r— UM2000
’ life.augmented User manu al

Getting started with the Contiki OS/6LoWPAN on STM32 Nucleo
with SPIRIT1 and sensors expansion boards

Introduction
Contiki is an open source operating system for the Internet of Things.

STMicroelectronics has developed a Contiki 3.x port for the STM32 Nucleo L1 series equipped with the
X-NUCLEO-IDS01A* expansion boards (sub-1GHz RF communication boards based on the SPIRIT1
transceiver) and optionally with the X-NUCLEO-IKS01A1 expansion board featuring temperature,
humidity, pressure, magnetometer and motion MEMS sensors.

This document explains how to get started with this system.

January 2016 DoclD028756 Rev 2 1/24

www.st.com

Contents UM2000

Contents
1 Acronyms and abbreviations ..o 4
2 SYSTEM OVEIVIEW ...t e e e aaa s 5
2.1 FRAUIES ... 5
2.2 Getting the software package...........cccoovvieeiiiiiiiiiiii e 5
2.3 Software package StrUCIUIE............oovvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 6
2.4 Sample appliCatioNSuiiii e 6
24.1 Building Contiki native eXxamples. ... 6
242 Building examples provided by ST ..o, 8
2.5 Building an overall system with an IPv6 host, an edge router and a
SENSON NOTE ...ttt e et e e e e e e e e r e e e e e e e e e s b b e e e e eeeas 9
251 Edge (border) roUter SEUPveereeerererieieierieeeeeeerereeeeeeessreeeseeaneeanenes 10
25.2 Wireless sensor NOde SetUPovvvvveveeiiiiieeeeeeeeeeeee e, 10
253 IPVB NOSt SEIUDviiie ittt 11
254 Contiki server access (border router) and connectivity test 14
255 Wireless node resources access demo using CoAP 15
256 Wireless node sensor resource access demo with CoAP................ 16
3 SyStem SetUP QUIAE......oo i 18
3.1 Hardware reqUIr€mMentsS.............eiiiieeeiiiieiiiiie e e e e e e 18
3.1.1 NUCLEO-L152RE DOArdcevviieiiiiiiiiiiieee et 18
3.1.2 X-NUCLEO-IDS01A* expansion boardccceeevviieeeiiiieeennineeen, 19
3.1.3 X-NUCLEO-IKS01A1 expansion board (optional)............................ 19
3.2 Software reqUIrEMENTScoevviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 20
3.3 Board SetUp gUIdEcoeeeiiiiicee e 20
4 ReVISION NISTOIY oo e 23
2124 DoclD028756 Rev 2 "_l

UM2000 List of figures
List of figures

Figure 1: Contiki-3X PACKAGE SIIUCTUIEccoiiiiieiiiie et e e 6
Figure 2: Terminal utility showing the running Unicast-sender exampleccccovveeeeeiiiiiciinieee e, 7
Figure 3: Terminal utility showing the running Unicast-receiver examplecccoveeveeeiiiiciieeeee e 7
Figure 4: Terminal utility snapshot when Sensor-demo FUNScooiiiiviieiree e e 9
Figure 5: Overall SYyStem arChitECIUIEuiiiii i e e e e e e e e e e s e areeeaeeeeaanns 10
Figure 6: Adding the nework adapter in WINAOWScccoeiiiiiiiiiiieee e e e e e e e e s serare e e e e e e enns 11
Figure 7: STM32 Nucleo board Virtual COM POrt ValUE.............euuieeeiiiiiiiiiiiee et ssireee e e e e 12
Figure 8: MAC address of the Microsoft Loopback Adapter...........cceeii i 12
Figure 9: wpcapslip6 termMinal WINGOWocuuiiiiiiiiiee ettt e e e b e e e e snneeeeans 13

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:

TUNSIIPG tEIrMINAI WINTOW ...ttt e et e e sb e e e sbreeeeaa 14

ContikiRPL server access — neighbors and roULESccvvviiiiiie i 15
Ping6 command WINAOW SNAPSNOL........cocuuiiiiiiiiiieiiei et 15
Copper (Cu) CoAP user-agent GET access to wireless remote node..........ccccceeeevvviivieeeennnn. 16

Example CoAP GET access to temperature sensor (running sensor-er-rest-example

LY=L= I 17
Figure 15: STM32 NUCIEO BOAIUccooiiie i 18
Figure 16: X-NUCLEO-IDS1A* SPIRIT1 expansion board..............cccoeee i, 19
Figure 17: X-NUCLEO-IKS01A1 sensor expansion boardcccoooeveieiiie e 20
Figure 18: X-NUCLEO-IDS01A* expansion board connected to STM32 Nucleo Board............c.ccccueeeene 21
Figure 19: X-NUCLEO-IKS01A1 and X-NUCLEO-IDS01A* expansion boards connected to STM32

[N T0 Tod =T o TN = T T o SRR PREPRP 22
Kys DoclD028756 Rev 2 3124

Acronyms and abbreviations

UM2000

1

4/24

Acronyms and abbreviations

Table 1: Acronyms

Acronym

Description

CoAP

Constrained Application Protocol

DocIlD028756 Rev 2

3

UM2000 System Overview
2 System Overview
2.1 Features
The port allows running the Contiki OS 6LoWPAN protocol stack and related applications
on a STM32 Nucleo board equipped with sub-1GHz RF connectivity and an optional
sensors expansion board.
In particular, the port supports the following boards:
e NUCLEO-L152RE board based on the STM32L152RET6 ultra-low power
microcontroller
e X-NUCLEO-IDS01A4 based on sub-1GHz SPSGRF-868 SPIRIT1 module (operating
at 868 MHz)
e X-NUCLEO-IDS01A5 based on sub-1GHz SPSGRF-915 SPIRIT1 module (operating
at 915 MHz)
e X-NUCLEO-IKS01A1 featuring motion MEMS and environmental sensors (optional)
The following drivers are included:
e LEDs and buttons (user, reset)
e USB
e SPIRIT1 sub-1GHz transceiver
e HTS221, LIS3MDL, LPS25HB, LSM6DSO0 sensors
2.2 Getting the software package

