
March 2017 DocID028967 Rev 2 1/101

101

UM2022
User manual

SPINFamily evaluation tool

Introduction

The SPINFamily evaluation tool allows STMicroelectronics users to easily evaluate
functionalities and performances of the STSPIN family devices.

 L6206: DMOS dual full bridge driver

 L6208: DMOS driver for bipolar stepper motor

 L6470: dSPIN™ fully integrated microstepping motor driver with motion engine and SPI

 L6472: Fully integrated microstepping motor driver

 L6474: Fully integrated microstepping motor driver

 L6480: Microstepping motor controller with motion engine and SPI

 L6482: Microstepping motor controller with motion engine and SPI

 powerSTEP01: System-in-package integrating microstepping controller and 10 A power
MOSFETs

 STSPIN220: Low voltage stepper motor driver

 STSPIN240: Low voltage dual brush DC motor driver

 STSPIN250: Low voltage brush DC motor driver

This software is designed to work with the STEVAL-PCC009V2 interface board, or the
STM32 Nucleo boards, and the device starter-kit boards (EVAL64xx-DISC).

Before starting, please take some time to visit the Motor Control ICs webpage:
www.st.com/web/en/catalog/sense_power/FM142/CL851. There you can find updated
datasheets, application notes and the latest version of this software.

www.st.com

http://www.st.com

Contents UM2022

2/101 DocID028967 Rev 2

Contents

1 Hardware requirements . 5

1.1 PC prerequisites . 5

1.2 Supported boards . 5

2 Quick start guide . 6

2.1 STEVAL-PCC009V2 + demonstration board . 6

2.2 Discovery boards . 7

2.3 Nucleo platform . 7

3 GUI windows . 8

3.1 Menu, toolbar and status bar . 8

3.2 Main panel . 9

3.2.1 Stepper command panel (powerSTEP01 and L64xx devices) 9

3.2.2 L6208 stepper command panel . 13

3.2.3 L6206 brush DC command panel . 14

3.2.4 STSPIN220 stepper command panel . 19

3.2.5 STSPIN240 dual brush DC command panel . 21

3.2.6 STSPIN250 dual brush DC command panel . 24

3.2.7 Stop buttons . 25

3.2.8 Status panel . 26

3.3 Wizard . 35

3.3.1 Voltage mode driving settings panel . 37

3.3.2 Advanced current control panel . 38

3.3.3 Gate drivers settings panel . 39

3.3.4 Speed profile settings panel . 41

3.3.5 Protection settings panel . 42

3.3.6 Apply and save settings panel . 43

3.4 Register map . 43

3.4.1 Writing registers . 45

3.4.2 Reading registers . 46

3.4.3 Loading and saving configurations . 46

DocID028967 Rev 2 3/101

UM2022 Contents

101

3.5 Device configuration . 47

3.5.1 Open and save device configuration . 47

3.5.2 Write and Read configuration . 49

3.5.3 Speed Profile tab . 50

3.5.4 Phase current control tab (L6470, L6480 and powerSTEP01
in VM) . 51

3.5.5 Phase current control tab (L6472, L6482, L6474, and powerSTEP01
in CM) . 52

3.5.6 Gate driving tab (only for L6480, L6482 and powerSTEP01) 54

3.5.7 Others tab . 55

3.5.8 Stepper tab (L6208 only) . 56

3.5.9 Stepper tab (STSPIN220) . 57

3.6 BEMF compensation tool . 58

3.6.1 Setting application and motor parameters . 59

3.6.2 Compensation values evaluation . 60

3.6.3 Saving and loading application and motor parameters 60

3.7 Options panel . 61

3.8 Scripts editor . 62

3.8.1 Script Tool . 62

3.8.2 Writing a script . 63

3.8.3 Execute the script . 63

3.8.4 Python extensions . 63

3.8.5 Device commands . 68

Appendix A Firmware update . 80

A.1 STEVAL-PCC009V2 . 80

A.1.1 Automatic update using the IBUUI updater . 80

A.1.2 Manual update using the ST-LINK/V2 programmer 80

A.2 Discovery boards. 81

A.2.1 Update through DFU. 81

A.2.2 Update through ST-LINK/V2 programmer . 81

A.3 Nucleo platform . 82

Appendix B Daisy chain configuration (STEVAL-PCC009V2) 83

Appendix C Motor electric constant (Ke) measurement 84

Contents UM2022

4/101 DocID028967 Rev 2

Appendix D Python introduction. 87

D.1 Python basics . 87

D.2 Program syntax . 87

D.2.1 Lines and indentation . 88

D.2.2 Comments . 89

D.2.3 Variables . 89

D.2.4 Reserved words . 90

D.3 Python types . 91

D.3.1 Numbers . 91

D.3.2 Strings. 91

D.3.3 Lists . 92

D.4 Python statements, functions and operators . 93

D.4.1 Operators . 93

D.4.2 The print statement . 95

D.4.3 The if-elif-else statement . 95

D.4.4 The while statement . 96

D.4.5 The for statement . 96

D.4.6 The break statement . 97

D.4.7 The continue statement . 98

D.4.8 The pass statement: . 98

D.4.9 The len function . 99

D.4.10 The range function . 99

D.4.11 The Infinite Loops . 99

Revision history . 100

DocID028967 Rev 2 5/101

UM2022 Hardware requirements

101

1 Hardware requirements

1.1 PC prerequisites

This evaluation software is a Windows® based software and requires Microsoft™
.NET Framework 2.0. It is possible to free download and install this framework from:
www.microsoft.com.

1.2 Supported boards

STEVAL-PCC009V2 interface board connected with:

 EVAL6470H, EVAL6470PD

 EVAL6472H, EVAL6472PD

 EVAL6474H, EVAL6474PD

 EVAL6480H

 EVAL6482H

 EVLPOWERSTEP01

 EVAL6206Q

 EVAL6208Q

Discovery boards:

 EVAL6470H-DISC

 EVAL6472H-DISC

 EVAL6474H-DISC

 EVAL6480H-DISC

 EVAL6482H-DISC

STM32 Nucleo (NUCLEO-F030R8, NUCLEO-F401RE, NUCLEO-L053R8) connected with:

 X-NUCLEO-IHM01A1 (L6474)

 X-NUCLEO-IHM03A1 (powerSTEP01)

 X-NUCLEO-IHM04A1 (L6206PD)

 X-NUCLEO-IHM05A1 (L6208PD)

 X-NUCLEO-IHM06A1 (STSPIN220)

 X-NUCLEO-IHM12A1 (STSPIN240)

 X-NUCLEO-IHM13A1 (STSPIN250)

Quick start guide UM2022

6/101 DocID028967 Rev 2

2 Quick start guide

The first steps for easy use of the SPINFamily evaluation tool.

Note: The software is designed to work in the demonstration mode, so all GUI functionalities can
be explored even if no communication board is present.

2.1 STEVAL-PCC009V2 + demonstration board

1. First time only: update the MCU firmware following the procedure described in
Section Appendix A: Firmware update on page 80.

2. Connect the STEVAL-PCC009V2 to the PC through the USB cable.

3. Connect the STEVAL-PCC009V2 to the evaluation board through the 10 poles
or 30 poles connector.
Some demonstration boards support the daisy chain connection (i.e. controlling more
boards with a single MCU board). Refer to the user manual of each board for more
details.

4. Supply the evaluation board.

5. Start the SPINFamily evaluation tool (by default you can find it in your Start menu > All
programs > STMicroelectronics > SPINFamily Evaluation Tool).

6. When the application is started select the device under evaluation from the PCC009V2
and EVAL tab.

7. Wait a few seconds for initialization.

8. Click on the “Connect” button (USB symbol) to connect the demonstration board to the
communication board.
If a warning message is shown, please check if the evaluation board is properly
supplied.

9. Enjoy.

DocID028967 Rev 2 7/101

UM2022 Quick start guide

101

2.2 Discovery boards

1. First time only: update the MCU firmware following the procedure described in
Section Appendix A: Firmware update on page 80.

2. Check if the BOOT jumper is closed. If not, close it before starting.

3. Connect the board to the PC through the USB cable.

4. Supply the evaluation board.

5. Reset the MCU pushing the “Reset” button.

6. All the LEDs blink in sequence. If not, check the board supply and reset the MCU
again.

7. Start the SPINFamily evaluation tool (by default you can find it in your Start menu > All
programs > STMicroelectronics > SPINFamily Evaluation Tool).

8. When the application is started select the device under evaluation from the PCC009V2
and EVAL tab. Wait a few seconds for initialization.

9. Click on the “Connect” button (USB symbol) to connect the demonstration board to the
communication board.
If a warning message is shown, please check if the evaluation board is properly
supplied.

10. Enjoy.

2.3 Nucleo platform

1. First time only: update the MCU firmware following the procedure described in
Section Appendix A: Firmware update.

2. Connect the Nucleo development board to the PC through the USB cable.

3. Connect the Nucleo development board to the expansion board.

4. Some expansion boards support the daisy chain connection (i.e. controlling more
boards with a single Nucleo development board). Refer to the user manual of each
board for more details.

5. Supply the expansion board.

6. Start the SPINFamily evaluation tool (by default you can find it in your Start menu > All
programs > STMicroelectronics > SPINFamily Evaluation Tool).

7. When the application is started select the proper Nucleo board from the “Serial port”
drop-down list and the device under evaluation from the Nucleo tab. Wait a few
seconds for initialization.

8. Click on the “Connect” button (USB symbol) to connect the demonstration board to the
communication board.
If a warning message is shown, please check if the expansion board is properly
supplied.

9. Enjoy.

GUI windows UM2022

8/101 DocID028967 Rev 2

3 GUI windows

Depending on the selected STSPIN device, the application will show different panels.

The menu is common to all STSPIN devices.

3.1 Menu, toolbar and status bar

The menu and toolbar provide access to extra tools and allow opening/saving the device
configuration.

The status bar on the bottom side of the form shows the current interface board and
FLAG/BUSY lines status.

Following you can find a brief description of menu items with the corresponding toolbar icon.

 File menu allows managing the configuration files:

– Open: load a single or a group of configuration files and write them into the
device(s) (see Section 3.5.1 on page 47).

– Save: save a single or a group of configuration files (refer to Section 3.5.1).

– Exit: close the application.

 Tools menu provides access to extra tools and allows changing the application
options:

– Connect board: connect or disconnect the communication board. If checked,
it indicates that the communication board is connected.

– Select Device…: change the current device or board.

– Wizard: show the Wizard (see Section 3.3 on page 35) (for L6470, L6472,
L6480, L6482 and powerSTEP01).

– Register map: open the Register Map tool (see Section 3.4 on page 43).

– Device configuration: open the Device Configuration tool (see Section 3.5
on page 47).

– BEMF compensation: (L6470 and L6480 only): open the BEMF
compensation evaluator tool (see Section 3.6 on page 58).

– Script editor: open the Scripts Editor environment (see Section 3.8 on page
62). If the tool is already open, it is brought to top.

– Export Header File: open the save dialog to save the generated header file for
the current FW platform with current registers value.

– Options: open the Application Options window (see Section 3.7 on page 61).

 Help menu contains support information:

– “About”: give detailed information about the software.

– “Web”: open the Motor Control ICs webpage on the STMictroelectronics site.

?

DocID028967 Rev 2 9/101

UM2022 GUI windows

101

3.2 Main panel

The main panel is divided into two sections:

 The command section, on the top, that collects all the device commands and allows
reading/writing the absolute position and the speed registers. Different types of the
panel are displayed depending on the connected device:

– Stepper command panel (powerSTEP01 and L64xx devices)

– L6208 stepper command panel

– L6206 brush DC command panel

– STSPIN220 stepper command panel

– STSPIN240 dual brush DC command panel

– STSPIN250 brush DC command panel

 The device status display, on the bottom, that shows the last information collected from
the status register. It also depends on the current device.

3.2.1 Stepper command panel (powerSTEP01 and L64xx devices)

Figure 1 shows the main panel for the L6470, L6472, L6480, L6482 and powerSTEP01
devices.

Figure 1. Main panel for L6470, L6472, L6480, L6482 and powerSTEP01

GUI windows UM2022

10/101 DocID028967 Rev 2

The command section collects all commands and allows reading and writing the ABS_POS,
MARK and SPEED registers.

For a detailed description of the command set of the device, please refer to the device
datasheet.

The L6474 device is supported by a main panel different from other L64xx devices and the
powerSTEP01; it has less registers and some features are not available in the GUI.

Figure 2. Main panel (L6474)

DocID028967 Rev 2 11/101

UM2022 GUI windows

101

Positioning tab

Figure 3. Positioning tab

 Goto

GoTo and GoTo_DIR commands can be sent to the selected device clicking on GoTo button
or pushing the return key in the adjacent numeric box.

The position argument is set by a numeric box next to the button and can vary within -
2097152 and 2097151 (absolute position is expressed in a 2's complement format). You can
write the target position directly or you can change it using up and down arrows positioned
on the right side of the box.

If the AUTO button is selected, the GoTo command is sent and the motion direction is
selected by the IC minimum path algorithm. FW and BW buttons force a forward or
backward direction sending a GoTo_DIR command.

While working with the L6474 device and the AUTO button is selected, the GoTo command
is sent and the GUI calculates the direction to have a minimum path.

 Move

Clicking on the Move button, a Move command is sent to the connected device. The motion
direction is selected through the FW (forward) and BW (backward) buttons and the number
of steps is set by a numeric box next to the button.

This value goes from 0 to 4194303. You can directly write it within the box or you can vary it
using up and down arrows. The Move command can be also sent pushing the Return key
into the numeric box.

 ABS_POS

You have quick access to the ABS_POS register. The RD button reads the ABS_POS of the
selected device, the numeric box displays the value. If the Autorefresh checkbox is
checked, the absolute position is automatically updated at the selected polling rate.

To write the register, set the value into the numeric box (2097152 to 2097151) and push the
return key or click on the WR button.

The HOME button resets the ABS_POS register to the home position (zero).

