
July 2017 DocID030770 Rev 1 1/28

1

UM2242
User manual

Getting started with Microsoft® Azure IoT cloud
 software expansion for STM32Cube

Introduction

This user manual describes the content of the STM32 Microsoft® Azure IoT (Internet of
Things) cloud software expansion package for STM32Cube.

Microsoft® Azure is a cloud computing service created by Microsoft® for building, testing,
deploying, and managing applications and services through a global network of Microsoft®-
managed data centers. It provides software as a service (SaaS), platform as a service
(PaaS), and infrastructure as a service (IaaS) and supports many different programming
languages, tools, and frameworks, including both Microsoft®-specific and third-party
software and systems.

The Microsoft® Azure IoT software expansion package for STM32Cube (X-CUBE-AZURE)
provides application examples that connect STMicroelectronics boards to the Azure IoT
Hub.

X-CUBE-AZURE runs on the B-L475E-IOT01, 32F413HDISCOVERY and
32F769IDISCOVERY boards.

Implementation examples are included for device-to-cloud telemetry reporting and cloud-to-
device messages for sending commands and notifications to the connected devices. The
tracking of message deliveries with acknowledgment receipts is also implemented.

The X-CUBE-AZURE features are as follows:

• Ready to run firmware example using WiFi® and Ethernet connectivity to support quick
evaluation and development of Azure device applications

• Interface to configure the board for connection to the Azure IoT Hub

• Connection to the Azure IoT Hub and various call-back registrations

• Azure IoT Hub, and bidirectional communication examples implemented

• The B-L475E-IOT01 board measures and reports the following values:

– Humidity

– Temperature

– 3D magnetic data

– 3D acceleration

– 3D gyroscope data

– Atmospheric pressure

– Proximity

www.st.com

http://www.st.com

Contents UM2242

2/28 DocID030770 Rev 1

Contents

1 Acronyms . 5

2 Azure IoT Hub . 6

3 Package description . 8

3.1 General description . 8

3.2 Architecture . 9

3.3 Folder structure .11

3.4 B-L475E-IOT01 board sensors . 12

3.5 WiFi® components . 12

3.6 Reset push-button . 13

3.7 User push-button . 13

3.8 User LED . 13

3.9 Real-time clock . 13

3.10 mbedTLS configuration . 14

4 Hardware and software environment setup . 15

5 Interacting with the boards . 17

6 Application examples . 19

6.1 Application description . 19

6.2 Application setup . 19

6.2.1 Azure device creation . 19

6.2.2 Application build and flash . 19

6.2.3 Firmware programming on the STM32 board . 19

6.2.4 Application first launch . 20

6.3 Application runtime . 20

7 Frequently asked questions . 26

8 Revision history . 27

DocID030770 Rev 1 3/28

UM2242 List of tables

3

List of tables

Table 1. List of acronyms . 5
Table 2. Units for the values reported by the sensors of the B-L475E-IOT01 board 12
Table 3. iothub-explorer command lines. 23
Table 4. Document revision history . 27

List of figures UM2242

4/28 DocID030770 Rev 1

List of figures

Figure 1. Azure IoT ecosystem . 6
Figure 2. X-CUBE-AZURE software architecture. 10
Figure 3. Project file structure . 11
Figure 4. Hardware and software setup environment . 15
Figure 5. Terminal setup . 17
Figure 6. Serial port setup . 18
Figure 7. Runtime state flow . 22
Figure 8. Pop-up when the IAR™ IDE version is not compatible with

the one used for X-CUBE-AZURE . 26

DocID030770 Rev 1 5/28

UM2242 Acronyms

27

1 Acronyms

Table 1 presents the definition of acronyms that are relevant for a better understanding of
this document.

Table 1. List of acronyms

Term Definition

API Application programming interface

BSP Board support package

C2D Cloud to device

CA Certification authority

D2C Device to cloud

DHCP Dynamic host configuration protocol

DNS Domain name server

HAL Hardware abstraction layer

IDE Integrated development environment

IoT Internet of things

IP Internet protocol

JSON JavaScript object notation

LED Light-emitting diode

RTC Real-time clock

UART Universal asynchronous receiver/transmitter

Azure IoT Hub UM2242

6/28 DocID030770 Rev 1

2 Azure IoT Hub

This section introduces the Azure IoT Hub service.