3

The port is available in the Contiki master repository in GitHub:
https://github.com/contiki-os/contiki

A library of low layer components, including the drivers and Hardware Abstraction Layer
based on the STM32 Cube framework is available in a separate repository:

https://github.com/STclab/stm32nucleo-spirit1-lib

This library is imported as a sub-module of the Contiki repository using standard GIT
commands. The online repository can be cloned to a local “contiki” folder with the following
command:

git clone --recursive https://github.com/contiki-os/contiki.git

The content of the separate “stm32nucleo-spirit1-lib” library is automatically stored in the
“contiki/platform/stm32nucleo-spiritl/stm32cube-lib” directory.

DocIlD028756 Rev 2 5/24

https://github.com/contiki-os/contiki
https://github.com/STclab/stm32nucleo-spirit1-lib

System Overview UM2000

2.3

2.4

24.1

6/24

Software package structure

Figure 1: Contiki-3x package structure

Name Date modified Type Size

apps
core
cpu
dev
doc
ST Porting code —————— eamples
platform
regression-tests
tools
.gitignore
| .gitmodules
__ Jtravisyml
___| CONTRIBUTING.md
; LICENSE
Makefile.include 9
|| README.md 1/9
| README-BUILDING.md 7/9 5
| README-EXAMPLES.md 7/9/20155:19PM MD File 7 KB

The ST porting code is included in the following folders:

e cpu: this folder contains the processor-related support functions. The code to support
the STM32L152 processor is included in the “./cpu/arm/stm32[152” folder.

e platform: this folder contains the hardware platforms compliant with the Contiki
platform APIs. The code to support the new ST “platform” ported in Contiki is
contained in the “./platform/stm32nucleo-spirit1” folder.

e examples: this folder contains the sample applications. The ST examples using this
port are included in the folder named “./examples/stm32nucleo-spirit1”.

Sample applications
In Contiki, there are two types of application “examples”:

¢ Native examples outline the generic functionality of the Contiki OS and networking
protocol stack, among other things. Many such examples are available, covering a
broad range of use cases.

o Platform specific examples outline the specific functionality of a given hardware
“platform”. ST provides one such example for the “stm32nucleo-spirit1” platform,
called “sensor-demo”.

Building Contiki native examples
The “examples” directory in the Contiki repository contains many application examples.

The following examples have been successfully tested on this port:

e examples/hello-world
o examples/ipv6/simple-udp-rpl (multicast, rpl-border-router, simple-udp-rpl)

The following sections outline how to build these examples.

3

DocIlD028756 Rev 2

UM2000

System Overview

24.1.1

3

simple-udp-rpl example

This example demonstrates simple communication between two nodes using the UDP
protocol. One node is the sender of UDP datagrams and another node is the receiver.

To build the example called "simple-udp-rpl", go to examples/ipv6/simple-udp-rpl directory.

If the X-NUCLEO-IDS01A5 sub-1GHz RF expansion board is used, run the following
commands:

make TARGET=stm32nucleo-spiritl BOARD=ids0la5 clean
make TARGET=stm32nucleo-spiritl BOARD=ids0lab
arm-none-eabi-objcopy -O binary unicast-sender.stm32nucleo-spiritl sender.bin

arm-none-eabi-objcopy -O binary unicast-receiver.stm32nucleo-spiritl receiver.bin

If the X-NUCLEO-IDS01A4 sub-1GHz RF expansion board is used, use “ids01a4”
in place of “ids01a5”.

This will create two binary executables files, one to be programmed on the sender node
called “sender.bin”, and one to be programmed on the receiver node called “receiver.bin”.
Refer to Section 3.3: "Board setup guide" for information on how to setup the boards and
flash the files generated by the previous command.

For all the examples that use a terminal, the minicom application can be used in the
following way (assuming ttyACMO is the device used by the board):

. minicom -b 115200 -D /dev/ttyACMO
e Press CTRL-A-Z and then U, to enable a proper carriage return to be printed.

The next figure shows an example of data printed by the “unicast-sender” node.

Figure 2: Terminal utility showing the running Unicast-sender example

Welcome to minicom 2.7

OPTIONS: I18n
Compiled on Jan 1 2014, 17:13:22.
Port /dev/ttyACMO, 16:42:55

Press CTRL-A Z for help on special keys

Sending unicast to 83 f7ff:bobc:
Sending unicast to g3 :f7ff:bobc:
Sending unicast to :f7ff:bobc:
Sending unicast to 88 :f7ff:bobc:
Sending unicast to g8 :f7ff:bobc:
Sending unicast to 88 :f7ff:bobc:
Sending unicast to g9 :f7ff:bobc:
Sending unicast to g8 :f7ff:bobc:

The next figure shows an example of data printed by the “unicast-receiver” node
associated with the unicast packets sent by the sender node.

