
August 2017 DocID030752 Rev 2 1/32

1

AN5044
Application note

STM32 standard peripheral library to
STM32Cube low-layer migration

Introduction

Part of the STM32 value proposition is the availability of complete and full firmware libraries,
providing developers with an initial framework to build their embedded application.

The central brick of this framework is the well-known Standard Peripheral Library (SPL),
which is used by all the middleware components to access STM32 peripherals.

Over years, the STM32 portfolio has continued to grow and to offer to developers a variety
of solutions for balancing cost, power and performance, notably the STM32Cube Low Layer
(LL) drivers.

For designers of STM32 microcontroller applications, it is important to be able to easily
upgrade the microcontroller type and/or a firmware solution to another. This migration is
often needed, since the development for the SPL has stopped and when product
requirements and specifications grow, putting extra demands on the variety of used
peripherals.

This application note shows the steps to migrate from an existing STM32-based application
developed under the STM32 SPL to any one of the other microcontroller types using the
STM32Cube LL drivers.

This application note groups together all the most important information needed for a
successful migration of STM32 SPL-based application to STM32Cube LL APIs usage.

It is composed of three sections:

• STM32 SPL vs. STM32Cube LL Architecture Overview: presenting a description of both
solutions and a comparison between both.

• STM32 SPL to STM32Cube LL Manual Migration: detailing the steps to migrate manually
an application based on standard peripheral library.

• STM32 SPL to STM32Cube LL Automatic Migration: presenting the SPL2LL-Converter
migration tool as a solution for automatic migration of StdPeriph-based application.

www.st.com

http://www.st.com

Contents AN5044

2/32 DocID030752 Rev 2

Contents

1 STM32 SPL vs. STM32Cube LL architecture overview 5

1.1 STM32 SPL . 5

1.1.1 Overview . 5

1.1.2 Inclusion Model . 5

1.2 STM32Cube Low Layer drivers . 7

1.2.1 Overview . 7

1.2.2 Inclusion model . 9

1.2.3 APIs definition levels and classification . 11

1.3 Summary . 12

2 STM32 SPL to STM32Cube LL manual migration 14

2.1 STM32 SPL and STM32Cube LL APIs equivalence 14

2.1.1 NVIC interrupt configuration . 14

2.1.2 Peripheral drivers . 16

2.1.3 Migration cases . 16

2.2 Project creation . 18

3 STM32 SPL to STM32Cube LL automatic migration 20

3.1 SPL2LL-Converter migration tool specifications 20

3.1.1 Overview and features . 20

3.1.2 SPL2LL-Converter migration tool block diagram 22

3.2 SPL2LL-Converter migration tool usage guidelines 23

3.2.1 Migration tool package architecture . 23

3.2.2 SPL2LL-Converter migration tool . 24

3.2.3 User application migration steps with initial application environment . . 27

3.2.4 User application migration steps using available LL templates 28

3.2.5 SPL2LL-Converter migration tool limitations . 28

3.2.6 GUI application . 29

4 Revision history . 31

DocID030752 Rev 2 3/32

AN5044 List of tables

3

List of tables

Table 1. STM32 SPL application’s files description . 7
Table 2. LL-supported peripherals . 8
Table 3. STM32Cube LL application’s files description . 11
Table 4. STM32 SPL vs. STM32Cube comparison summary . 12
Table 5. Cortex-Mx equivalences between STM32 SPL and CMSIS core driver 15
Table 6. Document revision history . 31

List of figures AN5044

4/32 DocID030752 Rev 2

List of figures

Figure 1. Inclusion Model for STM32 SPL application . 6
Figure 2. Inclusion model for STM32Cube application . 10
Figure 3. STM32 SPL vs. STM32Cube LL API classification . 13
Figure 4. Analogy of user application before and after manual migration . 19
Figure 5. Automatic migration scenarios . 21
Figure 6. Block diagram of the migration tool . 22
Figure 7. Migration tool package tree . 23
Figure 8. Migration tool startup . 24
Figure 9. Tool display for a successful migration. 25
Figure 10. Tool display for an unsuccessful migration. 26
Figure 11. Analogy of user project before and after automatic migration . 26
Figure 12. SPL2LL-Converter migration tool graphic interface . 29
Figure 13. Logging after successful migration . 30

DocID030752 Rev 2 5/32

AN5044 STM32 SPL vs. STM32Cube LL architecture overview

31

1 STM32 SPL vs. STM32Cube LL architecture overview

This section describes the architecture of both STM32 Standard Peripheral Library (SPL)
and STM32Cube LL with a summary to comparing the main differences between the two
solutions.

1.1 STM32 SPL

1.1.1 Overview

CMSIS

The STM32 SPL’s CMSIS is composed of two layers: a Core Peripheral Access layer that
contains name definitions, address definitions and helper APIs to access core Cortex-Mx
registers and peripherals. And an STM32 Peripheral Access layer which provides definitions
for all the peripheral registers, bit fields and memory mapping for the device.

STM32 SPL drivers

The library is built around a modular programming approach ensuring the independencies
between the several components building the main application. It allows an easy porting on
a large product range and evaluation boards with a minimum changes on the code of the
common parts.

The STM32 SPL drivers provide drivers and header files for each peripheral. Each driver
consists of a set of APIs covering all the peripheral functionalities.

It also implements run-time failure detection by checking the input values for all library
functions. Such dynamic checking contributes towards enhancing the robustness of the
software. Thus, it is suitable for user application development and debugging.

1.1.2 Inclusion Model

The files inclusion model for a default user application based on STM32 SPL is shown in
Figure 1.

