
Introduction
This document describes the BlueNRG-1, BlueNRG-2 radio low level driver, which provides access to the BlueNRG-1 and
BlueNRG-2 devices in order to send and receive packets without using the Bluetooth link layer. An application using a central
data structure and APIs can control different features of packets such as: interval, channel frequency, data length and so on.

The document content is valid both for the BlueNRG-1 and BlueNRG-2 devices. Any reference to BlueNRG-1 device is also
valid for the BlueNRG-2 device. Any specific difference is highlighted whenever it is needed.

The BlueNRG-1, BlueNRG-2 radio driver

UM2379

User manual

UM2379 - Rev 1 - June 2018
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 BlueNRG-1, BlueNRG-2 radio operation

The BlueNRG-1, BlueNRG-2 radio low level driver interface controls 2.4 GHz radio. Furthermore, it interacts with
the wake-up timer, which runs on the slow 32 kHz clock, the RAM memory and the processor.
RAM is used to store radio settings, the current radio status, the data received and data to be transmitted. The
radio low level driver can manage up to 8 different radio configurations also called state machines.
Several features are autonomously managed by the radio, without intervention of the processor:
• Packet encryption
• Communication timing
• Sleep management

A number of additional features are present and they are specifically related to the Bluetooth low energy standard
like the Bluetooth channel usage.

UM2379
BlueNRG-1, BlueNRG-2 radio operation

UM2379 - Rev 1 page 2/29

2 Data packet format

There is only one packet format used in the BlueNRG-1 and BlueNRG-2, it is shown below.

Figure 1. Packet format

Preamble NetworkID Header Data CRC
BlueNRG-1
BlueNRG-2

1 byte
1 byte

4 bytes
4 bytes

1 byte
1 byte

0 - 31 bytes
0 - 255 bytes

3 bytes
3 bytes

Length
1 byte
1 byte

A packet consists of six fields, in which only four of them are user-accessible:
• Preamble is not user-accessible; its length is 1 byte.
• NetworkID is the address of the device, expressed in 4 bytes. The receiver device accepts only those

packets whose NetworkID field is the same as the one in its own address. The NetworkID should satisfy the
following rules:
– It has no more than 6 consecutive zeros or ones
– It has not all 4 octets equals
– It has no more than 24 transitions
– It has a minimum of 2 transitions in the most significant 6 bits

The NetworkID field is user-accessible through API RADIO_SetTxAttributes() or API
HAL_RADIO_SetNetworkID().

• Header can accept any values and its length is 1 byte. It can be used as a byte of data, but no encryption is
applied to this field.

• Length represents the length of the data field. The user sets this value for a packet to transmit or read this
value from a received packet.
The maximum value of the length field is 31 for the BlueNRG-1 and 255 for the BlueNRG-2, with some
exceptions. If the encryption is enabled, at the maximum length of the data field, it must subtract 4 bytes.
These 4 bytes are reserved for the MIC field added to the packet as shown in Figure 2. Packet format with
encryption enabled. If the radio works in the Bluetooth advertising channels (37, 38 and 39), then the
received data field is limited to 37 bytes for the BlueNRG-1 and 43 bytes for the BlueNRG-2. The table
below contains a summary about the length field.

Table 1. Values in bytes for the length field

Data channels Data channels with
encryption Advertising channels Advertising channels

with encryption

BlueNRG-1 31 27 37 27

BlueNRG-2 255 251 255 251

To avoid memory corruption due to bad length field received (in packet where the CRC check fails), the user
must reserve the maximum memory for packet received that includes 2 bytes of header field as well as the
data field

• Data can accept any value and its length is decided by the length field. The user defines a memory buffer in
order to set the header field, the length field and data field as follows:

PacketBuffer[0] = 0x01; // Header field
PacketBuffer[1] = 5; // Length field
PacketBuffer[2] = 0x02; // Data byte 1

UM2379
Data packet format

UM2379 - Rev 1 page 3/29

PacketBuffer[3] = 0x03; // Data byte 2
PacketBuffer[4] = 0x04; // Data byte 3
PacketBuffer[5] = 0x05; // Data byte 4
PacketBuffer[6] = 0x06; // Data byte 5

If the encryption is enabled, only the data field is encrypted. The other fields including the header field and
the length field are not encrypted.

• CRC is not user-accessible. It is used to identify corrupted packets. Its length is 3 bytes. The user can
configure the initial value for the CRC calculation, except in the advertising channels where the initial value
must be 0x555555.

Figure 2. Packet format with encryption enabled

Preamble NetworkID Header Data CRC
BlueNRG-1
BlueNRG-2

1 byte
1 byte

4 bytes
4 bytes

1 byte
1 byte

0 - 27 bytes
0 - 251 bytes

3 bytes
3 bytes

Length
1 byte
1 byte

MIC
4 bytes
4 bytes

UM2379
Data packet format

UM2379 - Rev 1 page 4/29

3.1 Description
The radio low level driver consists of four files:
• BlueNRG1_Radio.h and BlueNRG1_Radio.c are inside the Peripheral Driver folder
• hal_radio.h and hal_radio.c are inside the HAL Driver folder

The figure below shows the layers of a common application using the radio low level driver.

