
June 2018 TN1271 Rev 2 1/41

1

TN1271
Technical note

SPC58xB/C/G Low Power Modes

Introduction

The technical note describes Low Power Modes available on SPC58xB/C/G devices family.
It is focused and applied to the all derivatives of the 1M, 2M, 4M and 6M dies. Intention of
this technical note is mainly to clarify proper usage case and allowed configuration
sequences preventing potential issues during mode entering and mode transitions.

The technical note assumes that user is already familiar with basic principles and
experienced with Mode Entry module configuration.

SPC58xB/C/G devices provide the Mode Entry module (MC_ME) which controls the
microcontroller mode and mode transition sequences in all functional states. It contains
configuration, control and status registers accessible for the application. Please refer to the
particular SPC58xB/C/G derivative Reference Manual for register interface detailed
description.

www.st.com

http://www.st.com

Contents TN1271

2/41 TN1271 Rev 2

Contents

1 Device summary . 6

2 Device modes overview . 7

3 Device modes and consumption reduction . 8

4 Mode transition diagram . 9

4.1 Entering low power mode . 9

4.2 Exiting low power mode . 10

4.3 Low power modes wakeup times . 10

4.4 Error low power modes management .11

5 HALT low power mode basic features . 12

6 STOP low power mode basic features . 13

7 STANDBY low power mode basic features . 14

7.1 STANDBY mode wakeup in backup RAM . 14

7.2 STANDBY mode and power supply . 14

7.3 MCU pads in STANDBY mode . 15

7.3.1 LP pads with OPC pad latching: . 15

7.4 STANDBY mode and device power management framework 17

7.5 STANDBY mode application considerations . 17

7.6 STANDBY mode entering considerations . 18

7.6.1 Recommended configuration preventing issue 18

7.6.2 Gating clock of running peripheral . 19

7.6.3 Safe sequence for STANDBY mode entering . 19

7.7 RTC / API - Real time clock/autonomous periodic interrupt 19

7.8 WKPU wakeup lines . 20

7.9 STANDBY low power clocks . 20

7.9.1 SIRC – slow 128 kHz RC oscillator . 20

7.9.2 SXTAL – slow 32 kHz crystal oscillator . 20

7.9.3 IRC – fast 16 MHz RC oscillator . 20

TN1271 Rev 2 3/41

TN1271 Contents

3

7.10 SSWU - Smart Standby Wakeup Unit . 20

7.10.1 ADC . 21

7.10.2 OPC . 22

7.10.3 PDC . 22

7.10.4 TU . 22

7.11 HSM in STANDBY mode . 23

7.12 STANDBY mode and software watchdog timer . 23

7.13 Periodical low power applications . 23

7.13.1 Contact monitoring . 24

7.13.2 Sleep mode application . 24

7.13.3 SSWU utilized in sleep mode application . 25

7.13.4 SSWU contact monitoring application example 26

7.13.5 SSWU contact monitoring and external watchdog refresh example . . . 30

8 Typical autonomous peripherals operating while in low power mode 34

9 Low power modes clock configurations . 35

10 Low power modes module configurations . 36

11 Low power modes consumptions . 37

Appendix A Document management . 39

Revision history . 40

List of tables TN1271

4/41 TN1271 Rev 2

List of tables

Table 1. Device names mappings . 6
Table 2. List of wakeup sources . 10
Table 3. STANDBY wakeup times . 10
Table 4. LP pads keeping value after STANDBY exit. 16
Table 5. MCU pads status during STANDBY mode . 16
Table 6. SSWU parameters (WAKEUP, SSWU ADC, OPC, PDC lines) . 23
Table 7. Low Power Modes Clock Configurations . 35
Table 8. RTC / API STANDBY Low Power Clock . 35
Table 9. Low Power Modes Module Configurations . 36
Table 10. STANDBY RAM Size Configurations . 36
Table 11. SPC58xGx - Typical Low Power Modes Consumptions at 25 °C. 37
Table 12. SPC58xCx - Typical Low Power Modes Consumptions at 25 °C . 37
Table 13. SPC584Bx - Typical Low Power Modes Consumptions at 25 °C . 37
Table 14. SPC582Bx - Typical Low Power Modes Consumptions at 25 °C . 37
Table 15. Typical SSWU consumptions at 25 °C . 37
Table 16. Reference documents. 39
Table 17. Document revision history . 40

TN1271 Rev 2 5/41

TN1271 List of figures

5

List of figures

Figure 1. Example of particular device mode configuration . 8
Figure 2. Mode Transitions diagram . 9
Figure 3. STANDBY mode pad keeper . 15
Figure 4. Device power management framework . 17
Figure 5. STANDBY SSWU diagram . 21
Figure 6. Sleep mode application diagram . 25
Figure 7. SSWU sleep mode sequence diagram . 26

Device summary TN1271

6/41 TN1271 Rev 2

1 Device summary

Device names families referenced within this technical note are mapped according to the
Table 1.

Note: By default SPC58xGx means cut 2.0 and higher (marking BA on the package) while
previous cut 1.1 means SPC58xGx (marking AB on the package). They are slightly
different. (STANDBY RAM start address, only INTC_1, sram0_size = 128 K...). For details
please refer to particular derivative RM and internally attached IO Definition xls file.

All current consumptions reported in this technical note are based on 5 V power supply and
at room temperature 25°C Iavg consumptions are measured on ST EVB minimodule outside
of the motherboard while debugger is disconnected.

Table 1. Device names mappings

Flash size Derivative markings

 1M SPC582Bx

 2M SPC584Bx

 4M SPC584Cx, SPC58ECx

 6M SPC584Gx, SPC58EGx, SPC58NGx

TN1271 Rev 2 7/41

TN1271 Device modes overview

40

2 Device modes overview

The Mode Entry module (MC_ME) is a SPC58xB/C/G module that allows the user to
centralize the control of all device modes and related modules / parameters within a unique
module.

SPC58 modes can be subdivided in the following groups:

 SYSTEM modes:
All the modes (RESET, TEST, SAFE, DRUN) in which the device must be initialized
and properly configured.

 RUNNING modes:
All the modes (RUN0:3) used to obtain the full device performance. Clock distribution
configuration and clock dividers could be used to optimize overall power consumption.
Device supports WAIT instruction to stop the core with the capability to restart with very
short latency.

 LOW POWER modes:
All the modes (HALT, STOP, STANDBY) used to minimize the power consumption.
STANDBY allows to reach minimal consumption. Smart Standby Wakeup Unit (SSWU)
additionally allows to use a sequence of user programmable tasks without CPU
intervention.

Device modes and consumption reduction TN1271

8/41 TN1271 Rev 2

3 Device modes and consumption reduction

Generally SPC58 architecture allows to decrease power consumption via configurable MCU
clock tree and configurable power domains.

Configurable clock tree allows to enable or disable clocks for particular peripherals or apply
clock dividers which decreases dynamic consumption depending on clock frequency.
Please refer to RM Clock generation diagram to see all clock configuration possibilities.

Power segmentation allows (via PD0/1/2/3 power domains) to disconnect particular power
domains from power and significantly decrease total current leakage.

Using Device Modes user can configure and switch between particular consumption
profiles. We can consider following levels from smallest consumption reduction to highest:

 RUN0/1/2/3 modes allows to selectively configure particular peripherals to be clocked /
gated and select clock source (FIRC, XTAL, PLL).

