

December 2016 DocID029821 Rev 1 1/16

 www.st.com

UM2118
User manual

Metrology firmware for the STM32F407VG

and the STPM32 devices

Introduction
The following document describes a firmware for the STM32F407VG that implements a poly-phase
system interfacing with several STPM32 metrology devices. This firmware can be tested using the
STM32F4DISCOVERY and EVALSTPM32.

The package includes:

 Complete metrology up to 4 STPM32 devices

 EEPROM support for saving parameters (optional)

 USB virtual COM port (VCP) to interface with PC tools

 Mini-shell (command line parser) support to send commands through USB

 STPM32 communication through UART or SPI

 Simple tasks based on the STM32F407VG timers

The STM32F407VG initialization uses the STM32CubeMX toolchain.

The STPM32 driver integration is based on IAR tool chain with ST-LINK (embedded on-board).

For further reference please refer to the STPM3x and the STM32F407VG datasheets.

Figure 1: Poly-phase application

Contents UM2118

2/16 DocID029821 Rev 1

Contents

1 STM32CubeMX configuration ... 3

2 Hardware configuration .. 4

3 STPM32 configuration ... 7

3.1 Communication mode ... 7

3.2 Reset ... 8

3.3 SPI and UART communication modes .. 8

3.4 Latch data measure .. 8

4 Firmware block diagram ... 9

4.1 Main file ... 9

4.1.1 MNSH_task .. 10

4.1.2 Metro Task .. 10

4.1.3 METRO_Get_Measures ... 10

4.1.4 Metro_UpdateData ... 10

4.2 USB virtual COM port .. 10

4.2.1 CDC_Receive ... 11

4.2.2 CDC_Send ... 11

4.3 EEPROM... 11

4.4 Integration with IAR tool chain... 11

5 Revision history .. 15

UM2118 STM32CubeMX configuration

 DocID029821 Rev 1 3/16

1 STM32CubeMX configuration

The STM32F4DISCOVERY kit is based on the STM32F407VGT microcontroller.

 RCC high speed clock HSE (crystal/ceramic resonator) and RCC high speed clock
LSE (crystal/ceramic resonator)

 SYS debug (SWD: serial wire debug)

 USB in full speed mode

 Input frequency is 8 MHz with SYSCLK set to 96 MHz

 SPI1, SPI2, SPI3 are used in full duplex mode with hardware NSS signal disable

 Frame format: Motorola

 Data size: 8 bits

 First bit: MSB first

 Clock polarity: high

 Clock phase: 2nd edge

 CRC calculation: disabled

 TIM2 and TIM3 clock source is the internal clock (used for USB, mini-shell and metro
application)

 USART2, USART3 and USART6 in asynchronous mode with hardware flow control
disable

 Baud rate: 9600 bits/s

 Word length: 8 bits

 Parity: none

 Stop bits: 1

 Data direction: receive and transmit

 Several GPIOs for controlling

 STPM32 enable

 STPM32 SYN pin

 STPM32 SCS pin

 SPI and USART configuration depends on the topology used

 VCP driver from ST must be installed on the PC

 In the application, three STPM32 devices only are connected but the code
has been developed to support up to four STPM32 devices

 Isolators must be put between the EVALSTPM32 and the
STM32F4DISCOVERY and, in case of tests with connection to mains, on
USB as well

Hardware configuration UM2118

4/16 DocID029821 Rev 1

2 Hardware configuration
Figure 2: Hardware configuration UART mode

Figure 3: Hardware configuration SPI mode

The configuration of the GPIO output and UART/SPI peripherals is performed by the
STM32CubeMX.

The assignment is carried out in the metrology handler, in the structure
STPM_com_port[4].

UM2118 Hardware configuration

 DocID029821 Rev 1 5/16

The assignment can be changed by modifying this structure as described below.