GUI windows UM2022

12/101 DocID028967 Rev 2

Speed tab

Figure 4. Speed tab

The Run button sends a Run command to the selected device. The direction is selected
through the FW (forward) and BW (backward) button.

The value ranges from 0 to 15624.985 (expressed in step/s) and can be directly written in
the box or it can be changed using the up and down arrows. Pushing the Return key into
the numeric box sends also the Run command.

The SPEED numeric box shows the current SPEED register by clicking the RD button. If the
Autorefresh checkbox is checked, the SPEED value is automatically updated at the
selected polling rate.

Advanced tab

The Advanced tab is different depending on the selected device.

Figure 5. Advanced tab for L6470, L6472, L6480, L6482 and powerSTEP01

Figure 6. Advanced tab for L6474

DocID028967 Rev 2 13/101

UM2022 GUI windows

101

 MARK

The GoMark and GoHome buttons send the respective command to the selected device.

A quick access to the MARK register is also provided. The RD button reads the current
MARK value.

The register value can be written setting the desired value into the numeric box (-2097152
to 2097151) and pushing the Return key or clicking on the WR button.

 Position initialization (not available for the L6474)

The GoUntil button sends the respective command using the parameters indicated by the
adjacent controls:

 The numeric box defines the target speed (expressed in step/s). Its value ranges from
0 to 15624.985 and can be set directly or by means of the up and down arrows.

 The FW and BW buttons select the motion direction.

 The HOME and MARK buttons select the action performed at the SW pin falling edge.
If HOME is selected the ABS_POS register is set to zero (home position), otherwise its
value is stored into the MARK register.

Pushing the Return key in the numeric box does not send a GoUntil command, the GoUntil
button has to be used.

The ReleaseSW button sends a ReleaseSW command using the parameters indicated by
the same controls used for the GoUntil command. In this case, the HOME and MARK
buttons select the action performed at the SW pin rising edge.

3.2.2 L6208 stepper command panel

Figure 7. L6208 stepper command panel

 Move

Clicking on the Move button, a Move command is sent to the current active device. The
motion direction is selected through the FW (forward) and BW (backward) buttons and the
number of steps is set by a numeric box next to the button. This value goes from 0 to
4194303. You can directly write it within the box or you can vary it using up and down
arrows.

The Move command can be also sent pushing the Return key in the numeric box.

 Run

The Run button sends a Run command to the selected device. The direction is selected
through the FW (forward) and BW (backward) button.

GUI windows UM2022

14/101 DocID028967 Rev 2

 Speed

The value range of the speed is from 0 to 15624.985 (expressed in step/s) and can be
directly written in the box or it can be changed using the up and down arrows or the
horizontal slide.

 Parameters

If the HiZ stop box is checked, at the end of the motion the outputs power bridges are all
turned off, otherwise they are kept enabled. The deceleration torque is kept for the Dwelling
time (ms) waiting time before the hold torque or the tristate is set.

3.2.3 L6206 brush DC command panel

Figure 8. L6206 brush DC command panel

Each power bridge (A and B) can be enabled/disabled independently and the relative
parameters can be set in the dedicated section (OUTA and OUTB).

 Inputs signals (IN1A and IN1B)

The Inputs PWM frequency can be set by a numeric box in the INnPWM freq field in the
bottom right side of the panel. This value goes from 10 to 100 kHz with a step of 10 kHz, you
can directly write it within the box or you can vary it using up and down arrows.

The value range of input signal duty-cycle VOLTAGE can be varied from 0 to 100 % and can
be directly written in the box or changed using the up and down arrows or the horizontal
slide.

The user can set the IN1 parameters, the companion IN2 of the same bridge is driven with
the same PWM but with inverted polarity (if the Two motors box is not checked).

 RUN and DIRECTION

The RUN button sends a Run command to the selected device. The direction of a current
mode controlled DC motor connected to the IN1A - IN2A or IN1B - IN2B is selected through
the DIRECTION drop-down menu: Forward or Backward options.

DocID028967 Rev 2 15/101

UM2022 GUI windows

101

 STOP

The STOP button sends a stop command to the selected bridge. The interested bridge is
disabled putting the bridge outputs in high impedance status (if BRAKE when STOP control
is OFF).

 BRAKE when Stop

If the BRAKE when Stop button is ON, pushing the STOP button will cause both high-side
power MOSFET of the interested bridge to turn ON, making a short-circuit across the motor
winding.

 Overcurrent

The overcurrent detection threshold can be set varying the duty-cycle of the PWM signal
applied to the PROGCL pin (through the low-pass filter mounted on the L6206Q board). The
duty-cycle value OVER CUR. can be varied from 0 to 100 % and can be directly written in
the box or changed using the up and down arrows or the horizontal slide.

 Enable/Disable

The Enable/Disable buttons disable the interested bridge by pulling its EN input down to
ground.

Enable is automatically set when the RUN button is clicked, depending on the selected
parallel mode and Two motors option, disable is not automatically set. For example, if Two
motors is checked, RUN will enable the bridge, but stopping one motor will not disable the
bridge if the other motor is running.

 Two motors

If the Two motors box is checked, you can drive two motors independently. The IN2 section
will be available to manage the PWM duty-cycle and send a separate RUN or STOP
command. The DIRECTION and Brake when Stop option are disabled (see Section :
Parallel Bridges for more details).

 Parallel bridges

The PARALLEL BRIDGES drop-down menu allows to select the device parallel mode. See
Section : Parallel Bridges for more details.

Parallel Bridges

The outputs of the L6206 can be paralleled to increase the output current capability or
reduce the power dissipation in the device at a given current level. It must be noted,
however, that the internal wire bond connections from the die to the power or sense pins of
the package must carry the current in both of the associated half bridges (see Figure 9).

When the two halves of one full bridge (for example OUT1A and OUT2A) are connected in
parallel, the peak current rating is not increased since the total current must still flow through
one bond wire on the power supply or sense pin. In addition, the overcurrent detection
senses the sum of the current in the upper devices of each bridge (A or B) so connecting the
two halves of one bridge in parallel does not increase the overcurrent detection threshold.

GUI windows UM2022

16/101 DocID028967 Rev 2

Figure 9. VS and SENSE pins maximum current handling

The Parallel bridges drop-down menu let you select one of the device parallel mode,
following the description of each mode.

Table 1. Device parallel mode options

Parallel mode Two motors A Two motors B Motors configuration

No paralleling Unchecked Unchecked

Two DC motors bidirectional

Each motor driver accepts a maximum of 2.8 A

No paralleling Checked Unchecked

Two DC motors A + one bidirectional motor B

Each motor driver accepts a maximum of 2.8 A

DocID028967 Rev 2 17/101

UM2022 GUI windows

101

No paralleling Unchecked Checked

One bidirectional motor A + two DC motors B

Each motor driver accepts a maximum of 2.8 A

No paralleling Checked Checked

Four DC motors unidirectional

The supply voltage of motors is 50 V DC maximum.

IN1A + IN2A NA Unchecked

One DC motor unidirectional A low overcurrent,
two DC motors unidirectional B

IN1A + IN2A NA Checked

One DC motor unidirectional A low overcurrent,
one bidirectional motor B

Table 1. Device parallel mode options (continued)

Parallel mode Two motors A Two motors B Motors configuration

GUI windows UM2022

18/101 DocID028967 Rev 2

IN1B + IN2B Unchecked NA

One bidirectional motor A, one DC motor unidirectional B
low overcurrent

IN1B + IN2B Checked NA

Two DC motor unidirectional A, one bidirectional motor B
low current

IN1A + IN2A

IN1B + IN2B
NA NA

Two DC motor unidirectional low current

IN1A + IN1B

IN2A + IN2B
NA NA

Two DC motor unidirectional high current

Table 1. Device parallel mode options (continued)

Parallel mode Two motors A Two motors B Motors configuration

DocID028967 Rev 2 19/101

UM2022 GUI windows

101

3.2.4 STSPIN220 stepper command panel

Figure 10 shows the main panel for the STSPIN220.

Figure 10. Main panel for STSPIN220

The command section collects all commands. Figure 11 shows the commands allowed to
control the STPIN220.

Figure 11. STSPIN220 stepper command panel

GUI windows UM2022

20/101 DocID028967 Rev 2

Move

Clicking on the Move button, a move command is sent to the current active device. The
motion direction is selected through the FW (forward) and BW (backward) buttons and the
number of steps is set by a numeric box next to the button. This value goes from 0 to
4194303. You can directly write it within the box or you can vary it using up and down
arrows.

The Move command can be also sent pushing the Return key in the numeric box.

Run

The Run button sends a run command to the selected device. The direction is selected
through the FW (forward) and BW (backward) button.

Speed

The value range of the speed is from 0 to 10000 (expressed in step/s) and can be directly
written in the box or it can be changed using the up and down arrows or the horizontal slide.

Parameters

If the HiZ stop box is checked, at the end of the motion the outputs power bridges are all
turned off, otherwise they are kept enabled. The deceleration torque is kept for the Dwelling
time (ms) - waiting time before the hold torque or the tristate is set

STBY/RESET

If selected the device is forced into the low consumption mode.

DocID028967 Rev 2 21/101

UM2022 GUI windows

101

3.2.5 STSPIN240 dual brush DC command panel

Figure 12 shows the main panel for the STSPIN240.

Figure 12. Main panel for STSPIN240

GUI windows UM2022

22/101 DocID028967 Rev 2

The command section collects all commands. Figure 13 shows the commands allowed to
control the STPIN240.

Figure 13. STSPIN240 dual brush DC command panel

Parameters of each power bridge (A and B) can be set in the dedicated section (OUTA and
OUTB).

Inputs signals (IN1A and IN1B)

The inputs PWM frequency can be set by a numeric box in the INnPWM freq field in the
bottom right side of the panel. This value goes from 10 to 100 kHz with a step of 10 kHz, you
can directly write it within the box or you can vary it using the up and down arrows.

The value range of the input signal duty-cycle VOLTAGE can be varied from 0 to 100% and
can be directly written in the box or changed using the up and down arrows or the horizontal
slide.

RUN and DIRECTION

The RUN button sends a run command to the selected device. The direction of a current
mode controlled DC motor connected to the IN1A - IN2A or IN1B - IN2B is selected through
the DIRECTION drop-down menu: Forward or Backward options.

STOP

The STOP button sends a stop command to the selected bridge.

DocID028967 Rev 2 23/101

UM2022 GUI windows

101

Current reference (VRef freq and CURRENT)

The reference PWM frequency can be set in the VRef freq field in the bottom right side of
the panel.

The current reference value can be set varying the duty-cycle of the PWM signal: the value
range of the input signal duty-cycle CURRENT can be varied from 0 to 100% and can be
directly written in the box or changed using the up and down arrows or the horizontal slide.

Enable/Disable

The Enable/Disable buttons disable the power bridge. The Enable is automatically set
when the RUN button is clicked.

STBY/RESET

If selected the device is forced into the low consumption mode.

GUI windows UM2022

24/101 DocID028967 Rev 2

3.2.6 STSPIN250 dual brush DC command panel

Figure 14 shows the main panel for the STSPIN250.

Figure 14. Main panel for STSPIN250

Inputs signals (IN1A)

The inputs PWM frequency can be set by a numeric box in the INnPWM freq field in the
bottom right side of the panel. This value goes from 10 to 100 kHz with a step of 10 kHz, you
can directly write it within the box or you can vary it using the up and down arrows.

DocID028967 Rev 2 25/101

UM2022 GUI windows

101

The value range of the input signal duty-cycle VOLTAGE can be varied from 0 to 100% and
can be directly written in the box or changed using the up and down arrows or the horizontal
slide.

RUN and DIRECTION

The RUN button sends a run command to the selected device. The direction of a current
mode controlled DC motor connected to the input is selected through the DIRECTION drop-
down menu: Forward or Backward options.

STOP

The STOP button sends a stop command to the bridge.

BRAKE when Stop

If the BRAKE when Stop button is ON, pushing the STOP button will cause both high-side
power MOSFET of the interested bridge to turn ON, making a short-circuit across the motor
winding.

Current reference (VRef freq and CURRENT)

The reference PWM frequency can be set in the VRef freq field in the bottom right side of
the panel.

The current reference value can be set varying the duty-cycle of the PWM signal: the value
range of the input signal duty-cycle CURRENT can be varied from 0 to 100% and can be
directly written in the box or changed using the up and down arrows or the horizontal slide.

Enable/Disable

The Enable/Disable buttons disable the power bridge. The Enable is automatically set
when the RUN button is clicked.

STBY/RESET

If selected the device is forced into the low consumption mode.

3.2.7 Stop buttons

At the bottom of the command section the stop commands can be found. Clicking on the
HardStop, HardHiZ, SoftStop or SoftHiZ buttons the respective command is sent to the
selected device.

The L6474 device and has two more buttons allowing to enable or disable the power
bridges.

Figure 15. Stop buttons for L6470, L6472, L6480, L6482,powerSTEP01 and STSPIN220

Figure 16. Stop buttons for L6474

GUI windows UM2022

26/101 DocID028967 Rev 2

3.2.8 Status panel

The status panel shows the last STATUS register value of the current active device. This
panel is updated every time the STATUS register is read through a GetStatus or a
GetParam command.

The Read Status button allows reading the STATUS register. The Read and Clear Status
button read the register and clear the failure conditions by sending a GetStatus command.

If the Autorefresh box is checked, the display is automatically updated at selected System
polling _System_pollingrate, but error/failure flags are not cleared (GetParam command is
used to get the STATUS value instead of GetStatus command).

Detailed differences between the GetParam and GetStatus command can be found on the
device datasheet.

Not all status description are applicable to all type of the device. See from Figure 17 to
Figure 20 to verify which status is applicable to your selected device.