 Higher consumption reduction can be reached using HALT mode where all clock
sources can be still kept running but core clock is stopped. Wakeup is very fast and
performed via any interrupt or wakeup hardware event. All configurations are kept and
execution continues from stopped place.

 To reach even higher consumption reduction we can use STOP mode which does not
allow to keep PLL clocks running. Wakeup is slower and performed via any interrupt or
wakeup hardware event. All configurations are kept and execution continues from
stopped place.

 For highest power reduction we can use STANDBY mode which is based on power
domain disconnection and requires reconfiguration after wakeup. Wakeup can be
performed only via wakeup events and is similar to the reset.

Example of particular configuration use case:

Figure 1. Example of particular device mode configuration

TN1271 Rev 2 9/41

TN1271 Mode transition diagram

40

4 Mode transition diagram

The Mode Entry module (MC_ME) controls mode transitions. Entering low power mode is
performed as SW triggered transition while exiting low power mode is automatically
managed by MCU hardware triggered by wakeup events. Below diagram shows all possible
mode transitions.

Figure 2. Mode Transitions diagram

4.1 Entering low power mode

Could be performed as SW triggered transition.

It is triggered by SW writing ME_MCTL register twice:

1st write: TARGET_MODE + KEY (0x5AF0)

2nd write: TARGET_MODE + INVERTED KEY (0xA50F)

Transition completion signalling: status bit / interrupt

while (ME.GS.B.S_MTRANS);

It is recommended to implement above while loop with software timeout.

Mode transition diagram TN1271

10/41 TN1271 Rev 2

Reasons while SW triggered transition was not successfully performed:

 HALT and STOP

– While any interrupt or wakeup event is active, then MCU mode does not change
(no error)

– In case of invalid configuration or not allowed mode transition then consequently
status error flag or invalid mode interrupt is triggered

 STANDBY

– While any wakeup event is active, then MCU mode does not change (no error)

– In case of invalid configuration or not allowed mode transition then consequently
status error flag or invalid mode interrupt is triggered

4.2 Exiting low power mode

It is HW triggered transition.

It is automatically managed by MCU hardware via wakeup events.

The list of possible hardware low power mode wakeup events (sources) is described in
Table 2.

4.3 Low power modes wakeup times

User has to consider different wakeup times of the low power modes. Faster wakeup time
exhibits HALT mode while longest wakeup time exhibits STANDBY mode. HALT, STOP low
power modes controls current consumption mainly by gating clocks to particular modules
while original configuration and status is kept during LP mode.

STANDBY mode is using different approach switching of most of MCU modules from power
supply and consequently these modules has to be initialized again after wakeup.

On the other side entering to any low power mode we can consider as very fast.

Table 2. List of wakeup sources

Wakeup Interrupt Note Return

HALT √ √ —
Came back to the previous
mode from which entered in

(RUN0,1,2,3)

STOP √ √ IF SYSTEM CLOCK = ON
Came back to the previous
mode from which entered in

(RUN0,1,2,3)

STANDBY √ —
API / SSWU, RTC, WKUP
LINES

DRUN

Table 3. STANDBY wakeup times

Wakeup into ram Wakeup into FLASH

125 µs 200 - 500 µs(1)

1. According to device DCF configuration (500 µs if HSM handshaking is activated).

TN1271 Rev 2 11/41

TN1271 Mode transition diagram

40

4.4 Error low power modes management

Following rules has to be met to avoid invalid mode configuration or transition:

 Preventing Invalid Mode Configuration

– IRCON should be ON if: SYSCLK = RC_CLK

– XOSCON should be ON if: SYSCLK = OSC_CLK

– PLL0ON, PLL1ON should be ON if: SYSCLK = PLL0_CLK or PLL1_CLK

– Configuration “00” for the FLAON bit fields should not be used

– MVR must be ON if any of the following is activ“1111” PLL / FLASH

– System clock configurations marked as ’reserved’ may not be selected

– Configuration "1111" for the SYSCLK bit field is allowed only for TEST mode

 Preventing Invalid Mode Transition

– Mode requested when a transition is active (mode transition illegal)

– Target mode not valid with respect to the current (mode request illegal)

– Target mode is disabled in mode enable register (disable mode access)

– Target mode doesn’t exist (non existing mode access)

HALT low power mode basic features TN1271

12/41 TN1271 Rev 2

5 HALT low power mode basic features

This mode is intended as a first level Low Power Mode in which the platform is stopped but
system clock can remain the same as in running mode. This is a reduced activity Low Power

Mode during which the clock to the core is disabled. It can be configured to switch off analog

peripherals like PLL, Flash, Main Voltage Regulator etc. for efficient power management at
the cost of higher wakeup latency. Software request to HALT mode can be triggered from
RUN0-3 and not from DRUN.

TN1271 Rev 2 13/41

TN1271 STOP low power mode basic features

40

6 STOP low power mode basic features

This mode is intended as an advanced Low Power Mode during which the clock to the
platform is stopped. It can be configured to stop clock off most of the peripherals including
oscillator for efficient power management at the cost of higher wakeup latency. Comparing
to the HALT mode PLL can’t be enabled and additionally I/O Output Power Down Control
(PDO) allows to switch off pad power sequence driver while state of the output remains
functional. Software request to STOP mode can be triggered from RUN0-3 and not from
DRUN.

STANDBY low power mode basic features TN1271

14/41 TN1271 Rev 2

7 STANDBY low power mode basic features

This chapter provides details and focuses STANDBY Low Power Mode as this mode differs
in handling and behavior comparing to the rest of available modes.

STANDBY mode is intended:

 As an extreme Low Power Mode with everything powered down apart from the
necessary circuitry to allow device wakeup

 To be used by software to remain in the lowest power consumption state with no
requirement to wake up quickly

This is a reduced leakage Low Power Mode in which only PD0 power domain (MC_RGM,
MC_PCU, WKPU, 8K RAM, RTC_API, SSWU, ADC_STDBY, SIRC, FIRC, 32 kHz XTAL,
SSCM, and VREG) is connected and power supply is cut off from most of the device.
Optionally power domains PD2 and PD3 could be configured extending STANDBY RAM up
to 256K. Please refer to Device power management framework in Section 7.4.

All SPC58xB/C/G derivatives provide 8 K STANDBY RAM by default. It could be extended
by configuration up to maximum 256 K of STANDBY RAM on SPC58xGx. Please refer to:
STANDBY RAM Size Configurations.

Wakeup from this mode takes a relatively long time, and content is lost and must be
restored from backup.

The exit sequence of this mode is similar to the reset sequence and it is one of the main
difference from other low power modes like HALT or STOP. We need also to reconfigure al
modules after because the power supply has been cut-off in STANDBY mode.

In addition to the booting from the default Flash location after STANDBY exit, the
microcontroller can also be configured to boot from the STANDBY (backup) RAM.

7.1 STANDBY mode wakeup in backup RAM

This feature is supporting implementation of periodical STANDBY application waking up in
RAM executing special sleep application while FLASH is still kept in power down mode. It
allows to decrease current consumption as much as possible and significantly shorten
wakeup time.

Device (Master IO Core = Core 2) boots from the address specified in ME_CADDR0
register. In case that boot from backup RAM is requested, ME_CADDR0 should address
STANDBY RAM. (STANDBY RAM start address = 0x400A8000)

Before start of the STANDBY mode sequence an application has to copy special sleep
application in STANDBY RAM and configure ME_CADDR0 appropriately.

