
April 2016 DocID028822 Rev 1 1/32

32

UM2005
User manual

General purpose GUI r2.0 for STLUX™ and STNRG digital
controllers

Introduction

This user manual provides complete information for software developers about the
complete STLUX and STNRG general purpose graphic user interface (GPGUI), its use and
its integration into applications.

The STLUX/STNRG general purpose graphic user interface is a powerful tool that helps
debugging applications making easier for the user to monitor peripherals and SMEDs
configuration registers. It also makes more effective and simple interacting with applications
tuning and modifying parameters during the testing activity.

The GPGUI can be used also as a powerful tool allowing to connect an STLUX and STNRG
device to the STLUX SMED configurator making thus easy to program your device for a fast
prototyping proof of the concept and application fine tuning.

The STLUX family of controllers is a part of the STMicroelectronics® digital devices tailored
for lighting applications. The STLUX controllers have been successfully integrated in a wide
range of architectures and applications, starting from simple buck converters for driving
multiple LED strings, boost for power factor corrections, half-bridge resonant converters for
high power dimmable LED strings and up to full-bridge controllers for HID lamp ballasts. The
STLUX natively supports the DALI via the internal DALI communication module (DCM). The
DALI is a serial communication standard used in the lighting industry.

The STNRG devices are a part of the STNRG family of STMicroelectronics digital devices
designed for advanced power conversion applications. The STNRG improves the design of
the STLUX family to support industrial power conversion applications such as the PFC +
LLC, interleaved LC DC-DC, interleaved PFC for smart power supplies as well as the full-
bridge for pilot line drivers for electric vehicles.

The heart of the STLUX (and consequently the STNRG where not differently specified) is
the SMED (“State Machine, Event Driven”) technology which allows the device to operate
several independently configurable PWM clocks with an up to 1.3 ns resolution. An SMED is
a powerful autonomous state machine which is programmed to react to both external and
internal events and may evolve without any software intervention. The SMED even reaction
time can be as low as 10 ns, giving the STLUX the ability of operating in time critical
applications.

The SMED devices are configured and programmed via the STLUX internal low power
microcontroller (STM8). This user manual describes the whole design flow to easily use the
STLUX385A technology.

www.st.com

http://www.st.com

Contents UM2005

2/32 DocID028822 Rev 1

Contents

1 Reference documents . 5

2 Acronyms . 6

3 General purpose graphic user interface components 8

4 General purpose graphic user interface software 9

4.1 Graphic user interface . 9

4.1.1 General purpose GUI menu . 10

4.1.2 Register Detail folder . 11

4.1.3 General purpose GUI log window . 13

4.1.4 Register Map folder . 13

4.2 XML files structure . 14

4.2.1 Register definition file . 14

4.2.2 Errors definition file . 16

4.2.3 Parameters definition file . 17

4.3 General purpose XML File Editor . 19

5 General purpose graphic user interface firmware 24

5.1 Using the general purpose GUI firmware . 24

5.2 General purpose GUI firmware integration . 25

5.2.1 General purpose GUI parametric firmware configuration 25

5.2.2 Option bytes . 25

5.2.3 UART channel configuration . 26

5.3 General purpose parser API . 27

5.4 General purpose GUI FW upload . 27

6 General purpose graphic user interface serial protocol 28

7 Revision history . 31

DocID028822 Rev 1 3/32

UM2005 List of tables

32

List of tables

Table 1. List of acronyms . 6
Table 2. UART line selection option bytes . 26
Table 3. General purpose parser functions . 27
Table 4. 1 byte length messages . 28
Table 5. 3 bytes length messages . 29
Table 6. 4 bytes length messages . 29
Table 7. 5 bytes length messages . 29
Table 8. Document revision history . 31

