‘__ UM2372
’I life.augmented User man ual

STM32Cube PDM2PCM software library
for the STM32F4/F7/H7 Series

Introduction

The PDM2PCM library converts a PDM bit stream from a MEMS microphone into a PCM
audio stream.

This user manual describes the PDM2PCM library, which is part of the STM32Cube
firmware package. It provides details about the interface parameters and the configuration
of the library. It also shows how to integrate this library into a main program.

This document is applicable to the microcontrollers that allow the user to connect a digital
PDM microphone, namely those of STM32F4, STM32F7 and STM32H7 Series.

July 2018 UM2372 Rev 1 1/21

www.st.com

http://www.st.com

Contents UmM2372

Contents
1 Module overview i i i s 5
1.1 Algorithm functionality 5
1.2 Module configuration 5
1.3 Summary of resources 6
2 Module interfaces it i i 7
21 APIS 7
211 PDM_Filterlnitfunction, 7
21.2 PDM_Filter_setConfig function 7
213 PDM_Filter_getConfig function 8
214 PDM_Filter_delnterleave function 8
21.5 PDM_Filter function 8
2.2 External definitions 9
221 Returned errorvalues 9
2.3 Static parameters structure L. 9
24 Dynamic parameters structure 10
3 Algorithm description i 1
3.1 Processing steps 1"
3.1.1 High-passfilter 12
3.1.2 Digital volume 13
3.2 Dataformats 13
3.3 Results of measurements 13
3.31 Distortion measurements 13
3.3.2 Speechsignal 16
4 Application description i 17
4.1 Module integrationexample 17
411 Library initialization 17
4.1.2 Module execution 17
41.3 Module APIs calls e 18
5 Revision history i e 20

2/21 UM2372 Rev 1 ‘Yl

UM2372

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

3

FOO DriNtS . .. 6
PDM_Filterlnit function 7
PDM_Filter_setConfig function. 8
PDM_Filter_getConfig function. e 8
PDM_Filter function e 8
Error values e 9
Static parameters 9
Dynamic parameters. 10
Decimation factors and corresponding frequencies 1
Distortion measurements at 300 Hz 14
Distortion measurements at 500 Hz 14
Distortion measurements at 1000 Hz 15
Average speech signal level at PDM2PCM libraryoutput 16
Document revision history 20

UM2372 Rev 1 3/21

List of figures UM2372

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

4/21

Block diagram 11
Frequency response of the high-passfilter. 12
Distortion measurements at 300 Hz 13
Distortion measurements at 500 Hz 14
Distortion measurements at 1000 Hz e 15
Comparison of speech levels e 16
Module flow-chart 19

UM2372 Rev 1

3

UM2372

Module overview

1.1

1.2

3

Module overview

Algorithm functionality

The PDM2PCM library has the function to decimate and filter out a Pulse Density Modulated
(PDM) stream from a digital microphone, to convert it to a Pulse Code Modulated (PCM)
signal output stream.

The PCM output stream is implemented with 16-bit resolution. The sampling rate is not
specified in the interface but it is agreed in this document that the PCM sampling rate used
is 16 kHz. Various decimation factors can be configured, to adapt to various PDM clocks.

A configurable high-pass filter and a digital volume are also proposed.

Module configuration

PDM2PCM library takes as input a PDM signal (768 kHz to 2.048 MHz) stream of 1-bit
digital samples. This signal is acquired in blocks of 8 samples by usin% a synchronous serial
port (SPI or 12S) of the STM32 microcontroller, based on Arm® cores(@).

Different versions of the module are available, depending upon the core and the used tool

chain.
arm

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM2372 Rev 1 5/21

Module overview UM2372

1.3

6/21

Summary of resources

Table 1 contains the requirements for memories and frequency.

The footprints are measured on board, using IAR Embedded Workbench® for Arm® v7.40
(IAR Embedded Workbench® common components v7.2).