7.2 STANDBY mode and power supply

STANDBY mode is not supported when device is operating with External regulator or SMPS
regulator mode. STANDBY mode is supported only in devices configured with internal or
external ballast transistor.

TN1271 Rev 2 15/41

TN1271 STANDBY low power mode basic features

40

7.3 MCU pads in STANDBY mode

There are two types of pads during STANDBY mode:

 Not Low Power Pads
These pads are not active in STANDBY mode and when STANDBY is entered, both
input and output buffers inside the pins are disabled. Also internal pull-up / down are
disabled.
Floating state will not affect the power consumption because of isolation within the pad
is automatically applied.

 Low Power Pads
These pins are active during STANDBY mode and when the device enters into
STANDBY mode, these input pads are automatically configured in TTL mode. It is
recommended to configure wakeup pads in TTL mode in RUN modes as well.
Moreover when the device enters the STANDBY mode, the Pad-Keeper feature is
activated for inputs:
If the pad voltage level is above the pad keeper high threshold, a weak pull-up resistor
is automatically enabled.
If the pad voltage level is below the pad keeper low threshold, a weak pull-down
resistor is automatically enabled.

Figure 3. STANDBY mode pad keeper

7.3.1 LP pads with OPC pad latching:

In devices embedding SSWU module, some low power pads (see device excel pinout,
sheet ‘IO signal table’, column ‘Function’) when their output buffer is enabled before

STANDBY low power mode basic features TN1271

16/41 TN1271 Rev 2

entering in STANDBY mode, can be configured for having a predefined value exiting from
STANDBY itself. OPC latching can be individually enabled / disabled via SIUL2.SCR0
register, field PADxx_MUX_SEL.
Default configuration is OPC latching enabled.
Field PADxx_OPC_MASK allows to enable / disable OPC driving during STANDBY mode.
By default OPC channel drives pad during STANDBY mode.

Table 4. LP pads keeping value after STANDBY exit

Device LP Pads with OPC latching configurable via SIUL2.SCR0.PADxx_MUX_SEL

SPC582Bx —

SPC584Bx PB[8], PB[9], PD[5], PF[9], PF[10], PF[11], PF[12]

SPC58xCx PB[8], PB[9], PD[5], PF[9], PF[10], PF[11], PF[12]

SPC58xGx PB[11], PD[10], PF[3], PF[4], PF[9], PF[12], PF[15], PG[15]

Table 5. MCU pads status during STANDBY mode

Pad Type Before STANDBY During STANDBY After STANDBY

Non LP Pads Any OFF (HighZ) Back to reset configuration

LP Pads Any Input buffer enabled + Pad Keeper Back to reset configuration

LP Pads with OPC
Input Input buffer enabled + Pad Keeper Back to reset configuration

Output (Value) OPC enabled Keep Value

TN1271 Rev 2 17/41

TN1271 STANDBY low power mode basic features

40

7.4 STANDBY mode and device power management framework

Figure 4. Device power management framework

1. Enabled during stand-by depending on a DCF bit.

MCU provides 4 Power Domains.

Only PD2 and PD3 are configurable by the user. (PCU_PCONF2, PCU_PCONF3).

These Power Domains allows to extend STANDBY RAM up to 256 kB.

7.5 STANDBY mode application considerations

Following several normal behaviors and properties have to be considered by application
programmer utilizing STANDBY mode to gain minimal current consumption:

 All wakeup lines have to apply pull up resistors during STANDBY mode regardless if
resistor is internal or external, otherwise current leakage during STANDBY mode
occurs. (in worst case 1.9 mA per pad, typically 100 µA per pad) Other remaining I/O
pads are not power supplied during STANDBY mode, they are in high impedance state

STANDBY low power mode basic features TN1271

18/41 TN1271 Rev 2

and therefore is not possible keeping high or low logic level on these pads during
STANDBY mode. Pad Keeper functionality applies pull up/down internal resistors by
default and therefore configuring internal pull up resistors via WKUP.WIPUER.R is not
necessary any more. (Previous Body MCUs family does not provide Pad Keeper
functionality)

 If there is a STANDBY mode request while any wakeup event is active (wakeup flag is
set within WKUP.WISR.R), the microcontroller will not enter STANDBY mode and code
execution continues after STANDBY mode request command. It means all wakeup
events has to be handled and appropriate flags have to be cleared before STANDBY
mode entering.

 Additional following particular configuration values within configuration register
ME_DRUN_MC are retained through STANDBY mode: FLAON and FXOSCON. User
can speed up starting FXOSC and FLASH immediately during STANDBY exit.

 It is illegal to switch the Flash directly from low-power mode to power-down mode or
from power-down mode to low-power mode. The MC_ME, however, does not prevent
this nor does it flag it.

 After MCU POR Clock Monitor Unit 0 parameter RCDIV is set to
CMU_0.CSR.B.RCDIV = 3. But it is cleared during STANDBY mode. For XTAL<=16
MHz has to be set again after wakeup from STANDBY otherwise next mode transition
into run mode using XTAL can stall.

7.6 STANDBY mode entering considerations

This chapter provides only internal and specific hardware information concerning Mode
Entry module needed to better understand the behavior during transition into STANDBY
mode in particular configuration sequence which can causes issue. Basic information about
Module Entry module are available inside RM.

Concerning STANDBY mode, RM provides important notes and warnings. The following
warning is highlighted inside RM:

The MC_ME automatically requests peripherals to enter their stop modes if the power
domains in which they are residing are to be turned off because of mode change. However,
it is good practice for software to ensure that those peripherals which are to be powered
down are configured in the MC_ME to be frozen (see reference manual SPC58xCx rev2
chapter 58.4.3.3 “Peripheral clocks disable”).

We can say that Auxiliary Clock Dividers also need to be kept enabled (if previously
enabled) before attempting STANDBY mode entry transition.

In general, it is not recommended to disable these Auxiliary Clock Dividers while managing
clock gating to the peripherals through MC_ME. Whenever a peripheral is requested to be
frozen, there is special handshake executed between MC_ME and the peripheral prior to
gating the clock. In this handshake, a stop request is sent to peripheral and ME waits for an
acknowledgment before proceeding to further steps of mode transition. While executing this
handshake, clock to the peripheral must be present.

7.6.1 Recommended configuration preventing issue

Disabling auxiliary clock dividers is not considered an effective action to prevent the issue.
The suggestion is to use PCTL / PC configuration registers for particular module clock
gating when needed, instead of disabling Auxiliary Clock Dividers.

TN1271 Rev 2 19/41

TN1271 STANDBY low power mode basic features

40

Next recommendation is to ensure that those peripherals, that should be powered down in
STANDBY mode are configured in the MC_ME to be frozen (module clock is gated by
PCTL/PC registers).

7.6.2 Gating clock of running peripheral

Before peripheral gating clock, it is required to stop peripheral which is configured to trigger
interrupt. Otherwise consequent mode transition can stall. It affects all mode transitions, not
only transition in STANDBY mode.

In other words all running peripherals (e.g. timers triggering interrupts) should be properly
stopped before gating clock to them via PCTL / PC registers.