The X-CUBE-AZURE package implements Azure IoT device SDKs in C language which
allows the board to securely connect to the Azure IoT Hub service.

A user can connect to the cloud with a smartphone or personal computer and have access
to the information provided by the board at any time and from any location.

Figure 1 presents the Azure IoT ecosystem targeted by the X-CUBE-AZURE package. The
X-CUBE-AZURE package implements the connection of the thing to the Azure IoT Hub
service with the MQTT protocol. The Apps / Browser and other things protocols are only
shown in Figure 1 for information as existing Azure features.

Figure 1. Azure IoT ecosystem

In addition to a rich set of device-to-cloud (D2C) and cloud-to-device (C2D) communication
options, including messaging, file transfers, and request-reply methods, Azure IoT Hub
addresses device-connectivity in the following ways:

• Device twins. Using device twins, users can store, synchronize, and query device
meta-data and state information. Device twins are JSON documents that store device
state information (meta-data, configurations, and conditions). IoT Hub persists a device
twin for each device connected to IoT Hub.

• Per-device authentication and secure connectivity. Users can provision each device
with its own security key to enable it to connect to IoT Hub. The IoT Hub identity
registry stores device identities and keys in a solution. A solution back end can add
individual devices to allow or deny lists to enable complete control over device access.

• Route device-to-cloud messages to Azure services based on declarative rules. IoT Hub
enables users to define message routes based on routing rules to control where the
hub sends device-to-cloud messages. Routing rules do not require users to write any
code, and can take the place of custom post-ingestion message dispatchers.

• Monitoring of device connectivity operations. Users can receive detailed operation logs
about device identity management operations and device connectivity events. This
monitoring capability enables their IoT solution to identify connectivity issues, such as

DocID030770 Rev 1 7/28

UM2242 Azure IoT Hub

27

devices that try to connect with wrong credentials, send messages too frequently, or
reject all cloud-to-device messages.

• Extensive set of device libraries. Azure IoT deviceSDKs are available and supported
for various languages and platforms: C for many Linux® distributions, Windows®, and
real-time operating systems. Azure IoT device SDKs also support managed languages,
such as C#, Java, and JavaScript.

• IoT protocols and extensibility. If the solution cannot use the device libraries, IoT Hub
exposes a public protocol that enables devices to natively use the MQTTv3.1.1, HTTP
1.1, or AMQP 1.0 protocols. The user can also extend IoT Hub to support for custom
protocols by:

– Creating a field gateway with Azure IoT Edge that converts a custom protocol to
one of the three protocols understood by IoT Hub.

– Customizing the Azure IoT protocol gateway, an open source component that runs
in the cloud.

• Scale. Azure IoT Hub scales to millions of simultaneously connected devices and
millions of events per second.

For a complete description of Microsoft® Azure and Azure IoT Hub, refer to the information
available at the overview of the Azure IoT Hub service webpage.

Package description UM2242

8/28 DocID030770 Rev 1

3 Package description

This section details the X-CUBE-AZURE package content and the way to use it.

3.1 General description

The X-CUBE-AZURE package provides an Azure stack middleware for STM32
microcontrollers.

It is ported to the B-L475E-IOT01, 32F413HDISCOVERY and 32F769IDISCOVERY boards
and connects to the Internet through the on-board network interface:

• B-L475E-IOT01 supports WiFi® connectivity with an on-board Inventek module. This
board is equipped with a set of sensors able to report humidity, temperature, 3D-axis
magnetic data, 3D accelerations, 3D gyroscope data, atmospheric pressure, proximity
and gesture detection (X-CUBE-AZURE does not use the gesture detection capability).

• 32F413HDISCOVERY supports WiFi® connectivity with an on board Inventek module.

• 32F769IDISCOVERY natively provides an Ethernet interface.

