
June 2018 UM2037 Rev 3 1/113

1

UM2037
User manual

STM32L0 Series safety manual

Introduction

This document describes how to use the STM32L0 Series microcontrollers in the context of
a safety-related system, specifying the user responsibilities for installation and operation in
order to reach the targeted safety integrity level.

This manual applies to microcontrollers belonging to the STM32L0 Series, and to the
X-CUBE-STL part number.

System designers can avoid going into the details of the functional safety standards
application to the STM32L0 Series by following the indications reported in this manual.

This manual is written in compliance with IEC 61508. It indicates how to use the STM32L0
Series microcontrollers in the context of other functional safety standards such as safety of
machinery directives ISO 13849.

The safety analysis summarized in this manual takes into account the variation in terms of
memory size, internal peripheral availability and count, and package between the different
part numbers of the Arm® Cortex®-M3 based STM32L0xx microcontrollers.

This manual has to be read along with the technical documentation on related part numbers
(such as Reference Manuals and Datasheets) available on www.st.com.

www.st.com

http://www.st.com

Contents UM2037

2/113 UM2037 Rev 3

Contents

1 About this document . 9

1.1 Purpose and scope . 9

1.2 Terms and abbreviations . 9

1.3 Reference normative . 10

2 STM32L0 Series product development process 12

2.1 STMicroelectronics standard development process 12

3 Reference safety architecture . 14

3.1 Introduction . 14

3.2 Compliant item . 14

3.2.1 Definition of the compliant item . 14

3.2.2 Safety functions performed by the compliant item 15

3.2.3 Reference safety architectures - 1oo1 . 15

3.2.4 Reference safety architectures - 1oo2 . 16

3.3 Assumed requirements . 17

3.3.1 Assumed safety requirements . 17

3.4 Electrical specifications and environment limits . 19

3.5 Systematic safety integrity . 19

3.6 Description of hardware and software diagnostic 20

3.6.1 Arm® Cortex®-M3 CPU . 21

3.6.2 Embedded FLASH memory . 27

3.6.3 Embedded SRAM . 31

3.6.4 System bus architecture . 34

3.6.5 EXTI controller . 36

3.6.6 Direct memory access controller (DMA) . 38

3.6.7 Universal synchronous receiver/transmitter (USART1/2/4/5),
low power universal asynchronous receiver/transmitter (LPUART1) . . . 41

3.6.8 Inter-integrated circuit (I2C1/2) . 43

3.6.9 Serial peripheral interface (SPI1/2) . 46

3.6.10 USB - 2.0 Universal Serial Bus interface FS module 48

3.6.11 Touch sensing controller (TSC) . 51

3.6.12 Analog-to-digital converters (ADC) . 52

3.6.13 Digital-to-analog converter (DAC) . 55

UM2037 Rev 3 3/113

UM2037 Contents

4

3.6.14 Comparator (COMP) . 56

3.6.15 Basic timers (TIM 6/7) . 58

3.6.16 Advanced, general and low-power timers (TIM/2/3/21/22, LPTIM1/2) . 60

3.6.17 General-purpose input/output (GPIO) - Port A/B/C/D/E/F/G/H 63

3.6.18 Real-time clock module (RTC) . 65

3.6.19 Reset and clock control (RCC) subsystem . 70

3.6.20 Independent watchdog (IWDG), system window watchdog (WWDG) . . 72

3.6.21 Debug . 73

3.6.22 Cyclic redundancy-check module (CRC) . 74

3.6.23 System configuration controller (SYSCFG) . 74

3.6.24 Flexible static memory controller (FSMC) . 75

3.6.25 True random number generator (RNG) . 78

3.6.26 Advanced encryption standard hardware accelerator (AES) 79

3.6.27 Firewall (FW) . 81

3.6.28 Liquid crystal display controller (LCD) . 81

3.6.29 Disable and periodic cross-check of unintentional activation of
unused peripherals . 82

3.7 Conditions of use . 85

4 Safety results . 91

4.1 Random hardware failure safety results . 91

4.1.1 Safety analysis results customization . 92

4.1.2 General requirements for freedom from interferences (FFI) 92

4.1.3 Notes on multiple faults scenario . 93

4.2 Dependent failures analysis . 93

4.2.1 Power supply . 94

4.2.2 Clock . 94

4.2.3 DMA . 94

4.2.4 Internal temperature . 95

5 List of evidences . 96

Appendix A Change impact analysis for other safety standards. 97

A.1 ISO 13849-1 / ISO 13849-2. 97

A.1.1 Architectural categories . 97

A.1.2 Safety metrics computation . 100

A.1.3 Work products. 101

Contents UM2037

4/113 UM2037 Rev 3

A.2 IEC 62061:2005/AMD1:2012 . 103

A.2.1 Architectural categories . 104

A.2.2 Safety metrics computation . 106

A.2.3 Work products. 106

A.3 IEC 61800-5-2:2007 . 107

A.3.1 Architectural categories . 108

A.3.2 Safety metrics computation . 108

A.3.3 Work products. 108

A.4 ISO 26262:2010 . 109

A.4.1 Architectural categories . 110

A.4.2 Safety metrics computation . 110

A.4.3 Work products. 111

Revision history . 112

UM2037 Rev 3 5/113

UM2037 List of tables

7

List of tables

Table 1. Terms and abbreviations . 9
Table 2. Mapping between this document and IEC 61508-2 Annex D requirements 11
Table 3. SS1 and SS2 safe state details . 19
Table 4. Safety mechanism field explanation . 20
Table 5. CPU_SM_0. 21
Table 6. CPU_SM_1. 22
Table 7. CPU_SM_2. 23
Table 8. CPU_SM_3. 23
Table 9. CPU_SM_4. 24
Table 10. CPU_SM_5. 24
Table 11. CPU_SM_6. 25
Table 12. CPU_SM_7. 26
Table 13. MPU_SM_0 . 26
Table 14. FLASH_SM_0. 27
Table 15. FLASH_SM_1. 27
Table 16. FLASH_SM_2. 28
Table 17. FLASH_SM_3. 29
Table 18. FLASH_SM_4. 29
Table 19. FLASH_SM_5. 30
Table 20. FLASH_SM_6. 30
Table 21. FLASH_SM_8. 31
Table 22. RAM_SM_0 . 31
Table 23. RAM_SM_2 . 32
Table 24. RAM_SM_3 . 32
Table 25. RAM_SM_4 . 33
Table 26. RAM_SM_5 . 34
Table 27. BUS_SM_0 . 34
Table 28. BUS_SM_1 . 35
Table 29. LOCK_SM_0. 35
Table 30. NVIC_SM_0 . 36
Table 31. NVIC_SM_1 . 37
Table 32. DMA_SM_0 . 38
Table 33. DMA_SM_1 . 38
Table 34. DMA_SM_2 . 39
Table 35. DMA_SM_3 . 39
Table 36. DMA_SM_4 . 40
Table 37. UART_SM_0. 41
Table 38. UART_SM_1. 41
Table 39. UART_SM_2. 42
Table 40. UART_SM_3. 42
Table 41. IIC_SM_0 . 43
Table 42. IIC_SM_1 . 44
Table 43. IIC_SM_2 . 44
Table 44. IIC_SM_3 . 45
Table 45. IIC_SM_4 . 45
Table 46. SPI_SM_0. 46
Table 47. SPI_SM_1. 46
Table 48. SPI_SM_2. 47

List of tables UM2037

6/113 UM2037 Rev 3

Table 49. SPI_SM_3. 47
Table 50. SPI_SM_4. 48
Table 51. USB_SM_0 . 48
Table 52. USB_SM_1 . 49
Table 53. USB_SM_2 . 49
Table 54. USB_SM_3 . 50
Table 55. TSC_SM_0 . 51
Table 56. TSC_SM_1 . 51
Table 57. TSC_SM_2 . 52
Table 58. ADC_SM_0. 52
Table 59. ADC_SM_1. 53
Table 60. ADC_SM_2. 53
Table 61. ADC_SM_3. 54
Table 62. ADC_SM_4. 54
Table 63. DAC_SM_0. 55
Table 64. DAC_SM_1. 55
Table 65. COMP_SM_0 . 56
Table 66. COMP_SM_1 . 56
Table 67. COMP_SM_2 . 57
Table 68. COMP_SM_3 . 57
Table 69. COMP_SM_4 . 58
Table 70. GTIM_SM_0 . 58
Table 71. GTIM_SM_1 . 59
Table 72. ATIM_SM_0 . 60
Table 73. ATIM_SM_1 . 60
Table 74. ATIM_SM_2 . 61
Table 75. ATIM_SM_3 . 61
Table 76. ATIM_SM_4 . 62
Table 77. GPIO_SM_0 . 63
Table 78. GPIO_SM_1 . 63
Table 79. GPIO_SM_2 . 64
Table 80. GPIO_SM_3 . 64
Table 81. RTC_SM_0 . 65
Table 82. RTC_SM_1 . 66
Table 83. RTC_SM_2 . 66
Table 84. RTC_SM_3 . 67
Table 85. VSUP_SM_0. 67
Table 86. VSUP_SM_1. 68
Table 87. VSUP_SM_2. 68
Table 88. VSUP_SM_3. 69
Table 89. VSUP_SM_4. 69
Table 90. CLK_SM_0 . 70
Table 91. CLK_SM_1 . 71
Table 92. CLK_SM_2 . 71
Table 93. CLK_SM_3 . 72
Table 94. WDG_SM_0 . 72
Table 95. WDG_SM_1 . 73
Table 96. DBG_SM_0. 73
Table 97. CRC_SM_0. 74
Table 98. SYSCFG_SM_0 . 74
Table 99. DIAG_SM_0 . 75
Table 100. FSMC_SM_0 . 75

UM2037 Rev 3 7/113

UM2037 List of tables

7

Table 101. FSMC_SM_1 . 76
Table 102. FSMC_SM_2 . 77
Table 103. FSMC_SM_3 . 77
Table 104. RNG_SM_0 . 78
Table 105. RNG_SM_1 . 78
Table 106. AES_SM_0 . 79
Table 107. AES_SM_1 . 79
Table 108. AES_SM_2 . 80
Table 109. FWR_SM_0 . 81
Table 110. LCD_SM_0 . 81
Table 111. LCD_SM_1 . 82
Table 112. FFI_SM_0 . 82
Table 113. FFI_SM_1 . 83
Table 114. List of safety mechanisms . 85
Table 115. Overall achievable safety integrity levels . 91
Table 116. List of general requirements for FFI . 93
Table 117. ISO 13849 architectural categories . 98
Table 118. ISO 13849 work product grid . 101
Table 119. SIL classification versus HFT . 104
Table 120. IEC 62061 architectural categories. 105
Table 121. IEC 62061 work product grid . 107
Table 122. IEC 61800 work product grid . 108
Table 123. IEC 26262 work product grid . 111
Table 124. Document revision history . 112

List of figures UM2037

8/113 UM2037 Rev 3

List of figures

Figure 1. STMicroelectronics product development process . 13
Figure 2. Definition of the compliant item. 14
Figure 3. 1oo1 reference architecture . 16
Figure 4. 1oo2 reference architecture . 17
Figure 5. Allocation and target for STM32 PST . 18
Figure 6. Block diagram for ISO 13849 Cat. B and Cat. 1 . 99
Figure 7. Block diagram for ISO 13849 Cat. 2 . 99
Figure 8. Block diagram for ISO 13849 Cat. 3 and Cat. 4 . 100
Figure 9. SRECS high-level diagram . 106
Figure 10. Correlation matrix between SIL and ASIL. 110

UM2037 Rev 3 9/113

UM2037 About this document

112

1 About this document

1.1 Purpose and scope

This document describes how to use the STM32L0xx microcontrollers, based on an Arm®(a)
core, in the context of a safety-related system, specifying the user responsibilities for
installation and operation, in order to reach the desired safety integrity level.

This document is useful to system designers willing evaluate the safety of their solution
embedding one or more STM32L0 Series microcontroller(s).

1.2 Terms and abbreviations

Abbreviations related to STM32L0 Series hardware modules (like DMA, GPIO etc.) are the
same than the ones used in STM32L0 Series technical documentation. See Table 1 for a list
of acronyms used in this document.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. Terms and abbreviations

Acronym Definition

CCF Common cause failure

CM Continuous mode

COTS Commercial off-the-shelf

CoU Conditions of use

CPU Central processing unit

CRC Cyclic redundancy check

DC Diagnostic coverage

DMA Direct memory access

DTI Diagnostic test interval

ECM Engine control module

ECU Electronic control unit

EUC Equipment under control

FIT Failure in time

FMEA Failure mode effect analysis

FMEDA Failure mode effect diagnostic analysis

HD High demand

HFT Hardware fault tolerance

HW Hardware

About this document UM2037

10/113 UM2037 Rev 3

Read also the following definitions used within this manual:

• End user: the STM32L0 Series final user, that is in charge of integrating the MCU in a
real application (for example an electronic control board).

• Application software: the actual software running on the STM32L0 Series MCUs and
implementing the safety function.

1.3 Reference normative

This document is written in compliance with the IEC 61508 international norm for functional
safety of electrical, electronic and programmable electronic safety-related systems.

The version used as reference is IEC 61508:1-7 © IEC:2010.

The other functional safety standards considered in this manual are the following:

• ISO 26262-1, 2, 3, 4, 5, 6, 7, 8, 9: 2011(E), ISO 26262-10: 2012(E)

• ISO 13849-1:2006, ISO 13849-2:2010

• IEC 62061:2012-11, ed. 1.1

• IEC 61800-5-2:2007, ed.1.0

ITRS International technology road map for semiconductors

LD Low demand

MCU Microcontroller unit

MTBF Mean time between failure

MTTFd Mean time to failure

NA Not available

PDS(SR) Power drive system (safety related)

PEc Programmable electronics - core

PEd Programmable electronics - diagnostic

PFD Probability of dangerous failure on demand

PFH Probability of failure per hour

PL Performance level

PST Process safety time

SFF Safe failure fraction

SIL Safety integrity level

SRCF Safety-related control function

SRECS Safety-related electrical control systems

SRP/CS Safety-related parts of control systems

SW Software

Table 1. Terms and abbreviations (continued)

Acronym Definition

UM2037 Rev 3 11/113

UM2037 About this document

112

Table 2 reports the mapping of this document content with respect to the requirements listed
in the IEC 61508-2 Annex D.

The safe failure fraction reported in this manual has been computed under the assumptions
described in this document and especially according to the conditions of use described in
Section 3.7: Conditions of use.

Table 2. Mapping between this document and IEC 61508-2 Annex D requirements

IEC 61508 requirement (part 2 annex D) Reference

D2.1 a) a functional specification of the functions capable of being performed Section 3

D2.1 b) identification of the hardware and/or software configuration of the
compliant item

Section 3.2

D2.1 c) constraints on the use of the compliant item or assumptions on which
analysis of the behavior or failure rates of the item are based

Section 3.2

D2.2 a) the failure modes of the compliant item due to random hardware failures,
that result in a failure of the function and that are not detected by diagnostics
internal to the compliant item;

Section 3.7

D2.2 b) for every failure mode in a), an estimated failure rate;

D2.2 c) the failure modes of the compliant item due to random hardware failures,
that result in a failure of the function and that are detected by diagnostics internal
to the compliant item;

D2.2 d) the failure modes of the diagnostics, internal to the compliant item due to
random hardware failures, that result in a failure of the diagnostics to detect
failures of the function;

D2.2 e) for every failure mode in c) and d), the estimated failure rate;

D2.2 f) for every failure mode in c) that is detected by diagnostics internal to the
compliant item, the diagnostic test interval;

Section 3.2.2

D2.2 g) for every failure mode in c) the outputs of the compliant item initiated by
the internal diagnostics;

Section 3.6

D2.2 h) any periodic proof test and/or maintenance requirements;

Section 3.7D2.2 i) for those failure modes, in respect of a specified function, that are capable
of being detected by external diagnostics, sufficient information must be provided
to facilitate the development of an external diagnostics capability.

D2.2 j) the hardware fault tolerance;

Section 3D2.2 k) the classification as type A or type B of that part of the compliant item that
provides the function (see 7.4.4.1.2 and 7.4.4.1.3);

STM32L0 Series product development process UM2037

12/113 UM2037 Rev 3

2 STM32L0 Series product development process

The development process of a microelectronic device used in safety critical application
takes into account the adequate management to reduce the probability of systematic faults
introduced during the design phase.

IEC 61508:2 in Annex F (Techniques and measures for ASICs - avoidance of systematic
failures) act as a guidance in tailoring the microcontroller standard design and manufacturer
process to the compliance of the IEC 61508 requirements. The checklist reported in the
named Annex F helps to collect all related evidences of a given real process.

2.1 STMicroelectronics standard development process

STMicroelectronics (ST) serves four industry domains:

• Standard products.

• Automotive products: ST automotive products are AEC-Q100 compliant. They are
subject to specific stress testing and processing instructions in order to achieve the
required quality levels and product stability.

• Automotive safety: a subset of the automotive domain. ST uses as a reference the ISO
26262 Road vehicles Functional safety standard. ST supports customer inquiries
regarding product failure rates and FMEDA to support hardware system compliance to
established safety goals. ST provides products that are safe in their intended use,
working in cooperation with customers to understand the mission profile, adopt
common methods and define countermeasures for residual risks.

• Medical products: ST complies with applicable regulations for medical products and
applies due diligence in the development and validation of these products.

STMicroelectronics product development process, compliant with the ISO/TS 16949
standard, is a set of interrelated activities dedicated to transform customer specification and
market or industry domain requirements into a semiconductor device and all its associated
elements (package, module, sub-system, application, hardware, software and
documentation), qualified respecting ST internal procedures and able to be manufactured
using ST internal or subcontracted technologies.

Figure 1 summarizes the STMicroelectronics product development process.

UM2037 Rev 3 13/113

UM2037 STM32L0 Series product development process

112

Figure 1. STMicroelectronics product development process

Reference safety architecture UM2037

14/113 UM2037 Rev 3

3 Reference safety architecture

3.1 Introduction

The STM32L0 Series microcontroller(s) analyzed in this document can be used as
compliant item(s) within different safety applications.

The aim of this section is to identify such compliant item and therefore to define the context
of the analysis in terms of assumptions with respect to a reference concept definition. This
concept definition includes therefore reference safety requirements as also assumptions on
the design external to the defined compliant item.

As a consequence of compliant item approach, the goal is not to provide an exhaustive
hazard and risk analysis of the system around the microcontroller, but rather to list the
system-related information considered during the analysis. Such information include -
among others - application related assumptions for dangerousness factors, frequency of
failures and diagnostic coverage already guaranteed by the application.

3.2 Compliant item

3.2.1 Definition of the compliant item

According to IEC 61508:1 clause 8.2.12, a compliant item is any item (for example an
element) on which a claim is being made with respect to the clauses of IEC 61508 series.
With respect to its user, at the end of its development the compliant item must be described
by a safety manual.

In this document, the compliant item is defined as a system including one or two STM32
microcontrollers (see Figure 2). The communication bus is directly or indirectly connected to
sensors and actuators.

Figure 2. Definition of the compliant item

Other components can be related to the compliant item, like the external HW components
needed to guarantee either the functionality of the STM32L0 Series (external memory, clock
quartz etc) or its safety (for example the external watchdog, voltage supervisors).

Defined compliant item can be classified as “element” according IEC61508-4, 3.4.5.

UM2037 Rev 3 15/113

UM2037 Reference safety architecture

112

3.2.2 Safety functions performed by the compliant item

The compliant item architecture can be represented as composed by the following
processes performing the safety function or part of it:

• Input processing elements (PEi) reading safety related data from the remote controller
connected to the sensor(s) and transferring them to the following computation
elements;

• Computation processing elements (PEc) performing the algorithm required by the
safety function and transferring the results to the following output elements;

• Output processing elements (PEo) transferring safety related data to the remote
controller connected to the actuator;

• In the case of the 1oo2 architecture, a further voting processing element (PEv) can be
present;

• Processes external to the compliant item are considered to guarantee safety integrity,
such as a watchdog (WDTe) and voltage monitors (VMONe).

The role of the PEv and of the external processes WDTe and VMONe is clarified in the
sections where the CoU (definition of safety mechanism) are detailed:

• WDTe: refer to Independent watchdog – VSUP_SM_2, Control flow monitoring in
application software – CPU_SM_1,

• VMONe: refer to Supply Voltage Monitoring – VSUP_SM_1.