7.6.3 Safe sequence for STANDBY mode entering

1. Stop all peripherals

2. Handle all pending interrupts (e.g. for DSPI, all data have to be transmitted out and
received data read out from receive FIFO and related flags TCF and RFDF cleared)

3. Disable interrupts

4. Disable clock for all clocked peripherals via PCTL and move to DRUN with FIRC clock

5. Handle and clear all wakeup flags (WKPU.WISR)

6. Enter STANDBY mode

Recommended sequence after wakeup from STANDBY mode:

1. After wakeup inspect RGM.FES and DES registers (if any reset or POR event
occurred)

2. According to previous status inspect FCCU status registers

3. Inspect wakeup flags WKPU.WISR (to know which source triggered wakeup)

4. Handle flagged events and clear flags before new STANDBY period

7.7 RTC / API - Real time clock/autonomous periodic interrupt

It is one 32 bit free running timer available during STANDBY mode and allows to generate
internal wakeup event. Runs in all modes of operation, including normal RESET.

3 selectable counter clock sources in STANDBY mode:

 SIRC (128 kHz)

 SXOSC (32 kHz) (pads for external SXTAL connection are not available on all
packages)

 IRCOSC (16 MHz)

Periphery provides configurable wakeup event for RTC match, API match (SSWU), and
RTC rollover. API allows autonomous periodic wakeup generation. It means next offset is
recalculated by hw automatically. RTC comparator needs to recalculate next offset by
software.

2 compare registers defining wakeup period:

 APIVAL - API 32 bit compare value defines period for API wakeup source

 RTCVAL - RTC 32 bit compare value defines period for RTC wakeup source

STANDBY low power mode basic features TN1271

20/41 TN1271 Rev 2

7.8 WKPU wakeup lines

MCU provides two internal wakeup lines which are mapped as follows:

SSWU in not available on SPC582Bx.

7.9 STANDBY low power clocks

7.9.1 SIRC – slow 128 kHz RC oscillator

SIRC can be enabled in STANDBY mode via register RC1024K_DIG:

RC1024K_DIG.CTL.B.LPRCON_STDBY = 1;

SIRC can be enabled in RUNing modes via register:

PMCDIG.MISC_CTRL_REG.B.LPRCREG_ENB = 0;

PMCDIG.MISC_CTRL_REG.B.RCOSC_1M_ENB = 0;

Warning: SIRC (128 kHz) can’t be trimmed.

7.9.2 SXTAL – slow 32 kHz crystal oscillator

SXTAL is not available on SPC58xBx and not on all packages and not populated on ST
SPC58 EVBs. On SPC58xC/G it can be enabled in OSC32K_DIG.CTL.R register:

OSC32K_DIG.CTL.B.OSCON = 1;

7.9.3 IRC – fast 16 MHz RC oscillator

16MHz Fast IRC can be enabled in MC_ME.STANDBY0_MC.R register:

MC_ME.STANDBY0_MC.B.IRCON = 1;

7.10 SSWU - Smart Standby Wakeup Unit

SSWU is not available on SPC582Bx and RTC/API wakeup channel WKPU0 is available for
user. Otherwise SSWU is linked to the RTC / API wakeup channel.

The Smart Standby Wake-Up Unit (hereafter referred as SSWU) is aimed to reduce further
the device power consumption by scheduling, on a RTC time basis, a sequence of user-
programmable tasks, which are executed without the CPU intervention and which are
intended to determine whether the whole MCU shall be waken-up or not, based on user-

TN1271 Rev 2 21/41

TN1271 STANDBY low power mode basic features

40

defined digital and / or analog measurements. In addition, it shall be possible to schedule a
system wake-up based on a user defined time interval.

SSWU consists of following blocks:

 RTC = Real Time Clock

 Stand-by eCTU = Stand-by Enhanced Cross Triggering Unit

 CD = Command Decoder

 ADC = Analog Digital Converter

 PDC = Port Digital Comparator

 OPC = Output Pin Control block

 TU = Timer Unit

See Section 7.13.4 for an example about blocks setup during SSWU initialization.

Figure 5. STANDBY SSWU diagram

The SSWU IPs is clocked with the internal 16 MHz IRC oscillator.

Even if IRCOSC is configured off in STANDBY through the ME_STANDBY0_MC register, it

will be automatically turned-on once SSWU is activated. The IRCOSC will be automatically
turned off after SSWU Stop command is executed. The ADC IP runs at 8 MHz (IRCOSC
clock divided by 2).

7.10.1 ADC

The ADC block is a reduced, low-power version of the Successive Approximation Register
Analog-to-Digital Converter called 10-bit SARADC_STDBY. Its main functionality is to

STANDBY low power mode basic features TN1271

22/41 TN1271 Rev 2

compare the converted value towards a watchdog, and trigger a wake-up event in case the
value is out of the intended range. The watchdog thresholds (low and upper limits) are
linked (that is pre-programmed during the RUN mode) to each ADC channel, so that a
specific channel has its own threshold limit. The ADC configuration comprises:

 24 ADC internal channels (maximum amount, depends on particular derivative and
package)

 8 ADC external channels

 4 different configurable Analog Watchdog threshold values

7.10.2 OPC

The OPC block is used to drive the digital output pin to a desired level. The intended
functionality is to open / close external switches. The Stand-by eCTU command parameter
contains the port pin and level.

There is a possibility to configure OPC pads behavior in order to keep previous value.

Soc Configuration Register 0 (SIUL2_SCR0) allows to configure behaviors as follows:

1. Upon entering STANDBY mode, the OPC pad values can be maintained via
SIUL2_SCR0.PADx_OPC_MASK
By default OPC pad is driven during the STANDBY mode.

2. Upon exiting from STANDBY mode, the OPC pad values can be maintained via
SIUL2_SCR0.PADx_MUX_SEL
By default pad value is maintained.

7.10.3 PDC

The PDC block is targeted to measure the level of a set of pins (up to 16) and to generate a
system wake-up event when the level is acknowledged at a specified level and, optionally,
for a certain time. Two commands are needed for the PDC:

 CMP 0 / CMP 1: to compare a pin level versus a 0 or 1

 CHECKOUT: to trigger a wake-up in case the result of the CMP commands for that
specific pin executed from the beginning of the Smart Wake-up Sequence is always OK
For each pin, the PDC shall latch the comparison results, which shall report whether
the target value was always matched (whenever a PDC.CMP0/1 command is
launched) or not. When checkout command is launched for a specific pin, it will trigger
a wake-up event only if the target level was steadily acknowledged along all the
comparisons done for that pin.
Useful for contact monitoring within Sleep Mode Applications.

7.10.4 TU

The TU block is used to create a programmable DELAY between the command execution. It
needs only one command with the DELAY value programmed as a parameter. With clock
period = 62.5 ns and WAIT value settable up to 128, the DELAY is programmable up to 8 μs.

Further there could be applied SSWU PRESCALER (up to divider 128) an prolong max
delay value up to 1.016 msec.

PMCDIG.SSWU_CTRL_REG.B.SSWU_PRESCALER = 0; (SSWU PRESCALER = 1)

Time delay = DELAY * TRC16MHz* TUPRESC

TN1271 Rev 2 23/41

TN1271 STANDBY low power mode basic features

40

In case the TU parameter (DELAY time) is set to 0, this is decoded as a command request
to stop the whole SSWU sequence.

The two commands which can cause wakeup (ADC-ADC or ADC-PDC or PDC-PDC) shall
be not executed one after another without inserting a TU delay command.

Starting to executed the first command, as programmed in the pointer associated to a
specific SU trigger, each command is executed after the previous one is completed. The
"LC" command flag determines whether the current command is the last one to be executed
for the sequence of commands being executed.