The package is split into the following components:

• C99 SDK for connecting devices to Microsoft® Azure IoT services

• mbedTLS

• LwIP

• FreeRTOS™

• WiFi® drivers

• Ethernet driver for the 32F769IDISCOVERY board

• Sensor drivers for the B-L475E-IOT01 board

• STM32L4 Series, STM32F4 Series, and STM32F7 Series HAL

• Azure application examples

The software is provided as a zip archive containing source-code.

The following integrated development environments are supported:

• IAR Embedded Workbench® for ARM® (EWARM). IAR™ version 7 starting from 7.80.4
or higher must be used

• Keil® Microcontroller Development Kit (MDK-ARM)

• System Workbench for STM32. Version 1.14.0 or higher must be used

DocID030770 Rev 1 9/28

UM2242 Package description

27

3.2 Architecture

This section describes the software components of the X-CUBE-AZURE package.

The X-CUBE-AZURE software is an expansion for the STM32Cube. Its main features and
characteristics are:

• Fully compliant with STM32Cube architecture

• Expands STM32Cube in order to enable the development of applications accessing
and using the Azure IoT

• Based on the STM32CubeHAL, which is the hardware abstraction layer for STM32
microcontrollers

The software components used by the application software to access and use the Azure IoT
Hub are the following:

• STM32Cube HAL
The HAL driver layer provides a generic multi instance simple set of APIs (application
programming interfaces) to interact with the upper layers (application, libraries and
stacks).

It is composed of generic and extension APIs. It is directly built around a generic
architecture and allows the layers that are built upon, such as the middleware layer, to
implement their functionalities without dependencies on the specific hardware
configuration for a given microcontroller unit (MCU).

This structure improves the library code reusability and guarantees an easy portability
onto other devices.

• Board support package (BSP)
The software package needs to support the peripherals on the STM32 boards apart
from the MCU. This software is included in the board support package (BSP). This is a
limited set of APIs which provides a programming interface for certain board specific
peripherals such as the LED and the user button.

• Azure middleware
It is composed of the Azure IoT Hub client library, a JSON parser, a JSON serializer, an
MQTT client (used as a transport layer by the IoT Hub client library), and various C
utilities used by the client library.

• mbedTLS
The Azure middleware uses a TLS connection which is managed by the mbedTLS
library.

• TCP/IP
The TCP/IP connection can be handled either by the WiFi® module (when a WiFi®
connection is being used) or by the LwIP middleware (when an Ethernet connection is
being used). In the X-CUBE-AZURE package, only the 32F769IDISCOVERY board
can connect via Ethernet.

• FreeRTOS™
It is a real-time operating system required by LwIP for providing a socket-based
interface to the user.

Figure 2 outlines X-CUBE-AZURE software architecture.

Package description UM2242

10/28 DocID030770 Rev 1

Figure 2. X-CUBE-AZURE software architecture

DocID030770 Rev 1 11/28

UM2242 Package description

27

3.3 Folder structure

Figure 3 presents the folder structure of the X-CUBE-AZURE package.

Figure 3. Project file structure

Package description UM2242

12/28 DocID030770 Rev 1

3.4 B-L475E-IOT01 board sensors

The sensors that are present on the board and used by the sample application are:

• Capacitive digital sensor for relative humidity and temperature (HTS221)

• High-performance 3-axis magnetometer (LIS3MDL)

• 3D accelerometer and 3D gyroscope (LSM6DSL)

• 260-1260 hPa absolute digital output barometer (LPS22HB)

• Proximity sensor (VL53L0X)

Example of a published sensor message:

{

 "mac": "<mac address of the device>",

 "temperature": 31.39856,

 "humidity": 29.069721,

 "pressure": 997.830017,

 "proximity": 8190,

 "accX": -13,

 "accY": -14,

 "accZ": 1024,

 "gyrX": 1750,

 "gyrY": -4970,

 "gyrZ": 1470,

 "magX": 170,

 "magY": -180,

 "magZ": 605,

 "ts": "2017-06-07T15:14:22Z"

}

Table 2 presents the units for the values reported by the sensors of the B-L475E-IOT01
board.

3.5 WiFi® components

The WiFi® software is split over Drivers/BSP/Components for the module specific software
and over Projects/<board>/WiFi for I/O operations and for the WiFi® module abstraction.

