
May 2018 UM2245 Rev 2 1/44

1

UM2245
User manual

Sigfox™ software expansion for STM32Cube

Introduction

This user manual describes the Sigfox™ embedded expansion software implementation on
the CMWX1ZZABZ-091 or CMWX1ZZABZ-078 Murata modules. X-CUBE-SFOX is the
name of the corresponding STM32Cube Expansion Package.

This user manual also explains how to interface with the Sigfox™ API from an application
point of view.

Sigfox™ is a type of wireless telecommunication network designed to allow long-range
communication at very low bit rates and enable the use of long-life battery-operated
sensors. The Sigfox Stack™ library from Sigfox™ manages the channel access and
security protocol that ensures interoperability with the Sigfox™ network.

The Sigfox™ software expansion for CMWX1ZZABZ modules is Sigfox Verified™.

X-CUBE-SFOX main features are:

• Application integration ready

• Easy add-on of the low-power LoRa® solution

• Extremely low CPU load

• No latency requirements

• Small STM32 memory footprint

• Low-power timing services provided

The X-CUBE-SFOX software is based on the STM32Cube HAL drivers (refer to Chapter 3:
X-CUBE-SFOX stack description).

This user manual targets the following tool:

• B-L072-LRAWAN1 STM32 Discovery kit embedding the CMWX1ZZABZ-091 module
from Murata. CMWX1ZZABZ-091 embeds the STM32L072 microcontroller.

www.st.com

http://www.st.com

Contents UM2245

2/44 UM2245 Rev 2

Contents

1 Overview . 7

1.1 Acronyms and abbreviations . 7

1.2 Reference . 7

2 Sigfox™ standard overview . 8

2.1 Overview . 8

2.2 End-device hardware architecture . 8

2.3 Regional radio resource . 8

2.4 Tx/Rx radio time diagram . 9

2.5 Listen before talk (LBT) . 10

3 X-CUBE-SFOX stack description . 11

3.1 Overview .11

3.2 Sigfox™ certification .11

3.3 Features . 12

3.4 Architecture . 12

3.5 Required STM32 peripherals to drive the radio . 13

3.5.1 Radio reset . 13

3.5.2 Radio SPI . 13

3.5.3 RTC . 13

3.5.4 TIMER2 . 14

3.5.5 Interrupt . 14

4 X-CUBE-SFOX middleware programming guidelines 15

4.1 Sigfox™ Core library . 15

4.1.1 Opening the library . 16

4.1.2 Sigfox Addon Verified library . 16

4.1.3 Sending frames/bits . 17

4.1.4 Set standard configuration for FH . 17

4.2 Library Sigfox™ modulation . 19

4.3 Cmac library . 21

4.4 Credentials library . 21

4.5 Utilities . 22

UM2245 Rev 2 3/44

UM2245 Contents

4

4.5.1 Timer server . 22

4.5.2 Low-power manager . 23

4.5.3 Scheduler . 23

4.6 EEPROM driver . 24

4.7 Memory section . 25

5 Application description . 26

5.1 Hardware . 26

5.2 Package description . 26

5.3 AT modem Application . 28

5.3.1 UART interface . 28

5.3.2 Default parameters . 28

5.3.3 AT? to list the available commands . 29

5.3.4 AT$RFS to restore factory settings . 29

5.3.5 AT$ID to get the device ID . 29

5.3.6 AT$PAC to get the device PAC . 29

5.3.7 AT$SB to send a bit status . 29

5.3.8 AT$SF to send the payload in bytes . 30

5.3.9 ATS410 to set AES key . 31

5.3.10 ATS300 to send an out-of-band message once 31

5.3.11 ATS302 to set the radio output power . 31

5.3.12 AT$CW continuous wave . 32

5.3.13 AT$PN PRBS9 continuous Tx wave . 32

5.3.14 AT$TM Sigfox™ test mode . 33

5.3.15 AT$RSSICAL to set and get the RSSI calibration 34

5.3.16 AT$RC to set/get the zones . 34

5.3.17 ATS400 to configure specific variables for standard 35

5.4 Push-button application . 35

5.5 Signature generator . 36

5.6 Static switches . 36

5.6.1 Debug switch . 36

5.6.2 Sensor switch . 36

5.6.3 Disable low-power switch . 36

5.7 Personalization and activation . 37

5.7.1 Personalization . 39

5.7.2 Activation . 40

Contents UM2245

4/44 UM2245 Rev 2

6 System performance . 41

6.1 Memory footprint . 41

6.2 Real-time constraints . 41

6.3 Power consumption . 42

7 Revision history . 43

UM2245 Rev 2 5/44

UM2245 List of tables

5

List of tables

Table 1. List of acronyms and abbreviations . 7
Table 2. Region country list . 8
Table 3. Region configuration RF parameters . 8
Table 4. Timings . 10
Table 5. Application level Sigfox™ APIs. 15
Table 6. Sigfox Addon Verified library . 16
Table 7. Macro channel mapping . 17
Table 8. Cmac primary APIs . 21
Table 9. Credentials primary APIs . 21
Table 10. Timer server APIs . 22
Table 11. Low-power APIs . 23
Table 12. Low-power modes . 23
Table 13. Scheduler APIs . 24
Table 14. EEPROM APIs . 24
Table 15. Memory footprint measured values . 41
Table 16. Document revision history . 43

List of figures UM2245

6/44 UM2245 Rev 2

List of figures

Figure 1. Timing diagram for uplink only . 9
Figure 2. Timing diagram for uplink with downlink . 9
Figure 3. Firmware top-level structure . 12
Figure 4. Dual buffer modulation with STM32 . 20
Figure 5. Memory mapping . 25
Figure 6. B-L072-LRAWAN1 configuration . 26
Figure 7. Package overview. 27
Figure 8. Tera Term serial port setup . 28
Figure 9. Sigfox™ personalization and activation overview. 38

UM2245 Rev 2 7/44

UM2245 Overview

43

1 Overview

The X-CUBE-SFOX STM32Cube Expansion Package runs on STM32 32-bit
microcontrollers based on the Arm®(a) Cortex®-M processor.

1.1 Acronyms and abbreviations

1.2 Reference

1. B-L072Z-LRWAN1 Discovery kit technical documentation such as the Discovery kit for
LoRaWAN™ and LPWAN protocols with STM32L0 data brief (DB3090) available on
the www.st.com web site

2. Sigfox™ Radio Signal Analyzer User guide available on https://resources.sigfox.com

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. List of acronyms and abbreviations

Term Definition

DC Duty cycle

FH Frequency hopping

LBT Listen before talk

NA Not applicable

RC Regional configuration

RSSI Received signal strength indication

Rx Reception

SDR Software defined radio

Tx Transmission

Sigfox™ standard overview UM2245

8/44 UM2245 Rev 2

2 Sigfox™ standard overview

2.1 Overview

This section provides a general overview of Sigfox™ focusing in particular Sigfox™ end-
device which is the core subject of this user manual.

Sigfox™ is a wireless telecommunication Network operator designed to allow long range
communication at a low bit-rate enabling long-life battery operated sensors. The Sigfox™
software expansion includes the Sigfox Stack™ library delivered by Sigfox™. The Sigfox™
software expansion named X-CUBE-SFOX loaded on B-L072Z-LRWAN1 is Sigfox
Verified™.

Sigfox™ limits the use of its network to 144 messages per day and per device. Each
message can be from 1 bit up to 12 bytes.

2.2 End-device hardware architecture

The end-device is made of an RF transceiver (also known as radio) and a host STM32L072.
The RF transceiver is composed of a modem and an RF up-converter. The built-in
modulator does not support Sigfox™ BPSK modulation; therefore it is implemented inside
the STM32L072.

The STM32L072 implements the radio driver, the Sigfox™ modulator, the Sigfox Stack™
libraries and the application layer.

2.3 Regional radio resource

The European, North American and Asian markets have different spectrum allocations and
regulatory requirements. Sigfox™ has split requirements in Region Configurations (RC) as
listed in Table 2.

Table 3 provides an overview of the regulatory requirements for the region configurations.