Figure 3. Framework of an application (radio low level included)

UM2379
Description

UM2379 - Rev 1 page 5/29

3.2 API architecture
The radio low level driver interface provides a set of APIs (file BlueNRG1_radio.c) which allows the following
functions to be addressed :
• Radio initialization
• Encryption
• Communication channel management
• Set of network ID, CRC initial value, power level
• Test commands (tone)

List of APIs managing these settings are:
• RADIO_Init()
• RADIO_SetEncryptionCount()
• RADIO_SetEncryptionAttributes()
• RADIO_SetEncryptFlags()
• RADIO_EncryptPlainData()
• RADIO_Set_ChannelMap()
• RADIO_SetChannel()
• RADIO_SetTxAttributes()
• RADIO_SetBackToBackTime()
• RADIO_SetTxPower()
• RADIO_SetReservedArea()
• RADIO_MakeActionPacketPending()
• RADIO_StopActivity()
• RADIO_StartTone()
• RADIO_StopTone()

The radio low level driver uses a central data structure that consists of a linked list of ActionPackets. An
ActionPacket is a structure (C language) that in conjunction with the APIs above defines a complete operation of
transmission or reception. It also includes a number of callbacks, which allow the user to define a chain of actions.
The ActionPacket is composed of input fields used to configure the action and output fields holding information on
the action once it has been executed. The table below with the information on these fields.

Table 2. ActionPacket structure

Parameter name Input/output Summary

StateMachineNo IN This parameter indicates the state machine number for
this action. From 0 to 7

ActionTag IN
The configuration of the current action.

Details of the flags in the table ActionTag

WakeupTime IN

Contains the wake-up time in microseconds if it is
relative. It should not be more than 24 bits if it is
absolute.

It only applies if TIMER_WAKEUP flag is set in
ActionTag

ReceiveWindowLength IN Sets RX window size in microseconds. Applicable only
for RX actions

*next_true IN Pointer to next ActionPacket if condRoutine() returns
TRUE

*next_false IN Pointer to next ActionPacket if condRoutine() returns
FALSE

UM2379
API architecture

UM2379 - Rev 1 page 6/29

Parameter name Input/output Summary

(*condRoutine)

(ActionPacket*)
IN

User callback necessary to decide the next action in a
linked list of ActionPackets. The routine is time critical
and it must end within 45 us.

(*dataRoutine)

(ActionPacket*, ActionPacket*)
IN User callback to manage data

*data IN/OUT

Pointer to the array with the data to send (header, length
and data field), for TX.

Pointer to the array where the data received are copied,
for RX. In case of RX, the array must have the max. size
as explained in Section 2 Data packet format

timestamp_receive OUT

This field contains the timestamp when a packet is
received. It is intended to be used in the dataRoutine()
callback routine. RX only.

It is expressed in period of 512 kHz clock. To convert it
to microseconds it should be multiplied by (1000/512)

It has a wrapping value equals to (2^24)/512000

status OUT The status register with the information on the action.
Details on the status in the table status field description

rssi OUT The RSSI of the packet was received with. RX only.

The ActionTag is a bitmask used to enable different features of the radio, used by the ActionPacket. The table
below explains these parameters.

Table 3. ActionTag field description

Bit Name Description

7 TIMESTAMP_POSITION

This bit sets where the position of the timestamp is taken, at
the beginning of the packet or at the end of it. RX only.

0: end of the packet

1: beginning of the packet

6 RESERVED RESERVED

5 RELATIVE

It determines if the WakeupTime field of the ActionPacket is
considered as absolute time or relative time to the current.

0: absolute (not suggested)

1: relative

4 INC_CHAN

This bit activates automatic channel increment. The API
RADIO_SetChannel()(1) sets the value of the increment.

0: no increment

1: automatic increment

3 RESERVED RESERVED

2 TIMER_WAKEUP

The bit determines if the action (RX or TX) is going to be
executed based on the back-to-back time or based on the
WakeupTime.

0: based on the back-to-back time (default 150 µs).

1: based on the WakeupTime

UM2379
API architecture

UM2379 - Rev 1 page 7/29

Bit Name Description

1 TXRX

This bit determines if the action is an RX action or a TX
action.

1: TX action

0: RX action

0 PLL_TRIG

This bit activates the radio frequency PLL calibration.

0: radio frequency calibration disabled.

1: radio frequency calibration enabled.

User should set this bit only if TIMER_WAKEUP is set to 1

1. In the advertising channels, the frequency hopping is limited to 1 hop.

The table below describes the different bits of the status field in the ActionPacket.

Table 4. Status field description

Bit name Bit position Description

IRQ_RCV_OK 31 The packet is received, and the CRC is valid

IRQ_CRC_ERR 30 The packet is received with CRC error or timeout error (1)

RESERVED 29:27 RESERVED

IRQ_TIMEOUT 26 No packet received within the defined RX time window

RESERVED 25 RESERVED

IRQ_DONE 24 Requested action (TX or RX) has been executed

IRQ_ERR_ENC 23 Encryption error. The packet received has an error in the MIC
field

IRQ_TX_OK 22 The packet has been sent successfully

RESERVED 20:19 RESERVED

BIT_TX_MODE 18 Previous ActionPacket was a TX action

RESERVED 17:0 RESERVED

1. It is set when there is an CRC error or timeout error. So, to know whether it is a pure CRC error, IRQ_CRC_ERR and
IRQ_TIMEOUT should be checked together.