STM32 SPL vs. STM32Cube LL architecture overview AN5044

6/32 DocID030752 Rev 2

Figure 1. Inclusion Model for STM32 SPL application

Each STM32 embedded peripheral has a source code file stm32yyxx_ppp.c and a header
file stm32yyxx_ppp.h. The stm32yyxx_ppp.c file contains all the firmware APIs required to
use the PPP peripheral.

The stm32yyxx_conf.h file is considered a user file that is intended to be customized and
tailored according to the used peripherals in the application. It is used to specify the set of
parameters to interface with the library drivers before running any application.

Table 1 regroups and describes the above files referred by the user’s STM32 SPL based
application:

DocID030752 Rev 2 7/32

AN5044 STM32 SPL vs. STM32Cube LL architecture overview

31

1.2 STM32Cube Low Layer drivers

1.2.1 Overview

The Low Layer (LL) drivers are a part of the STM32Cube firmware HAL and are designed to
offer a fast light-weight expert-oriented layer which is closer to the hardware than the HAL.
Contrary to the HAL, LL APIs are not provided for peripherals where optimized access is not
a key feature.

Table 1. STM32 SPL application’s files description

- File name Description

STM32 SPL

stm32yyxx_conf.h

Peripheral’s drivers configuration file.

The user can enable or disable the peripheral header file
inclusion by using the template. This file can also be used
to enable or disable the Library run-time failure before
compiling the firmware library drivers, through the pre-
processor define USE_FULL_ASSERT

stm32yyxx_ppp.h Header file of PPP peripheral.

stm32yyxx_ppp.c
Driver source code file PPP peripheral written in C
language.

stm32yyxx_it.h Header file including all interrupt handlers prototypes.

stm32yyxx_it.c

Template source file containing the interrupt service
routine (ISR) for Cortex-Mx exceptions. User can add
additional ISRs for the used peripherals (for the available
peripheral interrupt handler’s name, please refer to the
startup_stm32yyxx.s).

CMISIS

stm32yyxx.h

CMSIS Cortex-Mx STM32yyxx device peripheral access
layer header file.

This file is the unique include that the application
programmer is using in the source code. This file
contains:

– Configuration section that allows to select:

–The device used in the target application

–To use or not the peripheral’s drivers in
application code (i.e. code will be based on
direct access to peripheral’s registers rather
than drivers API), this option is controlled by the
#define USE_STDPERIPH_DRIVER

–To change few application-specific parameters
such as the HSE crystal frequency

– Data structures and address mapping for all peripherals

– Peripheral’s registers declarations and bits definition

– Macros to access peripheral’s registers hardware

system_stm32yyxx.h
CMSIS Cortex-Mx STM32yyxx devices peripheral access
layer system header file

system_stm32yyxx.c
CMSIS Cortex-Mx STM32yyxx devices peripheral access
layer system source file

STM32 SPL vs. STM32Cube LL architecture overview AN5044

8/32 DocID030752 Rev 2

The Low Layer (LL) drivers are designed to offer:

• A set of functions to initialize peripheral main features according to the parameters
specified in data structures

• A set of functions used to fill initialization data structures with the reset values of each
field

• Functions to perform peripheral de-initialization (peripheral registers restored to their
default values)

• A set of inline functions for direct and atomic register access

• Full independence from HAL since LL drivers can be used either in standalone mode
(without HAL drivers) or in mixed mode (with HAL drivers)

• Full coverage of the supported peripheral features.

The Low Layer drivers provide hardware services based on the available features in the
STM32 peripherals. Table 2 lists the STM32 embedded peripherals covered by the Low
Layer scope:

Table 2. LL-supported peripherals

Peripherals STM32Cube LL support

System

FLASH No

EXTI Yes

GPIO Yes

DMAXs Yes

PWR Yes

RCC Yes

Cortex Yes

SYSCFG Yes

NVIC(1) No (already covered by CMSIS)

Analog

ADC Yes

DAC Yes

COMP Yes

OPAMP Yes

DFSDM No

Timers

RTC Yes

TIM Yes

LPTIM Yes

HRTIM Yes

WWDG Yes

Cryptography

CRC Yes

CRYP No

HASH No

RNG Yes

DocID030752 Rev 2 9/32

AN5044 STM32 SPL vs. STM32Cube LL architecture overview

31

The LL APIs reflect exactly the hardware capabilities and provide one-shot operations. The
operations must be called following the programming model described in the microcontroller
line reference manual.

As a result, the LL services do not implement any processing and do not require any
additional memory resources to save their states, counter or data pointers: all the operations
are performed by changing the associated peripheral registers content.

All the Low Layer drivers are called through their physical instances (Peripheral registers
structures mapped on the peripherals base registers) and are given in one module for each
physical peripheral located in a separate header file.

1.2.2 Inclusion model

As an STM32Cube application, the user is exposed to different files inclusion models
according the adopted drivers. Figure 2 shows the inclusions via either STM32Cube HAL or
Low layer drivers.

Basic connectivity

I2C Yes

UART/USART/LPUART Yes

SWPMI Yes

SPI/I2S Yes

SDMMC(SDIO) No

1. NVIC is covered in STM32 SPL by the misc.h/.c driver

Table 2. LL-supported peripherals (continued)

Peripherals STM32Cube LL support

STM32 SPL vs. STM32Cube LL architecture overview AN5044

10/32 DocID030752 Rev 2

Figure 2. Inclusion model for STM32Cube application

Through what the STM32Cube package provides, there are three categories for an
STM32Cube application:

• HAL application: the application is based solely on HAL drivers and following an
inclusion as highlighted by the blue arrows.

• LL application: Since the LL drivers are standalone. The user can develop his
application using only LL drivers, referring to them only from his source files. Note that
LL drivers cannot include each other but they have to include only the CMSIS device
file. Thus, there is no need for a configuration file, and the user must include the used
drivers in the entry point file on his application.