Table 2. Units for the values reported by the sensors of the B-L475E-IOT01 board

Data Unit

Temperature degree Celsius (°C)

Humidity relative humidity (%)

Pressure hectopascal (hPa)

Proximity millimeter (mm)

Acceleration milli g-force (mgforce)

Angular velocity millidegree per second (mdps)

Magnetic induction milligauss (mG)

DocID030770 Rev 1 13/28

UM2242 Package description

27

3.6 Reset push-button

The reset push-button (black) is used to reset the board at any time. This action makes the
board reboot.

3.7 User push-button

The user push-button (blue) is used in the following cases:

• To configure the WiFi® and Azure security credentials. This can be done from the time
that the board starts up and up to five seconds after that.

• When the board has been initialized to control the way data are published to the Azure
IoT Hub refer to Figure 7

The application configures and manages the user button via the board support package
(BSP) functions.

The BSP functions are in the Drivers\BSP\<board name> directory.

When using the BSP button functions with the BUTTON_USER value, the application does
not take into account the way this button is connected from a hardware standpoint for a
given platform. The mapping is handled by the BSP.

3.8 User LED

The configuration of the user LED that is used by the applications is done via the board
support package (BSP) functions.

The BSP functions are under the Drivers\BSP\<board name> directory.

Using the BSP button functions with the LED_GREEN value, the application does not take
into account the way the LED is mapped for a given platform. The mapping is handled by
the BSP.

3.9 Real-time clock

The STM32 RTC is updated at startup from the www.gandi.net web server.

The user can use the HAL_RTC_GetTime() function to get the time value.

This function can for instance be used to time stamp messages.

Package description UM2242

14/28 DocID030770 Rev 1

3.10 mbedTLS configuration

The mbedTLS middleware support is fully configurable by means of a #include
configuration file.

The name of the configuration file can be overridden by mans of the
MBEDTLS_CONFIG_FILE #define.

The X-CUBE-AZURE package uses file az_mbedtls_config.h for project configuration.

This is implemented by having the following # directives at the beginning of the mbedTLS.c
and mbedTLS.h files:

#if !defined(MBEDTLS_CONFIG_FILE)

#include "mbedtls/config.h"

#else

#include MBEDTLS_CONFIG_FILE

#endif

The configuration file specifies the ciphers to integrate.

DocID030770 Rev 1 15/28

UM2242 Hardware and software environment setup

27

4 Hardware and software environment setup

To set up the hardware and software environment, one of the three supported boards must
be plugged into a personal computer via a USB cable. This connection with the PC allows
the user to:

• Flash the board

• Store the WiFi® and the Azure security credentials

• Interact with the board via a UART console

• Debug

The B-L475E-IOT01 or 32F413HDISCOVERY boards must be connected to a WiFi® access
point while the 32F769IDISCOVERY board must be connected to an Ethernet interface as
illustrated in Figure 4.

Figure 4. Hardware and software setup environment

The prerequisites for running the examples are:

• A WiFi® access point, with a transparent Internet connectivity meaning that neither a
proxy, nor a firewall are blocking the outgoing traffic. It has to run a DHCP server
delivering the IP and DNS configuration to the board.

• A computer for running a device management application, with a transparent Internet
connectivity meaning that neither a proxy, nor a firewall are blocking the outgoing

Hardware and software environment setup UM2242

16/28 DocID030770 Rev 1

traffic. This can for instance be the development PC, a virtual private server or a single-
board computer. It can be connected to the same router as the MCU board.

• An Azure IoT account to create an IoT Hub. Refer to section Before you run the
samples at iot-hub-device-sdk-c-intro - GitHub web page

• An Azure device management application which is required to communicate with the
device.

There are two options which can be downloaded from the above web page.

In this document, we have selected the iothub-explorer tool as the reference for the
present Cube expansion package. It runs on any operating system. It is a node.js
application.

Alternatively, Device Explorer which runs on Windows® (.NET) can be used

• A development PC for building the application, programming through ST-Link, and
running the virtual console.

