f; UM2006
” life.augmented User man ual

Gain Manager library
software expansion for STM32Cube

Introduction

The Gain Manager (GAM) library user manual describes the software interface and
requirements for the integration of the module into a main program such as the Audio
STM32Cube expansion software and provides a basic understanding of the underlying
algorithm.

The GAM library is used to apply several gain attenuations depending on channel number of
audio signal.

The GAM library is part of the X-CUBE-AUDIO firmware package.

January 2018 DoclD028838 Rev 2 1/18

www.st.com

http://www.st.com

Contents UM2006

Contents
1 Module overview i i i s 5
1.1 Algorithm function 5
1.2 Module configuration 5
1.3 Resources summary 5
2 ModuleInterfaces i ittt i eennnnnn 7
21 APIS 7
211 gam_resetfunction 7
21.2 gam_setParamfunction 7
213 gam_getParamfunction 8
214 gam_setConfigfunction 8
21.5 gam_getConfig function 9
216 gam_process function 9
2.2 External definitionsand types 9
221 Inputand outputbuffers 9
222 Returned errorvalues 10
2.3 Static parameters structure 10
24 Dynamic parameters structure 11
3 Algorithm description i i i e 12
3.1 Processing steps 12
3.2 Dataformats e 12
4 System requirements and hardwaresetup 13
4.1 Recommendations foran optimalsetup 13
411 Module integrationexample L. 13
4.1.2 Module integration summary 14
5 How to run and tune the application 16
6 Revision history i it 17
2/18 DoclD028838 Rev 2 ‘W

UM2006 List of tables
List of tables
Table 1. RESOUICES SUMMIANYt e e e e e e e e e e e et 5
Table 2. QM S . . . 7
Table 3. gam_setParam 8
Table 4. gam_getParam 8
Table 5. gam_setCoNfig 8
Table 6. gam_getConfig e 9
Table 7. o =0 0 T] 0T = 9
Table 8. Inputand output buffers e 10
Table 9. Returned error values. e 10
Table 10. Static parameters structure. e 11
Table 11. Dynamic parameters structure 11
Table 12. Documentrevision history e 17
"_l DoclD028838 Rev 2 3/18

List of figures UM2006

List of figures

Figure 1. Example of basicaudiochain. e 13
Figure 2. APl call procedure e 14

3

4/18 DocID028838 Rev 2

UM2006 Module overview
1 Module overview
1.1 Algorithm function
The GAM module allows the user to modify digitally the volume of the input signal in the
[-80;0] dB range, with a granularity of 0.5 dB.
1.2 Module configuration
The GAM module can handle mono, stereo and multichannel interleaved (up to eight
channels) 16-bit and 32-bit I/0 data.
Several versions of the module are available depending on the I/O format, on the Cortex®
core, and on the tool chain used:
e GAM_CM4_IAR.a/ GAM_CM4_GCC.a/ GAM_CM4_Keil.lib:
16-bit input/output buffers version. It runs on any STM32 microcontroller featuring a
core with a Cortex®-M4 core.
e GAM _32b CM4_IAR.a/GAM 32b CM4_GCC.a/ GAM_32b_CM4_Keil.lib:
32-bit input/output buffers version. It runs on any STM32 microcontroller featuring a
core with a Cortex®-M4 core.
e GAM_CM7_IAR.a/GAM_CM7_GCC.a/ GAM_CM7_Keil.lib:
16-bit input/output buffers version. It runs on any STM32 microcontroller featuring a
core with Cortex®-M7 core.
e GAM_32b CM7_IAR.a/GAM 32b CM7_GCC.a/GAM_32b_CM7_Keil.lib:
32-bit input/output buffers version. It runs on any STM32 microcontroller featuring a
core with Cortex®-M7 core.
1.3 Resources summary
Table 1 contains Flash, stack, RAM memory, and frequency (MHz) requirements of the
module.Those footprints are measured on board, using IAR™ Embedded Workbench for
ARM v7.40 (IAR™ Embedded Workbench common components v7.2).
Table 1. Resources summary“)
Version Core Flash code |Flash data Stack Persistent Scratch Frequency
(-text) (.-rodata) RAM RAM (MHz)
M4 1604 Bytes 24
16 bits 1/O stereo
M7 1580 Bytes 13
16 bits I/O M4 1604 Bytes 4.4
multichannel 3.1 M7 1580 Bytes 2.4
8 Bytes 44 Bytes | 120 Bytes 1 Byte
M4 1604 Bytes 2.6
32 bits 1/0O stereo
M7 1580 Bytes 1.7
32 bits I/O M4 1604 Bytes 4.6
multichannel 3.1 M7 1580 Bytes 3.0
Kys DoclD028838 Rev 2 5/18

Module overview

UM2006

1. Data for M7 core are in bold type when different from those of M4.

Note: Footprints on STM32F7 are measured on boards with stack and heap sections located in
DTCM memory.
Note: Scratch RAM is the memory that can be shared with other process running on the same

priority level. This memory is not used from one frame to another by GAM routines.