• MIX application: the application in which the user calls on HAL and LL drivers and uses
both of their APIs to develop his code. Drivers are independent from each other and
there is no interference in their inclusions approaches.

DocID030752 Rev 2 11/32

AN5044 STM32 SPL vs. STM32Cube LL architecture overview

31

Contrary to the HAL drivers, the low level ones are not built on process model but rather in
simple access operations on registers. Thus, the low level layer has no configuration file.

1.2.3 APIs definition levels and classification

The Low Layer drivers’ purpose is to provide an abstraction APIs level that covers the
STM32 snippets APIs and Standard Peripheral drivers functionalities.

The low layer drivers provide a complementary set of basic APIs allowing the customization
or the replacement of high level processes.

Each Low layer peripheral driver should cover the following three APIs levels:

• Level 1: The LL_PPP_WriteReg() / LL_PPP_ReadReg() (redirection of CMSIS
registers operations).

• Level 2: One shot operations APIs (atomic) which are sorted as follow:

– Peripherals activation/deactivation management: enable or disable a peripheral
block, sub-block, or an associated feature.
Example: LL_PPP_Disable(PPPx)

– Peripheral functional operations management: start or launch a peripheral
operation or set a peripheral in a functional state.
Example: LL_PPP_Action()

– Helper operations.
Example: IS_PPP_State(PPPx)

Table 3. STM32Cube LL application’s files description

File name Description

HAL

stm32yyxx_hal.c This is the common part of the HAL initialization

stm32yyxx_hal.h
This is the header file of the common part of the HAL
initialization

stm32yyxx_hal_ppp.c

This is the c-source file of the PPP driver. The PPP driver
is a standalone module, to be used in a project the user
should enable the correspondent define
USE_HAL_PPP_MODULE in the configuration file

stm32yyxx_hal_ppp.h This is the header file of the PPP driver.

stm32yyxx_hal_ppp_ex.h/.c
These files are an extension of the standard set of APIs
within the driver.

stm32yyxx_def.h
Common HAL resources such as common define
statements, enumerations, structures and macros.

LL stm32yyxx_ll_ppp.h/c
This is the h-source file of the PPP low layer driver. The
low layer PPP driver is a standalone module. To be used,
the application should include the stm32yyxx_ll_ppp.h

CMSIS

stm32yyxx.h
CMSIS Cortex-Mx STM32yyxx series peripheral access
layer header file.

stm32yynnnnxx.h
CMSIS Cortex-Mx STM32yyxx device peripheral access
layer header file.

system_stm32yyxx.h/.c
This file contains APIs which are called at startup just
after reset and before branching to the main program.

STM32 SPL vs. STM32Cube LL architecture overview AN5044

12/32 DocID030752 Rev 2

– Specific Interrupt and Status flags management: handle status and register flags
operations (get, Clear, Enable, Disable) for a single item.
Example: LL_PPP_ClearFlag_XX()

These APIs are provided in the “stm32yyxx_ll_PPP.h”.

• Level 3: Global configuration and initialization functions that cover full standalone
operations on relative peripheral registers which are provided in “stm32yyxx_ll_PPP.c”.

1.3 Summary

Table 4 shows an overall comparison between the STM32 SPL and STM32Cube CMSIS
and drivers components:

Table 4. STM32 SPL vs. STM32Cube comparison summary

- STM32 SPL STM32Cube

CMSIS

– Single header file (registers and bits
definition) common for all devices in
a single series. The user needs to
sort out peripherals present in the
considered device.

– Differences in Interrupt handlers’
names between products lines need
to be managed by the user
application.

– system_stm32xx.c: configures the
system clock before jumping to the
main()

– Header file per device among a
given series presenting the available
features in the product and providing
an organized layout for registers and
bits definitions

– Using aliases to abstract naming
differences when migrating from
STM32 SPL, such as the interrupt
handlers’ names.

– system_stm32xx.c: system clock
configuration is no more
implemented in this file. The user is
required to perform it in the main file.

Peripheral drivers

– APIs are managing simple registers
IO operation. Process and error
management must be done by the
user application.

– Peripheral-oriented implementation.
Compatibility loss in case of major
updates on the peripheral features.

– LL APIs are functional-oriented with
direct/atomic register access.

– LL APIs mirroring the hardware
capabilities of the STM32 series.

– LL provides fully standalone
operations on relative peripheral
registers.

– Compatibility vs. STM32 SPL: not
compatible. New set of APIs defined
for Low Layer.

DocID030752 Rev 2 13/32

AN5044 STM32 SPL vs. STM32Cube LL architecture overview

31

Figure 3. STM32 SPL vs. STM32Cube LL API classification

The STM32Cube LL drivers offer a new set of inline functions allowing a direct and atomic
register access substituting the code snippets and the standard peripheral driver. Its
independency from the HAL drivers gives the user a standalone usage covering the
supported peripherals and their features with minimal code footprint and memory resources.
A full STM32 SPL to STM32Cube LL migration is therefore feasible.

STM32 SPL to STM32Cube LL manual migration AN5044

14/32 DocID030752 Rev 2

2 STM32 SPL to STM32Cube LL manual migration

This section describes how to migrate an application developed based on an STM32 SPL to
an equivalent application deploying STM32Cube LL that could be either on the same target
device or a different STM32 series.

2.1 STM32 SPL and STM32Cube LL APIs equivalence

As seen in the previous chapter, the Low Layer drivers provide APIs and methods on
different levels. They are ranging from elementary and atomic registers accesses which
need no external resources to higher level configuration functions. The LL drivers can
provide fully standalone operations and covers the STM32 SPL APIs.