In summary, STM32L0 Series microcontrollers support the implementation of end user
safety functions composed by three operations:

• Safe acquisition of safety related data from input peripheral(s).

• Safe execution of application software program and safe computation of related data.

• Safe transfer of results or decisions to output peripheral(s).

Claims on the compliant item and computation of safety metrics are done with respect to
these three basic operations.

According to above reported definition for implemented safety functions, the compliant item
i.e. the element can be regarded as type B (as per IEC61508-2, 7.4.4.1.2 definition).
Despite accurate, exhaustive and detailed failure analysis has been done for STM32L0
Series, this device has to be considered intrinsically complex and therefore type B
classification is appropriate.

Two main safety architecture are therefore identified: 1oo1 (using one MCU) and 1oo2
(using two MCUs).

3.2.3 Reference safety architectures - 1oo1

In 1oo1 reference architecture (shown in Figure 3) the safety integrity of the compliant item
is guaranteed by the combination of STM32L0 Series internal processes (implemented
safety mechanisms) and external processes WDTe and VMONe.

Target for 1oo1 reference architecture is SIL2.

Reference safety architecture UM2037

16/113 UM2037 Rev 3

Figure 3. 1oo1 reference architecture

3.2.4 Reference safety architectures - 1oo2

1oo2 reference architecture (shown in Figure 4) is composed by two separate channels,
each of them implemented in the same way of 1oo1 reference architecture. Safety integrity
of each channel is guaranteed by the combination of STM32L0 Series internal processes
(implemented safety mechanisms) and external processes WDTe and VMONe. Safety
integrity of overall compliant item is guaranteed by the external voter PEv allowing to claim
HFT = 1. Achievement of higher safety integrity levels as per IEC61508-2 Table 3 is
therefore possible. Appropriate separation between the two channels (including power
supply separation) should be implemented in order to avoid huge impact of common-cause
failures (refer to Section 4.2). βD computation is anyway required.

Target for 1oo2 reference architecture is SIL3.

UM2037 Rev 3 17/113

UM2037 Reference safety architecture

112

Figure 4. 1oo2 reference architecture

3.3 Assumed requirements

3.3.1 Assumed safety requirements

The concept specification, the hazard and risk analysis, the overall safety requirement
specification and the consequent allocation has determined the requirements for the
compliant item (ASR: assumed safety requirements) listed below.

Caution: It is the end user’s responsibility to check the compliance of the final application with these
assumptions.

ASR1: The compliant item can be used for four kinds of safety functions mode of operations
according to part 4, 3.5.16:

• a continuous mode or high-demand SIL3 safety function (CM3), or

• a low-demand SIL3 safety function (LD3), or

• acontinuous mode or high-demand SIL2 safety function (CM2), or

• a low-demand SIL2 safety function (LD2).

ASR2: The compliant item is used to implement a safety function allowing a time budget of
10 ms (worst case) for the STM32 MCU to detect and react to a failure. This time

Reference safety architecture UM2037

18/113 UM2037 Rev 3

corresponds to the portion of the Process Safety Time allocated to STM32L0 Series MCUs
(“STM32 duty” in Figure 5) in error reaction chain at system level.

Figure 5. Allocation and target for STM32 PST

ASR3: The compliant item is used in a safety function that can be continuously powered-on
for a time higher than 8 hours. It is assumed to not require any proof test and the lifetime of
the product is considered to be not less than 10 years.

ASR4: It is assumed that only one safety function is performed or if many, all functions are
classified with the same SIL and therefore they are not distinguishable in terms of their
safety requirements.

ASR5: In case of multiple safety functions implementations, it is assumed that end user is
responsible to guarantee their needed mutual independence.

ASR6: It is assumed that there are no “non-safety related” functions implemented in
application software and coexisting with the safety functions.

ASR7: It is assumed that the implemented safety function(s) is not depending on STM32L0
MCU transition to and from a low-power state.

ASR8: The local safe state of the compliant item is the one in which either:

• SS1: the application software is informed by the presence of a fault and a reaction by
the application software itself is possible

• SS2: the application software cannot be informed by the presence of a fault or the
application software is not able to execute a reaction(a)

Details on safe states SS1 and SS2 are provided in Table 3.

a. The end user must take into account that random hardware failures affecting the STM32 can compromise the
MCU capability of operating properly (for example failure modes affecting the program counter prevent the
correct execution of software).

UM2037 Rev 3 19/113

UM2037 Reference safety architecture

112

ASR9: It is assumed that the safe state defined at system level by the end user is
compatible with the assumed local safe state (SS1, SS2) for the compliant item.

ASR10: The compliant item is assumed to be analyzed according to routes 1H and 1S of
IEC 61508-2.(a)

ASR11: The compliant item is assumed to be regarded as type B as per IEC61508:2,
7.4.4.1.2.

ASR12: It is assumed that dual-Flash banks mass erase and reprogramming features are
used during final system’s maintenance state.

3.4 Electrical specifications and environment limits

The user must not exceed the electrical specification and the environmental limits defined in
the list below (as reported in the STM32L0 Series user manual) to guarantee the STM32L0
Series safety integrity:

• Absolute maximum ratings

• Capacity

• Operating conditions.

Due to the large number of STM32L0 Series part numbers, the related user manuals and
datasheets are not listed in this document; users are responsible to carefully check the
above reported limits in the technical documentation on the related part number available on
www.st.com.

3.5 Systematic safety integrity

According to the requirements of IEC 61508 -2, 7.4.2.2, the Route 1S has been considered
in the STM32L0 Series development. As clearly authorized by IEC61508-2, 7.4.6.1, STM32

Table 3. SS1 and SS2 safe state details

Safe
state

Condition
Compliant item

action

System Transition
to Safe state –

1oo1 architecture

System Transition
to Safe state –

1oo2 architecture

SS1

The application software is
informed of the presence of
a fault and a reaction by the
application software itself is
possible.

Fault reporting
to application
software

Application software
drives the overall
system in his safe
state

Application software
in one of the two
channels drives the
overall system in his
safe state

SS2

The application software
cannot be informed of the
presence of a fault or the
application software is
unable to execute a
reaction.

Reset signal
issued by WDTe

WDTe drives the
overall system in his
safe state (“safe
shut-down”)(1)

1. Safe state achievement intended here is compliant to Note on IEC61508-2, 7.4.8.1 a)

PEv drives the
overall system in his
safe state

a. Refer to Section 3.5 and Section 3.6.

Reference safety architecture UM2037

20/113 UM2037 Rev 3

MCU series can be considered a standard, mass-produced electronic integrated device –
for which stringent development procedures, rigorous testing and extensive experience of
use minimizes the likelihood of design faults. Anyway, an internal assessment against the
compliance of STM32 MCU development flow with the techniques and measures suggested
in IEC 61508-2 Annex F has been executed. The Safety Case Database (Section 5: List of
evidences) maintains the evidences of the compliance to the norm.

3.6 Description of hardware and software diagnostic

This section lists all the safety mechanisms (hardware, software and application level)
considered in the safety analysis of the microcontrollers of the STM32L0 Series. It is
expected that users are familiar with the STM32L0 Series architecture, and that this
document is used in conjunction with the related device datasheet, user manual and
reference information. Therefore, to avoid the eventuality of mistakes and reduce the
amount of information to be shown, minimum functional details are included in this
document. In following descriptions the words “safety mechanism”, “method” or
“requirement” are used as synonym.

Note that each part number of the STM32L0 Series owns different combinations of
peripherals (for instance, some of them are not equipped with USB peripheral). To reduce
the number of documents and avoid information-less repetitions, this manual (and therefore
this section) addresses the overall possible peripherals available in the targeted part
numbers. Users have to select those really available on their devices, and discard the
meaningless recommendations accordingly.

The implementation guidelines reported in the following section are for reference only. The
safety verification executed by ST during STM32L0 Series safety analysis and related
diagnostic coverage figures reported in this manual (or its Annexes) are based on such
guidelines. For the sake of clarity, safety mechanism are grouped for MCU basic functions.

Information is arranged in tables (one for each safety mechanism). Table 4 provides the
explanation for each field.

Table 4. Safety mechanism field explanation

SM CODE

Unique safety mechanism code/identifier used also in FMEA document. Identifiers use
the scheme mmm_SM_x, where mmm is a three or four letters module acronym, and
“x” is an incremental number. Note that module acronym and numbering could be not
sequential and/or different from module's actual name being derived by legacy
documents.

Description Short mnemonic description.

Ownership
ST: means that method is available on silicon

End user: method must be implemented by the end user by application software
modification, hardware solutions, or both.

Detailed implementation
Detailed implementation sometimes including notes about the safety concept behind
the introduction of the safety mechanism.

Error reporting Describes how the fault detection is reported to application software.

Fault detection time Time that the safety mechanism needs to detect the hardware failure.

UM2037 Rev 3 21/113

UM2037 Reference safety architecture

112

3.6.1 Arm® Cortex®-M3 CPU

Addressed fault model

Reports fault model(s) addressed by the diagnostic (Permanent, Transient, or both),
and other information:

– If ranked for Fault avoidance: method contributes to lower the probability of
occurrence of a failure

– If ranked for Systematic: method is conceived to mitigate systematic errors (bugs) in
application software design.

Dependency on MCU
configuration

Reports if safety mechanism implementation or characteristics change among different
part numbers belonging to STM32L0 Series.

Initialization Specific operation to be executed to activate the contribution of the safety mechanism.

Periodicity

– Continuous: safety mechanism is active in continuous mode

– Periodic: safety mechanism is executed periodically. Note that safety mechanism can
be accounted for diagnostic coverage contribution only if it is executed at least one
per PST

– On Demand: safety mechanism is activated in correspondence of a specified event
(for instance, reception of a data message)

– Startup: safety mechanism is supposed to be executed only at power-up or during off-
line maintenance periods

Test for the diagnostic
Reports specific procedure (if any and recommended) to allow on-line tests of safety
mechanism efficiency.

Multiple faults protection
Reports the safety mechanism(s) associated to correctly manage a multi-fault scenario
(refer to Section 4.1.3: Notes on multiple faults scenario).

Recommendations and
known limitations

Additional recommendations or limitations (if any) not reported in other fields.

Table 4. Safety mechanism field explanation (continued)

Table 5. CPU_SM_0

SM CODE CPU_SM_0

Description Periodical core self-test software for Arm® Cortex®-M3 CPU

Ownership End user or ST

Detailed implementation

The software test is built around well-known techniques already addressed by IEC
61508:7, A.3.2 (Self-test by software: walking bit one-channel). To reach the required
values of coverage, the self-test software is specified by means of a detailed analysis of
all the CPU failure modes and related failure modes distribution

Error reporting Depending on implementation

Fault detection time Depending on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization None

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according the test
implementation design strategy chosen. The adoption of checksum protection on
results variables and defensive programming are recommended

Reference safety architecture UM2037

22/113 UM2037 Rev 3

Multiple faults protection CPU_SM_5 : external watchdog

Recommendations and
known limitations

This method is the main asset in STM32L0 Series safety concept. CPU integrity is a key
factor, given that the major part of defined diagnostics for MCU peripherals are
software-based

Table 5. CPU_SM_0 (continued)

Table 6. CPU_SM_1

SM CODE CPU_SM_1

Description Control flow monitoring in application software

Ownership End user

Detailed implementation

A significant part of the failure distribution of CPU core for permanent faults is related to
failure modes directly related to program counter loss of control or hang-up. Due to their
intrinsic nature, such failure modes are not addressed by a standard software test
method like SM_CPU_0. Therefore it is necessary to implement a run-time control of
the application software flow, in order to monitor and detect deviation from the expected
behavior due to such faults. Linking this mechanism to watchdog firing assures that
severe loss of control (or, in the worst case, a program counter hang-up) is detected.

The guidelines for the implementation of the method are the following:

– The different internal states of the application software is well documented and
described (the use of a dynamic state transition graph is encouraged).

– The monitoring of the correctness of each transition between different states of the
application software is implemented.

– The transition through all expected states during the normal application software
program loop is checked.

– The function in charge of triggering the system watchdog is implemented in order to
constrain the triggering (preventing the issue of CPU reset by watchdog) also to the
correct execution of the above-described method for program flow monitoring.

– The use of the window feature of the independent watchdog (IWDG) (or an external
one) helps to implement a more robust control flow mechanism fed by a different
clock source.

Note: Safety metrics do not depend on the kind of watchdog in use (the
adoption of independent or external watchdog contributes to the
mitigation of dependent failures, see Section 4.2.2: Clock)

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic NA

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

-

UM2037 Rev 3 23/113

UM2037 Reference safety architecture

112

Table 7. CPU_SM_2

SM CODE CPU_SM_2

Description Double computation in application software

Ownership End user

Detailed implementation

A timing redundancy for safety-related computation is considered to detect transient
faults affecting the Arm® Cortex®-M3 CPU subparts devoted to mathematical
computations and data access.

The guidelines for the implementation of the method are the following:

– The requirement needs be applied only to safety-relevant computation, which in case
of wrong result could interfere with the system safety functions. Such computation
must be therefore carefully identified in the original application software source code

– Both mathematical operation and comparison are intended as computation.

– The redundant computation for mathematical computation is implemented by using
copies of the original data for second computation, and by using an equivalent
formula if possible

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

End user is responsible to carefully avoid that the intervention of optimization features
of the used compiler removes timing redundancies introduced according to this
condition of use

Table 8. CPU_SM_3

SM CODE CPU_SM_3

Description Arm® Cortex®-M3 HardFault exceptions

Ownership ST

Detailed implementation

HardFault exception raise is an intrinsic safety mechanism implemented in Arm®
Cortex®-M3 core, mainly devoted to intercept systematic faults due to software
limitations or error in software design (causing for example execution of undefined
operations, unaligned address access). This safety mechanism is also able to detect
hardware random faults inside the CPU bringing to such described abnormal
operations.

Error reporting High-priority interrupt event

Fault detection time Depending on implementation, refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Reference safety architecture UM2037

24/113 UM2037 Rev 3

Initialization None

Periodicity Continuous

Test for the diagnostic
It is possible to write a test procedure to verify the generation of the HardFault
exception; anyway, given the expected minor contribution in terms of hardware random-
failure detection, such implementation is not recommended.

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Table 8. CPU_SM_3 (continued)

Table 9. CPU_SM_4

SM CODE CPU_SM_4

Description Stack hardening for application software

Ownership End user

Detailed implementation

The stack hardening method is required to address faults (mainly transient) affecting
CPU register bank. This method is based on source code modification, introducing
information redundancy in register-passed information to called functions.

The guidelines for the implementation of the method are the following:

– To pass also a redundant copy of the passed parameters values (possibly inverted)
and to execute a coherence check in the function.

– To pass also a redundant copy of the passed pointers and to execute a coherence
check in the function.

– For parameters that are not protected by redundancy, to implement defensive
programming techniques (plausibility check of passed values). For example
enumerated fields are to be checked for consistency.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

This method partially overlaps with defensive programming techniques required by
IEC61508 for software development. Therefore, in presence of application software
qualified for safety integrity greater or equal to SC2, optimizations are possible.

Table 10. CPU_SM_5

SM CODE CPU_SM_5

Description External watchdog

Ownership End user

UM2037 Rev 3 25/113

UM2037 Reference safety architecture

112

Detailed implementation

Using an external watchdog linked to control flow monitoring method (refer to
CPU_SM_1) addresses failure mode of program counter or control structures of CPU.
External watchdog can be designed to be able to generate the combination of signals
needed on the final system to achieve the safe state. It is recommended to carefully
check the assumed requirements about system safe state reported in Section 3.3.1.
It also contributes to dramatically reduce potential common cause failures, because the
external watchdog is clocked and supplied independently from the STM32L0 Series.

Error reporting Depends on implementation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic To be defined at system level (outside the scope of compliant item analysis)

Multiple faults protection CPU_SM_1: control flow monitoring in application software

Recommendations and
known limitations

In case of usage of windowed watchdog, end user must consider possible tolerance in
application software execution, to avoid false error reports (affecting system
availability).

Table 10. CPU_SM_5 (continued)

Table 11. CPU_SM_6

SM CODE CPU_SM_6

Description Independent watchdog

Ownership ST

Detailed implementation
Using the IDWG watchdog linked to control flow monitoring method (refer to
CPU_SM_1) addresses failure mode of program counter or control structures of CPU.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization
IWDG activation. It is recommended to use the “Hardware watchdog” in Option byte
settings (IWDG is automatically enabled after reset)

Periodicity Continuous

Test for the diagnostic WDG_SM_1: Software test for watchdog at startup

Multiple faults protection
CPU_SM_1: control flow monitoring in application software

WDG_SM_0: periodical read-back of configuration registers

Recommendations and
known limitations

The IWDG intervention is able to achieve a potentially “incomplete” local safe state
because it can only guarantee that CPU is reset. No guarantee that application software
can be still executed to generate combinations of output signals that might be needed
by the external system to achieve the final safe state. If this limitation turn out in a
blocking point, end user must adopt CPU_SM_5.

Reference safety architecture UM2037

26/113 UM2037 Rev 3

Table 12. CPU_SM_7

SM CODE CPU_SM_7

Description MPU - Memory protection Unit

Ownership ST

Detailed implementation
The CPU Memory Protection Unit is able to detect illegal access to protected memory
areas, according to End user programmed criteria

Error reporting Exception raise (MemManage)

Fault detection time Refer to functional documentation

Addressed fault model
Systematic (software errors)

Permanent and Transient (only program counter and memory access failures)

Dependency on MCU
configuration

None

Initialization MPU registers shall be programmed at start-up

Periodicity On line

Test for the diagnostic Not needed

Multiple faults protection MPU_SM_0: Periodical read-back of configuration registers

Recommendations and
known limitations

The use of memory partitioning and protection by MPU functions is highly
recommended when multiple safety functions are implemented in application software.
The MPU can be indeed used to

– enforce privilege rules

– separate processes

– enforce access rules

Hardware random-failure detection capability for MPU is restricted to well-selected
failure modes, mainly affecting program counter and memory access CPU functions.
The associated diagnostic coverage is therefore expected to be not relevant in the
framework of STM32L0 Series safety concept.

Table 13. MPU_SM_0

SM CODE MPU_SM_0

Description Periodical read-back of MPU configuration registers

Ownership End user

Detailed implementation

This method must be applied to MPU configuration registers (also unused by the end
user application software).

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

UM2037 Rev 3 27/113

UM2037 Reference safety architecture

112

3.6.2 Embedded FLASH memory

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 13. MPU_SM_0 (continued)

Table 14. FLASH_SM_0

SM CODE FLASH_SM_0

Description Periodical software test for Flash memory

Ownership End user or ST

Detailed implementation

Permanent faults affecting the system Flash memory, memory cells and address
decoder, are addressed through a dedicated software test that checks the memory cell
contents versus the expected value, using signature-based techniques. According to
IEC 61508:2 Table A.5, the effective diagnostic coverage of such techniques depends
on the width of the signature in relation to the block length of the information to be
protected - therefore the signature computation method is to be carefully selected. The
simple signature method (IEC 61508:7 - A.4.2 Modified checksum) is inadequate, as it
only achieves a low coverage value.

The information block does not need to be addressed with this test as it is not used
during normal operation (no data nor program fetch).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

Flash size changes according part number

Initialization Memory signatures must be stored in Flash memory as well

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according the test
implementation design strategy chosen

Multiple faults protection
CPU_SM_1: control flow monitoring in application software

CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

This test is expected to have a relevant time duration – test integration must therefore
consider the impact on application software execution.

The use of internal CRC module is recommended. In principle DMA feature for data
transfer can be used.

Note: Unused Flash sections can be excluded from testing

Table 15. FLASH_SM_1

SM CODE FLASH_SM_1

Description Control flow monitoring in application software

Ownership End user

Reference safety architecture UM2037

28/113 UM2037 Rev 3

Detailed implementation

Permanent and transient faults affecting the system Flash memory, memory cells and
address decoder, can interfere with the access operation by the CPU, leading to wrong
data or instruction fetches.

Such failures can be detected by control flow monitoring techniques implemented in the
application software loaded from Flash memory.

For more details on the implementation, refer to description CPU_SM_1

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic NA

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

CPU_SM_1 correct implementation supersede this requirement.