The Table 6 shows maximum number of available SSWU/WAKEUP lines. For smaller MCU
packages it can be fewer and has to be aligned with IO definition file (SPC584Bx and
SPC58xCx – OPC0 is missing) for particular selected MCU derivative and package.

7.11 HSM in STANDBY mode

HSM dedicated RAM (40 KB) kept during STANDBY mode can be 8 kB when appropriately
configured via security DCF record. HSM_EN_STANDBY option keeps 8 kB of HSM RAM
during STANDBY mode and allows HSM to boot from its RAM (ME_CADDR4) after
STANDBY mode exit (wakeup).

7.12 STANDBY mode and software watchdog timer

There is not possible to run MCU internal SWT during STANDBY mode. Therefore it is
necessary to use external one. Typically external Software Watchdog Timer is located in so
called SBC (System Basis Chip) and refreshed via SPI during periodical wakeup period.
This approach is used by Periodical Low Power Applications described in the next chapter.

7.13 Periodical low power applications

Periodical Low Power Applications refers to special “Sleep Mode” applications where
minimal consumption is paramount. It is applied e.g. in car central body module during
parking while power supply is never switched off. Some limited functionality is still required.

Approach allows to reach lowest average consumption approx. 100 µA @25 °C providing
contact monitoring via SSWU on SPC584Bx.

Table 6. SSWU parameters (WAKEUP, SSWU ADC, OPC, PDC lines)

Device
ADC

CHNLs
ADC Ext
CHNLs(1)

ADC WDGs
(2)

OPC PDC WKPU EXT WKPU INT

SPC582Bx NA NA NA NA NA 24 API, RTC

SPC584Bx 24 8 4 7 14 24 SSWU, RTC

SPC58xCx 24 8 4 7 29 30 SSWU,RTC

SPC58xGx 8 8 4 8 4 30 SSWU, RTC

1. ADC External channels require analog multiplexer selection signals (via OPC).

2. ADC Watchdog different threshold levels.

STANDBY low power mode basic features TN1271

24/41 TN1271 Rev 2

External watchdog refresh via SPI or Real Time Clock management (temperature
compensation) can be performed only via wakeup into Sleep RAM based special
application.

7.13.1 Contact monitoring

Functionality to periodically determine contact state change and wakeup and switch to Main
application in case of confirmed external event. Time base for periodical timing is usually
RTC / API and contacts could be digital or analog. Even sensors connected via LIN or SPI
can be monitored. External watchdog refresh connected via SPI is usually managed as well.

Second type of contacts (wakeup contacts) are connected directly to MCU’s specially
designed WKPU inputs which allows immediate wakeup from STANDBY mode. These are
usually used for fail-safe input signals and wakeup signal from SBC (System Basic Chip).
SBC usually contains CAN and LIN transceivers and determines immediate wakeup from
STANDBY mode via CAN or LIN wakeup message.

7.13.2 Sleep mode application

So called small compact Sleep Mode Application runs out of first part of RAM which is
backup during STANDBY low power mode and while flash is still kept in low power down
mode and system clock is FIRC 16 MHz.

In addition to the booting from the default location after STANDBY exit, the microcontroller
can also be configured to boot from the backup RAM. Register ME_CADDR0 allows to
configure boot starting address (backup RAM start address = 0x400A8000).

TN1271 Rev 2 25/41

TN1271 STANDBY low power mode basic features

40

Figure 6. Sleep mode application diagram

7.13.3 SSWU utilized in sleep mode application

Smart Standby Wakeup Unit (STANDBY eCTU) is convenient to perform Periodical Sleep
Mode application where is no requirement for more complex computational task as
temperature compensation, SPI, LIN communication etc. Then wake up and run special
RAM sleep application is not necessary at all and sequence is periodically performed
without any CPU intervention.

STANDBY low power mode basic features TN1271

26/41 TN1271 Rev 2

Figure 7. SSWU sleep mode sequence diagram

7.13.4 SSWU contact monitoring application example

This is an example application performing contact monitoring each 50 msec via SSWU on
SPC58xGx cut 2.1. Particular Errata PS1816 present on cut 2.1 has to be taken into
account. For SPC58xCx/SPC584Bx additionally Errata PS2370 has to be considered as
well.

Application shows how to configure SSWU on SPC58xGx to perform the following contact
monitoring sequence:

1. Periodical contact monitoring each 50 msec

2. 5x ANALOG INPUTS

3. 4x DIGITAL INPUTS

4. 1x DIGITAL OUTPUT

TN1271 Rev 2 27/41

TN1271 STANDBY low power mode basic features

40

7.13.4.1 SSWU initialization code sequence:

/**

* FUNCTION : SSWU_init

*

* DESCRIPTION : Inits SSWU

*

*

* INPUTS :

* - None

*

* OUTPUTS

* - None

**/

void SSWU_init() {

 //--

 // 5x ANALOG INPUTS + 4x DIGITAL INPUTS + 1x DIGITAL OUTPUT

 // CH0 AN88, CH1 AN89, CH2 AN90, CH3 AN91, CH4 AN92 (ANALOG INPUTS)

 // PDC0, PDC1, PDC2, PDC3 (DIGITAL INPUTS)

 // OPC0 (DIGITAL OUTPUT)

 //--

 //Configure SSWU clock prescaler => div 1

 PMCDIG.SSWU_CTRL_REG.B.SSWU_PRESCALER = 0;

 //----------------COMMAND BLOCK START SIGNAL (1x DIGITAL OUTPUT) ---------

 //First command list

 STDBY_CTU_0.CLR[0].R = 0x20000801; //set OPC0 pin to '1'

STANDBY low power mode basic features TN1271

28/41 TN1271 Rev 2

 //-------------------------- 5x ANALOG INPUTS ------------------------------

 STDBY_CTU_0.CLR[1].R = 0x20000000; //convert ADC_STANDBY_CH0 (AN88)

 STDBY_CTU_0.CLR[2].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[3].R = 0x20000100; //convert ADC_STANDBY_CH1 (AN89)

 STDBY_CTU_0.CLR[4].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[5].R = 0x20000200; //convert ADC_STANDBY_CH2 (AN90)

 STDBY_CTU_0.CLR[6].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[7].R = 0x20000300; //convert ADC_STANDBY_CH3 (AN91)

 STDBY_CTU_0.CLR[8].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[9].R = 0x20000400; //convert ADC_STANDBY_CH4 (AN92)

 STDBY_CTU_0.CLR[10].R = 0x20003F03; //set delay to 63 => 4 usec

 //------------------------- 4x DIGITAL INPUTS ------------------------------

 STDBY_CTU_0.CLR[11].R = 0x20002002; //test PDC0 input to '1'

 STDBY_CTU_0.CLR[12].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[13].R = 0x20004002; //CHECKOUT PDC0 input

 STDBY_CTU_0.CLR[14].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[15].R = 0x20002102; //test PDC1 input to '1'

 STDBY_CTU_0.CLR[16].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[17].R = 0x20004102; //CHECKOUT PDC1 input

 STDBY_CTU_0.CLR[18].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[19].R = 0x20002202; //test PDC2 input to '1'

 STDBY_CTU_0.CLR[20].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[21].R = 0x20004202; //CHECKOUT PDC2 input

 STDBY_CTU_0.CLR[22].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[23].R = 0x20002302; //test PDC3 input to '1'