const STPM_Com_port_t STPM_com_port[4] ={

{

USART3, //USART used by device 1

GPIOE, //CS used by device 1

GPIO_PIN_14,

GPIOE, //SYN used by device 1

GPIO_PIN_15,

GPIOE, //EN used by device 1

GPIO_PIN_13

},

{

USART6, //USART used by device 2

GPIOC, //CS used by device 2

GPIO_PIN_8,

GPIOC, //SYN used by device 2

GPIO_PIN_9,

GPIOA, //EN used by device 2

GPIO_PIN_8

},

{

USART2, //USART used by device 3

GPIOA, //CS used by device 3

GPIO_PIN_0,

GPIOA, //SYN used by device 3

GPIO_PIN_1,

GPIOC, //EN used by device 3

GPIO_PIN_3

},

{

USART2, //USART used by device 4

GPIOA, //CS used by device 4

GPIO_PIN_0,

GPIOA, //SYN used by device 4

GPIO_PIN_1,

GPIOC, //EN used by device 4

GPIO_PIN_3

}

};

const STPM_Com_port_t STPM_com_port[4] ={

{

SPI2, //SPI used by device 1

GPIOE, //CS used by device 1

Hardware configuration UM2118

6/16 DocID029821 Rev 1

GPIO_PIN_14,

GPIOE, //SYN used by device 1

GPIO_PIN_15,

GPIOE, //EN used by device 1

GPIO_PIN_13

},

{

SPI3, //SPI used by device 2

GPIOC, //CS used by device 2

GPIO_PIN_8,

GPIOC, //SYN used by device 2

GPIO_PIN_9,

GPIOA, //EN used by device 2

GPIO_PIN_8

},

{

SPI1, //SPI used by device 3

GPIOA, //CS used by device 3

GPIO_PIN_0,

GPIOA, //SYN used by device 3

GPIO_PIN_1,

GPIOC, //EN used by device 3

GPIO_PIN_3

},

{

SPI1, //SPI used by device 4

GPIOA, //CS used by device 4

GPIO_PIN_0,

GPIOA, //SYN used by device 4

GPIO_PIN_1,

GPIOC, //EN used by device 4

GPIO_PIN_3

}

};

UM2118 STPM32 configuration

 DocID029821 Rev 1 7/16

3 STPM32 configuration

3.1 Communication mode

The STPM32 is configured during the startup in SPI or in UART mode.

If the SCS is set low and EN pin goes from low to high, the STPM32 communicates
through SPI. If the SCS is set high and EN pin goes from low to high, the STPM32
communicates through UART.

In the FW, the STM32 enables each of the STPM32 devices through GPIOs. The STPM32
devices are enabled one by one by the signal sequence below, according to the chosen
communication peripheral.

Figure 4: UART communication peripheral selection

Figure 5: SPI communication peripheral selection

In the FW, this service is included into Metro_Init() and it is called
Metro_power_up_device().

STPM32 configuration UM2118

8/16 DocID029821 Rev 1

3.2 Reset

As mentioned in the STPM3x datasheet, after the POR, the chip must be reset by toggling
3 times SYN pin and once SCS pin.

Figure 6: Reset signal

In the FW, the complete sequence is in the function Metro_Init().

3.3 SPI and UART communication modes

In SPI mode the communication speed is based on the SPI clock.

In UART mode, by default, the STPM32 works at 9600 bauds. In order to speed up the
communication, please use Metro_UartSpeed(uint32_t baudrate) function to change the
baud rate.

3.4 Latch data measure

The STPM32 registers can be latched in different ways:

 By FW, by setting the STPM32 DSPCTRL3 register

 By HW, using SYN pin (this method is used in the FW)

The choice of the method depends on the function uint8_t Metro_Set_Latch_device_type
(METRO_NB_Device_t in_Metro_Device, METRO_Latch_Device_Type_t
in_Metro_Latch_Device_Type).

UM2118 Firmware block diagram

 DocID029821 Rev 1 9/16

4 Firmware block diagram
Figure 7: Firmware block diagram

In the figure above:

 In blue : services from Cube environment

 In green : FW package

 In orange : HW components

The package includes:

 The STPM32 management (communication, reset, latch etc.)

 Full metrology measurement

 NVM management with EEPROM storage

 Communication through USB in virtual COM port mode

 Two timers for main state machine

4.1 Main file

The main file includes the complete initialization process:

 MCU initialization based on the STM32CubeMX (UART or SPI, SystemClock, GPIOs)

 Timer2 initialization (1 s timer for the metrology latch and measurement)

 Timer3 initialization (1 ms timer for USB Endpoint management, mini-shell task and
metro task linked to external requirement)

 NVM_Init : NVRAM initialization which sets default parameters to the STPM32 or
parameters coming from the EEPROM

 METRO_Init : metrology initialization configures the different STPM32 devices, and
sets the topology (number of phases etc.)

Firmware block diagram UM2118

10/16 DocID029821 Rev 1

 MNSH_TaskInit: initializes the mini-shell with different modules

The state machine is based on the while loop and two timers.

