‘ UM2237
’I life.augmented User man ual

STM32CubeProgrammer software description

Introduction

STM32CubeProgrammer (STM32CubeProg) provides an all-in-one software tool for STM32
microcontroller programming in any environment: multi-OS, graphical user interface or
command line interface, support for a large choice of connections (JTAG, SWD, USB,
UART, SPI, CAN, 12C), with manual operation or automation through scripting.

This user manual details the hardware and software environment prerequisites, as well as
the available STM32CubeProgrammer software features.

N .
sTM3Z" NP €
CubeProgrammer Q

November 2018 UM2237 Rev 4 1/49

www.st.com

http://www.st.com

Contents um2237

Contents
1 Gettingstarted i i 6
1.1 Systemrequirements 6
1.2 Installing STM32CubeProgrammer i, 6
1.2.1 Linuxinstall 6
1.2.2 Windows install 7
1.2.3 macOS install 7
1.2.4 DFEU Vel . ..ot 7
1.2.5 ST-LINK driver 9
2 STM32CubeProgrammer userinterface 10
21 Main Window 10
211 Main menu 10
21.2 Logpanel 1"
213 Progress bar 1"
214 Target configurationpanel 12
22 Memory and file edition 20
221 Reading and displaying targetmemory 20
222 Reading and displaying afile 21
2.3 Memory programminganderasing i 23
2.3.1 Internal Flash memory programming 23
23.2 External Flash memory programming 24
233 Developing customized loaders for external memory 25
2.4 Optionbytes 28
3 STM32CubeProgrammer command line interface (CLI) 29
3.1 Command lineusage e 29
3.2 Genericcommands 31
3.2.1 Connectcommand 31
3.2.2 Erasecommand 38
3.2.3 Download command 38
3.24 Download 32-bitdatacommand 39
3.2.5 Read command 39
3.2.6 Startcommand 40
3.2.7 Debugcommands 40

2/49 UM2237 Rev 4 ‘Yl

UM2237 Contents
3.28 Listcommand e 41

3.2.9 QuietMode command 42

3.210 Verbositycommand 42

3.211 Logcommand 43

3.212 Externalloadercommand 44

3.213 Read Unprotect 45

3.214 OptionBytescommand 45

3.215 Safetylibcommand 45

4 Revision history i i e 48
Kyy UM2237 Rev 4 3/49

List of tables um2237

List of tables
Table 1. Document revision history 48
4/49 UM2237 Rev 4 ‘Yl

UM2237

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.

3

macOS ‘allow applications downloaded from’tab 7
Deleting the old driver software i i 8
STM32 DFU device with DfuSe driver i 8
STM32 DFU device with STM32CubeProgrammerdriver 8
STM32CubeProgrammer main window i, 10
Expanded main menu. e 11
ST-LINK configuration panel. e 12
UART configuration panel. e 14
USB configuration panel. 15
Target information panel. e 16
SPIl configuration panel. 17
CAN configuration panel. 18
[2C configuration panel. e 19
Memory and file edition: Device memorytab, 20
Memory and file edition: Contextualmenu, 21
Memory and file edition: File Display 21
Flash memory programming and erasing (internalmemory) 23
Flash memory programming and erasing (external memory). 25
Option bytes panel 28
STM32CubeProgrammer; available commands. 30
Connect operation using RS232. 33
Connectoperationusing USB 34
Connect operation using SWD debug port. 35
Connect operation using SPIport. 36
Connect operation using CAN port. 36
Connect operation using 12C port. 37
Download operation e 38
Read 32-bitoperation 40
The available serial ports list e 42
Verbosity command 43
LOog COMMaANd. 43
Logfile content e 44
Safety libcommand 46
Flash memory mapping e e 46
Flash memory mapping example 47

UM2237 Rev 4 5/49

Getting started UM2237

1.1

Note:

1.2

1.2.1

Note:

6/49

Getting started

This section describes the requirements and procedures to install the
STM32CubeProgrammer software tool.

STM32CubeProgrammer supports STM32 32-bit devices based on Arm®@) Cortex®-M
processors.

System requirements

Supported operating systems and architectures:

e Linux® 32-bit and 64-bit (tested on Ubuntu 14.04)
e Windows® 7/8/10 32-bit and 64-bit

e macOS® (minimum version OS x® Yosemite)

The Java™ SE Run Time Environment 1.8 or newer must be installed (download available
from www.oracle.com.)

If OpendDK is used, be sure to download and install the OpenJFx library.
The minimal supported screen resolution is 1024x768.
STLINK-V3SET is not supported on Linux32

Installing STM32CubeProgrammer

This section describes the requirements and procedure for the use of the
STM32CubeProgrammer software. The setup also offers optional installation of the ‘STM32
trusted package creator’ tool, which is used to create secure firmware files for secure
firmware install and update. For more information, check user manual UM2238.

Linux install

If you are using a USB port to connect to the STM32 device, you need to install the libusb1.0
package by typing the following command in your machine’s terminal:

sudo apt-get install libusb-1.0.0-dev

To use ST-LINK probe or USB DFU to connect to a target, you need to copy the rules files
loacated under Driver/rules folder in /etc/udev/rules.d/ on Ubuntu ("sudo cp *.*
/etc/udev/rules.d”).

libusb1.0.12 version or higher is required to run STM32CubeProgrammer.

To install the STM32CubeProgrammer tool, you need to download and extract the zip
package and execute SetupSTM32CubeProgrammer-vx.y.z.linux, which guides you through
the installation process.

arm

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM2237 Rev 4 ‘Yl

UM2237

Getting started

1.2.2

1.2.3

1.24

Note:

3

Windows install

To install the STM32CubeProgrammer tool, you need to download and extract the zip
package and execute SetupSTM32CubeProgrammer-vx.y.z.exe which guides you through
the installation process.

macOS install

To install the STM32CubeProgrammer tool, you need to download and extract the zip
package and execute SetupSTM32CubeProgrammer-vx.y.z.app which guides you through
the installation process.

To be able to install STM32CubeProgrammer on MacOs, you need to execute the following
steps:

1. Open a terminal and enter the following:
sudo spctl --master-disable

2. Open the Apple menu > System Preferences > Security & Privacy > General tab.
Under ‘Allow applications downloaded from’ select Anywhere:

Figure 1. macOS ‘allow applications downloaded from’ tab

Allow applications downloaded from:

_'Mac App Store
_Mac App Store and identified developers
(*=)Anywhere

You now need to download and extract the zip package and execute
SetupSTM32CubeProgrammer-vx.y.z.app, which guides you through the installation
process.

DFU driver

If you are using the STM32 device in USB DFU mode, you need to install the
STM32CubeProgrammer’s DFU driver by running the “STM32 Bootloader.bat” file. This
driver is provided with the release package, it can be found in the DFU Driver folder.

If you have the DFUSE driver installed on your machine, first, you need to uninstall it and
then run the previously mentioned ".bat" file. You must check the ‘Delete the driver software
for this device’ option to avoid reinstalling the old driver later when a board is plugged in.

UM2237 Rev 4 7/49

Getting started

UM2237

Note:

8/49

Figure 2. Deleting the old driver software

-

Confirm Device Uninstall

=2

S5TM Device in DFU Made

Waming: You are about to uninstall this device from your system.

Delete the driver software for this device.

0K || Cancel

Figure 3. STM32 DFU device with DfuSe driver

a - g Universal Zerial Bus controllers
----- ¥ Generic USE Hub
..... ¥ Generic USB Hub

----- ¥ Renesas Electronics USE 3.0 Root Hub
----- § >TM Device in DFU Mode

----- ¥ U3B Composite Device

..... ¥ USB Root Hub

..... ¥ USB Root Hub

----- ¥ Intel(R) 6 Series/C200 Series Chipset Family USB Enhanced Host Controller - 1C26
----- ¥ Intel(R]) 6 Series/C200 Series Chipset Family USE Enhanced Host Controller - 1220
----- ¥ Renesas Electronics USE 3.0 Host Controller

Figure 4. STM32 DFU device with STM32CubeProgrammer driver

4 - iy Universal Serial Bus controllers
----- ¥ Generic USB Hub
----- ¥ Generic USB Hub

----- ¥ Renesas Electronics USE 3.0 Reot Hub
----- ¥ USE Composite Device
----- ¥ USE Root Hub
----- ¥ USE Root Hub
4 - iy Universal Serial Bus devices
..l § STM32 Bootloader

----- ¥ Intel(R) & Series/C200 Series Chipset Family USE Enhanced Host Controller - 1C26
----- ¥ Intel(R) & Series/C200 >eries Chipset Family USE Enhanced Host Controller - 102D
----- ¥ Renesas Electronics USE 3.0 Host Controller

When using USB DFU interface or STLink interface on a Windows 7 PC, make sure that all
of your USB 3.0 controller’s drivers are up to date. Older versions of the drivers may have a

bug that prevents access or causes connection problems with USB devices.

UM2237 Rev 4

S74

UM2237 Getting started

1.2.5 ST-LINK driver

To be able to connect to a STM32 device through a debug interface using ST-LINK/V2,
ST-LINKV2-1 or ST-LINK-V3, you need to install the ST-LINK driver by running the
“stlink_winusb_install.bat” file. This driver is provided with the release package, it can be
found under the “Driver/stsw-link009_v3” folder.

UM2237 Rev 4 9/49

3

STM32CubeProgrammer user interface UM2237

2 STM32CubeProgrammer user interface

21 Main window

Figure 5. STM32CubeProgrammer main window

m STM32CubeProgrammer El@
.

