
November 2018 UM2426 Rev 2 1/95

1

UM2426
User manual

Getting started with the X-CUBE-CELLULAR cellular connectivity
 Expansion Package for STM32Cube

Introduction

This user manual describes the content and use of the X-CUBE-CELLULAR cellular
connectivity Expansion Package for STM32Cube™.

The X-CUBE-CELLULAR Expansion Package enables connectivity over cellular networks.
The network access technology depends on the cellular modem used: 2G, 3G, LTE Cat M1,
or NB-IoT (also known as NB1). The cellular connectivity framework exposes standard APIs
for easy integration of cloud connectors using the HTTP protocol.

The X-CUBE-CELLULAR Expansion Package for STM32Cube™ provides an application
example that connects and subscribes to cloud services using the HTTP protocol in order to
report data from the device to the server, as well as to receive commands from the remote
server.

X-CUBE-CELLULAR is available for both P-L496G-CELL01 and P-L496G-CELL02 cellular-
to-cloud packs. Each pack is composed of an STM32L496-based Discovery host board
connected to an add-on cellular modem through the STMod+ connector. The add-on board
of pack P-L496G-CELL01 is equipped with the UG96 modem (2G / 3G). The add-on board
of pack P-L496G-CELL02 is equipped with the BG96 modem (LTE Cat M / NB-IoT / 2G
fallback).

X-CUBE-CELLULAR is also available for the “Discovery IoT node cellular” set, which is a
combination of the B-L475E-IOT01A IoT discovery board, X-NUCLEO-STMODA1
Arduino™ / STMod+ adapter, and MB1329 modem board with the BG96 modem.

The main features of the X-CUBE-CELLULAR Expansion Package are:

• Ready-to-run firmware examples using the 2G, 3G, LTE Cat M1, or NB-IoT protocols to
support quick evaluation and development of IoT cloud applications

• Menu and command line through Virtual COM UART over USB ST-LINK to configure
the connection to the Grovestreams cloud IoT platform (HTTP), and cellular
connectivity (technology selection, bands, APN, and others)

• Cellular connection

• Reporting of such values as temperature, humidity, and pressure. The values are real if
the MEMS add-on board (X-NUCLEO-IKS01A2) is connected, otherwise they are
simulated. The sensors in the “Discovery IoT node cellular” set are always used

• Network radio level reporting

www.st.com

http://www.st.com

Contents UM2426

2/95 UM2426 Rev 2

Contents

1 General information . 7

1.1 Terms and definitions . 7

1.2 References . 9

2 Important note regarding the security . 10

3 Service connectivity description . 11

4 Package description . 12

4.1 General description . 12

4.2 Modem socket versus LwIP . 12

4.3 Architecture . 12

4.3.1 Architecture concept . 13

4.3.2 Static architecture view . 14

4.3.3 Dynamic architecture view . 17

4.4 X-CUBE-CELLULAR Expansion Package description 33

4.5 Folder structure . 34

4.6 Reset push-button . 35

4.7 Application LED . 35

4.8 Real-time clock . 35

5 Cellular connectivity examples . 36

5.1 Real network or simulator . 36

5.2 Connection overview . 36

5.3 PING example . 37

5.4 Grovestreams (HTTP) access example . 37

6 Hardware and software environment setup . 39

7 Interacting with the host board . 44

7.1 Debug . 45

7.2 Boot menu . 45

7.2.1 “Start” option . 45

UM2426 Rev 2 3/95

UM2426 Contents

4

7.2.2 “Modem power on” option . 46

7.2.3 “Setup Menu” option . 46

7.2.4 Cellular Service and Grovestreams configuration sub-menu 47

7.2.5 Set config by console option . 48

7.2.6 Cellular Service configuration parameters . 49

7.2.7 Grovestreams configuration parameters . 50

7.2.8 Boot menu and configuration complete example 52

7.3 Console command . 54

7.3.1 Console command activation . 55

7.3.2 Trace commands . 55

7.3.3 Atcmd commands . 55

7.3.4 Cellullar service task (cst) commands . 55

7.3.5 HTTP client commands . 56

7.3.6 Ping commands . 57

7.3.7 Modem configuration (modem config) commands 57

8 How to customize the software? . 62

8.1 First customization level: user customization . 62

8.2 Second customization level: advanced user customization 62

8.2.1 Adding/removing an application in firmware . 62

8.2.2 IP stack on MCU side or on modem side . 63

8.2.3 Different kinds of available traces . 64

8.2.4 How to configure traces? . 65

8.3 Third customization level: developer customization 65

8.3.1 Boot . 65

8.3.2 Initialization of software components . 65

8.3.3 Software customization . 66

8.3.4 Firmware adaptation to a new HW configuration 66

8.3.5 Adding a new component . 66

8.4 Data cache . 67

8.4.1 Introduction . 67

8.4.2 Data Cache API . 67

8.4.3 Main Data Cache entries . 68

8.4.4 Example of producer/consumer code . 73

8.5 Thread stack consumption monitoring . 75

Appendix A Support material . 77

Contents UM2426

4/95 UM2426 Rev 2

A.1 How to configure a Grovestreams account? . 77

A.2 How to activate the soldered SIM card? . 79

A.3 Frequently asked questions . 80

A.4 X-CUBE-CELLULAR API descriptions . 82

A.4.1 COM API. 82

A.4.2 Data Cache API . 89

A.5 How to measure cellular throughput? . 92

A.5.1 Introduction . 92

A.5.2 Preparation of the measurements. 92

A.5.3 Example . 93

A.6 How to select BG96 modem configuration bands? 93

Revision history . 94

UM2426 Rev 2 5/95

UM2426 List of tables

5

List of tables

Table 1. List of acronyms . 7
Table 2. Boot menu . 45
Table 3. Setup menu at boot . 46
Table 4. List of config sources example . 47
Table 5. Configuration sub-menu . 48
Table 6. Compilation variables for applications in firmware . 62
Table 7. Compilation variable for IP stack selection . 64
Table 8. New thread registration example . 75
Table 9. Number of project threads setting example . 76
Table 10. Code for thread stack consumption monitoring . 76
Table 11. COM API management - Socket handle creation. 82
Table 12. COM API management - Socket option set . 82
Table 13. COM API management - Socket option get . 83
Table 14. COM API management - Socket bind. 83
Table 15. COM API management - Socket close . 83
Table 16. COM API client - Socket connect . 84
Table 17. COM API client - Socket send data . 84
Table 18. COM API client - Socket receive data . 84
Table 19. COM API server - Socket listen . 85
Table 20. COM API server - Socket accept . 85
Table 21. COM API server - Socket send to data. 85
Table 22. COM API server - Socket receive from data. 86
Table 23. COM API other - Component initialization . 86
Table 24. COM API other - Component start . 86
Table 25. COM API other - Get host IP from host name . 87
Table 26. COM API other - Get peer name . 87
Table 27. COM API other - Get sock name . 87
Table 28. COM API other - Ping APIs . 88
Table 29. Data Cache API in dc_control.h (event ID) . 89
Table 30. Data Cache API in dc_cellular.h (cellular data ID) . 89
Table 31. Data Cache API in dc_mems.h (sensor data ID) . 89
Table 32. Data Cache API in dc_common.h (services) . 90
Table 33. Data Cache API in dc_time.h (services) . 91
Table 34. Data Cache API in cellular_init.h (services) . 91
Table 35. Document revision history . 94

List of figures UM2426

6/95 UM2426 Rev 2

List of figures

Figure 1. Cellular IoT connectivity . 11
Figure 2. Architecture concept . 13
Figure 3. Static architecture view. 14
Figure 4. Dynamic architecture - Platform initialization . 18
Figure 5. Dynamic architecture - Platform service startup . 19
Figure 6. Dynamic architecture - Cellular Service start . 20
Figure 7. Dynamic architecture - Modem initialization . 21
Figure 8. Dynamic architecture - PLMN search and registration to a cellular network 22
Figure 9. Dynamic architecture - Registration to a packet service domain . 23
Figure 10. Dynamic architecture - PDN activation (modem socket option) . 24
Figure 11. Dynamic architecture - PDN activation (LwIP socket option with UG96) 25
Figure 12. Dynamic architecture - PDN activation (LwIP socket option with BG96) 26
Figure 13. Dynamic architecture - Socket creation (modem socket option). 27
Figure 14. Dynamic architecture - Socket creation (LwIP socket option). 28
Figure 15. Dynamic architecture - Data transfer - Send data to remote application

(modem socket option) . 29
Figure 16. Dynamic architecture - Data transfer - Send data to remote application

(LwIP socket option) . 30
Figure 17. Dynamic architecture - Data transfer - Receive data from remote application

(modem socket option) . 31
Figure 18. Dynamic architecture - Data transfer - Receive data from remote application

(LwIP socket option) . 32
Figure 19. Project file structure . 34
Figure 20. Grovestreams connection overview . 36
Figure 21. Grovestreams web interface, component view. 38
Figure 22. Grovestreams web interface, dashboard view . 38
Figure 23. Hardware setup (P-L496G-CELL02 example) . 40
Figure 24. Hardware view (P-L496G-CELL02 example) . 41
Figure 25. Hardware view (“Discovery IoT node cellular” set example). 42
Figure 26. Serial port settings to interact with the host board . 44
Figure 27. Serial port settings to interact with the host board (new-line) . 44
Figure 28. Grovestreams organization creation acceptance screen . 77
Figure 29. Grovestreams organization creation screen . 77
Figure 30. Grovestreams organization access screen. 78
Figure 31. Grovestreams organization administration menu . 78
Figure 32. Grovestreams API key selection screen. 79
Figure 33. Grovestreams API key display screen . 79

UM2426 Rev 2 7/95

UM2426 General information

1 General information

This user manual describes the X-CUBE-CELLULAR Expansion Package and its use. It
explains neither the cellular networks nor the cellular protocol stacks, the descriptions of
which being available on the Internet.