In this section, an equivalence between STM32 SPL and STM32Cube LL will be brought in
details.

2.1.1 NVIC interrupt configuration

The STM32xx_StdPeriph_Lib solution allows two different approaches to handle CMSIS
Core features:

1. CMSIS Core Cortex-Mx driver through core_cmx.h file

2. STM32 Standard Peripheral driver through misc.h/c files.

However, the STM32Cube LL solution allows only the approach through CMSIS Core
Cortex-Mx driver as the CMSIS core_cmx.h file provides a full set of macros covering
almost for CMSIS core Cortex-Mx feature.

Two kinds of migration are possible:

• User familiarized to use CMSIS Core Cortex-Mx driver to manage interrupt, in this case
there are no impact on user application.

• User familiarized to use misc.c/.h driver, the following steps should be followed for
migrate:

– Extract the configuration found in the NVIC_InitTypeDef initialization structure,

– Set the priority groupings using NVIC_SetPriorityGrouping() API

– Encode the priority using NVIC_EncodePriority() API

– Set the new IRQn priority using NVIC_SetPriority() API

– Enable or disable IRQn External interrupts.

Table 5 resuming the Cortex-Mx equivalences between STM32 SPL and CMSIS Core
driver:

DocID030752 Rev 2 15/32

AN5044 STM32 SPL to STM32Cube LL manual migration

31

Table 5. Cortex-Mx equivalences between STM32 SPL and CMSIS core driver

STM32 SPL (misc.c/.h) CMSIS (core_cmx.h) Comment

void
NVIC_PriorityGroupConfig(uint32_t
NVIC_PriorityGroup);

__STATIC_INLINE void
NVIC_SetPriorityGrouping(uint32_t
PriorityGroup);

-

void NVIC_Init(NVIC_InitTypeDef*
NVIC_InitStruct);

__STATIC_INLINE void
NVIC_SetPriorityGrouping(uint32_t
PriorityGroup);

__STATIC_INLINE uint32_t
NVIC_EncodePriority (uint32_t
PriorityGroup, uint32_t
PreemptPriority, uint32_t
SubPriority);

__STATIC_INLINE void
NVIC_SetPriority(IRQn_Type IRQn,
uint32_t priority)

__STATIC_INLINE void
NVIC_EnableIRQ(IRQn_Type
IRQn);

or

__STATIC_INLINE void
NVIC_DisableIRQ(IRQn_Type
IRQn);

NVIC_InitTypeDef structure isn't
defined on STM32Cube driver,

void NVIC_SetVectorTable(uint32_t
NVIC_VectTab, uint32_t Offset);

No equivalence

SCB->VTOR = NVIC_VectTab |
(Offset & (uint32_t)0x1FFFFF80);

1- NVIC_VectTab: specifies if the
vector table is in RAM or FLASH
memory. This parameter can be one
of the following values:

- NVIC_VectTab_RAM: Vector Table
in internal SRAM.

- NVIC_VectTab_FLASH: Vector
Table in internal FLASH.

2- Offset: Vector Table base offset
field. This value must be a multiple of
0x200.

STM32 SPL to STM32Cube LL manual migration AN5044

16/32 DocID030752 Rev 2

2.1.2 Peripheral drivers

The Low Layer library supports most of system, analog, timers, cryptography and basic
connectivity peripherals.

The equivalence can be a simple API matching another, or can be a call of several LL APIs
in case of a complex processing. The user may be required to thoughtfully inspect the
manipulated registers within a given API to find out the corresponding LL APIs. The Low
Layer drivers provide also sets of direct structure and peripheral initialization and
configuration functions matching with the existing in STM32 SPL, sparing the effort of a
consecutive call for LL APIs.

The SPL2LL-Converter migration tool, available at ST website, comes with tabulated
databases for STM32 peripherals supported by the STM32Cube LL drivers. These tables
provide with the direct equivalent in LL and mention the availability of some features among
STM32 series.

These databases are present within the "SPL2LL_User_Manual.chm" file that we find in
SPL2LL-Converter package.

2.1.3 Migration cases

During the code migration from STM32 SPL to STM32Cube LL drivers, the user may cross
different approaches to write an equivalent LL code. These have been sorted into most
common API cases listed as below:

• Change is only in function name, parameters order is kept with the equivalent LL
defines.

void NVIC_SystemLPConfig(uint8_t
LowPowerMode, FunctionalState
NewState);

No equivalence

1- NewState = ENABLE

SCB->SCR |= LowPowerMode;

2- NewState = DISABLE

SCB->SCR &=
(uint32_t)(~(uint32_t)LowPowerMod
e);

 LowPowerMode: Specifies the new
mode for the system to enter low
power mode. This parameter can be
one of the following values:

- NVIC_LP_SEVONPEND: Low
Power SEV on Pend.

- NVIC_LP_SLEEPDEEP: Low
Power DEEPSLEEP request.

- NVIC_LP_SLEEPONEXIT: Low
Power Sleep on Exit.

void
SysTick_CLKSourceConfig(uint32_t
SysTick_CLKSource);

__STATIC_INLINE uint32_t
SysTick_Config(uint32_t ticks);

-

Table 5. Cortex-Mx equivalences between STM32 SPL and CMSIS core driver (continued)

STM32 SPL (misc.c/.h) CMSIS (core_cmx.h) Comment

DocID030752 Rev 2 17/32

AN5044 STM32 SPL to STM32Cube LL manual migration

31

GPIO_PinLockConfig(GPIOA, GPIO_Pin_0) ↔ LL_GPIO_LockPin(GPIOA,
LL_GPIO_PIN_0)