Figure 17. Status panel for L6470, L6472, L6480, L6482 and powerSTEP01

DocID028967 Rev 2 27/101

UM2022 GUI windows

101

Figure 18. Status panel for L6474

Figure 19. Status panel for L6208

Figure 20. Status panel for L6206

GUI windows UM2022

28/101 DocID028967 Rev 2

Figure 21. Status panel for STSPIN220

Figure 22. Status panel for STSPIN240 and STSPIN250

HiZ

The HiZ LED indicates the high impedance status: if it is on (green), the device outputs are
disabled, otherwise the outputs are active (black).

The LED status is related to the HiZ bit value of the STATUS register according to Table 2.

UVLO

When the UVLO LED is red an undervoltage or the reset/power-up event occurred. If it is off
(black) no fails are present.

When using an L648x or the powerSTEP01 device, the LED reports the UVLO_ADC failure
through a yellow light.

Table 2. HiZ status

HiZ LED Description

1

Device outputs disabled

0

Device outputs active

DocID028967 Rev 2 29/101

UM2022 GUI windows

101

The LED status is related to the UVLO bit or eventually to the UVLO_ADC bit values of the
STATUS register according to Table 3.

OCD

The OCD LED indicates that an overcurrent event has been detected: if it is on (red) an
overcurrent event occurred; otherwise no fails are present (black).

The LED status is related to the OCD bit value of the STATUS register according to Table 4.

Thermal status

When a device of the L647x family is used, the LED status is related to TH_WRN and
TH_SD bit values.

When a device of the L648x family or powerSTEP01 is used, it is related to the TH_STATUS
parameter value.

Table 3. UVLO status

UVLO
UVLO_ADC

(L648x or powerSTEP01)
LED Description

1 1

No failure

1 0

UVLO on ADC event

0 X

UVLO or reset/power-up event

Table 4. OCD status

OCD LED Description

1

No failure

0

Overcurrent event

GUI windows UM2022

30/101 DocID028967 Rev 2

The relations are described in Table 5.

Stall A and Stall B

Stall A and Stall B LEDs indicate a stall detection warning. If the LED is on (red) a stall
event occurred in the respective bridge; no failures are present otherwise (black).

The LED statuses are related to the STEP_LOSS_A and STEP_LOSS_B bit values of the
STATUS register according to Table 6.

Note: This indication is available in the L6470 and L6480 devices only.

Table 5. Thermal status

TH_WRN
(L647x)

TH_SD
(L647x)

TH_STATUS (L648x
and powerSTEP01)

LED Description

1 1 00

The device temperature is below the warning
threshold.

0 1 01

The warning temperature has been reached.

0 0 10

The device temperature reached the shutdown
threshold: a thermal shutdown event occurred.

NA NA 11

A device shutdown event occurred (L648x only).

1 0 NA NA Invalid condition.

Table 6. Stall A or Stall B status

STEP_LOSS_X LED Description

1

No failure

0

A stall event occurs

DocID028967 Rev 2 31/101

UM2022 GUI windows

101

BUSY

The BUSY LED is turned on (yellow) during a command execution. When it is off (black),
the last command has been executed and the device is idle.

The LED status is related to the BUSY bit value of the STATUS register according to
Table 7.

SW event

If the SW event LED is on (yellow), the SW input has been forced low (switch turn-on
event); otherwise no falling edges has been detected on the SW input (black).

The LED status is related to the SW_EVN bit value of the STATUS register according to
Table 8.

SW status

The SW status LED indicates the SW input status: if it is on (green) the SW input is low
(switch closed); otherwise (black) the SW input is high (switch open).

The LED status is related to the SW_F bit value of the STATUS register according to
Table 9.

Table 7. Busy status

BUSY LED Description

1

Last command executed, idle device

0

Command execution

Table 8. SW event status

SW_EVN LED Description

0

No SW input event

1

SW input pin transition event (falling edge)

Table 9. SW status

SW_F LED Description

0

SW input high (external switch open)

1

SW input low (external switch closed)

GUI windows UM2022

32/101 DocID028967 Rev 2

StepClock mode

If the StepClock mode LED is on (green), the device is operating in the step-clock mode;
otherwise the device is operating in the standard mode (black).

The LED status is related to the SCK_MOD bit value of the STATUS register according to
Table 10.

Command error

If the Command error LED is on (yellow), a wrong or a not performable command has been
sent to the device; otherwise all sent commands have been correctly executed (black).

When a device of the L647x family is used, the LED status is related to WRONG_CMD and
NOTPERF_CMD bit values.

When a device of the L648x family or powerSTEP01 is used, it is related to the
CMD_ERROR parameter value.

The relations are described in Table 11.

Table 10. StepClock mode status

SCK_MOD LED Description

0

Device operating in standard mode

1

Device operating in step-clock mode

Table 11. Command error status

NOTPERF_CMD
(L647x)

WRONG_CMD
(L647x)

CMD_ERROR
(L648x or

powerSTEP01)
LED Description

0 0 0

All sent commands correctly executed

X 1 NA

A wrong command is sent to the device
(L647x).

1 X NA

The sent command cannot be performed

NA NA 1

The command received by SPI cannot be
performed or it is wrong (L648x)

DocID028967 Rev 2 33/101

UM2022 GUI windows

101

Motor status

The Motor status icon indicates the current status of the motor. Different icons represent
the acceleration, deceleration, constant speed and holding status in both directions.

For the L6470, L6472, L6480, L6482 and powerSTEP01, the displayed icon depends on
DIR and MOT_STATUS parameters of the STATUS register according to Table 12.

For the L6474 and STSPIN220, the displayed icon depends on the DIR register and
MOT_STATUS command according toTable 13.

Table 12. Motor status for L6470, L6472, L6480, L6482 and powerSTEP01

Motor Status DIR MOT_STATUS LED

Stopped X 00

Accelerating in forward direction 1 01

Decelerating in forward direction 1 10

Running in forward direction 1 11

Accelerating in backward direction 0 01

Decelerating in backward direction 0 10

Running in backward direction 0 11

Table 13. Motor Status for L6474 and STSPIN220

Motor Status DIR MOT_STATUS LED

Stopped X 0

Running in forward direction 1 1

Running in backward direction 0 1

GUI windows UM2022

34/101 DocID028967 Rev 2

EN A, EN B and EN

The EN A and EN B LEDs indicate the status of the EN_A and EN_B pin of the L6206. The
EN LED indicates the power stage status of the STSPIN240 and STSPIN250.

The LED status is related to the enable signals according to Table 14.

EN A Fail, EN B Fail, EN Fail and EN Fault

If the Failure LED is on (red), a failure has been detected on the device.

The LED status is related to the failure status according to Table 15.

Table 14. EN A / EN B status

LED Description

Enable pin high

Enable pin low

Table 15. EN A Fail, EN B Fail, EN Fail and EN Fault

LED Description

-

Failure has been detected

DocID028967 Rev 2 35/101

UM2022 GUI windows

101

3.3 Wizard

The wizard window helps the user to configure the devices by using predefined values
depending on the hardware (board, motor, etc.). Clicking on the button in the toolbar or
selecting Wizard in the Tools menu opens the Wizard panel.

Figure 23. Wizard configuration panel

The wizard can modify existing configuration or create new one. When the configuration is
finished, it can be send to the connected device and saved to a configuration file. For all
panels, except the last Apply and save settings, clicking the Next button displays the next
panel.

At any time you can return backward using the Back button.

If necessary, a check of the entered value is done. If there's an error, a popup window will
display the error message and the next panel will be displayed only if the check is passed. If
possible, numeric boxes provoking the error are identified with an exclamation point and the
error is displayed when the mouse is on the exclamation icon, an example is shown in
Figure 24.

Figure 24. Wizard error example

GUI windows UM2022

36/101 DocID028967 Rev 2

 Configuration

In the wizard panel, you can choose an existing configuration file by clicking the Browse
button. When the file is selected, use the Load button to load the file in the wizard. After
loading the configuration, you can apply it to the current selected device. When the wizard is
launched at the startup, the selected device is the first in the chain.

Note: If no configuration is set, the wizard will use the default values.

 Startup option

The Always show this wizard at startup checkbox allows disabling or enabling the launch
of the wizard at the startup. When it is disabled, you can still launch the wizard clicking on
the button in the toolbar or selecting Wizard in the Tools menu.

Only for the powerSTEP01 device it is possible to choose the Configuration Mode: a Voltage
Mode or a Current Mode Configuration are available (see Figure 25).

Figure 25. Wizard configuration selection panel (powerSTEP01 only)

DocID028967 Rev 2 37/101

UM2022 GUI windows

101

3.3.1 Voltage mode driving settings panel

Figure 26. Wizard voltage mode driving panel

BEMF Compensation

 Application parameters:

– VS is the supply voltage.

– Holding current is the target r.m.s. current when the motor is stopped.

– Ke is the electric constant of the motor. It can be measured through an
oscilloscope.

 Motor parameters

– Motor phase inductance is the inductance of the motor phases.

– Motor phase resistance is the resistance of the motor phases.

By clicking the Check button, entered values are computed using internal algorithms, if
result values are out of ranges, a popup window will be displayed.

 Low speed optimization

If check, enables the Low Speed Optimization at the selected min. speed in the numeric
box.

 Supply Voltage Compensation

The checkbox Enable Supply Voltage Compensation updates the EN_VSCOMP register,
if checked; the motor supply voltage compensation is enabled and the ADCIN Calibration
button is enable. Clicking the ADCIN Calibration button, a new window is open to help the
user to calibrate the ADCIN.

GUI windows UM2022

38/101 DocID028967 Rev 2

Figure 27. ADCIN calibration

The windows suggests how the voltage divider must be set by reading the ADC_OUT
register. The register must be equal to 00010000.

3.3.2 Advanced current control panel

Figure 28. Advanced current control settings panel

DocID028967 Rev 2 39/101

UM2022 GUI windows

101

 CM Configuration

– Minimum ON time box contains the TON_MIN register value. Allowed formats are
decimal (e.g. '3.5') and hexadecimal (e.g. '0x5').

– Minimum OFF time box contains the TOFF_MIN register value. Allowed formats
are decimal (e.g. '3.5') and hexadecimal (e.g. '0x5').

– Max fast decay and Max fast decay @ step change boxes contain respectively
the TOFF_FAST and the FAST_STEP parameters (T_FAST register). Allowed
formats are decimal (e.g. '12') and hexadecimal (e.g. '0x9').

– Target switching time box contains the TSW parameter of the CONFIG register.
Allowed formats are decimal (e.g. '40') and hexadecimal (e.g. '0x36').

– Current
For the L6482 and powerSTEP01: Acc. current, Dec. current, Run current and
Hold current boxes show the TVAL_X register values expressed in volts with the
converted value in Ampere using the RSense value (Vth = RSense * Ith).
For the L6472: Acc. current, Dec. current, Run current and Hold current are
expressed in Amperes of the reference voltage.
For the L6474: Hole Current boxes show the TVAL register in Amperes of the
reference voltage.

– Predictive current control (not applicable to the L6474)
Checking the Predictive current control box the predictive mode will be enabled.
Please, refer to the related datasheet section for more details.

 RSense (L6482 and powerSTEP01 only)

You can select a predefined value in the RSense list according to your board or select a
custom value. Pmax is used to check the power dissipation on the sense resistor.

3.3.3 Gate drivers settings panel

This tab is used to configure the gate drivers of the device.

You can select a predefined configuration depending of the evaluation board connected or
use custom values, in this case the Check button allows checking the entered value. For
the L648x devices, in the MOSFET Characteristic group you can enter the specific
parameters of the selected part number.

GUI windows UM2022

40/101 DocID028967 Rev 2

Figure 29. Gate drivers settings panel

Figure 30. Gate drivers settings panel (L648x only)

DocID028967 Rev 2 41/101

UM2022 GUI windows

101

The Gate current drop box selects the gate current between the available values (IGATE
parameter).

The Controlled current time, Blanking time and Dead time boxes contain the TCC,
TBLANK and TDT parameters respectively. Allowed formats are decimal (e.g. '250') and
hexadecimal (e.g. '0x1').

The Turn OFF boost time drop box enables the respective feature and selects the duration
of the boost time (TBOOST parameter).

The VCC value and UVLO thresholds drop boxes select the output voltage of the VCC
voltage regulator and set the UVLO protection thresholds.

3.3.4 Speed profile settings panel

This tab collects all the device parameters that are related to speed profile boundaries.

Figure 31. Wizard speed profile settings

Note: Full Step Speed is not available for the L6474 device.

The values can be changed writing the new value in a common format (step/s2 for
acceleration/deceleration and step/s for speed) or in the hexadecimal format using the '0x'
prefix. In the first case the value is rounded to the nearest available.

You can selected the current step resolution in the Step Mode drop-down menu.

GUI windows UM2022

42/101 DocID028967 Rev 2

3.3.5 Protection settings panel

Figure 32. Wizard protection setting panel

 MOSFET RdsON (L648x and powerSTEP01 only)
You can choose a predefined value of the RdsON by selecting the board in the list. If
you select Custom, you will be able to enter a desired value in the RdsON numeric
box.

 Protections
For the L648x and powerSTEP01, the overcurrent threshold is entered in volt, the
converted value depending on the RdsON is displayed at the left of the numeric box.
For other devices, the overcurrent threshold is entered directly in Ampere.

 Alarms
Select the error events that will cause the FLAG output to be forced low in the Alarm
check list.

DocID028967 Rev 2 43/101

UM2022 GUI windows

101

3.3.6 Apply and save settings panel

This last panel shows a summary of the values entered or computed from user input.

Figure 33. Wizard apply and save settings

You can save the configuration into a *.sfc file by clicking the Save Configuration to File
button. A save dialog box will open and allows choosing the save filename.

The configuration can be sent to the device by clicking the Write Configuration to Device
button. A popup window displays the result of the operation.

The Quit button closes the wizard, a popup window warns the user if the configuration has
not be saved.

3.4 Register map

The register map tool gives an overview of the current device register values. Clicking on
the icon in the toolbar or selecting Register map in the Tools menu opens the
Register Map panel.

If more than one device is connected to the communication board, the active device can be
selected through the drop list on the top right corner of the toolbar.