This user manual primarily focuses on the P-L496G-CELL01 and P-L496G-CELL02
Discovery packs for descriptions, way of use, and examples. In this user manual, root path
Projects\STM32L496G-Discovery\ must be changed to Projects\STM32L475E-Discovery\
when applying to the “Discovery IoT node cellular” set.

Refer to the X-CUBE-CELLULAR cellular connectivity Expansion Package porting on other
hardware application note (AN5249) for adaptation to other hardware such as the
“Discovery IoT node cellular” set.

1.1 Terms and definitions

Table 1 presents the definition of acronyms that are relevant for a better understanding of
this document.

Table 1. List of acronyms

Term Definition

API Application programming interface

APN Access point name

BSD Berkeley software distribution

BSP Board support package

C2C Cellular to cloud

CID Context ID (context identifier of a cellular connection)

COM Cellular communication

DC Data Cache

eUICC Embedded UICC (UICC with remote profile feature)

eSIM Embedded SIM

FEEPROM Represents the embedded Flash memory of the STM32 MCU

HAL Hardware abstraction layer

HTTP Hypertext transfer protocol

ICMP Internet message control protocol

IDE Integrated development environment

IF Interface

IoT Internet of things (refer to [4])

IPC Inter-processor channel

ITM Instruction trace module

LED Light-emitting diode

General information UM2426

8/95 UM2426 Rev 2

The X-CUBE-CELLULAR Expansion Package runs on STM32 32-bit microcontrollers based
on the Arm®(a) Cortex®-M processor.

M2M Machine to machine

NAT Network address translation

NFMC Network-friendly management configuration (refer to [4])

NIFMAN Network IF manager

MNO Mobile network operator

MVNO Mobile virtual operator

PDN Packet data network

PDU Protocol data unit

PLMN Public land mobile network

PPP Point-to-point protocol

PPPoSIF PPP over serial IF

PS Packet switching

RAM Random-access memory

ROM Read-only memory

RSSI Received-signal strength indication

RTC Real-time clock

SMS Short-message service

TCP Transmission control protocol

UDP User datagram protocol

UICC Universal integrated circuit card (also referred to as SIM card)

URC Unsolicited result code

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. List of acronyms (continued)

Term Definition

UM2426 Rev 2 9/95

UM2426 General information

1.2 References

1. Development guidelines for STM32Cube Expansion Packages user manual (UM2285)

2. Development checklist for STM32Cube Expansion Packages user manual (UM2312)

3. Getting started with STM32CubeL4 for STM32L4 Series and STM32L4+ Series user
manual (UM1860)

4. IoT Device Connection Efficiency Guidelines (TSG.34/TS.34) from the GSM
Association

5. X-CUBE-CELLULAR cellular connectivity Expansion Package porting on other
hardware application note (AN5249)

Important note regarding the security UM2426

10/95 UM2426 Rev 2

2 Important note regarding the security

Caution: Application developers must take care of security aspects, and put mechanisms in place to
protect the tokens and secrets used for the connections.

The application example provided in the X-CUBE-CELLULAR Expansion Package does not
implement such protection mechanisms. It only presents a basic implementation for an easy
understanding of the stack interface.

Warning: Use the HW only with the antenna connected. With no
antenna connected, there is a risk of damage to the modem
because of the power reflected from the antenna connector
to the modem RF output.

UM2426 Rev 2 11/95

UM2426 Service connectivity description

3 Service connectivity description

The X-CUBE-CELLULAR Expansion Package offers out-of-the-box connectivity for
communication to the Internet through the HTTP protocol. It implements a complete
middleware- and application-level stack in C language, which allows the connection of the
C2C kit to a web site.

The first connectivity example provided connects to the Grovestreams web site. In this
example, the board reports notifications to the Grovestreams web browser.

The second example provided implements the ping network-testing feature.

Figure 1 presents the cellular IoT connectivity handled by the X-CUBE-CELLULAR
Expansion Package.

Figure 1. Cellular IoT connectivity

The cellular-to-cloud kit comprises an STM32-based main board, a cellular add-on modem
board, and a prepaid SIM, which enables the registration to a cellular PLMN. The global
roaming provided by the SIM provider allows device attachment from any country. The SIM
only offers IP connectivity (meaning that SMS is not supported). The volume of data
available in the prepaid offer depends on where it is used.

A private IP address is allocated to the device by the MNO or MVNO. Any client application
running on device using TCP transaction request/response can reach a server located in
the Internet by means of IP address translation (NAT) on the MNO/MVNO router.

Package description UM2426

12/95 UM2426 Rev 2

4 Package description

This chapter details the content and use of the X-CUBE-CELLULAR Expansion Package.

4.1 General description

The X-CUBE-CELLULAR Expansion Package only provides software components running
on the host STM32 MCU. Cellular modem firmware is not in the scope of this document.

The following integrated development environments are supported:

• IAR Embedded Workbench® for Arm® (EWARM)

• Keil® Microcontroller Development Kit (MDK-ARM)

• System Workbench for STM32 (referred to as SW4STM32)

Note: Refer to the release note available in the root folder of the delivery package for information
about the IDE versions supported.

IAR™ binaries are provided in the package.

4.2 Modem socket versus LwIP

Either modem socket or LwIP can be used for the IP stack:

• Modem socket: the IP stack runs in modem FW

• LwIP: the LwIP stack runs on the STM32 side

This option is selected through a flag that is used during the compilation process. The
generated FW is either for modem socket or for LwIP use. It is not possible to further
change this setting through the boot menu.

Note: If modem socket is used, the software described in this user manual limits data plane
support to TCP IPv4 Client application only. TCP server mode and UDP (both server and
client) are not yet supported.

If LwIP is used, TCP and UDP (both server and client) are fully supported.

If LwIP is selected, the communication between host and modem is done through the PPP
layer. There is a PPP client on the host side, and a PPP server on the modem side.
PPPoSIF adapts the LwIP stack to a serial IF, while LwIP usually uses Ethernet interfacing.

Note: The LwIP mode is not supported for the “Discovery IoT node cellular” set.

4.3 Architecture

X-CUBE-CELLULAR runs on STM32 boards and allows sending or receiving IP packets to
or from the Internet via an add-on cellular module.

Note: Some parts of X-CUBE-CELLULAR can be used in a bare OS environment. The complete
stack only runs with FreeRTOS™.

UM2426 Rev 2 13/95

UM2426 Package description

The package is split into the following components:

• STM32L4 Series HAL

• CMSIS/FreeRTOS™

• LwIP

• AT Service

• Cellular Service

• Data Cache

• IPC

• NIFMAN

• COM

• Cellular Init

• Utilities

4.3.1 Architecture concept

This section provides a high-level view of the software architecture supporting cellular
connectivity, which is illustrated in Figure 2.

Figure 2. Architecture concept

Package description UM2426

14/95 UM2426 Rev 2

The cellular connectivity stack exposes two main interfaces to the application:

• The control plane interface: there are two interfaces for control. The cellular init library
provides an API to initialize SW components and starts the Cellular Service. The Data
Cache interface is used to read information related to cellular network like Signal
Strength. (RSSI), and to get event notification like network registration state changes
and network interface readiness.

• The data plane interface: also referred to as the COM interface, it is used to send and
receive TCP or UDP segments to and from a remote client or server. The interface is
based on standard BSD socket API in order to ease the integration of the application.

The IPC layer abstracts the actual HW bus interface used with the modem. The IPC
supports two logical channels, each composed of one Tx (to the IPC) and one Rx (from the
IPC). One is used for exchanging AT commands with the modem while the other one is
used to carry PPP frames when LwIP is used. The selection of the active channel is
controlled by Cellular Service.

4.3.2 Static architecture view

X-CUBE-CELLULAR static architecture is presented in Figure 3.

Figure 3. Static architecture view

UM2426 Rev 2 15/95

UM2426 Package description

• HTTP client: implements an HTTP client, which sends requests to the
www.grovestreams.com cloud in the application. The HTTP client uses the Data Cache
to monitor the network interface state changes (from NIFMAN), and the COM socket
interface to send or receive HTTP packets over TCP. The HTTP client also implements
recovery as defined by GSMA TS 34 when a remote HTTP server is not reachable.

• Connectivity Service layer:

– Data Cache: framework that decouples the management of producer and
consumer data (resource). Any resource state updated by a producer is pushed to
the Data Cache (in RAM), which in turn informs the final consumer(s) to process
the updated resource state via the callback provided by the consumer application.
Data Cache is used by Cellular Service tasks to publish the Cellular network
information like RSSI. It is also used by NIFMAN to publish the network interface
readiness.

– COM IF: a library that provides a collection of BSD-like socket functions to open,
configure, and send or receive application PDU to remote TCP or UDP
applications. A high-level ping service is also provided.

– NIFMAN: the network interface manager task controls network interface
activation. When LwIP is used, NIFMAN monitors the PPP server status (on the
modem side), and starts or stops the PPP client accordingly. The application can
then monitor the network interface status before opening a socket for data
transfer.

– Cellular init library: exposes a basic function to initialize and start Cellular
Service components.

• PPP client task / PPPoSIF: optional component. It is only present when LwIP is used.
It is in charge of establishing the PPP link with the modem.

• LwIP / Net IF: the LwIP component and its adaptation to PPP.

• Cellular Service:

– Cellular Service task controls modem power-on and initialization, instructs the
modem to perform network registration, activates the PDN (PDP context), and
enters data transfer mode. It informs NIFMAN to setup the network interface (PPP
link). It uses AT service to send AT commands to the modem.

It implements a generic finite state machine to maintain consistent service state
based on modem internal state change events (such as FOTA or reset), network
registration state change events, and events related to the and PDP context
status. It implements the network friendly features (NFMC) as defined in [4]. For
example, when PDP activation fails because of a wrong APN, the Cellular Service
task performs a new attempt after expiration of a back-off timer.

The Cellular Service task stores the cellular configuration and network access
parameters into the Flash memory, and configure the modem as per need. The
configuration for example encompasses APN and CID settings, enabling and
disabling NFMC, and setting the back-off timers.