6/18 DocID028838 Rev 2

3

UM2006

Module Interfaces

2

Note:

2.1

211

2.1.2

3

Module Interfaces

Two files are needed to integrate the GAM module. GAM_xxx_CMy_zzz.a/.lib library and
the gam_glo.h header file which contain all definitions and structures to be exported to the
software integration framework.

The audio_fw_glo.h file is a generic header file common to all audio modules; it must be
included in the audio framework.

APls

Six generic functions have a software interface to the main program:
e gam_reset

e gam_setParam

e gam_getParam

e gam_setConfig

e gam_getConfig

e gam_process

Each of these functions is described in the following sections.

gam_reset function

This procedure initializes the persistent memory of the GAM module, and initializes static
and dynamic parameters with default values.

int32_t gam_reset (void *persistent_mem_ptr, void *scratch_mem_ptr) ;

Table 2. gam_reset

110 Name Type Description
Input persistent_mem_ptr |void * Pointer to internal persistent memory
Input scratch_mem_ptr void * Pointer to internal scratch memory
Returned value - int32_t Error value

This routine must be called at least once at initialization time, when the real time processing
has not started.

gam_setParam function

This procedure writes module’s static parameters from the main framework to the module's
internal memory. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters, i.e. the parameters with the values which
cannot be changed during the module processing.

int32_t gam_setParam(gam_static_param_t *input_static_param_ptr, void
*persistent_mem_ptr) ;

DocID028838 Rev 2 7/18

Module Interfaces

UM2006

Table 3. gam_setParam

110 Name Type Description
Input input_static_param_ptr | gam_static_param_t* Pointer to static parameters
P UL —P P jgam._ P - structure
. - Pointer to internal persistent
Input persistent_mem_ptr void
memory
Retumed - int32_t Error value
value -
21.3 gam_getParam function
This procedure gets the module’s static parameters from the module internal memory to the
main framework. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters, i.e. the parameters with values which cannot
be changed during the module processing.
int32_t gam_getParam(gam_static_param_t *input_static_param ptr, void
*persistent_mem_ptr) ;
Table 4. gam_getParam
/10 Name Type Description
Input input_static_param_ptr | gam_static_param_t * Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value
214 gam_setConfig function
This procedure sets the module’s dynamic parameters from the main framework to the
module internal memory. It can be called at any time during the module processing (after the
reset and setParam routines).
int32_t gam_setConfig(gam_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;
Table 5. gam_setConfig
110 Name Type Description
Input input_dynamic_param_ptr | gam_dynamic_param_t * Pointer to dynamic parameters
P put_dy —P P 1 gam_dy —P - structure
. - Pointer to internal persistent
Input persistent_mem_ptr void
memory
Retumed - int32_t Error value
value -

8/18

DocID028838 Rev 2

3

UM2006 Module Interfaces
215 gam_getConfig function
This procedure gets the module’s dynamic parameters from the internal persistent memory
to the main framework. It can be called at any time during processing (after the reset and
setParam routines).
int32_t gam_getConfig(gam_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;
Table 6. gam_getConfig
110 Name Type Description
Input input_dynamic_param_ptr |gam_dynamic_param_t * Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value
21.6 gam_process function
This procedure is the module’s main processing routine. It should be called at any time, to
process each frame.
int32_t gam_process (buffer_t *input_buffer, buffer_t *output_buffer, void
*persistent_mem_ptr) ;
Table 7. gam_process
110 Name Type Description
Input input_buffer buffer_t * Pointer to input buffer structure
Output output_buffer buffer_t * Pointer to output buffer structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value -
This process routine can run in place, that is the same buffer can be used for input and
output.
2.2 External definitions and types
Some types and definitions have been defined to facilitate the integration in the main
frameworks.
2.21 Input and output buffers

3

The GAM library is using extended 1/O buffers which contain, in addition to the samples,
some useful information on the stream such as the number of channels, the number of
bytes per sample and the interleaving mode.

