
February 2016 DocID028796 Rev 1 1/33

33

UM2003
User manual

Getting started guide - STreamPlug ST2100 Linux support package

Introduction

This user manual provides application developers with a first introduction to the Linux based
reference software installed in the Flash memory of the STreamPlug evaluation boards. It is
not intended to be a tutorial on the Linux operating system or embedded software design. It
only covers topics that are specific to the implementation on the STreamPlug SoC and
boards.

The Linux support package (LSP) is a set of software provided free of charge by
STMicroelectronics® for the STreamPlug SoC.

The LSP has the following objectives:

 Demonstrating capabilities of the STreamPlug device through a widely available high
level operating system (Linux) executed as native or over the Microvisor (OKL4) provided
by Open Kernel Labs (OKL), now General Dynamics Broadband. The LSP is only
targeting STMicroelectronics evaluation boards.

 Providing a starting point for customers willing to accelerate a Linux porting to their
proprietary STreamPlug based hardware platforms and products.

A detailed description of LSP contents can be found in the following companion document
UM1942 - “Linux software user manual for STreamPlug ST2100”, while all the data about
the system software and tools are in the UM2004 - “STreamPlug ST2100 SDK and quick
start guide”.

www.st.com

http://www.st.com

Contents UM2003

2/33 DocID028796 Rev 1

Contents

1 About this manual . 4

2 Working with pre-flashed software . 5

2.1 Host PC requirements . 5

2.1.1 Windows PC . 5

2.1.2 Linux PC . 6

2.2 Overview of Flash contents and structure . 9

2.3 Booting up to Linux prompt . 9

2.4 Using USB pen drive . 10

2.5 Using SATA hard disk .11

2.6 Connecting evaluation board to LAN .11

3 STreamPlug Linux distribution . 13

3.1 Overview . 13

3.2 Toolchain . 14

3.3 Buildroot . 17

3.4 Linux package . 18

3.5 SDK package . 19

4 Working at application level (userland) . 20

4.1 Workflow models . 20

4.1.1 Remote mounting of root file system (NFS) . 20

4.1.2 Incremental changes to Flash file system . 21

4.1.3 Flash file system full replacement . 21

4.2 Command line cross-development . 21

4.3 Rebuilding the root filesystem . 22

DocID028796 Rev 1 3/33

UM2003 Contents

33

5 Working with customized kernels . 23

5.1 Reconfiguring and building Linux kernel . 23

5.1.1 Install STreamPlug SDK . 23

5.1.2 Setup Linux kernel build environment . 24

5.1.3 Configure and build Linux kernel . 24

5.1.4 Pack Linux kernel into boot image . 25

5.1.5 Updated root filesystem with Linux kernel modules 29

5.2 Building and loading firmware image . 29

6 Glossary . 30

7 Revision history . 32

About this manual UM2003

4/33 DocID028796 Rev 1

1 About this manual

This manual focuses on software usage on STreamPlug development boards and is
organized as a sequence of chapters going from a description of the first step and then
covering more complex subjects.

This guide applies to all currently available STreamPlug evaluation boards. However, each
different evaluation board provides, in general, a different selection and combination of
hardware devices on the board (and companion boards, wherever applicable). For
a detailed description of hardware features for each evaluation board, please refer to the
corresponding evaluation board user manual.

DocID028796 Rev 1 5/33

UM2003 Working with pre-flashed software

33

2 Working with pre-flashed software

STreamPlug evaluation boards come with embedded software already stored in the (serial
NOR) Flash memory, according to a predefined generic configuration. Using a STreamPlug
board with pre-flashed software is initially useful to get familiar with the target hardware
platform and the embedded Linux environment.

This activity does not strictly require the installation of the STreamPlug Linux support
package (software development environment). This can be performed later, as described in
the following section of this document.

Warning: RISK OF INCORRECT PROGRAMMING.
Carefully check that the specific hardware configuration
(e.g.: DIP switch settings) has been set according to what is
described in the relevant hardware manuals before powering
the target hardware, and booting the pre-flashed software.

2.1 Host PC requirements

2.1.1 Windows PC

In order to control the target hardware, use a PC with a Microsoft® Windows® operating
system (XP, Vista, and Windows 7).

The first step is to set up a serial port for interacting with the embedded consoles (Linux
shell and RTOS shell). If an RS232 serial port is not available on the PC, use a USB/RS232
adapter (not provided in the kit).

The second step is to obtain a terminal emulation program. Windows comes with the built-in
HyperTerminal, but any equivalent tool can be used as an alternative. For instance, Tera
Term is an open source free application with more features and higher flexibility, especially
its scripting capability.

More technical information about Tera Term and a downloadable file may be found on the
Internet . In order to configure the serial port with Tera Term:

1. Launch the tool.

2. Click on “Setup > serial port”. The configuration must reflect that shown in Figure 1.

3. To save the proper setting, click on “Setup > save setup”.

Working with pre-flashed software UM2003

6/33 DocID028796 Rev 1

Figure 1. Tera Term configuration for serial port (Windows PC)

Using the HyperTerminal is very similar. To configure the serial port with the HyperTerminal:

1. Enter the “File > Properties” menu

2. Select the COM port (for example COM1) in the “Connect Using” dialog box

3. Press the “Configure” button

4. Enter the “Port Setting“ fields accordingly

5. To save the current configurations select the “File >Save As” menu item.

2.1.2 Linux PC

As an alternative to Windows, a PC with the Linux OS may be used.

The “$“ symbol represents a normal user prompt while a “#“ symbol means a root level
prompt.

Caution: IMPORTANT: READ/WRITE ACCESS IS REQUIRED
Read/write access to the PC serial port is required. If necessary, check your
distribution documentation to enable it. For example on Fedora Linux systems, add
the user to the “dialout” system group.

Minicom is one of the most commonly used terminal emulators for Linux. Assuming
a Fedora distribution for the host PC, to check the availability of the Minicom, execute the
following command:

$ rpm -q minicom

On a Debian family distribution (Debian, Ubuntu, etc.) the command is:

$ apt-get -s install minicom

This will simulate the installation of the Minicom and so it will indicate if the Minicom is
already installed or not.

To install the Minicom, if not found, execute this command from a root shell:

yum install minicom

On Debian:

apt-get install minicom

DocID028796 Rev 1 7/33

UM2003 Working with pre-flashed software

33

To start the Minicom, type the command:

$ minicom

To enter the configuration menu for the first time, press the key combination “Ctrl-A” and
then “Z” (in sequence).