These two timers are configured in interrupt mode with call back
“HAL_TIM_PeriodElapsedCallback”. In case of Timer3, the USB Endpoint in and out are
updated and a counter is incremented and used in while loop for Metro_task and
MNSH_task. In case of Timer2, the STPM32 is latched and a counter is incremented and
used in while loop to read the STPM32 values and compute metrology data.

Figure 8: While loop

4.1.1 MNSH_task

This function stores the message coming from the USB.

When the message is complete, it is parsed and sent to the different mini-shell modules.

“mnsh_eeprom” parses the message and accesses directly the EEPROM. This module is
optional and used for debugging EEPROM access.

In case of message related to metrology, the message is parsed in mnsh_metrology and
sent to the METRO_task.

4.1.2 Metro Task

This is the access to metrology services, which are addressed according to the command
received by mnsh_metrology.

4.1.3 METRO_Get_Measures

The data are latched during an interrupt using METRO_Latch_Measures, and the STPM32
devices are read through METRO_Get_Measures. The reading is fulfilled in background
since the transfer time depends on the speed used for UART or SPI ports.

4.1.4 Metro_UpdateData

The data computation (energy, power, etc.) is carried out after collecting measures coming
from the STPM32.

The values are stored into metroData.

4.2 USB virtual COM port

The USB VCP is implemented in the file usbd_cdc_if.c.

UM2118 Firmware block diagram

 DocID029821 Rev 1 11/16

mnshVars.txData and mnshVars.rxData are used to send and receive the data into the
Endpoint.

The transmission and reception of data is through packet mode.

The reception is managed into CDC_Receive() and the transmission into CDC_Send()
functions, which are called by the Timer2 event.

4.2.1 CDC_Receive

The first byte is compared to 0 to check data availability from the endpoint.

The filtering is implemented to remove noise from the keyboard data reception:

 Check if the packet contains special keys (like arrows)

 Check if the packet received comes from a command

 from the GUI (terminated by “\n” or “\r”) and all bytes are valid

 from keyboard terminated by “0” and, in this case only the first byte is valid.

The complete message is managed by the MNSH_UsbRxHandler().

4.2.2 CDC_Send

All data from the mnshVars.txData buffer are sent to the endpoint.

4.3 EEPROM

The EEPROM is used to save the configuration. It is connected to the STM32F407VG
using I2C port, configured by the STM32CubeMX tool. The read and the write access is in
page mode.

Page size and word definition to access EEPROM are defined into handler_eeprom.h.

EEPROM is optional and enabled by the #define EEPROM_PRESENT.

4.4 Integration with IAR tool chain

The firmware has been developed for the STM32F407VG, but it can be easily ported to
other STM32 microcontrollers with minor changes.

Two folders should be added to the STM32CubeMX folders for this application:

 Generic: containing mini-shell, EEPROM services, NVRAM services

 Metrology: containing all metrology functions

The metrology and generic packages are at the same level as the other folders from the
STM32CubeMX.

Firmware block diagram UM2118

12/16 DocID029821 Rev 1

Figure 9: Folder organization

In the IAR tool chain, folders and files need to be added. The following organization is
used:

Figure 10: IAR file organization

After the integration of files into the project, they need to be included. The following
symbols must be defined for the compiler:

 SPI_XFER_STPM3X for SPI communication

 UART_XFER_STPM3X for UART communication

 EEPROM_PRESENT for EEPROM management

It is possible to choose directly the configuration in the project by selecting the right compile
flag.

UM2118 Firmware block diagram

 DocID029821 Rev 1 13/16

Figure 11: Release SPI/UART

There is a section to update C/C++ compiler options.

The following needs adding

$PROJ_DIR$/../Metrology/drivers/inc

$PROJ_DIR$/../Metrology/handlers/inc

$PROJ_DIR$/../Metrology/tasks/inc

$PROJ_DIR$/../Metrology/include/inc

$PROJ_DIR$/../Generic/mnsh/inc

$PROJ_DIR$/../Generic/tasks/inc

$PROJ_DIR$/../Generic/handlers/inc

Firmware block diagram UM2118

14/16 DocID029821 Rev 1

Figure 12: Compiler update

In order to have FW up and running, all changes are set into usdb_cdc_if.c, main.c files,
st_device.h and handler_metrology.c.

UM2118 Revision history

 DocID029821 Rev 1 15/16

5 Revision history
Table 1: Document revision history

Date Revision Changes

05-Dec-2016 1 Initial release.

 UM2118

16/16 DocID029821 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