• Updated function name depending on one of the parameters values, order is preserved
with the equivalent LL defines:
GPIO_WriteBit(GPIOA, GPIO_Pin_0, Bit_SET) ↔ LL_GPIO_SetOutputPin(GPIOA,
LL_GPIO_PIN_0)

• Updated function name, parameters order may change in the equivalent LL function:
TIM_ETRClockMode1Config(TIM1, TIM_ExtTRGPSC_DIV2,
TIM_ExtTRGPolarity_Inverted, 0);
↔
LL_TIM_ConfigETR(TIM1, LL_TIM_ETR_POLARITY_INVERTED,
LL_TIM_ETR_PRESCALER_DIV2, LL_TIM_ETR_FILTER_FDIV1);

• Updated function name with the use of LL parameters having functional similarity and
no API equivalence:
ADC_SelectDifferentialMode(ADC1, ADC_Channel_1, ENABLE)
↔
LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_1,
LL_ADC_DIFFERENTIAL_ENDED)

• Updated function name, adding new parameters:
CRC_GetIDRegister() ↔ LL_CRC_Read_IDR(CRC)

• Many STM32 SPL functions migrated into one LL function, parameters may change
following STM32 SPL drivers required parameters:
SPI_NSSInternalSoftwareConfig(SPI1,
SPI_NSSInternalSoft_Set);SPI_SSOutputCmd(SPI1, DISABLE);
↔
LL_SPI_SetNSSMode(SPI1, LL_SPI_NSS_SOFT);

• One STM32 SPL function migrated to more than one LL function, parameters shared
between the equivalent functions:
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1,
ADC_SampleTime_2Cycles5);
↔
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1,
LL_ADC_CHANNEL_1);
LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_1,
LL_ADC_SAMPLINGTIME_2CYCLES_5);

• More than one STM32 SPL function migrated into more than one LL functions,
parameters may be added, reduced and shared within the equivalent functions:
RTC_CalibOutputConfig(RTC_CalibOutput_512Hz);
RTC_CalibOutputCmd(ENABLE);
↔
LL_RTC_DisableWriteProtection(RTC);
LL_RTC_CAL_SetOutputFreq(RTC, LL_RTC_CALIB_OUTPUT_512HZ);
LL_RTC_EnableWriteProtection(RTC);

• Updated function name, parameters are populated from the STM32 SPL structures
content. Values must be retrieved from the structures and assigned as parameters:
RTC_SetTime(RTC_Format_BCD, &RTC_TimeStruct);
↔

STM32 SPL to STM32Cube LL manual migration AN5044

18/32 DocID030752 Rev 2

LL_RTC_TIME_Config(RTC, LL_RTC_TIME_FORMAT_AM_OR_24,
RTC_TimeStruct.Hours, RTC_TimeStruct.Minutes, RTC_TimeStruct.Seconds);

• No explicit API equivalent on LL. The user need to migrate using direct register
accesses:
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x1000);
↔
SCB->VTOR = 0x08000000U | (0x1000U & 0x1FFFFF80U);

2.2 Project creation

Before migrating to STM32Cube Low Layer drivers, make sure to have initially a properly
working application to avoid unwanted issues.

To update application code to use the STM32Cube Low Layer drivers and to run on a given
STM32 MCU series, the user have the choice to opt for one of two approaches, as detailed
below:

• Keeping old application environment

1. In application repository, create a directory in which the user add own target device’s
STM32Cube drivers. This should contains two folders:

– CMSIS: presents the new CMSIS files coming with the STM32Cube.

– STM32yyxx_HAL_Drivers: containing the required drivers.

2. Update toolchain configuration parameters:

– Linker configuration: Device connections and Flash memory loader. These files
are provided with the latest version of toolchain that supports the target device.
For more information, please refer to toolchain documentation.

– Project files: Add the LL drivers’ source files and CMSIS “system_stm32yyxx.c”.

Note: - There is no configuration header file in the Low Layer environment. The
call for drivers is done in the entry point file of application. In case of
migration needing APIs from STM32Cube HAL, the user can add
“stm32yyxx_hal_conf.h” to refer to HAL drivers.

- The default SPL system clock configuration already performed in
system_stm32yyxx.c should be updated manually in top of migrated
main.c file by adding private SystemClock_Config() API. This API is
already existing in the STM32Cube LL_Template project for the targeted
STM32.

– Project configuration parameters: Add the necessary include paths for LL drivers
and CMSIS files and update the pre-processor symbols with the keywords
required by the used drivers and target device.

3. Rewrite the part of application code using the STM32Cube LL APIs. For migration,
the user have to look-up for the STM32 SPL and STM32Cube LL equivalence
provided within the SPL2LL-Converter migration tool.

• Using the available Low Layer templates
The faster approach is start from a ready LL template project supporting the commonly
used toolchains. It spares the user the time of going through the steps of toolchain
configuration and eliminates the risk of erroneous updates. Thus, user can get straight
into coding application with the LL APIs.
The STM32Cube firmware package provides an LL template project tailored for each

DocID030752 Rev 2 19/32

AN5044 STM32 SPL to STM32Cube LL manual migration

31

target device within a given STM32 series. This gives user the freedom to even update
the current hardware platform.

Note: The STM32Cube comes with a rich set of examples (varying from 70 to 90 in total) using
either LL drivers only or mixed between LL and HAL, demonstrating how to use the different
peripherals. These examples commonly share the same application scenarios with those
provided by STM32 SPL, which makes it easy for the developer to quickly compare both
solutions and get started with STM32Cube LL.

Figure 4 illustrates the successful migration of an application based on an STM32 SPL
Template project to an STM32Cube Template_LL project.