9

S ROy x Ly

== Memory & File edition @ Connected

'\ Device memory | & ST-LINK v

»

Address | 008000000 | = | Size | 0xd0D Datawidth | 32-bit -

TM32
CubeProgrammer

Address] 4 & C ASCH
0x08000000 20020000 080037Aa1 08003B5D 08003B5F H ; -
0x08000010 08003B61 08003B63 08003B65 00000000
0x08000020 00000000 00000000 00000000 08003867
0x08000030 08003869 00000000 08003868 08003B6D
0x08000040 080037F1 080037F1 080037F1 080037F1
0x08000050 080037F1 080037F1 080037F1 080037F1
0x08000060 080037F1 080037F1 080037F1 080037FL A7..f ..
0x08000070 080037F1 080037F1 080037F1 080037F1 YA sl aliries
0x08000080 080037F1 080037F1 080037F1 080037F1 A7..A7..A7..A7..
0x08000090 080037F1 080037F1 080037F1 080037F1 A7..n7..n7..07..
0x08000040 080037F1 080037F1 080037F1 080037FL A7..f f n7..
0x080000B0 080037F1 080037F1 080037F1 080037F1 A7..A7..A7..A7..
0x080000C0 080037F1 080037F1 080037F1 080037F1 A7..R7..R7..A7. -
Log Verbosity level (®1 2

18:J0:34 : Erasing memory corresponding to segment U: =
18:20:34 : Erasing internal memory sectors [0 2]
18:20:37 : Download in Progress:

(D& -

18:20:40 : Time elapsed during download operation: 00:00:05.863
18:20:44 : UPLOADING ...

18:20:44 : Size : 1024 Bytes

18:20:44 : Address : 0x3000000

18:20:44 : Read progress:

: Time elapsed during the read operation is: 00:00:00.009
: Read progress:

[
oo
T
oo
Ui
s

The main window is composed of the parts described in the following sections.

211 Main menu

The Main menu allows switching between the three main panels of the Memory and file
edition, Memory programming and erasing, and Option byes tools.

By clicking on the Hamburger Menu (the three-lined button) on the top left corner, the Main
menu expands and displays a textual description:

3

10/49 UM2237 Rev 4

UM2237 STM32CubeProgrammer user interface

Figure 6. Expanded main menu

“I Memory & File edition

g e .
| ,' Memory & file edition

Erasing & programming
Option bytes

21.2 Log panel

Displays errors, warnings, and informational events related to the operations executed by
the tool. The verbosity of the displayed messages can be refined using the verbosity radio
buttons above the log text zone. The minimum verbosity level is 1, and the maximum is 3, in
which all transactions via the selected interface are logged. All displayed messages are time
stamped with the following format “hh:mm:ss:ms” where “hh” is for hours, “mm” for minutes,
“ss” for seconds and “ms” for milliseconds in three digits.

On the right of the log panel there are two buttons, the first to clean the log, and the second
to save it to a log file.

213 Progress bar

The progress bar visualizes the progression of any operation or transaction done by the tool
(Read, Write, erase...). You can abort any ongoing operation by clicking on the ‘Stop’ button
in front of the progress bar.

3

UM2237 Rev 4 11/49

STM32CubeProgrammer user interface UM2237

214

12/49

Target configuration panel

This is the first panel to look at before connecting to a target. It allows you to select the
target interface; either the debug interface using ST-LINK debug probe or the bootloader
interface over UART, USB, SPI, CAN or I2C.

The refresh button allows checking of the available interfaces connected to the PC. When
this button is pressed while the ST-LINK interface is selected, the tool checks the connected
ST-LINK probes and lists them in the Serial numbers combo box. If the UART interface is
selected, it checks the available com ports of the PC, and lists them in the Port combo box.
If the USB interface is selected, it checks the USB devices in DFU mode connected to the
PC and lists them also in the Port combo box. Each interface has its own settings, they need
to be set before connecting.

ST-LINK settings

Figure 7. ST-LINK configuration panel

Not connected

ST-LINK config]

Serial number O86FFF555148837167025130 | O
i
Frequency (kHz) EGN) M

viode Hot plug M

Shared Disabled | T

External loader TLO1G_STM32H7431-EVAL
T

Firmware upgrade

Device information

Device ID

Flash size

CPU

° Serial number: This field contains the serial numbers of all connected ST-LINK
probes. The user can choose one of them, based on its serial number.

e Port: ST-LINK probe supports two debug protocols: JTAG and SWD.

3

UM2237 Rev 4

UM2237

STM32CubeProgrammer user interface

Note:

3

JTAG is not available on all embedded ST-LINK in the STM32 Nucleo or Discovery boards.

Frequency: The JTAG or SWD clock frequency

Access port: Select the access port to connect to. Most of the STM32 devices have

only one access port which is Access port 0.

Mode:

— Normal: With ‘Normal’ connection mode, the target is reset then halted. The type
of reset is selected using the ‘Reset Mode’ option

— Connect Under Reset: The ‘Connect Under Reset’ mode allows connection to
the target using a reset vector catch before executing any instructions. This is
useful in many cases, for example when the target contains a code that disables
the JTAG/SWD pins.

— Hot Plug: The ‘Hot Plug’ mode allows connection to the target without a halt or
reset. This is useful for updating the RAM addresses or the IP registers while the
application is running.

Reset mode:

— Software system reset: Resets all the STM32 components except the debug via
the Cortex-M Application Interrupt and Reset Control Register (AIRCR).

— Hardware reset: Resets the STM32 device via the nRST pin. The RESET pin of
the JTAG connector (pin 15) must be connected to the device reset pin.

— Core reset: Resets only the core Cortex-M via the Application Interrupt and Reset
Control Register (AIRCR).

Shared: Enable shared mode allowing connection of two or more instances of
STM32CubeProgrammer or other debugger to the same ST-LINK probe.

External loader: Displays the name of the external memory loader selected in the
“External loaders” panel accessible from the main menu (Hamburger menu)

Target voltage: The target voltage is measured and displayed here.

Firmware version: Displays the ST-LINK firmware version. The Firmware upgrade
button allows you to upgrade the ST-LINK firmware.

UM2237 Rev 4 13/49

STM32CubeProgrammer user interface UM2237

UART settings

Figure 8. UART configuration panel

Not connected

UART configuration

Port COM190 -
Baudrate 115200 -

Parity Even -

Data bits
Stop bits

Flow control

Device information

e Port: Selects the com port to which the target STM32 is connected. Use the refresh
button to recheck the available com port on the PC.

Note: The STM32 mulst boot in bootloader mode using boot pins and/or the option bits. Check
AN2606 for more information on the STM32 bootloader.
e Baudrate: Selects the UART baud rate.
e Parity: Selects the parity (even, odd, none). Must be ‘even’ for all STM32 devices.
o Data bits: Must be always 8. Only 8-bit data is supported by the STM32.
e Stop bits: Must be always 1. Only 1-bit stop bit is supported by the STM32.
e Flow control: Must be always off.

3

14/49 UM2237 Rev 4

UM2237 STM32CubeProgrammer user interface

USB settings

Figure 9. USB configuration panel

Not connected

USB configuration

Port USB1 -

Serial number 31573¢

Device information

. Port: Selects the USB devices in DFU mode connected to the PC. You can use the
refresh button to recheck the available devices.

Note: The STM32 must boot in bootloader mode using boot pins and/or the option bits. Check the
AN2606 for more information on the STM32 bootloader.

Once the correct interface settings are set, click on the ‘connect’ button to connect to the
target interface. If the connection succeeds, it is shown in the indicator above the button that
turns to green.

Once connected, the target information is displayed in the device information section below
the settings section, which is then disabled as in Figure 10.

3

UM2237 Rev 4 15/49

STM32CubeProgrammer user interface UM2237

Figure 10. Target information panel

ST-

ST-LIN nfiguration

Serial number SOFF7006526654.. <~ |

Port SW
Frequency (kHz) 4000

Made MNormal

Reset mode Hardware reset

iz Disabled
External loader M

Target voltage

Firmware version

Firmware upgrade

3

16/49 UM2237 Rev 4

UM2237 STM32CubeProgrammer user interface

SPI settings

Figure 11. SPI configuration panel

Not connected

ST-LINK configuration

Serial number 0034002130375.. ~ | &
Port SPI

Baudrate (kHz) 375

nss Soft

nsspulse Mo Pulse

delay No delay

Direction

Firmware vers V3J1M1B151

Firmware upgrade

Device information

Flash size

CPU

. Serial number: This field contains the serial numbers of all connected ST-LINK-V3
probes in case to use SPI Bootloader.

. Port: Selects the SPI devices connected to the PC. You can use the refresh button to
recheck the available devices.

. Baudrate: Selects the SPI baud rate.
. nss: Slave Select software or hardware.

e nsspulse: the Slave Selection signal can operate in a pulse mode where the master
generates pulses on nss output signal between data frames for a duration of one SPI
clock period when there is a continuous transfer periods.

o Delay: used to insert a delay of several microseconds between data.

e Direction: Must be always Full-duplex, both data lines are used and synchronous data
flows in both directions.

3

UM2237 Rev 4 17/49

STM32CubeProgrammer user interface UM2237

CAN settings

Figure 12. CAN configuration panel

Not connected

ST-LINK

ST-LINK configuration

Serial number 0034002130375... -

Port CAN
Baudrate (kHz)

Assigned fifo

Filter mode

Filter scale

Filter bank

External loader
Tar
Firmwars 1B1S1

Firmware upgrade

Device information

. Serial number: This field contains the serial numbers of all connected ST-LINK-V3
probes in case to use CAN Bootloader.