Note: If there is no global configuration file, the Minicom will not start. Create one by running the
following command from a root shell:

minicom -s

and then follow the normal configuration procedure.

The serial connection information can be configured in the “configure minicom“ submenu
and then “Serial port setup“. After that, the configuration must be saved using the “Save
setup as“ option. The serial device name to be entered must match the one used for the link
to the STreamPlug evaluation board. For example, the first serial port on the Linux PC is
named /dev/ttyS0.

Select the serial speed as 115200 bps with 8 bits, no parity and 1 stop bit (115200 8N1) and
disable both hardware and software flow control as shown in Figure 2.

Figure 2. Minicom serial port configuration (Linux PC)

To save a new default configuration which is automatically used by Minicom, select “Save
setup as dfl”.

Alternatively, to create a new configuration file select “Save setup as …”. In order to use it,
specify the configuration file name in the command line when invoking the Minicom.

Please note that by default the Minicom tries to initialize a “modem” connected to the
chosen interface. To skip this step, invoke the Minicom with the -o option as follows:

$ minicom -o

Working with pre-flashed software UM2003

8/33 DocID028796 Rev 1

As an alternative under GNU/Linux, use “GtkTerm” (see Figure 3) or “CuteCom” (see
Figure 4).

Figure 3. GtkTerm screen

Figure 4. CuteCom screen

DocID028796 Rev 1 9/33

UM2003 Working with pre-flashed software

33

2.2 Overview of Flash contents and structure

On all evaluation boards, the default software is only pre-stored in the serial NOR Flash.
The use of other memory types available on some evaluation boards (NAND, parallel NOR)
may require the installation and usage of the STreamPlug additional file systems.

In the full configuration, the hypervisor and the system firmware start before the Linux kernel
and provide to the proper configuration (via command line ATAG) to the Linux cell. The
“Smartboot” becomes obsolete. In this full configuration the firmware is made of two images:
a factory image that stores all the board dependent data including the command line and the
upgrade image that includes the Linux kernel.

In the native Linux configuration the smartboot starts before the Linux kernel and provides
the proper configuration via the command line ATAG.

The kernel, after further preliminary initialization, mounts the so called root file system. This
is the binary image containing all software and data that comprise the operating system
complementing the kernel. The root file system is the hierarchical file structure that end
users see from the familiar Linux shell prompt. For pre-flashed software, it contains
a generic subset of initialization scripts, system commands and runtime libraries.

There is a wide choice of file system standards for Flash memories in the Linux world (for
examples, CRAMFS, JFFS2, YAFFS2, LogFS and UBIFS).

Refer to the UM2004 - “STreamPlug ST2100 SDK and quick start guide” for more details on
the firmware images, Flash memory maps, etc.

2.3 Booting up to Linux prompt

To boot Linux just power up the board. The root file system is mounted automatically, the
system shell is run and a prompt appears when it is ready to accept commands. If there is
an LCD monitor connected to the color LCD (CLCD) interface and a keyboard to the USB
host one, a shell login is automatically redirected to the LCD panel.

The pre-flashed file system provides a default set of system commands and runtime
libraries.

System commands are the familiar basic utilities mainly provided to support the
development and debugging stages. They are all stored under standard Linux paths. They
may not be strictly needed in a final product; however their small size allows them to be kept
in production devices without a significant penalty in terms of the memory footprint.

As is typical for embedded Linux environments, it uses “BusyBox”, an open source program
combining tiny versions of many common user space GNU utilities, such as ls, rm, and
others, into a single small executable; an important factor when the minimized Flash
footprint is required. You can obtain more information about BusyBox on the web.

BusyBox has been developed with size optimization and limited resources in mind. For this
reason the available commands typically have fewer options than their full-featured GNU
counterparts. However, the most important options are still available with all the functions
needed for developing and testing embedded products.

In addition to the BusyBox features, a number of other executable programs are also
included in the RootFS images.

Working with pre-flashed software UM2003

10/33 DocID028796 Rev 1

It can be also helpful to explore the Linux standard /proc and /sys pseudo-file systems.
These subtrees contain user accessible entries that pertain to the runtime state of the kernel
and, by extension, the executing processes that run on the top of it. The term “pseudo” is
used because the proc and sys file systems exist only as a reflection of the in memory
kernel data structures they display. This is why most files and directories within these
directories are zero bytes in size.

In practice, the proc file system is intended to be populated at runtime with system
information and statistics. Proc files may be either “read only” or “read write”. Each
numerically named directory within /proc corresponds to the process ID (PID) of a process
currently executing on the system. This part of the proc file system totally depends on the
runtime state of the target. Each numeric entry contains subfiles that provide process-
specific information. The other (non-numeric) entries describe some aspects of kernel
operation.

The standard /proc/bus/usb subtree is also made available. This is used to access USB
host controllers and plugged devices from user space applications.

For more details about the functionality provided by pseudo file systems, please refer to
standard Linux documentation.

2.4 Using USB pen drive

USB pen drives can be accessed in a standard Linux way: connecting them to a USB host
port and mounting their file system under the root file system. An example of the operational
sequence for a standard pen drive connected as an “sda” device (only one pen drive
present) is as follows:

1. Plug the pen drive into a USB port and wait for the Linux kernel to auto-detect it (active
kernel messages will be visible on the debug terminal).

2. Mount the pen drive file system:

a) # mount /dev/sda1 /mnt

b) Now the pen drive file system can be accessed under the /mnt directory.

3. Transfer files as usual (for example: cp command).

4. When finished, unmount the pen drive:

a) # umount /mnt

Now the pen drive may be physically unplugged.

DocID028796 Rev 1 11/33

UM2003 Working with pre-flashed software

33

2.5 Using SATA hard disk

The evaluation board supports the SATA.

An example of the operation sequence for a SATA hard disk is the following:

1. Mount the SATA file system:

a) If FAT32:

mount /dev/sda1 /mnt

b) If NTFS:

ntfs-3g /dev/sda1 /mnt

2. Now the SATA file system can be accessed under the /mnt directory.

3. Transfer files as usual (for example: cp command).

4. When finished, unmount the SATA:

umount /mnt

5. Now the SATA may be physically unplugged.

2.6 Connecting evaluation board to LAN

The evaluation board should be connected to a developer's host PC over a private LAN or
even a point-to-point link.

By default the STreamPlug has no IP address. It can be configured via “ifconfig” from the
console. In order to make the evaluation board asking for an IP address to the DHCP server
during the boot the kernel command line can be customized.