Table 2. Region country list

Region configuration Country

RC1 Europe countries, Oman, Lebanon, South Africa, Kenya

RC2 USA, Canada, Mexico

RC3c Japan

RC4 Brazil, Colombia, Peru, New–Zealand, Australia, and Singapore

Table 3. Region configuration RF parameters

Parameters RC1 RC2 RC3c RC4

Frequency band downlink (MHz) 869.525 905.2 922.2 922.3

Frequency band uplink (MHz) 868.130 902.2 923.2 920,8

Uplink modulation DBPSK DBPSK DBPSK DBPSK

UM2245 Rev 2 9/44

UM2245 Sigfox™ standard overview

43

2.4 Tx/Rx radio time diagram

The end-device transmits data to the network in an asynchronous manner. This is due to the
fact that transmission data is only sent per device-report event. Figure 1 and Figure 2 depict
the timing sequences with and without a downlink.

Note: The presence of a downlink only depends on device configuration.

The three transmissions Tx1, Tx2 and Tx3 contain the same payload information. These
consecutive transmissions only maximize the probability of a correct reception by the
network. When the device observes good link quality to the network, it may decide to send
only Tx1 to save power consumption only if downlink frame is requested. The API to select
preferred scheme is described in Section 4.1.3: Sending frames/bits on page 17.

Figure 1. Timing diagram for uplink only

Figure 2. Timing diagram for uplink with downlink

Downlink modulation GFSK GFSK GFSK GFSK

Uplink data-rate 100 600 100 600

Downlink data-rate 600 600 600 600

Max output power (dBm) 14 22 13 22

Medium access Duty cycle 1%

Frequency
hopping

Max On time
400 ms / 20 s

Carrier sense

Frequency
hopping

Max On time
400 ms / 20 s

CS center frequency (MHz) NA NA 923.2 NA

CS bandwidth (kHz) NA NA 200 NA

Table 3. Region configuration RF parameters (continued)

Parameters RC1 RC2 RC3c RC4

Sigfox™ standard overview UM2245

10/44 UM2245 Rev 2

The timings shown in Figure 1 and Figure 2 are given in Table 4 for the various regional
configurations.

The Tx periods depend on the number of bytes sent and on the RC zone:

• It takes 10 ms to send a bit in RC1 and RC3c.

• It takes 1.66 ms to send a bit in RC2 and RC4.

A message can be 26-byte long at the most (including sync word, header, and payload
data). Therefore, for RC1, a Tx period can be maximum 26 x 8 x 10 ms = 2.08 s.

2.5 Listen before talk (LBT)

In RC3c, LBT is mandatory before any transmission. The device must listen and check if the
channel is free. The channel is considered as free if the power within a 200 kHz bandwidth
stays below -80 dBm for 5 ms.

When the channel is free, the device starts a transmission. The transmission is not started
otherwise.

Table 4. Timings

StartTx delay Interframe Tx/TRx Rx delay Rx timeout
OOB_ACK

delay
End

timeout

RC1 0 s 500 ms 20 s 25 s 1.4 s NA

RC2 0 s 500 ms 20 s 25 s 1.4 s 10 s

RC3c 100 ms max (LBT) 500 ms + LBT 19 s 34 s 1.4 s NA

RC4 0 s 500 ms 20 s 25 s 1.4 s 10 s

UM2245 Rev 2 11/44

UM2245 X-CUBE-SFOX stack description

43

3 X-CUBE-SFOX stack description

3.1 Overview

The X-CUBE-SFOX package contains:

• The Sigfox™ middleware

• The board support package composed of:

– B-L072-LRAWAN1 Discovery board drivers

– CMWX1ZZABZ Murata module drivers (MLM32L07X01)

– sx1276 radio drivers

– Sensor ST drivers

• The CMSIS and STM32L0xx HAL drivers

• Two Sigfox™ application examples

The Sigfox™ middleware for STM32 microcontrollers is split into several modules:

• Sigfox™ Core library

• Sigfox™ Addon Library (for Sigfox™ testing purpose)

• Sigfox™ Cmac Library, which manages frame security

• Sigfox™ utilities module (such as timer server, power management and scheduler)

The application layer, which hosts the two examples Sgfx_ModemAT and
SGfx_push_button, includes a specific common directory for the CMWX1ZZABZ Murata
module with:

• The Sigfox™ modulation library for the sx1276 radio

• The Credentials library, which manages Sigfox™ credentials for the module

The Sigfox™ Core library implements a Sigfox™ medium access controller from Sigfox™. It
interfaces with the Cmac library encrypting uplink payload and verifying downlink payload.
The Cmac library interfaces with the Credentials library holding the cryptographic functions.
It also interfaces with the lower layer Sigfox™ modem designed to drive the sx1276 radio.
The Sigfox™ library, cryptographic library and modem library modules are provided as
compiled objects.

Figure 7 on page 27 provides an overview of the structure of the project files.

3.2 Sigfox™ certification

The Sigfox Addon Verified library, as well as the RF_API and MCU_API, have been verified
by Sigfox™ Test Lab. Nevertheless, the end product based on the CMWX1ZZABZ module
must pass the Sigfox Ready™ certification before its commercialization.

X-CUBE-SFOX stack description UM2245

12/44 UM2245 Rev 2

3.3 Features

The X-CUBE-SFOX package main features are:

• Sigfox Verified™

• RC1, RC2, RC3c, and RC4 support

• Low-power optimization

• Low real-time constraints even during modulation

• Support of the CMWX1ZZABZ-091 module

3.4 Architecture

Figure 3 depicts the top-level firmware structure of the X-CUBE-SFOX application.

Figure 3. Firmware top-level structure

The HAL uses cube API to drive the STM32L072 hardware required by the application.

The RTC provides a centralized time unit that continues to run even in the low-power Stop
mode. The RTC alarm is used to wake up the system at specific times managed by the timer
server.

UM2245 Rev 2 13/44

UM2245 X-CUBE-SFOX stack description

43

The radio driver uses the SPI and the GPIO HW (as shown in Figure 3) to control the radio,
it also provides a set of API to be used by higher level software. Only the low level radio
driver is used in X-CUBE-SFOX. The radio driver is split in two parts:

• The \BSP\Components\sx1276\sx1276.c file contains all functions which are radio
component dependent only.

• The \BSP\MLM32L07X01\mlm32l07x01.c file contain all the radio module dependent
functions.

Note: The sx1276.c and the mlm32l07x01.c files are the same as in the I-CUBE-LRWAN package.

The Common\cwmx1zzabz\Radio_Sigfox_Driver\st-lowlevel.c file implements the interface
between library Sigfox™ modulation SgfxSTModemSx1276V123_CM0_IDE_O3.lib and the
sx1276 radio driver. It also interfaces interrupt to the handler function.

mcu_api.c interfaces with non-volatile memory to save data in EEPROM, and implements
the timer management and energy-efficient wait function.

The Sigfox™ modulation library is called by rf_api.c. It starts and stops the radio using the
proper Tx and Rx configuration. It implements the modulation using the double buffer DMA
to relax timing constraints on the modulation. This library is radio dependent. More
information is provided in Section 4.2: Library Sigfox™ modulation on page 19.

The Sigfox™ Core library embeds the medium access controller (MAC). More information is
provided in Section 4.1: Sigfox™ Core library on page 15.

The application is built around an infinite loop including a scheduler. The scheduler process
tasks and events. When nothing remains to be done, the scheduler transitions to idle state
and calls the low-power manager.

A typical application can be for instance:

• an AT layer to interface with external Host (refer to Section 3.4: Architecture)

• any application reading and sending sensor data upon an action (refer to Section 5.4:
Push-button application on page 35)

3.5 Required STM32 peripherals to drive the radio

3.5.1 Radio reset

One MCU GPIO f is used to reset the radio. A reset of the radio is performed before any
radio activity.

3.5.2 Radio SPI

The sx1276 radio registers are accessed through the SPI bus at 8 Mbps.

Radio NSS is controlled in two ways: during Tx modulation periods, the NSS pin is set as an
alternate function and mapped on Timer2 output compare; the rest of the time, it is set by
software through a GPIO.