List of figures UM2005

4/32 DocID028822 Rev 1

List of figures

Figure 1. General purpose GUI window. 9
Figure 2. General purpose GUI menu . 10
Figure 3. General purpose GUI menu - tools options . 10
Figure 4. General purpose GUI Register Detail folder . 11
Figure 5. Register Detail input format . 12
Figure 6. Modifying Parameters/Registers value . 12
Figure 7. GUI log window. 13
Figure 8. Register Map folder . 13
Figure 9. XML Register definition file header . 14
Figure 10. XML Register definition file Memory structure and registers declaration 15
Figure 11. XML Registers definition file Fields declaration . 16
Figure 12. XML Errors definition file header . 16
Figure 13. XML Errors definition file declaration . 17
Figure 14. XML Parameters definition file header . 17
Figure 15. XML Parameters definition file Memory structure and parameters declaration 18
Figure 16. XML Parameters definition file Fields declaration. 18
Figure 17. General purpose XML File Editor window . 19
Figure 18. How to add an entry in the registers/parameters description . 20
Figure 19. How to add a field in the fields description . 21
Figure 20. Saving your component definition to an XML file . 22
Figure 21. Creating an XML Errors definition file . 22
Figure 22. Editing an XML Error definition file . 23
Figure 23. General purpose GUI firmware structure . 24
Figure 24. GUI serial protocol messages length . 28
Figure 25. Typical serial communication log among GUI and application . 30

DocID028822 Rev 1 5/32

UM2005 Reference documents

32

1 Reference documents

 For hardware information on the STLUX and STNRG controllers and product specific
SMED configuration, please refer to the STLUX and STNRG product datasheets and
reference manual (RM0380).

 For information about the debug and SWIM (single-wire interface module) refer to the
“STM8 SWIM communication protocol and debug module” user manual (UM0470).

 For information on the STM8 core and assembler instruction please refer to the “STM8
CPU programming manual” (PM0044).

 For information on the SMED configurator please refer to the UM1981 “SMED
configurator v2.0 for STLUX™ and STNRG digital controllers” user manual.

 For information on the STLUX peripheral library please refer to the UM2001 “Standard
peripheral library for STLUX™ and STNRG digital controllers” user manual.

 For information on the STEVAL-ILL075V1 or STEVAL-ISA164V1 evaluation boards
please refer to the product datasheet.

Acronyms UM2005

6/32 DocID028822 Rev 1

2 Acronyms

In Table 1 is a list of acronyms used in this document:

Table 1. List of acronyms

Acronym Description

ACU Analog comparator unit

ADC Analog-to-digital converter

ATM Auxiliary timer

AWU Auto-wakeup unit

BL Bootloader - used to load the user program without the emulator

CCO Configurable clock output

CKC Clock control unit

CKM Clock master

CPU Central processing unit

CSS Clock security system

DAC Digital-to-analog converter

DALI Digital addressable lighting interface

ECC Error Correction Code

FSM Finite state machine

FW Firmware loaded and running on the CPU

GPGUI General purpose graphic user interface

GPIO General purpose input output

GUI Graphic user interface

HSE High-speed external crystal - ceramic resonator

HSI High-speed internal RC oscillator

I2C Inter-integrated circuit interface

IAP In-application programming

ICP In-circuit programming

ITC Interrupt controller

IWDG Independent watchdog

LIN Local Interconnect Network

LSI Low-speed internal RC oscillator

MCU Microprocessor central unit

MSC Miscellaneous

PM Power management

RFU Reserved for future use

DocID028822 Rev 1 7/32

UM2005 Acronyms

32

ROP Read-out protection

RST Reset control unit

RTC Real-time clock

SMED State machine, event driven

STMR System timer

SW Software, is the firmware loaded and running on the CPU (synonymous of FW)

SWI Clock switch interrupt

SWIM Single-wire interface module

UART Universal asynchronous receiver/transmitter

WWDG Window watchdog

Table 1. List of acronyms (continued)

Acronym Description

General purpose graphic user interface components UM2005

8/32 DocID028822 Rev 1

3 General purpose graphic user interface components

The STLUX general purpose graphic user interface is composed of two parts: the GPGUI
software running on the PC host and the GPGUI firmware to be integrated in applications
running on the STLUX target platform. The two parts communicate via a serial cable thanks
to a proprietary communication protocol that will be specified later in Section 6 on page 28.

This document describes the functionality of the GPGUI software and how to easily
integrate the GPGUI firmware in your application. The GPGUI firmware technology has
been developed basing on the STLUX peripherals library.

The purpose of this GUI is to provide a flexible standard interface for applications based
on the STLUX and STNRG devices. Moreover the GUI represents a resource dedicated to
application developers aiming to develop applications which firmware integrates a fast and
effective interface based on serial port communication. Last but not least, the general
purpose GUI has been conceived as a powerful tool to be mapped on the STEVAL-
ILL075V1 or STEVAL-ISA164V1 evaluation boards to allow the fast prototyping, debug and
parameters configuration of proof of concept applications.