Commonly used private IP addresses (Class C) are in the range of 192.168.0.0 to
192.168.255.255.

As an example, let's assume an IPv4 local area network with the following characteristics:

Network IPs:192.168.1.X

Host PC IP:192.168.1.1

Evaluation board IP:192.168.1.10

X = 0, 2 … 0, 11… 254

On a Linux PC, configure the host address as follows:

ifconfig eth0 192.168.1.1 broadcast 192.168.1.255 netmask 255.255.255.0

In this example we are assuming that the evaluation board is connected to the Ethernet
port 0 (eth0) of the host machine.

On the evaluation board console, configure the target address as follows:

ifconfig eth0 192.168.1.10 broadcast 192.168.1.255 netmask 255.255.255.0

Note: When running the full STreamPlug software, the mapping of network interfaces to Linux
devices varies depending on the Linux command line configuration (see Table 1).

Working with pre-flashed software UM2003

12/33 DocID028796 Rev 1

Table 1. Ethernet mapping

Command line
setting

Description

eth=off
Ethernet is not available to Linux. The device “eth0” corresponds to the PLC
interface.

eth=on
Ethernet is available to Linux as a direct interface. Linux uses a native driver for
Ethernet. The device “eth0” refers to the Ethernet, while the device “eth1” is
mapped to PLC.

eth=rtos
Ethernet is managed by RTOS (STreamPlug firmware) and L2 bridging is
implemented inside RTOS. A single device “eth0” is exposed to Linux that is the
bridged PLC + Ethernet.

DocID028796 Rev 1 13/33

UM2003 STreamPlug Linux distribution

33

3 STreamPlug Linux distribution

The STreamPlug distribution provides all the host side (PC) and target side (evaluation
board) software components enabling system designers to develop their own applications
for STreamPlug based platforms, as well as customize the various aspects of the embedded
software architecture.

3.1 Overview

The STreamPlug distribution is made by several different components that can be
summarized as follows:

 Command line cross-development toolchain (compiler, linker, building tools, etc.)
running on a Linux x86 PC.

 Buildroot with a set of open source user space ARM packages (programs and runtime
libraries) to be promptly reused in root file systems as support to specific applications.
The root file system also provides the compiler, linker and so on for compiling
applications on target boards.

 Linux kernel 2.6.35, configurable for the different STreamPlug evaluation boards. It
includes BSP/device drivers for the STreamPlug hardware features.

 System SDK including:

– Hypervisor and system firmware, with added support for STreamPlug evaluation
boards

– Second and third level bootloaders firmware, plus boot tools

Most distribution components are also available as a source code.

Full details about STreamPlug Linux components are reported in the UM1942 Linux
software user manual for STreamPlug ST2100 and third-party documentation (e.g.: GNU,
General Dynamics Broadband, etc.).

The following sections detail what each component can do and how to use it. However, to
simplify their usage a configuration file is provided with ready to use targets to build any
combination of components.

STreamPlug Linux distribution UM2003

14/33 DocID028796 Rev 1

3.2 Toolchain

The cross-development toolchain is a set of programs running on a host PC which are used
to generate applications executable on an ARM based system. The tool set is usually
composed of the following items:

 Cross-compilation of the source code to generate a native object code for the ARM
CPU cores integrated into the STreamPlug embedded MPU family.

 Cross-linking of the ARM object code to generate executable programs or (dynamically
linkable) shared libraries.

 Managing object code archives, incremental rebuilding and other auxiliary tasks.

The provided toolchain is based on the widely adopted open source GNU toolset.
A summary of the main available command line tools is reported in Table 2. For detailed
documentation please consult the GNU website.

The toolchain package installed for the STreamPlug Linux BSP is downloadable from:
http://sources.buildroot.net/arm-2009q1-203-arm-none-linux-gnueabi-i686-pc-linux-
gnu.tar.bz2.

Table 2. List of main toolchain packages

Tool Function

GCC
GNU compiler collection includes front ends for C and C++ as well as libraries for
these languages

gcc C Cross-compiler for ARM

gcov Code coverage

Binutils GNU binutils are a collection of binary tools

ar Archiver

as Cross-assembler for ARM

gprof Profiling tool

ld Cross-linker for ARM

nm Lists symbols in object files

objcopy Copies a binary file

objdump Displays information from object files

ranlib Generates an index to speed access to archives.

readelf Displays the information about the contents of ELF format files

rtrip Removes symbols and sections from files

GNU make Incremental build management

GDB gdb Debugger

DocID028796 Rev 1 15/33

UM2003 STreamPlug Linux distribution

33

The cross-development toolchain can be installed in /opt with the following commands:

$ cd /opt

$ tar -xjf arm-2009q1-203-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2

$ mv arm-2009q1 arm-none-linux-gnueabi

$ export PATH=$PATH:/opt/arm-none-linux-gnueabi//bin

$ export CROSS_COMPILE=arm-none-linux-gnueabi-

$ export ARCH=arm

Note that the environment variables should be defined in the configuration script of the used
shell to make them permanent. For example: if the bash shell is used then the environment
variables can be defined in the file ~/.bashrc. It is then possible to check the toolchain by
trying to run one of its tools. For example:

$ arm-none-linux-gnueabi-gcc --help

Usage: arm-none-linux-gnueabi-gcc [options] file...

Options:

 -pass-exit-codes Exit with highest error code from a phase

 --help Display this information

 --target-help Display target specific command line options

 --
help={target|optimizers|warnings|undocumented|params}[,{[^]joined|[^]separ
ate}]

 Display specific types of command line options

 (Use '-v --help' to display command line options of sub-processes)

 -dumpspecs Display all of the built in spec strings

 -dumpversion Display the version of the compiler

 -dumpmachine Display the compiler's target processor

 -print-search-dirs Display the directories in the compiler's search
path

 -print-libgcc-file-name Display the name of the compiler's companion
library

 -print-file-name=<lib> Display the full path to library <lib>

 -print-prog-name=<prog> Display the full path to compiler component
<prog>

 -print-multi-directory Display the root directory for versions of
libgcc

 -print-multi-lib Display the mapping between command line options
and multiple library search directories

