
January 2017 DocID029479 Rev 1 1/39

39

UM2081
User manual

L9301: firmware and GUI interface

Introduction

This document is a description of the firmware and GUI interface developed to support the
application involving L9301 device. The first part of the document is focused to depict the
data structure used for the SPI communication between L9301 device (slave) and the
microcontroller (master). The second part of the document is dedicated to describe the
Graphical User Interface and the L9301 functionalities embedded in the GUI software. The
last part is devoted to a step-by-step description of the installation of firmware and GUI
interface.

www.st.com

http://www.st.com

Contents UM2081

2/39 DocID029479 Rev 1

Contents

1 L9301 firmware and GUI interface . 3

2 Data structure . 5

3 Firmware and serial communication . 8

4 USART serial protocol . 9

5 Firmware main . 10

6 State machine . 11

7 PWM driving . 13

8 SPI driving . 17

9 GUI general user interface labview . 23

10 SPC560P–DISP: USB drivers installation . 32

11 Bibliography . 37

12 Revision history . 38

DocID029479 Rev 1 3/39

UM2081 L9301 firmware and GUI interface

39

1 L9301 firmware and GUI interface

In order to interface L9301 demo board with the loads of the application (such as coils and
valves of the ABS/ESP system hydraulic modulator), a data structure has been conceived.

From PC side, a labview interface has been designed and developed. This labview interface
allows the PC to communicate with L9301 device by means of MCU SPC560P50 (see
Figure 1).

Figure 1. Demo board SPC560P50

On MCU platform, a general purpose firmware has been developed. This software layer has
been done in SPC5 studio environment (see Figure 2) and has been loaded on the MCU
platform by SPC5–UDESTIK linked with mini–USB wire to the PC.

L9301 firmware and GUI interface UM2081

4/39 DocID029479 Rev 1

Figure 2. SPC5 Studio

Project files

C” code

Build/

Run/

debug

Errors

DocID029479 Rev 1 5/39

UM2081 Data structure

39

2 Data structure

In order to allow the communication between GUI and MCU with a low probability of faults, a
variable length data structure (frame) has been defined as shown in Figure 3:

Figure 3. Data structure field bit (frame) MCU

1. ID: used to identify device under test (for L9301 this code corresponds to 0x93 0x01)

2. FLAGS: used to communicate different data as shown in Figure 4:

Figure 4. 8 bits of FLAGS

3. ACK: dedicated to enable/disable the acknowledge send (feedback of acquired data)

4. CRC: dedicated to enable/disable CRC send

5. PARITY: devoted to enable/disable parity check

6. X: case insensitive

7. LENGTH: indicates the DATA field length (in byte)

8. CID0 – CID1: used to identify the type of operation behind the frame to be sent and the contents of the
DATA field. In other words, MCU checks periodically the input frame and using a switch-case structure
carries out the following configurations and activities as described in Table 1

ID

2 Bytes

FLAGS

1 Byte

LENGTH

1 Byte

CID0

1 Byte

CID1

1 Byte

DATA

0–255
Bytes

CRC

2 Bytes

ACK X CRC X PARITY X X RESEND

Table 1. Firmware case structure

CID0 CID1 Mode/Data Values Description

0x01 SPI

0x00 conf periph SPI INIT

data[0] 0x00 ctar cpol

0x01

data[1] 0x00 ctar cpha

0x01

data[2] 0x00 10 Mhz

0x01 8 Mhz

0x02 5 Mhz

Data structure UM2081

6/39 DocID029479 Rev 1

0x03 4 Mhz

0x04 2 Mhz

0x05 1 Mhz

0x06 0.5 Mhz

default 1 Mhz

0x01 normal SPI SEND –RECEIVE

data[] spitxbuf[]

rxbuf[]

0x0C normal SPI PULSE

data[0], data[1] us Ton

data[2], data[3] us Toff

data[4], data[5],
data[6], data[7]

channels on

data[8], data[9],
data[10], data[11]

channels off

0x02 PWM

0x00 conf periph PWM INIT

data[0] 0x01 PWM ACTIVE H

0x02 PWM ACTIVE L

data[1] 0x00 CH0

........

0x07 CH7

0x0C normal PWM FREQUENCY

data[0], data[1] 1 1

3E8 1000

7D0 2000

2710 10000

data[2] 0x00 CH0

........