DocID028822 Rev 1 9/32

UM2005 General purpose graphic user interface software

32

4 General purpose graphic user interface software

The aim of this paragraph is to give you a brief overview of the STLUX general purpose
graphic user interface software. This interface is meant to run on a host PC connected via
a serial cable to an STLUX target running the GPGUI firmware integrated in a generic
application. The general purpose GUI tool suite is composed of two executable applications,
the general purpose GUI application and the general purpose XML File Editor described
here below in detail.

4.1 Graphic user interface

The general purpose graphic user interface is a helpful application independent and
platform independent tool aimed first of all for runtime application debug and also for on the
fly application parameters configuration and fine tuning. As a general purpose interface, it
can blind connect via the serial connection to any STLUX based platform running the
general purpose GUI firmware and automatically retrieve the basic information from it
together with the generic application parameters made available by the application in
“parameters configuration” mode which is the standard safe mode. Launching the
GPGui.exe will open the GUI appearing as shown in Figure 1.

Figure 1. General purpose GUI window

General purpose graphic user interface software UM2005

10/32 DocID028822 Rev 1

Once you connected your computer with a target platform via a serial cable, you are ready
to connect the general purpose GUI with it. To do this you simply have to chose in the dialog
box the right port and push the [connect] button. Once the connection is established, the
GUI starts sending the information request to the target about the Product ID and Revision
number to be able to look for XML files associated to the current application running on the
target.

The GUI starts as the default mode in the parameters configuration mode asking for the
number of parameters to be displayed and their name. In case a “Parameters Definition”
XML file is associated, it shows all the information associated with the parameters and the
fields format stored in the XML file. If a “Register Definition” XML file is found, the GUI
switches to the debug mode also giving direct access to all the listed STLUX registers
through their physical addresses.

4.1.1 General purpose GUI menu

The general purpose GUI menu is composed of two options. The first option “File” allows to
connect the GUI to a device by choosing an I/O port. The same operation can be easily
done by pushing the Connect/Disconnect button on the upper right of the frame window.

Figure 2. General purpose GUI menu

The second choice available on the menu is the “Tool” option. This window allows to
configure some general purpose GUI parameters like the source folder where to look for the
*.xml configuration files. Here it is also possible to set the baud rate configuration for the
serial port connection. Aside when specifically specified, the default general purpose GUI
baud rate is set to 112500 bps.

Figure 3. General purpose GUI menu - tools options

DocID028822 Rev 1 11/32

UM2005 General purpose graphic user interface software

32

4.1.2 Register Detail folder

During this startup phase, all the parameters and registers values are loaded from the target
and displayed in the “Register Detail” folder as shown in Figure 4.

Figure 4. General purpose GUI Register Detail folder

Digging deeper into the Register Detail folder it is possible to see how each application - the
Parameter or STLUX Register is shown with a description on the top, its index/address and
its bits field. Please note that for each field, it is possible to highlight the read-write access
parts in red while keeping the read-only parts in cyan.

General purpose graphic user interface software UM2005

12/32 DocID028822 Rev 1

Figure 5. Register Detail input format

For example the STLUX SMEDs Unlock Register MSC_SMULOCK uses only 6 bits while
the two MSB are read-only and the maximum valid input value is fixed consequently. All
these rules of course can be specified in the XML Register definition file as explained in
Section 4.2.

In the Register Detail folder you can set values for all the parameters and registers, restore
them to their previous value or even reset them to their default value if defined. Every time
you will modify a value, the correspondent field will turn to red on the left side list as shown
in Figure 6.

Figure 6. Modifying Parameters/Registers value

DocID028822 Rev 1 13/32

UM2005 General purpose graphic user interface software

32

All the modified values though, won't be sent to the target application to be applied until the
[Push] button is pressed. Clicking on the push button translates into a series of commands
sent via a serial cable to apply all the modifications in the GUI to the target.

At the same way also a [Store] button is available. A store command sent to the target will
enable the application to store all the meaningful Parameters/Registers into the EEPROM in
order to be able to restore them at the next power-up if enabled. To do so, a RESTORE
generic parameter has been added which takes the possible ENABLE/DISABLE entries.

4.1.3 General purpose GUI log window

At the end of a push or any other operation, you will be able to see in the lower part of the
Register Map folder, the log history of all the commands followed by the result of the
operations as you can see in Figure 7.