For system robustness, the Cellular Service task ensures that the modem is
always operational by regularly polling the modem RSSI.

– Cellular Service OS: is a library that offers a collection of functions to low-level
Cellular Service. The library serializes the access to the single AT channel
interface that is used to communicate with the modem. The functions are called by
the COM service and the Cellular Service task.

– Cellular Service library: offers a collection of blocking function calls to interact
with a modem. Cellular Service is in charge of translating the request from the

Package description UM2426

16/95 UM2426 Rev 2

Cellular Service task or COM service to a sequence of AT commands that must be
sent to the modem. It finally calls a callback function (from the Cellular Service
task or COM service) when an asynchronous event (URC) is received from the
modem.

– AT Service: provides a framework to send or receive AT commands to or from the
modem over IPC. The AT Core task is in charge of processing the Cellular Service
requests and translate them into AT commands. It is also in charge of processing
AT commands response and URCs from the modem and forward them to Cellular
Service. AT is split into two parts:

1. a generic part, "core" (AT framework and manage standard AT commands)

2. a specific part, "custom" (implements specific modem behavior and AT
commands)

– Modem system control: support modem HW system control signaling (power
on/off, reset). It is split into a generic and a specific part. The generic part exposes
the generic API to the application (Cellular Service) while the specific part controls
the GPIO dedicated to the modem.

• IPC: abstracts the actual physical interface (UART) to the upper layer. Supports the
logical channel handler (FIFO) that is mapped to a physical channel. Supports two
channels: character mode and stream mode:

– Stream mode is used for data transfer (PPP).

– Character mode is used to send AT commands.

• Utilities: provides tools such as debug and trace. Also provides the setup menu (over
any terminal through a serial interface) to change the default configuration, which is
hard coded during compilation and image creation.

• FreeRTOS™ (and CMSIS): provides RTOS services to create the resources and
scheduler needed by the software to run, such as threads and tasks, dynamic memory
allocation, mutexes, and semaphores. A default task (freertos.c) is in charge of system
initialization, creation of all application tasks. It finally initializes and starts the Cellular
Service components by calling cellular_init() and cellular_start().

UM2426 Rev 2 17/95

UM2426 Package description

4.3.3 Dynamic architecture view

X-CUBE-CELLULAR dynamic architecture is further presented as diagram sequences that
illustrate the interactions between components for selected use cases:

• Figure 4: Dynamic architecture - Platform initialization

• Figure 5: Dynamic architecture - Platform service startup

• Figure 6: Dynamic architecture - Cellular Service start

• Figure 7: Dynamic architecture - Modem initialization

• Figure 8: Dynamic architecture - PLMN search and registration to a cellular network

• Figure 9: Dynamic architecture - Registration to a packet service domain

• Figure 10: Dynamic architecture - PDN activation (modem socket option)

• Figure 11: Dynamic architecture - PDN activation (LwIP socket option with UG96)

• Figure 12: Dynamic architecture - PDN activation (LwIP socket option with BG96)

• Figure 13: Dynamic architecture - Socket creation (modem socket option)

• Figure 14: Dynamic architecture - Socket creation (LwIP socket option)

• Figure 15: Dynamic architecture - Data transfer - Send data to remote application
(modem socket option)

• Figure 16: Dynamic architecture - Data transfer - Send data to remote application
(LwIP socket option)

• Figure 17: Dynamic architecture - Data transfer - Receive data from remote application
(modem socket option)

• Figure 18: Dynamic architecture - Data transfer - Receive data from remote application
(LwIP socket option)

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

1
8/9

5
U

M
2

426
 R

e
v 2

Figure 4. Dynamic architecture - Platform initialization

The default task calls cellular_init to initialize all software components and needed static resources.

U
M

2
4

26
P

ac
k

ag
e

 d
es

c
rip

tio
n

U
M

2
426

 R
e

v 2
19

/95

Figure 5. Dynamic architecture - Platform service startup

The default task calls the cellular_start() function to start software components tasks and to power on the modem device.

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

2
0/9

5
U

M
2

426
 R

e
v 2

Figure 6. Dynamic architecture - Cellular Service start

Once the Cellular Service task is started, it automatically performs all needed actions to power on the modem device.

U
M

2
4

26
P

ac
k

ag
e

 d
es

c
rip

tio
n

U
M

2
426

 R
e

v 2
21

/95

Figure 7. Dynamic architecture - Modem initialization

Once the modem is powered up, the Cellular Service task initializes modem functionalities (full features, boot only).

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

2
2/9

5
U

M
2

426
 R

e
v 2

Figure 8. Dynamic architecture - PLMN search and registration to a cellular network

Once the modem context is initialized, the Cellular Service task initiates the modem to perform network search (PLMN search) and
register to the selected network. In the existing implementation, only automatic network search is supported.

Cellular Service regularly polls the signal quality to detect if a cell has been selected by the modem. Once a cell is selected, the
Cellular Service task starts a timer to monitor network registration since there is a possibility that registration is rejected by the core
network. When the network registration timer expires, the Cellular Service task instructs the modem to try network registration later
(after back-off timer expiry) as defined in [4].

Once network registration is complete, the Cellular Service task verifies if the modem is registered to the packet domain. In 2G or
3G, the modem may only register to Circuit Service, whereas in LTE the modem is always attached to the packet network when
registered.

U
M

2
4

26
P

ac
k

ag
e

 d
es

c
rip

tio
n

U
M

2
426

 R
e

v 2
23

/95

Figure 9. Dynamic architecture - Registration to a packet service domain

Since the target is to run IP connectivity, Cellular Service forces the modem to perform packet domain registration if it is not yet
done automatically by the modem.

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

2
4/9

5
U

M
2

426
 R

e
v 2

Figure 10. Dynamic architecture - PDN activation (modem socket option)

Once the modem is attached to the PS domain, the Cellular Service task registers a callback to get the notifications related to the
PDN (PDP context) from the modem. It also configures and selects the PDP context to be used for data transfer.

The application can register a callback (for example app_client_notif_cb()) to get notified about the readiness of the
network interface (ON).

U
M

2
4

26
P

ac
k

ag
e

 d
es

c
rip

tio
n

U
M

2
426

 R
e

v 2
25

/95

Figure 11. Dynamic architecture - PDN activation (LwIP socket option with UG96)

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

2
6/9

5
U

M
2

426
 R

e
v 2

Figure 12. Dynamic architecture - PDN activation (LwIP socket option with BG96)

The Cellular Service task calls the CS_activate_pdn() function in order to send AT commands to activate PDP context and
start the PPP server running on the modem. If PDP context and PPP server are successfully activated, the Cellular Service task
informs NIFMAN via the Data Cache.

Once, NIFMAN detects that the data network interface is ready, it instructs the PPPoSIF task to initiate the PPP connection to the
PPP server running on the modem side.

Once the PPP connection is established, NIFMAN is informed by the PPPoSIF task via the Data Cache and subsequently informs
the application.

U
M

2
4

26
P

ac
k

ag
e

 d
es

c
rip

tio
n

U
M

2
426

 R
e

v 2
27

/95

Figure 13. Dynamic architecture - Socket creation (modem socket option)

When the network interface is ready, the application can create a socket in order to exchange IP packets with the remote
application. The application calls the com_socket() COM function, which in turn calls the Cellular Service library in order to send
AT commands to the modem.

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

2
8/9

5
U

M
2

426
 R

e
v 2

Figure 14. Dynamic architecture - Socket creation (LwIP socket option)

The COM interface directly maps each socket function to LwIP. This latter encapsulates the IP packets into PPP frames, which are
sent to the Modem over IPC layer. PPP frames from the modem are received by the PPPoSIF task, which forwards them to the
LwIP stack.

U
M

2
4

26
P

ac
k

ag
e

 d
es

c
rip

tio
n

U
M

2
426

 R
e

v 2
29

/95

Figure 15. Dynamic architecture - Data transfer - Send data to remote application
(modem socket option)

The COM interface segments the PDU from the application into smaller chunks of data that it sends to the modem by means of the
Cellular Service library function.

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

3
0/9

5
U

M
2

426
 R

e
v 2

Figure 16. Dynamic architecture - Data transfer - Send data to remote application
(LwIP socket option)

The com_send() function calls the lwip_send() function, which is implemented by the LwIP stack to exchange TCP segments
remotely over the PPP layer.

U
M

2
4

26
P

ac
k

ag
e

 d
es

c
rip

tio
n

U
M

2
426

 R
e

v 2
31

/95

Figure 17. Dynamic architecture - Data transfer - Receive data from remote application
(modem socket option)

P
a

c
ka

g
e d

e
s

crip
tio

n
U

M
2

42
6

3
2/9

5
U

M
2

426
 R

e
v 2

Figure 18. Dynamic architecture - Data transfer - Receive data from remote application
(LwIP socket option)

UM2426 Rev 2 33/95

UM2426 Package description

4.4 X-CUBE-CELLULAR Expansion Package description

This section describes the software components of the X-CUBE-CELLULAR package.

X-CUBE-CELLULAR is an Expansion Package for STM32Cube™. Its main features are:

• Fully compliant with STM32Cube™ architecture

• Expands STM32Cube™ in order to enable the development of applications accessing
and using various cloud platforms

• Based on the STM32CubeHAL, which is the hardware abstraction layer for STM32
microcontrollers

The software components used by the application are:

• STM32Cube HAL
The HAL driver layer provides a generic multi-instance simple set of APIs (application
programming interfaces) to interact with the upper layers (application, libraries and
stacks).

It is composed of generic and extension APIs. It is directly built around a generic
architecture and allows the layers that are built upon, such as the middleware layer,
implementing their functionalities without dependencies on the specific hardware
configuration for a given microcontroller unit (MCU).

This structure improves the library code reusability and guarantees an easy portability
onto other devices.