Table 1. Footprints

PDM clock Flash code Flash data Stack RAM Frequency
.text (bytes) | .rodata (bytes) (bytes) (bytes) (MHz)
2.048 MH
o z 4.9
(decimation = 128)
1.280 MH
L z 34
(decimation = 80)
1.024 MHz
7020 789 50 1028 27
(decimation = 64)
768 kH
— z 23
(decimation = 48)
512 kHz 18
(decimation = 32) ’
UM2372 Rev 1 Kys

UM2372

Module interfaces

2

Note:

2.1

211

2.1.2

3

Module interfaces

Two files are needed to integrate the PDM2PCM library, the pdm2pcm_glo.h header file and
the right library file (according to target and tool chain).

They contain all definitions and structures to be exported to the software integration
framework.

The audio_fw_glo.h file is a generic header file common to all audio modules and must be
included in the audio framework.

APls

Five functions have a software interface to the main program:
e PDM_Filterlinit

e PDM Filter_setConfig

e PDM_Filter_getConfig

e PDM_ Filter_delnterleave

e PDM_Filter

PDM_Filterlnit function

This procedure initializes the static memory, sets default values and initializes lookup tables
of the PDM2PCM library.

uint32_t PDM_FilterInit (PDM_Filter_ Handler_t *pHandler) ;

Table 2. PDM_FilterInit function

110 Name Type Description
Input pHandler PDM_Filter_Handler_t * |Pointer to internal static memory
Returned value - uint32_t Error value

This routine must be called at least once at initialization time, when the real time processing
has not started yet.

PDM_Filter_setConfig function

This procedure sets module dynamic parameters from the main framework to the module
internal memory. It can be called at any time during processing.

uint32_t PDM_Filter_setConfig(PDM_Filter Handler_t *pHandler,
PDM_Filter_Config_t *pConfig);

UM2372 Rev 1 7/21

Module interfaces

UM2372

21.3

214

2.1.5

8/21

Table 3. PDM_Filter_setConfig function

/10 Name Type Description

Input pHandler | PDM_Filter_Handler t * | Pointer to internal static memory

Input pConfig PDM_Filter_Config_t* |Pointer to dynamic parameters structure

Returned value - uint32_t Error value

PDM_Filter_getConfig function

This procedure gets module dynamic parameters from internal static memory to the main
framework. It can be called at any time during processing.

uint32_t PDM_Filter_getConfig(PDM_Filter Handler_t *pHandler,
PDM_Filter_Config_t *pConfig);

Table 4. PDM_Filter_getConfig function

/10 Name Type Description

Input pHandler | PDM_Filter_Handler_t * | Pointer to internal static memory

PDM_Filter_Config_t*
uint32_t

Input pConfig Pointer to dynamic parameters structure

Returned value - Error value

PDM_Filter_delnterleave function

Not yet implemented.

PDM_Filter function

This procedure decodes an input PDM stream to an output PCM stream. It has to be called
to process each frame.

uint32_t PDM_Filter (void *pDataln, void *pDataOut, PDM_Filter_Handler_t *
pHandler) ;

Table 5. PDM_Filter function

/10 Name Type Description
Input pDataln void * Pointer to PDM input data
Output pDataOut void * Pointer to PCM output data
Input pHandler | PDM_Filter_Handler_t* | Pointer to internal static memory
Returned value - uint32_t Error value