. Port: Selects the CAN devices connected to the PC. You can use the refresh button to
recheck the available devices.

e Baudrate: Selects the CAN baud rate.

e Assigned FIFO: Selects the receive FIFO memory to store incoming messages.
e Filter mode: Selects the type of the filter MASK or LIST.

e Filter scale: Selects the width of the filter bank 16 or 32 bits.

e Filter bank: Value between 0 and 13 to choose the filter bank number.

3

18/49 UM2237 Rev 4

UM2237 STM32CubeProgrammer user interface

I12C settings

Figure 13. 12C configuration panel

Mot connected

ST-LINK configuration

Senal number 0024002130375... -

Port 12c

Baudrate (kHz)

Address

Rise time (ns)
Fall time (ns)

External loader
Targe
n W3JIM1B1S1

Firmware upgrade

Device information

. Serial number: This field contains the serial numbers of all connected ST-LINK-V3
probes in case to use 12C Bootloader.

. Port: Selects the 12C devices connected to the PC. You can use the refresh button to
recheck the available devices.

. Baudrate: Selects the 12C baud rate.
. Address: Add the address of the slave Bootloader in hex format.
e Speed mode: Selects the speed mode of the transmission Standard or Fast.

¢ Rise Time: Choose values according to Speed mode, 0-1000 (STANDARD), 0-300
(FAST).

e Fall Time: Choose values according to Speed mode, 0-300 (STANDARD), 0-300
(FAST).

3

UM2237 Rev 4 19/49

STM32CubeProgrammer user interface UM2237

2.2 Memory and file edition

The Memory and file edition panel allows you to do two things: Reading and displaying
target memory and file contents.

221 Reading and displaying target memory

Figure 14. Memory and file edition: Device memory tab

[l STMB2CubeProgrammer oo =
st O Y ROy = Lyy

GubeProgrammer

— o « e C
== Memory & File edition @ Connected

'\ i STM32H743]_EVAL.elf
»
Address 0x08000000 i Size 0x400 Data width 32-bit -
Address 0 4 8 c
0x08000000 20020000 080037A1 08003B5D 08003B5F R VAR
0x08000010 08003861 08003863 08003B65 00000000 B coE85c@Ecnooco
0x08000020 00000000 00000000 00000000 08003867 g;..
0x08000030 08003869 00000000 08003B6BE 08003B6D L k;..m;..
0x08000040 080037F1 080037F1 080037F1 080037F1 A7..A7..A7..A07..
0x08000050 080037F1 080037F1 080037F1 080037F1 A7. . A7..A7..07..
0x08000060 080037F1 080037F1 080037F1 080037F1 A7..A7..A7..A07..
0x08000070 080037F1 080037F1 080037F1 080037F1 A7..A7..R7..07.
0x08000080 080037F1 080037F1 080037F1 080037F1 A7..A7..A7..A07..
0x08000090 080037F1 080037F1 080037F1 080037F1 A7. . A7..A7..07..
0x080000A0 080037F1 080037F1 080037F1 080037F1 A7..A7..A7..A07..
0x08000080 080037F1 080037F1 080037F1 080037F1 A7. . A7..A7..07..
0x080000C0 080037F1 080037F1 080037F1 080037F1 A7..A7..A7..07..
Log Verbosity level

18:J0:34 : Erasing memory corresponding to segment 0%
18:20:34 : Erasing internal memory sectors [0 2
18:20:37 : Download in Progress:

18:20:40 : Time elapsed during download operation: 00:00:05.863
18:20:44 : UPLOADING ...

18: 2 : 5ize : 1024 Bytes

18:20: : Address : Ox3000000

18:20:44 : Read progress:

18:20:44 : Time elapsed during the read operation is: 00:00:00.009
18:20:53 : Read progress:

Q|®®

After target connection, you can read the STM32 target memory using this panel. To do this,
specify the address and the size of the data to be read, then click on the Read button in the
top-left corner. You can display the data in different formats (8, 16- and 32-bit) using the
‘Data width’ combo box.

You can also save the device memory content in .bin, .hex or .srec file using the “Save As...
menu” from the tab contextual menu or the action button.

You can open multiple device memory tabs to display different locations of the target
memory. To do this, just click on the + tab to display a contextual menu that allows you to
add a new ‘Device memory’ tab, or to open a file and display it in a ‘File’ tab:

3

20/49 UM2237 Rev 4

UM2237 STM32CubeProgrammer user interface

Figure 15. Memory and file edition: Contextual menu

= Memory & File edition

Address | 0x08000000 P Openfile Data width | 32-pit = m

Address [} Open memory tab 8 T ASCIL
0x08000000 FFFFFFF FFFFFFFF FFFFFFFF

0x08000010 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF NY%

2.2.2 Reading and displaying a file

To open and display a file, just click on the + and select ‘Open File’ menu as illustrated in
Figure 16.

The file formats supported are binary files (.bin), ELF files (.elf, .axf, .out), Intel hex files
(.hex) and Motorola S-record files (.Srec).

Figure 16. Memory and file edition: File Display

m STM32CubeProgrammer El@
i .
s @ T Tl
CubeProgrammer L n u Lo S /4

= Memory & File edition Not connected

STM32H7431_EVAL.elf -

Address | 0x8000000 | = | Size | 0vd00 Datawidth | 32-bit E

Address 0 4 8 c ascn | Read
0x08000000 20020000 08003741 08003B5D 0800385F IUET P Save As ..
0x08000010 08003861 08003863 08003865 00000000 a5..Ci..8a... Verify
0x08000020 00000000 00000000 00000000 08003867 gi.. Address
0x08000030 08003869 00000000 08003868 0800386D m;.
0x08000040 080037F1 080037F1 080037F1 080037F1 AT
0x08000050 080037F1 080037F1 080037F1 080037F1 7. e eear
0x08000060 080037F1 080037F1 080037F1 080037F1 AT
0x08000070 080037F1 080037F1 080037F1 080037F1 7.
0x08000080 080037F1 080037F1 080037F1 080037F1 AT External loader
0x08000090 080037F1 080037F1 080037F1 080037F1 7.
0x080000A0 080037F1 080037F1 080037F1 080037F1 AT
0x080000B0 080037F1 080037F1 080037F1 080037F1 7. EE—
0x080000C0 080037F1 080037F1 080037F1 080037F1 AT

Verbosity level .1 2

T Time Elapsed during tHe read Operation 15: OU 0000, UUY =~
: Read File: C:\binaries\test.bin

Number of segments: 1

segment[0]: address= Ox0, size= Ox18756D

Read File: C:\binaries\SWV_PrintF_F4_Al1Ports.hex
Number of segments: 1

segment[0]: address= Ox8000000, size= 0x1080

: Read File: C:\binaries\STM320726-EVAL.elf. hex

: Number of segments: 1

: segment[0]: address= Ox8003000, size= Ox3CS

: Read File: C:\binaries\STM32H743I_EVAL.elf

: Number of segments: 1

: segment[0]: address= 0x8000000, size= 0x43930

Do -|

Once the file is opened and parsed, it is displayed in a dedicated tab with its name as
illustrated in Figure 16. The file size is displayed in the ‘Size’ field, and the start address of
hex, srec or ELF files, is displayed in the ‘Address’ field, for a binary file it is 0.

3

UM2237 Rev 4 21/49

STM32CubeProgrammer user interface UM2237

You can modify the address field to display the file content starting from an offset. Using the
tab contextual menu or the action button, you can download the file using “Download”
button/menu. In case of binary file you need to specify the download address in the

“Address” menu. You can also verify if the file is already downloaded using the “Verify”
menu.

In addition, you can save the file in another format (.bin, .hex or .srec).

As for the ‘Device memory’ tab, you can display the file memory content in different formats
(8-bit, 16-bit and 32-bit) using the ‘Data width’ combo box.

3

22/49 UM2237 Rev 4

UM2237 STM32CubeProgrammer user interface

2.3 Memory programming and erasing

This panel is dedicated to Flash memory programming and erasing operations.

2.31 Internal Flash memory programming

Figure 17. Flash memory programming and erasing (internal memory)

m STM32CubeProgrammer El@

.
SRO vy x Ly
== FErasing & Programming @ Connected

—
Erase flash memory | Erase external memory ST =
Download
, e e]
File path CAbinaries\128K bin - m

STMaZ"
GubeProgrammer

h)

=

OB Start address | 0x08000000 Select Index Start Address Size
(] 0 0x08000000 128K
Programming options M 1 0x08020000 128K
\:l Skip flash erase before programming l:‘ : 008040000 128¢
LJ 3 0x08060000 128K
Verify pregramming OJ 4 0x0B0B000D 128K
Run after programming O 5 0x0B0A0000 128K
(] 6 0x080C0000 128K
dJ 7 0x0B0E0000 128K
[l g 0x08100000 128K
O 9 0x08120000 128K
— 1n £.N8 1 AROAN oo
Start Programming
Log Verbosity level @1 2 3
I8:20:34 @ Erasing memory corresponding to Segment U =
18:20:34 : Erasing internal memory sectors [0 2] 4§
18:20:37 : Download in Progress:
18:20:40 : Time elapsed during download operation: 00:00:05.863 B
18:20:44 : UPLOADING ...
18:20:44 : 5ize : 1024 Bytes

18:20:44 : Address : 0x8000000
18:20:44 : Read progress:

18:20:44 : Time elapsed during the read operation is: 00:00:00.009
18:20:53 : Read progress:

Q®®

Memory erasing

Once connected to a target, the memory sectors are displayed in the right-hand panel
showing the start address and the size of each sector. To erase one or more sectors, select
them in the first column and then click on the ‘Erase selected sectors’ button.