GUI windows UM2022

44/101 DocID028967 Rev 2

The registers are represented as rows of a table with information stored in different
columns:

 Name: contains the register mnemonic name.

 Address: indicates the register address in the hexadecimal format.

 Description: contains a brief description of the register content.

 Value: shows the current register “decoded” value.

 Hex: reports the value of the register in the hexadecimal format. This is the only
writable column and it can be used to change the register value.

 Default: reports the default value of the register

There are also columns that allow reading/writing registers:

 Clicking on the WR column buttons write the register value.

 Clicking on the RD column buttons read the register value.

 Clicking on the DEF column buttons set the register value to its default value.

 Checking the AWR boxes automatically write the register value every time its value in
the Hex column is changed.

Row colors are used to identify register status:

 Black text on the white background indicates that the register is writable and that the
displayed value is updated (GetParam or SetParam commands refreshed the Hex
column value).

 Red text on the white background indicates that the Hex column value has been
changed by the user but not written yet.

 Black text on the grey background indicates read-only registers.

 Black text on the green background indicates that the register is not really an IC
register but a parameter in the FW that acts like a register. For example (see
Figure 34), the STATUS register does not exist in the L6474, to ease the management
of the status a fake STATUS_CMD allows to easily get a status of the chip.

DocID028967 Rev 2 45/101

UM2022 GUI windows

101

Figure 34. Register Map (L6474 example)

Warning: Reading/writing rows are only displayed when the
communication board is correctly connected to the PC. They
will be hidden also when a script code is running.

3.4.1 Writing registers

Single registers can be written changing their value in the Hex column (hexadecimal format)
and clicking on the WR button.

When the Hex value is changed the Value column is immediately updated showing the new
decoded value, but the register is not written. This situation is indicated by the row text color
in red. This way you can “preview” how the new register value will affect the device
configuration without make this change effective.

You can set if a specific register has to be automatically written every time the Hex value is
changed checking the respective AWR column box.

GUI windows UM2022

46/101 DocID028967 Rev 2

Warning: When auto-write (AWR) is enabled, any accidental change in
the Hex column will cause the respective register be written.

You can also write the whole register map by clicking on the button. This way all
registers (whatever their value has been changed or not) will be written according to the
current Hex column value.

Clicking on the button all registers (whatever their value has been changed or not) will
be set to the respective default value.

Read-only registers are indicated with black text on the grey background rows.

Warning: If the ABS_POS register autorefresh in the main form is
enabled, the ABS_POS row is updated at the current polling
rate. This makes difficult to set the ABS_POS register to the
desired value.
If you want to change the ABS_POS register value, please
disable the Autorefresh option first.

3.4.2 Reading registers

Single registers can be read clicking on the RD button. The Hex and Value columns will be
updated according to the current register value. Unwritten changes (red text) will be rejected
(black text).

You can also read the whole register map by clicking on the button. This way all
registers will be read updating Hex and Value columns.

3.4.3 Loading and saving configurations

Clicking on the button saves the current device configuration. A file selection dialog will
be opened to choose if creating a new configuration file (*.dsc) or overwriting an existing
one.

Warning: Saved values are the Hex column ones, whatever they are
actually written into the device or not.

Configuration files can be loaded by clicking on the button; it opens a selection dialog
to choose the configuration file.

When it is loaded, the Hex column is updated, but no value is written into the device
(changed registers will be highlighted with red text) even if the respective AWR box is
checked. To write the configuration you should use the button or the WR column.

DocID028967 Rev 2 47/101

UM2022 GUI windows

101

3.5 Device configuration

This form allows configuring the connected devices. All registers content is displayed
through a user-friendly interface and the parameters are converted in a common format.

The device configuration form can be opened from the application main form toolbar clicking
on the button or selecting the Tools > Device configuration menu.

If more than one device is connected to the communication board, the active device can be
selected through the drop list on the top right corner of the toolbar.

The register map dialog while be updated accordingly to updated value in this form.

3.5.1 Open and save device configuration

Configuration files can be loaded clicking on the button. A file selection dialog will be
opened to choose the configuration file.

Warning: New configuration is NOT written into the device. To write the
new values the button should be used.

Clicking on the button saves the current device configuration. A file selection dialog will
be opened where you can choose to create a new configuration file (*.sfc) or overwrite an
existing one.

Warning: The configuration file includes ALL writable registers
(ABS_POS, MARK, etc.). Make sure that the value of these
registers is coherent with the desired one before saving the
configuration.

GUI windows UM2022

48/101 DocID028967 Rev 2

Opening and saving multiple device configurations

From the main form, it is possible to save and set the configuration of all the devices in the
chain at the same time.

Clicking on the button or selecting the File > Open menu, a dialog similar to Figure 35
is shown.

Figure 35. Open configuration group dialog box

Following these steps:

 Select which devices have to be configured checking the related box

 Write the target file path in the text box or browse it clicking on the “...” button

 Click on the OK button.

If one or more of the file does not exist an error message is shown. The new configurations
are immediately written into the devices.

Warning: The information included into a configuration file is strictly
related to the respective device (L6470, L6472, L6480 or
L6482). Any attempt to open a configuration file of a device
type into another one will cause an error.

DocID028967 Rev 2 49/101

UM2022 GUI windows

101

Clicking on the button or selecting the File > Save menu, a dialog similar to Figure 36 is
shown.

Figure 36. Save configuration group dialog box

Following these steps:

 Select which devices have to be configured checking the related box

 Write the target file path in the text box or browse it clicking on the “...” button

 Click on the OK button.

If one or more of the file already exist a warning message is shown. If one or more of the file
is read-only an error message is shown.

All the writable registers of the selected devices are updated before saving the
configuration.

3.5.2 Write and Read configuration

Changing the form control values does not modify the actual value of the device registers.

Configuration is written into the device and changes are made effective by clicking on the
 button or clicking on the Apply button.

Clicking on the OK button the new configuration is written into the selected device and the
form is closed. Clicking on the “Cancel” button the form is closed without writing the new
configuration into the selected device.

Actual configuration can be loaded clicking on the button.

Default device configuration can be set clicking on the button.

GUI windows UM2022

50/101 DocID028967 Rev 2

3.5.3 Speed Profile tab

This tab collects all the device parameters that are related to speed profile boundaries.

The values can be changed writing the new value in a common format (step/s2 for
acceleration/deceleration and step/s for speed) or in the hexadecimal format using the '0x'
prefix. In the first case the value is rounded to the nearest available. If a value greater than
the maximum is written, the change is ignored.

For example, the Acceleration can be set to 2008.164 step/s2 writing '2010' or '0x8A'.

Clicking on up and down buttons the parameter value is increased or decreased of one unit
according to its resolution.

Figure 37. Speed Profile tab

Note: Full-Step Speed is NOT available for the L6474 device.

DocID028967 Rev 2 51/101

UM2022 GUI windows

101

3.5.4 Phase current control tab (L6470, L6480 and powerSTEP01 in VM)

This tab lists all the parameters related to the voltage mode control. Values in numeric boxes
can be changed writing the new value or using up/down arrows.

Figure 38. Phase current control tab (L6470, L6480 and powerSTEP01 in VM)

 Duty-cycle

The Acc. duty-cycle, Dec. duty-cycle, Run duty-cycle and Hold duty-cycle boxes show
KVAL_X register values expressed in the percentage format. Allowed formats are decimal
(e.g. '0.25'), percentage (e.g. '25 %') and hexadecimal (e.g. '0x40').

 BEMF

The Intersect Speed box contains the INT_SPEED register value. Allowed formats are
decimal (e.g. '230.5') and hexadecimal (e.g. '0x53A').

The Starting Slope, Acc. Final Slope and Dec. Final Slope correspond to BEMF
compensation slopes. Allowed formats are decimal (e.g. '0.00048') and hexadecimal (e.g.
'0x1F').

Clicking on the BEMF Compensation tool button opens the BEMF compensation tool (see
Section 3.6 on page 58).

 PWM Frequency

The PWM frequencies are listed according to the oscillator frequency, F_PWM_INT and
F_PWM_DEC values. The drop-down menu shows the current frequency, the Integer
division and the Multiplier text box show F_PWM_INT and F_PWM_DEC values.

Changing the selected frequency in the drop-down menu will update the Integer division and
Multiplier text box. Changing the Integer division and Multiplier text box will update the
frequency in the combo-box.

GUI windows UM2022

52/101 DocID028967 Rev 2

 Motor supply voltage compensation

The checkbox updates the EN_VSCOMP bit in the register. This bit sets if the motor supply
voltage compensation is enabled or not.

 Low speed optimization

If checked, enable the Low speed optimization at the selected minimum speed in the
numeric box.

 Ktherm

This setting corresponds to the K_THERM register, it is used to compensate the phase
resistance increment due to the temperature rising.

3.5.5 Phase current control tab (L6472, L6482, L6474, and powerSTEP01 in
CM)

All the parameters related to the advanced current control are listed in this tab. Values in
numeric boxes can be changed writing the new value or using up/down arrows.

Figure 39. Phase current control tab for current mode devices (L6472, L6482 and
powerSTEP01 in CM)

DocID028967 Rev 2 53/101

UM2022 GUI windows

101

Figure 40. Phase current control tab for current mode device (L6474)

 Current

For the L6472, L6482, L6474 and powerSTEP01, the Acc. current, Dec. current, Run
current and Hold current boxes show TVAL_X register values expressed in Amperes or
the reference voltage expressed in Volts in case of the L6482 and powerSTEP01 device.
Allowed formats are decimal (e.g. '0.25') and hexadecimal (e.g. '0x40').

For the L6474, current boxes show the TVAL register (holding current).

 Decay

The Minimum ON time and Minimum OFF time boxes contain respectively the TON_MIN
and TOFF_MIN registers value. Allowed formats are decimal (e.g. '3.5') and hexadecimal
(e.g. '0x5').

The Max fast decay and Max fast decay @ step change boxes contain respectively the
TOFF_FAST and FAST_STEP parameters (T_FAST register). Allowed formats are decimal
(e.g. '12') and hexadecimal (e.g. '0x9').

 Target switching time

The Target switching time box contains the TSW parameter of the CONFIG register.
Allowed formats are decimal (e.g. '40') and hexadecimal (e.g. '0x36').

 External torque regulation

Checking the External torque regulation box the device will use the ADCIN voltage to set
the TVAL value instead of the respective registers. In this case please check that the ADCIN
input is correctly driven.

 Predictive current control (not available for L6474)

Checking the Predictive current control box the predictive mode will be enabled. Please,
refer to the related datasheet section for more details.

GUI windows UM2022

54/101 DocID028967 Rev 2

3.5.6 Gate driving tab (only for L6480, L6482 and powerSTEP01)

This tab is used to configure the gate drivers of the device.

Figure 41. Gate driving tab

 The Gate current drop box selects the gate current between the available values
(IGATE parameter).

 The VCC value and UVLO thresholds drop boxes select the output voltage of the
VCC voltage regulator and set the correspondent UVLO protection thresholds.

 The Controlled current time, Blanking time and Dead time boxes contain the TCC,
TBLANK and TDT parameters respectively. Allowed formats are decimal (e.g. '250')
and hexadecimal (e.g. '0x1').

 The Turn OFF boost time drop box enables the respective feature and selects the
duration of the boost time (TBOOST parameter).

DocID028967 Rev 2 55/101

UM2022 GUI windows

101

3.5.7 Others tab

This tab is used to configure others device features.

Figure 42. Others tab

 Thresholds

The Overcurrent detection and stall detection thresholds can be set through the respective
numeric box. Values can be changed by writing the new value in the decimal or in the
hexadecimal format using the '0x' prefix. Up and down arrows can be used also.

If the Overcurrent shutdown box is checked the overcurrent events will cause the power
stage bridges to turn-off.

 Step Mode

You can selected the current step resolution in the Step Mode list and configure and enable
the synchronization signal (BUSY/SYNC device output) in the Synch. Mode list.

The output slew-rate is selected using the Slew-rate list.

 Alarms

Select the error events that will cause the FLAG output to be forced low in the Alarm
enabled check list.

To enable HardStop interrupt on the SW input falling edge the Switch turn-on causes
HardStop box needs to be checked, otherwise the SW input does not interfere with the
motor motion.

 Clock settings

Device clock configuration is shown on a dedicated panel: all possible clock configuration
can be set.

GUI windows UM2022

56/101 DocID028967 Rev 2

The Clock source: Internal enables the integrated 16 MHz oscillator, External will use an
external clock source.

External source type: Direct if the clock is directly applied to the OSCIN input,
Xtal/Reson. if a resonator or a crystal have been connected.

Clock frequency: selects the current clock frequency. When an internal oscillator is used,
this value is forced to 16 MHz.

OSCOUT clock frequency: select the frequency that will be supplied by the OSCOUT pin
(available with the internal oscillator only).

In case of the L6480, L6482 and powerSTEP01 devices the External clock watchdog
checkbox is available: when it is checked the device is protected from the failures of the
external clock source.

3.5.8 Stepper tab (L6208 only)

This tab lists all the parameters related to the L6208 device. Values in numeric boxes can be
changed writing the new value or using up/down arrows.

Figure 43. Stepper tab (L6208 only)

 Duty-cycle

The Acc. duty-cycle, Dec. duty-cycle, Run duty-cycle and Hold duty-cycle boxes show
DCVAL_X parameters values expressed in the percentage format. Allowed formats are
decimal (e.g. '0.25'), percentage (e.g. '25 %') and hexadecimal (e.g. '0x40').

DocID028967 Rev 2 57/101

UM2022 GUI windows

101

 Acceleration and deceleration

This tab collects all the device parameters that are related to speed profile boundaries.

The values can be changed writing the new value in a common format (pps2) or in the
hexadecimal format using the '0x' prefix. Clicking on up and down buttons the parameter
value is increased or decreased of one.

If a value greater than the maximum is written, the change is ignored.

 Step Mode

The Step Mode allows the user to select between Normal, Half Step and Microstepping.