UM2379
API architecture

UM2379 - Rev 1 page 8/29

4 How to write an application

There are two ways to write an application: the former is based on the HAL layer composed mainly of four APIs,
and the latter based on the use of the ActionPacket data structure.

4.1 HAL layer approach
The simplest way is to use a set of APIs provided in HAL radio driver (file hal_radio.c), that allows the radio to be
configured to fulfill the actions below:
• Send a packet
• Send a packet and then wait for the reception of a packet (ACK)
• Wait for a packet
• Wait for a packet and if the packet is received, a packet is send back (ACK)

In this contest, the user does not need to use the ActionPacket to configure the operations of the radio, but it is
requested a pointer to a user callback, which handles different information according to the executed action:
• TX action: IRQ status
• RX action: IRQ status, RSSI, timestamp and data received

The user callback is called in interrupt mode, in particular in the ISR Blue_Handler(), that has the maximum
priority among the other ISR functions of the radio.

UM2379
How to write an application

UM2379 - Rev 1 page 9/29

4.2 TX example with HAL layer
Below an example where the radio is programmed to send a packet periodically, with a time between two
consecutive packets of 10 ms. Each packet contains 3 bytes of data.
The ActionPacket structure is not used directly in this example, but it is used through the APIs of the HAL layer.

uint8_t send_packet_flag = 1;
uint8_t packet[5];
int main(void)
{
 SystemInit();

 /* Radio configuration – HS start up time, external LS clock enable, whitening e
nable */
 RADIO_Init(1, 0, NULL, ENABLE);
 /* Set the Network ID */
 HAL_RADIO_SetNetworkID(0x88DF88DF);
 /* Set the RF output power at max level */
 RADIO_SetTxPower(MAX_OUTPUT_RF_POWER);
 packet[0] = 1; /* Header field */
 packet[1] = 3; /* Length field */
 packet[2] = 2; /* Data */
 packet[3] = 3;
 packet[4] = 4;
 while(1) {
 /* If ready, a new action is scheduled */
 if(send_packet_flag == 1) {
 send_packet_flag = 0;
 /* Schedule the action with the parameter - channel, wakeupTime, relative ti
me, dataCallback */
 HAL_RADIO_SendPacket(22, 10000, 1, packet, TxCallback);
 }
 }
 return 0;
}

void Blue_Handler(void)
{
 RADIO_IRQHandler();
}

The user callback, TxCallback(), is defined in order to re-schedule another send packet action as follows:

uint8_t TxCallback(ActionPacket* p, ActionPacket* next)
{
 /* Check if the TX action is ended */
 if(p ->status & BIT_TX_MODE) != 0) {
 /* Triggers the next transmission */
 send_packet_flag = 1;
 }
 return TRUE;
}

UM2379
TX example with HAL layer

UM2379 - Rev 1 page 10/29

4.3 RX example with HAL layer
Below an example where the radio is programmed to go to RX state periodically. The delay between each RX
operation is 9 ms. This ensures that after the first good reception, the RX device wakes up always 1 ms before
the TX device (configured in the Section 4.2 TX example with HAL layer) starts to send the packet (guard time).
The RX timeout is 20 ms. This value is big enough to ensure that at least one packet should be received.
The ActionPacket structure is not used directly in this example, but it is used through the APIs of the HAL layer.

uint8_t rx_flag = 1;
uint8_t packet[MAX_PACKET_LENGTH];

int main(void)
{
 SystemInit();

 /* Radio configuration – HS start up time, external LS clock enable, whitening e
nable */
 RADIO_Init(1, 0, NULL, ENABLE);
 /* Set the Network ID */
 HAL_RADIO_SetNetworkID(0x88DF88DF);

 while(1) {
 /* If ready, a new action is scheduled */
 if(rx_flag == 1) {
 rx_flag = 0;

 /* Schedule the action with the parameter – channel, wakeupTime, relative ti
me, RX timeout, timestamp, dataCallback */
 HAL_RADIO_ReceivePacket (22, 9000, 1, packet, 20000, 0, RxCallback);
 }
 }
 return 0;
}

void Blue_Handler(void)
{
 RADIO_IRQHandler();
}

The user callback, RxCallback(), is defined in order to re-schedule another reception and retrieve the information
if a packet has been received as follows:

uint8_t RxCallback(ActionPacket* p, ActionPacket* next)
{
 /* Check if the RX action is ended */
 if((p->status & BIT_TX_MODE) == 0) {
 /* Check if a packet with a valid CRC is received */
 if((p->status & IRQ_RCV_OK) != 0) {
 /* Retrieve the information from the packet */
 // p->data contains the data received: header field | length field | data fi
eld
 // p->rssi
 // p->timestamp_receive
 }
 /* Check if a RX timeout occurred */
 else if((p->status & IRQ_TIMEOUT) != 0) {
 }