0x07 CH7

0x0D normal PWM DUTY

data[0], data[1] 0 0

64 1

3E8 10

1388 50

Table 1. Firmware case structure (continued)

CID0 CID1 Mode/Data Values Description

DocID029479 Rev 1 7/39

UM2081 Data structure

39

DATA: can include information described in Table 1 or the 32 bits of device configuration in
the case CID0=0x01 and CID1=0x01. It is used to send data toward the device and at the
same time to receive data for the analysis.

CRC: acronym of Cyclic Redundancy Check. It is used to check the compliance of the frame
sent or received. It is in a one–to–one correspondence with the single frame. It is calculated
by a XOR chained on two pieces of 2 bytes of the sent or received frame. The control is
done both on GUI and MCU side.

1D4C 75

2710 100

data[2] 0x00 CH0

........

0x07 CH7

0x10 State transition

0x00 conf com

0x01 conf periph

0x02 diag

0x03 normal

0x04 stop

Table 1. Firmware case structure (continued)

CID0 CID1 Mode/Data Values Description

Firmware and serial communication UM2081

8/39 DocID029479 Rev 1

3 Firmware and serial communication

The aims of the MCU are:

 Receive and send data from and to the GUI using a serial protocol

 Send and receive data from and to the device (L9301) by SPI communication protocol

 Generate PWM signals to drive ABS channels

Refer to Figure 5.

Figure 5. GUI – MCU – L9301

In the first part of the firmware the MCU peripherals USART, SPI and PWM are initialized.

DocID029479 Rev 1 9/39

UM2081 USART serial protocol

39

4 USART serial protocol

USART (Universal Synchronous and Asynchronous serial Receiver and Transmitter) is a
serial communication protocol that allows to interface labview environment with the MCU
platform through COM serial port (see Figure 6). It is composed of three signals:

 Clock Generator

 Transmitter

 Receiver

Figure 6. USART block diagram

Clock Generator is characterized by a logic that allows to use synchronous mode and by a
baud rate generator. XCKn (Transfer clock) pin is just used for the synchronous mode.

Transmitter is composed of a write buffer, a serial shift register, a parity generator and of a
control logic to manage different serial frames. The write buffer allows a continuous transfer
without delays.

Receiver is the most complex part of the USART module. This complexity is due to its clock
and units devoted to data recover. These last components are used to receive data in
asynchronous mode.

USART has been configured with a baud rate = 115200.

Firmware main UM2081

10/39 DocID029479 Rev 1

5 Firmware main

The firmware main includes some initializations and a while cycle as shown in Figure 7:

Figure 7. main: while cycle

When a software structure, as shown in Figure 7 receives a frame, the actions listed below
follow:

 "check_serial()": checks the compliance of the device (L9301) ID and set the flag
"valid_frame" equal to 1 (correct frame)

 "check_data_send_ack()": controls the frame and if it is correct then it transmits to the
PC an "ACK OK" (a feedback byte)

 "process_command()": is the core function of the overall firmware and starts when the
previous checks are completed

By this function it is possible addressing CID0 and CID1 to enable some set/control on
PWM, SPI, GPIO, ADC peripherals.

while (1) {

check_serial(&frame_received, &valid_frame);

if(valid_frame==1){

check_data_send_ack (&frame_received, &ack_sent);

process_command(&frame_received, µ_state);

valid_frame=0;

}

}

DocID029479 Rev 1 11/39

UM2081 State machine

39

6 State machine

MCU has been depicted as a state machine. A brief description is reported in Figure 8.

Figure 8. State machine

 “Conf com”: is the initial state. It configures the USART PC/MCU communication

 “Conf Periph”: used to configure the MCU peripherals (SPI, PWM, GPIO, ADC)

 “Normal”: if the configuration is correct, the MCU goes into this state where it can do all
the functions, such as SPI send/receive, PWM generation, GPIO, ADC read.

 “Stop”: resets MCU. In this case, MCU can go in an error case or stop itself

 “Conf Periph”: in this state, SPI and PWM initialization occur

SPI module can be set as described below:

 “baud rate” (data transfer speed) of SPI is set at default value of 1 MHz, with the
possibility to change on a grid of predefined values in the range 500 kHz and 10 MHz.
For the L9301 the maximum value that can be set is 5 MHz

 CPOL: clock polarity, that is, high–active or low–active (for L9301 high–active)

 CPHA: clock phase, that is, when the data has to be read (for L9301 data are read on
the falling edge of the SPI–clock)

MCU can set simultaneously up to 8 PWM channels. For each PWM channel it is possible to
set the idle state, that is if PWM is low–active or high–active (0 V or 5 V). Both SPI INIT and
PWM INIT can be set on the GUI side in Labview in the window "Config Periph" (see
Figure 9).