The Micro Step Mode selects the microstepping mode number of microsteps per period/4
and it is available only in the microstepping mode.

 Decay Mode

The Decay Mode allows to select a Fast or Slow decay mode.

 Vref freq

The device VREF PWM frequency can be tuned by using the VREF freq. (KHz) box.

3.5.9 Stepper tab (STSPIN220)

This tab lists all the parameters related to the STSPIN220 device. Values in numeric boxes
can be changed by writing the new value or using the up/down arrows.

Figure 44. Stepper tab (STSPIN220 only)

GUI windows UM2022

58/101 DocID028967 Rev 2

Duty-cycle

The Acc. duty-cycle, Dec. duty-cycle, Run duty-cycle, and Hold duty-cycle boxes show
DCVAL_X parameters values expressed in the percentage format. Allowed formats are
decimal (e.g. '0.25'), percentage (e.g. '25%') and hexadecimal (e.g. '0x40').

Acceleration and deceleration

This tab collects all the device parameters that are related to speed profile boundaries.
The values can be changed writing the new value in a common format (pps2) or in the
hexadecimal format using the '0x' prefix. Clicking on the up and down buttons the parameter
value is increased or decreased of one.

If a value greater than the maximum is written, the change is ignored.

Step Mode

The Step Mode allows the user to select between normal, half step and microstepping.
The Micro Step Mode selects the microstepping mode number of microsteps per period/4
and it is available only in the microstepping mode.

Vref freq

The device VREF PWM frequency can be tuned by using the VREF freq. (KHz) box.

Automatic full Step mode

If the Automatic full Step mode is selected and if the Boost Thr. speed is reached the
motor is automatically controlled in the full step mode.

3.6 BEMF compensation tool

This tool helps the user to set the BEMF compensation parameters according to your
application settings. It can be opened from the application main form clicking on the
button or selecting BEMF compensation in the Tools menu.

If more than one device is connected to the communication board (daisy chain
configuration), the active device can be selected through the drop list on the top right corner
of the toolbar.

DocID028967 Rev 2 59/101

UM2022 GUI windows

101

Figure 45. BEMF compensation panel

3.6.1 Setting application and motor parameters

The BEMF compensation algorithm is based on the application requirements, as the supply
voltage, target current and motor characteristics.

In the Application parameters section the motor supply voltage and load currents need to
be set:

 VS is the supply voltage.

 Holding current is the target r.m.s. current when the motor is stopped.

 Acceleration target current is the target r.m.s. current when the motor is accelerating.

 Deceleration target current is the target r.m.s. current when motor is decelerating.

 Running target current is the target r.m.s. current when the motor is running at
constant speed.

By checking the Keep target currents linked checkbox, acceleration, deceleration and
running target currents are forced to the same value (Running target current).

GUI windows UM2022

60/101 DocID028967 Rev 2

In the Motor parameters section the motor characteristics need to be set:

 Ke is the electric constant of the motor. It can be measured through an oscilloscope.

 Motor phase inductance is the inductance of the motor phases.

 Motor phase resistance is the resistance of the motor phases.

3.6.2 Compensation values evaluation

When the application parameters and motor characteristics have been inserted, the device
register values can be calculated clicking on the Evaluate button.

Resulting configuration settings are showed on the respective numeric box in the
hexadecimal format, implemented compensation curves are shown on the graph on the top
of the panel.

If the compensation algorithm fails to evaluate parameters, a warning message is displayed.

This error could be due to wrong application or motor data: for example you cannot obtain
a holding current of 1.5 A with a supply voltage of 10 V and phase resistance of 10
(maximum current value is 1 A).

Clicking on the Write button write the resulting compensation parameters into the device
registers.

Warning: The resulting compensation parameters COULD BE NOT the
optimal ones. Better performances can be obtained with fine
tuning of the parameters.

3.6.3 Saving and loading application and motor parameters

Clicking on the button will save the current application and motor parameters. A file
selection dialog will be opened to choose if creating a new BEMF setup file (*.dsb) or
overwriting an existing one.

The BEMF setup files can be loaded by clicking on the button. Choose the target file in
the file selection dialog.

When the selected file is loaded, the new BEMF compensation parameters are immediately
evaluated (but NOT written into the device).

DocID028967 Rev 2 61/101

UM2022 GUI windows

101

3.7 Options panel

The Options panel allows setting some application options. It can be opened from the main
form selecting Options on the Tools menu.

Figure 46. Options panel (L647x, L648x, and powerSTEP01)

Figure 47. Options (L6206 and L6208)

 System polling

The application can be configured to cyclically refresh the value of the ABS_POS, SPEED
and STATUS registers. You can choose the refresh time in the Polling Time list.

The registers refresh can be enabled and disabled through relative checkboxes.

GUI windows UM2022

62/101 DocID028967 Rev 2

You can also enable the BUSY/FLAG lines automatic refresh. In this case, the line values
are shown in the main form status bar.

 Interface board

Here the SPI speed, SPI freq. list, can be selected.

3.8 Scripts editor

The script language is a tailor made Python extension for the SPINFamily device. The
scripting environment is based on IronPython, an open-source implementation of the
Python programming language on .NET.

3.8.1 Script Tool

The scripting environment is divided into 3 text boxes (see Figure 48):

 Script box: script code

 Output box: displays the script messages output (print function and the execution log
when verbose is set to true)

 Error box: displays the error messages.

Figure 48. Script form

The menu bar allows managing script files (File), start and stop scripting (Script).

The toolbar provides shortcuts to the most common commands as Open (),
Save (), Run script () and Stop script ().

DocID028967 Rev 2 63/101

UM2022 GUI windows

101

3.8.2 Writing a script

The SPINFamily evaluation software scripting environment is based on Python. If you do
not know this program language, please spend some time to read the brief introduction in
Appendix D: Python introduction on page 87.

More detailed information can be found on the Python documentation website.

If you already know the Python language, you can find below a detailed description of the
extensions implemented in order to easily use the device features.

When you start the tool, a new scripting file named “Untitled.py” is generated. You can
create a new scripting file anytime through the New command in the File menu.

You can load an existing script code (*.py files) clicking on the button or selecting
Open in the File menu. The script area shows the code, here you can edit it.

Save the changes by clicking on the button or selecting Save in the File menu. If you
want to save the script as a different file keeping the original one unchanged you can do it
selecting SaveAs in the File menu. If you are working on a new scripting file, Save and
SaveAs act in the same way.

You can restore the current script file to its last saved version using the Reload command in
the File menu.

Standard copy, cut, paste and undo commands can be used writing the script.

3.8.3 Execute the script

When the script code is ready, it can be executed selecting the Run script in the Script
menu or by clicking on the button. When the script is started, the script box is disabled
and the button is checked.

During the script execution output messages are displayed on the output box. At the end of
the script execution the result message is shown in the error box, the script box is enabled
and the button is unchecked.

The script execution can be stopped by selecting the Stop script in the Script menu or by
clicking on the button. Stopping the code execution a HardHiZ command will be sent to
all devices connected to the chain.

Warning: At the end of script execution all the variables are kept in the
memory. If needed, variable initialization is mandatory at
each script execution!

3.8.4 Python extensions

The integrated scripting environment extends the embedded Python features adding some
useful functions. Extended commands help the user to obtain complex behavior with low
effort.

Following the list of the extension commands made available to the user. In all the
command examples, it is assumed that the verbose script execution mode is enabled.

GUI windows UM2022

64/101 DocID028967 Rev 2

Verbose

Sets or clears the verbose the script execution mode. If no argument is passed, the actual
state is returned.

When the verbose mode is enabled, the description of each executed command is shown
on the output text box.

By default this mode is disabled.

Warning: At the end of the script execution the verbose mode status is
NOT restored to the default.

 syntax

Verbose (mode)

 parameters

mode - True = enable verbose mode, False = disable verbose mode (boolean)

 return

True if the verbose mode is enabled, False otherwise

 example

Verbose(True)

print Verbose()

Verbose(False)

Output:

Verbose mode set True

True

Verbose mode set False

Delay

Waits for the specified delay time expressed in milliseconds.

 syntax

Delay (msDelay)

 parameters

msDelay - delay time expressed in milliseconds (integer)

 return

Nothing

 example

Delay(30)

Output:

30 ms delay

DocID028967 Rev 2 65/101

UM2022 GUI windows

101

GetNdevices

Returns the number of devices connected to the communication board.

 syntax

GetNdevices()

 parameters

Nothing

 return

The number of devices

 example

print "The chain is composed by %i devices" % GetNdevices()

Output:

The chain is composed by 3 devices

AutoWaitBUSY

Sets or clears the automatic BUSY waiting mode. If no argument is passed, the actual state
is returned.

When this mode is enabled, the execution of any motion command waits for the release of
the BUSY line (WaitBUSY function with default timeout value).

By default this mode is disabled.

Warning: When the automatic BUSY waiting is enabled the
BUSY/SYNC output of every device in the chain should be
configured in the BUSY mode.

At the end of the script execution the automatic BUSY
waiting mode status is NOT restored to the default.

 syntax

AutoWaitBUSY (mode)

 parameters

mode - True = enable verbose mode, False = disable verbose mode (boolean)

 return

True if the automatic BUSY waiting mode is enabled, False otherwise

 example

AutoWaitBUSY(True)

print AutoWaitBUSY()

AutoWaitBUSY(False)

 Output:

BUSY synchronization set True

True

BUSY synchronization set False

GUI windows UM2022

66/101 DocID028967 Rev 2

WaitBUSY

Waits for the BUSY line of the chain is released. If the BUSY line is forced low for more than
sTimeout seconds, the function generates a timeout error stopping the script execution.

If no argument is passed, the timeout value is set to 60 seconds.

 syntax

WaitBUSY (sTimeout)

 parameters

sTimeout - Timeout value expressed in seconds (integer)

 return

Nothing

 example

Move(0, "fw", 1000)

WaitBUSY()

Move(0, "fw", 1000)

WaitBUSY(1)

Output:

Move - device: 0 dir: fw n.step: 0X0003E8

Timeout timer started

Waiting for BUSY line (Timeout @ 60 seconds)...

Timeout timer stopped

... BUSY line released

Move - device: 0 dir: fw n.step: 0X0003E8

Timeout timer started

Waiting for BUSY line (Timeout @ 1 seconds)...

... WaitBUSY timeout

Execution error: WaitBUSY timeout

ConfirmPopup

Displays a message box to get the user to confirm a question.

 syntax

ConfirmPopup(message, caption)

 parameters

message - confirm question text (string)

caption - title of the message box (string)

 return

True if “Yes” button has been clicked, False otherwise

 example

print ConfirmPopup("Question?","Ask user")

Output:

True

DocID028967 Rev 2 67/101

UM2022 GUI windows

101

StopMessage

Exits the script and shows the specified message in the script exit messages text box.

 syntax

StopMessage(message)

 parameters

message - exit message (string)

 return

Nothing

 example

if (ConfirmPopup("Stop the script execution?", "Quit")):

 StopMessage("Execution stopped by user")

Script exit message output:

Execution error: Execution stopped by user

LoadConfiguration

Loads the specified configuration file.

 syntax

LoadConfiguration(device, path)

 parameters

device - connected device ID (integer value)

path - file path (related to current active folder)

 return

Nothing

 example

SaveConfiguration(0, ".\\configuration\\cfg0.dsc")

LoadConfiguration(0, """.\configuration\cfg0.dsc""")

Output:

Saving configuration from .\configuration\cfg0.dsc file

Loading configuration from .\configuration\cfg0.dsc file

SaveConfiguration

Saves configuration into the specified file.

 syntax

SaveConfiguration(device, path)

 parameters

device - connected device ID (integer value)

path - file path (related to current active folder)

 return

Nothing

GUI windows UM2022

68/101 DocID028967 Rev 2

 example

SaveConfiguration(0, ".\\configuration\\cfg0.dsc")

LoadConfiguration(0, """.\configuration\cfg0.dsc""")

Output:

Saving configuration from .\configuration\cfg0.dsc file

Loading configuration from .\configuration\cfg0.dsc file

3.8.5 Device commands

The following functions can be used to send commands to the STSPIN family devices.
A detailed description of each command is available on the device datasheets.

In all command examples, it is assumed that the verbose script execution mode is enabled.

Table 16 shows the supported commands per device.

Table 16. Device commands summary

Command L64xx and PowerSTEP01 L62xx and STSPINxxx

NOP X X

SetParam X X

GetParam X X

Run X X

StepClock X -

Move X X

GoTo X -

GoTo_DIR X -

GoUntil X -

ReleaseSW X X

GoHome X -

ResetPos X -

ResetDevice X -

SoftStop X X

HardStop X X

SoftHiZ X X

HardHiZ X X

GetStatus X X

BUSY X X

FLAG X X

RESET X X

Enable X X

Disable X X

DocID028967 Rev 2 69/101

UM2022 GUI windows

101

NOP

Do nothing command.

 syntax

NOP(device)

 Parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

nothing

 example

NOP(0)

Output:

NOP - device: 0

SetParam

This command sets the param register of the selected device at the specified value. The
param value can be both the mnemonic name of the register in the string format or the
register address in the integer format.

Some registers can be written when the motor is stopped or in the high impedance state
only or cannot be written at all (read-only registers).

Please, refer to the related paragraph in the device datasheet for a detailed description of
the registers.

 syntax

SetParam(device, param, value)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

param - address of device register (integer value) or mnemonic name (string value)

value - register value (integer value)

 return

nothing

 example

SetParam(0,0x0D,1000)

SetParam(1,"ACC",0x1A)

Output:

SetParam - device: 0 param: 13 set value: 0X0003E8

SetParam - device: 0 param: ACC set value: 0X00001A

GUI windows UM2022

70/101 DocID028967 Rev 2

GetParam

This command returns the current value of the param register of the device. The param
value can be both the mnemonic name of the register in the string format or the register
address in the integer format.