DocID030770 Rev 1 17/28

UM2242 Interacting with the boards

27

5 Interacting with the boards

A serial terminal is required to:

• Configure the board

• Display locally the received Azure IoT C2D messages

The example in this document is illustrated with the use of Tera Term. Any other similar tool
can be used instead.

When the board is used for the first time, it must be programmed with Azure IoT
identification data.

• Determine the STM32 ST-LINK Virtual COM port used on the PC for the Discovery
board. On a Windows® PC, open the Device Manager

• Open a virtual terminal on the PC and connect it to the above virtual COM port.

A Tera Term initialization script is provided in the package utility directory (refer to Figure 3);
this script sets the correct parameters. To use it, open Tera Term, select Setup and then
Restore setup.

Note: The information provided below in this chapter can be used to configure the UART terminal
as an alternative to using the Tera Term initialization script.

Terminal setup is illustrated in Figure 5, which shows the terminal setup and the New-line
recommended parameters.

The virtual terminal New-line transmit configuration must be set to LineFeed (\n or LF) in
order to allow copy-paste from UNIX type text files. The Local echo option makes copy-
paste visible on the console.

Figure 5. Terminal setup

The serial port must be configured with:

• COM port number

• 115200 baud rate

• 8-bit data

• Parity none

• 1 stop bit

• No flow control

Interacting with the boards UM2242

18/28 DocID030770 Rev 1

Serial port setup is illustrated in Figure 6.

Figure 6. Serial port setup

Once the UART terminal and the serial port are set up, press the board reset button (black).

Follow the indications on the UART terminal to upload WiFi® and Azure data. Those data
remain in Flash and are reused the next time the board boots.

DocID030770 Rev 1 19/28

UM2242 Application examples

27

6 Application examples

6.1 Application description

The AzureXcubeSample application illustrates the various ways for an Azure device to
interact with an Azure IoT Hub.

The application connects to an Azure IoT Hub on basis of the credentials provided by the
user on the console.

6.2 Application setup

The setup of the application requires that the steps described from Section 6.2.1 to
Section 6.2.4 are executed in sequence.

6.2.1 Azure device creation

The two next commands create an Azure device and get its connection string:

• $ iothub-explorer login <your Azure IoT Hub Connection String>

• $ iothub-explorer create <devId> --connection-string

The board MAC address can for instance be used as a device ID. A smart nickname can
also be chosen for convenience.

It is advised to keep a copy of the device connection string at hand since the
AzureXcubeSample application requests it on the console when it is launched for the first
time.

The next command allows to verify that the device twin status can be retrieved:

• $ iothub-explorer get-twin <devId>

6.2.2 Application build and flash

Open the selected toolchain at
STM32CubeExpansion_Cloud_AZURE_Vx.y.z\Projects\<board
name>\Applications\Cloud\Azure\<IDE> and build the project.

Refer to Section 3.1: General description on page 8 for detailed information about the IDE
version requirements.

6.2.3 Firmware programming on the STM32 board

The binary file generated in STM32CubeExpansion_Cloud_AZURE_Vx.y.z\Projects \<board
name>\Applications\Cloud\Azure\<IDE>\Exe can be copied or dragged and dropped to the
USB mass storage location created when the STM32 board is plugged to the PC.

If the host is a Linux® PC, the STM32 device can be found in the /media folder with name
DIS_L4IOT. For example, if the created mass storage location is /media/DIS_L4IOT, then
the command to program the board with a binary file named my_firmware.bin is simply:

cp my_firmware.bin /media/DIS_L4IOT.

Alternatively, the STM32 board can directly be programmed through one of the supported
development toolchains.

Application examples UM2242

20/28 DocID030770 Rev 1

6.2.4 Application first launch

The board must be connected to a PC through USB (ST-LINK USB port).

Open the console through a serial terminal emulator such as Tera Term (refer to Section 3.2:
Architecture on page 9).

On the console:

• For WiFi®-enabled boards, enter the Wifi® SSID, encryption mode and password

• Set the device connection string (refer to Section 6.2.1), excluding enclosing quotes (")

• Set the TLS root CA certificates by copy-pasting the contents of
STM32CubeExpansion_Cloud_AZURE_Vx.y.z\Projects\Common\Azure\
comodo_baltimore.pem. The device uses them to authenticate the remote hosts
through TLS.