 -print-multi-os-directory Display the relative path to OS libraries

 -print-sysroot Display the target libraries directory

 -print-sysroot-headers-suffix Display the sysroot suffix used to find
headers

 -Wa,<options> Pass comma-separated <options> on to the
assembler

 -Wp,<options> Pass comma-separated <options> on to the
preprocessor

 -Wl,<options> Pass comma-separated <options> on to the linker

 -Xassembler <arg> Pass <arg> on to the assembler

 -Xpreprocessor <arg> Pass <arg> on to the preprocessor

STreamPlug Linux distribution UM2003

16/33 DocID028796 Rev 1

 -Xlinker <arg> Pass <arg> on to the linker

 -combine Pass multiple source files to compiler at once

 -save-temps Do not delete intermediate files

 -pipe Use pipes rather than intermediate files

 -time Time the execution of each subprocess

 -specs=<file> Override built-in specs with the contents of
<file>

 -std=<standard> Assume that the input sources are for <standard>

 --sysroot=<directory> Use <directory> as the root directory for headers

 and libraries

 -B <directory> Add <directory> to the compiler's search paths

 -b <machine> Run gcc for target <machine>, if installed

 -V <version> Run gcc version number <version>, if installed

 -v Display the programs invoked by the compiler

 -### Like -v but options quoted and commands not
executed

 -E Preprocess only; do not compile, assemble or
link

 -S Compile only; do not assemble or link

 -c Compile and assemble, but do not link

 -o <file> Place the output into <file>

 -x <language> Specify the language of the following input
files

 Permissible languages include: c c++ assembler
none

 'none' means revert to the default behavior of

 guessing the language based on the file's
extension

Options starting with -g, -f, -m, -O, -W, or --param are automatically

 passed on to the various sub-processes invoked by arm-none-linux-gnueabi-
gcc. In order to pass

 other options on to these processes the -W<letter> options must be used.

For bug reporting instructions, please see:

<https://support.codesourcery.com/GNUToolchain/>.

DocID028796 Rev 1 17/33

UM2003 STreamPlug Linux distribution

33

3.3 Buildroot

The buildroot (<http://buildroot.net>) is a tool to handle almost everything of an embedded
system development project: the cross-compiling toolchain, root file system generation,
kernel image compilation and bootloader compilation. The buildroot is also sufficiently
flexible that it can also be used for only one or several of these steps.

The most important buildroot features are that it:

 Can support the generation of all the main software components

 Is very easy to set up, thanks to its menuconfig, gconfig and xconfig configuration
interfaces, which are familiar to all embedded Linux developers. Building a basic
embedded Linux system with the buildroot typically takes 15 to 30 minutes.

 Supports several hundreds of packages for user space applications and libraries. X.org
stack, gtk2, Qt, DirectFB, SDL, GStreamer and a large number of network related and
system related utilities and libraries are supported.

 Supports multiple file system types for the root file system image: JFFS2, UBIFS,
tarballs, romfs, cramfs, squashfs and more.

 Can generate a uClibc cross-compilation toolchain, or reuse the existing glibc, eglibc or
uClibc cross-compilation toolchain

 Has a simple structure that makes it easy to understand and extend. It relies only on
the well known Makefile language.

The released installed buildroot is downloadable from http://buildroot.net/downloads.

The buildroot can be installed into a local folder with commands like the following:

$ cd

$ tar -xjf buildroot.tar.bz2

$ export BUILD_ROOT_DIR=~/buildroot

The buildroot has a configuration tool similar to the Linux kernel tool. There is no need to be
root in order to configure and use the buildroot.

The whole buildroot package, customized buildroot configuration files, STreamPlug devices
architecture and new packages have been provided.

To configure the buildroot to a host modified/new application for the development board, it is
necessary to follow the steps:

$ cd buildroot

$ make okl_streamplug_minimal_board_buildroot_SMI_defconfig

$ make

Customization to the build procedure of the buildroot may be done using the command:

$ make xconfig; Graphical interface

As an alternative, use:

$ make menuconfig; Pseudo-graphical interface

or:

$ make gconfig; Gnome graphical interface

STreamPlug Linux distribution UM2003

18/33 DocID028796 Rev 1

3.4 Linux package

The Linux kernel running on the STreamPlug machine is based upon the open source Linux
kernel software version 2.6.35. STreamPlug chip is based on the ARM926 architecture.

The LSP contains a copy of the Linux kernel ready to be used on a STreamPlug board as
guest OS of the OKL4 Microvisor.

Table 3 is the list of the folders added or modified within the ARM Linux kernel tree in order
to include the support of the STreamPlug machine and device drivers foreseen for this
release.

The ST STreamPlug Linux kernel supports the following device drivers:

 SMI

 UART1/UART2

 Watchdog

 Timers

 VIC

 Ethernet “Best Effort”

 USB host

 USB device Ethernet gadget

Table 3. ARM Linux kernel tree updates

Folder Status

arch/arm/mach-streamplug New

arch/arm/plat-streamplug New

arch/arm/boot/Makefile
Modified in order to support the build of an *.elf image
compressed

arch/arm/configs

Modified in order to include machine configurations

The default one is:
okl4_hybrid_platform_streamplug_devel_board_defconfig

arch/arm/Kconfig
Modified in order to add the configuration for the STreamPlug
platform

arch/arm/Makefile
Modified in order to set the Linux entry offset to 0x00048000 and
to add help comment for the *.elf image

sound/soc/streamplug New

drivers/char New vlog device driver and new device for image validation

drivers/char/c3 Modified C3 device driver

drivers/gpio New ArkGPIO device driver

drivers/media/video New image sensor device driver

drivers/misc New PCIe gadget device driver

drivers/mtd/devices New SMI device driver

drivers/net/irda New DICE FIrDA device driver

drivers/rtc New RTC device driver

DocID028796 Rev 1 19/33

UM2003 STreamPlug Linux distribution

33

 USB device zero gadget

 USB device FS gadget

 DMA

 RTC

 I2C

 SPI

 JPEG decoder

 GPIO

 JPEG encoder

 CAN

 CLCD

 PCIe RC and EP with MSI/HW interrupts

 FSMC

 FIrDA

 SATA

 C3

 SPORT audio out

 Ark GPIO

 SPORT audio in

 TS image capture

 KSP interface support

– Miscellaneous register r/w access

– Virtual interrupt dispatcher

 VLOG

 Flash controller shared access mechanism

 HPAV driver (PLC)

 Image validation device

The configuration of peripherals is implemented using boot parameters, and is not hard
coded in the Linux sources.

3.5 SDK package

See the UM2004 - “STreamPlug ST2100 SDK and quick start guide” for details.

For updates and support please consult the IoTecha website: http://www.iotecha.com/.