When the verbose script execution mode is enabled, the register value is also printed in the
string version (formatted value).

 syntax

GetParam(device, param)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

param - address of device register (integer value) or mnemonic name (string value)

 return

Register value

 example

value = GetParam(0,0x15)

print "Full Step Speed = %d" % value

print GetParam(0,"MARK")

Output:

GetParam - device: 0 param: 21

Returned value: 596.093 Step/s

Full Step Speed = 39

GetParam - device: 0 param: MARK

Returned value: 1 Step

1

Run

This device makes the motor reaching the target speed in the direction dir.

The dir value can be provided in the formats shown in Table 17:

The speed value can be provided as integer or formatted string. When it is passed in the
string format, it should be a decimal number optionally followed by the “S/s” or “Step/s”
suffix.

Table 17. 'dir' value formats

Parameter format Forward direction Backward direction

string
FW, fw, Forward, forward, CW,

cw, Clockwise, clockwise

BW, bw, Backward, backward,
ccw, CCW, Counterclockwise,

counterclockwise

integer > 0 <= 0

boolean True False

DocID028967 Rev 2 71/101

UM2022 GUI windows

101

 syntax

Run(device, dir, speed)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

dir - target direction (boolean, integer or formatted string)

speed - target speed (integer value or formatted string)

 return

nothing

 example

Run(0,True,10000)

Run(1,"bw","100.5 S/s")

Output:

Run - device: 0 dir: True speed: 10000

Run - device: 1 dir: bw speed: 100.5 S/s

StepClock

This command switches the device in the step clock mode and imposes the direction dir.

The dir value can be provided in the formats shown in Table 17.

 syntax

StepClock (device, dir)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

dir - target direction (boolean, integer or formatted string)

 return

nothing

 example

StepClock(0,False)

Output:

StepClock - device: 0 dir: False

Move

This command makes the device moving the motor of nstep (micro)steps in the direction dir.

The dir value can be provided in the formats shown in Table 17.

 syntax

Move(device, dir, nstep)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

dir - target direction (boolean, integer or formatted string)

nstep - number of steps (integer value)

GUI windows UM2022

72/101 DocID028967 Rev 2

 return

Nothing

 example

Move(0,1,0x12345)

Output:

Move - device: 0 dir: 1 n.step: 0X012345

GoTo

This command makes the device reaching the pos absolute position through the shortest
path.

 syntax

Move(device, pos)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

pos - target absolute position (integer value)

 return

Nothing

 example

GoTo(0,98765)

Output:

GoTo - device: 0 abs.pos.: 0X0181CD

GoTo_DIR

The GoTo_DIR command makes the device reaching the pos absolute position imposing
the direction dir.

The dir value can be provided in the formats shown in Table 17.

 syntax

GoTo_DIR(device, dir, pos)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

dir - target direction (boolean, integer or formatted string)

pos - target absolute position (integer value)

 return

Nothing

 example

GoTo_DIR(0,"ccw",123456)

Output:

GoTo_DIR - device: dir: ccw target pos.: 0X01E240

DocID028967 Rev 2 73/101

UM2022 GUI windows

101

GoUntil

The GoUntil command makes the device reaching the target speed imposing a direction dir.
When the SW pin input is forced low (switch turn-on event) the ABS_POS register is reset to
zero (home position) or its current value is copied into the MARK register according to act
value; then the device performs a SoftStop command. If the SW_MODE bit of the CONFIG
register is low, the HardStop command is performed instead.

The dir value can be provided in the formats shown in Table 17.

The act value can be provided in the formats shown in Table 18.

The speed value can be provided as an integer or formatted string. When it is passed in the
string format, it should be a decimal number optionally followed by the “S/s” or “Step/s”
suffix.

 syntax

GoUntil(device, act, dir, speed)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

act - action (boolean, integer or formatted string)

dir - target direction (boolean, integer or formatted string)

speed - target speed (integer value)

 return

Nothing

 example

GoUntil(0,"home","bw",128)

GoUntil(0,"MARK","FW",2000)

Output:

GoUntil - device: 0 act: home dir: bw spd: 128

GoUntil - device: 0 act: MARK dir: FW spd: 2000

ReleaseSW

The ReleaseSW command makes the device moving at minimum speed imposing
a direction dir. When the SW pin input is forced high externally or by an internal pull-up
resistor (switch turn-off event), the ABS_POS register is reset to zero (home position) or its
current value is copied into the MARK register according to act value; then the device
performs a HardStop command.

The dir value can be provided in the formats shown in Table 17.

The act value can be provided in the formats shown in Table 18.

Table 18. 'act' value formats

Parameter format Sets ABS_POS to HOME Stores ABS_POS in MARK

string home, Home, HOME mark, Mark, MARK

integer > 0 <= 0

boolean True False

GUI windows UM2022

74/101 DocID028967 Rev 2

If the minimum speed value is lesser than 5 step/s or low speed optimization is enabled, the
motion is performed at 5 step/s.

 syntax

ReleaseSW(device, act, dir)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

act - action (boolean, integer or formatted string)

dir - target direction (boolean, integer or formatted string)

 return

Nothing

 example

ReleaseSW(0,True,False)

ReleaseSW(0,0,1)

Output:

ReleaseSW - device: 0 act: True dir: False

ReleaseSW - device: 0 act: 0 dir: 1

GoHome

The GoHome command makes the device reaching the home position (zero value of
ABS_POS register) through the shortest path.

 syntax

GoHome(device)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

Nothing

 example

GoHome(0)

output:

GoHome - device: 0

ResetPos

The command sets the device ABS_POS register to zero (home position).

 syntax

ResetPos(device)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

Nothing

DocID028967 Rev 2 75/101

UM2022 GUI windows

101

 example

ResetPos(0)

Output:

ResetPos - device: 0

ResetDevice

The ResetDevice command resets the device to the power-up conditions.

Warning: It is not recommended to reset the device when output
bridges are not in high the impedance state. Performing
HardHiZ or SoftHiZ commands before resetting the device is
recommended.

 Syntax

ResetDevice(device)

 Parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

Nothing

 example

ResetDevice(1)

Output:

ResetDevice - device: 1

SoftStop

The SoftStop command makes the device to immediately decelerate to zero speed and stop
the motor.

 syntax

SoftStop (device)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

Nothing

 example

SoftStop(0)

Output:

SoftStop - device: 0

GUI windows UM2022

76/101 DocID028967 Rev 2

HardStop

The HardStop command makes the device to immediately stop the motor with infinite
deceleration.

 syntax

HardStop (device)

 parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

Nothing

 example

HardStop(0)

Output:

HardStop - device: 0

SoftHiZ

The SoftHiz command makes the device decelerating to zero speed and then disabling the
power bridges.

 syntax

SoftHiz (device)

 Parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

Nothing

 Example

SoftHiZ(0)

Output:

SoftHiZ - device: 0

HardHiZ

The HardHiz command makes the device to immediately disable the power bridges.

 syntax

HardHiz (device)

 Parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

Nothing

 Example

HardHiZ(0)

Output:

HardHiZ - device: 0

DocID028967 Rev 2 77/101

UM2022 GUI windows

101

Enable

This command enables the selected power bridge.

 Syntax

Enable(device, target)

 Parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

target - bridge index (integer value: 0 the first bridge, 1 the second one if existing)

 example

Enable(0, 0)

Output:

Enable - device: 0 target : 0

Disable

This command disables the selected power bridge.

 Syntax

Disable(device, target)

 Parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

target - bridge index (integer value: 0 the first bridge, 1 the second one if existing)

 example

Disable(0, 0)

Output:

Disable - device: 0 target: 0

GetStatus

This command returns the device STATUS register value and clears the status bit flags.

When the verbose script execution mode is enabled, the STATUS value is also printed in the
string version (formatted value).

 Syntax

GetStatus(device)

 Parameters

device - device index (integer value: 0 the first device, 1 the second one, ...)

 return

The STATUS register value

 example

GetStatus(0)

Output:

GetStatus - device: 0

High Impedance state,

SW status: Open,

Motor status: Constant speed in Clockwise direction

GUI windows UM2022

78/101 DocID028967 Rev 2

BUSY

This command returns the status of the BUSY line.

 Syntax

BUSY()

 Parameters

None

 Return

True if the BUSY line of the chain is low, False otherwise

 Example

if(BUSY()):

 print "Device is busy!"

Output:

BUSY - True

Device is busy!

FLAG

This command returns the status of the FLAG line.

 Syntax

FLAG()

 Parameters

None

 Return

True if the FLAG line of the chain is low, False otherwise

 Example

FLAG()

SetParam(0, "SPEED", 0) # Try to write a read-only register

if(FLAG()):

 print "Alarm!"

Output:

FLAG - False

SetParam - device: 0 param: SPEED set value: 0X000000

FLAG - True

Alarm!

DocID028967 Rev 2 79/101

UM2022 GUI windows

101

RESET

This command returns the RESET line status when it is called without parameter.

It forces the RESET line at a specified status when it is called with a line status parameter.

Warning: It is not recommended to reset the device when the output
bridges are not in the high impedance state. Performing
HardHiZ or SoftHiZ commands before resetting the device is
recommended.

 Syntax

RESET()

RESET(value)

 Parameters

value - True: force reset (RESET line low), False: release reset (RESET line is high)

 Return

True if RESET line of the chain is low, False otherwise

 Example

RESET(True)

print RESET()

RESET(False)

print RESET()

Output:

RESET writing @ True

RESET reading

True

RESET writing @ False

RESET reading

False

Firmware update UM2022

80/101 DocID028967 Rev 2

Appendix A Firmware update

A.1 STEVAL-PCC009V2

A.1.1 Automatic update using the IBUUI updater

1. Start the IBUUI updater tool (by default in Start menu > All programs >
STMicroelectronics > SPINFamily Evaluation Tool)

2. Click on the “Start” button.

3. Follow the instructions provided by the tool.

If the automatic firmware update fails, follow the alternative procedure described in
Section A.1.2.

A.1.2 Manual update using the ST-LINK/V2 programmer

If the “IBUUI updater” software does not work as expected, the firmware can be updated
using the ST-LINK/V2 programmer or an equivalent tool.

1. Install the STM32 ST-LINK utility software from:
www.st.com/web/catalog/tools/FM147/SC1887/PF258168#.

2. Run the software.

3. Connect the STEVAL-PCC009V2 to the PC through the USB cable and to the
ST-LINK/V2 through the 20 poles connector.

4. Open the firmware file (fwpsin_pcc009v2_XXXX.hex). The file is located in the
“Firmware” folder in the installation folder of the SPINFamily evaluation tool. By default
a shortcut to the folder can be found in Start menu > All programs >
STMicroelectronics > SPINFamily Evaluation Tool.

5. Click on the “Connect to the target” button.

6. Click on the “Program verify” button.

7. Wait until the end of the process.

8. Close the application and reset the board.

DocID028967 Rev 2 81/101

UM2022 Firmware update

101

A.2 Discovery boards

A.2.1 Update through DFU

1. Download and install the latest version of the DfuSe software from:
www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1533/PF257916.

2. Open the BOOT jumper on the board (see the board user manual to locate the jumper
position).

3. Connect the board to the PC through the USB cable.

4. Wait for the board is properly identified by the OS as “STM Device in DFU mode”.

5. Run the DfuSe demonstration software (by default Start menu > All programs >
STMicroelectronics > DfuSe).

6. An “STM Device in DFU Mode” must be present in the list of the “Available DFU
Devices”. Else, it means that your board is not correctly configured or not connected to
the PC.

7. In the “Upgrade or Verify Action” group, click on the “Choose…” button.

8. Select the fwpspin_discoverykit_XXXX.dfu file. The file is located in the “Firmware”
folder in the installation folder of the SPINFamily evaluation tool. By default a shortcut
to the folder can be found in Start menu > All programs > STMicroelectronics >
SPINFamily Evaluation Tool.

9. Click on the “Upgrade” button.

10. Wait until the end of the process.

11. Close the BOOT jumper.

12. Close the application and reset the board.

A.2.2 Update through ST-LINK/V2 programmer

If the firmware update through the DFU does not work as expected, the firmware can be
updated using the ST-LINK/V2 programmer or an equivalent tool.

1. Install the STM32 ST-LINK utility software from:
www.st.com/web/catalog/tools/FM147/SC1887/PF258168#.

2. Run the software.

3. Connect the board to the PC through the USB cable and to the ST-LINK/V2 through the
20 poles connector.

4. Open the firmware file (fwpsin_discoverykit_XXXX.hex). The file is located in the
“Firmware” folder in the installation folder of the SPINFamily evaluation tool. By default
a shortcut to the folder can be found in Start menu > All programs >
STMicroelectronics > SPINFamily Evaluation Tool.

5. Click on the “Connect to the target” button.

6. Click on the “Program verify” button.

7. Wait until the end of the process.

8. Close the application and reset the board.

Firmware update UM2022

82/101 DocID028967 Rev 2

A.3 Nucleo platform

1. Verify that the embedded ST-LINK firmware is updated to the V2-1 revision.

2. Install the STLINK/V2-1 drivers from:
www.st.com/web/catalog/tools/FM147/SC1887/PF260217.

3. Connect the Nucleo development board to the PC through the USB cable.

4. The board is detected as a mass storage device named “NUCLEO”.

5. Look for the firmware file (guifw-STM32XXXX-nucleo.bin) fitting with the Nucleo
development board. The file is located in the “Firmware” folder in the installation folder
of the SPINFamily evaluation tool. By default a shortcut to the folder can be found in
Start menu > All programs > STMicroelectronics > SPINFamily Evaluation Tool.

6. Drag-and-drop the file into the “NUCLEO” device.

7. Reset the board.

DocID028967 Rev 2 83/101

UM2022 Daisy chain configuration (STEVAL-PCC009V2)

101

Appendix B Daisy chain configuration
(STEVAL-PCC009V2)

More demonstration boards can be connected in the daisy chain mode. This way you can
control up to eight motors using a single communication board (STEVAL-PCC009V2 only).