• Board support package (BSP)
The software package needs to support the peripherals on the STM32 boards apart
from the MCU. This software is included in the board support package (BSP). This is a
limited set of APIs which provides a programming interface for certain board specific
peripherals such as the LED and the User button.

• Application
HTTP and PING clients.

• Middleware
Optionally LwIP.

• FreeRTOS™
FreeRTOS™ is mandatory to run the tasks for X-CUBE-CELLULAR components.

• Configuration files
component and platform configuration file are provided at project repository

– plf_features.h defines the feature list to include in firmware.

– plf_hw_config.h defines the mapping of the GPIO and HW interface specific to
logical names to ease SW porting to another board. It also provides the HW bus
interface configuration (such as the UART) used for communicating with the
modem.

– plf_sw_config.h provides platform SW configuration such as task priorities, trace,
stack size monitoring and others. It also provides application behaviors, which can
differ from one platform to another, such as modem polling timer value, button
configuration and polling and others.

– plf_stack_size.h defines the thread stack size.

Other parameters can be customized. Additional details are provided in Chapter 8: How to
customize the software? on page 62.

Some parameters can also be defined dynamically at runtime. They are stored in the Flash
memory and re-used at the next platform boot if needed.

Package description UM2426

34/95 UM2426 Rev 2

4.5 Folder structure

Figure 19 presents the folder structure of the X-CUBE-CELLULAR package.

Figure 19. Project file structure

Note: The additional B-L475E-IOI01 directory with the same structure as the STM32L496G-
Discovery directory is created in the Projects directory for the “Discovery IoT node cellular”
set.

UM2426 Rev 2 35/95

UM2426 Package description

4.6 Reset push-button

The reset push-button (black) is used to reset the board at any time. This action forces the
reboot of the platform.

4.7 Application LED

The application LED is turned ON or OFF by the HTTP client application. Refer to Figure 23:
Hardware setup (P-L496G-CELL02 example) in Chapter 6: Hardware and software
environment setup on page 39.

4.8 Real-time clock

System date and time are managed by the RTC. At boot time, it is updated by the HTTP
client application, which gets time and date from the Grovestreams server.

The system date can also be manually updated at boot setup.

The HAL_RTC_GetTime() function provides the time to the application.

Note: The hour value depends on the Grovestreams server time zone.

Cellular connectivity examples UM2426

36/95 UM2426 Rev 2

5 Cellular connectivity examples

This chapter describes the cellular connectivity available examples. Several examples that
can run in parallel are provided, such as PING and HTTP client.

5.1 Real network or simulator

The worldwide coverage of 2G and 3G networks makes it possible to systematically run the
examples for these technologies on real networks. The LTE cat M1 and NB1 technologies
do not yet offer a similar global coverage. If such networks are not available, the user must
use a Cat M1 / NB1 compliant network simulator.

In this document, assumption is made that a real network is available whatever the network
technology used.

The add-on modem boards (in P-L496G-CELL01 and P-L496G-CELL02) embed an eSIM,
provisioned by the EMnify MVNO profile:

• For the UG96 modem, 2G or 3G real networks are used

• For the BG96 modem, with the EMnify eSIM, only 2G fallback is possible. To use the
BG96 modem in Cat M1 or NB1 mode, the user must insert a plastic SIM card
compliant with this network technology from an MNO that has already deployed it.

5.2 Connection overview

The Grovestreams connection overview presented in Figure 20.

Figure 20. Grovestreams connection overview

UM2426 Rev 2 37/95

UM2426 Cellular connectivity examples

5.3 PING example

The console command allows the generation of ping requests (refer to Section 7.3: Console
command on page 54). The simple ping command generates 10 ping requests using
default IP address 8.8.8.8. To specify another IP address, use the ping
<ddd.ddd.ddd.ddd> command.

Ping command example:

ping 8.8.4.4

Ping result example:

<<< HTTP CLIENT ACTIVE 8.8.4.4>>>

>Ping: 32 bytes from 8.8.4.4: seq=01 time= 73ms

Ping: 32 bytes from 8.8.4.4: seq=02 time= 77ms

Ping: 32 bytes from 8.8.4.4: seq=03 time= 48ms

Ping: 32 bytes from 8.8.4.4: seq=04 time= 59ms

Ping: 32 bytes from 8.8.4.4: seq=05 time= 78ms

Ping: 32 bytes from 8.8.4.4: seq=06 time= 74ms

Ping: 32 bytes from 8.8.4.4: seq=07 time= 56ms

Ping: 32 bytes from 8.8.4.4: seq=08 time= 70ms

Ping: 32 bytes from 8.8.4.4: seq=09 time= 66ms

Ping: 32 bytes from 8.8.4.4: seq=10 time= 66ms

--- 8.8.4.4 Ping Statistics ---

Ping: min/avg/max = 48/66/78 ms ok = 10/10

<<< Ping Completed >>>

5.4 Grovestreams (HTTP) access example

The cellular connectivity demonstration for Grovestreams consists in two use cases:

• The device periodically reports sensor data to the Grovestreams cloud IoT platform.
The end-user connects to the Grovestreams web server dashboard.

• The end-user controls the LED application state from the dashboard.

The HTTP client on the MCU sets up a connection to the Grovestreams server through a
dedicated account. It pushes data (temperature, humidity, pressure and cellular radio signal
strength) to the Grovestreams server through the HTTP PUT command. An end-user
connected to the Grovestreams platform with a standard web browser has access to the
Grovestreams dashboard web page. The device polls the Grovestreams web server every
two seconds by sending HTTP GET commands to retrieve any request from the end-user.
By this mechanism, the end-user can switch the application LED on the host board ON and
OFF.

Cellular connectivity examples UM2426

38/95 UM2426 Rev 2

For temperature, humidity, and pressure, if the X-NUCLEO-IKS01A2 board with sensors is
plugged, real values are sent to the cloud server. Otherwise, simulated data are reported.
With the “Discovery IoT node cellular” set, real values are always sent.

Figure 21 and Figure 22 present the related Grovestreams interfaces.

Figure 21. Grovestreams web interface, component view

Figure 22. Grovestreams web interface, dashboard view

UM2426 Rev 2 39/95

UM2426 Hardware and software environment setup

6 Hardware and software environment setup

The STM32 MCU FW must be programmed, whatever the test at stake. Modem FW can be
upgraded too if needed.

Note: Before programming with a new firmware, connect the system to a PC with Teraterm and
note the voucher number; this number is needed to activate the eSIM on the modem board.
If the board is flashed before getting the voucher, re-flash the original image and get the
voucher.
The embedded SIM in the “Discovery IoT node cellular” set is not provisoned with a M(V)NO
profile: No eSIM activation is needed; A plastic SIM card must be used instead.

For the P-L496G-CELL01 and P-L496G-CELL02 Discovery packs, connect the host board
to the modem board by means of the STMod+ connector (refer to Figure 24). For the
“Discovery IoT node cellular” set, first connect the MB1329 modem board to the X-
NUCLEO-STMODA1 adapter board, then connect the X-NUCLEO-STMODA1 to the B-
L475E-IOT01A host board (refer to Figure 25).

When the UICC chip soldered on the add-on board is not used, insert a UICC compliant with
the real network used into the UICC socket. The UICC socket is located at the back of the
add-on board, behind the USB connector.

If the soldered UICC chip is used, it must be activated beforehand and selected at boot by
means of the boot menu.

Power on the board by plugging its USB connector to a PC, USB power supply, or USB
power bank. If traces must be displayed, the USB connector must be connected to a PC
with an open console application.

Warning: Use the HW only with the antenna connected. With no
antenna connected, there is a risk of damage to the modem
because of the power reflected from the antenna connector
to the modem RF output.

Hardware and software environment setup UM2426

40/95 UM2426 Rev 2

Figure 23 depicts the hardware setup.

Figure 23. Hardware setup (P-L496G-CELL02 example)

UM2426 Rev 2 41/95

UM2426 Hardware and software environment setup

Figure 24 shows the P-L496G-CELL02 with the USB cable in place for power supply and
optional trace / boot menu.

Figure 24. Hardware view (P-L496G-CELL02 example)

Hardware and software environment setup UM2426

42/95 UM2426 Rev 2

Figure 25 shows the “Discovery IoT node cellular” set with the B-L475E-IOT01A host, X-
NUCLEO-STMODA1 adapter and MB1329 modem boards connected together.

Figure 25. Hardware view (“Discovery IoT node cellular” set example)

Summary of environment setup steps:

• Create the Grovestreams account (refer to A.1: How to configure a Grovestreams
account? on page 77)

• Create a Grovestreams organization in the Grovestreams account (refer to A.1)

• Get the 2 needed API keys in the organization (refer to A.1)

• Update the provided .txt file with the user API keys previously read

• Connect the modem add-on board with its antenna to the host STM32 board (refer to
Figure 24)

• Connect the STM32 board to a PC via a USB cable (refer to Figure 24)

• Program the STM32 board by dragging and dropping the STM32 FW image onto the
newly appeared drive

• Start the terminal and set the parameters (refer to Chapter 7: Interacting with the host
board)

• Reboot the board (press the black button)

• Select item "2" in the boot menu (refer to Chapter 7: Interacting with the host board for
a complete description), select the SIM card to be used and the APN if needed, set the
Grovestreams parameters, and save in Flash. The APN name is provided by the
M(V)NO.

UM2426 Rev 2 43/95

UM2426 Hardware and software environment setup

• Reboot the board (the trace is displayed in the terminal)

• Connect to the Grovestreams account, select the dashboard, double click on sensor,
observe the data displayed and the toggling of the LED induced by the Grovestreams
dashboard.

There are 2 important txt files for Grovestreams:

• GS_ Blueprint.txt: used during organization creation (use as such, no modification is
needed)

• GS_setup.txt: used to configure the generic FW, to access the Grovestreams account.
This file must be updated with the 2 API keys replaced by the API keys of the
organization (refer to A.1: How to configure a Grovestreams account? on page 77)

Note: File “GS_setup.txt” is not mandatory. It is only an user-friendly method to enter personal
Grovestreams parameters into the FW, avoiding to enter each parameter individually by
using "File" > "Send file …" and selecting “GS_setup.txt”.