Conf com.

Conf Periph Normal

Stoperror

error error

State machine UM2081

12/39 DocID029479 Rev 1

Figure 9. SPI_INIT and PWM_INIT on the GUI interface

DocID029479 Rev 1 13/39

UM2081 PWM driving

39

7 PWM driving

After the initial phase of MCU configuration, starting from the "Normal" state of the MCU, it
is possible to drive peripherals such as PWM, SPI, SPI PULSE (a specific SPI
communication mode ad–hoc conceived for the L9301 device), and so on.

Concerning PWM, frequency (from 1 Hz to 40 kHz with step of 1 Hz) and duty–cycle (from 0
to 100% with step of 1%) can be set for each of the 8 channels of the PWM peripheral. In
L9301 application, the maximum value of the frequency is 10 kHz. For more details one can
refer to Figure 10.

Figure 10. PWM generation from GUI

The 8 PWM channels on SPC560P50 MCU have been selected according to the following
steps.

First of all, on SPC560P50 MCU there are 12 PWM generated by 4 submodules (0, 1, 2, 3).
This induces that 3 channel groups have the same frequency values, nevertheless duty-
cycle setting is independent. PWM channels can be activated and masked.

All this preliminary information is useful to generate 8 PWM signals for the 4 peripheral
submodules on the 2 channels A[0,1,2,3] and B[0,1,2,3]. Please refer to Figure 11.

PWM driving UM2081

14/39 DocID029479 Rev 1

Figure 11. SPC560P50 PWM modules

The "MASK" register for the A and B channels is a double buffered register, so to change
the value and to be updated it needs a double FORCE_OUT at 1 in the CONTROL 2
register of submodule. This induces an implementation of some command lines into the
firmware code, named "temporary ST world solution for PWM bug" (see Figure 12). These
commands lines are used to disable the channel MASK.

Figure 12. PWM unlock mask per SPC560P50

SPC560P50 PWM generation is tuned by a 16 bit counter. This does not allow to obtain all
the frequencies from 1 Hz to 40 kHz with a unique prescaler and induces a more
complicated management of the PWM generation. In the upper left side of the SPC560P50
PWM block scheme depicted in Figure 13, there is a prescaler, PSC2, that has as input a
frequency coming from another prescaler, that is, a divisor with integers (from 1 to 16) of the
clock frequency.

FLEXPWM_0.MASK.R = 0x00;

FLEXPWM_0.SUB[addr].CTRL2.B.FRCEN = 1U;

FLEXPWM_0.SUB[addr].CTRL2.B.FORCE = 1U;

DocID029479 Rev 1 15/39

UM2081 PWM driving

39

Figure 13. SPC560P50 PWM block diagram

Frequency ranges have been characterized, according to the MTCCTRL div1 and div8:

 with div1, frequencies from 8 Hz to 64 kHz are obtained

 with div8, frequencies from 1 Hz to 7,8 kHz are obtained

 MTCTRL div1 => Clk = 64 MHz / 1

 MTCTRL div8 => Clk = 64 MHz / 8 = 8 MHz

Each change of the MTCTRL is managed with a stop of all the PWM, because the new
value could induce the implementation of inaccurate frequencies or not provided for PWM
set–up. For both the values of the MTCTRL, the PSC will assume the values 1, 4, 128 in
order to maximize the coverage of the frequencies that can be generated and, at the same
time, to minimize the change of MTCTRL. Using these values, it has been decided to use an
hysteresis to have, under the 8 Hz, a change of MTCTRL to div8. When this change is
performed, before setting ƒ > 7800 Hz MTCTRL is set to div1.

PWM driving UM2081

16/39 DocID029479 Rev 1

Figure 14. Frequency hysteresis on SPC560P50 PWM generation

Doing so, it is impossible to set simultaneously 1 Hz and 64 kHz but it allows to obtain
continuity in the frequency generation into the range 1 Hz – 7800 Hz and 8 Hz – 64 kHz.