Figure 3: Terminal utility showing the running Unicast-receiver example

Welcome to minicom 2.7

OPTIONS: I18n
Compiled on Jan 1 2014, 17:13:22.
Port /dev/ttyACM1, 16:44:40

Press CTRL-A Z for he on special keys

from 98] e 9 length : "Message @'
from 3 length : "Message
from] e length : "Message
from 3 e length : "Message
from] e length : "Message
from] e length : 'Message
received from 38 :f5ff:eb3a:14c5 length : "Message 6
received from 98 :f5ff:eb3a:14cs length : "Message 7'

DocIlD028756 Rev 2 7124

System Overview UM2000

24.1.2

2413

2.4.2
2421

8/24

rpl-border-router example

This example lets you configure a node as an “RPL Border Router”, which is the device
that stands between 6LoOWPAN network and a host system (e.g., a Linux PC) connected to
the Wide Area Network.

From the top Contiki folder, run the following commands to generate a suitable binary file to
be flashed on the device.

cd examples/ipv6/rpl-border-router
make TARGET=stm32nucleo-spiritl BOARD=ids0lab

arm-none-eabi-objcopy -O binary border-router.stm32nucleo-spiritl br.bin

If the X-NUCLEO-IDS01A4 sub-1GHz RF expansion board is used, use “ids01a4”
in place of “ids01a5”.

This will create a binary executable file called “br.bin” that implements the border router
application for the stm32nucleo-spiritl platform. Refer to for information on how to setup
the board and flash the “br.bin” file generated by the previous command.

Erbium REST example

This example lets you configure a node as a REST server or client.

In our case, we want to setup a wireless node as REST server, in order to enable the
access to the hosted resources by the means of the CoAP protocol.

To build the example, assuming the sub-1GHz expansion board used is the X-NUCLEO-
IDSO1ADS5, run the following commands:

cd examples/er-rest-example
make TARGET=stm32nucleo-spiritl BOARD=ids0lab

arm-none-eabi-objcopy -O binary er-example-server.stm32nucleo-spiritl er-example-
server.bin

If the X-NUCLEO-IDS01A4 sub-1GHz RF expansion board is used, use “idsO1a4”
in place of “ids01a5”.

Building examples provided by ST

“Sensor Demo” example

ST has developed a sample application to demonstrate how sensor data can be read. In
order to use this example, the X-NUCLEO-IKS01A1 expansion board must be connected to
the system (see Section 3: "System setup guide"). Sensor data is accessed by this
example using the Contiki APIs for sensors.

The sensor-demo example can be found in: examples/stm32nucleo-spiritl/sensor-demo

To build the example, assuming the sub-1GHz expansion board is the X-NUCLEO-
IDS01AS5, run the following commands:

cd examples/stm32nucleo-spiritl/sensor-demo
make TARGET=stm32nucleo-spiritl BOARD=ids0lab

arm-none-eabi-objcopy -O binary sensor-demo.stm32nucleo-spiritl sensordemo.bin

DoclD028756 Rev 2 ‘Yl

UM2000 System Overview
If the X-NUCLEO-IDS01A4 sub-1GHz RF expansion board is used, use “ids01a4”
in place of “ids01a5”.

Refer to Section 3.3: "Board setup guide" for information about how to program the board
using the “sensordemao.bin” file.
When the demo is running, data from the X-NUCLEO-IKS01A1 board sensors (humidity,
pressure, magnetometer, acceleration, gyroscope), along with button and LED status and
the radio link paramenters (RSSI and LQI) is printed on the terminal every five seconds. In
this demo, pressing the user button toggles the LED status.
The serial interface parameters for this demo are 115200, n, 8, 1.
The next figure shows the terminal window when the sensor-demo is running.
Figure 4: Terminal utility snapshot when sensor-demo runs

File Edit View Search Terminal Help

Gyroscope: 23/12/3 (X/Y/Z) mdps

Button state: Released (pressed 3 times)

LEDs status: RED:n/a GREEN:on

Radio (RSSI): -130.0 dBm

Radio (LQI): 0

Temperature: 26.8 C

Humidity: 58.9 rH

Pressure: 995.0 mbar

Magneto: 1820/2161/1285 (X/Y/Z) mgauss

Acceleration: 143/135/16740 (X/Y/Z) mg

Gyroscope: 20/12/4 (X/Y/Z) mdps

Button state: Released (pressed 3 times)

LEDs status: RED:n/a GREEN:on

Radio (RSSI): -72.5 dBm

Radio (LQI): 4

Temperature: 26.8 C

Humidity: 59.0 rH

Pressure: 994.9 mbar

Magneto: 1845/2223/1278 (X/Y/Z) mgauss

Acceleration: 151/135/16736 (X/Y/Z) mg

Gyroscope: 20/12/5 (X/Y/Z) mdps

2.5 Building an overall system with an IPv6 host, an edge router

3

and a sensor node

In this section we use some examples explained in the previous section, and we provide
information to setup a system with:

e An IPv6 host:
— this device runs the client application like a web browser over an IPv6 based
protocol stack
— it can also provide connectivity to a Wide Area Network
e An Edge (or border) router:
— This device creates a 6LowPAN network and is connected to the wireless nodes
from one side, and is connected to the IPv6 host from the other side
— Inour case, it is implemented on an STM32 Nucleo board with a Sub-1GHz RF
expansion board
e A wireless sensor node:
— alow-power wireless device connected to the 6LoOWPAN network

DocIlD028756 Rev 2 9/24

System Overview UM2000

2.5.1

2.5.2

10/24

— Inour case, it is implemented on an STM32 Nucleo board with a Sub-1GHz RF
expansion board and a sensors expansion board

Figure 5: Overall system architecture

IPv6 Host PC

IPv6/6LoWPAN
Network

6LoOWPAN Border Router
NUCLEO-L152RE

Wireless Sensors Nodes
NUCLEO-L152RE X-NUCLEO-IDS01A4/5 (sub-1 GHz)

X-NUCLEO-IDS01A4/5 (sub-1 GHz)
X-NUCLEO-IKS01A1 (sensors) [optional]

Edge (border) router setup

The border router is implemented with a NUCLEO-L152RE board with an X-NUCLEO-
IDS01A4 (or A5) expansion board plugged on top.