UM2372 Rev 1

3

UM2372

Module interfaces

2.2 External definitions
2.21 Returned error values
Table 6 lists the possible returned error values. Each error sets a dedicated bit to 1, so more
than one error code can be accumulated.
Table 6. Error values
Definition Value Description
PDM_FILTER_NO_ERROR 0x0000 | No error
PDM_FILTER_ENDIANNESS ERROR 0x0001 | Unsupported endianness
PDM_FILTER_BIT_ORDER_ERROR 0x0002 | Unsupported bit order
PDM_FILTER_CRC_LOCK_ERROR 0x0004 | Target is not STM32
PDM_FILTER_DECIMATION_ERROR 0x0008 | Unsupported decimation factor
PDM_FILTER_INIT_ERROR 0x0010 -
PDM_FILTER_CONFIG_ERROR 0x0020 -
PDM_FILTER_GAIN_ERROR 0x0040 |Unsupported microphone gain
PDM_FILTER_SAMPLES_NUMBER_ERROR 0x0080 | Unsupported number of samples
2.3 Static parameters structure
The PDM2PCM initial parameters are set using the corresponding static parameter
structure before calling the PDM_Filter_setConfig() function.
typedef struct {
uintl6_t bit_order;
uintl6_t endianness;
uint32_t high_pass_tap;
uintlé_t in_ptr_channels;
uintl6_t out_ptr_channels;
uint32_t pInternalMemory [INTERNAL_MEMORY_SIZE];
}PDM_Filter_ Handler_ t;
Table 7. Static parameters
Name Description Comment
bit order Specifies the bit order for input PDM_FILTER_BIT_ORDER_LSB (0x0000)
- (MSB or LSB) PDM_FILTER_BIT_ORDER_MSB (0x0001)
endianness Specifies if byte inversion is required PDM_FILTER_ENDIANNESS_LE (0x0000)
P y q PDM_FILTER_ENDIANNESS_BE (0x0001)
. o) Coefficient value in Q31 format of the high-pass filter.
high_pass_tap Specifies the HP filter tap value I 0 the filter is not used.

S74

UM2372 Rev 1

9/21

Module interfaces

UM2372

Table 7. Static parameters (continued)

Name

Description

Comment

in_ptr_channels

Specifies the number of channels in
the input PDM stream

INTEGER NUMBER >0
in_ptr_channels = 1 when used with one microphone.

out_ptr_channels

Specifies the number of channels in
the output PCM stream.

INTEGER NUMBER > 0.
out_ptr_channels=1 when used with one microphone.

pinternalMemory | Internal memory

Pointer to an array.

2.4 Dynamic parameters structure

It is possible to change the PDM2PCM configuration by setting new values in the dynamic
parameter structure before calling the PDM_Filter_setConfig() function.

typedef struct {

uintl6_t decimation_factor;

uintlé6_t output_samples_number;

intl6_t mic_gain;

}PDM_Filter_Config t;

Table 8. Dynamic parameters

Name

Description

Comment

decimation_factor

Specifies the decimation factor.

PDM_FILTER_DEC_FACTOR_16 (0x0005)
PDM_FILTER_DEC_FACTOR_24 (0x0006)
PDM_FILTER_DEC_FACTOR_32 (0x0007)
PDM_FILTER_DEC_FACTOR_48 (0x0001)
PDM_FILTER_DEC_FACTOR_64 (0x0002)
PDM_FILTER_DEC_FACTOR_80 (0x0003)
PDM_FILTER_DEC_FACTOR_128 (0x0004)

output_samples_number

Specifies the number of PCM samples
to be generated at each call of
PDM_Filter() function

INTEGER NUMBER > 0

mic_gain

Specifies the microphone gain in dB

Gain is in the interval [-12 dB: +51 dB], with
1 dB steps.

10/21

UM2372 Rev 1

3

UM2372 Algorithm description
3 Algorithm description
3.1 Processing steps

3

As shown in Figure 1, a MEMS microphone outputs a PDM stream, which is a high
frequency stream of 1-bit digital samples. The library expects a stream made of 8-sample
blocks (one byte), which will be acquired using a synchronous serial port (SPI or 12S) of the
STM32 microcontroller. The microphone PDM output is synchronous with its input clock,
therefore the used STM32 serial port generates a clock signal for the microphone.

Figure 1. Block diagram

Mic data
MEMS PCM

. I2S +—»{ PDM2PCM >
microphone < stream

12S CLK

STM32

MS49935V1

The PDM data from the microphone are packed in 8-bit blocks, and then filtered and
decimated. The frequency of the obtained PCM signal depends on the decimation factor
configured before the library initialization.