DocID029479 Rev 1 17/39

UM2081 SPI driving

39

8 SPI driving

Regarding the SPI it is enough to know that SPI is a communication serial protocol between
the MCU and the device that uses a signal named "chip select" to enable the
communication with a selected device. When the "chip select" is enabled (normally from a
high to low transition) the clock of the SPI communication and the related data transmission
starts. It can be done when the single SPI send/receive bursts. For this firmware a special
function has been designed, named "SPI PULSE", that allows us to send a train of SPI
pulse in a time interval with a precision of 10 µs. This function allows us to drive the channel
in frequency and duty–cycle. The "SPI PULSE" function has been conceived to switch–on
and switch–off in frequency the channels of an ABS or ESP system by SPI communication.
Since MCU locks the unique SPI communication channel, it has been decided to table in a
3–frames structure, the following instructions:

 a first frame for the switch (ON/OFF) of the channels

 a second frame for the complementary switch of the channels

 a third frame, coupled to the second frame, that changes at each 3–frame send (this
frame is taken in sequence from a 25 rows diagnostic table)

The first two frames are set from GUI. The third is obtained from a table that contains all the
frames for diagnostic task (read and write of the 12 channels plus the device status general
register).

At last, there are 27 commands: switch 1 command, switch 2 commands and 25 commands
for diagnostic purposes. From the half of the table there are instructions to do the register
clear only when there are not faults recognized into the bit gf and got (see Figure 15).

SPI driving UM2081

18/39 DocID029479 Rev 1

Figure 15. Frame L9301 MOSI & MISO

“Switch channel” means an ON/OFF transition of the channels. It can be started by the ‘0’
state (OFF) and changed to ‘1’ state (ON) and vice versa. This builds up the sequence of
32x3 bit, as in Figure 16. In this example, from the bottom to the top of the figure, there are:
Chip Select, Clock and MOSI of 32–bit.

For the MOSI signal, one can observe 4 hexadecimal pieces, for instance 0x8D, 0x00, 0x00,
0x05, that is, the 32 bit SPI string "8D000005" in hexadecimal:

 SPI 1 switch channels in a time T1°

 SPI 2 switch channels in a time interval equal to T (see Figure 17)

 SPI 3 diagnostic in a time T2°

where T is the minimum time to send an SPI pulse, it corresponds to the T1° value plus the
half of the T2° value. The time change is done in order to determine the limits of the
frequency and duty–cycle.

DocID029479 Rev 1 19/39

UM2081 SPI driving

39

Figure 16. SPI PULSE 100us duty 20%

Figure 17. T = T1°: Minimum time for an SPI communication

According to the baud rate, there is the feature of the switch–on and switch–off in frequency
of the SPI PULSE. For instance, a baud rate = 500 kHz induces to send a 32–bit SPI, at T
= 80.

As a consequence, ƒmax = 1/T is determined by the three consecutive SPI, with a period =
240 µs, that is, ƒmax = 4166 Hz. If ƒ = 3000 Hz, we have dutymin = T1°/ T = 80/333 = 24%
and dutymax = 1-(T2°/T) = 1-(160/333) = 52%. The duty cycle is not symmetric because
frames are odd (in fact there are three frames: switch 1 frame, switch 2 frame and
diagnostic frame). To increase the dutymax (with a duty cycle greater than 50%) a switch of
the SPI 1 and 2 is induced. Doing so, duty cycle changes from 52% to 76%. When ƒ> 3000
Hz, dutymax is less than 50% so there is a discontinuity. For instance ƒ= 4000 Hz implies
dutymin = 32% and dutymax = 36%; in this case, a switch of the times and SPI frames means
to have a duty cycle within range [32–36%] (for dutymin) and [64–68%] (for dutymax).

Below some figures describing an example of driving of a channel of L9301 by SPI PULSE
function. When CHIP SELECT is low, the SPI communication starts. For each edge of the
CLK signal a bit, composing the frame of the MOSI, is sent from MCU to the L9301device.
There are three MOSI frames: the first frame is for the switch 1, the second frame is for the
switch 2, and the third frame is for diagnostic purpose (see Figure 18 and Figure 19).

In Figure 18, one can observe that the channel is switched–on or switched–off just after the
arrival (to the SPI slave device, that is, L9301) of all the 32 bits. The complete SPI sequence
is: switch 1 frame —pause — switch 2 frame — diagnostic–frame — switch 1 frame, and so
on.

SPI driving UM2081

20/39 DocID029479 Rev 1

Figure 18. SPI on – SPI off – SPI diag (ƒ = 3 kHz, duty = 33%)

Figure 19. SPI on – SPI off – SPI diag (ƒ = 3 kHz, duty 50%)

Basically, SPI (Serial Peripheral Interface) is a standard bus for inter–communication among
different devices. The data transmission occurs between a master device and one or more
slave devices. Master device starts the communication, sends the clock signal and decides
when to stop the communication. When the chip select is low, clock signal conventionally
starts and for each edge of the clock signal, the master device transmits a bit that is shifted
on the slave device and at the same time on the master device an opposite event occurs.
For a more detailed description refer to the Figure 20.