The ‘Full chip erase’ button erases all the Flash memory.

Memory programming

To program a memory you need to execute the following steps:

UM2237 Rev 4 23/49

3

STM32CubeProgrammer user interface UM2237

2.3.2

24/49

1. Click on the browse button and select the file to be programmed. The file format
supported are binary files (.bin), ELF files (.elf, .axf, .out), Intel hex files (.hex) and
Motorola S-record files (.Srec).

2. In case of programming a binary file, the address must be set.
3. Select the programming options:

— Verify after programming: Read back the programmed memory and compare it
byte per byte with the file.

— Skip Flash erase before programming: if checked, the tools do not erase the
memory before programming. This option must be checked only when you are
sure that the target memory is already erased.

— Run after programming: Start the application just after programming.
4. Click on the ‘Start programming’ button to start.

The progress bar on the bottom of the window shows the progress of the erase and
programming operations.

External Flash memory programming

If you need to program an external memory connected to the STM32 via any of the available
interfaces (SPI, FMC, FSMC, QSPI, OCTOSPI...) you need and external loader.

STM32CubeProgrammer is delivered with external loaders for most available STM32
Evaluation and Discovery boards available under the “bin/ExternalLoader” directory. If you
need to create a new external loaders, see Section 2.3.3 for more details on how to create
it.

To program external memory, select the external loader from the “ExternalLoader” panel to
be used by the tool to read, program, or erase external memories as shown in Figure 18.
Once selected, this external loader is used for any memory operation (read, erase and
program) in its memory range.

The ‘External flash erasing’ tab on the right of the “Erasing and Programming” panel
displays the memory sectors, and allows sector, or a full-chip, erase.

3

UM2237 Rev 4

UM2237 STM32CubeProgrammer user interface
Figure 18. Flash memory programming and erasing (external memory)
[il] STM32CubeProgrammer = Ech==<=
. o) y ‘
SI?TE@PEammm X D v = N/

== External loaders @ Connected
g - . H7 ST-LINK -
, Available external loaders: Q !
Select Name Board Start Address Memory Size Page Size Type
] M29W128GL_STM32H743[-EV... STM3ZH743[-EVAL 0x60000000 16M 0x10 NOR_FLASH
|:‘ MT25TLO1G_STM32ZH7431-EVAL STM32H7431-EVAL 0x90000000 128M 0x100 NOR_FLASH
O MT25TL01G_STM32H7451-DIS... STM32H7451-DIS.. 0x30000000 128M 0x100 NOR_FLASH
|:‘ MT25TLO1G_STM32H7471-DIS... STM32H7471-DIS.. 090000000 128M 0x1000 NOR_FLASH
|:‘ MT25TLO1G_STM32HT471-EVAL STM3ZHT74T7I-EVAL 0x90000000 128M 0x100 NOR_FLASH
|:‘ MT25TL01G_STM32H750B-CL.. STM32H7508-DL... 0x90000000 128M 0x100 NOR_FLASH
|:‘ MT25TL01G_STM32H7xxd-DIS... STM32H7xd-DIS... 0x90000000 128M 0x100 NOR_FLASH
|:‘ MT25TL01G_STM32H7:xd-EVAL STM32H7xd-EVAL 0x90000000 128M 0x100 NOR_FLASH
|:‘ MTFCAGACAICN _STM32H745L.. STM32H7451-DIS... OxA0000000 512M 0x100 MAND_FLASH
|:‘ MTFCAGACAICN_STM32H750.. STM32H7508-CL. (xA0000000 512M 0x100 MAND_FLASH
Log Verbosity level @1 2 3
TETZUTI4 T EFasing memory Corresponding to segment UF =
18:20:34 : Erasing internal memory sectors [0 2] <t§
18:20:37 | Download in Progress:
18:20:40 : Time elapsed during download operation: 00:00:05.863 B
18:20i44 : UPLOADING ...
18:20:44 : Size : 1024 Bytes
18:20:44 | Address : 0x8000000
Ml | | 5:50:44 : Read progress:
18:20:44 i Time elapsed during the read operation is: 00:00:00.009
18:20i53 | Read progress:
2.3.3 Developing customized loaders for external memory

Note:

3

Based on the examples available under the “bin/ExternalLoader” directory, users can
develop their custom loaders for a given external memory. These examples are available for
three toolchains: MDK-ARM™ EWARM and TrueSTUDIO®. The development of custom
loaders can be performed using one of the three toolchains keeping the same
compiler/linker configurations, as in the examples.

The external Flash programming mechanism is the same as that used by the STM32
ST-LINK utility tool. Any Flash loader developed to be used with the ST-LINK utility is
compatible with the STM32CubeProgrammer tool, and can be used without any
modification.

To create a new external memory loader, follow the steps below:

1. Update the device information in Storagelnfo structure in the Dev_Inf.c file with the
correct information concerning the external memory.

2. Rewrite the corresponding functions code in the Loader_Src.c file.

3. Change the output file name.

Some functions are mandatory and cannot be omitted (see the functions description in the
Loader_Src.c file).

Linker or scatter files must not be modified.

After building the external loader project, an ELF file is generated. The extension of the ELF
file depends on the used toolchain (.axf for Keil, .out for EWARM and .elf for TrueSTUDIO or
any gcc based toolchain).

UM2237 Rev 4 25/49

STM32CubeProgrammer user interface UM2237

The extension of the ELF file must be changed to ‘.stldr’ and the file must be copied under
the “bin/ExternallLoader” directory.

Loader_Src.c file

Developing an external loader for a memory, based on a specific IP requires the following
functions:

e Init function

The Init function defines the used GPIO pins which are connecting the external
memory to the device, and initializes the clock of the used IPs.

Returns 1 if success, and 0 if failure.
int Init (void)
e Write function
The write function programs a buffer defined by an address in the RAM range.
Returns 1 if success, and 0 if failure.
int Write (uint32_t Address, uint32_t Size, uint8_t* buffer)
e SectorErase function

The sectorErase function erases the memory specified sectors.
Returns 1 if success, and 0 if failure.
int SectorErase (uint32_t StartAddress, uint32_t EndAddress)

Where “startAddress” = the address of the first sector to be erased and “Endaddress” =
the address of the end sector to be erased.

Note: This function is not used in case of an external SRAM memory loader.

It is imperative to define the functions mentioned above in an external loader. They are used
by the tool to erase and program the external memory. For instance, if the user clicks on the
program button from the external loader menu, the tool performs the following actions:

e Automatically calls the Init function to initialize the interface (QSPI, FMC ...) and the
Flash memory

. Calls sectorErase () to erase the needed Flash sectors
e Callsthewrite () function to program the memory.

In addition to these functions, we can also define the functions below:
. Read function

The Read function is used to read a specific range of memory, and returns the reading
in a buffer in the RAM.

Returns 1 if success, and 0 if failure.
int Read (uint32_t Address, uint32_t Size, uintlé_t* buffer)

Where “Address” = start address of read operation, “size” is the size of the read
operation and “buf fer” is the pointer to data read.

3

26/49 UM2237 Rev 4

UM2237

STM32CubeProgrammer user interface

Note:

3

For QSPI/OSPI (Quad-SPI/ Octo-SPI) memories, the memory mapped mode can be
defined in the Init function; in that case the Read function is useless since the data could be
read directly from JTAG/SWD interface.

e Verify function
The verify function is called when selecting the “verify while programming” mode.

This function checks if the programmed memory corresponds to the buffer defined in
the RAM. It returns an uint64 defined as follows:

Return value = ((checksum<<32)+ AddressFirstError)

where “AddressFirstError”is the address of the first mismatch, and “checksum” is
the checksum value of the programmed buffer

uint64_t Verify (uint32_t FlashAddr, uint32_t RAMBufferAddr,
uint32_t Size)

e MassErase function
The MassErase function erases the full memory.
Returns 1 if success, and 0 if failure.
int MassErase (void)
e A Checksum function

All the functions described return 1 in the case of a successful operation, and 0 in the case
of a fail.

Dev_lInf.c file

The Storagelnfo structure defined in this file provides information on the external memory.
An example of the type of information that this structure defines is presented below:
#if defined (__ _ICCARM_)
__root struct StorageInfo const StorageInfo = {
#else
struct StorageInfo const StorageInfo = {
#endif
"External_Loader_Name", // Device Name + version number
MCU_FLASH, // Device Type
0x08000000, // Device Start Address
0x00100000, // Device Size in Bytes (1MBytes/8Mbits)
0x00004000, // Programming Page Size 16KBytes
0xFF, // Initial Content of Erased Memory
// Specify Size and Address of Sectors (view example below)
0x00000004, 0x00004000, // Sector Num : 4 ,Sector Size: 16KBytes
0x00000001, 0x00010000, // Sector Num : 1 ,Sector Size: 64KBytes
0x00000007, 0x00020000, // Sector Num : 7 ,Sector Size: 128KBytes
0x00000000, 0x00000000,

UM2237 Rev 4 27149

STM32CubeProgrammer user interface UM2237

24 Option bytes

The option bytes panel allows to read and display target option bytes grouped by
categories. The option bits are displayed in tables with three columns containing the bit(s)
name, its value and a description of its impact on the device.

You can modify the values of these option bytes by updating the value fields then clicking on
the apply button which will program then verify that the modified option bytes are well
programmed.

You can click at any time on the read button, to read and refresh the displayed option bytes.