Figure 7. GUI log window

Of course the general purpose GUI log window keeps the track of all the commands sent via
the serial port and all the information received by the application. In every moment is it
possible also to clear the log window history pushing the “Clear Trace” button. As well it's
possible to save all the history to an ASCII *.log file pushing the “Save Trace” button. This is
useful to keep the track of the operations done during the debug and specific testing
procedures.

4.1.4 Register Map folder

Figure 8. Register Map folder

General purpose graphic user interface software UM2005

14/32 DocID028822 Rev 1

The “Register Map” folder is divided into two sections. In the previous paragraph we already
introduced the lower section which is the GUI log window, so now let's focus on the upper
section that's specifically meant as the true Register Map. As shown in all the memory with
both Parameters and Registers is represented here as a table. Each row represents a basic
memory element and each column represents its properties. For Parameters the Address is
associated with their numeric index while for STLUX Registers the Address is intended as
the physical address. Also here for each element it is possible to access it through [Read]
and [Write] buttons that will be enabled according to the previously defined register access
properties. Please note that this window is meant to give a global representation of the
application memory and checks and formats on input/output values don't apply here,
therefore it is preferable to modify values in the Register Detail folder.

4.2 XML files structure

As an integral part of the general purpose GUI, a couple of XML format files must be
provided to store information about both Registers and Parameters. They also contain
information about the data meaning, data format and checks, so to make more effective and
handy the data input and helping to keep simple the complexity of the firmware on the target
side.

4.2.1 Register definition file

The Register definition file is mandatory only in the debug mode and makes accessible the
STLUX internal registers through their physical address. If the Registers definition file is
missing, the GUI skips the STLUX registers section and switches to “Generic Parameters
Access” mode.

XML Register definition file header

The Registers definition XML file is divided into sections. The first section is the “Header”
providing identification information about the specific application to which the XML file is
related. In particular when opening a connection with the target device, the general purpose
GUI sends a request for the Product ID and the Revision of the application firmware running
so to be able to find, among several XML files, the correct ones suited for the current device.
The specified address mode for the Registers is set to debug, that means addresses are
specified as physical addresses. They can be expressed both in the hex and dec format.

Figure 9. XML Register definition file header

DocID028822 Rev 1 15/32

UM2005 General purpose graphic user interface software

32

XML Register definition file body

The second section of the Registers definition XML file is the body included within the
<Memory> </Memory> tags. Inside this body there can be two kinds of declarations. First
there are the registers size and address declaration which specifies the memory basic
structure. Then it is followed by the registers declarations included in the <Register>
</Register> stating for each register a description, the physical address, the name and the
access properties.

Figure 10. XML Register definition file Memory structure and registers declaration

After having declared all the STLUX registers to be included in the debug mode, for each
register can be defined a “Field”. A Field declaration specifies logical data that can involve
one or more registers for which input/output rules can be defined such as the maximum,
minimum and default value, input/output format, whether it is an integer or bitfield or
enumeration type and in case of the latter, an entries dictionary can be defined as can be
seen in Figure 11. Please note that in the field declaration the StartAddress can be specified
as a Register name.

General purpose graphic user interface software UM2005

16/32 DocID028822 Rev 1

Figure 11. XML Registers definition file Fields declaration

4.2.2 Errors definition file

The Errors definition file is an optional file allowing to an application to define the specific
error codes of an application and their specific error messages. If the Errors definition file is
missing, in case of error the GUI simply communicates this is occurred through a generic
error message but there's no chance to have information about its details.

XML Errors definition file header

As for Registers and Parameters definitions, also the Errors definition XML file is divided
into sections. The first section is the “Header” providing identification information about the
specific application to which the XML file is related. As previously said, this is needed to
identify, among several XML files, the correct ones suited for the current application.

Figure 12. XML Errors definition file header

DocID028822 Rev 1 17/32

UM2005 General purpose graphic user interface software

32

XML Errors definition file body

The second section of the Errors definition XML file is the body included within the <Error
code> </Error> tags. Inside this body all the error codes and error messages to be displayed
are declared.

Figure 13. XML Errors definition file declaration

4.2.3 Parameters definition file

The Parameters definition file is an optional file allowing to an application to define the
specific parameters of an application and their input/output format. If the Parameters
definition file is missing, the GUI loads from the application the parameters number and
names but there's no chance to have information about the input/output fields format.