Table 15. FLASH_SM_1 (continued)

Table 16. FLASH_SM_2

SM CODE FLASH_SM_2

Description Arm® Cortex®-M3 HardFault exceptions

Ownership ST

Detailed implementation

Hardware random faults (both permanent and transient) affecting system Flash
(memory cells, address decoder) can lead to wrong instruction codes fetches, and
eventually to the intervention of the Arm® Cortex®-M3 HardFault exceptions. Refer to
CPU_SM_3 for a detailed description.

Error reporting Refer to CPU_SM_3

Fault detection time Refer to CPU_SM_3

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Refer to CPU_SM_3

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_3

Multiple faults protection Refer to CPU_SM_3

Recommendations and
known limitations

None

UM2037 Rev 3 29/113

UM2037 Reference safety architecture

112

Table 17. FLASH_SM_3

SM CODE FLASH_SM_3

Description Option byte write protection

Ownership ST

Detailed implementation
This safety mechanism prevents unintended writes on the option byte. The use of this
method is encouraged to enhance end application robustness for systematic faults.

Error reporting Write protection exception

Fault detection time Not applicable

Addressed fault model None (Systematic only)

Dependency on MCU
configuration

None

Initialization Not needed (enabled by default)

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

This method addresses systematic faults in software application and it have zero
efficiency in addressing hardware random faults affecting the option byte value during
running time. No DC value is therefore associated.

Table 18. FLASH_SM_4

SM CODE FLASH_SM_4

Description Static data encapsulation

Ownership End user

Detailed implementation
If static data are stored in Flash memory, encapsulation by a checksum field with
encoding capability (like CRC) must be implemented.

Checksum validity is checked by application software before static data consuming.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Reference safety architecture UM2037

30/113 UM2037 Rev 3

Table 19. FLASH_SM_5

SM CODE FLASH_SM_5

Description Option byte redundancy with load verification

Ownership ST

Detailed implementation
During option byte loading after each power-on reset, the bit-wise complementarity of
the option byte and its corresponding complemented option byte is verified. Mismatches
are reported as errors.

Error reporting Option byte error (OPTERR) generation

Fault detection time Not applicable

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization None (always enabled)

Periodicity Startup

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Table 20. FLASH_SM_6

SM CODE FLASH_SM_6

Description Flash unused area filling code

Ownership End user

Detailed implementation
Used Flash area must be filled with deterministic data. This way in case that the
program counter jumps outside the application program area due to a transient fault
affecting CPU, the system evolves in a deterministic way.

Error reporting NA

Fault detection time NA

Addressed fault model None (Fault avoidance)

Dependency on MCU
configuration

None

Initialization NA

Periodicity NA

Test for the diagnostic NA

Multiple faults protection NA

Recommendations and
known limitations

Filling code can be made of NOP instructions, or an illegal code that leads to a
HardFault exception raise.

UM2037 Rev 3 31/113

UM2037 Reference safety architecture

112

3.6.3 Embedded SRAM

Table 21. FLASH_SM_8

SM CODE FLASH_SM_8

Description
Read protection (RDP), Write protection (WRP), Proprietary code readout protection
(PCROP)

Ownership ST

Detailed implementation
Flash memory can be protected against illegal reads or erase/write by using these
protection features. The combination of these techniques and the related different
protection level allows End user to build an effective access protection policy.

Error reporting Refer to functional documentation - in some cases an HardFault error is generated

Fault detection time Refer to functional documentation

Addressed fault model Systematic

Dependency on MCU
configuration

None

Initialization Not needed

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection Not needed

Recommendations and
known limitations

Hardware random-failure detection capability for Flash memory access policy is
restricted to well-selected marginal failure modes, mainly affecting program counter and
Flash memory interface functions. The associated diagnostic coverage is therefore
expected to be not relevant in the framework of STM32L0 Series safety concept.

Table 22. RAM_SM_0

SM CODE RAM_SM_0

Description Periodical software test for SRAM

Ownership End user or ST

Detailed implementation

To enhance the coverage on SRAM data cells and to ensure adequate coverage for
permanent faults affecting the address decoder it is required to execute a periodical
software test on the system RAM. The selection of the algorithm must ensure the target
SFF coverage for both the RAM cells and the address decoder. Evidences of the
effectiveness of the coverage of the selected method must be also collected.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

RAM size can change according to the part number

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according the test
implementation design strategy chosen.

Reference safety architecture UM2037

32/113 UM2037 Rev 3

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Usage of a March test C- is recommended.

Because the nature of this test can be destructive, RAM contents restore must be
implemented. Possible interferences with interrupt-serving routines fired during test
execution must be also considered (such routines can access to RAM invalid contents).

Note: Unused RAM section can be excluded by the testing, under end
user responsibility on actual usage by final application software.

Table 22. RAM_SM_0 (continued)

Table 23. RAM_SM_2

SM CODE RAM_SM_2

Description Stack hardening for application software

Ownership End user

Detailed implementation

The stack hardening method is used to enhance the application software robustness to
SRAM faults that affect the address decoder. The method is based on source code
modification, introducing information redundancy in the stack-passed information to the
called functions. Method contribution is relevant in case the combination between the
final application software structure and the compiler settings requires a significant use
of the stack for passing function parameters.

Implementation is the same as for CPU_SM_4.

Error reporting Refer to CPU_SM_4

Fault detection time Refer to CPU_SM_4

Addressed fault model Refer to CPU_SM_4

Dependency on MCU
configuration

Refer to CPU_SM_4

Initialization Refer to CPU_SM_4

Periodicity Refer to CPU_SM_4

Test for the diagnostic Refer to CPU_SM_4

Multiple faults protection Refer to CPU_SM_4

Recommendations and
known limitations

Refer to CPU_SM_4

Table 24. RAM_SM_3

SM CODE RAM_SM_3

Description Information redundancy for safety-related variables in application software

Ownership End user

UM2037 Rev 3 33/113

UM2037 Reference safety architecture

112

Detailed implementation

To address transient faults affecting SRAM controller, it is required to implement
information redundancy on the safety-related system variables stored in the RAM.

The guidelines for the implementation of this method are the following:

– The system variables that are safety-related (in the sense that a wrong value due to a
failure in reading on the RAM affects the safety functions) are well-identified and
documented.

– The arithmetic computation or decision based on such variables are executed twice
and the two final results are compared.

– Safety-related variables are stored and updated in two redundant locations, and
comparison is checked before consuming data.

– Enumerated fields must use non-trivial values, checked for coherence at least one
time per PST

– Data vectors stored in SRAM must be protected by a encoding checksum (like CRC)

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Implementation of this safety method shows a partial overlap with an already foreseen
method for Cortex®-M3 (CPU_SM_1); optimizations in implementing both methods are
therefore possible.

Table 24. RAM_SM_3 (continued)

Table 25. RAM_SM_4

SM CODE RAM_SM_4

Description Control flow monitoring in application software

Ownership End user

Detailed implementation

In case the end user application software is executed from SRAM, permanent and
transient faults affecting the memory (cells and address decoder) can interfere with the
program execution.

To address such failures it is needed to implement this method.

For more details on the implementation, refer to description CPU_SM_1.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Reference safety architecture UM2037

34/113 UM2037 Rev 3

3.6.4 System bus architecture

Test for the diagnostic NA

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Needed just in case of application software execution from SRAM.

CPU_SM_1 correct implementation supersedes this requirement.

Table 25. RAM_SM_4 (continued)

Table 26. RAM_SM_5

SM CODE RAM_SM_5

Description Periodical integrity test for application software in RAM

Ownership End user

Detailed implementation

In case application software or diagnostic libraries are executed in RAM, it is needed to
protect the integrity of the code itself against soft-error corruptions and related code
mutations. This method must check the integrity of the stored code by checksum
computation techniques, on a periodic basis (at least once per PST). For
implementation details refer to similar method FLASH_SM_0.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according the test
implementation design strategy chosen.

Multiple faults protection
CPU_SM_0: periodical core self test software

CPU_SM_1: control flow monitoring in application software

Recommendations and
known limitations

This method must be implemented only in case of application software or diagnostic
libraries are executed from RAM.

Table 27. BUS_SM_0

SM CODE BUS_SM_0

Description Periodical software test for interconnections

Ownership End user

Detailed implementation

The intra-chip connection resources (Bus Matrix, AHB or APB bridges) needs to be
periodically tested for permanent faults detection. Note that STM32L0 Series MCUs
have no hardware safety mechanism to protect these structures. The test executes a
connectivity test of these shared resources, including the testing of the arbitration
mechanisms between peripherals.

According to IEC 61508:2 Table A.8, A.7.4 the method is considered able to achieve
high levels of coverage.

Error reporting Depends on implementation

UM2037 Rev 3 35/113

UM2037 Reference safety architecture

112

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Implementation can be considered in large part overlapping with the widely used
“Periodical read-back of configuration registers” required for several peripherals.

Table 27. BUS_SM_0 (continued)

Table 28. BUS_SM_1

SM CODE BUS_SM_1

Description Information redundancy in intra-chip data exchanges

Ownership End user

Detailed implementation

This method requires to add some kind of redundancy (e.g. a CRC checksum at packet
level) to each data message exchanged inside the MCU.

Message integrity is verified using the checksum by the application software, before
consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Implementation can be in large part overlapping with other safety mechanisms requiring
information redundancy on data messages for communication peripherals.
Optimizations are therefore possible.

Table 29. LOCK_SM_0

SM CODE LOCK_SM_0

Description Lock mechanism for configuration options

Ownership ST

Reference safety architecture UM2037

36/113 UM2037 Rev 3

3.6.5 EXTI controller

Detailed implementation

The STM32L0 Series MCUs feature spread protection to prevent unintended
configuration changes for some peripherals and system registers (for example
PVD_LOCK, timers); the spread protection detects systematic faults in software
application. The use of this method is encouraged to enhance the end application
robustness to systematic faults.

Error reporting Not generated (when locked, register overwrites are just ignored)

Fault detection time NA

Addressed fault model None (Systematic only)

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection Not needed

Recommendations and
known limitations

No DC associated because this test addresses systematic faults.

Table 29. LOCK_SM_0 (continued)

Table 30. NVIC_SM_0

SM CODE NVIC_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation

This test is implemented by executing a periodical check of the configuration registers
for a system peripheral against its expected value. Expected values are previously
stored in RAM and adequately updated after each configuration change. The method
mainly addresses transient faults affecting the configuration registers, by detecting bit
flips in the registers contents. It addresses also permanent faults on registers because it
is executed at least one time within PST after a peripheral update.

Method must be implemented to any configuration register whose contents are able to
interfere with NVIC or EXTI behavior in case of incorrect settings. Check includes NVIC
vector table.

According the state of the art automotive safety standard ISO26262, this method can
achieve high levels of diagnostic coverage (refer to ISO26262:5, Table D.4)

An alternative valid implementation requiring less space in SRAM can be realized on
the basis of signature concept:

– Peripheral registers to be checked are read in a row, computing a CRC checksum
(use of hardware CRC is encouraged)

– Obtained signature is compared with the golden value (computed in the same way
after each register update, and stored in SRAM)

– Coherence between signatures is checked by the application software – signature
mismatch is considered as failure detection

Error reporting Depends on implementation

Fault detection time Depends on implementation

UM2037 Rev 3 37/113

UM2037 Reference safety architecture

112

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization
Values of configuration registers must be read after the boot before executing the first
check

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

This method addresses only failures affecting configuration registers, and not peripheral
core logic or external interface.

Attention must be paid to registers containing mixed combination of configuration and
status bits. Mask must be used before saving register contents affecting signature, and
related checks, to avoid false positive detections.

Table 30. NVIC_SM_0 (continued)

Table 31. NVIC_SM_1

SM CODE NVIC_SM_1

Description Expected and unexpected interrupt check

Ownership End user

Detailed implementation

According to IEC 61508:2 Table A.1 recommendations, a diagnostic measure for
continuous, absence or cross-over of interrupt must be implemented. The method of
expected and unexpected interrupt check is implemented at application software level.

The guidelines for the implementation of the method are the following:

– The list of the implemented interrupt for the MCU are well documented, reporting also
the expected frequency of each request when possible (for example the interrupts
related to ADC conversion completion, therefore coming on a deterministic way).

– Individual counters are maintained for each interrupt request served, in order to
detect in a given time frame the cases of a) no interrupt at all b) too many interrupt
requests (“babbling idiot” interrupt source). The control of the time frame duration
must be regulated according to the individual interrupt expected frequency.

– Interrupt vectors related to unused interrupt source point to a default handler that
reports, in case of triggering, a faulty condition (unexpected interrupt).

– In case an interrupt service routine is shared between different sources, a plausibility
check on the caller identity is implemented.

– Interrupt requests related to non-safety-related peripherals are handled with the same
method here described, despite their originator safety classification

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Reference safety architecture UM2037

38/113 UM2037 Rev 3

3.6.6 Direct memory access controller (DMA)

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

In order to decrease the complexity of method implementation, it is suggested to use
polling technique (when possible) instead of interrupt for end system implementation.

Table 31. NVIC_SM_1 (continued)

Table 32. DMA_SM_0

SM CODE DMA_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to DMA configuration register and channel addresses
register as well.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 33. DMA_SM_1

SM CODE DMA_SM_1

Description Information redundancy on data packet transferred via DMA

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by DMA a redundancy
check (like a CRC check, or similar one) with encoding capability. Full data packet
redundancy would be overkilling.

The checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single bit flip in the data packet

Consistency of data packet must be checked by the application software before using
data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

UM2037 Rev 3 39/113

UM2037 Reference safety architecture

112

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

To give an example about checksum encoding capability, using just a bit-by-bit addition
is not appropriate.

Table 33. DMA_SM_1 (continued)

Table 34. DMA_SM_2

SM CODE DMA_SM_2

Description
Information redundancy including sender or receiver identifier on data packet
transferred via DMA

Ownership End user

Detailed implementation

This method helps to identify inside the MCU the source and the originator of the
message exchanged by DMA.

Implementation is realized by adding an additional field to protected message, with a
coding convention for message type identification fixed at MCU level. Guidelines for the
identification fields are:

– Identification field value must be different for each possible couple of sender or
receiver on DMA transactions

– Values chosen must be enumerated and non-trivial

– Coherence between the identification field value and the message type is checked by
application software before consuming data.

This method, when implemented in combination with DMA_SM_4, makes available a
kind of “virtual channel” between source and destinations entities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Table 35. DMA_SM_3

SM CODE DMA_SM_3

Description Periodical software test for DMA

Reference safety architecture UM2037

40/113 UM2037 Rev 3

Ownership End user

Detailed implementation

This method requires the periodical testing of the DMA basic functionality, implemented
through a deterministic transfer of a data packet from one source to another (for
example from memory to memory) and the checking of the correct transfer of the
message on the target. Data packets are composed by non-trivial patterns (avoid the
use of 0x0000, 0xFFFF values) and organized in order to allow the detection during the
check of the following failures:

– Incomplete packed transfer

– Errors in single transferred word

– Wrong order in packed transmitted data

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Table 35. DMA_SM_3 (continued)

Table 36. DMA_SM_4

SM CODE DMA_SM_4

Description DMA transaction awareness

Ownership End user

Detailed implementation

DMA transactions are non-deterministic by nature, because typically driven by external
events like communication messages reception. Anyway, well-designed safety systems
should keep much control as possible of events – refer for instance to IEC61508:3 Table
2 item 13 requirements for software architecture.

This method is based on system knowledge of frequency and type of expected DMA
transaction (e.g. an externally connected sensor supposed to send periodically some
messages to a STM32 peripheral). Monitoring DMA transaction by a dedicated state
machine allows to detect missing or unexpected DMA activities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

UM2037 Rev 3 41/113

UM2037 Reference safety architecture

112

3.6.7 Universal synchronous receiver/transmitter (USART1/2/4/5),
low power universal asynchronous receiver/transmitter (LPUART1)

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Because DMA transaction termination is often linked to an interrupt generation,
implementation of this method can be merged with the safety mechanism NVIC_SM_1.

Table 36. DMA_SM_4 (continued)

Table 37. UART_SM_0

SM CODE UART_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to UART configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 38. UART_SM_1

SM CODE UART_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

USART communication module embeds protocol error checks (like additional parity bit
check, overrun, frame error) conceived to detect network-related abnormal conditions.
These mechanisms are able anyway to detect a marginal percentage of hardware
random failures affecting the module itself.

Error signals connected to these checkers are normally handled in a standard
communication software, so the overhead is reduced.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (e.g. baud rate), refer to functional documentation

Addressed fault model Permanent and Transient

Reference safety architecture UM2037

42/113 UM2037 Rev 3

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not required

Multiple faults protection UART_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

USART communication module is fitted by several different configurations – the actual
composition of communication error checks depends on selected configuration.

Table 38. UART_SM_1 (continued)

Table 39. UART_SM_2

SM CODE UART_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by UART a redundancy
check (like a CRC check, or similar one) with encoding capability. The checksum
encoding capability must be robust enough to guarantee at least 90% probability of
detection for a single bit flip in the data packet.

Consistency of data packet must be checked by the application software before using
data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

It is assumed that the remote UART counterpart has an equivalent capability of
performing the check described.

Transmission full redundancy (message repetition) should not be used because its
detection capability is limited to a subset of communication unit failure modes.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
not appropriate.

Table 40. UART_SM_3

SM CODE UART_SM_3

Description Information redundancy techniques on messages, including end-to-end safing

Ownership End user

UM2037 Rev 3 43/113

UM2037 Reference safety architecture

112

3.6.8 Inter-integrated circuit (I2C1/2)

Detailed implementation
This method aims to protect the communication between a peripheral and his external
counterpart.

Refer to CAN_SM_2 description for detailed information.

Error reporting Refer to CAN_SM_2

Fault detection time Refer to CAN_SM_2

Addressed fault model Refer to CAN_SM_2

Dependency on MCU
configuration

Refer to CAN_SM_2

Initialization Refer to CAN_SM_2

Periodicity Refer to CAN_SM_2

Test for the diagnostic Refer to CAN_SM_2

Multiple faults protection Refer to CAN_SM_2

Recommendations and
known limitations

Note: It is assumed that the remote UART counterpart has an
equivalent capability of performing the checks described. Refer to
CAN_SM_2 for further notice.

Table 40. UART_SM_3 (continued)

Table 41. IIC_SM_0

SM CODE IIC_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to I2C configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Reference safety architecture UM2037

44/113 UM2037 Rev 3

Table 42. IIC_SM_1

SM CODE IIC_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

I2C communication module embeds protocol error checks (like overrun, underrun,
packet error etc.) conceived to detect network-related abnormal conditions. These
mechanisms are able anyway to detect a marginal percentage of hardware random
failures affecting the module itself.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (e.g. baud rate), refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

Adoption of SMBus option grants the activation of more efficient protocol-level hardware
checks like CRC-8 packet protection.

Table 43. IIC_SM_2

SM CODE IIC_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by I2C a redundancy
check (like a CRC check, or similar one) with encoding capability. The checksum
encoding capability must be robust enough to guarantee at least 90% probability of
detection for a single bit flip in the data packet.

Consistency of data packet must be checked by the application software before using
data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

UM2037 Rev 3 45/113

UM2037 Reference safety architecture

112

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

It is assumed that the remote I2C counterpart has an equivalent capability of performing
the check described.

Transmission full redundancy (message repetition) should not be used because its
detection capability is limited to a subset of communication unit failure modes.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

This method is superseded by IIC_SM_3 if hardware handled CRC insertion is possible.

Table 43. IIC_SM_2 (continued)

Table 44. IIC_SM_3

SM CODE IIC_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation
I2C communication module allows to activate for specific mode of operation (SMBus)
the automatic insertion (and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (e.g. baud rate), refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

None

Table 45. IIC_SM_4

SM CODE IIC_SM_4

Description Information redundancy techniques on messages, including end-to-end safing

Ownership End user

Detailed implementation
This method aims to protect the communication between a I2C peripheral and his
external counterpart.

Refer to CAN_SM_2 description for detailed information.

Error reporting Refer to CAN_SM_2

Fault detection time Refer to CAN_SM_2

Addressed fault model Refer to CAN_SM_2

Dependency on MCU
configuration

Refer to CAN_SM_2

Initialization Refer to CAN_SM_2

Reference safety architecture UM2037

46/113 UM2037 Rev 3

3.6.9 Serial peripheral interface (SPI1/2)

Periodicity Refer to CAN_SM_2

Test for the diagnostic Refer to CAN_SM_2

Multiple faults protection Refer to CAN_SM_2

Recommendations and
known limitations

Important note: it is assumed that the remote I2C counterpart has an equivalent
capability of performing the checks described.