There are two other configuration parameters for a SPI communication: CPOL and CPHA.

CLK

CSK

MOSI

I Chann

DocID029479 Rev 1 21/39

UM2081 SPI driving

39

CPOL is the clock polarity, while CPHA is the clock phase. In order to have a more
comprehensive description of the functionality of these configuration parameters user can
refer to the following:

 CPOL = 0, clk normally to 0

 CPOL = 1, clk normally to 1

 CPHA = 0, SPI captures/codes the data on the first edge of the clock signal and
changes on the second edge

 CPHA = 1, SPI changes data on the first edge of the clock signal and captures/codes
on the second edge

Figure 20. SPI communication: SCK or SCLK system clock, SS chip select, CPHA
clock phase, CPOL clock polarity, MOSI master output slave input, MISO master input

slave output

32 bit SPI frames are called MOSI (Master Output / Slave Input) when there is a data
transfer from MCU to the L9301 device and MISO (Master Input Slave Output) when there is
a data transfer from L9301 to the MCU. MOSI is composed of:

 1 bit W/R for reading and writing mode

 7 bit for the ADD address of the registers

 20 bit for the DATA

 3 bit for the CRC calculated by means of a three grade polynomial

From a diagnostic point of view, that is, status register 0, 1…12, etc…, if the W/R bit is set a
"clear" of the register is driven. Other registers are just read–only registers, so the W/R bit is
blocked to 0.

1.

2.

3.

SPI driving UM2081

22/39 DocID029479 Rev 1

Figure 21. L9301 frame MOSI & MISO

MISO signal received by MCU is composed as follows:

 The last bits 31, 30, 29 are dedicated to the SPI error

 6 bits are used for diagnostic purposes; there are some bits of the SR0 register
(general diagnostic register), in particular CHExcp[5 and 4] indicate faults on the 12
channels of the device (L9301)

 20 bits are used for DATA

 3 bits are used for CRC as for MOSI signal

MISO does not contain ADD the address of the registers, so the reading occurs just on the
answer after the sent request.

CRC is a control on the compliance of the transmitted data to the rules to be used to code
the SPI transmission. It is a kind of parity check and it is performed by a bit to bit XOR
shifted towards right of the 32 bits. The polynomial used to code the CRC is x3+x2+x+1, that
is, the binary sequence "1111".

DocID029479 Rev 1 23/39

UM2081 GUI general user interface labview

39

9 GUI general user interface labview

This section is dedicated to the specifications and the mode of working of the device
(L9301) by means of a customer–oriented GUI (General User Interface) Labview. GUI has
been defined on a basis of configurable and readable bits corresponding to the registers of
the device. A preliminary GUI description is shown in the Figure 22. There are two
macroscopic parts:

 on the left you can find the configuration of the SPI communication between MCU and
device, and the configuration of the PWM driving

 on the right there are all the registers of the device (L9301) useful for the configuration,
the driving and the diagnostic purposes

The possibility to have disabled commands on the GUI allow the users to not commit errors
during the sequence of the SPI communication.

Figure 22. GUI Labview

Figure 23 describes the details of the configuration regarding the link between MCU and
device L9301.

GUI general user interface labview UM2081

24/39 DocID029479 Rev 1

Figure 23. GUI labview: MCU configuration

GUI part depicted in Figure 23 is the only one enabled when the GUI starts. In this case user
can select the COM port for the PC host and MCU communication. After this phase, using
the button "config com" it is possible to configure MCU peripherals. In fact the button "config
periph" is enabled. After these preliminary phases, user can set SPI parameters and the idle
state (if normally low or high) of the 8 PWM channels of L9301 device.

Figure 24. PWM generation

In Figure 24 it is shown how to set the PWM. User can switch–on/switch–off independently
each PWM channel by checking the led located under the channel label (CHx).
Furthermore, user can choose frequency and duty cycle. Duty cycle will be different to zero
only for the enabled channels.

Sync F&D button allows to synchronize more channels on a single couple of (ƒ,duty–cycle)
values. When user pushes "Set PWM ƒ&duty" button, PWM is enabled on the selected

DocID029479 Rev 1 25/39

UM2081 GUI general user interface labview

39

channel. Below the range of available values for frequencies and duty–cycle for the PWM
generation (MCU side):

 ƒ: [1;40000] Hz, with step of 1 Hz

 duty cycle: [0–100]%, with an accuracy of 0,1%

Since the system level specification of the L9301, from application point of view, forecasts
operating condition in ABS/ESP mission profiles up to 10 kHz of driving frequency, this
value is the maximum frequency (ƒmax) usable for the power driver (L9301) of the
ABS/ESP control unit.