Refer to Chapter 7: Interacting with the host board for entering Grovestreams parameters
with file “GS_setup.txt” by using the menu at boot (Setup Menu > Grovestreams).

Refer to Chapter 7: Interacting with the host board for selecting the UICC or SIM socket,
and the APN, by using the menu at boot with (Setup Menu > Cellular Service).

Interacting with the host board UM2426

44/95 UM2426 Rev 2

7 Interacting with the host board

To interact with the Host board a serial console is used (Virtual COM port over USB). With
the Windows® operating system, the use of the Teraterm software is recommended.

Serial port settings for communicating with the host board are illustrated in Figure 26. The
menu is reached through Setup > Serial port. Set Baud rate to 115200 to get Teraterm up
and running. For the boot setup configuration, a Transmit delay of 10 ms must be applied.

Figure 26. Serial port settings to interact with the host board

Figure 27 illustrates the menu for setting the terminal parameters. It is reached through
Setup > Terminal. Set both Receive and Transmit New-line parameters to CR.

Figure 27. Serial port settings to interact with the host board (new-line)

UM2426 Rev 2 45/95

UM2426 Interacting with the host board

Once all terminal and serial port parameters are properly set, press the board reset button
(black).

The HTTP service is active as soon as STM32 SW is running, sending data to the
Grovestreams cloud. The Grovestreams dashboard displays the data values and switches
the device LED ON / OFF.

Parameter setting is possible at boot time through the console. Refer to Section 7.2: Boot
menu for details.

7.1 Debug

The debug trace is viewed through the Virtual COM port of the PC that is connected to the
board and powers it.

Debug levels are customized in file plf_sw_config.h. Details are provided in Section 8.2.3:
Different kinds of available traces, Section 8.2.4: How to configure traces? and Section 8.5:
Thread stack consumption monitoring.

7.2 Boot menu

The boot menu is enabled by setting the USE_DEFAULT_SETUP variable to 0, which is the
default value, in configuration file
Projects\STM32L496G-Discovery\Common_Projects_Files\inc\plf_sw_config.h.

At boot stage, a menu is displayed via the serial console to select the firmware use:

0: Start firmware starts immediately without waiting for 3 seconds

1: Setup Menu configuration setup

2: Modem power on modem boot only without starting firmware applications

If no character is entered after 3 seconds, the firmware starts normally.

Table 3 illustrates the boot menu.

7.2.1 “Start” option

This option starts the Cellular Service normally without waiting for the countdown timer.

Table 2. Boot menu

=============================

 STM32 CELLULAR

 Version: xxx

=============================

Select the application to run:

0: Start

1: Setup Menu

2: Modem power on

Interacting with the host board UM2426

46/95 UM2426 Rev 2

7.2.2 “Modem power on” option

Modem is powered on without starting Cellular Service nor an application. This is useful for
flashing modem FW. Once powered on, if a USB cable is connected to the modem board,
modem FW can be updated with the appropriated PC SW.

7.2.3 “Setup Menu” option

Selecting the Setup Menu option displays the setup menu via the serial console as shown in
Table 3.

0: Quit

Quits the menu and starts FW.

1: Date/Time (RTC)

Used for setting the system date and time (GMT).

Enter the new date and time according to the Day, dd Month yyyy hh:mm:ss format.

Example: Mon, 11 Dec 2017 17:22:05

2: Cellular Service

Used to set the Cellular Service parameters:

• APN/CID association

• SIM slot selection

• NFMC feature as defined in [4]

Refer to Section 7.2.4: Cellular Service and Grovestreams configuration sub-menu and
Section 7.2.6: Cellular Service configuration parameters for Cellular Service configuration
parameter setting.

Table 3. Setup menu at boot

 Setup Menu

Select the component to config:

0: Quit

1: Date/Time (RTC)

2: Cellular Service

3: Grovestreams

4: Ping

8: Get list of config sources

9: Erase all feeprom(1) config

1. feeprom stands for FEEPROM, which is the embedded Flash memory of the host MCU.

UM2426 Rev 2 47/95

UM2426 Interacting with the host board

3: Grovestreams

Setting of the Grovestreams parameters used by the HTTP Client to connect to the
Grovestreams Server:

• Grovestreams URL

• API Keys Identifiers of the device for the PUT and GET HTTP requests

• Sensor list List of sensors to get value from

Refer to Section 7.2.4: Cellular Service and Grovestreams configuration sub-menu and
Section 7.2.7: Grovestreams configuration parameters for Grovestreams configuration
parameter setting.

4: Ping

Used to set the ping parameters:

• Remote Host IP 1 to ping

• Remote Host IP 2 to ping

A remote host IP is formatted as “xxx.xxx.xxx.xxx”.

Examples:

• Grovestreams IP: 173.236.12.163

• Google™ IP: 8.8.8.8

8: Get list of config sources

Used for getting the list of the available configurations and their sources (either stored in
FEEPROM or default values).

Table 4 shows an example for option 8: Get list of config sources with FEEPROM
configuration for the Cellular Service component and default configuration for the
Grovestreams component.

9: Erase all feeprom config

Used for erasing all setup configurations stored in FEEPROM and restoring the default
settings.

7.2.4 Cellular Service and Grovestreams configuration sub-menu

Table 5 shows the configuration sub-menu displayed for Cellular Service or Grovestreams
configuration.

Table 4. List of config sources example

 List of config sources

Cellular Service Config from FEEPROM

Grovestreams Config from DEFAULT

Interacting with the host board UM2426

48/95 UM2426 Rev 2

c : set config by console

Used for modifying the configuration and to storing it in FEEPROM.

e : erase config in flash

Erases the configuration stored in FEEPROM and restores the default settings.

l : list config

Lists the current configuration.

q : quit menu

Returns to the previous menu.

7.2.5 Set config by console option

When the set config by console option is selected though option c in the configuration sub-
menu, the parameter values must be entered on the console.

There are three ways to enter parameter values:

• Enter the configuration manually from the keyboard

• Copy and paste the configuration from a configuration file

• Send a configuration file to the console by using the Teraterm send menu

For each parameter except Version, the current value of the parameter is displayed. If no
value is entered (return key pressed), the current value is kept.

Version is the first configuration field. It allows checking the configuration version when a
configuration file is used. If the version does not match, the configuration is aborted.

• If the configuration is entered manually, the version must be typed as displayed on the
first configuration line

• If the configuration is entered from a text file, check that the configuration of the file
(first line) match with version of the configuration displayed by the console

Example:

• Version (2): 2

Caution: The format of the configurations can change from one firmware version to the other. In such
a case, the configuration stored in FEEPROM is erased at first boot and the default
configuration is restored.

Table 5. Configuration sub-menu

 Setup Menu - Cellular Service

 c : set config by console

 e : erase config in flash (restore default)

 l : list config

 q : quit

UM2426 Rev 2 49/95

UM2426 Interacting with the host board

7.2.6 Cellular Service configuration parameters

Version (n)

Version of the configuration format (refer to Section 7.2.5: Set config by console option).

pdn config mode

Used for selecting the APN and CID definition modes.

• 0: Only the CID value is used and transmitted to the modem.
This option can be used only if an APN/CID association has previously been
stored in the modem.

• 1: The APN and CID defined (refer to APN and CID) are associated and sent to the
modem.

The default value of pdn config mode is 1.

Caution: If the modem cannot store the configuration permanently, the pdn config mode value must
be kept set to 1. This is the case for the UG96 modem.

If the modem has the capability to store the configuration permanently, the modem can be
configured once using the pdn config mode value set to 1. This parameter can later be set to
0.

APN

APN to associated with the CID.

This parameter is taken into account only if parameter pdn config mode is set to 1 (refer to
pdn config mode).

By default, the APN parameter is an empty string. If a non empty string is entered, the only
way to set an empty string again is to erase the Cellular Service Flash configuration (refer to
e : erase config in flash").

The default value of APN is an empty string.

CID

CID value to use.

• If parameter pdn config mode is set to 1, the CID is associated with the APN

• If parameter pdn config mode is set to 0, the APN is not used and the associated APN
must be previously stored in the modem

Refer to pdn config mode for details about the CID/APN association.

The default value of CID is 1.

Sim slot

Sim slot list: specifies the list and order of SIM slots to use at boot time.

• 0: socket slot

• 1: embedded SIM slot

• 2: host SIM slot (not implemented)

The default value of Sim slot is 0.

Interacting with the host board UM2426

50/95 UM2426 Rev 2

Example: If the list of SIM slots to use is first "embedded SIM slot", then "socket slot", the
value to set is 10 ("1" for "embedded SIM slot" and "0" for "socket slot").

NFMC activation

Used for enabling of disabling the NFMC feature.

• 0: NFMC feature disabled

• 1: NFMC feature enabled. Base-temporization parameters are used.

The default value of NFMC activation is 0.

The default values of the base-temporization parameters are:

• NFMC value 1: 60000 ms

• NFMC value 2: 120000 ms

• NFMC value 3: 240000 ms

• NFMC value 4: 480000 ms

• NFMC value 5: 960000 ms

• NFMC value 6: 192000 ms

• NFMC value 7: 3840000 ms

Refer to file Utilities\PC_Software\Tools\Cellular_Service\emnify_cellular_config.txt for an
EMnify cellular configuration example.

7.2.7 Grovestreams configuration parameters

Version (n)

Version of the configuration format (refer to Section 7.2.5: Set config by console option).

Host to contact

URL, or IP address of host server and port.

Examples:

• Enter the IP of the host to contact (xxx.xxx.xxx.xxx:xxxxx)

• Enter the URL of the host to contact (www.url.com port)
For instance: www.grovestreams.com 80

PUT API Key

API key for the HTTP PUT request. Used to send sensor values to the Grovestreams site.
The API key is obtained from the Grovestreams site (refer to A.1: How to configure a
Grovestreams account? on page 77).