XML Parameters definition file header

As for Registers definitions, also the Parameters definition XML file is divided into sections.
The first section is the “Header” providing identification information about the specific
application to which the XML file is related. As previously said, this is needed to identify,
among several XML files, the correct ones suited for the current application. The specified
address mode for parameters configuration is set to Parameter, that means addresses are
specified as incremental numeric indexes. They can be expressed both in hex and in dec
format.

Figure 14. XML Parameters definition file header

XML Parameters definition file body

The second section of the Parameters definition XML file is the body included within the
<Memory> </Memory> tags. Inside this body there can be two kind of declarations. First
there are the registers size and address declaration which specifies the memory basic
structure. Then it is followed by the Parameters declarations included in the <Register>
</Register> stating for each parameter a description, the index, the name and the access
properties.

General purpose graphic user interface software UM2005

18/32 DocID028822 Rev 1

Figure 15. XML Parameters definition file Memory structure and parameters declaration

After having declared all the application parameters to be included in the Parameters mode
(names must match the ones declared in the firmware), for each parameter a “Field” can be
defined. A Field declaration specifies logical data that can involve one or more parameters
for which input/output rules can be defined such as the maximum, minimum and default
value, input/output format, whether it is an integer or bitfield or enumeration type and in case
of the latters, an entries dictionary can be defined as can be seen in Figure 16. Please note
that in the field declaration the StartAddress can be specified as a Parameter name.

Figure 16. XML Parameters definition file Fields declaration

DocID028822 Rev 1 19/32

UM2005 General purpose graphic user interface software

32

4.3 General purpose XML File Editor

The general purpose XML File Editor is aimed for computer aided specification of the XML
files that can be integrated with the general purpose GUI for both the parameters
configuration and debug mode. Launching the GPFileEditor.exe will open the XML File
Editor appearing as shown in Figure 17.

Figure 17. General purpose XML File Editor window

As you can see, the editor makes easier to specify all the settings required in a general
purpose GUI XML file like Product ID, Revision number, whether you want to access
registers in the debug mode or Parameters in the parameter configuration mode, the
Memory structure and more. Then you can declare registers by simply adding registers
using the [+] button which adds an “empty” register to be filled with the desired properties.

General purpose graphic user interface software UM2005

20/32 DocID028822 Rev 1

Figure 18. How to add an entry in the registers/parameters description

As can be seen here in Figure 18, we filled the new empty register creating MY_PAR_01,
a 8-bit parameter with read/write access which is labeled with the index 0x0. Now selecting
with the cursor the register name, by simply clicking on the [R->F] button, the tool
automatically generates a field definition basing on the register. Please note that you can
specify the StartAddress by using the name of the respective register in place of the
correspondent index.

DocID028822 Rev 1 21/32

UM2005 General purpose graphic user interface software

32

Figure 19. How to add a field in the fields description

Another possible way to add a field is to go into the fields section and push the [+] button.
This will add an empty field description to be associated with one or more registers
definition. Once you specified all the Registers and Fields to be listed for the parameters
configuration mode or for the debug mode, you can save it in the XML format to be used by
the general purpose GUI or to be retrieved for further modifications by the general purpose
GUI XML File Editor.

General purpose graphic user interface software UM2005

22/32 DocID028822 Rev 1

Figure 20. Saving your component definition to an XML file

The general purpose XML File Editor also allows creating Errors definition files by simply
choosing the proper file format while creating a new file.

Figure 21. Creating an XML Errors definition file

DocID028822 Rev 1 23/32

UM2005 General purpose graphic user interface software

32

An XML Error definition file basically contains a dictionary of error codes characterized by
a progressive positive index. Each error code gets associated to a proper error message
defined for the specific application. This way, each time the firmware of the application
returns as a response to the host a positive integer error code, a pop-up window will appear
showing the error message defined to the respective error code. This is useful not only to
handle the communication error but to make the general purpose GUI more flexible also
handling logic error conditions for the given application.

Figure 22. Editing an XML Error definition file

General purpose graphic user interface firmware UM2005

24/32 DocID028822 Rev 1

5 General purpose graphic user interface firmware

The general purpose GUI firmware is composed of a software IP that can be integrated with
applications to communicate with the general purpose GUI using a protocol that will be
specified in Section 6 on page 28. This protocol allows communication via the UART serial
interface set of general purpose commands that are specified from Table 4 on page 28 to
Table 7 on page 29.