Figure 49. Daisy chain example

To drive two or more boards in daisy chain configuration:

1. Plug the interface board to the PC through the USB cable

2. If requested, install interface board drivers

3. Connect the interface board 10-pin connector to the SPI_IN connector of the first
demonstration board

4. Open the termination jumper of the demonstration board

5. Connect the SPI_OUT connector of the previous demonstration board to the SPI_IN
connector of the next one

6. Repeat point 4. and 5. for all the others boards of the chain except for the last one.

7. Check the termination jumpers of all the demonstration boards: all the jumpers except
the last one should be opened.

When the chain configuration is set, you can connect the interface board to the PC as usual.

Information about the termination jumper and the SPI connectors can be found in the
application note of the specific demonstration board.

Warning: Increasing the number of the devices connected in the chain
could degrade SPI communication performances. If
communication issues are found, try to reduce SPI clock
speed.

Motor electric constant (Ke) measurement UM2022

84/101 DocID028967 Rev 2

Appendix C Motor electric constant (Ke) measurement

A motor electric constant is the coefficient that relates the motor speed to the BEMF
amplitude. This value is usually not present on stepper motor datasheets, but it can be
easily measured by means of an oscilloscope.

1. First of all connect one of the motor phases to an oscilloscope channel.

Figure 50. Stepper motor

2. Set the oscilloscope trigger value to the rising or falling edge of the channel and set the
threshold value close to zero (few mV above or below zero).

3. Quickly turn the motor shaft (you can also do it by hand).

Figure 51. Ke measurement

4. Set oscilloscope time and voltage scales in order to display a sinewave during the
motor rotation.

5. Turn the motor until a “good” sinewave is obtained: a good sinewave keeps its
amplitude constant for at least 2 or 3 cycles.

This operation might require some attempts.

DocID028967 Rev 2 85/101

UM2022 Motor electric constant (Ke) measurement

101

Figure 52. Ke measurement - bad waveform

Figure 53. Ke measurement - good waveform

Measure the peak to the frequency ratio of the “good” sinewave. The resulting value is the
motor electric constant expressed in V/Hz.

Motor electric constant (Ke) measurement UM2022

86/101 DocID028967 Rev 2

Figure 54. Ke measurement - result

DocID028967 Rev 2 87/101

UM2022 Python introduction

101

Appendix D Python introduction

D.1 Python basics

Python is a complete programming language that allows developing full working
applications. The STSPIN family evaluation tool scripting feature makes available the power
of this language allowing users to write complex scripts with low effort.

Following a brief description of Python language basics, you can find more information at:
www.python.org.

D.2 Program syntax

Python syntax is based on following simple rules:

 Empty lines and lines filled with spaces are ignored

 All identifiers must start with a letter (A to Z or a to z) or an underscore (_)

 No punctuation characters (e.g. @, $, and %) should be used within identifiers
(underscore excluded)

 Identifiers are case sensitive (Dog is different from dog)

 All characters following the '#' symbol are considered as comments and then ignored
by the code interpreter

 Statements are grouped by an indentation (tab or space indention are both accepted,
but spaces are preferred) (see Section D.2.1)

 Single statements end with a carriage return

 A variable value is assigned by the equal sign '='

 Variables are defined through value assignments

 Strings can be enclosed in single quotes (') or double quotes (“) (see Section D.3.2)

 An escape character in string definitions is '\' (see Section D.3.2)

 Lists are defined enclosing indices values between square brackets ([…]) (see
Section D.3.3)

 List indices are enclosed between square brackets ([…]) (see Section D.3.3)

 Indices support slice notation through the colon ':'

 Numbers can be written in the hexadecimal form using the '0x' prefix (see
Section D.3.1)

Following an example of syntax of a Python program:

#I am a comment

A = 1 #variable A is defined and assigned

B = 0x64 # this is 100 in hex format

3D = 122 Not a valid identifier! It starts with a number!

_r4? = 34 Not a valid identifier! You cannot use punctuation chars (?)!

s = "#I'm not a comment! I'm a string!" # String in double quotes

s2 = 'I am a string too!' # String in single quotes

while B > A :

Python introduction UM2022

88/101 DocID028967 Rev 2

 # 'while' loop statements are grouped by indentation...

 A = A + 1 #New values assigned to A and B

 B = B - A

 if A == 3 : print "You can put inline single statement groups as this
one."

 if A == 5 :

 # end of while loop

seq = [2, 4, 6, 8, 10, 12] # This is a List

upseq = seq[3:] # This is equal to [8, 10, 12]

downseq = seq[:3] # This is equal to [2, 4, 6]

midseq = seq[2:4] # This is equal to [6, 8]

 # Empty lines are ignored

print "end"

#This is the end of the program

D.2.1 Lines and indentation

The Python language indicates blocks of the code by the line indentation, which is rigidly
enforced.

The programmer can specify a variable number of spaces in the indentation, but all
statements within the block must be indented by the same number of spaces.

Example

Wrong code (indentation error)

if (x > 0):

 # Block 1

 print "True result"

 a = 1 # wrong indentation: it should be aligned to previous command

else:

 # Block 2

 print "False result"

 a = 2

Correct code

if (x > 0):

 # Block 1

 print "True result"

 a = 1

else:

 # Block 2

 print "False result"

 a = 2

DocID028967 Rev 2 89/101

UM2022 Python introduction

101

Statements in the Python end with a new line. You can use the line continuation character (\)
to specify a multiline command.

Example

sum = value_a + \

 value_b + \

 value_c

You can use the semicolon (;) to insert multiple statements on the single line.

Example

x = 1; y = 2; print “Answer:”, x + y #output--> Answer: 3

D.2.2 Comments

A hash sign (#) that is not inside a string literal begins a comment. All characters after the #
and up to the physical line end are part of the comment, and the Python interpreter ignores
them.

Example

#I'm a comment

str = "#I'm not a comment! I'm a string!" # And I'm a comment too

D.2.3 Variables

Variables are nothing but reserved memory locations to store values. This means that when
a variable is created, some space in the memory is reserved. Based on the data type (see
Section D.3) of a variable, the interpreter allocates the memory and decides what can be
stored in the reserved memory. Therefore, by assigning different data types to variables,
integers, decimals, or characters in these variables can be stored.

Variable identifiers must start with a letter or an underscore and cannot include punctuation
and special characters but underscore. Python is a case-sensitive language thus an
A variable is different from a.

To define a variable a value should be assigned to it through the assignment operator '='
(see Section D.4.1 on page 93).

Example

counter = 100 # integer assignment

miles = 1000.0 # floating point

name = "Nemo" # string

Python introduction UM2022

90/101 DocID028967 Rev 2

D.2.4 Reserved words

The following list shows the reserved words in Python and in the xSpin device GUI
environment. These reserved words may not be used as constants or variables or any other
identifier names.

Reserved words in Python and in the xSpin device GUI environment

_IBUface else GoTo not SoftHiZ

and Except GoTo_DIR or SoftStop

Assert Exec GoUntil pass StepClock

break fh HardHiZ print SysInit

BUSY Finally HardStop raise try

CheckAssembly FLAG if RelaseSW Verbose

Class for import RESET while

ConfirmPopup From in ResetDevice with

continue GetNdevices is ResetPos yield

Def GetParam lambda return

Del GetStatus LoadConfiguration Run

Delay Global Move SaveConfiguration

elif GoHome NOP SetParam

DocID028967 Rev 2 91/101

UM2022 Python introduction

101

D.3 Python types

D.3.1 Numbers

Python supports different types of numbers:

 int (signed integers)

 long (long integers [can also be represented in octal and hexadecimal])

 float (floating point real values)

 complex (complex numbers)

Here are some examples:

D.3.2 Strings

Strings are formally groups of characters. A string is declared using the equal sign '='
followed by the string characters enclosed in single quotes or double quotes. Triple quotes
(“”” or ''') can be used to span the string across multiple lines.

If a single quote or a double quote character needs to be included (according to the
enclosing method) into the string, the escape character '\' needs to be added before it.

Example

#string declaration

strdq = "I'm a string saying \"Hello!\""

strsq = 'I\'m a string saying "Hello!"'

The two strings are formally the same: I'm a string saying "Hello!"

#multiline string

paragraph = """This is a

multiline string."""

Strings can be concatenated using the + operator and repeated using the * operator. Two
literal (not variable) strings can be concatenated omitting the + operator.

Examples of number types in Python

int long float complex

10 123456789L 0.0 3.14j

100 -0x1ABCDL 15.20 45.j

-786 0133L -21.9 9.322e-36j

080 0xABCDEFABCDEFABCDEFl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

Python introduction UM2022

92/101 DocID028967 Rev 2

Example

str1 = "Hello"

str2 = str1 + "World" # str2 = "HelloWorld"

str3 = 3*str1 # str3 = "HelloHelloHello"

str4 = "See" 'You' # str4 = "SeeYou"

Characters can be extracted from a string using indexing. String characters are enumerated
left to right starting from 0. Negative indexes are also allowed to start counting from the right
(-1 is the last character, -2 is the last but one and so on).

String characters cannot be changed.

Example

word = "STMicroelectronics"

print word[4] # print 'c'

print word[:3] # print 'STM'

print word[7:] # print 'electronics'

print word[-11:-3] # print 'electron'

word[2] = 'X' is not allowed!!! String characters cannot be changed this
way.

D.3.3 Lists

Lists are groups of values identified by an index. A list is declared using the equal sign '='
followed by the list items list separated by commas and enclosed between square brackets
([…]). The list items can be of different types. The list declarations do not need to use the
line continuation character (see Section D.2.1 on page 88).

Example

#List declaration

seq = [2, 3, "alpha", 'beta']

The list items can be extracted and manipulated using indices. The Index 0 is assigned to
the first item of the list, 1 to the second and so on. Negative indexes are also allowed to start
counting from the right (-1 is the last item of the list, -2 is the last but one and so on).

Example

A = seq[0] # A = 3

B = seq[2] # B = "alpha"

C = seq[-1] # C = 'beta'

Like strings, lists can be sliced, concatenated and copied (see Section D.3.2).

Example

A = seq[:2] # A = [2, 3]

B = seq[2:] # B = ["alpha", 'beta']

C = seq[1:-1] # C = [3, "alpha"]

D = seq[1:3] # D = [3, "alpha"]

E = 3 * D + 2 * A # E = [3, "alpha", 3, "alpha" , 3, "alpha", 2, 3, 2, 3]

copy = seq[:] # copy is a shallow copy of seq

DocID028967 Rev 2 93/101

UM2022 Python introduction

101

Unlike strings, list items can be individually changed. Slice assignments are also possible.

Example

seq[1] = 100 + seq[1] # seq = [102, 3, ["alpha", 'beta']

seq[1:3] = [103, 104] # seq = [102, 103, 104, 'beta']

seq[0:2] = [] # seq = [104, 'beta']

seq[1:1] = ["alpha", 105] # seq = [104, "alpha", 105, 'beta']

seq[:0] = [103, "gamma"] # seq = [103, "gamma", 104, "alpha", 105, 'beta']

seq[:] = [] # seq = [] (empty)

D.4 Python statements, functions and operators

D.4.1 Operators

Table 20 assumes a = 5, b = 10, s1 = ”Hello” and s2 = ”World”:

Table 19. Summary table

Operator Description

seq[i] = t Replace item i of seq list with t

seq[i:j] = st Replace items from i to j of seq list with st

seq[i:j] = [] Delete items from i to j of seq list

seq[i:i] = [x] Insert x items before item i of seq list

seq[0:0] = [x] Insert x items at the beginning of seq list

seq[len(seq): len(seq)] = [x] Insert x items at the end of seq list

Table 20. Examples with operators

Operator Description Examples

+ Addition and concatenation.
a + b ---> 15; s1 + s2 --->

“HelloWorld”

- Subtraction. a - b ---> -5

* Multiplication and repetition.
a * b ---> 50; s1 * a --->

“HelloHelloHelloHelloHello”

/ Division. b / a ---> 2

%
Modulus - divides the left hand operand by the right hand operand

and returns the remainder.
b % a ---> 0

**
Exponent - performs the exponential (power) calculation on the

operators.
b**a ---> 100,000

//
Floor Division - the division of the operands where the result is the

quotient in which the digits after the decimal point are removed.
9//2 is equal to 4 and 9.0//2.0 is

equal to 4.0

==
Checks if the values of the two operands are equal or not; if yes

then the condition becomes True.
(a == b) is not true

Python introduction UM2022

94/101 DocID028967 Rev 2

!=
Checks if the values of the two operands are equal or not; if the

values are not equal then the condition becomes True.
(a != b) is true

<>
Checks if the values of the two operands are equal or not; if the

values are not equal then the condition becomes True.
It is similar to != operator.

(a <> b) is true

>
Checks if the value of the left operand is greater than the value of

the right operand; if yes then the condition becomes True.
(a > b) is not true

<
Checks if the value of the left operand is lower than the value of the

right operand; if yes then the condition becomes True.
(a < b) is true

>=
Checks if the value of the left operand is greater than or equal to the
value of the right operand; if yes then the condition becomes True.

(a >= b) is not true

<=
Checks if the value of the left operand is lower than or equal to the
value of the right operand; if yes then the condition becomes True.