3.5.3 RTC

The RTC calendar is used as 32-bit counter running in all power modes from the 32 kHz
external oscillator. By default, it is programed to provide 1024 ticks (sub-seconds) per
second. It is programed once at the initialization of the hardware when the STM32L072

X-CUBE-SFOX stack description UM2245

14/44 UM2245 Rev 2

starts for the first time. Its output is limited to a 32-bit timer which corresponds to about a
48-day period.

Caution: When changing the tick duration, the user shall keep it below 1ms.

3.5.4 TIMER2

It is used during the modulation (Tx mode). It is used as NSS source and triggers the DMA
to transfer data to the SPI peripheral. This ensures phase synchronization between the SPI
NSS state and SPI data, and allows the Arm® core to enter the Sleep mode while
modulation data is sent to the radio.

3.5.5 Interrupt

In the Tx mode, the DMA interrupt has the highest priority. All other interrupts must be lower-
level interrupts to ensure proper Sigfox™ transmit mask.

Note: In the Tx mode, no interrupt line is needed.

In the Rx mode, two radio interrupt lines are dedicated to receive the interrupts from the
radio.

• DIO0 is used to signal that the LoRa® radio has successfully received a radio packet
(RxDone)

• DIO4 is used to signal that the radio has successfully detected a synchronization, and
therefore that the STM32 can read RSSI.

The priority levels are defined in file hw_conf.h.

UM2245 Rev 2 15/44

UM2245 X-CUBE-SFOX middleware programming guidelines

43

4 X-CUBE-SFOX middleware programming guidelines

4.1 Sigfox™ Core library

Embedded applications using the Sigfox™ Core library call SIGFOX_APIs to manage
communication. The content of SIGFOX_APIs is described in Table 5.

Table 5. Application level Sigfox™ APIs

Function Description

sfx_error_t SIGFOX_API_get_device_id
(sfx_u8 *dev_id);

Copies the ID of the device to the pointer given in
parameter.

The ID is 4-byte long and in binary format.

sfx_error_t SIGFOX_API_get_initial_pac
(sfx_u8 *initial_pac);

Gets the value of the PAC stored in the device. This
value is used when the device is registered for the first
time on the backend.

The PAC is 8-byte long.

sfx_error_t SIGFOX_API_open
(sfx_rc_t *rc);

Initializes the library. It saves the input parameters once
(cannot be changed until SIGFOX_API_close() is
called)

– rc: pointer on the radio configuration zone. It is
mandatory to use already existing defined RCs.

sfx_error_t SIGFOX_API_close
(void);

Closes the library and stops the RF.

sfx_error_t SIGFOX_API_send_frame
(sfx_u8 *customer_data, sfx_u8
customer_data_length,
sfx_u8 *customer_response, sfx_u8
tx_repeat,
sfx_bool initiate_downlink_flag);

Sends a standard Sigfox™ frame with customer
payload.

– customer_data: payload cannot exceed 12 bytes.

– customer_data_length: length in bytes.

– customer_response: received response.

– tx_repeat: when 0, sends one Tx, when 1, sends
three Tx.

– initiate_downlink_flag: if set, the frame sent is
followed by a receive downlink frame and an out-of-
band Tx frame (voltage, temperature and RSSI).

X-CUBE-SFOX middleware programming guidelines UM2245

16/44 UM2245 Rev 2

Secondary APIs are described in sigfox_api.h. The library can be found in directory
Middlewares\Third_Party\SigfoxLib.

4.1.1 Opening the library

ST_SIGFOX_API_open must be called to initialize the library before any other operation is
performed.

This API requires the RC argument number representing the radio configuration zone. Refer
to Section 2.3: Regional radio resource on page 8 for details.

For radio control zones 2 and 4, FCC requires frequency hopping so the transmission
frequency won't be fixed. Refer to Section 4.1.4: Set standard configuration for FH for the
mapping of the macro channels.

4.1.2 Sigfox Addon Verified library

This library is used to test the device for Sigfox Verified™ certification. Ultimately, this library
can be removed from the build once certified. The content of the Sigfox Addon Verified
library is described in Table 6.

This library is located in Middlewares\Third_Party\Sgfx\SigfoxLibTest\.

sfx_error_t SIGFOX_API_send_bit
(sfx_bool bit_value, sfx_u8
*customer_response,
sfx_u8 tx_repeat, sfx_bool
initiate_downlink_flag);

Sends a standard Sigfox™ frame with null customer
payload. This frame is the shortest frame that Sigfox™
library can generate.

– bit_value: bit sent.

– customer_response: received response.

– tx_repeat: when 0, sends one Tx, when 1, sends
three Tx.

– initiate_downlink_flag: if set, the frame sent is
followed by a receive downlink frame and an out-of-
band Tx frame (voltage, temperature and RSSI).

sfx_error_t SIGFOX_API_set_std_config
(sfx_u32 config_words[3], sfx_bool
timer_enable);

Configures specific variables for standard.

Parameters have different meanings whether in FH or
LBT mode.

Note: this function has no influence in DC.
See Section 5.3.17: ATS400 to configure specific
variables for standard on page 35 for details.

Table 5. Application level Sigfox™ APIs (continued)

Function Description

Table 6. Sigfox Addon Verified library

Function Description

sfx_error_t
ADDON_SIGFOX_VERIFIED_API_test_mode(sfx_rc
_enum_t rc_enum, sfx_test_mode_t
test_mode);

Executes the test modes needed for the Sigfox
Verified™ certification:

– rc_enum: rc at which the test mode is run.

– test_mode: test mode to run.

UM2245 Rev 2 17/44

UM2245 X-CUBE-SFOX middleware programming guidelines

43

4.1.3 Sending frames/bits

ST_SIGFOX_API_send_frame is the main Sigfox™ library function. This blocking function
handles message exchange between the end node and the base stations. An important
parameter of this function is the initiate_downlink_flag which selects different transmission
behaviors:

• When the initiate_downlink_flag is 0, the library requests only uplink frame. The sent
frame is transmitted once if tx_repeat equal to 0, or three times if tx_repeat is different
from 0 with a 500 ms pause.(refer to Figure 1 on page 9).The transmit payload can be
maximum 12-byte long.

• When the initiate_downlink_flag is 1, the frame to be sent is transmitted three times
with a 500 ms pause. A 25 s Rx window then opens 20 s after the end of the first
repetition (Figure 2 on page 9 illustrates such a sequence).

If the reception is successful, the received 8-byte downlink frame is stored in the buffer
location indicated by the customer_response buffer.

4.1.4 Set standard configuration for FH

The FCC allows the transmitters to choose certain macro channels to implement a
frequency hopping pattern authorized by the standard. The channel map is specified in the
first argument of SIGFOX_API_set_std_config, which consists of an array of three 32-bit
configuration words.

A macro-channel consists of 6 micro channels centered about the center frequency of the
macro channel and separated by 25 kHz. For example, in the 902.2 MHz macro channel,
the 6 micro channels are 902.1375 MHz, 902.1625 MHz, 902.1875 MHz, 902.2125 MHz,
902.2375 MHz, and 902.2625 MHz.

A typical Sigfox™ frame lasts between 200 ms and 350 ms at 600 bps, and FCC mandates
a max dwell time of 400 ms. A transmitter cannot return to a given channel before 20 s.
Therefore, at least 20 / 0.4 = 50 channels must be used for continuous transmission.

Actually, a device only transmits a few frames per day (144 messages maximum). Enabling
one macro channel only and inserting 10-s delays between 2 groups of 3 repeated frames
(1 frame per micro channel means 6 micro channels) pass the regulation limits.

Each bit of the config_words[0,1,2] array represents a macro channel according to the
mapping described in Table 7.

Table 7. Macro channel mapping

 Bit
config_words[0]

Frequency mapping
(MHz)

config_words[1]
Frequency mapping

(MHz)

config_words[2]
Frequency mapping

(MHz)

0 902.2 911.8 921.4

1 902.5 912.1 921.7

2 902.8 912.4 922

3 903.1 912.7 922.3

4 903.4 913 922.6

5 903.7 913.3 922.9

6 904 913.6 923.2

X-CUBE-SFOX middleware programming guidelines UM2245

18/44 UM2245 Rev 2

A macro channel is only enabled when the corresponding config_words[] bit is set to 1. For
example, bit 0 of config word[0] corresponds to channel 1 while bit 30 of config_word[1]
corresponds to channel 63. At least nine macro channels must be enabled to meet the FCC
specifications.