Figure 25. LED used to provide warnings to the GUI users

User can see from Figure 25 there are several windows:

 Check: concerns frame sent to the MCU, that is, if the communication successfully
occurred (in this case ACK and ID led are green)

 Configuration device: identifies GUI tabs (see Figure 26) underlying configuration
registers of L9301 device

 Diagnostic: identifies registers underlying diagnostic, switch–on/switch–off of the
continuous diagnostic, CRC led of the communication protocol, MISO leds for faults.
On the other hand, the leds with a triangle on the bottom indicate a fault occured on the
corresponding register (SRx).

Figure 26. GUI tabs

Follows a detailed description regarding the L9301 functionalities that can be enabled by
GUI: configurations, driving, diagnostic. Tab contents, illustrated in the following pages, has
been conceived taking into account the structure of the MOSI and MISO registers for the
SPI communication between the MCU and the considered device (L9301). Each tab
corresponds to a register for a total of 30 tabs.CRx are for the configuration while SRx
registers are for the diagnostic.

GUI general user interface labview UM2081

26/39 DocID029479 Rev 1

Figure 27. Device general configuration:CR0 register

The first tab on the left of Figure 27 is the CR0 register, that is, the general configuration
register of the device (L9301). In this tab, it is possible to choose:

 the type of the configuration of the device: from 1 to 4

 to set auto–shut down of the device when different faults occur, for instance, an auto–
shut down of the device when the Vdd overvoltage condition is detected etc…

"Send" button is used to transmit the SPI with the selected configuration while "Read" button
is used to read the status of the register.

When the registers CR0 –12 have been all set, by pushing the button "All configurations are
SETTED", it is possible to enter into the other GUI tabs.

DocID029479 Rev 1 27/39

UM2081 GUI general user interface labview

39

Figure 28. Channels settings CR1–12

Channel configuration is described in Figure 28. Inside the CR1–12 tab there are 12 other
tabs, each one for each channel/register. At the bottom there are leds of all the registers
showing simultaneously the status of all the registers. Saving the registers 5 and 8 in which
it cannot enable PWM, similar set–up are available for all the channels:

 slew–rate setting–up (high or low)

 overcurrent threshold (normal or double)

 automatic restart of the channel after the fault detection

 blanking time (short or long)

 enable of the diagnosis of the diode loss and pull up current

 channel drive in PWM or SPI

"Read mode" button is available only if SPI PULSE has not been activated by the "Start"
command.

GUI general user interface labview UM2081

28/39 DocID029479 Rev 1

Figure 29. Channels CR13

If the selected configuration of the device forecasts the channel driving by SPI, from the tab
in Figure 29 it is possible to do the static switch–on/switch–off of the channel by means of
"cmdx" button and also pushing the button "Send all". "SPI PULSE" box allows to drive the
switch–on/switch–off in frequency of the channel by SPI setting respectively ƒe duty cycle.
Moreover, "cmdx" leds indicate the initial state of the channels (that is channel starts turned–
on or turned–off) and the underlying led, named "switching led", allows to choose to change
the state (ON/OFF), otherwise it remains fixed. In SPI PULSE MODE all the part regarding
the configuration of the MCU is disabled. On the other hand, it is possible to set PWM and
only to read diagnostic ("clearing" of the registers is enabled only when SPI PULSE is
blocked).

Figure 30. MCU clock settings

CR14 tab in Figure 30 allows to manage options on the MCU clock: enable or disable the
clock check block and input inverting.

DocID029479 Rev 1 29/39

UM2081 GUI general user interface labview

39

Figure 31. Diagnostic block

In the panel described in Figure 31 there is the button to turn–on/turn–off the diagnostic.
CRC led highlights issues into the frame from the viewpoint of the CRC check. More in
details, in the "SPI error, crc & CHExcp", user can see different leds useful to indicate some
faults regarding the SPI communication between MCU and L9301 device (for a more
comprehensive meaning user can refer to L9301 datasheet). When "ON/OFF diagnostic" is
switched–off, SR0–12 registers are automatically read when the corresponding tabs are
selected. Take into account that host PC periodically wants a refresh of the register reading.
To do this user can use the "Clear" button. Clearing can be done only manually and only
when SPI PULSE is blocked.