Refer to CAN_SM_2 for further notice.

Table 45. IIC_SM_4 (continued)

Table 46. SPI_SM_0

SM CODE SPI_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to SPI configuration registers.

Detailed information on the implementation of this method can be found in Section 3.6.5

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 47. SPI_SM_1

SM CODE SPI_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

SPI communication module embeds protocol error checks (like overrun, underrun,
timeout etc.) conceived to detect network-related abnormal conditions. These
mechanisms are able anyway to detect a marginal percentage of hardware random
failures affecting the module itself.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (e.g. baud rate), refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

UM2037 Rev 3 47/113

UM2037 Reference safety architecture

112

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic NA

Multiple faults protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

None

Table 47. SPI_SM_1 (continued)

Table 48. SPI_SM_2

SM CODE SPI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by SPI a redundancy
check (like a CRC check, or similar one) with encoding capability. The checksum
encoding capability must be robust enough to guarantee at least 90% probability of
detection for a single bit flip in the data packet.

Consistency of data packet must be checked by the application software before using
data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

It is assumed that the remote SPI counterpart has an equivalent capability of performing
the check described.

Transmission full redundancy (message repetition) should not be used because its
detection capability is limited to a subset of communication unit failure modes.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

This method is superseded by SSP_SM_3 if hardware handled CRC insertion is
possible.

Table 49. SPI_SM_3

SM CODE SPI_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation
SPI communication module allows to activate automatic insertion (and check) of CRC-8
or CRC-18 checksums to packet data.

Reference safety architecture UM2037

48/113 UM2037 Rev 3

3.6.10 USB - 2.0 Universal Serial Bus interface FS module

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (e.g. baud rate), refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

None

Table 49. SPI_SM_3 (continued)

Table 50. SPI_SM_4

SM CODE SPI_SM_4

Description Information redundancy techniques on messages, including end-to-end safing

Ownership End user

Detailed implementation
This method aims to protect the communication between SPI peripheral and his
external counterpart.

Refer to CAN_SM_2 description for detailed information.

Error reporting Refer to CAN_SM_2

Fault detection time Refer to CAN_SM_2

Addressed fault model Refer to CAN_SM_2

Dependency on MCU
configuration

Refer to CAN_SM_2

Initialization Refer to CAN_SM_2

Periodicity Refer to CAN_SM_2

Test for the diagnostic Refer to CAN_SM_2

Multiple faults protection Refer to CAN_SM_2

Recommendations and
known limitations

Important note: it is assumed that the remote SPI counterpart has an equivalent
capability of performing the checks described.

Refer to CAN_SM_2 for further notice.

Table 51. USB_SM_0

SM CODE USB_SM_0

Description Periodical read-back of configuration registers

Ownership End user

UM2037 Rev 3 49/113

UM2037 Reference safety architecture

112

Detailed implementation
This method must be applied to USB configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 51. USB_SM_0 (continued)

Table 52. USB_SM_1

SM CODE USB_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

USB communication module embeds protocol error checks (like overrun, underrun,
NRZI, bit stuffing etc.) conceived to detect network-related abnormal conditions. These
mechanisms are able anyway to detect a marginal percentage of hardware random
failures affecting the module itself.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (e.g. baud rate), refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection USB_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

None

Table 53. USB_SM_2

SM CODE USB_SM_2

Description Information redundancy techniques on messages

Ownership ST or end user

Reference safety architecture UM2037

50/113 UM2037 Rev 3

Detailed implementation
The implementation of required information redundancy on messages, USB
communication module is fitted by hardware capability. It basically allows to activate the
automatic insertion (and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (e.g. baud rate), refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Error reporting configuration, if interrupt events are planned

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection USB_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

None

Table 53. USB_SM_2 (continued)

Table 54. USB_SM_3

SM CODE USB_SM_3

Description Information redundancy techniques on messages, including end-to-end safing

Ownership End user

Detailed implementation
This method aims to protect the communication between an USB peripheral and his
external counterpart.

Refer to CAN_SM_2 description for detailed information

Error reporting Refer to CAN_SM_2

Fault detection time Refer to CAN_SM_2

Addressed fault model Refer to CAN_SM_2

Dependency on MCU
configuration

Refer to CAN_SM_2

Initialization Refer to CAN_SM_2

Periodicity Refer to CAN_SM_2

Test for the diagnostic Refer to CAN_SM_2

Multiple faults protection Refer to CAN_SM_2

Recommendations and
known limitations

This method apply in case USB bulk or isochronous transfers are used. For other
transfers modes the USB hardware protocol already implements several features of this
requirement.

Refer to CAN_SM_2 for further notice.

UM2037 Rev 3 51/113

UM2037 Reference safety architecture

112

3.6.11 Touch sensing controller (TSC)

Table 55. TSC_SM_0

SM CODE TSC_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to TSC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 56. TSC_SM_1

SM CODE TSC_SM_1

Description Multiple acquisition by application software

Ownership End user

Detailed implementation

This method implements a timing information redundancy by executing multiple
acquisitions on TSC input data. Multiple acquisition data are then used to determine the
acquisition correct state.

This method overlaps on the native features of the TSC module of counting events to
ensure a stable acquisition against external noise.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Reference safety architecture UM2037

52/113 UM2037 Rev 3

3.6.12 Analog-to-digital converters (ADC)

Table 57. TSC_SM_2

SM CODE TSC_SM_2

Description Application-level detection of permanent failures of TSC acquisition

Ownership End user

Detailed implementation
This method must detect TSC module permanent failure leading to wrong or missing
acquisition of touch sensing events.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: Periodical core self-test software

Recommendations and
known limitations

Due to the strictly application-dependent nature of this solution, no detailed guidelines
for its implementation are given here. As a solution fully based on microcontroller
resources is impossible, it is necessary to leverage on the contribution from other
components of the final system.

Table 58. ADC_SM_0

SM CODE ADC_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to ADC configuration registers.

Detailed information on the implementation of this method can be found in Section 3.6.5

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

UM2037 Rev 3 53/113

UM2037 Reference safety architecture

112

Table 59. ADC_SM_1

SM CODE ADC_SM_1

Description Multiple acquisition by application software

Ownership End user

Detailed implementation
This method implements a timing information redundancy by executing multiple
acquisitions on the same input signal. Multiple acquisition data are then combined by a
filter algorithm to determine the signal correct value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

It is highly probable that this recommendation is satisfied by design by the end user
application software. Usage of multiple acquisitions followed by average operations is a
common technique in industrial applications where it is needed to survive with spurious
EMI disturbs on sensor lines.

Table 60. ADC_SM_2

SM CODE ADC_SM_2

Description Range check by application software

Ownership End user

Detailed implementation

The guidelines for the implementation of the method are the following:

– The expected range of the data to be acquired are investigated and adequately
documented. Note that in a well-designed application it is improbable that during
normal operation an input signal has a very near or over the upper and lower rail limit
(saturation in signal acquisition).

– If the application software is aware of the state of the system, this information is to be
used in the range check implementation. For example, if the ADC value is the
measurement of a current through a power load, reading an abnormal value such as
a current flowing in opposite direction versus the load supply may indicate a fault in
the acquisition module.

– As the ADC module is shared between different possible external sources, the
combination of plausibility checks on the different signals acquired can help to cover
the whole input range in a very efficient way

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Reference safety architecture UM2037

54/113 UM2037 Rev 3

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

The implementation (and the related diagnostic efficiency) of this safety mechanism are
strongly application-dependent.

Table 60. ADC_SM_2 (continued)

Table 61. ADC_SM_3

SM CODE ADC_SM_3

Description Periodical software test for ADC

Ownership End user

Detailed implementation

The method is implemented acquiring multiple signals and comparing the read value
with the expected one, supposed to be know. Method can be implemented with different
level of complexity:

– Basic complexity: acquisition and check of upper or lower rails (VDD or VSS) and
internal reference voltage

– High complexity: in addition to basic complexity tests, acquisition of a DAC output
connected to ADC input and checking all voltage excursion and linearity

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Combination of two different complexity method can be used to better optimize test
frequency in high demand safety functions.

Table 62. ADC_SM_4

SM CODE ADC_SM_4

Description 1oo2 scheme for ADC inputs

Ownership End user

Detailed implementation

This safety mechanism is implemented using two different SAR ADC channels to
acquire the same input signal. The application software checks the coherence between
the two readings.

It is recommended to use two different ADC modules belonging to different ADC
modules.

Error reporting Depends on implementation

UM2037 Rev 3 55/113

UM2037 Reference safety architecture

112

3.6.13 Digital-to-analog converter (DAC)

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection ADC_SM_0: Periodical read-back of ADC configuration registers

Recommendations and
known limitations

This method can be used in conjunction with ADC_SM_0 / ADC_SM_2 / ADC_SM_3 to
achieve the highest level of ADC module diagnostic coverage.

Table 62. ADC_SM_4 (continued)

Table 63. DAC_SM_0

SM CODE DAC_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DAC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 64. DAC_SM_1

SM CODE DAC_SM_1

Description DAC output loopback on ADC channel

Ownership End user

Detailed implementation
Implementation is realized by routing the active DAC output to one ADC channel, and
by checking the output current value with his expected one.

Error reporting Depends on implementation

Reference safety architecture UM2037

56/113 UM2037 Rev 3

3.6.14 Comparator (COMP)

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous or on demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Efficiency versus transient failures is linked to final application characteristics. We
define as Tm the minimum duration of DAC wrong signal permanence required to
violate the related safety function(s). Efficiency is maximized when execution test
frequency is higher than 1/Tm.

Table 64. DAC_SM_1 (continued)

Table 65. COMP_SM_0

SM CODE COMP_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to COMP configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 66. COMP_SM_1

SM CODE COMP_SM_1

Description 1oo2 scheme for comparator

Ownership End user

Detailed implementation
This safety mechanism is implemented using the two internal comparators to take the
same decision. It requires that the comparator voting is handled accordingly.

UM2037 Rev 3 57/113

UM2037 Reference safety architecture

112

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

This method is not compatible with “window” comparator feature.

Table 66. COMP_SM_1 (continued)

Table 67. COMP_SM_2

SM CODE COMP_SM_2

Description Plausibility check on inputs

Ownership End user

Detailed implementation
This method is used to redundantly acquire on dedicated ADC channels the analog
inputs that are subjected to comparator function, and to periodically check the
coherence of the comparator output on the measured values.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Table 68. COMP_SM_3

SM CODE COMP_SM_3

Description Multiple acquisition by application software

Ownership End user

Detailed implementation
This method requires that application software takes a decision not on the basis of a
comparator single-shot transition, but after multiple events or after the permanence of
comparator trigger conditions for a certain amount of time.

Error reporting Depends on implementation

Reference safety architecture UM2037

58/113 UM2037 Rev 3

3.6.15 Basic timers (TIM 6/7)

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

It is highly probable that this recommendation is satisfied by design on end user
application - multiple acquisition is a common technique in industrial applications where
it is needed to survive with spurious EMI disturbs on sensor lines.

Table 68. COMP_SM_3 (continued)

Table 69. COMP_SM_4

SM CODE COMP_SM_4

Description Comparator Lock mechanism

Ownership ST

Detailed implementation
This safety mechanism prevents configuration changes for comparator control and
status registers; it addresses therefore systematic faults in the software application.

Error reporting NA

Fault detection time NA

Addressed fault model None (Fault avoidance)

Dependency on MCU
configuration

None

Initialization Lock protection must be enabled using COMPxLOCKbits in COMP_CSR register

Periodicity Continuous

Test for the diagnostic NA

Multiple faults protection NA

Recommendations and
known limitations

This method does not addresses comparator configuration changes due to soft-errors.

Table 70. GTIM_SM_0

SM CODE GTIM_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to general purpose counter timer TIM6 or TIM7
configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

UM2037 Rev 3 59/113

UM2037 Reference safety architecture

112

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 70. GTIM_SM_0 (continued)

Table 71. GTIM_SM_1

SM CODE GTIM_SM_1

Description 1oo2 for counting timers

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:

– Two timers are programmed with same time base or frequency.

– In case of timer use as a time base: use in the application software one of the timer as
time base source, and the other one just for check. Coherence check for the 1oo2 is
done at application level, comparing two counters values each time the timer value is
used to affect safety function.

– In case of interrupt generation usage: use the first timer as main interrupt source for
the service routines, and use the second timer as a “reference” to be checked at the
initial of interrupt routine

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Tolerance implementation in timer checks is recommended to avoid false positive
outcomes of the diagnostic.

Reference safety architecture UM2037

60/113 UM2037 Rev 3

3.6.16 Advanced, general and low-power timers (TIM/2/3/21/22, LPTIM1/2)

Note: As timers are equipped with many different channels, each independent from the others,
and possibly programmed to implement different features, the safety mechanism is selected
individually for each channel.

Table 72. ATIM_SM_0

SM CODE ATIM_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to advanced, general and low-power timers
TIM1/2/3/4/5/8/15/16/17 LPTIM1/2 configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 73. ATIM_SM_1

SM CODE ATIM_SM_1

Description 1oo2 for counting timers

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:

– Two timers are programmed with same time base or frequency.

– In case of timer use as a time base: use in the application software one of the timer as
time base source, and the other one just for check. Coherence check for the 1oo2 is
done at application level, comparing two counters values each time the timer value is
used to affect safety function.

– In case of interrupt generation usage: use the first timer as main interrupt source for
the service routines, and use the second timer as a “reference” to be checked at the
initial of interrupt routine

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

UM2037 Rev 3 61/113

UM2037 Reference safety architecture

112

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Tolerance implementation in timer checks is recommended to avoid false positive
outcomes of the diagnostic.

This method apply to timer channels merely used as elapsed time counters.

Table 73. ATIM_SM_1 (continued)

Table 74. ATIM_SM_2

SM CODE ATIM_SM_2

Description 1oo2 for input capture timers

Ownership End user

Detailed implementation

This method is conceived to protect timers used for external signal acquisition and
measurement, like “input capture” and “encoder reading”. Implementation requires to
connect the external signals also to a redundant timer, and to perform a coherence
check on the measured data at application level.

Coherence check between timers is executed each time the reading is used by the
application software.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

To reduce the potential effect of common cause failures, it is suggested to use for
redundant check a channel belonging to a different timer module and mapped to
non-adjacent pin on the device package.

Table 75. ATIM_SM_3

SM CODE ATIM_SM_3

Description Loopback scheme for PWM outputs

Ownership End user

Reference safety architecture UM2037

62/113 UM2037 Rev 3

Detailed implementation

This method is implemented by connecting the PWM to a separate timer channel to
acquire the generated waveform characteristics.

The guidelines are the following:

– Both PWM frequency and duty cycle are measured and checked versus the
expected value.

– To reduce the potential effect of common cause failure, it is suggested to use for the
loopback check a channel belonging to a different timer module and mapped to
non-adjacent pins on the device package.

This measure can be replaced under the end-user responsibility by different loopback
schemes already in place in the final application and rated as equivalent. For example,
if the PWM is used to drive an external power load, the reading of the on-line current
value can be used instead of the PWM duty cycle measurement.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Efficiency versus transient failures is linked to final application characteristics. We
define as Tm the minimum duration of PWM wrong signal permanence (wrong
frequency, wrong duty, or both) required to violate the related safety function(s).
Efficiency is maximized when execution test frequency is higher than 1/Tm.

Table 75. ATIM_SM_3 (continued)

Table 76. ATIM_SM_4

SM CODE ATIM_SM_4

Description Lock bit protection for timers

Ownership ST

Detailed implementation
This safety mechanism allows the end user to lock down specified configuration
options, avoiding unintended modifications by application software. It addresses
therefore software development systematic faults.

Error reporting NA

Fault detection time NA

Addressed fault model None (Fault avoidance)

Dependency on MCU
configuration

None

Initialization Lock protection must be enabled using LOCK bits in the TIMx_BDTR register

Periodicity Continuous

Test for the diagnostic NA

UM2037 Rev 3 63/113

UM2037 Reference safety architecture

112

Note: IRTIM is not individually mentioned here, being mainly implemented by TIM16 and TIM17
functions. Refer therefore to related prescriptions.

3.6.17 General-purpose input/output (GPIO) - Port A/B/C/D/E/F/G/H

Multiple faults protection NA

Recommendations and
known limitations

This method does not addresses timer configuration changes due to soft-errors.

Table 76. ATIM_SM_4 (continued)

Table 77. GPIO_SM_0

SM CODE GPIO_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to GPIO configuration registers.

Detailed information on the implementation of this method can be found in Section 3.6.5

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

GPIO availability can differ according to part number

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 78. GPIO_SM_1

SM CODE GPIO_SM_1

Description 1oo2 for input GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as inputs. Implementation is done by
connecting the external safety-related signal to two independent GPIO lines.
Comparison between the two GPIO values is executed by application software each
time the signal is used to affect application software behavior.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Reference safety architecture UM2037

64/113 UM2037 Rev 3

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

To reduce the potential impact of common cause failure, it is recommended to use
GPIO lines:

– belonging to different i/o ports (for instance PORT A and B)

– with different bit port number (for instance PORTA.1 and PORTB.5)

– mapped to non-adjacent pins on the device package

Table 78. GPIO_SM_1 (continued)

Table 79. GPIO_SM_2

SM CODE GPIO_SM_2

Description Loopback scheme for output GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as outputs. Implementation is done by a
loopback scheme, connecting the output to a different GPIO line programmed as input
and by using the input line to check the expected value on output port. Comparison is
executed by application software periodically and each time output is updated

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

To reduce the potential impact of common cause failure, it is recommended to use
GPIO lines:

– belonging to different i/o ports (for instance PORT A and B)

– with different bit number (for instance PORTA.1 and PORTB.5)

– mapped to non-adjacent pins on the device package

Efficiency versus transient failures is linked to final application characteristics. We
define as Tm the minimum duration of GPIO output wrong signal permanence required
to violate the related safety function(s). Efficiency is maximized when execution test
frequency is higher than 1/Tm.

Table 80. GPIO_SM_3

SM CODE GPIO_SM_3

Description GPIO port configuration lock register

Ownership ST

UM2037 Rev 3 65/113

UM2037 Reference safety architecture

112

3.6.18 Real-time clock module (RTC)

Detailed implementation

This safety mechanism prevents configuration changes for GPIO registers; it addresses
therefore systematic faults in software application.

The use of this method is encouraged to enhance the end-application robustness for
systematic faults.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model None (Systematic only)

Dependency on MCU
configuration

None

Initialization
The correct write sequence must be applied to bit 16 (LCKK) of GPIOx_LCKR after the
final GPIO configuration has been written by the application software.

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection Not needed

Recommendations and
known limitations

This method does not address transient faults (soft errors) that can possibly cause
bit-flips on GPIO registers at running time.

Table 80. GPIO_SM_3 (continued)

Table 81. RTC_SM_0

SM CODE RTC_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to RTC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Reference safety architecture UM2037

66/113 UM2037 Rev 3

Table 82. RTC_SM_1

SM CODE RTC_SM_1

Description Application check of running RTC

Ownership End user

Detailed implementation

The application software implements some plausibility check on RTC calendar or timing
data, mainly after a power-up and further date reading by RTC.

The guidelines for the implementation of the method are the following:

– RTC backup registers are used to store coded information in order to detect the
absence of VBAT during power-off period.

– RTC backup registers are used to periodically store compressed information on
current date or time

– The application software executes minimal consistence checks for date reading after
power-on (detecting “past” date or time retrieve).

– Application software periodically checks that RTC is actually running, by reading RTC
timestamp progress and comparing with an elapsed time measurement based on
STM32 internal clock or timers

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodical

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

This method provides a limited diagnostic coverage for RTC failure modes. In case of
end user application where RTC timestamps accuracy can affect in severe way the
safety function (e.g. medical data storage devices), it is strongly recommended to adopt
more efficient system-level measures.

Table 83. RTC_SM_2

SM CODE RTC_SM_2

Description Information redundancy on backup registers

Ownership End user

Detailed implementation

Data stored in RTC backup registers must be protected by a checksum with encoding
capability (for instance, CRC). Checksum must be checked by application software
before consuming stored data.