Long message configuration example:

• config_words[0] = [0x0000 01FF]

• config_words[1] = [0x0000 0000]

• config_words[2] = [0x0000 0000]

7 904.3 913.9 923.5

8 904.6 914.2 923.8

9 904.9 914.5 924.1

10 905.2 914.8 924.4

11 905.5 915.1 924.7

12 905.8 915.4 925

13 906.1 915.7 925.3

14 906.4 916 925.6

15 906.7 916.3 925.9

16 907 916.6 926.2

17 907.3 916.9 926.5

18 907.6 917.2 926.8

19 907.9 917.5 927.1

20 908.2 917.8 927.4

21 908.5 918.1 927.7

22 908.8 918.4 928

23 909.1 918.7 928.3

24 909.4 919 928.6

25 909.7 919.3 928.9

26 910 919.6 929.2

27 910.3 919.9 929.5

28 910.6 920.2 929.8

29 910.9 920.5 930.1

30 911.2 920.8 930.4

31 911.5 921.1 930.7

Table 7. Macro channel mapping (continued)

 Bit
config_words[0]

Frequency mapping
(MHz)

config_words[1]
Frequency mapping

(MHz)

config_words[2]
Frequency mapping

(MHz)

UM2245 Rev 2 19/44

UM2245 X-CUBE-SFOX middleware programming guidelines

43

In this example, channels 1 to 9 are enabled with frequencies ranging from 902.2 MHz to
904.6 MHz.

By default the X-CUBE-SFOX sets one macro channel with timer_enable set to 1. Macro
channel 1 in RC2 (operational frequency is 902.2 MHz) and macro channel 63 in RC4
(operational frequency is 920.8 MHz). This is the short message configuration operational
for Sigfox™ (see defined value RCx_SM_CONFIG in sigfox_api.h).

A delay (timer_enable) is implemented to avoid one micro channel to be re used with an
interval lower than 20 s. When using one macro channel only (6 micro channels) performing
3 repetitions, this delay corresponds to 10 s. When using two macro channels (12 micro
channels) the delay automatically becomes 5 s.

For certification test purposes, timer_enable may be set to 0, but shall be set to 1 otherwise.
The default settings can nevertheless be modified using the ATS400 command (refer to
Section 5.3.17: ATS400 to configure specific variables for standard on page 35) to speed up
the certification process.

4.2 Library Sigfox™ modulation

The library is used to configure the radio in the transmit or receive mode. It also provides the
interface to the STM32 hardware such as time, interrupts and the sx1276 radio.

This library is radio specific. It can therefore only be used with sx1276 Semtech Radio.

The DMA is used to let the real time modulation run with minimum real time constraint.
Indeed, a bit in RC1 lasts 10 ms and a bit in RC2 and RC4 lasts 1.66 ms. The modulator
needs to send around 800 samples through to the radio to respect the Sigfox™ spectrum
specification and claim for certification. Therefore, the worst case requirement in RC2 is
2 μs per sample. To decrease real time constraints, the STM32L0 prepares bit N+1 (write
samples in memory) while the DMA sends samples for bit N to the SPI peripheral.

By using a double buffer technique, bit N+1 can be prepared in memory page (N+1)%2
while bit N is being sent from memory page (N)%2, and so forth. This is illustrated in
Figure 4.

X-CUBE-SFOX middleware programming guidelines UM2245

20/44 UM2245 Rev 2

Figure 4. Dual buffer modulation with STM32

The Trun duration is approximately 430 μs. Each bit preparation can be delayed by Tsleep
in the worst case. During the Tsleep duration, the STM32 is in the Sleep mode and the Arm®
clock is switched off.

Timer 2 is used to:

• Trigger the DMA transfer from the memory to the SPI data register

• Generate the NSS from output compare (OC)

In summary, the microcontroller is only active during 430 μs for each bit sent. It can sleep or
serve other routines the rest of the time.

The modulation library is located in directory Projects\B-L072Z-
LRWAN1\Applications\Sgfx\Common\cwmx1zzabz\Radio_Sigfox_Driver\.

UM2245 Rev 2 21/44

UM2245 X-CUBE-SFOX middleware programming guidelines

43

4.3 Cmac library

The Cmac library encrypts uplink payloads and authenticates downlink payloads.

Note 1: This library interfaces the ‘se_nvm’ functions to store/retrieve
SFX_SE_NVMEM_BLOCK_SIZE bytes from the non-volatile memory.

Note 2: “se_api.h” is the interface to the Sigfox™ secure element.The secure element can be either
a physical secure element, or emulated by firmware with the Cmac library and the
Credentials library.

The Cmac library is located in directory \Middlewares\Third_Party\Sgfx\Crypto.

4.4 Credentials library

The Credentials library can access the keys, the PAC and the IDs. It can also encrypt data
with the Sigfox™ key.

Table 8. Cmac primary APIs

Function Description

sfx_u8 SE_API_get_device_id
(sfx_u8 dev_id[ID_LENGTH]);

This function copies the device ID in dev_id.

sfx_u8 SE_API_get_initial_pac
(sfx_u8 *initial_pac);

Get the initial PAC.

sfx_u8 SE_API_secure_uplink_message(
sfx_u8 *customer_data,
sfx_u8 customer_data_length,
sfx_bool initiate_downlink_frame,
sfx_se_frame_type_t frame_type,
sfx_bool *send_rcsync,
sfx_u8 *frame_ptr,
sfx_u8 *frame_length);

Generation of an uplink frame bitstream.

sfx_u8 SE_API_verify_downlink_message
(sfx_u8 *frame_ptr, sfx_bool *valid);

Authentication (and payload decryption) of a received
message.

Table 9. Credentials primary APIs

Function Description

void CREDENTIALS_get_dev_id(uint8_t*
dev_id);

Gets the device ID.

void CREDENTIALS_get_initial_pac
(uint8_t* pac);

Gets the device initial PAC.

sfx_bool
CREDENTIALS_get_payload_encryption_fl
ag(void);

Gets the encryption flag. Sets to false by default.

sfx_error_t
CREDENTIALS_aes_128_cbc_encrypt(uint8
_t* encrypted_data, uint8_t*
data_to_encrypt, uint8_t block_len);

Encrypts data with the secret key. The secret key can be set to
CMAC_KEY_PRIVATE or CMAC_KEY_PUBLIC (refer to
Section 5.3.9: ATS410 to set AES key on page 31).

X-CUBE-SFOX middleware programming guidelines UM2245

22/44 UM2245 Rev 2

The library is specific to the CMWX1ZZABZ. For other targets, the library can be replaced
by sgfx_credentials_template.c and aes_template.c, and customized based on other
specific hardware.

It is located in
Projects\B-L072Z-LRWAN1\Applications\Sgfx\Common\cwmx1zzabz\Credentials_libs.

4.5 Utilities

Utilities is located in directory Middlewares\Third_Party\Sgfx\Utilities.

The main APIs in Utilities are described in:

• Section 4.5.1: Timer server

• Section 4.5.2: Low-power manager

• Section 4.5.3: Scheduler

Secondary APIs and additional information are provided in the header files related to the
drivers.

4.5.1 Timer server

A timer server is provided so that the user can request timed tasks to be executed. As the
hardware timer is based on the RTC, the time is always counted, even in the low-power
modes.

The timer server provides a reliable clock for the user and the stack. The user can request
as many timers as the application requires. Care must be taken that the timer callback
duration is less than 1 ms.

Four main APIs are provided as described in Table 10.

Table 10. Timer server APIs

Function Description

void TimerInit(TimerEvent_t *obj,
void (*callback)(void));

Initializes the timer and associates a callback function
executed when timer elapses.

void TimerSetValue
(TimerEvent_t *obj, uint32_t value);

Sets the timer with a timeout value in milliseconds.

void TimerStart(TimerEvent_t *obj); Starts the timer.

void TimerStop(TimerEvent_t *obj); Stops the timer.