The UART communication is based on the transmitter and receiver interrupt handling
transmit and receive buffers where the sent/received characters are stored to be processed.
Therefore the firmware first of all properly initializes the UART peripheral and interrupts and
gets the UART peripheral ready to handle the serial link. The UART link must be set with the
8-bit data, 1 stop bit and no parity bit, the LIN disabled and baud rate of 115200 bps.

Figure 23. General purpose GUI firmware structure

The core of the GPGUI firmware is the parser decoding each incoming bite. This is
structured in two logical software layers: the outer is represented by the GP_PARSER
(gp_parser.h, gp_parser.c) that basically implements the communication basic function,
recognizing line breaks, translating bites in characters, etc. The inner layer is represented
by the GP_SAMPLE (gp_sample.h, gp_sample.c) which effectively implements the GUI
core functionalities.

5.1 Using the general purpose GUI firmware

The general purpose GUI firmware is available to the user both as a binary file and as an
open source code for application developers to be integrated in STLUX/STNRG based
applications. Starting from the open source GPGUI firmware, the developer will be able to
easily build his own application from the “empty” main routine which simply initializes the
serial port communication protocol environment.

DocID028822 Rev 1 25/32

UM2005 General purpose graphic user interface firmware

32

5.2 General purpose GUI firmware integration

Integrating the general purpose GUI firmware into an existing application can be easily done
by including the GP_PARSER and GP_SAMPLE files (both *.h and *.c) and properly
configuring the UART communication protocol and interrupt routines as specified in the
general purpose GUI project available for Cosmic, IAR and Raisonance environments.

5.2.1 General purpose GUI parametric firmware configuration

In particular to make the firmware suitable for all the various STLUX devices, the code has
been made automatically configurable at compile time through definition of compilation flags
defining the specific device we want to address. So it is advisable before compiling, to state
what kind of the STLUX device we are using declaring the flags:

 STLUX385A

 STLUX383A

 STLUX325A

 STLUX285A

 STNRG388A

 STNRG328A

 STNRG288A

General purpose GUI parametric firmware auto configuration

This will optimize the code for the specific device at compile time, resulting in a shorter and
more efficient code running on the board. In case none of the above declared compilation
flags is set to identify a specific platform, the _AUTO_ID_ flag is set by default and the auto
identification mode is enabled in order to make the firmware code less efficient but able to
properly identify the device in the STLUX family and configure itself to properly operate with
it.

In particular, the code configuration or auto configuration relates to different parts.

5.2.2 Option bytes

The general purpose GUI firmware has been specifically conceived not only as a tool to
allow developers to easily integrate the GUI into their existing applications. It has been
conceived also to start developing applications from scratch starting from the “empty
application” general purpose GUI firmware.

Last but not least it has been thought to be downloaded to the STEVAL-ILL075V1 or
STEVAL-ISA164V1 evaluation board as a fast prototyping platform allowing to pilot SMEDs
and peripherals. To make this platform even more easily accessible, option bytes have been
specifically set to easily allow the bootloading procedure at every power-up.

In particular the MSC_OPT0 and nMSC_OPT0 option bytes must be properly set according
to the chosen platform configuration to enable the proper UART channel as the bootloading
source.

General purpose graphic user interface firmware UM2005

26/32 DocID028822 Rev 1

Moreover, to allow the bootloader to wait for a code source for a second right after each
reset, the OPTBL and nOPTBL option bytes must be set to 0x55AA.

In the main general purpose GUI firmware, a specific function takes care of properly setting
these option bytes to grant anyway bootloading compliance.

5.2.3 UART channel configuration

As for the bootloading option bytes, defining the kind of the device for which the code is
being compiled also sets the proper UART ports configuration to ensure the serial interface
connection for the GUI.

As previously stated, defining no specific device will result in auto identification mode
running firmware which will automatically determine the device and set the UART ports
according to Table 2.