This method guarantees data versus erases due to backup battery failures.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

UM2037 Rev 3 67/113

UM2037 Reference safety architecture

112

 Power control

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

Implementation of this safety method shows a partial overlap with an already foreseen
method for Cortex®-M3 (CPU_SM_1); optimizations in implementing both methods are
therefore possible.

Table 83. RTC_SM_2 (continued)

Table 84. RTC_SM_3

SM CODE RTC_SM_3

Description Application-level measures to detect failures in timestamps/event capture

Ownership End user

Detailed implementation
This method must detect failures affecting the RTC capability to correctly execute the
timestamps/event capture functions. Due to the strictly application-dependent nature of
this solution, no detailed guidelines for its implementation are given here.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: Periodical core self-test software

Recommendations and
known limitations

This method must be used only if the timestamps/event capture function is used in the
safety function implementation. It is worth to note that the use of timestamp/event
capture in safety related applications where the MCU is in sleep or stop mode is
prevented by the assumed requirement ASR7 (refer to Section 3.3.1).

Table 85. VSUP_SM_0

SM CODE VSUP_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Reference safety architecture UM2037

68/113 UM2037 Rev 3

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 85. VSUP_SM_0 (continued)

Table 86. VSUP_SM_1

SM CODE VSUP_SM_1

Description Supply voltage internal monitoring (PVD)

Ownership ST

Detailed implementation

The device features an embedded programmable voltage detector (PVD) that monitors
the VDD power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD drops below the VPVD threshold or when VDD is higher than the
VPVD threshold.

Error reporting Interrupt Event generation

Fault detection time Depends on threshold programming, refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization
Protection enable by PVDE bit and threshold programming in Power control register
(PWR_CR)

Periodicity Continuous

Test for the diagnostic VSUP_SM_0: periodical read-back of configuration registers

Multiple faults protection CPU_SM_5: external watchdog

Recommendations and
known limitations

Internal monitoring PVD has limited capability to address failures related to wrong VDD
values. It can be integrated by VSUP_SM_4 (PVM) in case specific power schemes are
implemented (i.e. some independent supplies directly connected to VDD, allowing to use
PVD and PVM to control high and low thresholds for VDD).

Internal monitoring PVD has limited capability to address failures affecting STM32L0
Series internal voltage regulator. Refer to device FMEA for details.

Table 87. VSUP_SM_2

SM CODE VSUP_SM_2

Description Independent watchdog

Ownership ST

Detailed implementation
The independent watchdog is fed directly by VDD; therefore, major failures in the power
supplies for digital logic (core or peripherals) does not affect its behavior but may lead to
a violation of the IDWG timeout.

UM2037 Rev 3 69/113

UM2037 Reference safety architecture

112

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization
IWDG activation. It is recommended to use the “Hardware watchdog” in Option byte
settings (IWDG is automatically enabled after reset)

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_1: control flow monitoring in application software

Recommendations and
known limitations

An external watchdog (refer to CPU_SM_5) can guarantee the same level of protection.

Table 87. VSUP_SM_2 (continued)

Table 88. VSUP_SM_3

SM CODE VSUP_SM_3

Description Internal temperature sensor check

Ownership End user

Detailed implementation
The internal temperature sensor must be periodically tested to detect abnormal
increase of the die temperature – hardware faults in supply voltage system may cause
excessive power consumption and consequent temperature rise.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization None

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection VSUP_SM_3: Supply voltage internal monitoring (PVD)

Recommendations and
known limitations

This method also mitigates the eventuality of common-cause affecting the MCU and
due to too high temperature.

Refer to the device datasheet to set the threshold temperature.

Table 89. VSUP_SM_4

SM CODE VSUP_SM_4

Description Peripheral voltage monitoring (PVM)

Ownership ST

Reference safety architecture UM2037

70/113 UM2037 Rev 3

3.6.19 Reset and clock control (RCC) subsystem

Detailed implementation

The device features an embedded programmable voltage detector (PVM) that monitors
the three independent power supplies and compares them to thresholds. An interrupt
can be generated when an independent power supply drops below the threshold or
when it is higher than the threshold.

Error reporting Interrupt generation on specific EXTI lines

Fault detection time Depends on threshold programming, refer to functional documentation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization
Protection enable and threshold programming on selected power rails in Power control
register

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_5: external watchdog

Recommendations and
known limitations

This method can be used in conjunction with VSUP_SM_0 to implement a complete
supervision of VDD value.

Table 89. VSUP_SM_4 (continued)

Table 90. CLK_SM_0

SM CODE CLK_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to configuration registers for clock and reset system (refer
to RCC register map).

Detailed information on the implementation of this method can be found in Section 3.6.5

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

UM2037 Rev 3 71/113

UM2037 Reference safety architecture

112

Table 91. CLK_SM_1

SM CODE CLK_SM_1

Description Clock security system (CSS)

Ownership ST

Detailed implementation

The clock security system (CSS) detects the loss of HSE clock activity and executes the
corresponding recovery action, such as:

– Switch-off HSE

– Commutation on the HIS

– Generation of related NMI

Error reporting NMI

Fault detection time Depends on implementation (clock frequency value)

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization
CSS protection must be enabled on Clock interrupt register (RCC_CIR) after boot
stabilization

Periodicity Continuous

Test for the diagnostic CLK_SM_0: periodical read-back of configuration registers

Multiple faults protection CPU_SM_5: external watchdog

Recommendations and
known limitations

It is recommended to carefully read Reference Manual instruction on NMI generation, in
order to correct managing the faulty situation by application software features.

Table 92. CLK_SM_2

SM CODE CLK_SM_2

Description Independent watchdog

Ownership ST

Detailed implementation
The independent watchdog IWDG is able to detect failures in internal main MCU clock
(lower frequency)

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization
IWDG activation. It is recommended to use the “Hardware watchdog” in Option byte
settings (IWDG is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_1: control flow monitoring in application software

Recommendations and
known limitations

Whn using the IWDG window option, the end user must consider possible tolerance in
application software execution, to avoid false error reports (affecting system
availability).

Reference safety architecture UM2037

72/113 UM2037 Rev 3

3.6.20 Independent watchdog (IWDG), system window watchdog (WWDG)

Table 93. CLK_SM_3

SM CODE CLK_SM_3

Description Internal clock cross-measure

Ownership End user

Detailed implementation

This method is implemented using TIM14 capabilities to be fed by the 32 KHz RTC
clock or an external clock source (if available). TIM14 counter progresses are compared
with another counter (fed by internal clock). Abnormal values of oscillator frequency can
be therefore detected.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection
CPU_SM_1: control flow monitoring in application software

CPU_SM_5: external watchdog

Recommendations and
known limitations

Efficiency versus transient faults is negligible. It provides only medium efficiency in
permanent clock-related failure mode coverage.

Table 94. WDG_SM_0

SM CODE WDG_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to WDG or WDG configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

UM2037 Rev 3 73/113

UM2037 Reference safety architecture

112

3.6.21 Debug

Table 95. WDG_SM_1

SM CODE WDG_SM_1

Description Software test for watchdog at startup

Ownership End user

Detailed implementation

This safety mechanism ensures the right functionality of the internal watchdogs in use.
At startup, the software test programs the watchdog with the required expiration
timeout, stores a specific non-trivial code in SRAM and waits for the reset signal. After
the watchdog reset, the software understands that the watchdog has correctly triggered,
and does not execute the procedure again.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Startup (see below)

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

In a typical end user application, this test can be executed only at startup and during
maintenance or offline periods. It could be associated to IEC61508 concept of “proof
test” and so it cannot be accounted for a diagnostic coverage contribution during
operating time.

Table 96. DBG_SM_0

SM CODE DBG_SM_0

Description Independent watchdog

Ownership ST

Detailed implementation
The debug unintentional activation due to hardware random fault results in the massive
disturbance of CPU operations, leading to intervention of the independent watchdog or
alternately, the other system watchdog WWGDG or an external one.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Reference safety architecture UM2037

74/113 UM2037 Rev 3

3.6.22 Cyclic redundancy-check module (CRC)

3.6.23 System configuration controller (SYSCFG)

Multiple faults protection CPU_SM_1: control flow monitoring in application software

Recommendations and
known limitations

None

Table 96. DBG_SM_0 (continued)

Table 97. CRC_SM_0

SM CODE CRC_SM_0

Description CRC self-coverage

Ownership ST

Detailed implementation

The CRC algorithm implemented in this module (CRC-32 Ethernet polynomial:
0x4C11DB7) offers excellent features in terms of error detection in the message.
Therefore permanent and transient faults affecting CRC computations are easily
detected by any operations using the module to recompute an expected signature.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: periodical core self-test software

Recommendations and
known limitations

None

Table 98. SYSCFG_SM_0

SM CODE SYSCFG_SM_0

Description Periodical read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to System Configuration controller configuration registers.

This method is strongly recommended to protect registers related to hardware
diagnostics activation and error reporting chain related features.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

UM2037 Rev 3 75/113

UM2037 Reference safety architecture

112

3.6.24 Flexible static memory controller (FSMC)

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

This method is mainly overlapped by several other “configuration register read-back”
required for other MCU peripherals. It is reported here for the sake of completeness.

Table 98. SYSCFG_SM_0 (continued)

Table 99. DIAG_SM_0

SM CODE DIAG_SM_0

Description Periodical read-back of hardware diagnostics configuration registers

Ownership End user

Detailed implementation

In STM32L0 Series several hardware-based efficient safety mechanisms (e.g. ECC on
Flash) are available. This method shall be applied to any configuration register related
to diagnostic measure operations, including error reporting. End user shall therefore
individuate configuration registers related to:

– Hardware diagnostic enable

– Interrupt/NMI enable (if used for diagnostic error management)

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 100. FSMC_SM_0

SM CODE FSMC_SM_0

Description Control flow monitoring in application software

Ownership End user

Reference safety architecture UM2037

76/113 UM2037 Rev 3

Detailed implementation

If FSMC is used to connect an external memory containing software code to be
executed by the CPU, permanent and transient faults affecting the FSMC memory
controller are able to interfere with the access operation by the CPU, leading to wrong
data or instruction fetches. A strong control flow mechanism linked to a system
watchdog is able to detect such failures, in case they interfere with the expected flow of
the application software.

The implementation of this method is identical to the one reported for CPU_SM_1, refer
there for details.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

FSMC interface is available only on selected part numbers

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic N/A

Multiple faults protection CPU_SM_0: Periodical core self test software

Recommendations and
known limitations

This mechanism must be used just if FSMC external memory is used to store
executable programs.

Table 100. FSMC_SM_0 (continued)

Table 101. FSMC_SM_1

SM CODE FSMC_SM_1

Description Information redundancy on external memory connected to FSMC

Ownership End user

Detailed implementation

If FSMC interface is used to connect an external memory where safety-relevant data
are stored, information redundancy techniques for stored data are able to address faults
affecting the FSMC interface. The possible techniques are:

To use redundant copies of safety relevant data and perform coherence check before
consuming.

To organize data in arrays and compute the checksum field to be checked before use.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

FSMC interface is available only on selected part numbers

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

UM2037 Rev 3 77/113

UM2037 Reference safety architecture

112

Multiple faults protection CPU_SM_0: Periodical core self test software

Recommendations and
known limitations

This mechanism must be used just if FSMC external memory is used to store safety-
related data.

This safety mechanism can overlap with information redundancy techniques
implemented at system level to address failure of physical device connected to FSMC
port.

Table 101. FSMC_SM_1 (continued)

Table 102. FSMC_SM_2

SM CODE FSMC_SM_2

Description Periodical read-back of FSMC configuration registers

Ownership End user

Detailed implementation
This method must be applied to FSMC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

FSMC interface is available only on selected part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 103. FSMC_SM_3

SM CODE FSMC_SM_3

Description ECC engine on NAND interface in FSMC module

Ownership ST

Detailed implementation

The FMC NAND Card controller includes two error correction code computation
hardware blocks, one per memory bank. They reduce the host CPU workload when
processing the ECC by software.

ECC mechanism protects data integrity on the external memory connected to NAND
port.

Error reporting Refer to functional documentation

Fault detection time ECC bits are checked during a memory reading

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

FSMC interface is available only on selected part numbers

Reference safety architecture UM2037

78/113 UM2037 Rev 3

3.6.25 True random number generator (RNG)

Initialization None

Periodicity Continuous

Test for the diagnostic Not needed

Multiple faults protection FSMC_SM_2: Periodical read-back of FSMC configuration registers

Recommendations and
known limitations

This method has negligible efficiency in detecting hardware random failures affecting
the FSMC interface. It can be part of End user safety concept because addressing
memories outside STM32L0 MCU.

Table 103. FSMC_SM_3 (continued)

Table 104. RNG_SM_0

SM CODE RNG_SM_0

Description Periodical read-back of RNG configuration register RNG_CR

Ownership End user

Detailed implementation
This method must be applied to RNG configuration registers.

Detailed information on the implementation of this method can be found in Section 3.6.5

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

RNG module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 105. RNG_SM_1

SM CODE RNG_SM_1

Description RNG module entropy on-line tests

Ownership ST and End user

Detailed implementation

RNG module include an internal diagnostic for the analog source entropy that can be
used to detect failures on the module itself. Furthermore, the required test on generated
random number difference between the previous one (as required by FIPS PUB 140-2)
can be exploited as well.

Implementation:

– Check for RNG error conditions

– Check the difference between generated random number and the previous one

UM2037 Rev 3 79/113

UM2037 Reference safety architecture

112

3.6.26 Advanced encryption standard hardware accelerator (AES)

Error reporting
CEIS, SEIS error bits in RNG status register (RNG_SR)

Application software error for FIPS PUB 140-2 test fail

Fault detection time Depends on implementation

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

RNG module available only on specific part numbers

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic N/A

Multiple faults protection CPU_SM_0: Periodical core self test software

Recommendations and
known limitations

-

Table 105. RNG_SM_1 (continued)

Table 106. AES_SM_0

SM CODE AES_SM_0

Description Periodical read-back of AES configuration registers

Ownership End user

Detailed implementation
This method must be applied to AES configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

AES module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 107. AES_SM_1

SM CODE AES_SM_1

Description Encryption/decryption collateral detection

Ownership ST

Reference safety architecture UM2037

80/113 UM2037 Rev 3

Note: Hardware random failures consequences on potential security features violations are not
analyzed in this manual.

Detailed implementation

Encryption and decryption operations performed by AES module are composed by
several data manipulations and checks, with different level of complexity according to
the selected chaining algorithm. A major part of the hardware random failures affecting
AES module leads to algorithm violations/errors. Leading to decoding errors on the
receiver side.

Error reporting Several error condition can happens, check functional documentation

Fault detection time Depends on peripheral configuration

Addressed fault model Permanent and Transient

Dependency on MCU
configuration

AES module available only on specific part numbers

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic N/A

Multiple faults protection AES_SM_2: Information redundancy techniques on messages

Recommendations and
known limitations

-

Table 107. AES_SM_1 (continued)

Table 108. AES_SM_2

SM CODE AES_SM_2

Description Information redundancy techniques on messages, including end-to-end safing

Ownership End user

Detailed implementation

This method aim to protect the communication between a peripheral and his external
counterpart. It is used in AES local safety concept to address failures not detected by
the encryption/decryption features.

Refer to CAN_SM_2 description for detailed information.

Error reporting Refer to CAN_SM_2

Fault detection time Refer to CAN_SM_2

Addressed fault model Refer to CAN_SM_2

Dependency on MCU
configuration

AES module available only on specific part numbers

Initialization Refer to CAN_SM_2

Periodicity Refer to CAN_SM_2

Test for the diagnostic Refer to CAN_SM_2

Multiple faults protection Refer to CAN_SM_2

Recommendations and
known limitations

Note: It is assumed that the remote counterpart has an equivalent
capability of performing the checks described.

Refer to CAN_SM_2 for further notice.

UM2037 Rev 3 81/113

UM2037 Reference safety architecture

112

3.6.27 Firewall (FW)

3.6.28 Liquid crystal display controller (LCD)

Table 109. FWR_SM_0

SM CODE FWR_SM_0

Description Periodical read-back of Firewall configuration registers

Ownership End user

Detailed implementation

This method must be applied to Firewall configuration registers (also unused by End
user application software).

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 110. LCD_SM_0

SM CODE LCD_SM_0

Description Periodical read-back of LCD configuration registers and buffer memory.

Ownership End user

Detailed implementation

This method must be applied to LCD configuration registers and to the buffer memory
as well.

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Reference safety architecture UM2037

82/113 UM2037 Rev 3

Note: The above-described safety mechanism addresses the LCD interface included in STM32
MCUs. Because actual capability of correct image generation on LCD is not addressed by
this safety mechanism, in case such feature is considered safety relevant the End user is
warned to evaluate the adoption of adequate system-level measures.

3.6.29 Disable and periodic cross-check of unintentional activation of
unused peripherals

This section reports the safety mechanism that addresses peripherals not used by the
safety application, or not used at all.

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 110. LCD_SM_0 (continued)

Table 111. LCD_SM_1

SM CODE LCD_SM_1

Description LCD acquisition by ADC channel

Ownership End user

Detailed implementation
Correct generation of LCD driving signals is checked by ADC reading versus expected
values.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on MCU
configuration

None

Initialization None

Periodicity Periodic

Test for the diagnostic Not needed

Multiple faults protection CPU_SM_0: Periodical core self test software

Recommendations and
known limitations

This method is conceived to mainly detect permanent failures affecting analog parts and
therefore the execution on periodic way is acceptable. Diagnostic coverage achievable
depends on the quantity of LCD signals checked.

Table 112. FFI_SM_0

SM CODE FFI_SM_0

Description Unused peripherals disable

Ownership End user

UM2037 Rev 3 83/113

UM2037 Reference safety architecture

112

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences caused
by peripherals not used by the software application, in case a hardware failure causes
an unintentional activation.

After the system boot, the application software must disable all unused peripherals with
this procedure:

– Enable reset flag on AHB and APB peripheral reset register

– Disable clock distribution on AHB and APB peripheral clock enable register

Error reporting NA

Fault detection time NA

Addressed fault model NA

Dependency on MCU
configuration

None

Initialization NA

Periodicity Startup

Test for the diagnostic Not needed

Multiple faults protection FFI_SM_1: Periodical read-back of interference avoidance registers

Recommendations and
known limitations

None

Table 112. FFI_SM_0 (continued)

Table 113. FFI_SM_1

SM CODE FFI_SM_1

Description Periodical read-back of interference avoidance registers

Ownership End user

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences
between peripherals that can potentially conflict on the same input/output pins,
including for instance unused peripherals. This diagnostic measure must be applied to
following registers:

– Clock enable and disable registers

– Alternate functions programming registers

Detailed information on the implementation of this method can be found in
Section 3.6.5.

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on MCU
configuration

Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Reference safety architecture UM2037

84/113 UM2037 Rev 3

Multiple faults protection Refer to NVIC_SM_0

Recommendations and
known limitations

Refer to NVIC_SM_0

Table 113. FFI_SM_1 (continued)

UM2037 Rev 3 85/113

UM2037 Reference safety architecture

112

3.7 Conditions of use

Table 114 provides a summary of the safety concept recommendations reported in
Section 3.6. The conditions of use to be applied to STM32L0xx MCUs are reported in form
of safety mechanism requirements. Exception is represented by some conditions of use
introduced by FMEA analysis in order to correctly address specific failure modes. These
conditions of use are reported at the end of Table 114.

Rank column reports how related safety mechanism has been considered during the
analysis, with following meaning:

• M = this safety mechanism is always operating during normal operations – no end user
activity can deactivate it.

• ++ = Highly recommended being a common practice and considered in this Safety
Manual for the computation of the safety metrics to achieve SIL2 on a single MCU.

• + = Recommended as additional safety measure, but not considered in this Safety
Manual for the computation of safety metrics. STM32L0 Series users can skip the
implementation in case it is in contradiction with functional requirements or overlapped
by another mechanism marked as “++”.

• o = optional, not needed or related to specific MCU configuration

An X in Perm and Trans columns indicates that the related safety mechanism is effective for
such fault model.