Figure 19. Option bytes panel

Read Out Protection z

MName Value Description

Read protection option byte.
The read protection is used to protect the software code stored in Flash memory.
AL Level 0, no protection

RDP AL - BB : Level 1, read protection of memories

CC: Level 2, chip protection

> BOR Level
Boot address Option Bytes

Description

Flash Bank 1 PCROP start address
PROT_AREA STARTL | OFF 0:E0017=0
0x0 0x8000000 Flash Bank 1 PCROP End address.
PROT_AREA_END1 Deactivation of PCROP can be done by enbaling DMEPL bit and changing ROP from level 1 to level O while putting
Unchecked : Flash Bank 1 PCROP zone is kept when RDP level regression (change from level 1 te 0) occurs
DMEPL v Checked : Flash Bank 1 PCROP zone is erased when RDP level regression (change from level 1 to 0) occurs
€ m

For more details, refer to the option bytes section in the Flash programming manual and
reference manual available from www.st.com.

3

28/49 UM2237 Rev 4

UM2237 STM32CubeProgrammer command line interface (CLI)

3 STM32CubeProgrammer command line interface
(CLI)
3.1 Command line usage

The following sections describe how to use the STM32CubeProgrammer from the
command line. Available commands are shown in Figure 20.

Note: To launch command line interface on macOS, you need to call
STM32CubeProgrammer.app/Contents/MacOs/bin/STM32_Programmer_CLI

3

UM2237 Rev 4 29/49

STM32CubeProgrammer command line interface (CLI)

UM2237

30/49

Figure 20. STM32CubeProgrammer: available commands

og. —log
[<file_Path.log>]

~ub —vewbosity
" (Level>

fvailable cc

—gkipkrase
—safelib

<file_path>
<start_address>
Send_aldress>
<glic

ag, SRRy

<elf _file path>
<header_file_path>
17 ile_path>

onnect

st optio
baudrate>1
parity>]
data_bits>]
atop hics>]
ntrol>]

[noln it=noinit_hit]
onso
G/SUD debug
[h-zq (frequencyA

[inﬂe i

rialNunber>]
accessPort>1
[nude <mode

mode> 1
port optional para

[franeformat=Cual>]
[mode=<va
Inss—<yal>]
Insspulse={val>]
val>]l
oinit_bit]

[connand 11 [Argunen

Show this help
Displays the tael’s version

List all available communication interfaces
UART interface

USE_ interface

Enable quiet nade. Ko progress bar displaved
Store the detailed output in log Fi

.§TH32Pragranmer trace . log
Specify verbosity level
Uerbosity level, value in {1, 2, 33

Skip sector erase before progranming
Add a segment into a firmware file (elf.bin

hex,srec) containing conputed CRC values

To use only with the safety lib component

File path to he modifie

Flash memory start address

Flash memory end address

g of data per CRC value

Add a hinary header and a shsfu segment to an elf fil

: File path to be modified
h

Header file

SBSFU file path

Establish connection to the device

Interface identifier. ex COM1. /deu/ttysﬂ, ushi.
JTAG, SWD >

Baudrate. ex: 1152088, 9680, etc, default 115208
Parity bit, value in <NONE.ODD,EVEN}, default EUE
Data bit, value in <6, 7, 8> . default 8

Stop bit, value in €1, 1.5, 23 ..., default 1
Flow contro

Yalue in COFF,Harduave Software) default
Not supported for §

Set No Init bits, value in €@,13 ..., default
Enter UART cansoie mode

-l
: Fle uency Default freguencies:

QBEB SHD 9BBE JTRG with STLINKu2
24088 SWD 21333 with STLINKu3
Index of the debug probe. default index @
Serial Number of the debug probe
Access Port index to connect def auls
Gonnection mode. Ualue in {UR/HOTPLUG/NORMHL}
default mode : NORMA
t modes: SWest HUrst/C . Default mode: SWreset

Baud rate
1Edge or 2Edge. default 1Edge
Tow or high
enable or disable <B/1).
crc polynom value.
8hits16hit
Direction: ZLFtllllh\nlex/Zl.RxOnlu/lLRx/lLl'x
First Bit: MSB/LS
Frame Format: MotorolasTI
Mode: master/slave
sof t/hard
NSS pulse: Pulse-NoPulse
Delay: DelaysNoDelay, delay of i econds
8et No Init bits, value in <{@.1}) dafault]

parameters

[fbn=¢{fhanknb>1
oinit_hit]

Baudrate : 125. 258, 506, 16680 th_‘, default 125
GAN Mode NORMAL, LOOPBACK. ult NORMAL
fan]l.ra'[HNDRRI]

FIF01, default FIF0@
MASK or LIST. defﬂulr HASK
cal 16 o , defaul
fctivation ABLE or D]SﬂBLE default ENABLE
Bank Number to 13, default B
Init bits, value in {B8,1> ..., default 8@

optional parameter:

po

[add=<ownadd>]

[audrate > 1
=mode >
addmode > 1
afilter>]
dfilter>]
<dnf ’lter)]
rtime>]
ftime>]

[noinit=noinit_hit]
——erase

[all]
[{sectorsCodes>]

[KIstart end1>]

it
-d. ——rlnunluatl
<file_path

[{address>1
w32
<addr
€32-bit_data>
—v. —verify
»32
<address>
<size>
-rst
—hardRst

~halt
—step

-score

—coreReg
[Kcore_register>]

[core_reg=<value>]

<file path>
xtload
b itite _path>

-
[<address>1
pdu, ——readunprotect:
-ob. —optionbytes
[displl
[OptByte—value>]

Slave address : a in hex format

Baudrate 188 or 4ﬂﬂ Kbps. default 488

Speed Mode STANDARD or FlIST, default PAST

Address Mode ? or 18 bits. default 7

Analog filter ENABLE or DISABLE. default ENABLE
Digital filter : ENABLE or DISABLE, default DISABLE
Digital noise filter : B to 15 detault a

Rise time : B- 1EEB'STRNDRFD) B-38BCFASTY. default B
Fall tine STANDARD), B-3BB{FAST>, default @
Set No Init h-t i3 ualuP in {8,1>

Erase memory pages/sectors device

Not supported for STM3ZMP

Erase all sectors

Erase the specified sectors identified by sectors
codes. ex: B, 1, 2 to e secto a, 1 and

Erase the specified sectors starting from

start code to end code. ex: —e [5 18]

Dounload the content of a file into device memory
File path name to be downloaded: ¢hin, hex, srec,
elf, stn32 or tsv file>
ss of download
11ntru‘ device menory

32-bit (lata to hl.- dnunloaded

values should be separated by space

Uerify if the programning operation is achieved

successfully

ead a bit data from device memory

Read start address

Size of data

Reset system

Hardware reset

fAvailable only with JTAG/SWD debug port

Halt core

Step core

fAvailahle only with JTAG/SWD debug port

Get cor

fvailahle nnlg with JTRG/SWD debug port

Read Alrite core registers
/H15/PC/LR/PQP/HSP/HP‘S]VRPSF/IPSH/EPS]V

PRIHR"'K/ERSEPRI/FQHLTHRSK/CONTR

value in case of write upmuun

Note: multiple registers be handled at once

Auailable only with JTRG/SUD debug port

Upload the device memory content to a .bin file
Start address of read and upload

Size of memory content to be read

Binary file path

Select a tom external memory-loader
External memory-loader file path

: RBun the code at the specified address.

Start addle
Renove ory’s Read Protection by shifting the RDP
level fl‘olll level 1 to leve

This command allows the user to manipulate the device
's OptionBytes hy displaying or modifying them.
This option allows the user to display the whole set
nf Option Bytes

This option allows the user to program the given
Option Byte.

UM2237 Rev 4

3

UM2237 STM32CubeProgrammer command line interface (CLI)
3.2 Generic commands
This section presents the set of commands supported by all STM32 families.
3.21 Connect command
-c, --connect
Description: Establish the connection to the device. This command allows the host to open
the chosen device’s port (UART/USB/JTAG/SWD/SPI/CAN/I2C).
Syntax: -¢ port=<Portname> [noinit=<noinit_bit>] [options]
port=<Portname> . Interface identifier, ex COMXx (for windows), /dev/ttySx
for Linux), usbx for USB interface, SPI, 12C and CAN for
respectively SPI, 12C and CAN interfaces.
[noinit=<noinit_bit>] :Set No Init bits, value in {0, 1} ..., default 0. Noinit = 1
could be used if a previous connection is usually active.
e ST-LINK options
[freg=<frequency>] : Frequency in kHz used in connection. Default value is
4000 kHz for SWD port, and 9000 kHz for JTAG port
Note: The frequency entered values are rounded to correspond to those supported by ST-LINK

probe.
[index=<index>]

[sn=<serialNumber>]

[mode=<mode>]

Normal

UR

HOTPLUG

[ap=<accessPort>]

[shared]

3

Index of the debug probe. Default index value is 0.

Serial Number of the debug probe. Use this option if you
need to connect to a specific ST-LINK probe which you
know its serial number. Do not use this option with Index
option in the same connect command.

: Connection mode. Value in { NORMAL/UR/HOTPLUG}.
Default value is NORMAL.

: With ‘Normal’ connection mode, the target is reset then
halted. The type of reset is selected using the ‘Reset Mode’
option

: The ‘Connect Under Reset’ mode allows connection to the
target using a reset vector catch before executing any
instructions. This is useful in many cases, for example
when the target contains a code that disables the
JTAG/SWD pins.

: The ‘Hot Plug’ mode allows connection to the target
without a halt or reset. This is useful for updating the RAM
addresses or the IP registers while the application is
running.

: Access port index. Default access port value is 0.

: Enable shared mode allowing connection of two or more
instances of STM32CubeProgrammer or other debugger to
the same ST-LINK probe.