Table 2. UART line selection option bytes

Device MSC_OPT0 nMSC_OPT0 UART pinout

STLUX385A 0x11 0xEE GPIO0[0] GPIO0[1]

STLUX383A 0x11 0xEE GPIO0[0] GPIO0[1]

STLUX325A 0x31 0xCE GPIO0[4] GPIO0[5]

STLUX285A 0x31 0xCE GPIO0[4] GPIO0[5]

STNRG388A 0x11 0xEE GPIO0[0] GPIO0[1]

STNRG328A 0x31 0xCE GPIO0[4] GPIO0[5]

STNRG288A 0x31 0xCE GPIO0[4] GPIO0[5]

DocID028822 Rev 1 27/32

UM2005 General purpose graphic user interface firmware

32

5.3 General purpose parser API

In order to customize the general purpose GUI for a specific application, few simple steps
are needed. The first step is to include the GPGUI firmware files and to properly initialize the
UART peripheral. To ease this step a basic empty application just running the GPGUI is
available. This empty application can also be used as a starting point to develop a new
application from scratch.

The second step is to choose a set of parameters for the specific application that will be
included in the XML Parameters definition file and also appended to the list of Parameters in
the GetRegVal /SetRegVal firmware functions. Also the set of registers in the debug mode
can be modified according to the specific application by simply modifying the XML Registers
definition file. This customization will make all the application relevant registers and
variables available to be modified and monitored during the execution of the application. If
needed, further checks and special functions (i.e.: regulation loops) can be added in the
Push() function that's performed every time a push event occurs.

The last customization that can be done is relative to the Store()/Restore() functionalities,
where each software developer will be able to declare his own list of parameters and
registers to be stored in the EEPROM and eventually restored at each power-up.

5.4 General purpose GUI FW upload

Uploading the general purpose GUI to your device is an easy task and can be accomplished
basically in two ways. The first way is via the SWIM interface using the supported tools,
Cosmic, IAR Systems® and Raisonance. For more information about how to upload a bit
file, please refer to the specific tool user manual.

The second way to upload your bit file is via bootloading procedure. This can be done using
the STLUX Flash loader demonstrator tool provided by ST. Bootloading is a feature enabled
by default on brand new devices which have never been programmed. For more details on
how to bootload your code on the STLUX / STNRG, please refer to the application note
AN4656.

Table 3. General purpose parser functions

Header
Input

parameters
Output

parameters
Functionality

ParseByte
toProcess: it is an

input character
-

Parses an incoming character to identify the start of an
incoming command and interprets it.

LineBreakDetection -
Must be called in case LineBreak interrupt is received to
restart parsing new commands.

SetError
isError: it can be
TRUE or FALSE

-
It tells the parser whether an error has occurred or not. In
case isError is FALSE, the error is not echoed.

Restore_Regs -
It checks whether the RESTORE flag is enabled. Then if
the CRC check is OK, it restores all the registers
configuration previously dumped to the EEPROM.

InitCallback -
It initializes all the parser commands callbacks and gets the
parser ready to receive input characters.

General purpose graphic user interface serial protocol UM2005

28/32 DocID028822 Rev 1

6 General purpose graphic user interface serial
protocol

The communication over the serial port is exchanged using a protocol based on short
messages. This is aimed for having a tool to easily handle parameters and monitor platform
registers for the application configuration and debug purpose with reduced data exchange
over the serial interface and optimized memory usage. The protocol uses different
messages of fixed length according to the purpose of it.

Figure 24. GUI serial protocol messages length

After getting a GetProductName, the target will return a string identifying the exact product
featured on-board. The possible product names will be divided into two families.

Table 4. 1 byte length messages

Command Size Code
Input

parameters
Response Description

SetASCII 1 B 0x61 ('a') - -
Requests the target to run in
the ASCII mode.

SetBinary 1 B 0x62 ('b') - -
Requests target to run in the
binary mode.

GetID 1 B 0x69 ('i') -
Product ID +

Revision
number

Requests the target to return
the Product ID and Revision
number.

GetProductName 1 B 0x74 ('t') - Product name
Requests the target to return
the product name.

GetRegCount 1 B 0x63 ('c') -
Number of
parameters

Requests the target to return
the total amount of
parameters.

DocID028822 Rev 1 29/32

UM2005 General purpose graphic user interface serial protocol

32

The STLUX family:

 STLUX385A

 STLUX383A

 STLUX325A

 STLUX285A

The STNRG family:

 STNRG388A

 STNRG328A

 STNRG288A

 :

Table 5. 3 bytes length messages

Command Size Code Input parameters Response Description

getRegName 3 B 0x6E ('n') Parameter index (2 B)
Current parameter

name
Requests the target to return the
name of a parameter.