An /O buffer structure type, as described below, must be followed and filled in by the main
framework before each call to the processing routine:

DocID028838 Rev 2 9/18

Module Interfaces

UM2006

typedef struct {

int32_t nb_channels;
int32_t nb_bytes_per_Sample;
void *data_ptr;
int32_t buffer_size;
int32_t mode;
} buffer_t;

Table 8. Input and output buffers

Name Type

Description

nb_channels int32_t | Number of channels in data: 1 for mono or 2 for stereo for instance

nb_bytes_per_Sample |int32_t | Dynamic data in number of bytes (2 for 16-bit data, 4 for 32-bit)

data_ptr void * | Pointer to data buffer (must be allocated by the main framework)
buffer_size int32_t | Number of samples per channel in the data buffer

mode int32_t | Buffer mode: 0 = not interleaved, 1 = interleaved

2.2.2 Returned error values

Possible returned error values are described below:

Table 9. Returned error values

Definition Value Description
GAM_ERROR_NONE 0 OK - No error detected
GAM_UNSUPPORTED_VOLUME 1 :;or:;rge setting is outside [-80; 0] db
GAM_UNSUPPORTED_MUTE_MODE -2 Multi mode is not supported
GAM_UNSUPPORTED_NUMBER_OF_BYTEPERSAMPLE | -3 :;Fl’ﬁédata 's neither 16-bit nor 32-bit
GAM_UNSUPPORTED_INTERLEAVING -4 Input data is stereo / not interleaved
GAM_UNSUPPORTED_MULTICHANNEL -5 Number of channels is not supported
GAM BAD HW 6 The library is not used with the right
- - hardware
2.3 Static parameters structure

There is no static parameter to be used. For the compatibility with other structures, the static

parameter structure contains a dummy field.

struct gam_static_param {
int8_t empty;
Y

typedef struct gam_static_param gam_static_param_t;

10/18 DocID028838 Rev 2

3

UM2006 Module Interfaces
Table 10. Static parameters structure
Name Type Description
empty int8_t Dummy field, just required to have a non-empty structure
2.4 Dynamic parameters structure

3

Three dynamic parameters can be used.

struct gam_dynamic_param {
intlé_t
intl6é_t

Y

mute[8];

target_volume_dB[8];

typedef struct gam_dynamic_param gam_ dynamic_param_t;

Table 11. Dynamic parameters structure

Name

Type

Description

target_volume_dBJ[8] int16_t

Volume dB input value, in 1/2 dB steps, for each of the 8
different channels.

Example:” -12,-12,-12,-12,-13,-13,-13,-13” means the first 4

channels will get a target output volume of -6 dB, the 4 others a

target volume of -6.5 dB

mute[8]

int16_t

1 = enable mute, 0 = disable, for each of the 8 different
channels.

DocID028838 Rev 2

11/18

Algorithm description UM2006

3 Algorithm description

3.1 Processing steps

The GAM algorithm is composed of one main processing block (called gain application
block), that attenuates the signal, depending on the target volume value set among the
dynamic parameters.

It can be different for each channel.

Every target volume value change is applied with smooth transition to the output signal.

3.2 Data formats

The GAM module supports fixed point mono and stereo multichannel interleaved 16-bits
and 32-bit input data. It can work independently of the frame size and the input signal
sampling rate.

However it is recommended to avoid selecting very short frame size (i.e. lower than 2 ms),
in order to prevent “plops” on transitions due to too short ramp up/down of the volume.

The module delivers output data, following the same interleaved pattern and 16-bit or
32-bit resolution, as the input data.

3

12/18 DocID028838 Rev 2

UM2006

System requirements and hardware setup

4

System requirements and hardware setup

GAM libraries are built to run either on a Cortex® M4 or on a Cortex® M7 core, without FPU
usage. They can be integrated and run on corresponding STM32F4/STM32L4 or STM32F7
series devices. There is no other hardware dependency.

4.1 Recommendations for an optimal setup
It is recommended to execute the GAM library close to the audio DAC to avoid decreasing
the Signal to Noise Ratio (SNR) before other post processing modules execution. Refer to
Figure 1: Example of basic audio chain
Figure 1. Example of basic audio chain
Audio Post Processing
Str?a.m Audio Decoder Slulgllng _Rate Other GAM
Acquisition _| conversion | Processing Processing 4(
MSv38474V2
411 Module integration example

Cube expansion GAM integration examples are provided on 32F746GDISCOVERY and

32F469IDISCOVERY boards. Please refer to provided integration code for more details.

