applied current
[A]

Full scale percentage
[%]

Percentage error [%]

cosphi = 1
cosphi = 0.5
ind

cosphi = 0.5
cap

10 200 0,067 0,046 0,124

5 100 0,068 0,028 0,128

2.5 50 0,078 0,016 0,088

1 20 0,066 0,038 0,060

0.5 10 0,091 -0,300 -0,250

0.25 5 0,065 0,046 0,124

0.1 2 -0,097 0.028 0,128

0.05 1 -0,271

Figure 4: Active power accuracy at cosphi = 1

Accuracy results UM1948

16/18 DocID028346 Rev 1

Figure 5: Active power accuracy at cosphi = 0.5 inductive and capacitive

UM1948 Revision history

 DocID028346 Rev 1 17/18

5 Revision history
Table 6: Document revision history

Date Revision Changes

09-Dec-2015 1 Initial version.

 UM1948

18/18 DocID028346 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications , and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