UM2245 Rev 2 23/44

UM2245 X-CUBE-SFOX middleware programming guidelines

43

4.5.2 Low-power manager

The APIs described in Table 11 allow to manage the low-power mode of the STM32L072
core.

The low-power mode by default is the Off mode. The Off mode on STM32L0 is Standby.

If at least one process disabled the Stop mode, and low-power is entered (by calling
LPM_EnterLowPower), the Sleep mode is entered next.

If at least one process disabled the Off mode, but no process disabled the Stop mode, when
low-power is entered (by calling LPM_EnterLowPower), the Stop mode is entered next.

If no process disabled the Off mode and no process disabled the Stop mode, when low-
power is entered (by calling LPM_EnterLowPower), the Off mode is entered next (the Off
mode is the Standby mode on STM32L0).

As an example, during a transmission, the DMA transfers data from the memory to the SPI
data register. Since the DMA needs the system clock to run, the system shall enter neither
Stop mode nor Standby mode; Stop mode is therefore disabled using the
LPM_SetStopMode(LPM_LIB_Id, LPM_Disable) function.

The user is free to add his own IDs in the in LPM_Id_t structure depending on his system
requirements (LPM_Id_t is defined in
\Projects\B-L072Z-LRWAN1\Applications\Sgfx\Sgfx_ModemAT\inc\utilities_conf.h).

4.5.3 Scheduler

The scheduler provides a robust and easy framework to execute tasks in the background
and enter low power mode when there is no more activity. It implements mechanism to
prevent race conditions.

In addition, it provides a major feature (Wait Event) for easily saving MIPS and power in any
application that implements the "run to completion" command.

Table 11. Low-power APIs

Function Description

void LPM_SetStopMode(LPM_Id_t id,
LPM_SetMode_t mode)

Used to set the Stop mode:

– id: process ID

– mode requested LPM_Enable or LPM_Disable

void LPM_SetOffMode(LPM_Id_t id,
LPM_SetMode_t mode)

id: process ID

mode requested LPM_Enable or LPM_Disable

void LPM_EnterLowPower(void); Cortex®-M deep-sleep management

Table 12. Low-power modes

Low-power mode LPM_SetStopMode LPM_SetOffMode

Low-power Sleep Disable X(1)

1. Not considered.

Low-power Stop Enable Disable

Low-power Off (standby) Enable Enable

X-CUBE-SFOX middleware programming guidelines UM2245

24/44 UM2245 Rev 2

The utilities_conf.h located at
\Projects\B-L072Z-LRWAN1\Applications\Sgfx\Sgfx_ModemAT\inc\ is used to configure the
task and event Ids. The ones already listed must not be removed.

The APIs described in Table 13allow to manage the low-power mode of the STM32L072
core.

4.6 EEPROM driver

The EEPROM data are placed in variable E2pData, the structure member of which can be
freely defined in file hw_eeprom_conf.h. This configuration file also contains the factory
settings.

The EEPROM APIs are described in Table 14.

Table 13. Scheduler APIs

Function Description

void SCH_Run(void)
Requests the scheduler to execute all pending tasks.
When no task are pending, calls SCH_Idle();

void SCH_Idle(void)
Idle task. It must be implemented in the main. This is
where the low power handler must be called (within
critical section).

void SCH_RegTask
(uint32_t task_id,
void (*task)(void));

Registers a task in the scheduler to be executed when
task_id is set.

– task_id: the ID of the task. It must be lower than 32.

void SCH_SetTask
(uint32_t task_id);

Requests task task_id to be executed.

void SCH_WaitEvt
(uint32_t evt_id);

Waits for a specific event to be set. The scheduler
loops until the event is set.

Note: A task may be executed while waiting for an
event to be set.

Note: when called recursively, the scheduler waits for
the last event requested to be set even though one of
the already requested event has been set.

– evt_id: the ID of the task. It must be lower than 32.

void SCH_SetEvt
(uint32_t evt_id);

Sets an event that is a waited with SCH_WaitEvt().

void SCH_ClrEvt
(uint32_t evt_id);

Clears an event from the event wait list
SCH_WaitEvt().

Table 14. EEPROM APIs

Function Description

HW_EEPROM_WRITE(VAR, Data)

Writes a data in EEPROM.

– For instance:
HW_EEPROM_WRITE(E2pData.TxPower, 14);

UM2245 Rev 2 25/44

UM2245 X-CUBE-SFOX middleware programming guidelines

43

4.7 Memory section

The memory maps are defined in the scatter files.

The code is placed at 0x0800 0000. The sigfox_data is placed at 0x0801 7000. As well
EEPROM embeded in the STM32L0 is used to store data that must be retained even if
power supply is lost. EEPROM is based at 0x0808 0000.

The memory mapping is depicted in Figure 5.

Figure 5. Memory mapping

The scatter files can be adapted to the application.

void HW_EEPROM_Init(void);
DEFAULT_FACTORY_SETTINGS is written in
E2pData when EEPROM is empty.

void HW_EEPROM_RestoreFs(void);
DEFAULT_FACTORY_SETTINGS is written in
E2pData whenever called.

Table 14. EEPROM APIs (continued)

Function Description

Application description UM2245

26/44 UM2245 Rev 2

5 Application description

5.1 Hardware

The applications are based on a B-L072-LRAWAN1 discovery board platform. The
Discovery kit (B-L072Z-LRWAN1) is presented in Figure 6. It is an RF Discovery board
featuring the CMWX1ZZABZ-091 LoRa® module from Murata. This module incorporates the
SX1276 low-power transceiver which features a LoRa® long-range modem. This module
supports high-performance and OOK/FSK modulations. The transceiver is controlled by an
STM32L072CZY6 microcontroller embedded in the module. More information is available in
[1].

Figure 6. B-L072-LRAWAN1 configuration

The following hardware setting is required:

• Solder bridge SB13 must be closed.

• For RevC/D discovery boards, JP9 must have pins 1 and 2 connected (TCXO
controlled by MCU).

• Solder bridge SB26 must be closed.

5.2 Package description

When the user unzips the X-CUBE-SFOX package, the internal package structure is as
shown in Figure 7.

UM2245 Rev 2 27/44

UM2245 Application description

43

Figure 7. Package overview

The X-CUBE-SFOX package contains three applications:

• Sgfx_ModemAT

• Sgfx_push_button

• SignatureGenerator

For the ModemAT and PushButton applications, three toolchains are available:

• MDK-ARM

• IAR™

• SW4STM32.

The SignatureGenerator application is provided in binary format and can be directly
uploaded into the microcontroller.

Application description UM2245

28/44 UM2245 Rev 2

5.3 AT modem Application

The purpose of this application is to implement a Sigfox™ modem controlled though AT
command interface over UART by an external host. The external host can be a host-
microcontroller embedding the application and the AT driver or simply a computer executing
a terminal. The Sgfx_ModemAT application implements the Sigfox Stack™ driving the built-
in sx1276 Semtech radio. The stack is controlled through AT command interface over
UART. The modem is always in Stop mode unless it processes an AT command from the
external host.

In order to launch the Sgfx_ModemAT project, the user must go to the \Projects\ B-L072Z-
LRWAN1\Applications\Sgfx\Sgfx_ModemAT folder and choose his favorite toolchain folder.

5.3.1 UART interface

In this example the LPUART is used at 9600 baud. The device can receive a character
while in stop mode consuming 1.1 μA ready to receive.

Tera Term is used as terminal to control the Sigfox™ modem. The following settings are
used:

Figure 8. Tera Term serial port setup

The available commands are given in sections 5.3.3 to 5.3.17 with the following format:

• All commands setting parameters are in the form ATXX=Y<CR>

• All commands getting parameters are in the form ATXX?<CR>

5.3.2 Default parameters

The default parameters when the program starts for the first time (EEPROM empty) are:

• RC1 default values for the region configuration

• 14 dBm output power

• Default key to private

These default values can be changed by modifying DEFAULT_FACTORY_SETTINGS in
the hw_eeprom_config.h configuration file.