The decimation factors have been defined to get a PCM stream of the desired sampling
frequency, depending on the PDM clock value. Examples are given in Table 9.

Table 9. Decimation factors and corresponding frequencies

Decimation factor PDM clock frequency PCM sample rate
1.024 MHz 8 kHz
128 2.048 MHz 16 kHz
3.072 MHz 24 kHz
80 1.280 MHz 16 kHz
1.024 MHz 16 kHz
64 2.048 MHz 32 kHz
3.072 MHz 48 kHz
48 768 kHz 16 kHz
32 512 kHz 16 kHz
24 384 kHz 16 kHz
16 256 kHz 16 kHz
UM2372 Rev 1 11/21

Algorithm description UM2372

3.1.1

12/21

The digital signal resulting from the filter and decimator pipeline is then processed by a
high-pass filter, to remove DC offset, and by a digital gain, to attenuate or amplify the PCM
samples.

High-pass filter

The high-pass filter is a one-pole recursive filter. The cut-off frequency is configured by
modifying the parameter high_pass_tap from the PDM_Filter_Handler _t. This coefficient
value must be in the range [0 : 1]. The format used is Q0.31, meaning that 1 corresponds to
the maximum integer value obtainable with 31-bit resolution. For example, configuring the
high_pass_tap parameter to 0.98 corresponds to 0.98*(231-1) =2104533974.

Figure 2 is a plot of the frequency response of this filter for three different values of the
high_pass_tap parameter, for a PCM sampling rate of 16 kHz.

Figure 2. Frequency response of the high-pass filter

High-Pass Filter Frequency Response

2 . T T :
— alpha=0.9 : ;

0 apha=098 | G 4 i 44 N R R
alpha=0.995 ' :

--

Magnitude (dBE)

Frequency (Hz)

When the coefficient is set to 0, the high-pass filter is bypassed.

3

UM2372 Rev 1

UM2372

Algorithm description

3.1.2

3.2

3.3

3.3.1

3

Digital volume

The digital volume attenuates or amplifies the samples before saturating them to a signed
16-bit value. The mic_gain parameter is the gain value (in dB) to apply to the PCM stream.
The minimum value is -12 dB, the maximum is 51 dB, with 1 dB steps.

Data formats

The input of PDM2PCM library is expected to be a PDM stream, byte-packed, at the MEMS
microphone clock frequency. It can be a single or double data stream. The output is a PCM
stream.

Results of measurements

All measurements have been made using an STM32F469 board, with a MEMS microphone
MP34DT01 mounted on it. They have been made in an anechoic environment, using a
professional monitoring system as acoustic source.

Distortion measurements

The distortion measurements are made with a test signal at a nominal acoustic level of
about 90 dB SPL at the source point. The microphone is placed at a distance of 10 cm, and
mic_gain is equal to 0 dB.

These data take into account all system noise, including noise floors brought back by PCB
and power supplies.

Figure 3. Distortion measurements at 300 Hz
SMR at 300Hz

| ——2048kHz
| ——— 1280KkHz [
1024kHz
| —— 7EakHz |4

£12kHz

hagnitude (dB)

10 1o’
Frequency (Hz)

UM2372 Rev 1 13/21

Algorithm description

UM2372

14/21

Table 10. Distortion measurements at 300 Hz

PDM clock SNR at -31 dBFS SNR at 0 dBFS (extrapolation)
2048 kHz 42.8 73.8

1280 kHz 42.7 73.7

1024 kHz 42.0 73.0

768 kHz 39.8 72.8

512 kHz 321 63.1

Figure 4. Distortion measurements at 500 Hz

Magnitude (dB)

SMR at 500Hz

40

30

201

| ——— 204BkHz
| ——— 1280kHz
: 1024kHz
| —— 788kHz ||
: 512kHz

10°
Frequency (Hz)