UM2237 Rev 4 31/49

STM32CubeProgrammer command line interface (CLI)

UM2237

: Select the TCP Port to connect to an ST-Link Server.
Shared option must be selected. Default value 7184

[tcpport=<Port>]

Note: Shared mode is supported only on windows.
e USB Options
The connection under the DFU interface do not support any option, knowing that defaults
parameters are already included.
e SPI Options
[br=<baudrate>] : Baudrate ex 187, 375, 750,..., default 375.
Note: To use SPI on high speed, an infrastructure hardware must be respected to ensure the
proper connection on the bus.
[cpha=<cpha_val>] : 1Edge or 2Edge, default 1Edge.
[cpol=<cpol_val>] : low or high. Default low.
[crec=<crc_val>] : enable or disable (0/1), default 0.
[crcpol=<crc_pol>] : crc polynom value.
[datasize=<size>] : 8bit/16bit, default 8.
[direction=<val>] : 2LFullDuplex/2LRxOnly/1LRx/1LTx.
[firstbit=<val>] : MSB/LSB, default MSB.
[frameformat=<val>] : Motorola/TI, default motorola.
[mode=<val>] : master/slave, default master.
[nss=<val>] : soft/hard, default hard.
[nsspulse=<val>] : Pulse/NoPulse, default pulse.
[delay=<val>] : Delay/NoDelay, default delay.
e [2C Options
[add=<ownadd>] : Slave address: address in hex format.
Note: 12C address option must be always inserted, otherwise the connection can never be

established.

[br=<sbaudrate>] : Baudrate : 100 or 400 Kbps, default 400.
[sm=<smode>] : Speed Mode, STANDARD or FAST, default FAST.
[am=<addmode>] : Address Mode : 7 or 10 bits, default 7.
l[af=<afilter>] . Analog filter : ENABLE or DISABLE, default ENABLE.
[df=<dfilter>] : Digital filter: ENABLE or DISABLE, default DISABLE.
[dnf=<dnfilter>] : Digital noise filter: 0 to 15, default 0.
[rt=<rtime>] : Rise time: 0-1000 (STANDARD), 0-300 (FAST), default 0.
[ft=<ftime>]

e CAN Options

[br=<rbaudrate>] :Baudrate: 125, 250..., default 125.

: Fall time: 0-300 (STANDARD), 0-300 (FAST), default 0.

[mode=<canmode>] : Mode: NORMAL, LOOPBACK..., default NORMAL.

32/49 UM2237 Rev 4

3

UM2237 STM32CubeProgrammer command line interface (CLI)

Note: The software must request the hardware to enter Normal mode to be able to synchronize on
the CAN bus and start reception and transmission between the Host and the CAN device.
The mode Normal is recommended.

[ide=<type>] - Type: STANDARD or EXTENDED, default STANDARD.
[rtr=<format>] . Frame Format: DATA or REMOTE, default DATA.
[fifo=<afifo>] : Assigned fifo: FIFOO or FIFO1, default FIFOO.
[fm=<fmode] . Filter Mode: MASK or LIST, default MASK.
[fs=<fscale>] : Filter Scale: 16 or 32, default 32.

[fe=<fenable>] : Activation: ENABLE or DISABLE, default ENABLE.

[fon=<fbanknb>] : Filter Bank Number: 0 to 13, default 0.
e Using UART

/STM32_Programmer.sh -c port=/dev/ttyS0 br=115200

The result of this example is shown in Figure 21.

Figure 21. Connect operation using RS232

% ./5TM32_Programmer.sh -c port=/dev/tty58 br=115200

Port configuration: parity none, baudrate = 115288, data-bit = 8,

stop-bit 1.8, flow-control = off

Chip ID: ox508
BootlLoader version: 3.1

3

UM2237 Rev 4 33/49

STM32CubeProgrammer command line interface (CLI)

UM2237

Note:

34/49

Example using USB

/STM32_Programmer.sh -c port=usb1

The result of this example is shown in Figure 22:

Figure 22. Connect operation using USB

SB =peed

anuf acturer ID
roduct ID
Lerial numbher
Firmware version
Device ID

AREA MAME

Internal Flash

Option Bytes

OTP Memory

Device Feature

326F376A3234
1.1a

Bx0417

SECT .MBR

#8688
a1
a8H2
a8a3
#8684
5151500
n]5]o]
515150
n]5]GH
a8ae
8818
aa11
a812
813
814
aa15
#8116
aa17?
#0818
aa19
a8z
821
ap22
823

a8a68
#6861

#8688
a8l

establizshing connection with the target device

FULL_SPEED{12MBit. s>
S8TMicroelectronics
8TH32 BOOTLOADER

ADDRESS

MG EnIG]E] 5G]
BxA8084086
A28 H0H
BxA808cARA
BxH801 0884
BxA8020080
BxH8H4088H
BxA806008H
BxH8HE0ERH
BxA80afBnn
BxH80cBBBH
BxA80eBAH
BxH81 80884
BxA81 84886
BxH81 83886
BxH818cH8H
B:xH81 10686
BxA81 20086
BxH81 406086
BxA81 60086
BxH81 80886
BxA81 afB8H
BxH81 cOB8H
BxH81eB886

Bx1fffchPA
Bx1ffeciid

Bx1ff 78006
Bx1fff7a806

Bxf £ f £ 0006

When using a USB interface, all the configuration parameters are ignored (baud rate, parity,

data-bits, frequency, index, and so on) To connect using a UART interface, the port

configuration (baudrate, parity, data-bits, stopbits and flow-control) must have a valid
combination, depending on the device used.

UM2237 Rev 4

3

UM2237

STM32CubeProgrammer command line interface (CLI)

Note:

Note:

Note:

3

Example using JTAG/SWD debug port

To connect using port connection mode with ST-LINK probe it is necessary to mention the
port name with the connect command at least (for example: -c port=JTAG).

Make sure that the device being used contains a JTAG debug port when trying to connect
through the JTAG.

There are other parameters used in connection with JTAG/SWD debug ports that have
default values (see the help menu of the tool for more information about default values).

The example in Figure 23 shows a connection example with an STM32 with device ID
0x415.

Figure 23. Connect operation using SWD debug port

D type
Device CPU @ Cortex—M4

The corresponding command line for this example is —¢ port=SWD freg=3900 ap=0

In the connect command (-c port=SWD fregq=3900 ap=0)
e The <port> parameter is mandatory

e Theindex is not mentioned in the command line. The Index parameter takes the default
value 0

e The frequency entered is 3900 kHz, however the connection is established with 4000
kHz. This is due to the fact that ST-LINK probe has a fixed values with SWD and JTAG
debug ports.

e ST-LINK v2/v2.1

— SWD (4000, 1800, 950, 480, 240, 125, 100, 50, 25, 15, 5) kHz

- JTAG (9000, 4500, 2250, 1125, 562, 281, 140) kHz
e ST-LINK V3

— SWD (24000, 8000, 3300, 1000, 200, 50, 5)

- JTAG (21333, 16000, 12000, 8000, 1777, 750)
If the value entered does not correspond to any of these values, the next-highest value is
considered. Default frequency values are:

— SWD: STLinkV2: 4000 kHz, STLinkV3: 24000 kHz

— JTAG: STLinkV2: 9000 kHz, STLinkV3: 21333 kHz
JTAG frequency selection is only supported with ST-LINK firmware versions from V2423
onward.
To connect to access port 0 in this example, the ap parameter is used, so any command
used after the connect command is established through the selected access port.

The ST-LINK probe firmware version is shown when connecting to the device. Make sure
that you have the latest version of ST-LINK firmware V2J28M17, which is available on ST
web site (STSW-LINKOO7).

UM2237 Rev 4 35/49

STM32CubeProgrammer command line interface (CLI) UM2237

Note:

Note:

36/49

Example using SPI
STM32_Programmer_CLI -c port=SPI br=375 cpha=ledge cpol=low

The result of this example is shown in Figure 24.

Figure 24. Connect operation using SPI port

ST=LINK FW = U3J1iMi
o Lt age : B.BBU
i = Freqg : 400B8 KHz
&

. : 375 HH=z
ion
1D
name =
Device type :
[Dewice

Make sure that the device being used supports a SPI Bootloader when trying to connect
through the SPI.

There are other parameters used in connection with SPI port that have default values, and
some others must have specific values (see the help menu of the tool for more information).

Example using CAN

STM32_Programmer_CLI -c¢ port=CAN br=125 fifo=fifo0 fm=mask fs=32
fe=enable fbn=2

The result of this example is shown in Figure 25.

Figure 25. Connect operation using CAN port

ST-LINKE F@ = U3JiH1
Wi : B.8ay
: GHEEY KH=
: 125 Khps

Cage

.a
- iy
: STHIZFA2xnx F43xxx
HCU

Cortex—Hd

Not all devices implements this feature, make sure that the device supports a CAN
Bootloader.

There are other parameters used in connection with CAN port that have default values and
some others must have specific values (see the help menu of the tool for more information).

3

UM2237 Rev 4

UM2237 STM32CubeProgrammer command line interface (CLI)

Example using 12C
STM32_Programmer_CLI -c port=I2C add=0x38 br=400 sm=fast

In the connect command:

e The parameter <add> change from a device to another, refer to the document AN2606
to extract the correct one. In our case, the MCU STM32F42xxx has a bootloader
address equal to 0x38.

e The baudrate parameter
 depends directly on the speed mode parameter <sm>,
for example, if sm=standard then the baudrate do not support the value 400.

The result of this example is shown in Figure 26.