Table 114. List of safety mechanisms

STM32L0 Series
function

Diagnostic Description Rank Perm Trans

Arm® Cortex®-M3 CPU

CPU_SM_0
Periodical software test addressing permanent
faults in Arm® Cortex®-M3 CPU core

++ X -

CPU_SM_1 Control flow monitoring in application software ++ X X

CPU_SM_2 Double computation in application software ++ - X

CPU_SM_3 Arm® Cortex®-M3 HardFault exceptions M X X

CPU_SM_4 Stack hardening for application software + X X

CPU_SM_5 External watchdog +(1) X X

CPU_SM_6 Independent watchdog ++(1) X X

CPU_SM_7 MPU – Memory protection unit ++(2) X X

MPU_SM_0
Periodical read-back of MPU configuration
registers

++(2) X X

Embedded Flash
memory

FLASH_SM_0 Periodical software test for Flash memory ++ X -

FLASH_SM_1 Control flow monitoring in application software ++ X X

FLASH_SM_2 Arm® Cortex®-M3 HardFault exceptions M X X

FLASH_SM_3 Option byte write protection M - -

FLASH_SM_4 Static data encapsulation + X X

FLASH_SM_5 Option byte redundancy with load verification M X X

FLASH_SM_6 Flash unused area filling code + - -

FLASH_SM_8 Read/Write/Proprietary code protection + - -

Reference safety architecture UM2037

86/113 UM2037 Rev 3

Embedded SRAM

RAM_SM_0 Periodical software test for SRAM ++ X -

RAM_SM_2 Stack hardening for application software + X X

RAM_SM_3
Information redundancy for system variables in
application software

++ X X

RAM_SM_4 Control flow monitoring in application software o(3) X X

RAM_SM_5
Periodical integrity test for application software
in RAM

o(3) X X

System architecture

BUS_SM_0 Periodical software test for interconnections ++ X -

BUS_SM_1
Information redundancy in intra-chip data
exchanges

++ X X

System EEPROM
EEP_SM_0 Information redundancy ++ X X

EEP_SM_1 Software read-back after write operation + X X

EXTI controller

NVIC_SM_0 Periodical read-back of configuration registers ++ X X

NVIC_SM_1
Expected and unexpected interrupt check by
application software

++ X X

DMA

DMA_SM_0 Periodical read-back of configuration registers ++ X X

DMA_SM_1
Information redundancy on data packet
transferred via DMA

++ X X

DMA_SM_2
Information redundancy including sender or
receiver identifier on data packet transferred via
DMA

++ X X

DMA_SM_3 Periodical software test for DMA ++ X -

DMA_SM_4 DMA transaction awareness ++ X X

USART, LPUART

UART_SM_0 Periodical read-back of configuration registers ++ X X

UART_SM_1 Protocol error signals ++ X X

UART_SM_2
Information redundancy techniques on
messages

++ X X

UART_SM_3
Information redundancy techniques on
messages, including end-to-end safing

++ X X

I2C

IIC_SM_0 Periodical read-back of configuration registers ++ X X

IIC_SM_1 Protocol error signals ++ X X

IIC_SM_2
Information redundancy techniques on
messages

++ X X

IIC_SM_3 CRC packet-level + X X

IIC_SM_4
Information redundancy techniques on
messages, including end-to-end safing

+ X X

Table 114. List of safety mechanisms (continued)

STM32L0 Series
function

Diagnostic Description Rank Perm Trans

UM2037 Rev 3 87/113

UM2037 Reference safety architecture

112

SPI

SPI_SM_0 Periodical read-back of configuration registers ++ X X

SPI_SM_1 Protocol error signals ++ X X

SPI_SM_2
Information redundancy techniques on
messages

++ X X

SPI_SM_3 CRC packet-level + X X

SPI_SM_4
Information redundancy techniques on
messages, including end-to-end Safing

+ X X

USB

USB_SM_0 Periodical read-back of configuration registers ++ X X

USB_SM_1 Protocol error signals ++ X X

USB_SM_2
Information redundancy techniques on
messages

++ X X

USB_SM_3
Information redundancy techniques on
messages, including end-to-end safing

+ X X

TSC

TSC_SM_0 Periodical read-back of configuration registers ++ X X

TSC_SM_1 Multiple acquisition by application software ++ - X

TSC_SM_2
Application-level detection of permanent failures
of TSC acquisition

+ X -

ADC

ADC_SM_0 Periodical read-back of configuration registers ++ X X

ADC_SM_1 Multiple acquisition by application software ++ - X

ADC_SM_2 Range check by application software ++ X X

ADC_SM_3 Periodical software test for ADC ++ X -

ADC_SM_4 1oo2 scheme for ADC inputs + X X

DAC
DAC_SM_0 Periodical read-back of configuration registers ++ X X

DAC_SM_1 DAC output loopback on ADC channel ++ X X

COMP

COMP_SM_0 Periodical read-back of configuration registers ++ X X

COMP_SM_1 1oo2 scheme for comparator ++ X X

COMP_SM_2 Plausibility check on inputs + X -

COMP_SM_3 Multiple acquisition by application software + - X

COMP_SM_4 Comparator LOCK mechanism + - -

Basic timers TIM6/7
GTIM_SM_0 Periodical read-back of configuration registers ++ X X

GTIM_SM_1 1oo2 for counting timers ++ X X

Advanced, general and
low-power timers

TIM2/3/21/22/ LPTIM1

ATIM_SM_0 Periodical read-back of configuration registers ++ X X

ATIM_SM_1 1oo2 for counting timers ++ X X

ATIM_SM_2 1oo2 for input capture timers ++ X X

ATIM_SM_3 Loopback scheme for PWM outputs ++ X X

ATIM_SM_4 Lock bit protection for timers + - -

Table 114. List of safety mechanisms (continued)

STM32L0 Series
function

Diagnostic Description Rank Perm Trans

Reference safety architecture UM2037

88/113 UM2037 Rev 3

CRC CRC_SM_0 CRC self-coverage ++ X X

GPIO

GPIO_SM_0 Periodical read-back of configuration registers ++ X X

GPIO_SM_1 1oo2 for input GPIO lines ++ X X

GPIO_SM_2 Loopback scheme for output GPIO lines ++ X X

GPIO_SM_3 GPIO port configuration lock register + - -

RTC

RTC_SM_0 Periodical read-back of configuration registers ++ X X

RTC_SM_1 Application check of running RTC ++ X X

RTC_SM_2 Information redundancy on backup registers + X X

RTC_SM_3
Application-level measures to detect failures in
timestamps or event capture

o X X

Power control

VSUP_SM_0 Periodical read-back of configuration registers ++ X X

VSUP_SM_1 Supply voltage monitoring ++ X -

VSUP_SM_2 Independent Watchdog ++ X -

VSUP_SM_3 Internal temperature sensor check o - -

VSUP_SM_4 Peripheral Voltage Monitoring (PVM) + X -

Clock and Reset

CLK_SM_0 Periodical read-back of configuration registers ++ X X

CLK_SM_1 CSS Clock Security System ++ X -

CLK_SM_2 Independent Watchdog ++ X -

CLK_SM_3 Internal clock cross-measure + X -

IWDG/WWDG
WDG_SM_0 Periodical read-back of configuration registers ++ X X

WDG_SM_1 Software test for watchdog at startup o X -

Debug DBG_SM_0 Independent watchdog ++ X X

System or peripheral
control

LOCK_SM_0 Lock mechanism for configuration options + - -

SYSCFG_SM_0 Periodical read-back of configuration registers ++ X X

DIAG_SM_0
Periodical read-back of hardware diagnostics
configuration registers

++ X X

Flexible static memory
controller (FSMC)

FSMC_SM_0 Control flow monitoring in application software ++(4) X X

FSMC_SM_1
Information redundancy on external memory
connected to FSMC

++(4) X X

FSMC_SM_2
Periodical read-back of FSMC configuration
registers.

++ X X

FSMC_SM_3
ECC engine on NAND interface in FSMC
module

o X X

RNG
RNG_SM_0

Periodical read-back of RNG configuration
register RNG_CR.

++ X X

RNG_SM_1 RNG module entropy on-line tests ++ X -

Table 114. List of safety mechanisms (continued)

STM32L0 Series
function

Diagnostic Description Rank Perm Trans

UM2037 Rev 3 89/113

UM2037 Reference safety architecture

112

AES

AES_SM_0
Periodical read-back of AES configuration
registers

++ X X

AES_SM_1 Encryption/decryption collateral detection ++ X X

AES_SM_2
Information redundancy techniques on
messages, including end-to-end safing

++ X X

Firewall (FW) FWR_SM_0
Periodical read-back of Firewall configuration
registers

o X X

LCD
LCD_SM_0

Periodical read-back of LCD configuration
registers and buffer memory.

++ X X

LCD_SM_1 LCD acquisition by ADC channel ++ X -

Part separation (no
interference)

FFI_SM_0 Unused peripherals disable ++ - -

FFI_SM_1
Periodical read-back of interference avoidance
registers

++ - -

Arm® Cortex®-M3 CPU CoU_1
The reset condition of Arm® Cortex®-M3 CPU
must be compatible as valid safe state at system
level

++ - -

Debug CoU_2
STM32L0 Series debug features must not be
used in safety function(s) implementation

++ - -

Arm® Cortex®-M3 /
Supply system

CoU_3
Low power mode state must not be used in
safety function(s) implementation

++ - -

STM32L0 Series
peripherals

CoU_4

End user must implement the required
combination of safety mechanism/CoUs for each
STM32 peripherals used in safety function(s)
implementation

++ X X

Flash subsystem CoU_5
During Flash bank mass erase and
reprogramming there must not be safety
function(s) executed by STM32L0 MCU.

++ - -

Flash subsystem CoU_6

On-field application software live update by
dual-Flash system must include the execution of
code/data integrity check by methods like
FLASH_SM_0

++ X X

CPU subsystem CoU_7
In case of multiple safety functions
implementations, methods to guarantee their
mutual independence must include MPU use.

++ - -

CRS CoU_8
CRS features must not be used in safety
function(s) implementation

++ - -

1. To achieve SIL2 on a single MCU, method CPU_SM_5 is rated as “+”. Anyway, in case of specific definition for system-level
safe state, it can be necessary to rate CPU_SM_5 as ++; in that case CPU_SM_6 can be rated as “+”. Refer to the
“Recommendations” row of Table 11: CPU_SM_6 for more details.

2. Can be considered ranked as “+” if no multiple safety functions are implemented.

3. Must be considered ranked as “++” if the application software is executed on RAM.

4. Can be considered ranked as “o” depending on the intended use of external memory connected to FSMC.

Table 114. List of safety mechanisms (continued)

STM32L0 Series
function

Diagnostic Description Rank Perm Trans

Reference safety architecture UM2037

90/113 UM2037 Rev 3

The above-described safety mechanism or conditions of use are conceived with different
levels of abstraction depending on their nature: the more a safety mechanism is
implemented as application-independent, the wider is its possible use on a large range of
end-user applications.

The safety analysis highlights two major partitions inside the MCU:

• System-critical MCU modules. From a safety point of view, every end-user application
is affected by a failure on these modules. Because they are used by every end user
application, related methods or safety mechanism are mainly conceived to be
application-independent. For STM32L0 Series microcontroller system critical modules
are: CPU, Reset, Power, Clocks, Busmatrixs and Interconnect, Flash memory and
RAM (including their interfaces).

• Peripheral modules. Such modules can be not used by the end-user application, or
used for non-safety related tasks. Related safety methods are therefore implemented
mainly at application level, as application software solutions or architectural solutions.

UM2037 Rev 3 91/113

UM2037 Safety results

112

4 Safety results

This section reports the results of the safety analysis of the STM32L0 Series MCUs,
according to IEC 61508 and to ST methodology flow, related to the hardware random and
dependent failures.

4.1 Random hardware failure safety results

The analysis for random hardware failures of STM32L0 Series devices reported in this
Safety Manual is executed according to ST methodology flow for safety analysis of
semiconductor devices according IEC61508. The accuracy of results obtained are
guaranteed by three factors:

• ST methodology flow strict adherence to IEC61508 requirements and prescriptions

• The use during the analysis of detailed and reliable information on microcontroller
design

• The use of state-of-the-art fault injections methods and tools for safety metrics
verification

The STM32L0 Series safety analysis has been therefore able to explore the overall and
exhaustive list of MCU failure modes, and to individuate for each of them an adequate
mitigation measure (safety mechanism). The overall list of STM32L0 Series failure modes is
maintained in related FMEA document. STM32L0 Series FMEA document can be provided
on demand, refer to your local ST sales contact.

In summary, with the adoptions of the safety mechanisms and conditions of use reported in
Section 3.7: Conditions of use, it is possible to achieve the integrity levels summarized in
Table 115.

The resulting relative safety metrics (DC and SFF) and absolute safety metrics (PFH, PFD)
are not reported in this section but in the FMEDA snapshot, due to:

• the large number of STM32L0 Series part numbers,

• the possibility to declare non-safety-relevant unused peripherals, and

• the possibility to enable or not the different available safety mechanisms.

The FMEDA snapshot is a static document reporting the safety metrics computed at
different detail levels (at microcontroller level and for microcontroller basic functions) for a
given combination of safety mechanisms and for a given part number. If FMEDA

Table 115. Overall achievable safety integrity levels

MCUs used Safety architecture Target Safety analysis result

1 1oo1/1oo1D
SIL2 LD Achievable

SIL2 HD/CM Achievable with potential performance impact(1)

1. Note that the potential performance impact related to some above-reported target achievements is mainly
related to the need of execution of periodical software-based diagnostics (refer to safety mechanism
description for details). The impact is therefore strictly related to how much “aggressive” the system level
PST is (see Section 3.3.1: Assumed safety requirements).

2 1oo2
SIL3 LD Achievable

SIL3 HD/CM Achievable with potential performance impact

Safety results UM2037

92/113 UM2037 Rev 3

computation sheet is needed, contact the local STMicroelectronics sales representative to
receive information on expected delivery dates for specific MCU target part numbers.

Note: Safety metrics computations are restricted to STM32L0 Series boundary, therefore not
including the WDTe, PEv and VMONe (they are described in Section 3.2)

4.1.1 Safety analysis results customization

The safety analysis executed for STM32L0 Series devices and contained in this Safety
Manual considers all microcontroller modules to be safety related, and so able to interfere
with the safety function, with no exclusion. This is in line with the conservative approach to
be followed during the analysis of a general-purpose microcontroller, in order to be agnostic
versus the final application. This means that no microcontroller module has been declared
as “safe” as per IEC61508-4, 3.6.8, and therefore all microcontroller modules are included
in SFF computations.

In actual end-user applications, not all the STM32L0 Series parts or modules are used for
the implementation of the safety function. This can happen under two possible alternative
conditions:

• the part is not used at all (disabled)

• the part is used for the implementation of a non-safety related function (for example a
GPIO line driving a “power-on” signaling LED on an electronic board).

Requiring the implementation of the safety mechanism for the unused parts could result in
an overkill. The safety analysis results can be therefore customized.

The end user can define the selected STM32L0 Series parts as “non-safety related” under
the following conditions (end user responsibility):

• Collect rationales and evidences that the parts play no role in safety function
implementation.

• Collect rationales and evidences that the parts do not interfere with the safety function
during normal operation due to final system design decisions.

• Fulfill the below-reported general condition for the mitigation of the intra-MCU
interferences (Table 116).

The end user is therefore allowed for “non-safety related” parts to do the following:

• Discard the part contribution from metrics computations in FMEDA;

• Do not implement the related safety mechanisms listed in Table 114.

With regard to SFF computation, this procedure is equivalent to declare “no part/no effect”
as per IEC61508-4, 3.6.13 or 14 definition any failure of discarded modules.

4.1.2 General requirements for freedom from interferences (FFI)

A dedicated analysis has highlighted a list of general requirements to be followed in order to
mitigate potential interferences between STM32L0 Series internal modules in case of
internal failures (freedom from interferences, FFI). These precautions are integral part of the
STM32L0 Series safety concept and they can play a relevant role when multiple
microcontroller modules are declared as “non-safety related” by the end user as per
Section 4.1.1.

The requirement for the end user is to implement the safety mechanism listed in Table 116
(implementation details can be found in Description of hardware and software diagnostics)
despite any evaluation about their contribution for the safety metrics computations.

UM2037 Rev 3 93/113

UM2037 Safety results

112

4.1.3 Notes on multiple faults scenario

In principle, IEC61508 requires to analyze multiple faults scenarios, therefore restrictions to
one fault at time conditions could be not acceptable. Accordingly, the safety analysis for
STM32L0 Series took into consideration also multiple faults scenarios. Furthermore,
following the spirit of ISO26262 (the reference and state-of-art standard norm for integrated
circuit safety analysis) the analysis investigated faults able to “disable” each safety
mechanism, in order to individuate mitigation measure for such condition. Section 3.6 tables
report on the “Multiple faults protection” field the associated safety mechanisms needed to
correctly manage a multi-fault scenario, including mitigation measures against safety
mechanism disable.

It is strongly recommended to include into the safety concept the implementation of such
mitigation measures. This is more relevant for long-term operating systems, where error
accumulation issues must be considered.

4.2 Dependent failures analysis

The analysis of dependent failures is important for microcontrollers. The main sub-classes
of dependent failures are the Common Cause Failures (CCF). Their analysis is ruled by the
IEC 61508:2 annex E that lists the design requirements to be verified to allow the use of on-
chip redundancy for ICs with one common semiconductor substrate. However, annexes E.1
and E.2 apply for HFT=1 while the Annex E.3 must be applied to every on-chip redundancy,
intended also in terms of diagnostic implemented on the same silicon.

As there are no on-chip redundancy on STM32L0 Series devices, the CCF quantification
through the BetaIC computation method is not required. Note that in the case of 1oo2 safety
architecture implementation, the end user is required to evaluate the parameter βD, which is
the measure of the common-cause between the two channels used in PFH computation.

The STM32L0 Series device architecture and structures can be potential sources of
dependent failures. These are analyzed in the following sections. The referred safety
mechanisms are described in detail in Section 3.6: Description of hardware and software
diagnostic.

Table 116. List of general requirements for FFI

Diagnostic Description

FFI_SM_0 Unused peripheral disable

FFI_SM_1 Periodical read-back of interference avoidance registers

BUS_SM_0 Periodical software test for interconnections

NVIC_SM_0 Periodical read-back of configuration registers

NVIC_SM_1 Expected and unexpected interrupt check by application software

DMA_SM_0 Periodical read-back of configuration registers

DMA_SM_2
Information redundancy including sender or receiver identifier on data packet
transferred via DMA(1)

1. To be implemented only if DMA is actually used

DMA_SM_4 DMA transactions awareness(1)

GPIO_SM_0 Periodical read-back of configuration registers

Safety results UM2037

94/113 UM2037 Rev 3

4.2.1 Power supply

Power supply is a potential source of dependent failures, because any alteration of the
power the supply can affect many parts, leading to not-independent failures. The following
safety mechanisms address and mitigate those dependent failures:

• VSUP_SM_1: detection of abnormal value of supply voltage

• VSUP_SM_2: the independent watchdog has a different supply source from the digital
core of the MCU, and this diversity helps to mitigate dependent failures related to the
main supply alterations.

The adoption of such safety mechanisms is therefore highly recommended despite their
minor contribution to the safety metrics to reach the required safety integrity level. Refer to
Section 3.6.19: Reset and clock control (RCC) subsystem for the detailed safety
mechanism descriptions.

4.2.2 Clock

System clocks are a potential source of dependent failures, because alterations in the clock
characteristics (frequency, jitter) can affect many parts, leading to not-independent failures.
The following safety mechanisms address and mitigate those dependent failures:

• CLK_SM_1: the clock security system is able to detect hard alterations (stop) of system
clock and activate the adequate recovery actions.

• CLK_SM_2: the independent watchdog has a dedicated clock source. The frequency
alteration of the system clock leads to the watchdog window violations by the triggering
routine on the application software, leading to the MCU reset by watchdog.

The adoption of such safety mechanism is therefore highly recommended despite their
minor contribution to the safety metrics to reach the required safety integrity level. Refer to
Section 3.6.20: Independent watchdog (IWDG), system window watchdog (WWDG) for
detailed safety mechanisms description.

4.2.3 DMA

DMA is a widely shared resource involved in data transfers operated mainly by all
peripherals. Failures of DMA can interfere with the behavior of the system peripherals or
application software, leading to non independent failures. The safety mechanisms
addressing such dependent failures are the following:

• DMA_SM_0

• DMA_SM_1

• DMA_SM_2.