3

DocID028838 Rev 2

13/18

System requirements and hardware setup

UM2006

4.1.2

14/18

Module integration summary

Figure 2. API call procedure

1 Memory allocation
and
CRC enable and reset

!

gam_reset()

!

gam_setConfig()

audio stream read
input buffer preparation

'

gam_process()

!

audio stream write

New config need?

l_ yes

7 gam_setConfig()

n
[N|

Samples to

proceed?

no

v

Memory freeing

yes

MS32200V3

As explained above, GAM static and dynamic structures have to be allocated, as well as input and output
buffers. Furthermore, as GAM library runs on STM32 devices, CRC HW block must be enable and reset.

Once the memory is allocated, the call to gam_reset() function initializes the internal variables.

Once the dynamic parameters are updated, the gam_setConfig() routine is called to send the dynamic

parameters from the audio framework to the module.

The audio stream is read from the proper interface and input_buffer structure has to be filled accordingly to
the stream characteristics (number of channels, sample rate, interleaving and data pointers). Output buffer

structure has to be set as well.
Main processing routine is called to apply the effect.
The output audio stream can now be written in the proper interface.

DocID028838 Rev 2

S74

UM2006 System requirements and hardware setup

7. If needed, the user can set new dynamic parameters and call the gam_setConfig() routine again, to update
the module configuration.

8. Ifthe application is still running and has new input samples to proceed, then it goes back to step 4, else the
processing loop is over.

9. Once the processing loop is over, the allocated memory has to be freed.

3

DocID028838 Rev 2 15/18

How to run and tune the application UM2006

5

16/18

How to run and tune the application

Once the module is integrated into the audio framework to play samples at 48 kHz, launch
the Audio player and, if there is no sampling rate conversion available, choose a .wav or
.mp3 file with a 48 kHz sampling frequency.

The GAM target gain can be controlled through the user interface in the provided integration
examples.

3

DocID028838 Rev 2

UM2006 Revision history

6 Revision history

Table 12. Document revision history

Date Revision Changes

20-Jan-2016 1 Initial release.

Replaced static memory with persistent memory, and dynamic
memory with scratch memory throughout the document. Changed
parameter static_mem_ptrto persistent_mem_prt, and
dynamic_mem_ptr parameter to scratch_mem_prt. Updated
Section 1.2: Module configuration and Section 1.3: Resources
08-Jan-2018 2 summary. Updated Table 8: Input and output buffers for channel
numbers. Simplified Section 4.1.1: Module integration example and
Chapter 5: How to run and tune the application. Updated discovery
kit references in Section 4.1.1.

Replace X-CUBE-AUDIO-F4, X-CUBE-AUDIO-F7 and X-CUBE-
AUDIO-L4 with X-CUBE-AUDIO.

3

DocID028838 Rev 2 17/18

UM2006

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

3

18/18 DocID028838 Rev 2

	1 Module overview
	1.1 Algorithm function
	1.2 Module configuration
	1.3 Resources summary
	Table 1. Resources summary

	2 Module Interfaces
	2.1 APIs
	2.1.1 gam_reset function
	Table 2. gam_reset

	2.1.2 gam_setParam function
	Table 3. gam_setParam

	2.1.3 gam_getParam function
	Table 4. gam_getParam

	2.1.4 gam_setConfig function
	Table 5. gam_setConfig

	2.1.5 gam_getConfig function
	Table 6. gam_getConfig

	2.1.6 gam_process function
	Table 7. gam_process

	2.2 External definitions and types
	2.2.1 Input and output buffers
	Table 8. Input and output buffers

	2.2.2 Returned error values
	Table 9. Returned error values

	2.3 Static parameters structure
	Table 10. Static parameters structure

	2.4 Dynamic parameters structure
	Table 11. Dynamic parameters structure

	3 Algorithm description
	3.1 Processing steps
	3.2 Data formats

	4 System requirements and hardware setup
	4.1 Recommendations for an optimal setup
	Figure 1. Example of basic audio chain
	4.1.1 Module integration example
	4.1.2 Module integration summary
	Figure 2. API call procedure

	5 How to run and tune the application
	6 Revision history
	Table 12. Document revision history