Working at application level (userland) UM2003

20/33 DocID028796 Rev 1

4 Working at application level (userland)

When working at the application level (the so called “userland”) developers are only
concerned with programs and libraries stored in a root file system. Bootloaders and the
kernel are assumed to be stable and stored in the Flash memory.

4.1 Workflow models

There are many approaches (workflows) to modify/extend the root file system for specific
application scenarios; the main ones are described in the following subsections.

4.1.1 Remote mounting of root file system (NFS)

If the board can be connected to the development PC through an Ethernet LAN, the most
practical solution is to leave the root file system stored on the PC and remotely mount it on
the target embedded Linux OS through the NFS protocol.

The advantages of this approach are:

 The root file system has no global size constraints. Developers can keep hundreds or
thousands of packages (programs and libraries) in a directory of their PC disk. All file
access from the Linux OS running on the board is performed over the network in
a transparent way. Files are not copied to the Flash memory, but are loaded to the DDR
RAM strictly on demand.

 A program or library can be simply built (compiled and linked) with the output file on the
PC disk. The new version is then available for execution on the board without any need
for the manual transfer or board reboot.

The drawbacks are:

 File access by NFS over the LAN can be slower than direct Flash memory access.

 There is no early assessment of which files are actually used and of the overall
required size for future migration to the Flash memory.

To remotely mount the root file system, configure and start the NFS server on the Linux PC.

Assuming the NFS server functionality is already provided by the host, the only
configuration is an entry for the target root directory to the /etc/exports file.

To check the NFS availability and start the services, use the following commands (from the
user root account):

rpm -q nfs-utils

DocID028796 Rev 1 21/33

UM2003 Working at application level (userland)

33

After modifying the /etc/exports file, make sure the NFS system is notified about the
change, for example by running the command:

service portmap start

Starting portmap: [OK]

followed by the command:

service nfs start

Starting NFS services: [OK]

Starting NFS quotas: [OK]

Starting NFS daemon: [OK]

Starting NFS mountd: [OK]

Each time this file is changed while the NFS service is already started, it either has to be
restarted or the NFS daemon must be forced to reload the new configuration:

exportfs -a

4.1.2 Incremental changes to Flash file system

If the root file system is stored on the Flash memory, it is possible to transfer files from the
PC to the target board in the following ways:

 Transfer by USB pen drive

 Transfer by LAN (TFTP)

4.1.3 Flash file system full replacement

To replace the entire file system on the Flash memory:

 Rewrite the root file system partition using the access to the SPI connector.

 Rewrite the root file system from Linux by overwriting the mtdblock of the file system.

4.2 Command line cross-development

The most important item concerning host packages is the cross-development toolchain (the
set of programs running on a host PC but targeting ARM-specific code output) that has
support for:

 Cross-compilation of the source code to generate a native object code for the ARM
CPU cores integrated into the STreamPlug SoC

 Cross-linking of the ARM object code to generate executable programs or (dynamically
linkable) shared libraries

 Managing object code archives, incremental rebuilding and other auxiliary tasks.

Working at application level (userland) UM2003

22/33 DocID028796 Rev 1

4.3 Rebuilding the root filesystem

Once the application is working correctly, it is possible to add it to the buildroot build
procedure in order to rebuild the root filesystem and then to make it available to the user
permanently at every power-on of the target board.

The binary file of the application and its supporting libraries and data files must be copied in
the template filesystem defined within the buildroot tool. In case of the STreamPlug the
folder to place new and/or update applications is in the folder:

<buildroot>/board/okl_streamplug/.

There are two configuration files under the folder “configs” with the corresponding name:

 okl_streamplug_devel_board_buildroot_defconfig, to be used on the
Flash memory of 16 MB or greater

 okl_streamplug_minimal_buildroot_defconfig, to be used on small
partitions.

To rebuild the filesystem, it is possible to use the following commands:

$ make okl_streamplug_<fs_type>_buildroot_<SMI|NAND>_defconfig

$ make

and then perform the following steps:

1. Set target configuration for the ARM926T architecture

2. Set build options

3. Include the toolchain package that was just installed

4. Build/install selected target packages

5. Recover the skeleton of the filesystem, the devices table and the inittab customized
for the STreamPlug from <builroot>/board/okl_streamplug.

At the end of build the filesystem image is created under the folder:
<buildroot>/output/images. The *.ubi image can be burned in the target hardware's
Flash.

Note: At startup the Linux kernel mounts the filesystem from the Flash bank 1 containing the root
filesystem.

In the main filesystem are included:

 The kernel modules (c3, FSMC, USB device gadget, dmatest, etc.)

 The user space examples

 alsa-utils and alsa-lib

 iperf

 fbv package (for LCD controller)

 irda-utils

 mtd tools

 can-utils and ip-route2

 ntfs-3g package (for mounting NTFS SATA drive)

 Network packages (bridge-utils, etc.)

 gpm package (mouse support)

DocID028796 Rev 1 23/33

UM2003 Working with customized kernels

33

5 Working with customized kernels

When working with STreamPlug evaluation boards, modifications to the supplied Linux
kernel are only needed when:

 Changing kernel configuration, by enabling or disabling some options or features

 Developing new drivers on the top of existing ones, in order to interface peripherals
that can be added through custom add-on boards connected to STreamPlug evaluation
boards (where applicable)

 Rewriting partially or totally some existing reference device drivers (for example, for
further optimization or special needs)

 Developing custom kernel modules

The use of kernel level software with hardware platforms other that STreamPlug evaluation
boards is not discussed in this section.

When working at the kernel level, developers are concerned with the kernel source code
tree from which a single binary image file must be generated by “rebuilding” the kernel.

The main tasks to be performed are:

 Kernel reconfiguration and rebuild

 Firmware image rebuild

 Firmware image loading and execution on a target evaluation board

For general information about the Linux kernel, please refer to public Linux documentation.

In order to build each single Linux package, the following environment variables need to be
set or passed to make commands:

$ export CROSS_COMPILE = arm-none-linux-gnueabi-

$ export PATH = $PATH:/opt/streamplug-toolchain/bin

$ export ARCH = arm

5.1 Reconfiguring and building Linux kernel

To rebuild the Linux kernel it is necessary to:

1. Install STreamPlug SDK

2. Setup the Linux kernel build environment

3. Configure and build the Linux kernel (vmlinux)

4. Pack the Linux kernel into an upgrade image

5. Updated the root filesystem with the Linux kernel modules.

5.1.1 Install STreamPlug SDK

See the UM2004 - “STreamPlug ST2100 SDK and quick start guide” for details.