Figure 32. General device status register

In Figure 32 there is a picture describing the general device (L9301) status register. In this
register, user can see the main faults of the device. In the considered example, led in red
light indicates the SR0 tab in order to show that there is a fault that has to be read. SR0
register can highlight if there is a fault related to an overvoltage or undervoltage condition on
Vb or Vdd. Furthermore, in SR0 register user can find also got and gƒ bits, where:

GUI general user interface labview UM2081

30/39 DocID029479 Rev 1

 got: general over temperature, is a logic OR of all the channels and indicates if there is
an overtemperature on at least a channel of the device

 gƒ: general fault, is a logic OR of all the main issues relating to the operating conditions
of the device channels

In other words, these two bits (that are got and gƒ) show if there are some issues on the
device channels (all the 12 channels) and this information is available on each received
MISO frame. Finally, got and gƒ are the bits in only reading and they can be rest if and only
if the issue underlying the fault is solved.

Figure 33. Driver status register SR1–12

In Figure 33 user can observe the details of the GUI regarding diagnostic operations on all
the 12 channels of L9301 device. There are some tabs similar to the tabs used for the
setting–up operations described before. Red led at the top of the figure indicates a fault on
one of these registers. "cs" led linked to "command status" is not a fault but indicates if the
channel is turned–on or turned–off. At the bottom of the figure there are leds of all the 12
channels in order to have a view on the fault occurring on the device channels. Therefore, it
is possible to read the following fault conditions: overtemperature, overcurrent, diode loss,
short–to– gnd, short to battery, open load, if the channel is turned–on or turned–off, output
status and finally overcurrent comparator self test. As mentioned before, when diagnostic is
turned–off, SRx is read and updated automatically when the corresponding tab is selected.

DocID029479 Rev 1 31/39

UM2081 GUI general user interface labview

39

Figure 34. Asic version and BIST

At last, in Figure 34, the last two registers describing the silicon version and the status of
BIST (Built In Self Test) control, are highlighted. ASIC writes bit equal to 1 if a fault in the
status registers occurs and it cannot be cleared as long as the corresponding register is not
activated.

BIST is an internal feature that allows the device to test itself. At the start–up of L9301
device, in the first 11 ms a self–test of the device is performed in order to control if there are
some issues related to the device build process.

SPC560P–DISP: USB drivers installation UM2081

32/39 DocID029479 Rev 1

10 SPC560P–DISP: USB drivers installation

The GUI needs a dedicated USB driver to enable the serial communication channel. If the
driver is not yet installed or not appropriately configured, the following procedure describes
how to install the Driver or to update the current version.

In order to install the drivers, the board SPC560P–DISP does not need the external
supplies; the USB connection provides the supply voltage.

1. Disconnect the USB from SPC560P–Discovery

2. If the UDE Visual Platform 4.2 is already installed as well as the drivers are updated go
to step #7 otherwise continue to next step

3. Download the SPC5–UDE/STK 4.02.07 from the link: pls-mc.com/downloads-a-
682.html

4. Install the software, right click on the icon named "ude–4–02–07–spc5–udestk.exe" as
shown in Figure 35, then select "Run as administrator"

Figure 35. Icon ude–4–02–07–spc5–udestk.exe

5. Accept to install the USB drivers

6. The drivers installation is completed when the window here below appears (see
Figure 36). When pressing the "Finish” button the installation will be completed and the
installation program will be closed

Figure 36. Installation completion

7. Open the folder "C:\Program Files (x86)\pls\UDE 4.2\Driver\JtagUsbDriver"(a)

8. Right click on "InstallPlsUsbJtagDriver.bat" then select "Run as administrator" as
shown in Figure 37 below

a. The path could be different because it depends on the choice the user made during the installation procedure

DocID029479 Rev 1 33/39

UM2081 SPC560P–DISP: USB drivers installation

39

Figure 37. USB Driver Installation – folder "JtagUsbDriver"

9. Once the installation is completed, connect the USB cable to the SPC560P–DISP
board. See Figure 38

Figure 38. SPC560P–DISP USB port

10. From "Start" menu, right click on "Computer" item then select "Manage” as shown in
Figure 39

Figure 39. Start menu/Computer/Manage

11. Once the Computer management popup appears, select "Device Manager" from the
System Tools menu as shown in Figure 40

SPC560P–DISP: USB drivers installation UM2081

34/39 DocID029479 Rev 1

Figure 40. Disk Management

12. Expand the item “Universal Serial Bus controllers”, identify "PLS USB JTAG Adapter for
SPC5xxx A" and "PLS USB JTAG Adapter for SPC5xxx B" (see Figure 41)

Figure 41. PLS USB JTAG adapter – COM Ports

13. To enable the COM port, right click on "PLS USB JTAG adapter for SPC5xxx B" then
click “Properties” and select the “Advanced” tab. Flag the "LOAD VCP" (Virtual COM
Port) box as shown in Figure 42.