GET API Key

API key for the HTTP GET request. Used to get values set on the Grovestreams site (LED
state). The API key is obtained from the Grovestreams site (refer to A.1: How to configure a
Grovestreams account? on page 77).

Component ID

Component ID of the device used in Grovestreams configuration.

The default value of Component ID is Sensors_DEF.

UM2426 Rev 2 51/95

UM2426 Interacting with the host board

“PUT request” period

Period of the PUT request expressed in seconds. If no PUT request is needed, set this
parameter to 0.

The default value of “PUT request” period is 25 while the minimum value is 10.

List of sensor value to send

This is a list of associations between the sensor types and the associated identifiers
configured in Grovestreams.

Example: on the device the battery level type is 1. In the Grovestreams configuration, if the
battery level identifier is set to batlevel, the association is:

• Sensor type: 1

• Channel ID: batlevel

Enter 0 as sensor type to exit the list.

List of sensor types:

• 0 : end of PUT request configuration

• 1 : Battery level

• 2 : Modem signal level

• 3 : HRM heart rate (not implemented)

• 4 : Pedometer (not implemented)

• 5 : Humidity (available if the sensor shield is plugged)

• 6 : Humidity (available if the sensor shield is plugged)

• 7 : Temperature (available if the sensor shield is plugged)

• 8 : Pressure (available if the sensor shield is plugged)

The default association values are 1/batlevel and 2/siglevel.

“GET request” period

Period of the GET request expressed in seconds. If no GET request is needed, set this
parameter to 0.

The default value of “GET request” period is 2.

List of values to get

This is a list of associations between the type of values to get from Grovestreams and the
associated identifiers configured in Grovestreams.

Example: on the device, the LED state type is 1. In the Grovestreams configuration, if the
battery level identifier is set to ledlight, the association is:

• Sensor type: 1

• Channel ID: ledlight

Enter 0 as sensor type to exit the list.

List of sensor types:

• 0 : end of GET request configuration

• 1 : LED state

Interacting with the host board UM2426

52/95 UM2426 Rev 2

The default association value is 1/ledlight.

7.2.8 Boot menu and configuration complete example

=============================

 STM32 CELLULAR

 Version: xxx

=============================

Select the application to run:

0: Start

1: Setup Menu

2: Modem power on

Date: Mon 01/01/2000 - 02:00:42

 Setup Menu

Select the component to config:

0: Quit

1: Date/Time (RTC)

2: Cellular Service

3: Grovestreams

4: Ping

8: Get list of config sources

9: Erase all feeprom config

 Setup Menu - Grovestreams

c : set config by console

e : erase config in flash (restore default)

l : list config

q : quit

UM2426 Rev 2 53/95

UM2426 Interacting with the host board

 Grovestreams Config from UART

Enter Grovestreams GET Key (e02848d7-0e7d-3fc4-9bd6-22f62d3c4xxx):
cc706cd8-ebab-3029-8ada-722d879a2xxx

Enter Grovestreams PUT Key (b92a7d9b-1bb3-38cf-8ea2-c1e0ff0dfxxx):
e02848d7-0e7d-3fc4-9bd6-22f62d3c4xxx

Enter Component ID (comp1): comp1

PUT request

Enter PUT request period (25): 25

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (1): 1

Enter channel ID of sensorEnter Channel ID (batlevel): batlevel

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (2): 2

Enter channel ID of sensorEnter Channel ID (siglevel): siglevel

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (5): 5

Enter channel ID of sensorEnter Channel ID (hum): humidity

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (6): 6

Enter channel ID of sensorEnter Channel ID (temp): temperature

Interacting with the host board UM2426

54/95 UM2426 Rev 2

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (7): 7

Enter channel ID of sensorEnter Channel ID (press): pressure

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (0): 0

Enter GET request period (2): 2

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (1): 1

Enter channel ID of sensorEnter Channel ID (ledlight): ledlight

Config a sensor

Select sensor type

 0 : quit

Enter Selection (0 to quit) (0): 0

save config in feeprom ? (y/n) :y

This example is complete with all possible items selected (5 PUT and 1 GET). It can be
copied as an template text file and customized into the Teraterm installation folder (by
default C:\Program Files (x86)\teraterm\), which is proposed by default when the Send file
option of Teraterm is used.

7.3 Console command

After target boot, the commands presented in this section are available to get and set
software component status.

UM2426 Rev 2 55/95

UM2426 Interacting with the host board

7.3.1 Console command activation

• To activate the console command feature, the USE_CMD_CONSOLE compilation
variable must set to 1 in file
Projects\STM32L496G-Discovery\Common_Projects_Files\inc\ plf_features.h.

#define USE_CMD_CONSOLE (1)

• The board must be connected to a serial console as described in the introduction of
Chapter 7: Interacting with the host board on page 44.

Note: The commands are case sensitive.

7.3.2 Trace commands

Trace commands are used to enable and disable the display of the trace.

trace off

Suspends trace display.

trace on

Resumes trace display.

7.3.3 Atcmd commands

Atcmd commands are used to send AT commands to the modem.

atcmd <at command>

Sends an AT command to the modem. The command result is displayed as trace.

Example:

>atcmd AT+CSQ

AT+CSQ<CR>

 <CR><LF>

 +CSQ: 28,99<CR><LF>

 <CR><LF>

 OK<CR><LF>

>

atcmd timeout [<timeout(ms)>]

Gets or sets the modem response timeout. The default value is 5 000 ms.

7.3.4 Cellullar service task (cst) commands

Cellullar service task commands are used to display information about the cellular context.

cst config

Displays the cellular configuration used.

Interacting with the host board UM2426

56/95 UM2426 Rev 2

Example:

>cst config

pdn mode : Pdn set

APN : "EM"

CID : 1

Sim Slot 0 : MODEM SOCKET

Sim Slot 1 : MODEM EMBEDDED SIM

cst info

Displays modem information.

Example:

>cst info

Cellular Service Infos

Operator name : "Amarisoft_2 USIM"

IMEI : 866425030127783

Nanuf name : Quectel

Model : BG96

Revision : BG96MAR02A07M1G

Serial Number : 866425030127783

ICCID : 89860000502000180722

cst state

Displays the cellular state.

Example:

>cst state

Cellular Service Task Status

Current State : MODEM_DATA_READY_STATE

Signal Quality : 27

Sim Selected : MODEM SOCKET

Sim MODEM SOCKET : OK

Sim MODEM EMBEDDED SIM : SIM NOT USED

Sim STM32 EMBEDDED SIM : SIM NOT USED

Reset Count : 0

7.3.5 HTTP client commands

HTTP client commands are used to enable or disable httpclient periodic processing.

httpclient on

Enables httpclient periodic processing.

httpclient off

Disables httpclient periodic processing.

UM2426 Rev 2 57/95

UM2426 Interacting with the host board

7.3.6 Ping commands

The ping command is used to generate client ping requests.

ping [<IP ADDR:ddd.ddd.ddd.ddd>]

The IP ADDR address is optional. The default value is "8.8.8.8".

Example:

ping 8.8.4.4

<<< HTTP CLIENT ACTIVE 8.8.4.4>>>

>Ping: 32 bytes from 8.8.4.4: seq=01 time= 60ms

Ping: 32 bytes from 8.8.4.4: seq=02 time= 72ms

Ping: 32 bytes from 8.8.4.4: seq=03 time= 57ms

Ping: 32 bytes from 8.8.4.4: seq=04 time= 85ms

Ping: 32 bytes from 8.8.4.4: seq=05 time= 68ms

Ping: 32 bytes from 8.8.4.4: seq=06 time= 102ms

Ping: 32 bytes from 8.8.4.4: seq=07 time= 66ms

Ping: 32 bytes from 8.8.4.4: seq=08 time= 77ms

Ping: 32 bytes from 8.8.4.4: seq=09 time= 76ms

Ping: 32 bytes from 8.8.4.4: seq=10 time= 81ms

--- 8.8.4.4 Ping Statistics ---

Ping: min/avg/max = 57/74/102 ms ok = 10/10

<<< Ping Completed >>>

7.3.7 Modem configuration (modem config) commands

Modem configuration commands are used to modify the modem band configuration. Setting
a new configuration is performed in two steps:

• enter the configuration parameters

– modem config iotopmode: sets iotop mode

– modem config nwscanmode: sets scan mode

– modem config gsmband: sets the list of GSM bands to use

– modem config m1band: sets the list of M1 bands to use

– modem config nb1band: sets the list of M1 bands to use

– modem config scanseq: sets the sequence order to scan

• send the new configuration to the modem

– modem config send

Other command available:

– modem config: lists the configuration ready to send

Note: To use these commands, it is advised to start firmware in "Modem power on" mode (option
"2" of the boot menu).

The new modem configuration is taken into account only after target reboot.

modem config

Displays the current configuration to send.

Interacting with the host board UM2426

58/95 UM2426 Rev 2

Example:

>modem config

scanmode : AUTO

iotopmode : M1

GSM bands : f

900

1800

850

1900

any

M1 bands : 1008

B4

B13

NB1 bands : a0e189f

B1

B2

B3

B4

B5

B8

B12

B13

B18

B19

B20

B26

B28

any

Scan seq : 020301

M1_NB1_GSM

modem config nwscanmode [GSM|LTE|AUTO]

Sets or gets the scan mode.

AUTO: the modem selects automatically the right mode.

Example:

> modem config nwscanmode AUTO

modem config scanseq
[GSM_NB1_M1|GSM_M1_NB1|M1_GSM_NB1|M1_NB1_GSM|NB1_GSM_M1|
NB1_M1_GSM]

Sets or gets the scan sequence (order of the bands scanned)

UM2426 Rev 2 59/95

UM2426 Interacting with the host board

Example:

> modem config scanseq GSM_NB1_M1

First scans GSM, then NB1, then M1.

modem config iotopmode [M1|NB1|ALL]

Sets or gets iotop mode.