UM2379
RX example with HAL layer

UM2379 - Rev 1 page 11/29

 /* Check if a CRC error occurred */
 else if ((p->status & IRQ_CRC_ERR) != 0) {
 }
 }
 /* Triggers the next reception */
 rx_flag = 1;
 return TRUE;
}

UM2379
RX example with HAL layer

UM2379 - Rev 1 page 12/29

4.4 ActionPacket approach
The most flexible way is to declare a number of ActionPackets, according to the actions that must be taken by the
radio. Then the user fills these structures with the description of the operations to execute. For each
ActionPacket, the API RADIO_SetReservedArea() must be called in order to initialize the information of
ActionPacket itself.
To start the execution of an ActionPacket, the API RADIO_MakeActionPacketPending() has to be called. After
this, the application could:
• Makes sure that another ActionPacket is called, by linking the ActionPackets together and then decide which

ActionPacket execute within the condition routine.
• Reactivate the radio execution by calling again the API RADIO_MakeActionPacketPending().

All further actions are handled in interrupt mode as for the HAL layer approach, but in this case, the user handles
two callback functions:
• Condition routine: condRoutine()

It provides the result of the current ActionPacket, and it returns TRUE or FALSE. Depending on this, the next
ActionPacket linked to the current one is selected between two possibilities:
– next_true ActionPacket1
– next_false ActionPacket2

The purpose of this mechanism is to differentiate the next action of the scheduler. For example the condition
routine in an RX action can decide:
– To schedule the next_true ActionPacket, if the packet received is good (ActionPacket1)
– To schedule the next_false ActionPacket, if the packet received is not good (ActionPacket2)

• Data routine: dataRoutine()
It provides information as data received or transmitted, RSSI, timestamps and others. Besides, it is intended
to modify the transmit data for the next packet based upon the last received data. This could be used to
modify the packet data to be sent.

The goal of the multiple callbacks is to enable the user to access to the total performance of the radio, by avoiding
time criticality bottlenecks. The goal is to bundle time critical aspects in the condition routine, and have the rest of
the framework to be non-time-critical.
The execution time of the condition routine should never exceed 45 μs.
A benefit is that the framework forces the user to split code over smaller routines, which leads to more structured
programming.
The figure below summarizes the timing of the different callbacks.

Figure 4. Callback timing

Current ActionPacket Next ActionPacket

Condition routine

~ 45 µs ~ 10 µs

Data routine

1 2

Back-to-Back time
(150 µs minimum)

1: before this time, the condition routine must end
2: before this time, the updating of the next packet must be completed

UM2379
ActionPacket approach

UM2379 - Rev 1 page 13/29

4.5 TX example with ActionPacket
Below an example where the radio is programmed to send a packet periodically, with a time between two
consecutive packets of 10 ms. Each packet contains 3 bytes of data. The ActionPacket structure is used to define
this operation.

uint8_t packet[5];
ActionPacket txAction;

int main(void)
{
 SystemInit();

 /* Radio configuration – HS start up time, external LS clock enable, whitening e
nable */
 RADIO_Init(1, 0, NULL, ENABLE);

 /* Set the channel (22) and the channel increment (0) */
 RADIO_SetChannel(STATE_MACHINE_0, 22, 0);

 /* Sets of the Network ID and the CRC initial value */
 RADIO_SetTxAttributes(STATE_MACHINE_0, 0x88DF88DF, 0x555555, 0);
 /* Set the RF output power at max level */
 RADIO_SetTxPower(MAX_OUTPUT_RF_POWER);

 packet[0] = 1; /* Header field */
 packet[1] = 3; /* Length field */
 packet[2] = 2; /* Data */
 packet[3] = 3;
 packet[4] = 4;

 /* Builds ActionPacket (txAction) for sending a single packet and schedules the
next ActionPacket as itself (txAction) */
 txAction.StateMachineNo = STATE_MACHINE_0;

 /* Make a TX action with time relative to Wakeup Timer and enable the PLL calibr
ation */
 txAction.ActionTag = RELATIVE | TIMER_WAKEUP | TXRX | PLL_TRIG;
 /* 10 ms before operation */
 txAction.WakeupTime = 10000;
 /* Not available for TX */
 txAction.ReceiveWindowLength = 0;
 /* Pointer to the data to send */
 txAction.data = packet;
 /* Pointer to next ActionPacket: txAction */
 txAction.next_true = &txAction;
 /* Do nothing */
 txAction.next_false = NULL_0;
 /* Condition routine for selecting next ActionPacket*/
 txAction.condRoutine = conditionRoutine;
 /* Data routine called after conditionRoutine */
 txAction.dataRoutine = dataRoutine;

 /* Records the ActionPacket information */
 RADIO_SetReservedArea(&txAction);
 /* Execute the ActionPacket */
 RADIO_MakeActionPacketPending(&txAction);