UM2245 Rev 2 29/44

UM2245 Application description

43

The default private key and private ID are the test keys described in the Sigfox™ test
specification. They are stored in the sigfox_data.h file.

5.3.3 AT? to list the available commands

This command is used to get the list of all supported AT commands.

5.3.4 AT$RFS to restore factory settings

Cmd: AT$RFS<CR>
Restores factory settings.

Resp: OK<CR><LF>

Factory settings are defined in file hw_eeprom_conf.h.

5.3.5 AT$ID to get the device ID

Cmd: AT$ID?<CR>
Gets the device ID on 32 bits.

Resp: 0000 1234 <CR><LF>

The ID is provided on 8 hexadecimal characters from MSB to LSB.

Note: If the credentials file (sigfox_data.h) is not replaced, the returned value is not valid for
activation (see Section 5.7: Personalization and activation on page 37).

5.3.6 AT$PAC to get the device PAC

Cmd: AT$PAC?<CR>
Gets the device PAC on 8 bytes. The default response with the deployed package
is 0x0. This value changes once the sigfox_data is downloaded.

Resp: 1122 3344 5566 7788 <CR><LF>
(8-byte format)

Note: If the credentials file (sigfox_data.h) is not replaced, the returned value is not valid for
activation (see Section 5.7: Personalization and activation on page 37).

5.3.7 AT$SB to send a bit status

Cmd: AT$SB=<status value>{,<Optional ResponseWaited>}{,<Optional
txrepeat>}<CR>
Sends a bit status (0 or 1).

Resp: OK<CR><LF>

Application description UM2245

30/44 UM2245 Rev 2

Parameters:

• <status_value> = 0/1

• <Optional ResponseWaited>

– 0: no response awaited (default)

– 1: response awaited

• <Optional txrepeat>

– 0: one Tx frame sent

– 1: three Tx frames sent (default)

Examples:

AT$SB = 1: Sends bit 1 with no response awaited.

AT$SB = 0,1: Sends bit 0 with a response awaited.

AT$SB = 0,1,1: Sends bit 0 with a response awaited, with 3 Tx frames sent.

The <Optional ResponseWaited> parameter is optional when 0.

Note: This command is blocking and cannot be aborted (refer to Section 2.4: Tx/Rx radio time
diagram).

5.3.8 AT$SF to send the payload in bytes

Cmd: AT$SF=<payload data>{,<Optional ResponseWaited>}{,<Optional
txrepeat>}<CR>
Sends the payload.

Resp: OK<CR><LF>

Parameters:

• <payload data> maximum 12 bytes

• <Optional ResponseWaited>

– 0: no response awaited (default)

– 1: response awaited

• <Optional txrepeat>

– 0: one Tx frame sent

– 1: three Tx frames sent (default)

Examples:

AT$SF=313245: sends 0x31 0x32 0x45 (ASCII string 12E) payload
with no response awaited.

AT$SF=010205,1: sends 0x01 0x02 0x05 (ASCII string !”%) payload
with a response awaited.

Note: This command is blocking and cannot be aborted (refer to Section 2.4: Tx/Rx radio time
diagram). OK is returned only after command completion. Refer to the timings presented in
Section 2.4: Tx/Rx radio time diagram on page 9.
When the radio is transmitting, LED4 is on.

UM2245 Rev 2 31/44

UM2245 Application description

43

5.3.9 ATS410 to set AES key

Cmd: ATS410=<KEY_USAGE>
By default the test key is used.

Resp: OK<CR><LF>

Parameters:

• <KEY_USAGE>

– 0: the private key is used.

– 1: the public key is used. This key must be used in conjunction with the Sigfox™
Network Emulator (USB SDR dongle).

Note: This value is stored in EEPROM.

5.3.10 ATS300 to send an out-of-band message once

Cmd: ATS300<CR>
Sends one keep-alive out-of-band message.

Resp: OK<CR>(<LF: optional>)

Note: Out-of-band messages are messages which have Sigfox™ network well known format.
They can be sent every 24 hours.

5.3.11 ATS302 to set the radio output power

Cmd: ATS302=<power> <CR>

Resp: OK<CR><LF>

Parameter:

• <power>: in dBm. The allowed range is 10 dBm to 20 dBm.

Note: The default power is 14 dBm in RC1, 20 dBm in RC2 and RC4, and 13 dBm in RC3c.

This command is mandatory for CE certification of the device.

The RF output power value is saved in EEPROM. When the RC zone is changed, the RF
output power is restored to its default value.

Application description UM2245

32/44 UM2245 Rev 2

5.3.12 AT$CW continuous wave

Cmd: AT$CW=<frequency><CR>

Resp: OK<CR><LF>

Parameters:

• <frequency>: center frequency for carrier

– 0: stops the CW.

– Not 0: starts continuous unmodulated wave at frequency parameter (frequency in
hertz or megahertz).

Examples:

AT$CW=868000000: starts a CW emission at 868 MHz.

AT$CW=868: starts a CW emission at 868 MHz.

AT$CW=0: stops the CW emission.

Note: The output power can be modified with ATS302 (refer to Section 5.3.11).

Before starting a CW test again, it must be stopped.

5.3.13 AT$PN PRBS9 continuous Tx wave

Cmd: AT$PN=<frequency>,<bitrate><CR>

Resp: OK<CR><LF>

Parameters:

• <frequency>: center frequency for carrier

– 0: stops the PRBS9 continuous wave.

– Not 0: starts continuous unmodulated wave at frequency parameter (frequency in
hertz or megahertz).

• <bitrate>: 100 or 600 bits per second

Examples:

AT$PN=868000000,100: starts a 100-bps modulated wave at 868 MHz.

AT$PN=0: stops the PRBS9 continuous wave emission.

Note: The current PN test must be stopped before another PN test can be started.

UM2245 Rev 2 33/44

UM2245 Application description

43

5.3.14 AT$TM Sigfox™ test mode

The TST modem must implement the command below. It is possible to use this test mode in
front of Sigfox™ Radio Signal Analyzer (RSA) and SDR dongle [2]. This command is for
test-mode purposes only and cannot be used to connect to the Sigfox™ network.

Cmd: AT$TM=<rc>,<mode><CR>
Activates the test mode.

Resp: OK<CR><LF>

Parameters: the test mode values are:

• rc = 1, 2, 3c, or 4

The region configuration at which the test shall run.

• mode = SFX_TEST_MODE_TX_BPSK = 0

Sends only BPSK 26-byte packets including synchro bit and PRBS synchro frame at
the Tx_frequency uplink frequency defined in Table 3: Region configuration RF
parameters on page 8. The uplink frequency is RC dependent.

• mode = SFX_TEST_MODE_TX_PROTOCOL = 1

Full protocol with internal Sigfox™ key: sends all Sigfox™ protocol frames with all
possible lengths available with hopping, meaning that it sends bits with downlink flag
set and unset, sends out-of -band frames, sends frames with downlink flag set and
unset with all possible payload lengths from 1 to 12 bytes.

Caution: This test lasts several minutes. No other AT command must be sent before
the completion of the test.

• mode = SFX_TEST_MODE_RX_PROTOCOL = 2,

This test consists in calling functions to test the complete protocol in downlink only with
full protocol using Sigfox™ key.
The Rx_frequency downlink frequency is defined in Table 3: Region configuration RF
parameters on page 8. The downlink frequency is RC dependent.

• mode = SFX_TEST_MODE_RX_GFSK = 3

This test is used to measure the approximate sensitivity of device.

Rx mode in GFSK with expected pattern =
AA AA B2 27 1F 20 41 84 32 68 C5 BA 53 AE 79 E7 F6 DD 9B sent at the
Rx_frequency downlink frequency defined in Table 3: Region configuration RF
parameters on page 8. The downlink frequency is RC dependent. The test lasts
30 seconds.

• mode = SFX_TEST_MODE_RX_SENSI = 4

This test is used to measure the real sensitivity of the device. It requests one uplink and
one downlink frame with Sigfox™ key with specific timings.

• mode = SFX_TEST_MODE_TX_SYNTH = 5

Does 1 uplink frame on each Sigfox™ channel frequency.