ALL: M1 and NB1 are both available.

Example:

> modem config iotopmode ALL

Modem config gsmband [900] [1800] [850] [1900] [nochange] [any]

Sets or gets gsm bands.

any: set all bands.

nochange: no change in GSM band configuration.

Example:

> modem config gsmband 900 1900

modem config m1band [B1] [B2] [B3] [B4] [B5] [B8] [B12] [B13] [B18] [B19]
[B20] [B26] [B28] [B39] [nochange] [any]

Sets or gets M1 bands.

any: set all bands.

nochange: no change in M1 band configuration.

Example:

> modem config m1bands B1 B13

modem config nb1band [B1] [B2] [B3] [B4] [B5] [B8] [B12] [B13] [B18] [B19]
[B20] [B26] [B28] [nochange] [any]

Sets or gets NB1 bands.

any: set all bands.

nochange: no change in NB1 band configuration.

Example:

> modem config nb1bands B1 B13

modem config send

Sends the new configuration to the modem.

Note: The new modem configuration is taken into account only after a target reboot.

Example:

> modem config send

Interacting with the host board UM2426

60/95 UM2426 Rev 2

Full example

For the following configuration:

BG96:>>>>> BG96 mode and bands configuration <<<<<

BG96:LTE Cat.M1 band active (scan rank = 1)

BG96:Cat.M1 BANDS config = 0x1008

BG96:CatM1_B4

BG96:CatM1_B13

BG96:GSM band active (scan rank = 2)

BG96:GSM BANDS config = 0xf

BG96:GSM_900

BG96:GSM_1800

BG96:GSM_850

BG96:GSM_1900

The set of commands to send is:

modem config nwscanmode AUTO

modem config iotopmode M1

modem config gsmband any

modem config m1band B4 B13

modem config nb1band any

modem config scanseq M1_NB1_GSM

modem config send

The reboot of the target is then needed (command lines start with the “>” prompt).

>modem config nwscanmode AUTO

>modem config iotopmode M1

>modem config gsmband any

GSM bands set

900

1800

850

1900

any

>modem config m1band B4 B13

M1 bands set

B4

B13

UM2426 Rev 2 61/95

UM2426 Interacting with the host board

>modem config nb1band any

NB1 bands set

B1

B2

B3

B4

B5

B8

B12

B13

B18

B19

B20

B26

B28

any

>modem config scanseq M1_NB1_GSM

Scan Seq set

M1_NB1_GSM

>modem config send

ATParser:*** SEND (size=25) ***

AT+QCFG="nwscanmode",0,1<CR>

 <CR><LF>

 OK<CR><LF>

 ATParser:*** SEND (size=24) ***

AT+QCFG="iotopmode",0,1<CR>

 <CR><LF>

 OK<CR><LF>

 ATParser:*** SEND (size=29) ***

AT+QCFG="nwscanseq",020301,1<CR>

 <CR><LF>

 OK<CR><LF>

 ATParser:*** SEND (size=32) ***

AT+QCFG="band",f,1008,a0e189f,1<CR>

 <CR><LF>

 OK<CR><LF>

How to customize the software? UM2426

62/95 UM2426 Rev 2

8 How to customize the software?

There are three possible software customization levels applicable to X-CUBE-CELLULAR,
which are presented in this chapter: user customization, advanced user customization, and
developer customization. This chapter also presents how to monitor thread stack
consumption.

8.1 First customization level: user customization

The first customization level is the setup configuration at boot time (refer to Chapter 7:
Interacting with the host board on page 44).

At this level, firmware is not modified. No customization-induced compilation is needed.

8.2 Second customization level: advanced user customization

At this level, firmware configuration modification is possible. Specific features can be added
or removed and firmware configuration parameters can be modified as presented in
sections 8.2.1, 8.2.2, 8.2.3, and 8.2.4.

Customization-induced recompilation is needed.

8.2.1 Adding/removing an application in firmware

The Projects\STM32L496G-Discovery\Common_Projects_Files\inc\plf_features.h
configuration file allows the selection of the applications to be included in firmware.

Table 6 presents the compilation variables that can be defined or undefined as a function of
the applications needed.

Table 6. Compilation variables for applications in firmware

Compilation variable(1) Description

#define USE_HTTP_CLIENT Includes the HTTP client (Grovestreams) application.

#define USE_PING_CLIENT

Includes ping utilities. The ping application uses COM
PING API functionalities.

If USE_PING_CLIENT is defined, USE_COM_PING must
be defined too (see the corresponding entry in this
table).

#define USE_DC_MEMS

Includes sensor management

Projects\Common\tests_utilities\dc_mems.c.
Note: this option can be set only on
32L496GDISCOVERY.

#define USE_SIMU_MEMS

Includes the simulation of sensors (no physical sensor
available)

Projects\Common\tests_utilities\dc_mems.c

This option can be used also with USE_DC_MEMS
defined. It is useful if no sensor shield is plugged.

UM2426 Rev 2 63/95

UM2426 How to customize the software?

8.2.2 IP stack on MCU side or on modem side

The IP stack runs either on the MCU side or on the modem side. The default configuration
is: modem side.

The Projects\STM32L496G-Discovery\Common_Projects_Files\inc\plf_feature.h
configuration file include allows the definition of the location of the IP stack used.

Table 7 presents the compilation variable that defines the IP stack used.

#define USE_DEFAULT_SETUP

Defines if the boot setup menu is used or not:

– 0: boot setup menu used

– 1: boot setup menu not used. In this case, default
parameters are set. These parameters are defined in
file <component>config.h for each component using
the setup menu

Projects\Applications\Cellular\radio_service\cellular\in
c\cellular_service_config.h
Projects\Common\applications\HTTP\inc\httpclient_co
nfig.h

#define USE_DC_EMUL
Includes sensor emulation for Data Cache test

Projects\Common\tests_utilities\dc_emul.c

#define USE_DC_TEST
Includes Data Cache test

Projects\Common\tests_utilities\dc_test.c

#define USE_COM_PING

Includes ping functionalities in module COM.

Because few memory is used with Ping functionalities,
this define provides possibility to not include Ping
functions if Ping is not used on platform.

If USE_PING_CLIENT is defined, then USE_COM_PING
has to be defined.

#define COM_SOCKETS_ERRNO_COMPAT

If activated, then when USE_SOCKETS_TYPE is set to
USE_SOCKETS_MODEM, com_getsockopt with
COM_SO_ERROR parameter returns a value compatible
with errno.h (refer to file com_sockets_err_compat.c for
the conversion).

#define USE_CMD_CONSOLE

Includes console command help

(refer to Section 7.3.1: Console command activation on
page 55 and Section A.5.2: Preparation of the
measurements on page 92).

#define USE_CELPERF

Includes cellular throughput performance measurements

(refer to Section A.5.2: Preparation of the measurements
on page 92).

1. All defines are independent: several applications can be selected together.

Table 6. Compilation variables for applications in firmware (continued)

Compilation variable(1) Description

How to customize the software? UM2426

64/95 UM2426 Rev 2

8.2.3 Different kinds of available traces

Traces are centralized in the TraceInterface module.

C macros are defined in each module of X-CUBE-CELLULAR to manage the traces.

The user can easily modify or enrich the implementation according to his needs.

Enhanced UART traces

The traces are sent to the UART connected to the ST-Link, which uses the TraceInterface
module (for fine trace selection, pretty buffer display, and others).

This is the recommended trace option. It is activated by default.

ITM traces

The Instrumentation Trace Macrocell activates traces that are less intrusive than UART
traces. The TraceInterface module offers a basic implementation of ITM traces, which the
user can enrich according to his needs.

It is activated by default.

Note: Enhanced UART traces and ITM traces are activated by default and provide the same trace
at the same time on different communication channels.

To visualize the traces, the STM32 ST-Link Utility software must be installed.

The ITM trace is visualized after the following series of operation is performed:

1. Connect the USB ST-Link connector of the board to the computer

2. Connect the ST-Link Utility to the board (Menu Target>Connect)

3. Open the serial viewer (Menu STLINK>Printf via the SWO viewer)

4. Set the system clock to the correct value (usually 80 000 000 Hz)

5. Activate all stimulus ports

6. Press start to display the traces

Note: ST-Link Utility must be connected to the board. It is therefore not possible to debug via the
IDE and visualize the ITM trace at the same time.

Standard printf traces

It is possible to select standard printf traces instead of enhanced UART traces.

It uses also the UART connected to ST-Link but offer less options and buffers are not
displayed.

Table 7. Compilation variable for IP stack selection

Compilation variable Description

#define USE_SOCKETS_TYPE

Defines the IP stack used:

– USE_SOCKETS_LWIP:
IP stack on the MCU side (LwIP stack)

– USE_SOCKETS_MODEM:
IP stack on the modem side(1)

1. If the IP stack used is on the modem side, only the TCP IPv4 Client is supported.

UM2426 Rev 2 65/95

UM2426 How to customize the software?

8.2.4 How to configure traces?

The configuration of traces is done in file plf_sw_config.h by means of the following flags:

• SW_DEBUG_VERSION

– Set this flag to 1 (default value) to enable debug traces

– Set this flag to 0 to disable debug traces (only setup menu traces will be
displayed)

• TRACE_IF_TRACES_UART

– Set this flag to 1 to enable enhanced UART traces (default value)

– Set this flag to 0 to disable enhanced UART traces

• TRACE_IF_TRACES_ITM

– -Set this flag to 1 to enable ITM traces (default value)

– Set this flag to 0 to disable ITM traces

• USE_PRINTF

– Set this flag to 1 to enable standard printf UART traces

– Set this flag to 0 to disable standard printf UART traces (default value)

Note: When printf traces are activated, enhanced UART traces and ITM traces are disabled.

Each software module of X-CUBE-CELLULAR can be enabled or disabled using the
corresponding flag beginning by “USE_TRACE_”, such as USE_TRACE_HTTP_CLIENT or
USE_TRACE_PING_CLIENT for instance.