DocID029479 Rev 1 35/39

UM2081 SPC560P–DISP: USB drivers installation

39

Figure 42. PLS USB JTAG adapter for SPC5xxx B – Load VCP box

14. Disconnect the USB cable from the SPC56P–Discovery then reconnect. A new COM
port appears, and Windows will install the new drivers automatically. From the “Device
manager” window, check the new COM port available (see Figure 43).

Figure 43. PLS USB JTAG adapter for SPC5xxx B – PLS USB Serial Port

15. The COM port is configured and available to be used for serial communication with the
PC (see Figure 44).

SPC560P–DISP: USB drivers installation UM2081

36/39 DocID029479 Rev 1

Figure 44. PLS USB drivers and serial port – Device manager window after
installation procedure

DocID029479 Rev 1 37/39

UM2081 Bibliography

39

11 Bibliography

[1] "LabVIEW 2012 Core 1", National Instrument, 2012

[2] "LabVIEW 2012 Core 2", National Instrument, 2012

[3] "L9301 datasheet", STMicroelectronics internal reference, 2014

[4] "SPC560P50 Reference Manual", STMicroelectronics, 2013

Revision history UM2081

38/39 DocID029479 Rev 1

12 Revision history

Table 2. Document revision history

Date Revision Changes

19-Jan-2017 1 Initial release.

DocID029479 Rev 1 39/39

UM2081

39

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 L9301 firmware and GUI interface
	Figure 1. Demo board SPC560P50
	Figure 2. SPC5 Studio

	2 Data structure
	Figure 3. Data structure field bit (frame) MCU
	Figure 4. 8 bits of FLAGS
	Table 1. Firmware case structure

	3 Firmware and serial communication
	Figure 5. GUI – MCU – L9301

	4 USART serial protocol
	Figure 6. USART block diagram

	5 Firmware main
	Figure 7. main: while cycle

	6 State machine
	Figure 8. State machine
	Figure 9. SPI_INIT and PWM_INIT on the GUI interface

	7 PWM driving
	Figure 10. PWM generation from GUI
	Figure 11. SPC560P50 PWM modules
	Figure 12. PWM unlock mask per SPC560P50
	Figure 13. SPC560P50 PWM block diagram
	Figure 14. Frequency hysteresis on SPC560P50 PWM generation

	8 SPI driving
	Figure 15. Frame L9301 MOSI & MISO
	Figure 16. SPI PULSE 100us duty 20%
	Figure 17. DT = T1°: Minimum time for an SPI communication
	Figure 18. SPI on – SPI off – SPI diag (ƒ = 3 kHz, duty = 33%)
	Figure 19. SPI on – SPI off – SPI diag (ƒ = 3 kHz, duty 50%)
	Figure 20. SPI communication: SCK or SCLK system clock, SS chip select, CPHA clock phase, CPOL clock polarity, MOSI master output slave input, MISO master input slave output
	Figure 21. L9301 frame MOSI & MISO

	9 GUI general user interface labview
	Figure 22. GUI Labview
	Figure 23. GUI labview: MCU configuration
	Figure 24. PWM generation
	Figure 25. LED used to provide warnings to the GUI users
	Figure 26. GUI tabs
	Figure 27. Device general configuration:CR0 register
	Figure 28. Channels settings CR1–12
	Figure 29. Channels CR13
	Figure 30. MCU clock settings
	Figure 31. Diagnostic block
	Figure 32. General device status register
	Figure 33. Driver status register SR1–12
	Figure 34. Asic version and BIST

	10 SPC560P–DISP: USB drivers installation
	Figure 35. Icon ude–4–02–07–spc5–udestk.exe
	Figure 36. Installation completion
	Figure 37. USB Driver Installation – folder "JtagUsbDriver"
	Figure 38. SPC560P–DISP USB port
	Figure 39. Start menu/Computer/Manage
	Figure 40. Disk Management
	Figure 41. PLS USB JTAG adapter – COM Ports
	Figure 42. PLS USB JTAG adapter for SPC5xxx B – Load VCP box
	Figure 43. PLS USB JTAG adapter for SPC5xxx B – PLS USB Serial Port
	Figure 44. PLS USB drivers and serial port – Device manager window after installation procedure

	11 Bibliography
	12 Revision history
	Table 2. Document revision history