The border router application used in this setup is the “rpl-border-router” example.

Refer to Section 2.4.1.2: "rpl-border-router example" for information about how to generate
the firmware for this application.

To facilitate analysis, binary files ready to be flashed on the border router node can be
downloaded from these GitHub repositories:

e With the X-NUCLEO-IDS01A4 expansion board:
https://github.com/STclab/stm32nucleo-spiritl-examples/blob/master/binaries/868-
MHz/rpl-border-router/border-router-868.bin

e With the X-NUCLEO-IDS01A5 expansion board:
https://github.com/STclab/stm32nucleo-spiritl-examples/blob/master/binaries/915-
MHz/rpl-border-router/border-router-915.bin

Wireless sensor node setup

The wireless sensor node is implemented with a NUCLEO-L152RE board with an X-
NUCLEO-IDS01A4 (or A5) expansion board and X-NUCLEO-IKS01A1 sensor expansion
board plugged on top.

There are various Contiki examples that could be used to generate a wireless node
firmware.

We propose using the firmware from Section 2.4.1.3: "Erbium REST example" to
demonstrate how the resources can be accessed using the CoAP protocol.

To facilitate analysis, binary files ready to be flashed on the border router node can be
downloaded from these GitHub repositories:

e With the X-NUCLEO-IDS01A4 expansion board:
https://github.com/STclab/stm32nucleo-spiritl-examples/blob/master/binaries/868-
MHz/rpl-border-router/border-router-868.bin

DoclD028756 Rev 2 ‘Yl

https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/868-MHz/rpl-border-router/border-router-868.bin
https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/868-MHz/rpl-border-router/border-router-868.bin
https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/915-MHz/rpl-border-router/border-router-915.bin
https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/915-MHz/rpl-border-router/border-router-915.bin
https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/868-MHz/rpl-border-router/border-router-868.bin
https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/868-MHz/rpl-border-router/border-router-868.bin

UM2000

System Overview

253
2531

3

e With the X-NUCLEO-IDS01A5 expansion board:
https://github.com/STclab/stm32nucleo-spiritl-examples/blob/master/binaries/915-
MHz/rpl-border-router/border-router-915.bin

These binary files implement the “sensor-er-rest-example”, which is a slightly modified
version of Contiki’s native “er-rest-example”, with added support for the X-NUCLEO-
IKS01A1 sensor expansion board.

IPv6 host setup

IPv6 packets bridging - setup for Windows environment

This section provides setup information when the host PC is running Windows (version 7
and later). The host side implements a standard IPv6 based networking stack.

A software utility named “wpcapslip6” is required to exchange IPv6 packets over the serial
line between the host PC stack and the border router IPv6 stack.

To set up this utility:

e The “wpcapslip6” utility needs a working network adapter, so the first step in the setup
is to install one. This utility is provided in the Contiki package in the
“tools/stm32w/wpcapslip6” folder. The Microsoft loopback adapter can be installed
using “Add legacy hardware” in the Windows Device Manager, as shown below.

Figure 6: Adding the nework adapter in Windows
ﬁDevice Manager ‘_'—; ’ =l _J

1

File Action View Help
s | m|Hem &

4 j ReverieSun. -
W~ C Scan for hardware changes ‘

a0 Add legacy hardware
& Display adapters
-3 DVD/CD-ROM drives
&% Human Interface Devices
¥ Jungo Connectivity
— Keyboards
¥ Mice and other pointing devices
I Monitors
4 &¥ Network adapters
¥ Broadcom NetXtreme 57xx Gigabit Controller
5'5 Teredo Tunneling Pseudo-Interface
4 |5, Other devices
I3 Ethernet Controller
YF Ports (COM & LPT)
n Processors
£ Sound, video and game controllers
< Storage controllers
A System devices =

L

Add a legacy (non Plug and Play) device to the computer.

e Reboot the PC after the installation of the Microsoft loopback adapter.

e Copy the “cygwin1.dIl” file from the “contiki/tools/cygwin” folder to the wpcapslip6
folder.

e Install the WinPcaP Windows packet capture library (https://www.winpcap.org/install/).

e InaDOS terminal, run the wpcaslip6 utility with the rpl-border-router example

DocIlD028756 Rev 2 11/24

https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/915-MHz/rpl-border-router/border-router-915.bin
https://github.com/STclab/stm32nucleo-spirit1-examples/blob/master/binaries/915-MHz/rpl-border-router/border-router-915.bin
https://www.winpcap.org/install/
https://www.winpcap.org/install/

System Overview UM2000

12/24

cd tools\stm32w\wpcapslip6

wpcapslip6.exe -s /dev/ttyS21 -b aaaa:: -a aaaa::1/128 [addr]

The serial device number (“ttyS21” in this example) can be obtained by looking at the
Virtual COM Port number associated with the STM32 Nucleo board (see the next
screenshot). The value to use when running the “wpcapslip6.exe” command is the COM
port number minus 1. In this example, it is number 22, so “ttyS21” is the device parameter
used.

Figure 7: STM32 Nucleo board Virtual COM Port value

=

& Monitors
L¥ Network adapters
\(3 Other devices
W/ Portable Devices
Y& Ports (COM & LPT)
"Z" Communications Port (COM1)
YZ¥ Printer Port (LPT1)
Y= STMicroelectronics STLink Virtual COM Port (COM22)
D Processors
“» Sound, video and game controllers

o Crarnma ranteallare

[

The [addr] parameter is the MAC address of the local network adapter. This information
can be found by using the “ipconfig /all” command, as shown in the next screenshot:

Figure 8: MAC address of the Microsoft Loopback Adapter

fig /all

P Configuration
MAC Address of
Loopback Adapter

18(Preferred)

)0-1D-09-2D-FB-51

Tcpip. . .