This test takes a couple of minutes.

Application description UM2245

34/44 UM2245 Rev 2

5.3.15 AT$RSSICAL to set and get the RSSI calibration

This command is used to set the Rx RSSI offset of the device for calibration purpose. It
allows end-product makers adapting the RSSI level according to their loss environment. It is
also applicable to the LBT threshold.

Cmd: AT$RSSICAL=<rssical><CR>
Sets the RSSI calibration in dB.

Resp: OK<CR>

Parameters:

• <rssical>: integer

Example:

AT$RSSICAL?<CR>:gets the current RSSI calibration value in dB.

Note: The value is stored in EEPROM. It is maintained after a change of the RC zone.
The value is 0 dB by default.

5.3.16 AT$RC to set/get the zones

Cmd: AT$RC=<rc><CR>
Sets the current zone.

Resp: OK<CR>

Parameter:

• <rc> = 1, 2, 3c, or 4

Examples:

AT$RC?<CR> to get the current zone.

1, 2, 3c, or 4.

Note: This value is stored in EEPROM.
When requesting RC1, the RF output power is automatically set to 14 dBm.
When requesting RC2 or RC4, the RF output power is automatically set to 20 dBm.
When requesting RC3c, the RF output power is automatically set to 13 dBm.
The new output power is saved in EEPROM.

UM2245 Rev 2 35/44

UM2245 Application description

43

5.3.17 ATS400 to configure specific variables for standard

Cmd: ATS400=<8_digit_word0><8_digit_word1><8_digit_word2>,
<timer_enable>

Resp: OK<CR>(<LF: optional>)

This command has different meanings depending on the medium access mode.

FH (RC2 & RC4):

The command configures the enabled channels for FCC (0 for disable or 1 for enable).
Channels are computed from the Tx frequency (Refer to Section 4.1.3: Sending frames/bits
on page 17) with the following formula:

channel = tx_frequency + 300 kHz x macro_channel_id

The default value in RC2 is <0000 0001><0000 0000><0000 0000>,1.

The default value in RC4 is <0000 0000><4000 0000><0000 0000>,1.

Example: ATS400=000001FF0000000000000000,1: the timer between consecutive Tx
frames is enabled and the following macro channels are enabled: 902.2 MHz | 902.5 MHz |
902.8 MHz | 903.1 MHz | 903.4 MHz | 903.7 MHz | 904.0 MHz | 904.3 MHz | 904.6 MHz.

LBT (RC3c):

The command configures the Carrier Sense feature for the first frame:

• config_word[0]: number of attempts to send the first frame
(must be greater than or equal to 1)

• config_word[1]: maximum Carrier Sense sliding window (in ms)
(must be greater than 6 ms, which is CS_MIN_DURATION_IN_MS + 1)

• config_word[2]:

– bit 8: set the value to 1 to indicate that the device uses the full operational radio
band (192 kHz)

– bits 7-3: number of Carrier Sense attempts

• timer_enable: unused

Note: This command is reserved for certification purpose.

For details about configuration word and timer_enable, refer to Section 4.1.4: Set standard
configuration for FH on page 17.

Only configuration word is stored in EEPROM.

This is not applicable in the RC1 zone.

5.4 Push-button application

The push-button application is a stand-alone example.

On user push-button event, this application reads the temperature, humidity and
atmospheric pressure from the sensors through I2C. These three data (temperature,
humidity, atmospheric pressure) are sent to the Sigfox™ network. In order to launch the
Sigfox™ push-button project, the user must reach the \Projects\ B-L072Z-
LRWAN1\Applications\Sgfx\Sgfx_push_button folder and choose his favorite toolchain
folder.

Application description UM2245

36/44 UM2245 Rev 2

This application reads the temperature, humidity and atmospheric pressure from the
sensors through I2C when expansion board X-NUCLEO-IKS01A2 is plugged and
#SENSOR_ENABLED is set to 1.

The application enters the Stop mode by default while waiting for a button to be pressed.
Commenting out the #define STDBY_ON preprocessor switch, and removing solder bridge
SB31, makes the device enter the Standby mode instead. When a positive pulse is applied
on PA0 (using a wire bridge to VDD_MCU), the device wakes-up, transmits a packet, and
enters the Standby mode again. By default, the application runs in RC1; This can be
changed in main.c by redefining the following line:

#define APPLI_RC ST_RC1

Note: When the X-NUCLEO-IKS01A2 shield is plugged on the B-L072Z- LRWAN1 board, the
SB25 solder bridge of X-NUCLEO-IKS01A2 must be removed.

5.5 Signature generator

This is a binary file. The binary generates a 128 bit-signature on two UART pins (PA2 and
PA9) with the settings described in Section 5.3.1: UART interface on page 28. This
signature is used to personalize the device. The process is described in Section 5.7:
Personalization and activation.

5.6 Static switches

Static Defines are used to switch optional features such as debug, trace, and disable low-
power.

The user must edit the \Projects\B-L072Z-
LRWAN1\Applications\Sgfx\Sgfx_ModemAT\inc\hw_conf.h file to modify the static switches.

5.6.1 Debug switch

#define DEBUG: the debug mode enables the DBG_GPIO_SET and the DBG_GPIO_RST
macros as well as the debugger mode even when the MCU enters low-power.

#define TRACE: the trace mode enables the DBG_PRINTF macro.

Note: In order to enable true low-power, both above-mentioned "#define" must be commented out.

5.6.2 Sensor switch

When no sensor expansion board is plugged on the set-up, #define SENSOR_ENBALED
must be commented out.

5.6.3 Disable low-power switch

To force the STM32 to remain in Run mode, LOW_POWER_DISABLE must be defined.

UM2245 Rev 2 37/44

UM2245 Application description

43

5.7 Personalization and activation

When compiling and loading the firmware using the default sigfox_data.h file, the default
Sigfox™ credentials are loaded into the device. This only allows to test the Sigfox™ Murata
device locally in the laboratory.

For the Sigfox™ Murata device to send data to the Sigfox™ backend server, two steps are
required

• Personalization. Each Sigfox™ device must be loaded with unique dedicated
credentials. These credentials are known as ID, PAC and private key. They are
necessary to activate the device so that it can send data to the Sigfox™ data server.
The personalization step is a process for a Murata module user to obtain the unique
credentials.

• Activation. Once the device is personalized, the device needs to be recorded by the
Sigfox™ back-end server. This step requires to log-on the Sigfox™ back-end server.

Figure 9 depicts the sequence of personalization and activation steps.

A
p

p
lica

tio
n

 d
e

s
crip

tio
n

U
M

2
24

5

3
8/4

4
U

M
2

245
 R

e
v 2

Figure 9. Sigfox™ personalization and activation overview

UM2245 Rev 2 39/44

UM2245 Application description

43

5.7.1 Personalization

Generating the signature

SignatureGenerator.bin is a binary file. It generates a 128-bit signature on UART pins PA2
and PA9 with the settings described in Section 5.3.1: UART interface on page 28.

SignatureGenerator.bin located in
Projects\B-L072Z-LRWAN1\Applications\Sgfx\SignatureGenerator must be loaded in the
device. Loading can either be done by using ST-Link Utility or by dragging and dropping
SignatureGenerator.bin into the DIS_L072 drive when using the B-L072Z-LRWAN1
discovery board.

If the discovery kit board is used, a COM port is emulated over the USB where a terminal
can be connected.

Otherwise, an FTDI cable can be used, the UART Rx pin of which is connected to PA2 or
PA9. In the latter case, the terminal must be connected to the FTDI COM port.

After a hardware reset, the signature is sent on the COM ports. The signature is displayed
as follows (note that the signature is device dependent):

signature=

D33AA579E7B9D7209EAB354801574D15

Getting credentials from the Murata server

Log on the B-L072-LRAWAN1 related page of myMurata.com on-line portal and copy/paste
the signature. A device-dependent sigfox_data.h (together with its binary-format equivalent
sigfox_data.bin) is sent by mail if the signature is authenticated.

Loading user credentials into the Murata module

They are two ways to load the credentials.