UM2379
TX example with ActionPacket

UM2379 - Rev 1 page 14/29

 while(1) {
 }
 return 0;
}

void Blue_Handler(void)
{
 RADIO_IRQHandler();
}

The condition callback triggers the execution of next schedule ActionPacket (txAction), while the data callback is
not used in this case, but must be defined anyway.

uint8_t conditionRoutine(ActionPacket* p)
{
 /* Check if the TX action is ended */
 if(p ->status & BIT_TX_MODE) != 0) {

 }
 /* The TRUE schedules the next_true action: txAction */
 return TRUE;
}

uint8_t dataRoutine(ActionPacket* p, ActionPacket* next)
{
 return TRUE;
}

UM2379
TX example with ActionPacket

UM2379 - Rev 1 page 15/29

4.6 RX example with ActionPacket
Below an example where the radio is programmed to go to RX state periodically. The delay between each RX
operation is 9 ms. This ensures that after the first good reception, the RX device wakes up always 1 ms before
the TX device (configured in Section 4.5 TX example with ActionPacket) starts to send the packet (guard time).
The RX timeout is 20 ms. This value is big enough to ensure that at least one packet should be received.
The ActionPacket structure is used to define this operation.

uint8_t packet[MAX_PACKET_LENGTH];
ActionPacket rxAction;

int main(void)
{
 SystemInit();

 /* Radio configuration – HS start up time, external LS clock enable, whitening e
nable */
 RADIO_Init(1, 0, NULL, ENABLE);

 /* Set the channel (22) and the channel increment (0) */
 RADIO_SetChannel(STATE_MACHINE_0, 22, 0);

 /* Sets of the Network ID and the CRC initial value */
 RADIO_SetTxAttributes(STATE_MACHINE_0, 0x88DF88DF, 0x555555, 0);

 /* Builds ActionPacket (rxAction) to make a reception and schedules the next Act
ionPacket at itself (rxAction) */
 rxAction.StateMachineNo = STATE_MACHINE_0;

 /* Make a RX action with time relative to Wakeup Timer and enable the PLL calibr
ation */
 rxAction.ActionTag = RELATIVE | TIMER_WAKEUP | PLL_TRIG;
 /* 9 ms before operation */
 rxAction.WakeupTime = 9000;
 /* RX timeout 20 ms*/
 rxAction.ReceiveWindowLength = 20000;
 /* Pointer to the array where the data are received */
 rxAction.data = packet;
 /* Pointer to next ActionPacket: rxAction */
 rxAction.next_true = &rxAction;
 /* Do nothing */
 rxAction.next_false = NULL_0;
 /* Condition routine for selecting next ActionPacket*/
 rxAction.condRoutine = conditionRoutine;
 /* Data routine called after conditionRoutine : RSSI, RX timestamps, data receiv
ed or data modification before next transmission*/
 rxAction.dataRoutine = dataRoutine;

 /* Records the ActionPacket information */
 RADIO_SetReservedArea(&rxAction);
 /* Execute the ActionPacket */
 RADIO_MakeActionPacketPending(&rxAction);

 while(1) {
 }
 return 0;
}

UM2379
RX example with ActionPacket

UM2379 - Rev 1 page 16/29

void Blue_Handler(void)
{
 RADIO_IRQHandler();
}

The condition callback triggers the execution of next schedule ActionPacket (rxAction), while the data callback is
not used in this case, but must be defined anyway.

uint8_t conditionRoutine(ActionPacket* p)
{
 /* Check if the RX action is ended */
 if((p->status & BIT_TX_MODE) == 0) {
 /* Check if a packet with a valid CRC is received */
 if((p->status & IRQ_RCV_OK) != 0) {
 }
 /* Check if a RX timeout occurred */
 else if((p->status & IRQ_TIMEOUT) != 0) {
 }
 /* Check if a CRC error occurred */
 else if ((p->status & IRQ_CRC_ERR) != 0) {
 }
 }
 /* Triggers the next reception */
 return TRUE;
}

uint8_t dataRoutine(ActionPacket* p, ActionPacket* next)
{
 /* Check if the RX action is ended */
 if((p->status & BIT_TX_MODE) == 0) {
 /* Check if a packet with a valid CRC is received */
 if((p->status & IRQ_RCV_OK) != 0) {
 /* Retrieve the information from the packet */
 // p->data contains the data received: header field | length field | data fi
eld
 // p->rssi
 // p->timestamp_receive
 }
 /* Check if a RX timeout occurred */
 else if((p->status & IRQ_TIMEOUT) != 0) {
 }
 /* Check if a CRC error occurred */
 else if ((p->status & IRQ_CRC_ERR) != 0) {
 }
 }
 return TRUE;
}

UM2379
RX example with ActionPacket

UM2379 - Rev 1 page 17/29

5 The BlueNRG-1, BlueNRG-2 proprietary over-the-air (OTA) firmware

This section describes the BlueNRG-1, BlueNRG-2 proprietary over-the-air (OTA) firmware upgrade based on the
radio low-level driver, which provides access to the BlueNRG-1, BlueNRG-2 devices in order to send and receive
packets without using the Bluetooth link layer.
This chapter describes two roles: server and client.
The former node is in charge of sending over-the-air a binary image to the client node.
The latter node acts as a reset manager program choosing, which application to run: the OTA client application
that communicates with the server node in order to get the binary image and update its Flash memory with it; or
the application loaded previously (with OTA or in other way).