Ethernet adapter Local Area Connection

Finally, the next figure shows a snapshot of the terminal in which the wpcapslip6 utility is
run.

3

DocIlD028756 Rev 2

UM2000 System Overview
Figure 9: wpcapslip6 terminal window
wpcaps 1ip6.exe -s /¢ ttyS21 -b aaaa:: -a aaaa::1/128 02-00-4C-4F-4F-50
3 local network interfac Local Area Connection 5
etsh interface ipvé add addr "Local Area Connection 5"
) f7-ff-b7-bd-48-42
Fictitious 0A-00 BD
8 netsh interface ipv6 add route 4 "Local Area Connection 5" aaaa::a00:f7ff:b7bd:4842
58 netsh interface ipv6 add neighbor "Local Area Connection 5" aaaa::a00:f7ff:b7bd:4842 "0A-00-F7-BD-48
bt configuratic of type 0O
0000:0000:0000
of type P
2532 IPv6 packets bridging - Setup for Linux environment

3

In this section we provide setup information in case the host PC is a Linux machine. The
host side implements a standard IPv6 based networking stack.

A software module named “tunslip6” is needed in order to exchange IPv6 packets over the
serial line between the host PC stack and the border router IPv6 stack. This utility is
provided in the Contiki package.

To compile it, from the top level contiki directory run:
cd ./tools
make tunslipé6

We assume that the border router device that was set up in the previous section is
connected to a Linux host.

The next step is to launch the tunslip6 application by providing the virtual communication
port to which the border router device is connected (located in /dev/ttyACMx where X is the
corresponding port number):

sudo ./tunslip6 -s /dev/ttyACMO aaaa::1/64
This command creates a new virtual interface in the Linux host called “tun0”.

After launching this command, reset the STM32 Nucleo board on which the border router is
implemented by pressing the RESET (black) button to trigger system initialization and an
exchange of configuration information with the tunslip6 application.

The next figure shows a snapshot of the terminal in which tunslip6 is run.

DocIlD028756 Rev 2 13/24

System Overview UM2000

2533

254

14/24

Figure 10: tunslip6 terminal window

***kkk*k*S| IP started on ~ 7 /dev/ttyACMa''

opened tun device " fdev/tune'’

ifconfig tun® inet "hostname ™ up

ifconfig tun@ add aaaa::1/64

ifconfig tun® inet 172.16.06.1 peointopoint 172.16.08.2
ifconfig tun® add feB80::0:0:0:1/64

ifconfig tun@®

tuno Link encap:UNSPEC HWaddr 00-80-00-00-00-00-00-00-00-00-00-00-00-00-00-00
inet addr:172.16.6.1 P-t-P:172.16.0.2 Mask:255.255.255.255
inet6 addr: fe80::1/64 Scope:Link
inet6 addr: aaaa::1/64 Scope:Global
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:15080 Metric:1
RX packets:® errors:0 dropped:® overruns:® frame:0
TX packets:0 errors:0 dropped:® overruns:® carrier:@
collisions:® txqueuelen:500

RX bytes:® (0.8 B) TX bytes:0 (0.0 B)

*** Address:aaaa::1l => adaa:0000:0000:0000
Got configuration message of type P
Setting prefix aaaa::

Server IPv6 addresses:
aaaa::800:f5ff:eb3a:14c5
fcoo::800:F5ff:eb3a:14c5
fe80::800:f5ff:eb3a:14c5

*** Address:asaa::1 => aaaa:0000:0000:0000

Got configuration message of type P

Setting prefix aaaa::

Server IPv6 addresses:
3aaa::800:f5ff:eb3a:14c5
fco0::800:f5ff:eb3a:14c5
fe80::800:f5ff:eb3a:14c5

IPv6 Host setup troubleshooting

e With Ubuntu kernel 3.13.0-65-generic (part of the Ubuntu 14.04 LTS) the tunslip6
application does not work properly
e Cygwin limits /dev/ttyS* number to 100. If it has a device with a higher number, either:

— Recompile Cygwin as suggested here: https://www.cygwin.com/ml/cygwin/2008-
08/msg00151.html

— Remove allocated COM ports, some procedures are described here:
http://superuser.com/questions/408976/how-do-i-clean-up-com-ports-in-use

e You must disable the firewall
e Ensure IPv6 is enabled:

— Inthe properties of the Loopback Adapter, set the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\TCPIP6\Parame
ters\DisabledComponents registry key to the value Ox8E

— You may need to change the default name of the Network Connection associated
with the Microsoft Loopback Adapter to a name that does not contain spaces

Contiki server access (border router) and connectivity test

This step involves opening a web browser to access the Contiki server providing the RPL
neighbor and route information. You may use the first address listed in the wpcapslip6 (on
Windows PC) or tunslip6 (on Linux PC) terminal window, after the “Server IPv6 addresses’’
line.

The following figure shows the content of the web browser page after inserting the server
IPv6 address (square brackets for IPv6 addresses) in the URL.

3

DocIlD028756 Rev 2

https://www.cygwin.com/ml/cygwin/2008-08/msg00151.html
https://www.cygwin.com/ml/cygwin/2008-08/msg00151.html
http://superuser.com/questions/408976/how-do-i-clean-up-com-ports-in-use
http://superuser.com/questions/408976/how-do-i-clean-up-com-ports-in-use

UM2000

System Overview

2.5.5

3

Figure 11: ContikiRPL server access — neighbors and routes

ContikiRPL - Mozilla Firefox

ContikiRPL

€ [aaaa::800:F5ff:eb3a:14¢5] v C wBE U 3 a8 =
Neighbors
fe80::200: f7ff:bobc:4643

Routes

aaaa::a00: f7ff:b9bc:4643/128 (via fe80::a00:f7ff:b9bc:4643) 16711412s

We assume that a wireless sensor node set up as described in the previous section is up
and running.