Table 11. Distortion measurements at 500 Hz

PDM clock SNR at -31 dBFS SNR at 0 dBFS (extrapolation)
2048 kHz 431 741

1280 kHz 421 73.1

1024 kHz 421 73.1

768 kHz 40.1 711

512 kHz 29.8 60.8

UM2372 Rev 1

3

UM2372 Algorithm description

Figure 5. Distortion measurements at 1000 Hz

SHNR at 1000Hz
40 : : : S

| ——— 2048kHz
| ——— 1280kHz
1024kHz
| ——— 7BBKHz
: 512kHz

hagnitude (dB)

10 10’
Frequency (Hz)

Table 12. Distortion measurements at 1000 Hz

PDM clock SNR at -31 dBFS SNR at 0 dBFS (extrapolation)
2048 kHz 38.7 69.7
1280 kHz 38.5 69.5
1024 kHz 38.4 69.4
768 kHz 371 68.1
512 kHz 31.2 62.2
"_l UM2372 Rev 1 15/21

Algorithm description

UM2372

3.3.2 Speech signal

The test signal is a speech sequence, played at a nominal level of 90 dB SPL. The MEMS
microphone is placed at 30 cm from the acoustic source. The digital signal captured at the
output of the PDM2PCM library for different mic_gain values is shown in Figure 6.

Figure 6. Comparison of speech levels

I u]| A § | SR

30 ke B _ _____

dBFS

- —— :

Average Power Level Comparison

mic__gain 0dB

mic__gain 12dB
' mic__gain 24dB

=== 1 fmic__gain 36dB |
: mic__gain 48dB

1
Tirne (s)

Table 13. Average speech signal level at PDM2PCM library output

mic_gain parameter value Digital speech level
0dB -54 dBFS
12dB -42 dBFS
24 dB -30 dBFS
36 dB -18 dBFS
48 dB -8 dBFS

16/21 UM2372 Rev 1

3

UM2372

Application description

4

4.1

41.1

41.2

3

Application description

Module integration example

Library initialization

Once the memory is allocated, some routines must be called to initialize the PDM2PCM

library static memory:

e PDM_Filter_Init() has to be called each time the processing in the audio is stopped and
started.

e PDM Filter_setConfig() has to be called at least once before processing start, to set
configurable parameter

Furthermore, as the PDM2PCM library runs on STM32 devices, CRC HW block must be
enabled and reset.

The static and dynamic parameters structures must be allocated. Their types are defined in
pdm2pcm_glo.h header. Example of allocation:

/*Enables and resets CRC-32 from STM32 HW */
__ HAL_RCC_CRC_CLK_ENABLE() ;
CRC->CR = CRC_CR_RESET;

PDM_Filter_Handler_t PDM1_filter_ handler;
PDM_Filter_Config_t PDM1_filter_config;

/* Initialize PDM Filter structure */

PDM1_filter handler.bit_order = PDM_FILTER_BIT ORDER_LSB;
PDM1_filter_handler.endianness = PDM_FILTER_ENDIANNESS_BE;
PDM1_filter_handler.high_pass_tap = 2122358088;
PDM1_filter_handler.out_ptr_channels = 1;
PDM1_filter_handler.in_ptr_channels = 1;

PDM_Filter_ Init((PDM_Filter_Handler_t *) (&PDM1_filter_handler));

PDM1_filter_config.output_samples_number = 16;
PDM1_filter_config.mic_gain = 24;
PDM1_filter_config.decimation_factor = PDM_FILTER_DEC_FACTOR_64;

PDM_Filter_setConfig((PDM_Filter Handler_t *)&PDM1_filter_handler,
&PDM1_filter_config);

Module execution

The run time process can start when the hardware is configured and the PDM2PCM library
is initialized and configured.

At each new interrupt, when enough bits have been buffered, the PDM2PCM filter routine
can be called. Between two consecutive calls to this filter routine, the dynamic parameters
can be changed.