 STDBY_CTU_0.CLR[24].R = 0x20003F03; //set delay to 63 => 4 usec

 STDBY_CTU_0.CLR[25].R = 0x20004302; //CHECKOUT PDC2 input

 STDBY_CTU_0.CLR[26].R = 0x20003F03; //set delay to 63 => 4 usec

 //------------- COMMAND BLOCK END SIGNAL (1x DIGITAL OUTPUT) -------------

 STDBY_CTU_0.CLR[27].R = 0x20000001; //set OPC0 pin to '0'

 STDBY_CTU_0.CLR[28].R = 0x60000003; //add a delay of 0 usec to stop the sequence

 //--

 STDBY_CTU_0.CLCR1.B.T0_INDEX = 0; //trigger0 points to CLR[0]

 STDBY_CTU_0.THCR1.R = 0x00000011; //trigger0 enable

 STDBY_CTU_0.TCR[0].R = 0x00000001; //trigger0 generated quite immediately

TN1271 Rev 2 29/41

TN1271 STANDBY low power mode basic features

40

 STDBY_CTU_0.TGSCCR.R = 0x500; //SSWU turned off after 80 us

 STDBY_CTU_0.TGSISR.R = 1; //ctu_trg_in[0] (API) Rising edge Enable

 STDBY_CTU_0.CTUCR.B.TGSISR_RE = 1; //TGS Input Selection Register Reload Enable

 STDBY_CTU_0.CTUCR.B.GRE = 1; //General Reload Enable

 STDBY_CTU_0.CTUCR.B.CTU_FSM_RESET = 1; //PS1816 Errata => reset CTU FSM before next stand-by entry

 //--

 // SAR_ADC_10bit_STDBY configuration

 //--

 // CH88 PB[8] / CH89 PB[9] / CH90 PB[10] / CH91 PB[11] / CH92 PD[9]

 //--

 SAR_ADC_10BIT_STDBY.MCR.B.OWREN = 1; //SAR ADC 0 overwrite enable set

 SAR_ADC_10BIT_STDBY.MCR.B.MODE = 0; //Normal Mode

 SAR_ADC_10BIT_STDBY.MCR.B.CTU_MODE = 1; //Trigger mode is selected

 SAR_ADC_10BIT_STDBY.MCR.B.CTUEN = 1; //CTU enabled

 SAR_ADC_10BIT_STDBY.MCR.B.PWDN = 0; //Power up SAR ADC 0

 SAR_ADC_10BIT_STDBY.ICNCMR2.B.NCE_CH88 = 1; //sets channels 88 to be converted in SARADC_10bit_standby

 SAR_ADC_10BIT_STDBY.ICNCMR2.B.NCE_CH89 = 1; //sets channels 89 to be converted in SARADC_10bit_standby

 SAR_ADC_10BIT_STDBY.ICNCMR2.B.NCE_CH90 = 1; //sets channels 90 to be converted in SARADC_10bit_standby

 SAR_ADC_10BIT_STDBY.ICNCMR2.B.NCE_CH91 = 1; //sets channels 91 to be converted in SARADC_10bit_standby

 SAR_ADC_10BIT_STDBY.ICNCMR2.B.NCE_CH92 = 1; //sets channels 92 to be converted in SARADC_10bit_standby

 //--

 // SAR_ADC_10bit_STDBY => 4 ANALOG WATCHDOGS

 //--

 SAR_ADC_10BIT_STDBY.WTHRHLR0.B.THRH = 0x333; //select high THRHLR0 threshold = 4.0 V

 SAR_ADC_10BIT_STDBY.WTHRHLR1.B.THRH = 0x2E1; //select high THRHLR1 threshold = 3.6 V

 SAR_ADC_10BIT_STDBY.WTHRHLR2.B.THRH = 0x2CD; //select high THRHLR2 threshold = 3.5 V

 SAR_ADC_10BIT_STDBY.WTHRHLR3.B.THRH = 0x2B9; //select high THRHLR3 threshold = 3.4 V

 SAR_ADC_10BIT_STDBY.WTHRHLR0.B.THRL = 0; //select low THRHLR0 threshold = 0 V

 SAR_ADC_10BIT_STDBY.WTHRHLR1.B.THRL = 0; //select low THRHLR1 threshold = 0 V

 SAR_ADC_10BIT_STDBY.WTHRHLR2.B.THRL = 0; //select low THRHLR2 threshold = 0 V

 SAR_ADC_10BIT_STDBY.WTHRHLR3.B.THRL = 0; //select low THRHLR3 threshold = 0 V

 //--

 // 5 ANALOG INPUTS

 //--

 //ADC_STANDBY_CH0 = Internal Channel 88;

 SAR_ADC_10BIT_STDBY.ICWSELR11.B.WSEL_CH88 = 0; //select THRHLR0 treshold for CH88

 SAR_ADC_10BIT_STDBY.ICWENR2.B.WEN_CH88 = 1; //enable watchdog for CH88

 SAR_ADC_10BIT_STDBY.WTIMR.B.MSKWDG0H = 1; //enable high THRHLR0 threshold interrupt

 //ADC_STANDBY_CH1 = Internal Channel 89;

 SAR_ADC_10BIT_STDBY.ICWSELR11.B.WSEL_CH89 = 1; //select THRHLR1 treshold for CH89

 SAR_ADC_10BIT_STDBY.ICWENR2.B.WEN_CH89 = 1; //enable watchdog for CH89

STANDBY low power mode basic features TN1271

30/41 TN1271 Rev 2

 111

7.13.5 SSWU contact monitoring and external watchdog refresh example

This use case example extends previous one Contact Monitoring use case with handling
External Watchdog connected via SPI. SPI communication task has to be performed via

 SAR_ADC_10BIT_STDBY.WTIMR.B.MSKWDG1H = 1; //enable high THRHLR1 threshold interrupt

 //ADC_STANDBY_CH2 = Internal Channel 90;

 SAR_ADC_10BIT_STDBY.ICWSELR11.B.WSEL_CH90 = 2; //select THRHLR2 treshold for CH90

 SAR_ADC_10BIT_STDBY.ICWENR2.B.WEN_CH90 = 1; //enable watchdog for CH90

 SAR_ADC_10BIT_STDBY.WTIMR.B.MSKWDG2H = 1; //enable high THRHLR2 threshold interrupt

 //ADC_STANDBY_CH3 = Internal Channel 91;

 SAR_ADC_10BIT_STDBY.ICWSELR11.B.WSEL_CH91 = 3; //select THRHLR3 treshold for CH91

 SAR_ADC_10BIT_STDBY.ICWENR2.B.WEN_CH91 = 1; //enable watchdog for CH89

 SAR_ADC_10BIT_STDBY.WTIMR.B.MSKWDG3H = 1; //enable high THRHLR3 threshold interrupt

 //ADC_STANDBY_CH4 = Internal Channel 92;

 SAR_ADC_10BIT_STDBY.ICWSELR11.B.WSEL_CH92 = 0; //select THRHLR0 treshold for CH92

 SAR_ADC_10BIT_STDBY.ICWENR2.B.WEN_CH92 = 1; //enable watchdog for CH89

 SAR_ADC_10BIT_STDBY.WTIMR.B.MSKWDG0H = 1; //enable high THRHLR0 threshold interrupt

}

TN1271 Rev 2 31/41

TN1271 STANDBY low power mode basic features

40

RAM based special application code. It means master core has to be woken up into RAM
and execute watchdog refresh task. For periodical wakeup timer can be used RTC wakeup
source. (while API periodical wakeup source is dedicated for SSWU). It is assumed that
MCU is preconfigured to be woken up into RAM. It is assumed that any wakeup source will
be handled via special RAM based code.