Figure 4. Analogy of user application before and after manual migration

STM32 SPL to STM32Cube LL automatic migration AN5044

20/32 DocID030752 Rev 2

3 STM32 SPL to STM32Cube LL automatic migration

This section presents the steps for an automatic migration using the SPL2LL-Converter
migration tool. Throughout this section, the user will have an overview about the migration
tool and its features, its series and peripherals coverage and the detailed guidelines to
successfully run it.

3.1 SPL2LL-Converter migration tool specifications

3.1.1 Overview and features

The STM32 SPL2LL-Converter migration tool is a solution developed by ST using Perl
programming language. The purpose of this tool is to upgrade an existing application
developed via STM32 SPL to an equivalent application based on the STM32Cube LL
drivers. The process through this tool covers the migration of the user's whole source files.

It starts initially from the user source files, scans each to find and extract STM32 SPL APIs
and then looks up for equivalence in a given database and creates equivalent user source
files based on STM32Cube LL drivers.

The STM32 SPL2LL-Converter migration tool features:

• Supports all STM32 series supported by STM32 SPL and STM32Cube LL

– From STM32 SPL drivers: STM32F0, STM32F10, STM32F2, STM32F30,
STM32F37, STM32F4 and STM32L1 series.

– To STM32Cube LL drivers: STM32F0, STM32F1, STM32F2, STM32F30,
STM32F37, STM32F4, STM32F7, STM32L0, STM32L1 and STM32L4 series.

• Supports all peripherals covered by LL framework

– System peripherals (RCC, PWR, FLASH, GPIO, EXTI, DMA and NVIC)

– Analog peripherals (ADC, DAC, COMP, OPAMP and CRS)

– Timers (RTC, TIM, LPTIM, HRTIM, IWDG and WWDG)

– Communication peripherals (I2C, USART, LPUART and SPI/I2S)

– Cryptography peripherals (CRC and RNG)

• Compatible with Windows®, Linux® and MacOS®

The tool is able to handle the differences between STM32 series caused by the variations in
the available peripherals versions. This sets the need for two migration cases to be
performed as presented in Figure 5.

DocID030752 Rev 2 21/32

AN5044 STM32 SPL to STM32Cube LL automatic migration

31

Figure 5. Automatic migration scenarios

Figure 5 gives an insight about the two migration scenarios:

• In-Series migration: Migration performed within the same series (e.g. from STM32 SPL
STM32F4 to STM32Cube LL STM32F4), in which each peripheral's APIs are fully
migrated to LL.

• Cross-Series migration: Migration performed across STM32 series (e.g. from STM32
SPL STM32F4 to STM32Cube LL STM32L4). In this scenario, we can either have:

– Partial-code migration: The tool partially converts the source code due to potential
absent features from a peripheral version to another. Migration considers only
common features.

– Full-code migration: All STM32 SPL APIs are fully converted for a given peripheral
if the version is the same in the target device.

STM32 SPL to STM32Cube LL automatic migration AN5044

22/32 DocID030752 Rev 2

3.1.2 SPL2LL-Converter migration tool block diagram

The tool is developed in Perl programming language following a modular architecture. The
overall process is performed through four modules as presented in Figure 6.

Figure 6. Block diagram of the migration tool

• C Parser
Firstly, the tool takes the user's source files as input. Through this module, it allows to
parse and scan them, line by line, and extracts source code.
The tool has the ability to differentiate between a user's comment, resulting in copying
it into the target files as it is, and the actual code.
The STM32 SPL based code is sorted and interpreted under 4 types:

– Literals: grouping the STM32 SPL defines and structures' naming.

– Structures: grouping the different structures fields in STM32 SPL drives.

– Functions: comprising all the functions provided by the STM32 SPL drivers.

– Includes: identifying the files inclusions within the code.

• Database fetcher
Within the package, the STM32 SPL2LL-Converter migration toll comes with a full set
of XML files for the STM32 peripherals supported by the STM32Cube LL drivers. This
set constitutes the XML database that serves as a source from which the migration tool
extract the LL equivalence for the initially parsed code.
The architecture of the database matches the way the previous C Parser module
interprets data.
The fetcher module parses all the database and extracts the matching LL API. It
returns for structures and literals sections only the equivalent expression, and for
features section the STM32Cube LL function naming with the corresponding
commands directing the migration process.

• Command Interpreter
Once a STM32 SPL API has been spotted in the database, the interpreter module
executes the built-in commands provided with the STM32Cube LL equivalent API in

DocID030752 Rev 2 23/32

AN5044 STM32 SPL to STM32Cube LL automatic migration

31

order to correctly migrate. These commands generally control parameters numbers,
order and default values.

• User Reporting
Along with the migration process, information sharing can be required. For this, the
user reporting module provides all information regarding the migration advancement.
The reporting is about the files migration statuses, warnings, errors and statistics.
The reporting is done as a console output during the execution of the tool and also as a
generation of a log file that is available in the target project folder.

3.2 SPL2LL-Converter migration tool usage guidelines

3.2.1 Migration tool package architecture

The SPL2LL-Converter migration tool comes in a package organized as presented in
Figure 7.

Figure 7. Migration tool package tree

The migration package is composed of the following items:

• Database folder: where the database is located, containing:

a) STM32_PPP_XML folder: contains the set of XML files; one file for each
supported peripheral.

b) stm32xxxx_hal_conf folder: contains the STM32xxxx HAL configuration files
available within the latest STM32Cube_FW_YY packages. They are required to

STM32 SPL to STM32Cube LL automatic migration AN5044

24/32 DocID030752 Rev 2

replace the STM32 SPL stm32yyxx_conf.h in order to maintain compatibility with
the STM32Cube firmware.

c) Legacy folder: contains the STM32 SPL APIs where no direct equivalence in LL is
available, the same STM32 SPL APIs implementation are copied inside.