UM2372 Rev 1 17/21

Application description UM2372

/* process current frame */

PDM_Filter (&pdm_buffer[0], &pcm_ buffer[0], &PDM1_filter_ handler);

/* change volume setting */
PDM1_filter_config.mic_gain = 12;
PDM_Filter_setConfig((PDM_Filter_Handler_t *)&PDM1_filter_ handler,

&PDM1_filter_config);

}

41.3 Module APIs calls

The flow is shown in Figure 7, and the steps listed below:

1.

18/21

As explained above, PDM2PCM handler and configuration structures have to be
allocated, as well as PDM input and PCM output buffers. CRC must be enabled in
order to unlock the library.

The PDM filter handler parameters must now be set to the desired values, and
PDM_Filter_Init() function called.

The PDM filter configuration parameters must now be set to the desired values, and
PDM_Filter_setConfig() function called.

The PDM input bit stream is read from the proper interface, packed byte by byte.
Call to PDM_Filter() function will execute the PDM2PCM algorithm.
The PCM output audio stream can now be written in the proper interface.

If needed, the user can change configuration parameters and call the
PDM_Filter_setConfig() function to update the library configuration.

If the application and the PDM input stream are still running, the processing loop goes
back to step 5, otherwise it ends.

Once the processing loop is over, allocated memory has to be freed.

3

UM2372 Rev 1

UM2372

Application description

3

Figure 7. Module flow-chart

Yes

1 Memory allocation
CRC enable and reset

v

2 Filter handler parameter inizialization
PDM _Filter_Init()

v

3 Filter configuration parameter inizialization
PDM _Filter_setConfig()

v

4 PDM stream acquisition
5 PDM_Filter
6 PDM stream write

v

PDM_Filter_setConfig()

v

7 New configuration needed?

Sample to proceed?

9 Memory freeing

MS49935V1

UM2372 Rev 1

19/21

Revision history

UM2372

5

20/21

Revision history

Table 14. Document revision history

Date

Revision

Description of changes

06-Jul-2018

1

Initial release

UM2372 Rev 1

3

UM2372

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

3

UM2372 Rev 1 21/21

	1 Module overview
	1.1 Algorithm functionality
	1.2 Module configuration
	1.3 Summary of resources
	Table 1. Footprints

	2 Module interfaces
	2.1 APIs
	2.1.1 PDM_FilterInit function
	Table 2. PDM_FilterInit function

	2.1.2 PDM_Filter_setConfig function
	Table 3. PDM_Filter_setConfig function

	2.1.3 PDM_Filter_getConfig function
	Table 4. PDM_Filter_getConfig function

	2.1.4 PDM_Filter_deInterleave function
	2.1.5 PDM_Filter function
	Table 5. PDM_Filter function

	2.2 External definitions
	2.2.1 Returned error values
	Table 6. Error values

	2.3 Static parameters structure
	Table 7. Static parameters

	2.4 Dynamic parameters structure
	Table 8. Dynamic parameters

	3 Algorithm description
	3.1 Processing steps
	Figure 1. Block diagram
	Table 9. Decimation factors and corresponding frequencies
	3.1.1 High-pass filter
	Figure 2. Frequency response of the high-pass filter

	3.1.2 Digital volume

	3.2 Data formats
	3.3 Results of measurements
	3.3.1 Distortion measurements
	Figure 3. Distortion measurements at 300 Hz
	Table 10. Distortion measurements at 300 Hz
	Figure 4. Distortion measurements at 500 Hz
	Table 11. Distortion measurements at 500 Hz
	Figure 5. Distortion measurements at 1000 Hz
	Table 12. Distortion measurements at 1000 Hz

	3.3.2 Speech signal
	Figure 6. Comparison of speech levels
	Table 13. Average speech signal level at PDM2PCM library output

	4 Application description
	4.1 Module integration example
	4.1.1 Library initialization
	4.1.2 Module execution
	4.1.3 Module APIs calls
	Figure 7. Module flow-chart

	5 Revision history
	Table 14. Document revision history