GetRegVal 3 B 0x72 ('r') Parameter index (2 B)
Current

parameter value +
OK / error

Requests the target to return the
current value of a parameter.

Store 3 B 0x73 ('s')
Product ID and

Revision number
OK / error

Requests the target to perform a
store procedure. Stores register
values into the Flash.

Push 3 B 0x70 ('p')
Product ID and

Revision number
OK / error

In case it sets the modified
registers values, then it requests
the target to and performs a push.

Table 6. 4 bytes length messages

Command Size Code Param. Response Description

SetRegVal 4 B 0x77 ('w')
Parameter index (2 B)

+ value (1 B)
OK / error

Requests the interface to set
the value of a parameter.

getRegValByAddr 4 B 0x3C ('<')
Size (1 B) + register

physical address (2 B)
Current register

value + OK / error

Requests the interface to return
the current value of a register at
a specified physical address.

Table 7. 5 bytes length messages

Command Size Code Param. Response Description

setRegValByAddr 5 B 0x3E ('>')
Size (1 B) + register physical

address (2 B) and value (1 B)
OK / error

Requests the interface to set the
value of a register at a specified
physical address.

General purpose graphic user interface serial protocol UM2005

30/32 DocID028822 Rev 1

Each message is sent byte after byte from the PC host. The target replies at every byte
replies with the echo of the received byte. After receiving the whole command line, it
appends to the last byte echo an error code (1 byte) and the reply to the command.

The error code will be zero in case the command execution succeeded or will be a positive
integer in case of error. Every specific number will identify a precise type of error which will
be associated to an error message defined in the file Errors.xml as described in
Section 4.2.2 on page 16. Here below in you can find an example of the log of the typical
serial communication between the host PC and target application.

Figure 25. Typical serial communication log among GUI and application

DocID028822 Rev 1 31/32

UM2005 Revision history

32

7 Revision history

Table 8. Document revision history

Date Revision Changes

05-Apr-2016 1 Initial release.

UM2005

32/32 DocID028822 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 Reference documents
	2 Acronyms
	Table 1. List of acronyms (continued)

	3 General purpose graphic user interface components
	4 General purpose graphic user interface software
	4.1 Graphic user interface
	Figure 1. General purpose GUI window
	4.1.1 General purpose GUI menu
	Figure 2. General purpose GUI menu
	Figure 3. General purpose GUI menu - tools options

	4.1.2 Register Detail folder
	Figure 4. General purpose GUI Register Detail folder
	Figure 5. Register Detail input format
	Figure 6. Modifying Parameters/Registers value

	4.1.3 General purpose GUI log window
	Figure 7. GUI log window

	4.1.4 Register Map folder
	Figure 8. Register Map folder

	4.2 XML files structure
	4.2.1 Register definition file
	Figure 9. XML Register definition file header
	Figure 10. XML Register definition file Memory structure and registers declaration
	Figure 11. XML Registers definition file Fields declaration

	4.2.2 Errors definition file
	Figure 12. XML Errors definition file header
	Figure 13. XML Errors definition file declaration

	4.2.3 Parameters definition file
	Figure 14. XML Parameters definition file header
	Figure 15. XML Parameters definition file Memory structure and parameters declaration
	Figure 16. XML Parameters definition file Fields declaration

	4.3 General purpose XML File Editor
	Figure 17. General purpose XML File Editor window
	Figure 18. How to add an entry in the registers/parameters description
	Figure 19. How to add a field in the fields description
	Figure 20. Saving your component definition to an XML file
	Figure 21. Creating an XML Errors definition file
	Figure 22. Editing an XML Error definition file

	5 General purpose graphic user interface firmware
	Figure 23. General purpose GUI firmware structure
	5.1 Using the general purpose GUI firmware
	5.2 General purpose GUI firmware integration
	5.2.1 General purpose GUI parametric firmware configuration
	5.2.2 Option bytes
	Table 2. UART line selection option bytes

	5.2.3 UART channel configuration

	5.3 General purpose parser API
	Table 3. General purpose parser functions

	5.4 General purpose GUI FW upload

	6 General purpose graphic user interface serial protocol
	Figure 24. GUI serial protocol messages length
	Table 4. 1 byte length messages
	Table 5. 3 bytes length messages
	Table 6. 4 bytes length messages
	Table 7. 5 bytes length messages
	Figure 25. Typical serial communication log among GUI and application

	7 Revision history
	Table 8. Document revision history