Working with customized kernels UM2003

24/33 DocID028796 Rev 1

5.1.2 Setup Linux kernel build environment

Before building the Linux kernel patched with OKL's support for the OKL4 Microvisor, it is
necessary to locate a library folder where the build procedure can find “include files” and the
library specific to support the OKL4 Microvisor.

The library folder is delivered within the LSP package in the SDK package on the
okl4sdk/stage directory. Then the following Linux environment variable is used by the Linux
kernel build procedure to locate the library folder

$ export OKL4_PROG_ENV= ${STP_SDK_DIR}/okl4sdk/stage

5.1.3 Configure and build Linux kernel

After the source code for the STreamPlug Linux has been prepared, it is necessary to
configure it in order to activate the right functionalities for the corresponding type of the
STreamPlug board (either debug or development).

Under the folder arch/arm/configs are available configuration files for each supported
configuration:

 Full configuration (paravirtualised kernel)

– okl4_hybrid_platform_streamplug_devel_board_defconfig

 Native Linux configuration

– streamplug_devel_board_defconfig

The commands used to configure the kernel are:

$ make distclean

$ make okl4_hybrid_platform_streamplug_devel_board_defconfig

A finer grained configuration can be obtained by using the default tool provided by the Linux
kernel using:

$ make menuconfig

or

$ make xconfig

or

$ make gconfig

Once the desired configuration has been applied to the Linux kernel, it is possible to build
the Linux ELF with the commands:

 full configuration

$ make vmlinux

 native configuration

$ make elfImage

Note that it assumes that the environment variable ARCH is set to arm, otherwise it is
possible to use the following command:

$ make ARCH=arm vmlinux

If something went wrong it is possible to make the changes and rebuild with the command:

$ make vmlinux

DocID028796 Rev 1 25/33

UM2003 Working with customized kernels

33

Sometime it is necessary to force the rebuild of everything, and then in such case it is better
to execute the following command before to rebuild the kernel:

$ make clean

To change the board the kernel is built for it is necessary to delete everything using the
following command:

$ make distclean

Once everything is built correctly the resulting Linux kernel file vmlinux can be found in the
root folder of the kernel tree, while the file elfImage is in the folder:

<linux src>/arch/arm/boot.

5.1.4 Pack Linux kernel into boot image

The building of the firmware image is slightly different according to the configuration: full or
native.

Full configuration

Once the Linux kernel with the OKL4 Microvisor support is ready, it is possible to pack it into
an *.elf file together with the OKL4 Microvisor and the system software and to generate
a new firmware image.

This can be done using the generation scripts provided in the system SDK. (See Section 5.2
on page 29 for details).

Note that due to the presence of mutual exclusive peripherals and multi-mode peripherals
within the Linux kernel it is necessary to specify a configuration within the cmdline ATAG.

Table 4 specifies the supported ATAG to implement the pad muxing and console options:

 .

Table 4. XML command line options for padmux configuration

Peripherals Values

CLCD

– clcd=on:24bpp, if CLCD is enabled with 24 bpp

– clcd=on:18bpp, if CLCD is enabled with 18 bpp

– clcd=off,if CLCD is disabled

PCIe bridge

– pcie=on:rc:1, if PCIe is configured as a root complex with the MiPHY™ clock generated by the
pll2 input clock

– pcie=on:rc:2, if PCIe is configured as a root complex with the MiPHY clock generated by the qfs4
input clock

– pcie=on:rc:3, if PCIe is configured as a root complex with the MiPHY clock generated by the
external clock

– pcie=on:ep:1, if PCIe is configured as an endpoint with the MiPHY clock generated by the pll2
input clock

– pcie=on:ep:2, if PCIe is configured as an endpoint with the MiPHY clock generated by the qfs4
input clock

– pcie=on:ep:3, if PCIe is configured as an endpoint with the MiPHY clock generated by the
external clock

– pcie=off, if PCIe is disabled

USB
controller

– usb=on:device, if the USB is activated as a gadget

– usb=on:host, if the USB is activated as a host

– usb=off if the USB is not configured

Working with customized kernels UM2003

26/33 DocID028796 Rev 1

Ethernet
network

controller

– eth=<on, off, rtos>:<primary, secondary>:<1,…,3>:<Mac Address>

Some examples:

– eth=on:primary:1:00:80:40:AE:20:98, if the device driver is configured on low GPIOs groups, with
the pll2 input clock as the PHY clock root, and with a default MAC address

– eth=on:secondary:2:00:80:40:AE:20:98, if the device driver is configured on high GPIOs groups,
with the qfs4 input clock as the PHY clock root, and with a default MAC address

– eth=on:primary:3:00:80:40:AE:20:98, if the device driver is configured on low GPIOs groups, with
the external clock as the PHY clock root, and with a default MAC address

– eth=off, if Ethernet is disabled

– eth=rtos:primary if the device driver is configured on high GPIOs groups and assigned to system
FW

I2C controller
– i2c=on, if the I2C interface is enabled and configured

– i2c=off, if the I2C interface is disabled

Synchronous
serial port

-ssp=on:<24,…,39>, if the SPI interface is enabled and configured with a fixed CHIP-SELECT line

ssp=off, if the SPI interface is disabled

The default value for the number of the GPIO used by the OK Linux to reserve the SPI CHIP-
SELECT line is 39. For STreamPLug OK Linux GPIOs the numbers reserved start from 24 to 39.

UART port 1

– uart1=on:primary, UART1 enabled on the GPIO primary group

– uart1=on:secondary, UART1 enabled on the GPIO secondary group

– uart1=rtos:primary, UART1 enabled on the primary group by system FW

UART port 2

– uart2=on:primary, UART2 enabled on the GPIO primary group

– uart2=on:secondary, UART2 enabled on the GPIO secondary group

– uart2=rtos:secondary, UART2 enabled on the secondary group by system FW

CAN network
controller

– can=on:primary, if the device driver is configured on the low GPIOs group

– can=on:secondary, if the device driver is configured on the high GPIOs group

– can=off, if the device driver is disabled

FIrDA

– firda=on:1, if it supports only the SIR mode

– firda=on:2, if it supports only SIR and MIR modes

– firda=on:3, if it supports all SIR, MIR and FIR modes

– firda=off, if the device driver is disabled

FSMC

– fsmc=on:<nand,sram,nor><0,1>

Some examples:

– fsmc=on:nand0, if the FSMC controller is enabled and configured for NAND Flash memory
devices with 8-bit data width

– fsmc=on:nand1, if the FSMC controller is enabled and configured for NAND Flash memory
devices with 16-bit data width

– fsmc=on:nor1, if the FSMC controller is enabled and configured for parallel NOR Flash memory
devices with 16-bit data width

– fsmc=off, if the FSMC is disabled

Note: By default, the system firmware performs the setup and adds the option
“initdone” when passing the ATAG to the Linux if running in the full
configuration.