Note: The AzureXcubeSample application requires that a concatenation of 2 CA certificates is
provided

1. For the HTTPS server which is used to retrieve the current time and date at boot
time.(the Comodo certificate for the www.gandi.net server)

2. For the IoT Hub server (the Baltimore certificate)

The concatenated string must end with an empty line. This is comodo_baltimore.pem.

After the parameters are configured, it is possible to change them by restarting the board
and pressing the user button (blue button) just after boot.

6.3 Application runtime

This section describes the life-cycle steps of the application that:

• Make a single HTTPS request to retrieve the current time and date, and configure the
RTC

• Connect to the Azure IoT Hub

• Get the status of the device twin

• Update its local properties (DesiredTelemetryInterval) from the desired properties of the
device twin

• Report the reported properties to the device twin (TelemetryInterval and LedStatus)

Note: From this point, the user can get the twin status updates through the

$ iothub-explorer get-twin <devId> command

• Stay idle, pending on local user, or hub-initiated events

DocID030770 Rev 1 21/28

UM2242 Application examples

27

From this point the possible local user actions are:

• Single push on the user button: this action triggers a message publication to the IoT
Hub through a DeviceToCloud (D2C) message.

• Double push on the user button: this action starts or stops message publication loop.
When the loop is running, the messages are published every TelemetryInterval
seconds.

Note: Each message publication is signaled by the user LED blinking quickly for half a
second.

The message contents depends on the board type used:

– B-L475E-IOT01 reports the sensor values and a timestamp

– 32F413HDISCOVERY and 32F769IDISCOVERY only report a timestamp

The implemented hub-initiated events are:

• CloudToDevice (C2D) message
The message is displayed on the board console

• C2D twin update
Used to change the telemetry publication period (that is the DesiredTelemetryInterval
parameter)

• C2D method
Used to call one of the following device methods:

– Reboot: reboots the board

– Hello: displays the message passed as parameter on the board console

• C2D action call
LedToggle can be called to make the user LED state toggle

Figure 7 presents the runtime state flow.

Application examples UM2242

22/28 DocID030770 Rev 1

Figure 7. Runtime state flow

DocID030770 Rev 1 23/28

UM2242 Application examples

27

Table 3 lists the iothub-explorer command lines for the user to trig hub-initiated events, and
see the results. The seven communication interfaces between the device and the cloud are
listed. The commands in the way to call column uses the iothub-explorer node package.

Table 3. iothub-explorer command lines

Communication
interface

Purpose in
application

Way to call, or format Comment

D2C message
Publishes
telemetry
data

monitor-events -l <IoTHubConnectionString> <
devId>

>

{

 "mac": "<mac address of the
device>",

 "temperature": 31.39856,

 "humidity": 29.069721,

 "pressure": 997.830017,

 "proximity": 8190,

 "accX": -13,

 "accY": -14,

 "accZ": 1024,

 "gyrX": 1750,

 "gyrY": -4970,

 "gyrZ": 1470,

 "magX": 170,

 "magY": -180,

 "magZ": 605,

 "ts": "2017-06-07T15:14:22Z"

}

The telemetry messages can
be monitored if the user
activates the publication by
means of the user button on
the board. Refer to Figure 7.

C2D message
Sends Hello
world

send <devId> 'Hello world'

The Azure SDK prints an error
log because a C2D JSON
command syntax is expected
by the message callback
implementation on the device,
while a simple text is sent.

Application examples UM2242

24/28 DocID030770 Rev 1

C2D twin update

Changes the
telemetry
publication
period

update-twin <devId> '{ "properties": { "desired":
{ "DesiredTelemetryInterval": 6 } } }'

The client SDK, iothub-explorer
and the hub assume different
payload formats for the twin-
update:

at connection time, the full
string is received from the hub:
{ "desired": {
"DesiredTelemetryInterval": x }
}

at runtime, when using update-
twin, it contains only {

 "DesiredTelemetryInterval": x }

The callback implementation
on the device is compatible
with both formats.

Still, it calls the JSON parser to
identify the format.