• Perl Script folder: in which to find the "spl2ll_converter.pl" Perl file and its required
components.

• _htmresc folder: containing the STM32 SPL-STM32Cube LL APIs equivalence
presented in HTML files for each supported peripheral.

• Release_Notes file: giving a brief about the migration tool and overall guidelines.

• spl2ll_converter_gui.jar: executable for a GUI application.

3.2.2 SPL2LL-Converter migration tool

Before running the STM32 SPL2LL-Converter Migration tool, it is mandatory that Perl is
installed on the host. The use of ActiveState® Perl version 5.24.1 or more recent is
recommended. ActivePerl® can be downloaded from ActiveState® website at
https://www.activestate.com.

To run the migration tool, the user have to type the command described as following:

perl spl2ll_converter.pl
--fsrc=<STM32_Source_Series>
--fdst=<STM32_Destination_Series>
--psrc=<STM32_Source_Directory>
--pdst=<STM32_Destination_Directory>

The arguments represent the sources and destination series, as well as the required paths:

--fsrc: STM32 series/device source

--fdst: STM32 series/device target destination

--psrc: User directory path for STM32 SPL-based source code

--pdst: User directory path for output code

Figure 8 is a terminal screenshot showing the tool startup display:

Figure 8. Migration tool startup

Once execution is done, the console output is printed on the terminal. It represents the
overall details of the tool, the migration project, details about the user files and the reporting
during the process.

DocID030752 Rev 2 25/32

AN5044 STM32 SPL to STM32Cube LL automatic migration

31

The following screenshots present two separate migration scenarios of the previous project:

• The first one is an In-series migration from STM32F4 to STM32F4

• The second is a Cross-series migration from STM32F4 to STM32F30.

The screenshots highlight the different parts of the user display during the migration:

Figure 9. Tool display for a successful migration

1. tool header: showing the tool title and current version

2. Migration parameters: source and target series and the source and destination paths

3. Status of the user files: the status can be "UPDATED", "NO CHANGE" or a specific
user message for certain files

STM32 SPL to STM32Cube LL automatic migration AN5044

26/32 DocID030752 Rev 2

Figure 10. Tool display for an unsuccessful migration

4. tool header: showing the tool title and current version

5. Migration parameters: source and target series and the source and destination paths

6. Status of the user files: the status can be "UPDATED", "NO CHANGE" or a specific
user message for certain files

Figure 11 is an example of a migration process applied on an STM32F4 StdPeriph_Lib
TIM_DMA example:

Figure 11. Analogy of user project before and after automatic migration

DocID030752 Rev 2 27/32

AN5044 STM32 SPL to STM32Cube LL automatic migration

31

After execution, the tool keeps the same overall hierarchy as the one of the initial project
and applies some updates. Figure 11 highlights these updates:

• Only source files (.h/.c) are migrated into the new LL project.

• Creation of a "Legacy" folder containing source files required for the migrated APIs not
supported by LL. The "legacy.h/.c" present the STM32 SPL code, "ll_includes.h" is a
part of the "stm32yyxx_conf.h" equivalence after migration and "cmsis_ref.h" contains
the CMSIS includes for all the STM32 series and is required by "legacy.h".

• The migration of "stm32yyxx_conf.h" results its substitution by the files
"stm32yyxx_hal_conf.h" and "ll_includes" for STM32Cube compliancy.

• Creation of a "log.txt" file presenting the global reporting during the migration process.

In case of need for a manual intervention, the user can check the generated log file "log.txt"
in which he can find the printed warnings and use them as guidelines to adjust the LL
source files.

However, when migration is not successful due to unavailable features in the target device,
the user must then intervene by correcting the reported errors.

The STM32 SPL-based application must therefore be aligned to be compatible with the
target present features.

3.2.3 User application migration steps with initial application environment

This section describes the automatic migration for the first approach detailed in Section 2:
STM32 SPL to STM32Cube LL manual migration.

Prerequisites

The user asked to download the latest version of STM32Cube package of target series
where to find the LL and CMSIS drivers.

The initial STM32 SPL based project should be error-free and fully functional, to avoid
unwanted migration troubles and to make it easier for manual updates in case of partial
migration.

Migration guide lines

Since the tool migrates only the source files, it makes it independent from the toolchain
used. Therefore, the user are asked to:

• Tool execution (automatic steps)
After setting up the environment for migration, the process starts as following:

1. Launch terminal and point to the tool location.

2. Run the SPL2LL-Converter migration tool.

• User projects customization (manual steps)

1. Update the old CMSIS folder by the latest version available under
STM32Cube_FW_YY packages.

2. Add STM32xx_HAL_Driver folder containing the LL/HAL source/header files available
within the same package.

3. Create new target project including the required LL/CMSIS drivers.

4. Setup configuration (pre-processor, start up file, MCU selection, Debugger).

5. Update the "system_stm32yyxx.c" bringing it from "Templates_LL" folder from own
target STM32Cube firmware package.

STM32 SPL to STM32Cube LL automatic migration AN5044

28/32 DocID030752 Rev 2

Note: User should ensure to reproduce the system clock configuration already
performed in system_stm32yyxx.c by implementing manually the
SystemClock_Config() API in top of migrated main.c file.

6. Add user source files in the project.

7. Add "legacy.c" file available under the generated $Legacy/Src folder.

3.2.4 User application migration steps using available LL templates

This section describes the automatic migration for the second approach detailed in
Section 2: STM32 SPL to STM32Cube LL manual migration.

The user can opt for using the STM32Cube LL templates as a target project. With this
approach, a template project is ready to use.

There is no need to update CMSIS files or add the Low Layer drivers, as the template
project refer to them by default.