Table 4. XML command line options for padmux configuration (continued)

Peripherals Values

DocID028796 Rev 1 27/33

UM2003 Working with customized kernels

33

Native configuration

If the native Linux configuration is chosen, the Linux kernel image to be used is the binary
“elfImage” that provides the physical entry point, while vmlinux still has the virtual one.

In order to generate the proper cmdline ATAG (see Table 4) a small loader has to be
compiled: smartboot. Then, the two *.elf images of the Linux and the loader have to be
packed together, this can be done using the generation scripts provided in the system SDK
and the build example that comes with the smartboot. (See Section 5.2 for details).

SATA

– sata=on:1, if the SATA is enabled and configured with the MiPHY clock generated by the pll2
input clock

– sata=on:2, if the SATA is enabled and with the MiPHY clock generated by the qfs4 input clock

– sata=on:3, if the SATA is enabled and with the MiPHY clock generated by the external clock

– sata=off, if the SATA is disabled

SPORT
– sport=on, if the SPORT is enabled

– sport=off, if the SPORT is disabled

TS
– ts=on, if the TS is enabled

– ts=off, if the TS is disabled

AS (ARK)
GPIO

– ark_gpio=<on,off>:<nnnnnn, n=0,1,2>

Some examples:

– ark_gpio=on:110000, if the ARK_GPIO device driver is enabled with only the GPIOs group A and
B enabled

– ark_gpio=on:011221, if the ARK_GPIO device driver is enabled with ARK GPIOs groups A
disabled, B enabled, C enabled on GPIO_GROUP 04, D enabled on GPIO_GROUP 10, E
enabled on GPIO_GROUP 18 and the group F enabled on GPIO_GROUP 13

– ark_gpio=off, if the ARK_GPIO is disabled

GP (ARM)
GPIO

– arm_gpio1=on, if the ARM GPIO group 1 is enabled

– arm_gpio2=on, if the ARM GPIO group 2 is enabled

For the native Linux, they should be always on and they are set by default cmdline.

Linux
CONSOLE

– console=none if the Linux console is suppressed

– console=<tty device>,<tty configuration>

– console=ttyAMA0, 115200n8 , if the Linux console on ttyAMA0 with configuration as in
Section 2.1: Host PC requirements on page 5 (default)

– console=ttyAMA1, 115200n8 , if the Linux console on ttyAMA1 (valid only if both UARTs to Linux)
with configuration as in Section 2.1.

SYSTEM
(RTOS)

CONSOLE

– rtosconsole=<uart port>, <uart configuration>

– rtosconsole=uart1, 115200n81

– rtosconsole=uart2, 115200n81 (default)

If not present no console is available on UARTs.

In this case, the stpconsole application example can be used to access the RTOS console from the
Linux.

Table 4. XML command line options for padmux configuration (continued)

Peripherals Values

Working with customized kernels UM2003

28/33 DocID028796 Rev 1

In order to generate the proper ATAGs, the smartboot build supports several make
variables. The complete list of these options can be displayed by typing the following
command from the folder of the smartboot sources:

$ make help

Usage: make OPTION=VALUE...

Options:

COMMAND_LINE: the command line passed to linux kernel

SDRAM_SIZE: specify the size of installed DDR module

CLCD_MODE: select padmux mode for clcd (0 to disable, 1 to enable
24bpp mode; 2 to enable 18 bpp mode)

SATA_MODE: select padmux mode for sata (0 to disable, 1 to enable)

SATA_CLK_OPT: select miphy clock source for sata (1 for PLL2, 2 for QFS4,
3 for External)

PCIE_MODE: select padmux mode for pcie (0 to disable, 1 for mode 'rc',
2 for mode 'ep')

PCIE_CLK_OPT: select miphy clock source for pcie (1 for 'PLL2', 2 for
'QFS4', 3 for 'External')

USB_MODE: select padmux mode for usb (0 to disable, 1 for mode
'device', 2 for mode 'host')

ETH_MODE: select padmux mode for eth (0 to disable, 1 for mode
'primary', 2 for mode 'secondary')

ETH_MODE_OPTIONS: MAC address of adapter

ETH_CLK_OPT: select phy clock source for eth (1 for 'PLL2', 2 for
'QFS4', 3 for 'External')

I2C_MODE: select padmux mode for i2c (0 to disable, 1 to enable)

SSP_MODE: select padmux mode for ssp (0 to disable, 1 to enable)

SSP_MODE_OPTIONS: the number [24-39] of GPIO pin used as Chip Select by ssp

UART1_MODE: select padmux mode for uart1 (0 to disable, 1 for mode
'primary', 2 for mode 'secondary')

UART2_MODE: select padmux mode for uart2 (0 to disable, 1 for mode
'primary', 2 for mode 'secondary')

CAN_MODE: select padmux mode for can (0 to disable, 1 for mode
'primary', 2 for mode 'secondary')

FIRDA_MODE: select padmux mode for firda (0 to disable, 1 to enable)

FIRDA_MODE_OPTIONS: set firda mode option: (0 for 'SIR only', 1 for 'SIR
and MIR', 2 for 'SIR and FIR', 3 for 'SIR, MIR and FIR')

FSMC_MODE: select padmux mode for fsmc (0 to disable, 1 for mode
'nor', 2 for mode 'sram', 3 for mode 'nand')

FSMC_MODE_OPTIONS: set fsmc memory data width: (0 for '8 bits', 1 for
'16 bits')

SPORT_MODE: select padmux mode for sport (0 to disable, 1 to
enable)

TS_MODE: select padmux mode for ts (0 to disable, 1 to enable)

ARK_GPIO_MODE: select padmux mode for ark gpio (0 to disable, 1 to
enable)

ARK_GPIO_A_MODE_OPTIONS: select ark gpio group a (0 to disable, 1 to
enable)

ARK_GPIO_B_MODE_OPTIONS: select ark gpio group b (0 to disable, 1 to
enable)

DocID028796 Rev 1 29/33

UM2003 Working with customized kernels

33

ARK_GPIO_C_MODE_OPTIONS: select ark gpio group c (0 to disable, 1 muxed
on gpio04, 2 muxed on gpio09)

ARK_GPIO_D_MODE_OPTIONS: select ark gpio group d (0 to disable, 1 muxed
on gpio05, 2 muxed on gpio10)

ARK_GPIO_E_MODE_OPTIONS: select ark gpio group e (0 to disable, 1 muxed
on gpio12, 2 muxed on gpio18)

ARK_GPIO_F_MODE_OPTIONS: select ark gpio group f (0 to disable, 1 muxed
on gpio13, 2 muxed on gpio19)

It's important to notice that the mtd partitions table has to be provided via cmdline.