At this point, the IPv6 address of the wireless sensor node should be present in the
“Neighbors” list.

In order to demonstrate the end to end IPv6 connectivity between the Linux IPv6 host and
the wireless sensor node, a simple pingé command can be run. The IPv6 address to be
used is the full 128-bit address in the “Routes” list.

For this specific example, the pingé command (or “ping -6” under Microsoft Windows) to
run would be:

ping6 aaaa::a00:f7ff:b9%c:4643

The next figure is a snapshot of the pingé command execution, with the remote wireless
sensor node replying to the ping from the Linux host.

Figure 12: Ping6 command window snapshot

PING aaaa::af0:f7ff:b9bc:4643(aaaa::a00:f7ff:bo9bc:4643) 56 data bytes
bytes from aaaa::a@@8:f7ff:bobc:4643: icmp_seq=1 ttl=63 time=70.0 ms
bytes from aaaa::a@@:f7ff:bobc:4643: icmp_seq=2 ttl=63 ms
bytes from aaaa::a@@:f7ff:b9bc:4643: icmp_seq=3 ttl=63 ms
bytes from aaaa::af@:f7ff:b9%bc:4643: icmp_seq=4 ttl=63 ms
bytes from aaaa::a@@:f7ff:bobc:4643: icmp_seq=5 ttl=63 ms
bytes from aaaa::a@@:f7ff:bobc:4643: icmp_seq=6 ttl=63 ms
bytes from aaaa::a@@:f7ff:b9bc:4643: icmp_seq=7 ttl=63 ms
bytes from aaaa::a@@:f7ff:b9bc:4643: icmp_seq=8 ttl=63 ms
bytes from aaaa::a@@:f7ff:bobc:4643: icmp_seq=9 ttl=63 .9 ms
bytes from aaaa::a@@:f7ff:bobc:4643: icmp_seq=10 ttl=63 ti .9 ms
bytes from aaaa::a@@:f7ff:b9bc:4643: icmp_seq=11 ttl=63 time=65.9 ms
bytes from aaaa::a@@:f7ff:b9%bc:4643: icmp_seq=12 ttl=63 time .9 ms
bytes from aasaa::a@0:f7ff:bobc:4643: icmp_seq=13 ttl=63 time=67.8 ms
bytes from aaaa::a@@:f7ff:bobc:4643: icmp_seq=14 ttl=63 time .8 ms
bytes from aaaa::a@@:f7ff:b9bc:4643: icmp_seq=15 ttl=63 time=69.8 ms
bytes from aaaa::a@@:f7ff:b9bc:4643: icmp_seq=16 ttl=63 time=70.8 ms

(=
O\ 00000~

--- 3a3aa::ade:f7ff:bobc:4643 ping statistics ---
16 packets transmitted, 16 received, 0% packet loss, time 15017ms
rtt min/avg/max/mdev = 64.936/70.685/76.827/3.620 ms

Wireless node resources access demo using CoAP

We can now leverage the CoAP-based server previously set up on the wireless node (see
Section 2.4.1.3: "Erbium REST example").

To do so, you can open a web browser with CoAP client support. In this example, we are
working with the Copper (Cu) CoAP user-agent for Firefox (https://addons.mozilla.org/en-
US/firefox/addon/copper-270430)

After installing the Copper addon, open the web browser and insert in the URL tab the
“coap” command with the IPv6 address of the node (as shown in the previous ping6
example, but enclosed in square brackets) and the port number used by the CoAP Erbium
REST server (5683).

The URL inserted in the Firefox browser tab in our specific example is:
coap://[aaaa::a00:f7ff:b%c:4643]:5683/

DocIlD028756 Rev 2 15/24

https://addons.mozilla.org/en-US/firefox/addon/copper-270430
https://addons.mozilla.org/en-US/firefox/addon/copper-270430

System Overview UM2000

Initially, the page will be empty. Clicking on the “Discover” button triggers the resource
discovery process so the client can acknowledge the available resources (sensors,
actuators, etc.) from the CoAP server.

In the simple Erbium REST example, a few resources available for test purposes are listed
on the left tab. For instance, selecting “hello” under “test” and clicking “GET” generates a
CoAP GET message from the Copper CoAP client to the Erbium CoAP server running on
the wireless node. The server replies with a CoAP acknowledgment “Hello World!” (see
Figure 13: "Copper (Cu) CoAP user-agent GET access to wireless remote node") text in
the payload.