The adoption of such safety mechanisms is therefore highly recommended. It is worth to
note that if DMA is not used for data transfer, then only DMA_SM_0 must be implemented.
Refer to Section 3.6.6: Direct memory access controller (DMA) for detailed safety
mechanisms description.

UM2037 Rev 3 95/113

UM2037 Safety results

112

4.2.4 Internal temperature

The abnormal increase of the internal temperature is a potential source of dependent
failures, because it can affect many MCU parts and therefore lead to not-independent
failures. The safety mechanism to be used to mitigate this potential effect is the following:

• VSUP_SM_3: the internal temperature read and check allow the user to quickly detect
potential risky conditions before they lead to a series of internal failures. Refer to
Section : Power control for the detailed safety mechanism descriptions.

List of evidences UM2037

96/113 UM2037 Rev 3

5 List of evidences

The Safety Case Database stores all the informations related to the safety analysis
performed to derive the results and conclusions reported in this Safety Manual.

In detail, the Safety Case Database is composed of the following:

• Safety Case with the full list of all safety analysis related documents

• ST internal FMEDA tool database for the computation of the safety metrics, including
the estimated and measured values

• Safety Report, the document that describes in detail the safety analysis executed on
STM32L0 Series devices and the clause-by-clause compliance to IEC 61508

• ST internal fault injection campaign database including tools configuration and settings,
fault injection logs and results

Due to presence of ST confidential information, above-described contents are not publicly
available and are available for possible competent bodies audit and inspections. This is in
line with the clarification of Note 2 on IEC61508:2, 7.4.9.7 requirement.

UM2037 Rev 3 97/113

UM2037 Change impact analysis for other safety standards

112

Appendix A Change impact analysis for other safety
standards

The safety analysis reported in this Safety Manual is executed according to IEC 61508
safety norm. This appendix reports the outcomes of a change impact analysis with respect
to different safety standards. The following topics are considered for each addressed new
safety standard:

• Differences in the suggested hardware architecture (architectural categories), and how
to map to safety architectures of IEC 61508.

• Differences in the safety integrity level definitions and metrics computation methods,
and how to recompute and judge the safety performances of STM32L0 Series devices
according to the new standard.

• Work products required by the new safety norms, and how to remap or rework (if
needed) the existing work products resulting as output of the IEC 61508 compliance
activity.

The safety standards examined within this change impact analysis are

• ISO 13849-1:2006, ISO 13849-2:2010 – Safety of machinery and Safety-related parts
of control systems

• IEC 62061:2012-11, ed. 1.1 – Safety of machinery and Functional safety of
safety-related electrical, electronic and programmable electronic control systems

• IEC 61800-5-2:2007, ed.1.0 – Adjustable speed electrical power drive systems –
Part 5-2: Safety requirements – Functional

• ISO 26262:2010 – Road vehicles – Electrical or electronic (EE) systems.

A.1 ISO 13849-1 / ISO 13849-2

The ISO 13849-1 is a type B1 standard. It provides a guideline for the development of
safety-related parts of machinery control systems (SRP or CS) including programmable
electronics, hardware and software.

A.1.1 Architectural categories

The section §6.2 of ISO 13849 identifies five categories for the basic parameters, DC,
MTTFd and CCF, reflecting the expected resistance to faults of SRP or CS under design
and needed for achieving the required PLr. For each category, the standard suggests a
typical architecture that meets the related requirements.

Considering ISO 13849 architectural categories defined in §6.2 and focusing on
microcontrollers, Table 117 presents a summary for end users willing to develop Logic
Solver units suitable for safety critical channels and performing a defined safety function.

The assumptions are listed hereafter:

Change impact analysis for other safety standards UM2037

98/113 UM2037 Rev 3

1. The safety function is realized by combining in series the elements (SRP or CS) input
system, signal processing unit, output system.

2. The SRP or CSs elements may be assigned to one or different categories and different
PLs.

3. The safety function is completely in the scope of the end user application.

4. The STM32L0 Series MCUs with the adoption of safety mechanism described in this
Safety Manual as single compliant item is by itself suitable for CM application up to PLd
(equivalent to SIL2).

The ISO 13849 architectural categories for Logic Solver are shown in Table 117.

 e

Table 117. ISO 13849 architectural categories

Cat. Ref. § Summary Designated architecture of Logic Block diagram

B 6.2.3

The main category; occurrence of one
fault can lead to the loss of the safety
function.
No need of DC and CCF (usually single
channel), MTTFd is low or medium.
Highest achievable is PL = b

Single channel architecture, one MCU
in 1oo1

Refer to Section 3

Compliant item’s MTTFd = high

Figure 6

1 6.2.4

Enforcing category B requirements by
adopting solutions based on “well tried
components” for safety critical application
and “well tried” safety principles.
A microprocessor is not classified as a
“well tried” component.
No need of DC and CCF (usually single
channel), MTTFd is high.
Highest achievable is PL = c.

Single channel architecture, one MCU
in 1oo1

Refer to Section 3

Compliant item’s MTTFd = high

Figure 6

2 6.2.5

With respect to category 1, it is expected
to include in the architecture a test
equipment performing checks on the
safety function and reporting its loss.
Overall DC is low, CCF must be
evaluated, MTTFd can range from low to
high allowing up to PL = d.

Single channel architecture, one MCU
in 1oo1d

Refer to Section 3

Compliant item’s MTTFd = high

TE is in charge of end user, PL = d

Figure 7

3 6.2.6

With respect to category 1, it is expected
to have fault detection mechanisms and
any single fault occurrence does not lead
the loss of the safety function.Overall DC
is low, CCF must be evaluated for the
channels, MTTFd can range from low to
high allowing up to PL = d

Double channel architecture, two
identical MCUs in 1oo2

Refer to Section 3

Continuous testing or monitoring

Compliant item’s MTTFd = high

Figure 8

4 6.2.7

With respect to category 1, it is expected
to have fault detection mechanisms and
any single fault occurrence does not lead
the loss of the safety function. Overall DC
is high, CCF must be evaluated for the
channels, MTTFd is high allowing PL = e

Double channel architecture, two
identical MCUs in 1oo2

Refer to Section 3

Continuous testing or monitoring

Compliant item’s MTTFd = high

PLe achievable

Figure 8

UM2037 Rev 3 99/113

UM2037 Change impact analysis for other safety standards

112

Figure 6. Block diagram for ISO 13849 Cat. B and Cat. 1

Figure 7. Block diagram for ISO 13849 Cat. 2

Change impact analysis for other safety standards UM2037

100/113 UM2037 Rev 3

Figure 8. Block diagram for ISO 13849 Cat. 3 and Cat. 4

A.1.2 Safety metrics computation

Appendix C of ISO 13849 presents tables of standardized MTTFd for the various electric or
electronics components. However, table C.3 in ISO 13849 points to ICs manufacturer’s data
while attempting to classify MTTFd for programmable ICs. As a consequence, safety
analysis results of this Safety Manual can be re-mapped in ISO 13849 domain, because
even computed for IEC 61508 they are definitely more and more accurate in the definition of
dangerous failures identification.

When for a certain component PFH << 1 we can assume that MTTFd = 1 / PFH [years].

From the reliability theory, MTTF (the inverse of λ and PFH) is a metric applicable only to
not reparable systems. Nowadays it is a common practice to use MTBF also for not
reparable systems where MTBF has to be understood as the average time for the first (and
only) failure of the equipment; in this case MTBF is equal to MTTF.

In ISO 13849-1 the DC for each single component has the same meaning of the IEC 61508
metric; results of this Safety Manual can therefore be reused. However, this standard
defines the concept of DCavg applicable to the whole SRP or CS in the form of the equation
defined in Annex E, formula E.1, where the contribution of each part of the control system is
weighted with respect to MTTF of the various subsystems of the channel. The standard
denies any possibility of fault exclusion while calculating DCavg (ISO13849-2 Tab.D.21 no
exclusion allowed) and this is the same assumption done in STM32L0 Series analysis in this
Safety Manual.

It is necessary to calculate the DCavg only for subsystem made of a two MCUs architecture
by applying the formula

DCavg

DCMCU1

MTTFMCU1

DCMCU2

MTTFMCU2

------------------------------+

1
MTTFMCU1

------------------------------ 1
MTTFMCU2

------------------------------+
---=

For two identical MCUs having the same DC and MTTF, DCavg = DC.

UM2037 Rev 3 101/113

UM2037 Change impact analysis for other safety standards

112

Note: An evaluation of the possible common failure modes is required for any architectural
solution implemented with two channels. ISO 13849 defines a simplified approach with
respect to IEC 61508 approach.

Table 7 of the ISO 13849 standard provides a simplified procedure for PL evaluation of SRP
or CS based on category, DCavg and MTTFd. It is worth to note that each architectural
solution analyzed in this Safety Manual results in PFH-values producing high values of
MTTF.

A.1.3 Work products

Table 118 lists the work products required by the ISO 13849, and how to map these into
available work products from IEC 61508 compliance activity:

Table 118. ISO 13849 work product grid

ISO 13849-1 STM32L0 Series

IEC 61508 documentInformation to be provided ISO 13849-1 Part-Clause

Safety functions provided by the SRP or CS

10 Technical documentation End user responsibility

Characteristics of each safety function

Exact points at which the safety-related part(s) start
and end

Environmental conditions

Performance level (PL)

Category or categories selected

Parameters relevant to the reliability (MTTFd, DC,
CCF and mission time)

10 Technical documentation
STM32L0 Series

Safety Manual and FMEA
Measures against systematic failure

Technology or technologies used;

All safety-relevant faults considered

Justification for fault exclusions (see ISO 13849-2) 10 Technical documentation End user responsibility

Design rationale (e.g. faults considered, faults
excluded) 10 Technical documentation

STM32L0 Series
Safety Manual

Measures against reasonably foreseeable misuse

Dated reference to this part of ISO 13849 (that is
“ISO 13849-1:2006”);

11 Information for use
Category (B, 1, 2, 3, or 4)

Performance level (a, b, c, d, or e)

Use of de-energization (see ISO 13849-2)

G.2 Measures for the control
of systematic failures

Measures for controlling the effects of voltage
breakdown, voltage variations, overvoltage, under
voltage

Change impact analysis for other safety standards UM2037

102/113 UM2037 Rev 3

Measures for controlling or avoiding the effects of
the physical environment (for example, temperature,
humidity, water, vibration, dust, corrosive
substances, electromagnetic interference and its
effects)

G.2 Measures for the control
of systematic failures

End user responsibilityProgram sequence monitoring must be used with
SRP or CS containing software to detect defective
program sequences

Measures for controlling the effects of errors and
other effects arising from any data communication
process (see IEC 61508-2:2000, 7.4.8)

Failure detection by automatic tests
G.2 Measures for the control

of systematic failures
STM32L0 Series
Safety Manual

Computer-aided design tools capable of simulation
or analysis

G.3 Measures for avoidance of
systematic failures End user responsibility

Simulation -

Safety-related specification for machine control
App. J, tab.J.1 (SW) End user responsibility

Definition of the control architecture

Software descriptions App. J, tab.J.1 (SW)

Software User Guide

(end user responsibility
because in charge of

implementing software-
based diagnostics)

Function block modeling App. J, tab.J.1 (SW)

SW requirements
specification

 (end user responsibility
because in charge of

implementing software-
based diagnostics)

Encoding comments in the code

App. J, tab.J.1 (SW)

Code inspection results
 (end user responsibility

because in charge of
implementing software-

based diagnostics)

Encoding re-reading sheets

Table 118. ISO 13849 work product grid (continued)

ISO 13849-1 STM32L0 Series

IEC 61508 documentInformation to be provided ISO 13849-1 Part-Clause

UM2037 Rev 3 103/113

UM2037 Change impact analysis for other safety standards

112

A.2 IEC 62061:2005/AMD1:2012

This standard is applicable in the specification, design and verification or validation of
Safety-Related Electrical Control Systems (SRECS) of machines. SRECS is the electrical or
electronics control system of the machine which failure could lead to reduction or loss of
safety. SRECS implements a Safety-Related Control Function (SRCF) to prevent any
increase of the risk.

With respect of the safety lifecycle, the scope of this standard is limited from safety
requirements allocation to safety validation.

IEC 62061 is the special standard for the machine domain within the framework of the more
generic IEC 61508:2010. Since it is just an application standard, IEC 62061 is not strict with
respect to the technical solutions. Moreover it is focused on electrical, electronic and
programmable electronic parts of safety-related control systems.

Note that §3.2.26 and §3.2.27 in IEC 62061 apply only to SRECS in HD or CM, suitable for
the machines domain. LD equipment are still ruled by IEC 61508 requirements.

The close relationship with IEC 61508:2010 is synthesized by the main assumption that the
design of complex electronic components as subsystems or elements of subsystems has to
be compliant with requirements of IEC 61508:2010 part 2, Route 1H, ref. to §7.4.4.2.
Coming from the IEC 62061 definition §3.2.8, natively a microprocessor has to be
considered as a complex component.

Correspondence matrix App. J, tab.J.1 (SW)

Software module test
specification

Software system integration
test specification

Programmable electronic
hardware and software

integration tests
specification

(end user responsibility
because in charge of

implementing software-
based diagnostics)

Test sheets App. J, tab.J.1 (SW)

Software module test report
Software system integration

test report
Programmable electronic
hardware and software
integration tests report
SW verification report

(end user responsibility
because in charge of

implementing software-
based diagnostics)

Table 118. ISO 13849 work product grid (continued)

ISO 13849-1 STM32L0 Series

IEC 61508 documentInformation to be provided ISO 13849-1 Part-Clause

Change impact analysis for other safety standards UM2037

104/113 UM2037 Rev 3

For this reason, the results reported in this Safety Manual for the STM32L0 Series item
(refer to Section 4: Safety results), in the scope of IEC 61508 are still applicable also in the
machines context ruled by IEC 62061.

End-users can effectively adopt the STM32L0 Series compliant item to design SRECS
suitable for the achievement of SIL2 or SIL3 (by adopting two STM32L0 Series MCUs)
machine control loops.

The standard defines as “subsystem” (refer to §3.2.5) the level of parts for a system
architecture where a dangerous failure could lead to the loss of the safety function.

Concerning the integrity levels achievable for subsystems, the standard suggests a
classification based on HFT and SFF as shown in Table 119.

SIL3 is the highest requirement for SRCF in this context. SIL4 is out of scope since the final
outcome of the development is a control system for one machine only.

For the designer, the SIL values listed in the table has to be seen as the SILCL for the
subsystem where SILCL is the maximum SIL claimable for a SRECS subsystem, as defined
in IEC 62061, §3.2.24.

A.2.1 Architectural categories

The standard in §6.7.8.2 defines a set of basic system architectures to be used for the
design of SRECS implementing their SRCFs. A key point is the definition of “subsystem”,
refer to §3.2.5, as the level of parts for a system architecture where a dangerous failure
could lead to the loss of the safety function.

Focusing on the microcontrollers, IEC 62061 proposed architectures are here quickly
summarized for supporting end users in the development of their Logic Solver units usable
as subsystems for the implementation of a SRCF.

The assumptions for the correct understanding of the architectures are listed hereafter:

1. The SRCF is completely in the scope of the end user.

2. The STM32L0 Series device with the adoption of safety mechanism described in this
Safety Manual as single compliant item is by itself suitable for applications up to
SILCL 2.

3. Two identical STM32L0 Series devices with the adoption of safety mechanism
described in this Manual must be used for achieving HFT ≠ 0, when required by basic
architectures.

4. For a microcontroller, the parameter T1, mentioned in the standard as the minimum
between service life or proof test, is intended as the lifetime (mission time) assumed
equal to 10 years, as per Section 3.3.1: Assumed safety requirements.

Table 119. SIL classification versus HFT

SFF
HFT

0 1 2

Below 60% Not allowed SIL1 SIL2

Between 60% and 90% SIL1 SIL2 SIL3

Between 90% and 99% SIL2 SIL3 SIL3

Above 99% SIL3 SIL3 SIL3

UM2037 Rev 3 105/113

UM2037 Change impact analysis for other safety standards

112

Table 120. IEC 62061 architectural categories

Cat. Ref. § Summary Basic architecture of Logic

A 6.7.8.2.2

Equivalent of 1oo1, with HFT = 0, no
diagnostic function(s).

Overall PFHDssA is the probability of
dangerous failure of MCU.

Single channel architecture, one MCU in 1oo1, n = 1

– SILCL = 1 if SFF < 90%

– SILCL = 2 if 90 ≤ SFF < 99%

– SILCL = 3 if SFF ≥ 99%

B 6.7.8.2.3

Equivalent to 1oo2 with HFT = 1, a
single failure does not lead to the
loss of SRCF.

No diagnostic function(s).

Dual channel architecture with two identical MCUs

– SILCL = 1 if SFF < 60%

– SILCL = 2 if 60% ≤ SFF < 90%

– SILCL = 3 if SFF ≥ 90%

In this case:

For β factor see Section 4.2

C 6.7.8.2.4

It is the equivalent of 1oo1d with a
diagnostic function that initiates a
reaction function as a dangerous
failure happens on SRCF.

Note: Diagnostic function
provides the Logic
Solver with a
diagnosis of an
external subsystem,
e.g. the actuator.

Single channel architecture, one MCU in 1oo1, n = 1

Diagnostic function is in charge of end user

– SILCL = 1 if SFF < 90%

– SILCL = 2 if 90 < SFF < 99%

– SILCL = 3 if SFF ≥ 99%

DC (Diagnostic Coverage) as resulting from FMEDA

D 6.7.8.2.5

Any single failure does not lead to a
loss of the SRCF; it is equivalent to
1oo2d with HFT = 1, with diagnostic
function(s).

Note: Diagnostic function
provides the Logic
Solver with a
diagnosis of an
external subsystem,
e.g. the actuator

Dual channel architecture with two identical MCUs

Diagnostic function is in charge of end user

– SILCL = 1 if SFF < 60%

– SILCL = 2 if 60% ≤ SFF < 90%

– SILCL = 3 if SFF ≥ 90%

For β factor see Section 4.2

DC (Diagnostic Coverage) as resulting from FMEDA

In this case:

–

– T2 has to be defined at Logic Solver level by end user

PFHDSSA λDe1
1

Hours
-----------------=

Change impact analysis for other safety standards UM2037

106/113 UM2037 Rev 3

Based on IEC 62061 §6, Figure 9 shows how to proceed with the development of SRECS
implementing the generic control architecture depicted in figure B.1 of the standard where
the microprocessor here presented is an STM32L0 Series device with the adoption of the
safety mechanisms as defined in Section 3.7: Conditions of use.

Figure 9. SRECS high-level diagram

A.2.2 Safety metrics computation

The failure rate (λ) in T is the smaller proof test interval or the life time of the subsystem.

As seen in ISO 13849, the approximation §6.7.8.2.1 NOTE2 is still considered valid, hence
λ = 1/ MTTF, where it is assumed that 1 » λ x T.

So, as PFHD = λD x 1h, PFHD = 1 / MTTF.

Safety analysis executed for STM32L0 Series according IEC61508 is more and more
accurate for the definition of dangerous failure identifications that can be re-mapped in
IEC 62061 domain. Thus, values of λ and PFH reported in the FMEDA (refer to Section 4:
Safety results) are still valid and can be used into formulas of the previous paragraph.

There is no need for re-computation for the SFF of a microcontroller. The end-user uses the
same value resulting from this Safety Manual.

As previously discussed in Section 4.2: Dependent failures analysis, in evaluating CCF for
those basic architectures with an HFT = 1, the end-user uses the same result, if available,
as achieved by the IEC 61508 approach (refer to IEC 61508:2010-6 Annex D). Alternatively,
the end-user can apply the simplified approach from the standard (refer to Annex F) to
calculate the β factor value to be used in formulas for PFHD.