Wakeup sources:

API => SSWU Contact Monitoring

RTC => External Watchdog refresh via SPI

WKUP => Any “Fast External” wakeup line (from SBC, Alarm …)

Sleep sequence:

1. Periodical contact monitoring each 50 msec via SSWU

2. Periodical external Watchdog refresh via SPI each 150 msec (via RAM based special
application)

RAM Based Special Application handles all wakeup sources and decides to switch to Main
flash based application if necessary.

Note: API handles next period time automatically by HW.
RTC next period time has to be SW reconfigured for next match event.

STANDBY low power mode basic features TN1271

32/41 TN1271 Rev 2

7.13.5.1 RTCAPI initialization code sequence:

7.13.5.2 WKPU initialization code sequence:

/**

* FUNCTION : RtcApi_init

*

* DESCRIPTION : Inits RTC API for ~ 50 ms waken up period

* Inits RTC for ~ 150 ms waken up period

* RTC clock is 128 KHz SIRC

*

* INPUTS :

* - None

*

* OUTPUTS

* - None

**/

void RtcApi_init() {

 RTC_API.RTCC.B.CNTEN = 0; // RTCAPI counter disabled

 RTC_API.RTCC.B.APIEN = 0; // API disabled

 RTC_API.RTCC.B.CLKSEL = 1; // Clk = Slow IRC (128 KHz nominal)

 RTC_API.RTCC.B.DIV512EN = 0; // Divider 512 disabled

 RTC_API.RTCC.B.DIV32EN = 0; // Divider 32 disabled

 RTC_API.RTCC.B.TRIG_EN = 1; // SSWU self clearing wakeup API event

 RTC_API.APIVAL.B.APIVAL = API_PERIOD_VALUE; // 1/128kHz * 6400 = 50 msec

 RTC_API.RTCVAL.B.RTCVAL = RTC_PERIOD_VALUE; // 1/128kHz * 19200 = 150 msec

 RTC_API.RTCS.R = 0x20002400; // Clear all RTC flags

 RTC_API.RTCC.B.APIEN = 1; // API enabled

}

/**

* FUNCTION : WKPU_init

*

* DESCRIPTION : Inits Wakeup sources

*

* INPUTS :

* - None

*

* OUTPUTS

* - None

**/

void WKPU_init(void)

{

 // Configure WKPU0 and WKPU1 (RTC + API)

 WKPU.WRER.R |= 3; // Enable WKPU0 and WKUP1 for wakeup event

 WKPU.WIREER.R |= 3; // Rising Edge Event Enabled

TN1271 Rev 2 33/41

TN1271 STANDBY low power mode basic features

40

7.13.5.3 MC_ME initialization code sequence:

1. MC_ME Init

2. RTCAPI Init

3. WKPU Init

4. SSWU Init

5. Wakeup address Init (MC_ME.CADDR0)

6. Copy Special RAM based application in STANDBY RAM on CADDR0 (0x400A8000)

7. Clear RTCAPI and WKPU flags

8. RTCAPI Start

9. Move to STANDBY mode (starts sleep mode sequence)

 // Configure WKPU6 (Fast wakeup)

 WKPU.WRER.R |= 1<<6; // Enable WKPU6 for wakeup event

 WKPU.WIREER.R |= 1<<6; // Enable raising Edge of WKUP6

 WKPU.WISR.R = 0xFFFFFFFF; // clear all WKUP flags

 }

 // Mode Entry and clock initialization (code stub)

 MC_ME.ME.R = 0x00002018; // RUN0, DRUN and STANDBY modes are enabled

 RC1024K_DIG.CTL.B.LPRCON_STDBY = 1; // Enable SIRC in STANDBY

 PMCDIG.MISC_CTRL_REG.B.LPRCREG_ENB = 0; // Enable SIRC in running modes

 PMCDIG.MISC_CTRL_REG.B.RCOSC1M_ENB = 0; // Enable SIRC in running modes

 MC_ME.DRUN_MC.R = 0x00030010; // FLASH in normal mode, fast IRC on

 MC_ME.STANDBY0_MC.R = 0x0081000F; // FLASH in power down, fast IRC off

 MC_ME.RUN_PC[1].R = 0x00000018; // Enable only in RUN0 and DRUN modes

 MC_ME.LP_PC[1].R = 0x00002000; // Enable in STANDBY mode

 MC_ME.PCTL[15].R = 0x1; // PCTL_SIUL => DBG_F = 0, LP_CFG = 1, RUN_CFG = 1

 MC_ME.PCTL[114].R = 0x1; // SAR_ADC10BIT_STDBY

 MC_ME.PCTL[99].R = 0x1; // DSPI_0

 MC_ME.PCTL[242].R = 0x1; // STDBY_CTU_0

 MC_CGM.AC0_SC.R = 0x0; // Select source for peripheral clock => FIRC

 MC_CGM.AC0_DC0.R = 0x80000000; // Enable divider for Peripherals

 MC_CGM.AC0_DC2.R = 0x80000000; // enable SAR_ADC_CLK

 MC_CGM.AC12_SC.R = 0x0; // Select source for peripheral clock => FIRC

 MC_CGM.AC12_DC1.R = 0x80000000; // Enable divider for DSPI_CLK1

 MC_ME.CADDR0.R = 0x400A8000; // Wakeup in STANDBY RAM at address 0x400A8000

Typical autonomous peripherals operating while in low power mode TN1271

34/41 TN1271 Rev 2

8 Typical autonomous peripherals operating while in
low power mode

Low Power Modes architecture and implementation allows to operating selected peripherals
while in low power mode. Below you can find list of particular examples:

HALT

 ADC – Single Shot or Scan mode

 eMIOS – PWM generation (+ CTU)

 CMU – Frequency Metering (against XOSC)

 RTC / API, PIT

 LINFLex, FlexCAN, DSPI (clocked with XOSC, PLL)

STOP

 ADC – Single Shot or Scan mode

 eMIOS – PWM generation (+ CTU)

 CMU – Frequency Metering (against XOSC)

 RTC / API, PIT

 LINFlex (with FIRC 16MHz matching 0.5%, LIN baud rate trimming according to FIRC)

 DSPI

STANDBY

 RTC / API (with SIRC 128KHz, FIRC 16MHz or SXOSC 32 kHz)

 WKPU

 SSWU

 ADC_STDBY Analog Watchdog (via SSWU)

TN1271 Rev 2 35/41

TN1271 Low power modes clock configurations

40

9 Low power modes clock configurations

Table 7 shows possible clock configurations in Low Power Modes:

During STANDBY mode internal wakeup RTC / API timer could be clocked as follows:

Table 7. Low Power Modes Clock Configurations

LP MODE CLOCK HALT STOP STANDBY

FIRC DEFAULT DEFAULT -

XOSC √ √ -

PLL 0 (primary) √ - -

PLL 1 (secondary) √ - -

NO CLK - - DEFAULT

Table 8. RTC / API STANDBY Low Power Clock

Device SIRC 128 kHz SXOSC 32 kHz

SPC582Bx √ —

SPC584Bx √ —

SPC58xCx √ √

SPC58xGx √ √

Low power modes module configurations TN1271

36/41 TN1271 Rev 2

10 Low power modes module configurations

Table 9 shows possible module configurations in Low Power Modes:

Note: In case of boot from STANDBY RAM after STANDBY wakeup:
STANDBY RAM Boot Address has to be configured: ME_CADDR0 = 0x400A8000
(STANDBY RAM start address).