5.1 OTA server application
The OTA server application is in charge of sending over-the-air a binary image to the client node. The image is
acquired through the UART port by using the YMODEM communication protocol.
The server state machine is implemented by using two state machine routines:
• A state machine dedicated to the YMODEM protocol
• A state machine dedicated to the OTA protocol

A token is used to decide which state machine runs.

5.1.1 OTA server state machine
The following diagram shows the state machine implemented for the OTA server node including both OTA
protocol and YMODEM protocol.

Figure 5. OTA server state diagram

OTA
CONNECTION

YMODEM
SIZE

YMODEM
LOAD

OTA
SIZE

OTA
START

OTA
DATAREQ

OTA
SENDATA

YMODEM
CLOSE

OTA
COMPLETE

(3)
(3)

(6)

(1)

(1)

(2) YMODEM
WAIT

(9)

(6)

(3)

(4)

(2)

(4)

(4)

(7)

(8)

(7)

(5)

(1) Wait for a valid YMODEM communication
(2) Get valid YMODEM data
(3) Wait for a valid ACK response
(4) Valid ACK received
(5) Valid ACK received on last data packet
(6) Wait for valid data
(7) Valid data received
(8) Still data needed from YMODEM
(9) The entire binary file has been received

The YMODEM states are 4:
• SIZE: it is the first YMODEM communication where the user provides the size of the binary file.

UM2379
The BlueNRG-1, BlueNRG-2 proprietary Over-The-Air (OTA) firmware

UM2379 - Rev 1 page 18/29

• LOAD: it is the main state where up to 1 kB of data (binary image) is received and stored in RAM memory.
• WAIT: it is a transient state where it is checked if the entire binary image has been received or not.
• CLOSE: it is the state in charge of closing the YMODEM communication once the entire binary image has

been received.

Any communication issue through the UART YMODEM is handled with a general abort of the application. The
application starts over.
The OTA states are 6:
• CONNECTION: once the size of the binary image file has been received (YMODEM SIZE state), a new

firmware update sequence is started, so the server starts to send periodically packets, “connection packet”,
in order to show its availability to make a connection. If an ACK response to the “connection packet” is
received, then the connection with the client is considered established.

• SIZE: during this state, the server sends a “size packet” to the client, showing the size of the binary image
that it can send.

• START: it is the state where the client says to the server to start the Over-The-Air firmware update. The
client can send a “start packet” or a “not start packet” according to the size of the binary image received
during the SIZE state. If the server receives a “start packet”, then the OTA firmware update starts.
Otherwise, the server goes to CONNECTION state looking for a next connection.

• DATAREQ: the server receives the number of the packets to send (sequence number) from the client.
• SENDATA: the server sends the requested (through the sequence number) packet to the client. All the data

packets have the same length, but the last one that can have a reduced length. If the data request are not
still be acquired, the server goes to YMODEM LOAD state and gets the next part of the binary image.

• COMPLETE: when the client has acknowledged the last data packet, then the entire binary image has been
transferred and the OTA operation is completed.

The RF communication during the OTA operations is managed through re-transmission and a certain number of
retries is preprogrammed. If the number of retries during a single state goes through the maximum number of
retries configured, then the OTA operation is aborted and the application starts over.

5.1.2 OTA server packet frame
The packet frame used is based on the packet format of the radio low-level driver framework

Figure 6. Packet frame format

Preamble NetworkID Header Data CRC
1 byte 4 bytes 1 byte variable 3 bytes

Length
1 byte

The header of the packet is used to provide the information about the state where actually the server operates,
while the data of the packet provides the information such as the size of the binary image or the data block of the
binary image. The NetworkID can be configured by the user, and must be the same both for the server and for the
client.
The packet list sent by the server is the following:
• Connection packet: it does not contain the data field. The header is set to 0xA0

Figure 7. Connection packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xA0 3 bytes

Length
0x00

• Size packet: it contains 4 bytes of data with the information about the size of the binary image in MSB first

UM2379
OTA server application

UM2379 - Rev 1 page 19/29

Figure 8. Size packet

Preamble NetworkID Header Data CRC
1 byte 4 bytes 0xB0 Image size [4 bytes] 3 bytes

Length
0x04

• Start ACK packet: it is the response packet used to acknowledge the start packet of the client.

Figure 9. Start ACK packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xC0 3 bytes

Length
0x00

• Data request ACK packet: it is the response packet used to acknowledge the data request packet of the
client.

Figure 10. Data request ACK packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xD0 3 bytes

Length
0x00

• Send data packet: it is the packet with a block of data from the binary image. The sequence number is used
to synchronize both the client and the server, and it is used for mechanism of re-transmission.

Figure 11. Send data packet

Preamble NetworkID Header Data CRC
1 byte 4 bytes 0xE0 Seq. num. [2 bytes] 3 bytes

Length
variable Image [variable]

5.2 OTA client application
The OTA client application is a reset manager application that at the start-up takes the decision to “jump” to the
user application or activate the client OTA firmware update application.
The client OTA firmware update application is implemented through a state machine that manages the OTA
protocol and loads in the user Flash the binary image acquired.
The OTA client application memory size is below the 8 kB of Flash memory.