Figure 26. Connect operation using 12C port

: U3JiH1
H

: au

: 192888 KHz

: 488 KH=

: 1:1

I Bx41ly

! ETMRZFAE kP xnx
HCU

! Cortex—H4

Note: For each 12C connection operation, the address parameter is mandatory.
Note: Not all devices implements this feature, make sure that the device supports an 12C
Bootloader.

There are other parameters used in connection with I2C port that have default values and
some others must have specific values (see the help menu of the tool for more information).

3

UM2237 Rev 4 37/49

STM32CubeProgrammer command line interface (CLI) UM2237

3.2.2 Erase command

-e, --erase

Description: According to the given arguments, this command can be used to erase
specific sectors of memory, or to erase the entire Flash memory. This operation can take a
second or more to complete, depending on the memory size involved.

Syntax: -e [all] [sectorsCodes]

[all] : Erase the entire Flash memory.

[sectorsCodes] : Erase only the specified sectors.

[<[start end]>] : Erase all sectors starting from “start” to “end” code.
Example:

./STM32_Programmer.sh --connect port=/dev/ttyS0 -e 2 4

This command erases only the sectors 2 and 4.

3.2.3 Download command

-w, --write, -d, --download

Description: Downloads the content of the specified binary file into device memory. The
download operation is preceded by the erase operation before the Flash memory is
downloaded. A write address is only needed to download binary files.

Syntax: -w <file_path> [start_address]
[file_path] : Path of the file to be downloaded.
[start_address] : Start address of download
Example:
-c port=COM4 -w RefSMI_MDK/All_Flash_0x1234_256K.bin 0x08008000

This command programs the binary file “All_Flash_0x1234 256K.bin” at address
0x08008000.

The result of this example is shown in Figure 27.

Figure 27. Download operation

rerial Port COM4 iz succ Fully opened.

Port configurati y none, bauwdrate = 115208, data—hit = 8,
1.8, flow-control = off

ctivating device

hip ID: Bx458

BootLoader version:

emory Programping ...
File H

Size 44 Bytes
Address : BxOBOBEBAB

Jownload in Progress:

ile download complete
Time elapsed during the download operation is: B@:81:86.723
Press (RETURM> to close this window...

3

38/49 UM2237 Rev 4

UM2237

STM32CubeProgrammer command line interface (CLI)

Note:

3.24

Note:

3.2.5

3

To verify that the download was successful, you can call the verify option (-v or —verify) just
after the write command, otherwise the verify option is ignored.

Download 32-bit data command
-w32

Description: Downloads the specified 32-bit data into Flash memory starting from a
specified address.

Syntax: -w32 <start_address> <32_data_bits>
<start_address> :Start address of download.

<32_data_Bits> :32 data-bits to be downloaded. Data must be separated by
escape

Example:

./STM32_Programmer.sh -c port=/dev/ttyS0 br=9600 -w32 0x08000000
0x12345678 O0xAABBCCFF O0x12AB34CD -verify

This command allows the 32 data bits (0x12345678, 0OxAABBCCFF, 0x12AB34CD) to be
written into the Flash memory starting from address 0x08000000

Read command

-r, --read, -u, --upload

Description: Reads and uploads the device memory content into a specified binary file
starting from a specified address.

Syntax: --upload <start_address> <size> <file_path>

<start_address> : Start address of read.

<size> : Size of memory content to be read.
<file_path> : Binary file path to upload the memory content.
Example:

./STM32_Programmer.sh -c port=/dev/ttyS0 br=9600 --upload
0x20007000 2000 “/local/ benayedh/Binaries/read2000.bin”

This command allows 2000 bytes to be read, starting from address 0x20007000and upload
its content to a binary file “/local/benayedh/Binaries/read2000.bin”

-r32

Description: Read 32bit data memory.

Syntax: -r32 <start_address> <size>

<start_address> : Start address of read.
<size> : Size of memory content to be read.
Example:

./STM32_Programmer.sh -c port=SWD -r32 0x08000000 0x100

UM2237 Rev 4 39/49

STM32CubeProgrammer command line interface (CLI)

UM2237

Note:

3.2.6

3.2.7

40/49

Figure 28. Read 32-bit operation

30 B¢

poxes00eeDe :
FOx020000E0 :
FOx020000F0

8x20008600
Ox08005AAA
exeooooeoe
@xe8ee5ADD
0xesea58aD
@xegeaseen
@x@80e5AFS

exe8ee6BA9
exeseasabD
2x00000000
Bx00000000
exo8easeeD
exegfeeseeD
@x02005AF9
@xa8883ADD
Bxe8ea3B2D
exeseaseeD
exesea4689
Bx888a5AF9
exegeaseeD
exesea4aaB
exegeasgeD
Bx888a5AF9

ex88ea5ADD
e SADD

OxX@B80O5AF9
0x@8005AF9
0xe8003AF1
BxbEBasBeD
exe80a5BBE
exBERa5AF9
exBEea469F
BxBEeasBeD
BxBERa5AF9
exeEeasgeD
exeEaaseeD

Bxe88e85ADD
gxo0000000
Bx08005ADD
Bx@BOBG6EES
BxB8085AF9
PxOBRASAF9
2x0BOO3ABO
Bx0B003EAS
BxB8easeaD
PxE808SABE
exeseaseaD
Bxe8easeaD
Bxe8easeaD
BxB8885AF9
BxB8BB5AF9
Bxe8easeaD

The maximum size allowed with the —r32 command is 32 Kbytes.

Start command

-g, --go, -s, --start

Description: This command allows execution of the device memory starting from the
specified address.

Syntax: --start [start_address]

[start_address] Start address of application to be executed.

Example:

./STM32_Programmer.sh --connect port=/dev/ttyS0 br=9600
0x08000000

This command runs the code specified at 0x08000000.

Debug commands

The following commands are available only with the JTAG/SWD debug port.

-rst

Description: Execute a software system reset;

Syntax: -rst

-hardRst

--start

Description: Generate a hardware reset through the RESET pin in the debug connector.

The RESET pin of the JTAG connector (pin 15) must be connected to the device reset pin.

Syntax: ~-hardRst

UM2237 Rev 4

S74

UM2237 STM32CubeProgrammer command line interface (CLI)

-halt
Description: Halt the core.

Syntax: -halt

-step
Description: Execute one instruction.

Syntax: -step

-score

Description: Display the Cortex-M core status.

The core status could be one of the following: ‘Running’, ‘Halted’, ‘Locked up’, ‘Reset’,
‘Locked up or Kept under reset’

Syntax: -score

-coreReg

Description: Read/write Cortex-M core registers. The core is halted before a read/write
operation.

Syntax: -coreReg [<core_register>]
RO/../R15/PC/LR/PSP/MSP/XPSR/APSR/IPSR/EPSR/PRIMASK/BASEPRI/
FAULTMASK/CONTROL

[core_reg=<value>]: The value to write in the core register in the case of a write
opration. Multiple registers can be handled at once

Example:

-coreReg

This command displays the current values of the core registers.
-coreReg RO R8

This command displays the current values of RO and R8.
-coreReg R0=5 R8=10

This command modifies the values of RO and R8.

3.2.8 List command

-1, -list

Description: This command lists all available RS232 serial ports.
Syntax: -1, --list

Example:

./STM32_Programmer.sh --list

The result of this example is shown in Figure 29:

3

UM2237 Rev 4 41/49

STM32CubeProgrammer command line interface (CLI) UM2237

Note:

3.2.9

3.2.10

42/49

Figure 29. The available serial ports list

S ./S5TM32_Programmer.sh -1

Total number of serial ports available: 2
Port: ttys4
Location: /fdev/ttyS4
Description: N/A
Manufacturer: NfA

Port: ttyse
Location: /[dev/ttySe
Description: N/A
Manufacturer: NfA

This command is not supported with JTAG/SWD debug port.

QuietMode command

-q, --quietMode

Description: This command disables the progress bar display during download and read
commands.

Syntax: -g, --guietMode
Example:

./STM32_Programmer.sh -c port=/dev/ttyS0 br=115200 -quietMode -w
binaryPath.bin 0x08000000

Verbosity command

-vb, --verbosity

Description: This command allows more messages to be displayed in order to be more
verbose.

Syntax: -vb <level>
<level> : Verbosity level, value in {1, 2, 3} default value vb=1
Example:

./STM32_Programmer.sh —-c port=/dev/ttyS0 br=115200 -vb 3

3

UM2237 Rev 4

UM2237 STM32CubeProgrammer command line interface (CLI)

The result of this example is shown in Figure 30:

Figure 30. Verbosity command

S ./STM32_Programmer.sh -c port=/dev/ttySe br=115200 -vb 3

Port configuration: parity none, baudrate = 115280, data-bit = 8,

stop-bit 1.0, flow-control = off

Chip ID: 0x500

BootlLoader version: 3.1

3.2.11 Log command

-log, --log

Description: This traceability command allows the whole traffic (with maximum verbosity

level) to be stored into a log file.

Syntax: -log [filePath.log]

[filePath.log] :path of log file, default path is
$HOME/.STM32CubeProgrammer/trace.log

Example:
./STM32_Programmer.sh —-c port=/dev/ttyS0 br=115200 -log trace.log

The result of this example is shown in Log command and Figure 31.

Figure 31. Log command
S ./STM32_Programmer.sh -c port=/dev/ttySe br=115200 -log trace.log

Log output file: trace.log
none, baudrate = 115200, data-bit

Port configuration: parity
stop-bit 1.0, flow-control = off

Chip ID: 8x500
BootlLoader version: 3.1

UM2237 Rev 4 43/49

3

STM32CubeProgrammer command line interface (CLI) UM2237

3.2.12

Note:

44/49

The log file trace.log contains verbose messages such as those shown in Figure 32.