If the Azure SDK logtrace
option was set, an error log
gets printed when the desired
key is not found.

On twin update, the new
TelemetryInterval is
automatically reported through
a D2C twin update.

D2C twin update

Reports the
telemetry
activation
parameter,
and the LED
status

The twin-update is automatically performed by
the application running on the device.

The changes can be retrieved as follows:

get-twin [-r] <devId>

>

{

 "deviceId":"C47F510111A7",

 "properties":{

 "desired":{

 "DesiredTelemetryInterval":6,

 },

 "reported":{

 "TelemetryInterval":6,

 "LedStatusOn":false

 }

 }

}

Updates happen at connection
time, upon C2D twin update,
and upon C2D LedToggle call.

Table 3. iothub-explorer command lines (continued)

Communication
interface

Purpose in
application

Way to call, or format Comment

DocID030770 Rev 1 25/28

UM2242 Application examples

27

C2D method
Reboots,
sends a
message

device-method <devId> Reboot '{ "when":
"now"}'

an device-method <devId> Hello '{ "msg":
"World!" }'

For interoperability reasons, a
valid JSON string must be
passed as parameter to each
device method call, even if the
target function has no
parameter.

The Reboot implementation
does not use any of the passed
parameters.

C2D call

Sends a
LedToggle
message for
interpretation
by the device

send <devId> '{ "Name": "LedToggle",
"Parameters": "" }'

For interoperability reasons,
the Parameters key must be
given a value (any value).

D2C upload to
blob

Unused - Not implemented.

Table 3. iothub-explorer command lines (continued)

Communication
interface

Purpose in
application

Way to call, or format Comment

Frequently asked questions UM2242

26/28 DocID030770 Rev 1

7 Frequently asked questions

Q: Why do I get this pop up (refer to Figure 8) when I open the project with IAR™?

Figure 8. Pop-up when the IAR™ IDE version is not compatible with
the one used for X-CUBE-AZURE

A: It is very likely that the IAR™ IDE version is older than the one used to develop the
package (refer to Section 3.1: General description on page 8), hence the compatibility is not
ensured. In this case, the IAR™ IDE version needs to be updated.

Q: My device does not connect to the WiFi® access point. How shall I proceed?

A: Make sure that another device can connect to the WiFi® access point. If it can, enter the
WiFi® credentials by pressing the user button (blue) up to five seconds after board reset.

Q: The proximity sensor always reports "8190" even if I place an obstacle close to it

A: Make sure that the liner (which is a very thin film placed on the proximity sensor) has
been removed. Its color is orange and it is not very visible.

DocID030770 Rev 1 27/28

UM2242 Revision history

27

8 Revision history

Table 4. Document revision history

Date Revision Changes

20-Jul-2017 1 Initial release.

UM2242

28/28 DocID030770 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Acronyms
	Table 1. List of acronyms

	2 Azure IoT Hub
	Figure 1. Azure IoT ecosystem

	3 Package description
	3.1 General description
	3.2 Architecture
	Figure 2. X-CUBE-AZURE software architecture

	3.3 Folder structure
	Figure 3. Project file structure

	3.4 B-L475E-IOT01 board sensors
	Table 2. Units for the values reported by the sensors of the B-L475E-IOT01 board

	3.5 WiFi® components
	3.6 Reset push-button
	3.7 User push-button
	3.8 User LED
	3.9 Real-time clock
	3.10 mbedTLS configuration

	4 Hardware and software environment setup
	Figure 4. Hardware and software setup environment

	5 Interacting with the boards
	Figure 5. Terminal setup
	Figure 6. Serial port setup

	6 Application examples
	6.1 Application description
	6.2 Application setup
	6.2.1 Azure device creation
	6.2.2 Application build and flash
	6.2.3 Firmware programming on the STM32 board
	6.2.4 Application first launch

	6.3 Application runtime
	Figure 7. Runtime state flow
	Table 3. iothub-explorer command lines

	7 Frequently asked questions
	Figure 8. Pop-up when the IAR™ IDE version is not compatible with the one used for X-CUBE-AZURE

	8 Revision history
	Table 4. Document revision history