1. First method: replace the default sigfox_data.h located in Projects\B-L072Z-
LRWAN1\Applications\Sgfx\Sgfx_ModemAT\inc by the one received from Murata. After
project compilation and load, the device is personalized.

2. Second method: overwrite the already loaded sigfox_data (refer to Section 4.7) located
at 0x0801 7000. After the application with default sigfox_data is loaded into the device,
the data can be erased and directly replaced by the data from sigfox_data.bin.
In order to do so, the following ST-Link Utility command line must be executed:
ST-LINK_CLI.exe -c swd ur -SE 736 -P sigfox_data.bin 0x08017000
-hardrst -v

Note: Option '-SE 736' erases sector 736 (@ 0x0801 7000).

Once ST-LINK command is executed, the device is personalized.

Caution: The credentials received from myMurata are device specific. The received credentials
cannot be used on any other device.

Application description UM2245

40/44 UM2245 Rev 2

5.7.2 Activation

1. In the terminal, use AT commands AT$ID?<CR> and AT$PAC?<CR> from the
ATmodem application in order to get Sigfox™ ID & PAC.

2. Go to https://backend.sigfox.com/activate/

3. Click on the muRata logo

4. Select the country

5. Enter ID & PAC

6. Enter account details and click on Subscribe

7. The kit is now activated on the Sigfox™ network.

UM2245 Rev 2 41/44

UM2245 System performance

43

6 System performance

6.1 Memory footprint

The values in Table 15 have been measured for the following configuration of the Keil®
compiler (MDK-ARM compiler 5.05):

• Optimization: optimized for size level 3

• Debug option: off

• Trace option: off

• Target: B-L072Z-LRWAN1 with CMWX1ZZABZ

6.2 Real-time constraints

Real time constraints apply when the transmitter is running. The SPI modulation is critical.
The DMA is driving the SPI, but the STM32 MCU must fill in the memory with modulation
data. The process is described in Section 4.2: Library Sigfox™ modulation on page 19.

Table 15. Memory footprint measured values

Module Flash (bytes) RAM (bytes) Description

Application layer and stack 11206 1035 Application + stack size.

Sigfox Core library 5774 8 Library Sigfox™.

Cmac library 1408 30
Encrypts and authenticates
uplink and downlink frames
respectively.

Modem library 1446 3247 Modulation library.

Credentials library 4994 274 Cryptography library.

Sigfox Addon Verified library 1954 36 Test library.

Radio 5958 696 Radio driver.

HAL and low-level drivers 9270 1032
Hardware abstraction layer
and low-level drivers.

Microlib 1574 0 All microlib.

Total application (user) 43584 6358
Memory footprint for the
overall modem AT application.

System performance UM2245

42/44 UM2245 Rev 2

6.3 Power consumption

The power consumption presented in this section has been measured on the ST discovery
B-L072Z-LRWAN1.

The measurement setup is:

• No DEBUG

• No TRACE

• No SENSOR_ENABLED

In these conditions, the typical MCU consumption (STM32L0xx) in Stop mode is 1.1 μA
while the consumption in Run mode is 8.0 mA.

Futhermore, power consumptions while receiving and transmitting are:

• When the radio is receiving, the MCU is in Stop mode but the radio consumes 10 mA.
This includes the consumption of the TCXO.

• When the radio is transmitting at 14 dBm, the MCU is in Run mode for 430 μs and in
Sleep mode for the rest of the bit. The radio consumes 30 mA. This does not include
the consumption of the TCXO.

• When the radio is transmitting at 20 dBm, the MCU is in Stop mode but the radio
consumes 120 mA. This does not include the consumption of the TCXO.

UM2245 Rev 2 43/44

UM2245 Revision history

43

7 Revision history

Table 16. Document revision history

Date Revision Changes

19-Dec-2017 1 Initial release.

21-May-2018 2

Updated timings in Figure 1: Timing diagram for uplink
only, Figure 2: Timing diagram for uplink with downlink,
and Table 4: Timings. Updated document with RC3c
regional configuration. Updated Figure 3: Firmware top-
level structure. Updated Figure 5: Memory mapping.
Updated Figure 7: Package overview. Updated Table 8:
Cmac primary APIs. Updated Table 15: Memory
footprint measured values. Updated Section 5.4: Push-
button application. Added Section 2.5: Listen before talk
(LBT). Added Section 3.2: Sigfox™ certification. Added
Section 4.1.2: Sigfox Addon Verified library. Added
Section 4.4: Credentials library. Added Section 5.3.13:
AT$PN PRBS9 continuous Tx wave.

UM2245

44/44 UM2245 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 Overview
	1.1 Acronyms and abbreviations
	Table 1. List of acronyms and abbreviations

	1.2 Reference

	2 Sigfox™ standard overview
	2.1 Overview
	2.2 End-device hardware architecture
	2.3 Regional radio resource
	Table 2. Region country list
	Table 3. Region configuration RF parameters

	2.4 Tx/Rx radio time diagram
	Figure 1. Timing diagram for uplink only
	Figure 2. Timing diagram for uplink with downlink
	Table 4. Timings

	2.5 Listen before talk (LBT)

	3 X-CUBE-SFOX stack description
	3.1 Overview
	3.2 Sigfox™ certification
	3.3 Features
	3.4 Architecture
	Figure 3. Firmware top-level structure

	3.5 Required STM32 peripherals to drive the radio
	3.5.1 Radio reset
	3.5.2 Radio SPI
	3.5.3 RTC
	3.5.4 TIMER2
	3.5.5 Interrupt

	4 X-CUBE-SFOX middleware programming guidelines
	4.1 Sigfox™ Core library
	Table 5. Application level Sigfox™ APIs
	4.1.1 Opening the library
	4.1.2 Sigfox Addon Verified library
	Table 6. Sigfox Addon Verified library

	4.1.3 Sending frames/bits
	4.1.4 Set standard configuration for FH
	Table 7. Macro channel mapping

	4.2 Library Sigfox™ modulation
	Figure 4. Dual buffer modulation with STM32

	4.3 Cmac library
	Table 8. Cmac primary APIs

	4.4 Credentials library
	Table 9. Credentials primary APIs

	4.5 Utilities
	4.5.1 Timer server
	Table 10. Timer server APIs

	4.5.2 Low-power manager
	Table 11. Low-power APIs
	Table 12. Low-power modes

	4.5.3 Scheduler
	Table 13. Scheduler APIs

	4.6 EEPROM driver
	Table 14. EEPROM APIs

	4.7 Memory section
	Figure 5. Memory mapping

	5 Application description
	5.1 Hardware
	Figure 6. B-L072-LRAWAN1 configuration

	5.2 Package description
	Figure 7. Package overview

	5.3 AT modem Application
	5.3.1 UART interface
	Figure 8. Tera Term serial port setup

	5.3.2 Default parameters
	5.3.3 AT? to list the available commands
	5.3.4 AT$RFS to restore factory settings
	5.3.5 AT$ID to get the device ID
	5.3.6 AT$PAC to get the device PAC
	5.3.7 AT$SB to send a bit status
	5.3.8 AT$SF to send the payload in bytes
	5.3.9 ATS410 to set AES key
	5.3.10 ATS300 to send an out-of-band message once
	5.3.11 ATS302 to set the radio output power
	5.3.12 AT$CW continuous wave
	5.3.13 AT$PN PRBS9 continuous Tx wave
	5.3.14 AT$TM Sigfox™ test mode
	5.3.15 AT$RSSICAL to set and get the RSSI calibration
	5.3.16 AT$RC to set/get the zones
	5.3.17 ATS400 to configure specific variables for standard

	5.4 Push-button application
	5.5 Signature generator
	5.6 Static switches
	5.6.1 Debug switch
	5.6.2 Sensor switch
	5.6.3 Disable low-power switch

	5.7 Personalization and activation
	Figure 9. Sigfox™ personalization and activation overview
	5.7.1 Personalization
	5.7.2 Activation

	6 System performance
	6.1 Memory footprint
	Table 15. Memory footprint measured values

	6.2 Real-time constraints
	6.3 Power consumption

	7 Revision history
	Table 16. Document revision history