Figure 32. Log file content

16:41:19:345

Log output file: trace.log

16:41:19:368 Serial Port fdev/tty30 is successfully opened.

16:41:19:368 Port configuration: parity = none, baudrate = 115200, data-bit = 8,
stop-bit = 1.0, flow-control = off

16:41:19:368 Sending init command:

16:41:19:368 byte O0xTF sent successfully to target

16:41:19:369 Received response from target: 0x78

16:41:19:369 RActivating device: OK

16:41:19:369 Sending GetID command and its XCR:

16:41:19:369 byte 0x02 =zent successfully to target

16:41:19:36%9 byte OxXFD =ent successfully to target

16:41:159:370 Received response from target: 0x78

16:41:19:370 Received response from target: 0x01050079

16:41:19:370 Chip ID: 0x500

16:41:19:370 Sending Get command and its XORE:

16:41:19:370 byte 0x00 =sent successfully to target

16:41:19:370 byte O0xXFF sent successfully to target

16:41:19:371 Received response from target: 0x79

16:41:19:371 Received response from target: 0x07

16:41:19:371 Received response from target: 0x07310001020311213179%

16:41:19:371 BootLoader wersion: 3.1

External loader command

-el

Description: This command allows the path of an external memory loader to be entered, to
perform programming, write erase and read operations with an external memory.

Syntax: -el [externalloaderFilePath.stldr]
[externalLoaderFilePath.stldr] Absolute path of external loader file.

Example 1:

./STM32_Programmer.sh -c port=swd -w “file.bin” 0x90000000 -v -el
“/local/user/externalLoaderPath.stldr”

Example 2:

./STM32_Programmer.sh -c port=swd -e all -el
“/local/user/externalLoaderPath.stldr”

This command is only supported with SWD/JTAG ports.

3

UM2237 Rev 4

UM2237 STM32CubeProgrammer command line interface (CLI)

3.2.13 Read Unprotect

-rdu, --readunprotect

Description: This command removes the memory Read Protection by changing the RDP
level from level 1 to level 0.

Syntax: --readunprotect
Example:

./STM32_Programmer.sh -c port=swd -rdu

3.214 Option Bytes command

-ob, --optionbytes

Description: This command allows the user to manipulate the device's Option Bytes by
displaying or modifying them.

Syntax: -ob [displ] / -ob [OptByte=<value>]

[displ]: This option allows the user to display the whole set of Option
Bytes.

[OptByte=<value>]: This option allows the user to program the given Option Byte.
Example:
./STM32_Programmer.sh -c port=swd -ob rdp=0x0 -ob displ

Note: For more information about device’s option bytes, refer to the option bytes section in the
device Flash memory programming manual and reference manual available from the
www.st.com website.

3.215 Safety lib command

-sl, --safelib

Description: This command allows a firmware file t be modified by adding a load area
(segment) containing the computed CRC values of the user program.

Supported formats are: bin, elf, hex and Srec.

Syntax: -s1 <file_path> <start_address> <end_address> <slice_size>

<file_path> : The file path (bin, elf, hex or Srec)
<start_address> : Flash memory start address
<end_address> : Flash memory end address
<slice_size> : Size of data per CRC value
Example:

STM32_Programmer_CLI.exe —-sl TestCRC.axf 0x8000000 0x8010000 0x400

3

UM2237 Rev 4 45/49

STM32CubeProgrammer command line interface (CLI) UM2237

46/49

The result is shown in the Figure 33:

Figure 33. Safety lib command

GC:%bhin>STH32_Programmer_CLI .exe —s1 TestCRC.axf Ox8000080 Bx80180800 BAx480

Warning: The ELF file will bhe overwritten
CRCz area injected succesfully

Flash program memory is divided into slices (the slice size is given as a parameter to the
safety lib command as shown in the example above). To each slice, a CRC value is
computed and placed in the CRC area. The CRC area is placed at the end of the memory,

as shown in Figure 34:

Figure 34. Flash memory mapping

CRC area —

— Flash memory

Program area —

MSv48697V1.

The address and size of the CRCs area are determined as follows:
CRCs_Area_Size = Flash_Size / Slice_Size * 4 bytes
CRCs_Start_Address = Flash_End_Address - CRCs_Area_Size

3

UM2237 Rev 4

UM2237

STM32CubeProgrammer command line interface (CLI)

3

The CRC values in the CRC area are placed according to the position(s) of the user
program in the Flash memory, see Figure 35.

Figure 35. Flash memory mapping example

— —_

CRC 3
CRC area — CRC 2

CRC1

User program 3

— Flash memory

Program area —
User program 2

User program 1

MSv48698V1.

The address of a CRCs region inside the CRCs area is calculated as:

UserProg_Start_Address — Flash_Start_Address
Slice_Size

@ = CRCs_Start_Address +(.4 bytes)

UM2237 Rev 4 47/49

Revision history

UM2237

4

48/49

Revision history

Table 1. Document revision history

Date

Revision

Changes

15-Dec-2017

1

Initial release.

02-Aug-2018

Updated:

— Section 1.1: System requirements

— Section 1.2.3: macOS install

— Section 1.2.4: DFU driver

Added:

— Section 3.2.7: Debug commands

— Figure 1: macOS ‘allow applications downloaded from’ tab
— Figure 2: Deleting the old driver software

12-Sep-2018

Added SPI, CAN and 12C settings on cover page and in Section 2.1.4:
Target configuration panel.

Updated:

— Figure 7: ST-LINK configuration panel

— Figure 20: STM32CubeProgrammer: available commands.
— Figure 23: Connect operation using SWD debug port
Replaced Section 3.2.1: Connect command .

16-Nov-2018

Updated Section 2.1.4: Target configuration panel, Section 2.2.1:
Reading and displaying target memory, Section 2.2.2: Reading and
displaying a file and Section 2.3.2: External Flash memory
programming.

Updated Figure 5: STM32CubeProgrammer main window, Figure 6:
Expanded main menu, Figure 7: ST-LINK configuration panel, Figure 8:
UART configuration panel, Figure 9: USB configuration panel,

Figure 10: Target information panel, Figure 11: SPI configuration panel,
Figure 12: CAN configuration panel, Figure 13: 12C configuration panel,
Figure 14: Memory and file edition: Device memory tab, Figure 16:
Memory and file edition: File Display, Figure 17: Flash memory
programming and erasing (internal memory) and Figure 18: Flash
memory programming and erasing (external memory).

Minor text edits across the whole document.

3

UM2237 Rev 4

UM2237

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

3

UM2237 Rev 4 49/49

	1 Getting started
	1.1 System requirements
	1.2 Installing STM32CubeProgrammer
	1.2.1 Linux install
	1.2.2 Windows install
	1.2.3 macOS install
	Figure 1. macOS ‘allow applications downloaded from’ tab

	1.2.4 DFU driver
	Figure 2. Deleting the old driver software
	Figure 3. STM32 DFU device with DfuSe driver
	Figure 4. STM32 DFU device with STM32CubeProgrammer driver

	1.2.5 ST-LINK driver

	2 STM32CubeProgrammer user interface
	2.1 Main window
	Figure 5. STM32CubeProgrammer main window
	2.1.1 Main menu
	Figure 6. Expanded main menu

	2.1.2 Log panel
	2.1.3 Progress bar
	2.1.4 Target configuration panel
	Figure 7. ST-LINK configuration panel
	Figure 8. UART configuration panel
	Figure 9. USB configuration panel
	Figure 10. Target information panel
	Figure 11. SPI configuration panel
	Figure 12. CAN configuration panel
	Figure 13. I2C configuration panel

	2.2 Memory and file edition
	2.2.1 Reading and displaying target memory
	Figure 14. Memory and file edition: Device memory tab
	Figure 15. Memory and file edition: Contextual menu

	2.2.2 Reading and displaying a file
	Figure 16. Memory and file edition: File Display

	2.3 Memory programming and erasing
	2.3.1 Internal Flash memory programming
	Figure 17. Flash memory programming and erasing (internal memory)

	2.3.2 External Flash memory programming
	Figure 18. Flash memory programming and erasing (external memory)

	2.3.3 Developing customized loaders for external memory

	2.4 Option bytes
	Figure 19. Option bytes panel

	3 STM32CubeProgrammer command line interface (CLI)
	3.1 Command line usage
	Figure 20. STM32CubeProgrammer: available commands

	3.2 Generic commands
	3.2.1 Connect command
	Figure 21. Connect operation using RS232
	Figure 22. Connect operation using USB
	Figure 23. Connect operation using SWD debug port
	Figure 24. Connect operation using SPI port
	Figure 25. Connect operation using CAN port
	Figure 26. Connect operation using I2C port

	3.2.2 Erase command
	3.2.3 Download command
	Figure 27. Download operation

	3.2.4 Download 32-bit data command
	3.2.5 Read command
	Figure 28. Read 32-bit operation

	3.2.6 Start command
	3.2.7 Debug commands
	3.2.8 List command
	Figure 29. The available serial ports list

	3.2.9 QuietMode command
	3.2.10 Verbosity command
	Figure 30. Verbosity command

	3.2.11 Log command
	Figure 31. Log command
	Figure 32. Log file content

	3.2.12 External loader command
	3.2.13 Read Unprotect
	3.2.14 Option Bytes command
	3.2.15 Safety lib command
	Figure 33. Safety lib command
	Figure 34. Flash memory mapping
	Figure 35. Flash memory mapping example

	4 Revision history
	Table 1. Document revision history