(a <= b) is true

= Simple assignment operator.
c = a + b will assign the value of a

+ b to c

+= Add AND assignment operator. c += a is equivalent to c = c + a

-= Subtract AND assignment operator. c -= a is equivalent to c = c - a

*= Multiply AND assignment operator. c *= a is equivalent to c = c * a

/= Divide AND assignment operator. c /= a is equivalent to c = c / a

%= Modulus AND assignment operator. c %= a is equivalent to c = c % a

**= Exponent AND assignment operator. c **= a is equivalent to c = c ** a

//= Floor Division and assigns a value. c //= a is equivalent to c = c // a

& Binary AND Operator.
(0xAC & 0x0F) ---> 0x0C (0000

1100)

| Binary OR Operator.
(0x30 | 0x0D) ---> 0x3D (0011

1101)

^ Binary XOR Operator.
(0xAA ^ 0xF0) ---> 0x5A (0101

1010)

~
Binary Ones Complement Operator is unary and has the effect of

'flipping' bits (bitwise not).
(~0x3F) ---> 0xC0 (1100 0000)

<< Binary Left Shift Operator. 0x13 << 2 ---> 0x4C (0100 1100)

>> Binary Right Shift Operator. 0x13 >> 2 ---> 0x04 (0000 0100)

and Logical AND operator. True and True is true

or Logical OR Operator. False or True is true

not Logical NOT Operator. not True is false

in True if it finds a variable in the specified list and false otherwise. “cat” in [“cat”, “dog”, “cow”] is True

not in
True if it not finds a variable in the specified list and false

otherwise.
“cat” not in [“cat”, “dog”, “cow”] is

False

Table 20. Examples with operators (continued)

Operator Description Examples

DocID028967 Rev 2 95/101

UM2022 Python introduction

101

D.4.2 The print statement

The print statement prints on the output window the result of the expression evaluation
followed by a carriage return. More than one expression result can be sent to the output if
a list of expressions, separated by commas, is added after the print keyword. A space is
added between each single expression result.

If a comma is written at the end of the statement, no carriage return is added.

Syntax

print expression [, expression, ...][,]

Example

l = "A"

n = 10

print 'Current Letter :', l

print 'Current Number:', n

print 'Letter', l,

print 'and number', n

#output:

#Current Letter : A

#Current Number: 10

#Letter A and number 10

D.4.3 The if-elif-else statement

The if-elif-else statement is used to conditionally execute the part of the code according to
the expression results.

The code after the if keyword is executed if the expression result is True; the program
execution exits the statement when elif keyword, else the keyword or the end of statement
are reached.

If the expression result is False the program execution jumps to the next elif keyword and
checks the related logic expression; hereafter the code is executed as elif is an if keyword.

If no elif keyword is present the program execution jumps to the else optional keyword and
executes the following statements; the program exits the statement otherwise.

Syntax

if expression:

 statement(s)

[elif] expression2:

 statement(s)

[elif] expression3:

 statement(s)

[else:]

 statement(s)

Python introduction UM2022

96/101 DocID028967 Rev 2

D.4.4 The while statement

The while statement is used to repeat the code execution according to an expression result.

The program checks the expression result: if it is True the statements following the while
keyword are executed; the program exits the statement otherwise. When the end of the
statement is reached, the program execution returns to the while keyword and the
expression result is checked again.

If an optional else keyword is put at the end of the statement, its code is executed before
exiting the statement.

Syntax

while expression:

 statement(s)

[else:]

 statements(s)

Example

num = 0

while num < 5:

 num += 1

 print "Iteration", num

#output:

#Iteration 1

#Iteration 2

#Iteration 3

#Iteration 4

#Iteration 5

D.4.5 The for statement

The for statement repeats the code execution for each element of a list.

At first statement iteration itering_var is forced equal to the first element of the sequence
and then the statement code is executed. When the end of the statement is reached, the
program execution returns to the for keyword and the itering_var value is set equal to the
next sequence element one. If the end of the sequence is reached, the program exits the
statement.

If an optional else keyword is put at the end of the statement, its code is executed before
exiting the statement.

Syntax

for iterating_var in sequence:

 statements(s)

[else:]

 statements(s)

DocID028967 Rev 2 97/101

UM2022 Python introduction

101

Example

for animal in ['cat', 'dog', 'cow']:

 print animal

#output:

#cat

#dog

#cow

D.4.6 The break statement

The break statement forces the program execution to exit the current statement. The break
statement is commonly used to exit from a loop statement when an external condition
occurs. The break statement can be used in both while (see Section D.4.4) and for (see
Section D.4.5) statements. The break statement DOES NOT cause the else code of the
loop execution.

Example

for letter in 'STmicrolectronics':

 if letter == 'c': break

 print 'Current Letter :', letter

else

 print "You'll not see this message"

print "See you!"

#output:

#Current Letter : S

#Current Letter : T

#Current Letter : m

#Current Letter : i

#See you!

Python introduction UM2022

98/101 DocID028967 Rev 2

D.4.7 The continue statement

The continue statement rejects all the remaining statements in the current iteration and
moves the program execution back to the top of the loop. The continue statement can be
used in both while (see Section D.4.4) and for (see Section D.4.5) statements.

Example

var = 10

while var > 0:

 var = var -1

 if var > 5: continue

 print 'Current value :', var #This code is skipped until var <= 5

print "All done!"

#output:

#Current value : 5

#Current value : 4

#Current value : 3

#Current value : 2

#Current value : 1

#Current value : 0

#All done!

D.4.8 The pass statement:

The pass statement has to be used when a statement is required syntactically but no
operation has to be executed. The pass statement is a null operation; nothing happens
when it is executed.

Example

for letter in 'Python':

 if letter == 'h':

 pass

 print 'This is pass block'

 print 'Current Letter :', letter

DocID028967 Rev 2 99/101

UM2022 Python introduction

101

D.4.9 The len function

The len function returns the number of elements in a list or a string. This function, combined
with the range (see Section D.4.10), can be used to iterating over the indices of a list.

Example

seq = [0, 1, 2, 3, 4]

print len(seq) # 5 is printed to output

spelling = "STMicroelectronics"

for index in range(len(spelling)):

 print spelling[index], "-",

#output:

#S-T-M-i-c-r-o-e-l-e-c-t-r-o-n-i-c-s-

D.4.10 The range function

The range function generates a list containing an arithmetic progression. This function,
combined with the len (see Section D.4.9), can be used to iterate over the indices of a list.

Example

seq = range(5) # seq = [0, 1, 2, 3, 4]

spelling = "STMicroelectronics"

for index in range(len(spelling)):

 print spelling[index], "-",

#output:

#S-T-M-i-c-r-o-e-l-e-c-t-r-o-n-i-c-s-

D.4.11 The Infinite Loops

You must pay attention to not include never ending loops in your script sources. An infinite
loop can be interrupted by means of the “Script>Stop script” menu item. The command
interrupts the script execution and sets all the connected devices in the high impedance
state [HardHiZ command (see Section 3.8.5 on page 68)].

Revision history UM2022

100/101 DocID028967 Rev 2

Revision history

Table 21. Document revision history

Date Revision Changes

03-May-2016 1 Initial release.

20-Mar-2017 2

Updated Section : Introduction on page 1, Section 3.2:
Main panel on page 9 and whole document (added
STSPIN220, STSPIN240, and STSPIN250).

Updated Section 1.2: Supported boards on page 5
[added X-NUCLEO-IHM06A1 (STSPIN220),
X-NUCLEO-IHM12A1 (STSPIN240), and X-NUCLEO-
IHM13A1 (STSPIN250)].

Added from Section 3.2.4: STSPIN220 stepper
command panel on page 19 to Section 3.2.6:
STSPIN250 dual brush DC command panel on page 24.

Added from Figure 21: Status panel for STSPIN220 on
page 28 to Figure 44: Stepper tab (STSPIN220 only) on
page 57 (and text below figures).

Updated Table 16: Device commands summary on
page 68 (replaced by new table).

Minor modifications throughout document.

DocID028967 Rev 2 101/101

UM2022

101

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Hardware requirements
	1.1 PC prerequisites
	1.2 Supported boards

	2 Quick start guide
	2.1 STEVAL-PCC009V2 + demonstration board
	2.2 Discovery boards
	2.3 Nucleo platform

	3 GUI windows
	3.1 Menu, toolbar and status bar
	3.2 Main panel
	3.2.1 Stepper command panel (powerSTEP01 and L64xx devices)
	Figure 1. Main panel for L6470, L6472, L6480, L6482 and powerSTEP01
	Figure 2. Main panel (L6474)
	Figure 3. Positioning tab
	Figure 4. Speed tab
	Figure 5. Advanced tab for L6470, L6472, L6480, L6482 and powerSTEP01
	Figure 6. Advanced tab for L6474

	3.2.2 L6208 stepper command panel
	Figure 7. L6208 stepper command panel

	3.2.3 L6206 brush DC command panel
	Figure 8. L6206 brush DC command panel
	Figure 9. VS and SENSE pins maximum current handling
	Table 1. Device parallel mode options

	3.2.4 STSPIN220 stepper command panel
	Figure 10. Main panel for STSPIN220
	Figure 11. STSPIN220 stepper command panel

	3.2.5 STSPIN240 dual brush DC command panel
	Figure 12. Main panel for STSPIN240
	Figure 13. STSPIN240 dual brush DC command panel

	3.2.6 STSPIN250 dual brush DC command panel
	Figure 14. Main panel for STSPIN250

	3.2.7 Stop buttons
	Figure 15. Stop buttons for L6470, L6472, L6480, L6482,powerSTEP01 and STSPIN220
	Figure 16. Stop buttons for L6474

	3.2.8 Status panel
	Figure 17. Status panel for L6470, L6472, L6480, L6482 and powerSTEP01
	Figure 18. Status panel for L6474
	Figure 19. Status panel for L6208
	Figure 20. Status panel for L6206
	Figure 21. Status panel for STSPIN220
	Figure 22. Status panel for STSPIN240 and STSPIN250
	Table 2. HiZ status
	Table 3. UVLO status
	Table 4. OCD status
	Table 5. Thermal status
	Table 6. Stall A or Stall B status
	Table 7. Busy status
	Table 8. SW event status
	Table 9. SW status
	Table 10. StepClock mode status
	Table 11. Command error status
	Table 12. Motor status for L6470, L6472, L6480, L6482 and powerSTEP01
	Table 13. Motor Status for L6474 and STSPIN220
	Table 14. EN A / EN B status
	Table 15. EN A Fail, EN B Fail, EN Fail and EN Fault

	3.3 Wizard
	Figure 23. Wizard configuration panel
	Figure 24. Wizard error example
	Figure 25. Wizard configuration selection panel (powerSTEP01 only)
	3.3.1 Voltage mode driving settings panel
	Figure 26. Wizard voltage mode driving panel
	Figure 27. ADCIN calibration

	3.3.2 Advanced current control panel
	Figure 28. Advanced current control settings panel

	3.3.3 Gate drivers settings panel
	Figure 29. Gate drivers settings panel
	Figure 30. Gate drivers settings panel (L648x only)

	3.3.4 Speed profile settings panel
	Figure 31. Wizard speed profile settings

	3.3.5 Protection settings panel
	Figure 32. Wizard protection setting panel

	3.3.6 Apply and save settings panel
	Figure 33. Wizard apply and save settings

	3.4 Register map
	Figure 34. Register Map (L6474 example)
	3.4.1 Writing registers
	3.4.2 Reading registers
	3.4.3 Loading and saving configurations

	3.5 Device configuration
	3.5.1 Open and save device configuration
	Figure 35. Open configuration group dialog box
	Figure 36. Save configuration group dialog box

	3.5.2 Write and Read configuration
	3.5.3 Speed Profile tab
	Figure 37. Speed Profile tab

	3.5.4 Phase current control tab (L6470, L6480 and powerSTEP01 in VM)
	Figure 38. Phase current control tab (L6470, L6480 and powerSTEP01 in VM)

	3.5.5 Phase current control tab (L6472, L6482, L6474, and powerSTEP01 in CM)
	Figure 39. Phase current control tab for current mode devices (L6472, L6482 and powerSTEP01 in CM)
	Figure 40. Phase current control tab for current mode device (L6474)

	3.5.6 Gate driving tab (only for L6480, L6482 and powerSTEP01)
	Figure 41. Gate driving tab

	3.5.7 Others tab
	Figure 42. Others tab

	3.5.8 Stepper tab (L6208 only)
	Figure 43. Stepper tab (L6208 only)

	3.5.9 Stepper tab (STSPIN220)
	Figure 44. Stepper tab (STSPIN220 only)

	3.6 BEMF compensation tool
	Figure 45. BEMF compensation panel
	3.6.1 Setting application and motor parameters
	3.6.2 Compensation values evaluation
	3.6.3 Saving and loading application and motor parameters

	3.7 Options panel
	Figure 46. Options panel (L647x, L648x, and powerSTEP01)
	Figure 47. Options (L6206 and L6208)

	3.8 Scripts editor
	3.8.1 Script Tool
	Figure 48. Script form

	3.8.2 Writing a script
	3.8.3 Execute the script
	3.8.4 Python extensions
	3.8.5 Device commands
	Table 16. Device commands summary
	Table 17. 'dir' value formats
	Table 18. 'act' value formats

	Appendix A Firmware update
	A.1 STEVAL-PCC009V2
	A.1.1 Automatic update using the IBUUI updater
	A.1.2 Manual update using the ST-LINK/V2 programmer

	A.2 Discovery boards
	A.2.1 Update through DFU
	A.2.2 Update through ST-LINK/V2 programmer

	A.3 Nucleo platform

	Appendix B Daisy chain configuration (STEVAL-PCC009V2)
	Figure 49. Daisy chain example

	Appendix C Motor electric constant (Ke) measurement
	Figure 50. Stepper motor
	Figure 51. Ke measurement
	Figure 52. Ke measurement - bad waveform
	Figure 53. Ke measurement - good waveform
	Figure 54. Ke measurement - result

	Appendix D Python introduction
	D.1 Python basics
	D.2 Program syntax
	D.2.1 Lines and indentation
	D.2.2 Comments
	D.2.3 Variables
	D.2.4 Reserved words

	D.3 Python types
	D.3.1 Numbers
	D.3.2 Strings
	D.3.3 Lists
	Table 19. Summary table

	D.4 Python statements, functions and operators
	D.4.1 Operators
	Table 20. Examples with operators

	D.4.2 The print statement
	D.4.3 The if-elif-else statement
	D.4.4 The while statement
	D.4.5 The for statement
	D.4.6 The break statement
	D.4.7 The continue statement
	D.4.8 The pass statement:
	D.4.9 The len function
	D.4.10 The range function
	D.4.11 The Infinite Loops

	Revision history
	Table 21. Document revision history