5.2.1 OTA client state machine
The following diagram shows the state machine for the OTA protocol implemented for the OTA client node.

UM2379
OTA client application

UM2379 - Rev 1 page 20/29

Figure 12. OTA client state diagram

OTA
CONNECTION

OTA
NOTSTART

OTA
SIZE

OTA
START

OTA
DATAREQ

OTA
GETDATA

OTA
COMPLETE

(1) Wait for a valid packet
(2) Received a valid packet
(3) Wait for a valid ACK response
(4) Received a valid ACK response
(5) Received a valid packet, but the image size

does not fit the Flash memory free space
(6) Received a valid data packet
(7) Still data needed
(8) The entire binary file has been uploaded

(1) (1)

(3)

(3)

(1)

(2)

(2)

(4)

(4)

(5)

OTA
FLASHDATA

(6)

(7)

(8)

The OTA states are 8:
• CONNECTION: it is the starting state for the client. It looks for a valid “connection packet” coming from the

server. If the “connection packet” is received, then an ACK response is sent back. This action makes the
connection with the server established.

• SIZE: during this state, the client gets the “size packet” from the server.
• START: it is the state where the client sends the “start packet” to the server. This makes the OTA firmware

update start. The “start packet” is sent only if the size of the binary image fits the user Flash memory.
• NOTSTART: the size of the binary image does not fit the user Flash memory of the client (it is too big).

Therefore, the OTA firmware update cannot start.
• DATAREQ: the client sends to the server the number of the data packets it needs. This is calculated

considering the size of the binary image and the maximum number of bytes that the server can send
(defined initially both for the client and server

• SENDATA: the clients gets the data packet requested
• FLASHDATA: in this state the data from the data packet are stored inside a buffer and once the size of the

buffer is greater or equals to the page size, all the buffer is actually written in the user Flash memory. This
operation is done also once the last block of the binary image has been received.

• COMPLETE: once the entire binary image has been uploaded in the user Flash memory, the OTA operation
is completed.

The RF communication during the OTA operation is managed through re-transmission in order to have a certain
number of retries. If the number of retries during a single state goes through the maximum number of retries
configured, then the OTA operation is aborted and the application starts over.

UM2379
OTA client application

UM2379 - Rev 1 page 21/29

5.2.2 OTA client packet frame
The packet frame used is based on the packet format of the radio low-level driver framework

Figure 13. Packet frame format (client)

Preamble NetworkID Header Data CRC
1 byte 4 bytes 1 byte variable 3 bytes

Length
1 byte

The header of the packet is used to provide the information about the state where actually the client operates,
while the data of the packet is used to request a specific block only of the binary image. The NetworkID can be
configured by the user, and must be the same both for the server and for the client.
The packet list sent by the client is the following:
• Connection ACK packet: it is the response to the connection packet of the server.

Figure 14. Connection ACK packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xA0 3 bytes

Length
0x00

• Size ACK packet: it is the response to the size packet of the server.

Figure 15. Size ACK packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xB0 3 bytes

Length
0x00

• Start packet: it is used to start OTA operation.

Figure 16. Start packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xC0 3 bytes

Length
0x00

• NotStart packet: it is used to not start OTA operation.

Figure 17. Not start packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xF0 3 bytes

Length
0x00

• Data request packet: it is used to request a specific data packet to the server.

UM2379
OTA client application

UM2379 - Rev 1 page 22/29

Figure 18. Data request packet

Preamble NetworkID Header Data CRC
1 byte 4 bytes 0xD0 Seq. num. [2 bytes] 3 bytes

Length
0x02

• Send data ACK packet: it is used to ACK the data coming from the server.

Figure 19. Send data ACK packet

Preamble NetworkID Header CRC
1 byte 4 bytes 0xE0 3 bytes

Length
0x00

5.3 OTA firmware upgrade scenario
Hereafter a scenario for an OTA firmware upgrade operation.
The scenario is made up of two devices.
• The server running the application RADIO_OTA_ResetManager, configuration OTA_Server_Ymodem.
• The client running the application RADIO_OTA_ResetManager, configuration OTA_Client.

The firmware application is located in the DK folder \Project\BlueNRG1_Periph_Examples\RADIO
\OTA_ResetManager.
The steps to follow to have the OTA firmware upgrade are listed below:
1. Power up both the BlueNRG-1 boards and their respective applications OTA_Server_Ymodem and

OTA_Client.
The OTA_Server_Ymodem board must be plugged with the USB cable to a PC.

2. Open the COM port of the board with the OTA_Server_Ymodem configuration with a serial terminal program
such as TeraTerm or similar.

3. Select the transfer mode of a file with YMODEM standard.
In TeraTerm, this can be done by opening the menu File, then select transfer, then YMODEM and press
send.

4. Select the binary image to be uploaded (.bin file). Note that the binary image must be generated as
explained in Section 5.4 How to add the OTA client function.