So, the user have to:

• Tool execution (automatic steps)

1. Launch own terminal and point to the tool location.

2. Run the SPL2LL-Converter migration tool.

• User projects customization (manual steps)

3. Organize the migrated source files between the Inc and Src folders.

4. Add the migrated source files in the project.

5. Add "legacy.c" file available under the generated $Legacy/Src folder.

3.2.5 SPL2LL-Converter migration tool limitations

Currently, the SPL2LL-Converter migration tool presents some of limitations that are
dependent to the APIs implementation inside STM32 series and user's coding methods:

• The tool considers the LL APIs equivalence available in the superset devices.

• Multi-called APIs are not supported:

Function_X (arg_0, arg_1, function_y(arg_a, arg_b), arg_2) ;

• Aliases are not supported when they are called as APIs parameters:

#define ALIAS_0 STM32SPL_Literal_0

Function_X(ALIAS_0) ;

It is mandatory to call directly the defined STM32 SPL literals, otherwise the line will not
be taken in consideration.

Function_X(STM32SPL_literal_0);

• Multi literals call as parameter in not supported for some functions:
Function_X(LITERAL_0| LITERAL1 | LITERAL2);
it is mandatory to call only one defined literal by function call, otherwise the line will not
be taken in consideration.
Function_X(LITERAL_0);
Function_X(LITERAL_1);
Function_X(LITERAL_2);

• For cross-series migration, function is considered as specific once its prototype is not
fully compliant between STM32 peripherals versions.

DocID030752 Rev 2 29/32

AN5044 STM32 SPL to STM32Cube LL automatic migration

31

It is highly recommended to download the latest version of the tool for any potential bug
fixes and behaviours enhancements.

3.2.6 GUI application

The automatic migration using the provided migration tool can be done also via a GUI
application.

In the tool package, the user can find the executable for this application under the name
“spl2ll_converter_gui.jar” as shown in Figure 12.

Figure 12. SPL2LL-Converter migration tool graphic interface

This application makes it faster and easier for users who are non-familiar with command
lines to launch the migration process. It is compatible with Windows, Linux and macOS
operating systems.

The interface is described as follows:

1. List of STM32 series/lines supporting STM32 SPL (source)

2. List of STM32 series/lines supporting STM32Cube LL (destination)

3. Source and Destination Projects paths

4. Browsing buttons for paths

5. Migration start button: calling on migration tool execution

6. Logging window: displaying the migration advancement and final status.

7. Reset button: re-initializing all GUI controls and fields

Before launching the application, you need to install Java RunTime Environment for 1.8.0 or
later.

The user can get the latest version from the Java download web page.

STM32 SPL to STM32Cube LL automatic migration AN5044

30/32 DocID030752 Rev 2

To use the application, you need to:

• Run the “spl2ll_converter_gui.jar”.

• Select the STM32 Source and destination series/lines that you need to migrate
between.

• Select the source directory for your initial STM32 SPL-based application.

• Select the destination directory in which you want to find the migrated source files.

• Hit the “Migrate” button and wait for the migration process to be done.

All along the migration process, you can track the advancement on the logging window.
Once finished, the overall status will be as well displayed and a log file is generated.

The figure below shows how the application looks like after a successful migration:

Figure 13. Logging after successful migration

DocID030752 Rev 2 31/32

AN5044 Revision history

31

4 Revision history

Table 6. Document revision history

Date Revision Changes

13-Jul-2017 1 Initial release.

30-Aug-2017 2 Removed Table 1: Applicable products in cover page.

AN5044

32/32 DocID030752 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 STM32 SPL vs. STM32Cube LL architecture overview
	1.1 STM32 SPL
	1.1.1 Overview
	1.1.2 Inclusion Model
	Figure 1. Inclusion Model for STM32 SPL application
	Table 1. STM32 SPL application’s files description

	1.2 STM32Cube Low Layer drivers
	1.2.1 Overview
	Table 2. LL-supported peripherals (continued)

	1.2.2 Inclusion model
	Figure 2. Inclusion model for STM32Cube application
	Table 3. STM32Cube LL application’s files description

	1.2.3 APIs definition levels and classification

	1.3 Summary
	Table 4. STM32 SPL vs. STM32Cube comparison summary
	Figure 3. STM32 SPL vs. STM32Cube LL API classification

	2 STM32 SPL to STM32Cube LL manual migration
	2.1 STM32 SPL and STM32Cube LL APIs equivalence
	2.1.1 NVIC interrupt configuration
	Table 5. Cortex-Mx equivalences between STM32 SPL and CMSIS core driver (continued)

	2.1.2 Peripheral drivers
	2.1.3 Migration cases

	2.2 Project creation
	Figure 4. Analogy of user application before and after manual migration

	3 STM32 SPL to STM32Cube LL automatic migration
	3.1 SPL2LL-Converter migration tool specifications
	3.1.1 Overview and features
	Figure 5. Automatic migration scenarios

	3.1.2 SPL2LL-Converter migration tool block diagram
	Figure 6. Block diagram of the migration tool

	3.2 SPL2LL-Converter migration tool usage guidelines
	3.2.1 Migration tool package architecture
	Figure 7. Migration tool package tree

	3.2.2 SPL2LL-Converter migration tool
	Figure 8. Migration tool startup
	Figure 9. Tool display for a successful migration
	Figure 10. Tool display for an unsuccessful migration
	Figure 11. Analogy of user project before and after automatic migration

	3.2.3 User application migration steps with initial application environment
	3.2.4 User application migration steps using available LL templates
	3.2.5 SPL2LL-Converter migration tool limitations
	3.2.6 GUI application
	Figure 12. SPL2LL-Converter migration tool graphic interface
	Figure 13. Logging after successful migration

	4 Revision history
	Table 6. Document revision history