After that, the two binaries can be packed into a firmware image loadable via UART. A build
example is provided to support this operation. It is based on a Makefile. The following steps
are needed to run the example:

 Define the environment variable: STP_SDK_DIR =<path to the SDK>

 Copy both binaries in the “src” folder and create the destination folders: “work” and
“images”

 Select the proper DDR and debug configuration by modifying the Makefile or providing
the proper variables DDR_CONFIG and DBG_CONFIG when invoking “make images”.

For a detailed reference of DDR configurations, image generation and loading tools please
see the UM2004 - “STreamPlug ST2100 SDK and quick start guide” user manual.

5.1.5 Updated root filesystem with Linux kernel modules

The modules can be built using the command:

$ make modules

The Linux modules can be installed in the template filesystem of the buildroot using the
following command:

$ make INSTALL_MOD_PATH=<path_to_buildroot>/package/customize/source

modules_install

Then the root filesystem must be rebuilt and reflashed on the STreamPlug board.

Building modules from wireless backport

In order to build and install the kernel modules from the wireless backport the following
environment variables must be defined:

$ export KLIB_BUILD= <path_to_linux_src>

$ export KLIB = <path_to_buildroot>/package/customize/source

After that, the commands to be used to configure, build and install the backport are:

$ make defconfig-<selected configuration>

$ make

$ make install

5.2 Building and loading firmware image

Several steps are needed to build a new image that can be loaded on the Flash. This guide
explains how to build the Linux kernel (vmlinux file), and the root filesystem. See the
UM2004 - “STreamPlug ST2100 SDK and quick start guide” user manual for more
information and details on building images and loading firmware.

Glossary UM2003

30/33 DocID028796 Rev 1

6 Glossary

The list of abbreviations used in this STreamPlug getting started guide is listed in Table 5.

Table 5. List of abbreviations

Term Definition

AMBA Advanced microcontroller bus architecture

API Application programming interface

ARM Advanced RISC machine

AVB Audio Video Bridging

BSP Board support package

C3 Channel controller coprocessor

CAN Controller area network

CPU Central processing unit

DDR Double data rate (RAM)

DDR Double data rate SDRAM

DHCP Dynamic host configuration protocol

DMA Direct memory access

DWC Designware cores

EEPROM Electrically erasable programmable read only memory

EP PCIe endpoint device

FAT File allocation table

FS Filesystem

FSMC Flexible static memory controller

FTP File transfer protocol

FW Firmware

GCC GNU compiler collection

GPIO General purpose input/output signal

GPL General public license (GNU)

I2C Inter-integrated circuit

I2S Inter-IC sound

IDE Integrated development environment

IP Internet protocol

IPs Intellectual Properties

JPEG Joint photographic experts group

JTAG Joint test action group

KSP Kernel support packages provided by OKL Microvisor

DocID028796 Rev 1 31/33

UM2003 Glossary

33

LAN Local area network

LGPL Lesser GPL

LSP Linux support package

MAC Media access control

MFIO Multifunction input/output signal

MTD Memory technology device

NFS Network filesystem

OKL Open Kernel Lab

OOB Out-of-band

OS Operating system

PC Personal computer

PCIe Peripheral component interconnect express

RAM Random access memory

RC PCIe root complex device

RevMII Reverse media independent interface

RPM RPM package manager

RTC Real-time clock

SATA Serial advanced technology attachment

SCP Secure copy Linux command

SDK Software development kit

SDRAM Synchronous dynamic random access memory

SMI Serial Management Interface

SoC System-on-chip

SPI Serial Peripheral Interface bus

SPORT Serial port

SRAM Static RAM

TAG Tagged List

TFTP Trivial file transfer protocol

UART Universal asynchronous receiver transmitter

USB Universal serial bus

VIC Vectored interrupt controller

Table 5. List of abbreviations (continued)

Term Definition

Revision history UM2003

32/33 DocID028796 Rev 1

7 Revision history

Table 6. Document revision history

Date Revision Changes

02-Feb-2016 1 Initial release.

DocID028796 Rev 1 33/33

UM2003

33

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 About this manual
	2 Working with pre-flashed software
	2.1 Host PC requirements
	2.1.1 Windows PC
	Figure 1. Tera Term configuration for serial port (Windows PC)

	2.1.2 Linux PC
	Figure 2. Minicom serial port configuration (Linux PC)
	Figure 3. GtkTerm screen
	Figure 4. CuteCom screen

	2.2 Overview of Flash contents and structure
	2.3 Booting up to Linux prompt
	2.4 Using USB pen drive
	2.5 Using SATA hard disk
	2.6 Connecting evaluation board to LAN
	Table 1. Ethernet mapping

	3 STreamPlug Linux distribution
	3.1 Overview
	3.2 Toolchain
	Table 2. List of main toolchain packages

	3.3 Buildroot
	3.4 Linux package
	Table 3. ARM Linux kernel tree updates

	3.5 SDK package

	4 Working at application level (userland)
	4.1 Workflow models
	4.1.1 Remote mounting of root file system (NFS)
	4.1.2 Incremental changes to Flash file system
	4.1.3 Flash file system full replacement

	4.2 Command line cross-development
	4.3 Rebuilding the root filesystem

	5 Working with customized kernels
	5.1 Reconfiguring and building Linux kernel
	5.1.1 Install STreamPlug SDK
	5.1.2 Setup Linux kernel build environment
	5.1.3 Configure and build Linux kernel
	5.1.4 Pack Linux kernel into boot image
	Table 4. XML command line options for padmux configuration

	5.1.5 Updated root filesystem with Linux kernel modules

	5.2 Building and loading firmware image

	6 Glossary
	Table 5. List of abbreviations

	7 Revision history
	Table 6. Document revision history