Table 9. Low Power Modes Module Configurations

MODE PDO MVR FLASH PLL 0 PLL 1 XOSC FIRC

 HALT — √ √ √ √ √ √

 STOP √ √ √ — — √ √

STANDBY — — — — — — √

Table 10. STANDBY RAM Size Configurations

STANDBY
MODE

8 KB RAM 32 K RAM 64 K RAM 128 K RAM 256 K RAM

SPC582Bx DEFAULT
MC_PCU.PCONF2.
B.STBY0 = 1

MC_PCU.PCONF2.
B.STBY0 = 1

MC_PCU.PCONF3.
B.STBY0 = 1

— —

SPC584Bx DEFAULT
MC_PCU.PCONF2.
B.STBY0 = 1

—

MC_PCU.PCONF2.
B.STBY0 = 1

MC_PCU.PCONF3.
B.STBY0 = 1

—

SPC58xCx DEFAULT
MC_PCU.PCONF2.
B.STBY0 = 1

— —

MC_PCU.PCONF2
.B.STBY0 = 1

MC_PCU.PCONF3
.B.STBY0 = 1

SPC58xGx DEFAULT X —
MC_PCU.PCONF2.
B.STBY0 = 1

MC_PCU.PCONF2
.B.STBY0 = 1

MC_PCU.PCONF3
.B.STBY0 = 1

TN1271 Rev 2 37/41

TN1271 Low power modes consumptions

40

11 Low power modes consumptions

Table 11 is giving Low Power Mode consumptions for rough estimation and comparison.
Real values depends on particular derivative and configuration.

Note: HALT mode:
Flash in Low Power. Sysclk at 160 MHz, PLL0_PHI at 160 MHz, XTAL at 40 MHz, FIRC 16
MHz ON, RCOSC1M off. MCAN: instances: 0, 1, 2, 3, 4, 5, 6, 7 ON (configured but no
reception or transmission), Ethernet ON (configured but no reception or transmission), ADC
ON (continuously converting). All others IPs clock-gated.

STOP mode:
SYSCLK = RC16 MHz, RC16 MHz ON, RC1 MHz ON, PLL OFF. All possible peripherals off
and clock gated. Flash in power down mode.

STANDBY mode:
device configured for minimum consumption, RC16 MHz off, RC1 MHz on, OSC32K off,
SSWU off.

Table 11. SPC58xGx - Typical Low Power Modes Consumptions at 25 °C

HALT STOP STANDBY 8K RAM

115 mA 21 mA 145 µA

Table 12. SPC58xCx - Typical Low Power Modes Consumptions at 25 °C

HALT STOP STANDBY 8K RAM

74 mA 18 mA 85 µA

Table 13. SPC584Bx - Typical Low Power Modes Consumptions at 25 °C

HALT STOP STANDBY 8K RAM

74 mA 18 mA 85 µA

Table 14. SPC582Bx - Typical Low Power Modes Consumptions at 25 °C

HALT STOP STANDBY 8K RAM

27 mA 6.5 mA 40 µA

Table 15. Typical SSWU consumptions at 25 °C

Device SSWU SSWU with ADC

SPC58xGx 1 mA 3.5 mA

SPC58xCx 1 mA 3.5 mA

Low power modes consumptions TN1271

38/41 TN1271 Rev 2

SPC584Bx 1 mA 3.5 mA

SPC582Bx N/A N/A

Table 15. Typical SSWU consumptions at 25 °C (continued)

Device SSWU SSWU with ADC

TN1271 Rev 2 39/41

TN1271 Document management

40

Appendix A Document management

Table 16. Reference documents

Document Name
Document
Number

Version

SPC582Bx - Reference Manual

SPC582Bx 32-bit Power Architecture® microcontroller for automotive vehicle body
and gateway applications, RM0403, 027949

1 Rev. 3

SPC584Bx - Reference Manual

SPC584Bx 32-bit MCU family built on the Power Architecture® for automotive body
electronics applications, RM0449, 030699

2 Rev. 1

SPC584Cx - Reference Manual

SPC584Cx/SPC58ECx 32-bit MCU family built on the Power Architecture® for
automotive body electronics applications, RM0407, 028117

3 Rev. 3

SPC58EG8x - Reference Manual

SPC58xEx/SPC58xGx 32-bit Power Architecture® microcontroller for automotive
ASILD applications, RM0391, 027214

4 Rev. 3

SPC582Bx - Data Sheet

32-bit Power Architecture® microcontroller for automotive ASIL-B applications,
DS11597, 029210

5 Rev. 2

SPC584Bx - Data Sheet

32-bit Power Architecture® microcontroller for automotive ASIL-B applications,
DS11701, 029439

6 Rev. 3

SPC584Cx - Data Sheet

32-bit Power Architecture® microcontroller for automotive ASIL-B applications,
DS11620, 029264

7 Rev. 4

SPC58EG8x - Data Sheet

32-bit Power Architecture® microcontroller for automotive ASIL-D applications,
DS11758, 029572

8 Rev. 4

Revision history TN1271

40/41 TN1271 Rev 2

Revision history

Table 17. Document revision history

Date Revision Changes

22-May-2018 1 Initial release.

12-Jun-2018 2
Replaced all occurrences of “Chorus” with the specific
root part number.

TN1271 Rev 2 41/41

TN1271

41

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 Device summary
	2 Device modes overview
	3 Device modes and consumption reduction
	4 Mode transition diagram
	4.1 Entering low power mode
	4.2 Exiting low power mode
	4.3 Low power modes wakeup times
	4.4 Error low power modes management

	5 HALT low power mode basic features
	6 STOP low power mode basic features
	7 STANDBY low power mode basic features
	7.1 STANDBY mode wakeup in backup RAM
	7.2 STANDBY mode and power supply
	7.3 MCU pads in STANDBY mode
	7.3.1 LP pads with OPC pad latching:

	7.4 STANDBY mode and device power management framework
	7.5 STANDBY mode application considerations
	7.6 STANDBY mode entering considerations
	7.6.1 Recommended configuration preventing issue
	7.6.2 Gating clock of running peripheral
	7.6.3 Safe sequence for STANDBY mode entering

	7.7 RTC / API - Real time clock/autonomous periodic interrupt
	7.8 WKPU wakeup lines
	7.9 STANDBY low power clocks
	7.9.1 SIRC – slow 128 kHz RC oscillator
	7.9.2 SXTAL – slow 32 kHz crystal oscillator
	7.9.3 IRC – fast 16 MHz RC oscillator

	7.10 SSWU - Smart Standby Wakeup Unit
	7.10.1 ADC
	7.10.2 OPC
	7.10.3 PDC
	7.10.4 TU

	7.11 HSM in STANDBY mode
	7.12 STANDBY mode and software watchdog timer
	7.13 Periodical low power applications
	7.13.1 Contact monitoring
	7.13.2 Sleep mode application
	7.13.3 SSWU utilized in sleep mode application
	7.13.4 SSWU contact monitoring application example
	7.13.5 SSWU contact monitoring and external watchdog refresh example

	8 Typical autonomous peripherals operating while in low power mode
	9 Low power modes clock configurations
	10 Low power modes module configurations
	11 Low power modes consumptions
	Appendix A Document management
	Revision history