5. Once the YMODEM transfer has been completed, the OTA firmware upgrade of the client board is also
completed.

Inside the released DK, an example application also containing two configurations reserved to the OTA client
functionality, can be found. The example application is the TxRx, which demonstrates a point-to-point
communication by using the radio low-level driver. The configurations are:
• TX_Use_OTA_ResetManager.
• RX_Use_OTA_ResetManager.

For these two configurations, the steps explained in Section 5.4 How to add the OTA client function have been
applied. The push button PUSH2 of the STEVAL-IDB007Vx is used to run the OTA Client functionality, in order to
update the respective image.
The example is located in \Project\BlueNRG1_Periph_Examples\RADIO\TxRx.

UM2379
OTA firmware upgrade scenario

UM2379 - Rev 1 page 23/29

5.4 How to add the OTA client function
In order to integrate the OTA client functionality to an existing application, the user must follow the steps below:
1. Reserve the first three pages (8 kB) of the Flash memory for the client application. The linker symbol

“MEMORY_FLASH_APP_OFFSET” can be used for this scope as follows:
MEMORY_FLASH_APP_OFFSET =0x2000
The example application TxRx, configurations TX_Use_OTA_ResetManager or
RX_Use_OTA_ResetManager can be used as reference.

2. Include the file “radio_ota.c” and “radio_ota.h” to the application project. These files are located in \Library
\BLE_Application\OTA. The files contain the API OTA_Jump_To_Reset_Manager() used for setting the RAM
variable named ota_sw_activation and then reset the system.

3. Define a trigger to be used to jump from the user application to the OTA Client application. This trigger is
used to call the function OTA_Jump_To_Reset_Manager().

Figure 20. OTA client Flash memory layout

User APP

OTA Client 3 PAGES

Fl
as

h
m

em
or

y

UM2379
How to add the OTA client function

UM2379 - Rev 1 page 24/29

Revision history

Table 5. Document revision history

Date Version Changes

21-Jun-2018 1 Initial release.

UM2379

UM2379 - Rev 1 page 25/29

Contents

1 BlueNRG-1, BlueNRG-2 radio operation .2

2 Data packet format .3

3 Framework . 0

3.1 Description . 5

3.2 API architecture. 6

4 How to write an application .9

4.1 HAL layer approach . 9

4.2 TX example with HAL layer . 10

4.3 RX example with HAL layer . 11

4.4 ActionPacket approach. 13

4.5 TX example with ActionPacket . 14

4.6 RX example with ActionPacket . 16

5 The BlueNRG-1, BlueNRG-2 proprietary over-the-air (OTA) firmware18

5.1 OTA server application . 18

5.1.1 OTA server state machine. 18

5.1.2 OTA server packet frame . 19

5.2 OTA client application . 20

5.2.1 OTA client state machine . 20

5.2.2 OTA client packet frame . 22

5.3 OTA firmware upgrade scenario . 23

5.4 How to add the OTA client function. 24

Revision history .25

UM2379
Contents

UM2379 - Rev 1 page 26/29

List of tables
Table 1. Values in bytes for the length field . 3
Table 2. ActionPacket structure . 6
Table 3. ActionTag field description. 7
Table 4. Status field description . 8
Table 5. Document revision history . 25

UM2379
List of tables

UM2379 - Rev 1 page 27/29

List of figures
Figure 1. Packet format . 3
Figure 2. Packet format with encryption enabled. 4
Figure 3. Framework of an application (radio low level included). 5
Figure 4. Callback timing . 13
Figure 5. OTA server state diagram . 18
Figure 6. Packet frame format . 19
Figure 7. Connection packet . 19
Figure 8. Size packet . 20
Figure 9. Start ACK packet . 20
Figure 10. Data request ACK packet. 20
Figure 11. Send data packet . 20
Figure 12. OTA client state diagram . 21
Figure 13. Packet frame format (client) . 22
Figure 14. Connection ACK packet . 22
Figure 15. Size ACK packet. 22
Figure 16. Start packet . 22
Figure 17. Not start packet . 22
Figure 18. Data request packet . 23
Figure 19. Send data ACK packet . 23
Figure 20. OTA client Flash memory layout . 24

UM2379
List of figures

UM2379 - Rev 1 page 28/29

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

UM2379

UM2379 - Rev 1 page 29/29

	1 BlueNRG-1, BlueNRG-2 radio operation
	2 Data packet format
	3 Framework
	3.1 Description
	3.2 API architecture

	4 How to write an application
	4.1 HAL layer approach
	4.2 TX example with HAL layer
	4.3 RX example with HAL layer
	4.4 ActionPacket approach
	4.5 TX example with ActionPacket
	4.6 RX example with ActionPacket

	5 The BlueNRG-1, BlueNRG-2 proprietary Over-The-Air (OTA) firmware
	5.1 OTA server application
	5.1.1 OTA server state machine
	5.1.2 OTA server packet frame

	5.2 OTA client application
	5.2.1 OTA client state machine
	5.2.2 OTA client packet frame

	5.3 OTA firmware upgrade scenario
	5.4 How to add the OTA client function

	Revision history