A.2.3 Work products

Table 121 lists the work products required by the IEC 62061 standard and their mapping
with the work products from IEC 61508 compliance activity:

UM2037 Rev 3 107/113

UM2037 Change impact analysis for other safety standards

112

A.3 IEC 61800-5-2:2007

The scope of this standard is the functional safety of adjustable speed electric drive
systems. Part 5.2 of the IEC 61800 defines the requirements for the design, development,
integration and validation of the safety related parts for power drive speed applications,
PDS(SR), within the framework of IEC 61508 first edition. More precisely, this part of IEC

Table 121. IEC 62061 work product grid

IEC 62061 1.1 Tab.8 STM32L0 Series

IEC 61508 documentInformation to be provided IEC 62061-1.1 Clause

Functional safety plan 4.2.1

End user responsibility
Specification of requirements for SRCFs 5.2

Functional safety requirements specification for SRCFs 5.2.3

Safety integrity requirements specification for SRCFs 5.2.4

SRECS design 6.2.5
STM32L0 Series
Safety Manual

Structured design process 6.6.1.2

End user responsibilitySRECS design documentation 6.6.1.8

Structure of function blocks 6.6.2.1.1

SRECS architecture 6.6.2.1.5
STM32L0 Series
Safety Manual

Subsystem safety requirements specification 6.6.2.1.7
End user responsibility

Subsystem realization 6.7.2.2

Subsystem architecture (elements & their interrelationships) 6.7.4.3.1.2
STM32L0 Series
Safety Manual

Fault exclusions claimed when estimating fault tolerance or SFF 6.7.6.1c / 6.7.7.3

End user responsibility

Software safety requirements specification 6.10.1

Software based parameterization 6.11.2.4

Software configuration management items 6.11.3.2.2

Suitability of software development tools 6.11.3.4.1

Documentation of the application program 6.11.3.4.5

Results of application software module testing 6.11.3.7.4

Results of application software integration testing 6.11.3.8.2

Documentation of SRECS integration testing 6.12.1.3

Documentation of SRECS installation 6.13.2.2

Documentation for installation, use and maintenance 7.2

Documentation of SRECS validation testing 8.2.4

Documentation for SRECS configuration management 9.3.1

Change impact analysis for other safety standards UM2037

108/113 UM2037 Rev 3

61800 just limits its application to those PSD(RS) operating in HD or CM, referring to §3.10
NOTE1, implementing safety functions with a target integrity up to SIL3.

Form the architectural point of view, this limitation is reflected in two tables, §6.2.2.3 Tab. 3
and Tab. 4, for the two different types of classified devices. The CPU or the whole
microcontroller (complex electronics parts), are classified as Type B. Also the concept of
HFT is derived from IEC 61508 as it is.

A.3.1 Architectural categories

From the architectural point of view, IEC 61800 application is reflected in two tables,
§6.2.2.3 Tab. 3 and Tab. 4, for the two different types of classified devices. The CPU or the
whole microcontroller, considered as complex electronics parts, are classified as Type B.
The concept of HFT too is derived from IEC 61508 as it is. Architectural remapping on
IEC61508 is therefore straightforward.

A.3.2 Safety metrics computation

The PFH of a safety function performed by PDS(SR) is evaluated by the application of IEC
61508-2. The strong link with the norm IEC 61508 is reflected also by the adoption in IEC
61800-5-2 of the same relevant metrics PFH, ref. to §6.2.1, and SFF, ref. to §6.2.3.So,
results of this Safety Manual (and related FMEA or FMEDA) can be re-mapped in IEC61800
domain.

A.3.3 Work products

Table 122 lists the work products required by the IEC 61800-5-2 standard and their mapping
with the work products from IEC 61508 compliance activity.

Table 122. IEC 61800 work product grid

IEC 618000 5.2 STM32L0 Series
IEC 61508 documentInformation to be provided IEC 61800-5.2 Part-Clause

Safety requirements specification (SRS) for PDS(SR)
including safety function requirements and safety
integrity requirements

5.4

End user responsibilityVerification of PDS(SR) safety requirements
specification

8.2

Hardware design on an architectural level 6

Software design on an architectural level IEC 61508-3

Estimation of the probability of failure of safety
functions due to random hardware failures on a level of
functional block diagrams

IEC 61508-2
STM32L0 Series

Safety Manual and
FMEDA

Reviews of system design 8.2

End user responsibility

Detailed planning of the validation of safety related
PDS(SR)

8.3

Hardware design
6

Software design

UM2037 Rev 3 109/113

UM2037 Change impact analysis for other safety standards

112

A.4 ISO 26262:2010

This international standard is the reference for the functional safety for the automotive
domain. It derives from IEC 61508 standard, and includes relevant modifications.

ISO 26262 redefines the safety integrity levels in term of Automotive SIL (ASIL) with a scale
from A, the lowest level, to D, the highest level. A correlation matrix between SIL and ASIL
values has been empirically identified by TÜV SÜD and is illustrated in Figure 10.

Reliability Prediction 6
STM32L0 Series

Safety Manual and
FMEDA

Reviews of the system design
8.2

End user responsibility

Functional tests on module level

Integration and test of the safety related PDS(SR). 6.5

Review of HW or SW integration test results and
documentation

8.2

Develop user documentation describing PDS(SR)
installation, commissioning, operation and
maintenance.

7

Complete software and appropriate documentation

8.3

Documentation of the results of the validation tests

Validation tests and procedures according to the
validation plan

Documentation of the results of the validation tests

Subsystem testing plan

6.2.4.1.4
Integration testing plan

Validation testing plan

Configuration testing plan

Detailed results of each test 9.2.g)

Any discrepancy between expected and actual results 9.2.h)

Conclusion of the test: either it has been passed or the
reasons for failure

9.2.i)

Table 122. IEC 61800 work product grid (continued)

IEC 618000 5.2 STM32L0 Series
IEC 61508 document

Information to be provided IEC 61800-5.2 Part-Clause

Change impact analysis for other safety standards UM2037

110/113 UM2037 Rev 3

Figure 10. Correlation matrix between SIL and ASIL

A.4.1 Architectural categories

Not Applicable - since ISO 26262 does not define any category.

A.4.2 Safety metrics computation

Hardware metrics in ISO 26262 standard have been defined with a slightly different
perspective from IEC61508:

• Single Point Fault Metric (SPFm): defined with the same formula of SFF in IEC61508,
can differ according to different definition of safe faults (see below)

• Diagnostic Coverage (DC) is defined in the same way of IEC61508;

• Latent Faults Metric (LFm): dedicated ISO26262 safety metrics to evaluate the
robustness of the design against faults affecting diagnostic parts. We have no
equivalent in IEC61508.

It is worth noting that these failures that are classified in IEC 61508 standard as no-parts/no-
effect, in ISO26262 are classified as “safe failures”. As a result, IEC61508 computations for
SFF are “conservative” and so using as SPF values taken from STM32L0 Series FMEDA is
possible.

For such kind of Commercial Off-the-Shelf (COTS) microcontroller as STM32L0 Series, the
natural target in ISO scenario is ASIL B (90% SPF target for permanent and transient, and
60% for latent). As these are the same targets as for 1oo1 SIL2 case, it can be assumed
that the same set of conditions of use or safety mechanisms apply. Metrics computations
are detailed into the FMEDA for microcontrollers of the STM32L0 Series; note that the
resulting PMHF values comply with the expectations for an ASIL B MCU.

We can conclude that the ASIL B target is achievable with some constraints for the final
application. Note that safety diagnostic measures based on periodical execution of software
are executed at least once each FTTI.

For the STM32L0 Series devices, the fulfillment of ASIL B latent faults metrics (60%) is
achievable with the adoption of the same safety mechanism combination that guarantees
the microcontroller to be suitable for SIL2 applications.

UM2037 Rev 3 111/113

UM2037 Change impact analysis for other safety standards

112

Note: Due to differences between IEC61508 and ISO26262 interpretation on local targets for
microcontroller modules or functions, safety performances achieved by STM32L0 Series in
a SIL2 scenario could be not compatible with an ISO26262 application based on ISO26262-
5, 9.4.3 section (the so-called ‘cut-set’ approach). If your ISO26262 safety analysis uses
such approach, check carefully STM32L0 Series FMEDA failure rates at function level.

A.4.3 Work products

Table 123 lists the work products required by the ISO 26262 standard and their mapping
with the work products from IEC 61508 compliance activity:

Note: STM32L0 Series FMEA should be reworked in order to map IEC61508 reference failure
modes into ISO26262 ones.

Table 123. IEC 26262 work product grid

IEC 26262 STM32L0 Series

IEC 61508 documentInformation to be provided IEC 26262 Part-Clause

Technical safety requirements specification 4-6.5.1

STM32L0 Series
Safety Manual

Technical safety concept 4-7.5.1

Safety analysis reports resulting from requirement 4-7.5.6

Hardware safety requirements verification report 5-6.5.3

Hardware safety analysis report 5-7.5.2

Analysis of the effectiveness of the architecture of the item
to cope with the random hardware failures

5-8.5.1

Review report of evaluation of the effectiveness of the
architecture of the item to cope with the random hardware
failures

5-8.5.2

Analysis of safety goal violations due to random hardware
failures

5-9.5.1

Review report of evaluation of safety goal violations due to
random hardware failures

5-9.5.3
STM32L0 Series

FMEDA

Software safety requirements specification 6-6.5.1

End user ResponsibilitySoftware architectural design specification 6-7.5.1

Software verification report (refined) 6-11.5.3

Results of safety analyses 9-8.5.1
STM32L0 Series

Safety Manual, FMEA
and FMEDA

Revision history UM2037

112/113 UM2037 Rev 3

Revision history

Table 124. Document revision history

Date Revision Changes

18-Mar-2016 1 Initial release.

13-Dec-2017 2

Changed document classification to ST Restricted.

Updated Section 1.1: Purpose and scope and Section 3.6.3:
Embedded SRAM.

Updated Figure 10: Correlation matrix between SIL and ASIL.

Minor text edits across the whole document.

20-Jun-2018 3

Changed document classification, from ST Restricted to Public.

Updated Introduction, Section 1.1: Purpose and scope, Section 1.2:
Terms and abbreviations, Section 1.3: Reference normative,
Section 3.1: Introduction, Section 3.3.1: Assumed safety
requirements, Section 3.6.7: Universal synchronous
receiver/transmitter (USART1/2/4/5), low power universal
asynchronous receiver/transmitter (LPUART1), Section 3.6.16:
Advanced, general and low-power timers (TIM/2/3/21/22, LPTIM1/2),
Section 3.6.17: General-purpose input/output (GPIO) - Port
A/B/C/D/E/F/G/H, Section 3.7: Conditions of use, Section 4.1:
Random hardware failure safety results, Section 4.1.1: Safety analysis
results customization and Section 5: List of evidences.

Updated format of subsections in Section 3.6: Description of hardware
and software diagnostic.

Updated Figure 1: STMicroelectronics product development process,
Figure 2: Definition of the compliant item, Figure 6: Block diagram for
ISO 13849 Cat. B and Cat. 1, Figure 6: Block diagram for ISO 13849
Cat. B and Cat. 1, Figure 7: Block diagram for ISO 13849 Cat. 2,
Figure 9: SRECS high-level diagram and Figure 10: Correlation matrix
between SIL and ASIL.

Removed former Section 2.2: Ygitech fRMethodology process,
Figure 5. Block diagram of safety characteristics for STM32L0
modules. Section 3.6.4: System EEPROM, Appendix A: Overview of
fRMethodology and Appendix D: fRSTL_STM32L0_SIL2/3 product
and its use in the framework of this manual.

Added Section 3.2.3: Reference safety architectures - 1oo1,
Section 3.2.3: Reference safety architectures - 1oo1, Section 4.1.3:
Notes on multiple faults scenario and Table 3: SS1 and SS2 safe state
details.

Updated Table 1: Terms and abbreviations, Table 2: Mapping between
this document and IEC 61508-2 Annex D requirements, Table 22:
RAM_SM_0, Table 40: UART_SM_3, Table 62: ADC_SM_4,
Table 108: AES_SM_2, Table 114: List of safety mechanisms,
Table 115: Overall achievable safety integrity levels and Table 120:
IEC 62061 architectural categories.

Minor text edits across the whole document.

UM2037 Rev 3 113/113

UM2037

113

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 About this document
	1.1 Purpose and scope
	1.2 Terms and abbreviations
	Table 1. Terms and abbreviations

	1.3 Reference normative
	Table 2. Mapping between this document and IEC 61508-2 Annex D requirements

	2 STM32L0 Series product development process
	2.1 STMicroelectronics standard development process
	Figure 1. STMicroelectronics product development process

	3 Reference safety architecture
	3.1 Introduction
	3.2 Compliant item
	3.2.1 Definition of the compliant item
	Figure 2. Definition of the compliant item

	3.2.2 Safety functions performed by the compliant item
	3.2.3 Reference safety architectures - 1oo1
	Figure 3. 1oo1 reference architecture

	3.2.4 Reference safety architectures - 1oo2
	Figure 4. 1oo2 reference architecture

	3.3 Assumed requirements
	3.3.1 Assumed safety requirements
	Figure 5. Allocation and target for STM32 PST
	Table 3. SS1 and SS2 safe state details

	3.4 Electrical specifications and environment limits
	3.5 Systematic safety integrity
	3.6 Description of hardware and software diagnostic
	Table 4. Safety mechanism field explanation
	3.6.1 Arm® Cortex®-M3 CPU
	Table 5. CPU_SM_0
	Table 6. CPU_SM_1
	Table 7. CPU_SM_2
	Table 8. CPU_SM_3
	Table 9. CPU_SM_4
	Table 10. CPU_SM_5
	Table 11. CPU_SM_6
	Table 12. CPU_SM_7
	Table 13. MPU_SM_0

	3.6.2 Embedded FLASH memory
	Table 14. FLASH_SM_0
	Table 15. FLASH_SM_1
	Table 16. FLASH_SM_2
	Table 17. FLASH_SM_3
	Table 18. FLASH_SM_4
	Table 19. FLASH_SM_5
	Table 20. FLASH_SM_6
	Table 21. FLASH_SM_8

	3.6.3 Embedded SRAM
	Table 22. RAM_SM_0
	Table 23. RAM_SM_2
	Table 24. RAM_SM_3
	Table 25. RAM_SM_4
	Table 26. RAM_SM_5

	3.6.4 System bus architecture
	Table 27. BUS_SM_0
	Table 28. BUS_SM_1
	Table 29. LOCK_SM_0

	3.6.5 EXTI controller
	Table 30. NVIC_SM_0
	Table 31. NVIC_SM_1

	3.6.6 Direct memory access controller (DMA)
	Table 32. DMA_SM_0
	Table 33. DMA_SM_1
	Table 34. DMA_SM_2
	Table 35. DMA_SM_3
	Table 36. DMA_SM_4

	3.6.7 Universal synchronous receiver/transmitter (USART1/2/4/5), low power universal asynchronous receiver/transmitter (LPUART1)
	Table 37. UART_SM_0
	Table 38. UART_SM_1
	Table 39. UART_SM_2
	Table 40. UART_SM_3

	3.6.8 Inter-integrated circuit (I2C1/2)
	Table 41. IIC_SM_0
	Table 42. IIC_SM_1
	Table 43. IIC_SM_2
	Table 44. IIC_SM_3
	Table 45. IIC_SM_4

	3.6.9 Serial peripheral interface (SPI1/2)
	Table 46. SPI_SM_0
	Table 47. SPI_SM_1
	Table 48. SPI_SM_2
	Table 49. SPI_SM_3
	Table 50. SPI_SM_4

	3.6.10 USB - 2.0 Universal Serial Bus interface FS module
	Table 51. USB_SM_0
	Table 52. USB_SM_1
	Table 53. USB_SM_2
	Table 54. USB_SM_3

	3.6.11 Touch sensing controller (TSC)
	Table 55. TSC_SM_0
	Table 56. TSC_SM_1
	Table 57. TSC_SM_2

	3.6.12 Analog-to-digital converters (ADC)
	Table 58. ADC_SM_0
	Table 59. ADC_SM_1
	Table 60. ADC_SM_2
	Table 61. ADC_SM_3
	Table 62. ADC_SM_4

	3.6.13 Digital-to-analog converter (DAC)
	Table 63. DAC_SM_0
	Table 64. DAC_SM_1

	3.6.14 Comparator (COMP)
	Table 65. COMP_SM_0
	Table 66. COMP_SM_1
	Table 67. COMP_SM_2
	Table 68. COMP_SM_3
	Table 69. COMP_SM_4

	3.6.15 Basic timers (TIM 6/7)
	Table 70. GTIM_SM_0
	Table 71. GTIM_SM_1

	3.6.16 Advanced, general and low-power timers (TIM/2/3/21/22, LPTIM1/2)
	Table 72. ATIM_SM_0
	Table 73. ATIM_SM_1
	Table 74. ATIM_SM_2
	Table 75. ATIM_SM_3
	Table 76. ATIM_SM_4

	3.6.17 General-purpose input/output (GPIO) - Port A/B/C/D/E/F/G/H
	Table 77. GPIO_SM_0
	Table 78. GPIO_SM_1
	Table 79. GPIO_SM_2
	Table 80. GPIO_SM_3

	3.6.18 Real-time clock module (RTC)
	Table 81. RTC_SM_0
	Table 82. RTC_SM_1
	Table 83. RTC_SM_2
	Table 84. RTC_SM_3
	Table 85. VSUP_SM_0
	Table 86. VSUP_SM_1
	Table 87. VSUP_SM_2
	Table 88. VSUP_SM_3
	Table 89. VSUP_SM_4

	3.6.19 Reset and clock control (RCC) subsystem
	Table 90. CLK_SM_0
	Table 91. CLK_SM_1
	Table 92. CLK_SM_2
	Table 93. CLK_SM_3

	3.6.20 Independent watchdog (IWDG), system window watchdog (WWDG)
	Table 94. WDG_SM_0
	Table 95. WDG_SM_1

	3.6.21 Debug
	Table 96. DBG_SM_0

	3.6.22 Cyclic redundancy-check module (CRC)
	Table 97. CRC_SM_0

	3.6.23 System configuration controller (SYSCFG)
	Table 98. SYSCFG_SM_0
	Table 99. DIAG_SM_0

	3.6.24 Flexible static memory controller (FSMC)
	Table 100. FSMC_SM_0
	Table 101. FSMC_SM_1
	Table 102. FSMC_SM_2
	Table 103. FSMC_SM_3

	3.6.25 True random number generator (RNG)
	Table 104. RNG_SM_0
	Table 105. RNG_SM_1

	3.6.26 Advanced encryption standard hardware accelerator (AES)
	Table 106. AES_SM_0
	Table 107. AES_SM_1
	Table 108. AES_SM_2

	3.6.27 Firewall (FW)
	Table 109. FWR_SM_0

	3.6.28 Liquid crystal display controller (LCD)
	Table 110. LCD_SM_0
	Table 111. LCD_SM_1

	3.6.29 Disable and periodic cross-check of unintentional activation of unused peripherals
	Table 112. FFI_SM_0
	Table 113. FFI_SM_1

	3.7 Conditions of use
	Table 114. List of safety mechanisms

	4 Safety results
	4.1 Random hardware failure safety results
	Table 115. Overall achievable safety integrity levels
	4.1.1 Safety analysis results customization
	4.1.2 General requirements for freedom from interferences (FFI)
	Table 116. List of general requirements for FFI

	4.1.3 Notes on multiple faults scenario

	4.2 Dependent failures analysis
	4.2.1 Power supply
	4.2.2 Clock
	4.2.3 DMA
	4.2.4 Internal temperature

	5 List of evidences
	Appendix A Change impact analysis for other safety standards
	A.1 ISO 13849-1 / ISO 13849-2
	A.1.1 Architectural categories
	Table 117. ISO 13849 architectural categories
	Figure 6. Block diagram for ISO 13849 Cat. B and Cat. 1
	Figure 7. Block diagram for ISO 13849 Cat. 2
	Figure 8. Block diagram for ISO 13849 Cat. 3 and Cat. 4

	A.1.2 Safety metrics computation
	A.1.3 Work products
	Table 118. ISO 13849 work product grid

	A.2 IEC 62061:2005/AMD1:2012
	Table 119. SIL classification versus HFT
	A.2.1 Architectural categories
	Table 120. IEC 62061 architectural categories
	Figure 9. SRECS high-level diagram

	A.2.2 Safety metrics computation
	A.2.3 Work products
	Table 121. IEC 62061 work product grid

	A.3 IEC 61800-5-2:2007
	A.3.1 Architectural categories
	A.3.2 Safety metrics computation
	A.3.3 Work products
	Table 122. IEC 61800 work product grid

	A.4 ISO 26262:2010
	Figure 10. Correlation matrix between SIL and ASIL
	A.4.1 Architectural categories
	A.4.2 Safety metrics computation
	A.4.3 Work products
	Table 123. IEC 26262 work product grid

	Revision history
	Table 124. Document revision history