Figure 13: Copper (Cu) CoAP user-agent GET access to wireless remote node

I Git-Recor... % contikifex... x contiki/pl... x stm32nucl... x Modified... x @ Build#27... x ContikiRPL Y [[aaaa::a00
€ @ coap://[aaaa::a00:f7Ff:b9bc:4643]:5683/test/hello v C w8 + A O W =
[Most Visited v {iGetting Started 4 Git-Gettinga GitRep...
\=Ypiscover (&)Ping KJ GET POST PUT RJDELETE [yJObserve = Payload | Text : Behavior ~ CoAP 18
[aaaa::a00:F7fF:b9bc:4643]:5683 " Debug Control Reset
. . »
2.05 Content (Blockwise) (Download finished) Token
%
v --200:F7FF . -
2 [ayaaa. 300:F7Ff:bgbc:4643... H... Value Option Value Info Request Options
@ .well-known Type Acknowledgment ETag 0x0C 1byte Accept
@ core Code 2.05Content Content-Format text/plain 0
*@® actuators Mess... 26449 Block2 0 (32 B/block) 1byte -
— Token empty Content-Format
(® toggle
*@® test Payload (12) v
@® hello & Incoming | €3 Rendered | | ki Outgoing Block1(Req.) Block2 (Res) Auto
&
B push Hello World!| * *
Size1 Size2
X X
Observe
x
ETag
X
IF-Match
x
[I-None-Match
Uri-Host Uri-Port
x x
Proxy-Uri
x
(] Use Proxy-Scheme option
Response Options
Max-Age
X
Location-Path Location-Query
% %
Custom Options
Number Value
x X

You can use a modified implementation of the Contiki “er-rest-example” application to
access the resources (sensors and actuators) of the X-NUCLEO-IKS01A1 expansion
board. It is called “sensor-er-rest example” and is available in the following GitHub
repository: https://github.com/STclab/stm32nucleo-spiritl-examples/tree/master/sensor-er-
rest-example

The “sensor-er-rest example” can be built exactly like the original “er-rest-example”
described in Section 2.4.1.3: "Erbium REST example". Alternatively, you can use pre-built
binary files for this example in the “binaries” folder of the same repository.

The demo is similar to the “hello world” example described in the previous section, except
that clicking “Discover” returns a list of sensors (temperature, humidity, etc.) and actuators
(LED) in a resource tree. Temperature sensor data can then, for example, be accessed by

16/24 DoclD028756 Rev 2 ‘Yl

https://github.com/STclab/stm32nucleo-spirit1-examples/tree/master/sensor-er-rest-example
https://github.com/STclab/stm32nucleo-spirit1-examples/tree/master/sensor-er-rest-example

UM2000

System Overview

3

using the GET command on the “temperature” resource. The response from the CoAP
server running on the wireless node is, in this example, a CoAP ACK message with a body
containing the text “27.7”, which corresponds to the current temperature reading from the

sensor (on-board the X-NUCLEO-IKS01A1 expansion board).

Figure 14: Example CoAP GET access to temperature sensor (running sensor-er-rest-example

firmware)
CoAP GET Accessto € @ coap//[asaaa00:1TIT:104e-efb1]:5683/sensors temperature e 93 @ e =
the resource: —_—
“sensors/temperature" LYpiscover (Dping. (JceT POST pur LJOELETE JObserve Payload Text :| Behavior v CoAP 18
\ [222a::200:F7Ff:104e:efb1]:5683 Debug Control Reset
2.05 Content (Blockwise) (Download finished) Token
\\\ ¥4 [389::300:F7FF:104ezefb1]. He. Value Option value Info Request Options
A Type Acknowledgment Content-Format text/plain [Accept i
Code 2.05 Content Block2 0(32 B/block) 1byte
Messa... 18306
Token empty ContentFormat
Payload (4)
@ Incoming | €3 Rendered Outgoing Block1 (Req.) Block2 (Res.) Auto
27.7 % &
\ Sizet size2
P
\ ® / At Observe
- - \ ore /' ETag
= If-Match
5 @bl /
 push // IF-None-Match
o / Uri-Host Uri-Port
. /’ Proxy-Uri
“® 6LOWPAN 4
GET T Response Options
[addr}/ ACK 2.05 Max-Age
sensors/ " Content T
temperature w77 ocationPath Location-Query
P v
/ Custom Options
= Number Value
= - %
S o
5
CoAP
Server (*) Use of the X-NUCLEO-IKS01A1 sensors expansion board is required for this demo

As it is based on the standard contiki er-rest-example, the green LED on the Nucleo board
can be turned ON/OFF by:

e A COAP PUT or POST on /actuators/LEDs with attached query option ?color=g,
so the complete path to be used in the address bar is /actuators/leds?color=g
e With payload (put in the “Outgoing” tab) mode=on or mode=off

The radio link parameters (RSSI or LQI) can be read by:

A CoAP GET on /sensors/radio with attached query option ?p=1qgi or ?p=rssi,
so the complete path in the address bar is either:

— /sensors/radio?p=1lqgi

— /sensors/radio?p=rssi

DocIlD028756 Rev 2 17/24

System setup guide UM2000

3.1.1

18/24

System setup guide

Hardware requirements

This section describes the hardware components required for using the Contiki 3.x ST port.

NUCLEO-L152RE board

STM32 Nucleo boards provide an affordable and flexible way for users to try out new ideas
and build prototypes with any of the STM32 microcontroller lines. Arduino™ connectivity
support and ST morpho headers make it easy to expand the functionality of the STM32
Nucleo open development platform with a wide choice of specialized expansion boards.

The STM32 Nucleo board does not require any separate probes as it integrates the ST-
LINK/V2-1 debugger/programmer. It also comes with the STM32 comprehensive software
HAL library together with various packaged software examples.

Figure 15: STM32 Nucleo Board

The NUCLEO-L152RE board belongs to the STM32 Nucleo family. It features an
STM32L152RET6 ultra-low power microcontroller based on the ARM Cortex M3 MCU.
Information regarding the NUCLEO-L152RE board is available on www.st.com at:
http://www.st.com/stm32nucleo.

DocIlD028756 Rev 2

3

http://dita.st.com/dx/ditaexchange/Repository/Publications/www.st.com
http://www.st.com/stm32nucleo

UM2000

System setup guide

3.1.2

3.1.3

3

X-NUCLEO-IDS0O1A* expansion board

The X-NUCLEO-IDS01A* is a demonstration kit to evaluate the features and capabilities of
the SPSGRF module based on the SPIRIT1 low data rate, low power sub-1GHz
transceiver device

The expansion board has onboard SPI EEPROM to store parameter settings and a user
interface LED.

You must select either:

e X-NUCLEO-IDS01A4 to operate the SPIRIT1 transceiver at 868MHz, or
e X-NUCLEO-IDSO01AS5 to operate the SPIRIT1 transceiver at 915 MHz.

Figure 16: X-NUCLEO-IDS1A* SPIRIT1 expansion board

Kyjziu
158908-TT7-2142 g b
‘ RIABToW] X-NUCLEO-IDSO1A4 | - o0 -
R15W M) X-NUCLEO-IDSO1A5 10
:.—:] D ER}K

R6[W_M|[FoMRs - | Ee MR 12 R1[HSH)
| o WpaRy, - - TP R 3T

| RS WIBEMR2 promn N RO N ¢
. : 3 Re[m]
-~ RoHS

Information regarding the X-NUCLEO-IDS01A4 and X-NUCLEO-IDS01A5 expansion board
is available on www.st.com at: http://www.st.com/x-nucleo.

X-NUCLEO-IKS01A1l expansion board (optional)

The X-NUCLEO-IKS01A1 is a sensor expansion board for the STM32 Nucleo. It is also
compatible with Arduino UNO R3 connector layout, and is based on the STMicroelectronics
humidity (HTS221), pressure (LPS25HB) and motion sensors (LIS3MDL and LSM6DS0).

DocIlD028756 Rev 2 19/24

http://dita.st.com/dx/ditaexchange/Repository/Publications/www.st.com
http://www.st.com/x-nucleo

System setup guide UM2000

3.2

3.3

20/24

Figure 17: X-NUCLEO-IKS01A1 sensor expansion board

L 4
m
w
"
m
m
m
"

3

hi Sl B-A¥6 T HXBI0W 9212-11-868S1

2376672002
NYITdH0D
gzas srgsozes I

ATINO S3S0dind
NOILUNIUN3 ¥0d
w

,4,
+3Zdr

The use of this board is optional in the stm32nucleo-spiritl Contiki platform. When used,
sensor data readings can be on obtained via the Contiki sensor APIs.

Information regarding the X-NUCLEO-IKS01A1 expansion board is available on
www.st.com at: http://www.st.com/x-nucleo.

Software requirements

The following software components are needed in order to set Contiki up on the STM32
Nucleo with ST expansion boards:

e ST Contiki port for STM32 Nucleo and expansion boards; installed automatically when
the Contiki repository is cloned. See Section 2.2: "Getting the software package" for
information on how to obtain a local copy of the repository. The Contiki Platform name
for this port is: stm32nucleo-spiritl

e Atoolchain to build the firmware. The port has been developed and tested with GNU
Tools for ARM Embedded Processors (https://launchpad.net/gcc-arm-embedded). The
port was developed and tested using version: gcc-arm-none-eabi v4.83

Board setup guide

Follow the steps below to connect the boards.

1 Check that the jumper on the J1 connector on the X-NUCLEO-IDS01A* expansion
board is connected. This jumper provides the required voltage to the devices on the
board.

3

DocIlD028756 Rev 2

www.st.com
http://www.st.com/x-nucleo
https://launchpad.net/gcc-arm-embedded
https://launchpad.net/gcc-arm-embedded

3

UM2000

System setup guide
Connect the X-NUCLEO-IDS01A* board onto the STM32 Nucleo board (NUCLEO-
L152RE).

Figure 18: X-NUCLEO-IDS01A* expansion board connected to STM32 Nucleo Board

EVALUATION PURPOSES ONLY
DSO1A4
DSO1AS

(v}
o
[}
=2
=
>
=

DocIlD028756 Rev 2

21/24

System setup guide

UM2000

22/24

If present, connect the optional X-NUCLEO-IKS01A1 board onto the X-NUCLEO-
IDSO1A* board.

Figure 19: X-NUCLEO-IKS01A1 and X-NUCLEO-IDS01A* expansion boards connected
to STM32 Nucleo Board

8 |
l 5

Y Y L L

b

”
\ &
>

»®» NN
L B B B B IR IR R N 2N

B e e

Power the STM32 Nucleo board through a Mini-B USB cable connected to the PC.

Program the firmware on the STM32 Nucleo board by copying the binary file on the
USB mass storage that is automatically created when plugging the STM32 Nucleo
board to the PC. The STM32 Nucleo L1 device can be found in a Linux host in the
/media folder with the name “NUCLEO_L152RE” (if more than one STM32 Nucleo
board is connected to the PC USB port, the name will be “NUCLEO_L152REX”,
x=1, 2, etc.). For example, if the path to the mass storage created when connecting
the STM32 Nucleo L1 platform is “/media/NUCLEO_L152RE”, then you can
program the board with a binary file named “my_firmware.bin” by simply running the
following command:

cp my firmware.bin /media/NUCLEO_LI152RE

Press the MCU RESET (black) button on the STM32 Nucleo board

If necessary, open a terminal utility, select the serial port name to which the board
is connected and configure it with the following parameters: 115200, n, 8, 1. The

terminal utility will show the data printed by the selected example (the content
depends on the example).

DocIlD028756 Rev 2

3

UM2000

Revision history

3

Revision history

Table 2: Document revision history

Date Version | Changes
14-Dec-2015 1 Initial release.
29-Jan-2016 2 Updated Section 2.5.3.2: "IPv6 packets bridging - Setup for Linux

environment"

DocIlD028756 Rev 2 23/24

UM2000

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics — All rights reserved

3

24/24 DocIlD028756 Rev 2