8.3 Third customization level: developer customization

8.3.1 Boot

The boot is the first part of the device initialization. It is included in file main.c (main
function). This part concerns the HW initialization done by HAL. The file is generated by
STM32CubeMX with the .ioc file provided. It must be updated only if a new HW is used or if
the user configures peripherals on the host board (such as GPIO, I2C, or others).

8.3.2 Initialization of software components

The SW components (application and middleware) are initialized in file freeRTOS.c. Each
component comprises a static initialization to initialize its data structure
(<Component>_Init), and a real time initialization to start the component thread
(<Component>_Start). Both are called from the StartDefaultTask function in the right
order.

How to customize the software? UM2426

66/95 UM2426 Rev 2

8.3.3 Software customization

Firmware configuration parameters are included in files:

• FreeRTOSConfig.h: includes FreeRTOS™ parameters

• lwipopts.h: includes LwIP parameters

• plf_hw_config.h: includes HW parameters (such as UART configuration, GPIO
used, and others). A change is usually needed to adapt the
software to a new board.

• plf_sw_config.h: includes SW parameters (such as task priorities, trace
activations and others)

• plf_stack_size.h: includes thread stack sizes. The stack sizes included in this file
are used to calculate the FreeRTOS™ heap size (contained in
file FreeRTOSConfig.h).

• plf_features.h: includes the selected applications

8.3.4 Firmware adaptation to a new HW configuration

To adapt the firmware to a new board or new HW configuration, follow these steps:

1. Create an STM32CubeMX project based on the new board

2. Configure the HW IPs as configured for the 32L496GDISCOVERY board

3. Generate the software configuration files from STM32CubeMX

4. Update file plf_hw_config.h to match the GPIO and HW handler names generated in
the configuration files

8.3.5 Adding a new component

To add a new component (application or middleware), follow these steps:

1. Create an initialization function <Component>_Init to initialize the data structure of
the application

2. Create a starting function <Component>_Start to start a component thread

3. Add in the StartDefaultTask function (in file freertos.c) the call of
<Component>_Init and <Component>_Start

4. Add the stack priority constant in file plf_sw_config.h and the stack size in file
plf_stack_size.h. Other convenient configuration compilation variables can be added
as well.

5. Implement the component core. Each component owns at least one thread.

Interaction with the other components and whole system is done by using Data Cache.
Data Cache contains all system data to share between components (sensor values,
network state, …). When a component updates a data in Data Cache, all subscribed
callback are called.

Generally a component subscribes a call back to Data Cache. The core of the
application thread waits for a Data Cache event and process it.

File httpclient.c can be used as example for the creation of a new application.

UM2426 Rev 2 67/95

UM2426 How to customize the software?

8.4 Data cache

8.4.1 Introduction

The Data Cache allows the sharing of data and events by software components.

A software component (producer) creates a data entry and writes data in it. Each data entry
is associated to an identifier.

The other components (consumers) can read the data by means of the identifier.

A component can subscribe a callback be informed when Data Cache data entry has been
updated.

The Data Cache structure includes the rt_state field. This field contains the state of
service and the validity of entry data.

• DC_SERVICE_UNAVAIL: field values of structure not significant

• DC_SERVICE_ON: service started (field values of structure not significant)

• Other value are entry dependent

8.4.2 Data Cache API

Writing into the Data Cache: dc_com_write

dc_com_status_t dc_com_write
(void *dc, dc_com_res_id_t res_id, void *data, uint16_t len)

• Input:

– dc: reference to the Data Cache used. Must be set to &dc_com_db

– res_id: identifier of the Data Cache entry to write

– data: address of the data structure to write

– len: length of the data structure to write

• Output: none

• Returns an error code

Reading from the Data Cache: dc_com_read

dc_com_status_t dc_com_read
(void *dc, dc_com_res_id_t res_id, void *data, uint16_t len)

• Input:

– dc: reference to the Data Cache used. Must be set to &dc_com_db

– len: length of the Data Cache structure to read

– res_id: identifier of the Data Cache entry to read

• Output:

– data: address of the data structure to read

• Returns an error code

How to customize the software? UM2426

68/95 UM2426 Rev 2

Register a callback: dc_com_register_gen_event_cb

dc_com_reg_id_t dc_com_register_gen_event_cb

(dc_com_db_t *dc_db, dc_com_gen_event_callback_t notif_cb,
void *private_gui_data)

• Input:

– dc_db: reference to the Data Cache used. Must be set to &dc_com_db

– notif_cb: address of callback. This callback is called when a Data Cache entry
has been updated. The callback is executed in the writing task context

– private_gui_data: address of user private context. This address is passed as
a parameter of the callback

• Output: none

• Returns an error code

8.4.3 Main Data Cache entries

Modem configuration

The modem configuration contains the cellular parameters used to configure the modem.

If the application needs to set its own modem configuration, it must set the
DC_COM_CELLULAR Data Cache entry at boot time between the calls to
cellular_init() and cellular_start().

#include dc_cellular.h

Identifier: DC_COM_CELLULAR_PARAM

typedef struct

{

 dc_service_rt_header_t header;

 dc_service_rt_state_t rt_state;

 uint8_t set_pdn_mode;

 uint8_t apn[DC_MAX_SIZE_APN];

 CS_PDN_conf_id_t cid;

 uint8_t sim_slot_nb;

 CST_sim_slot_type_t sim_slot[CST_SIM_SLOT_NB];

 uint8_t nfmc_active;

 uint32_t nfmc_value[DC_NFMC_TEMPO_NB];

} dc_cellular_params_t;

UM2426 Rev 2 69/95

UM2426 How to customize the software?

• rt_status values:

– DC_SERVICE_UNAVAIL: service not initialized. The field values of structure are
not significant

– DC_SERVICE_ON: service started (field values of structure not significant)

– Other value not used

• set_pdn_mode: used for selecting the APN and CID definition modes.

– 0: Only the CID value is used and transmitted to the modem.

This option can be used only if an APN/CID association has previously been
stored in the modem.

– 1: The APN and CID defined (refer to APN and CID) are associated and sent to
the modem.

• apn: APN Value (string)

• cid: CID value

• sim_slot_nb: number of SIM slots used (max 3)

• sim_slot: table of SIM slots used

CST_SIM_SLOT_MODEM_SOCKET = 0

CST_SIM_SLOT_MODEM_EMBEDDED_SIM = 1

CST_SIM_SLOT_STM32_EMBEDDED_SIM = 2

• nfmc_active: this flag specifies if NMFC must be activated. If yes, the nmfc_value
is used.

• nfmc_value: table of NMFC values allowing the calculation of NFMC tempos. This
field is used only if nfmc_active==1.

Example to set the modem configuration:

void set_modem_configuration(void)

{

 dc_cellular_params_t cellular_params;

 cellular_params.set_pdn_mode = 1U; /* PDN to set */

 memset(cellular_params.apn, 0, DC_MAX_SIZE_APN);

 strcpy(cellular_params.apn, "APN"); /* APN value */

 cellular_params.cid = 1; /* CID Value */

 cellular_params.sim_slot_nb = 1; /* Number of sim slot */

 cellular_params.sim_slot[0] = CST_SIM_SLOT_MODEM_SOCKET;

 /* SIM slot to use : Modem socket */

 cellular_params.nfmc_active = 0U; /* NFMC disabled */

 cellular_params.rt_state = DC_SERVICE_ON;/* Modem Config valid */

How to customize the software? UM2426

70/95 UM2426 Rev 2

 /* Write modem config to Data Cache */

 dc_com_write(&dc_com_db, DC_COM_CELLULAR_PARAM,

 (void *)&cellular_params, sizeof(cellular_params));

}

/* StartDefaultTask in freertos.c */

void StartDefaultTask(void const *argument)

{

 /* ... */

 cellular_init();

 /* ... */

 set_modem_configuration();

 /* ... */

 cellular_start();

 /* ... */

}

Cellular information

Contains the main cellular information received from the modem after the boot.

#include dc_cellular.h

Identifier: DC_COM_CELLULAR_INFO

typedef struct

{

 dc_service_rt_header_t header;

 dc_service_rt_state_t rt_state;

 uint32_t cs_signal_level;

 int32_t cs_signal_level_db;

 int8_t imei[DC_MAX_SIZE_IMEI];

 int8_t mno_name[DC_MAX_SIZE_MNO_NAME];

 int8_t manufacturer_name[DC_MAX_SIZE_MANUFACT_NAME];

 int8_t model[DC_MAX_SIZE_MODEL];

UM2426 Rev 2 71/95

UM2426 How to customize the software?

 int8_t revision[DC_MAX_SIZE_REV];

 int8_t serial_number[DC_MAX_SIZE_SN];

 int8_t iccid[DC_MAX_SIZE_ICCID];

} dc_cellular_info_t;

• rt_status values

– DC_SERVICE_UNAVAIL: service not initialized. The field values of structure are
not significant

– DC_SERVICE_RUN: modem powered on and initialized. The field values of
structure are significant except MNO name

– DC_SERVICE_ON: modem attached. All the field values of structure are significant.

– Other value not used

Example:

#include "dc_cellular.h"

dc_cellular_info_t cst_cellular_info;

dc_com_read(&dc_com_db, DC_COM_CELLULAR_INFO,
(void *)&cst_cellular_info, sizeof(dc_cellular_info_t));

Sim information

Contains information of the available SIM.

#include dc_cellular.h

Identifier: DC_COM_SIM_INFO

typedef struct

{

 dc_service_rt_header_t header;

 dc_service_rt_state_t rt_state;

 int8_t imsi[DC_MAX_SIZE_IMSI];

 uint16_t index_slot;

 uint16_t active_slot;

 dc_cs_sim_status_t sim_status[CST_SIM_SLOT_NB];

} dc_sim_info_t;

How to customize the software? UM2426

72/95 UM2426 Rev 2

• rt_status values

– DC_SERVICE_UNAVAIL: service not initialized. The field values of structure are
not significant

– DC_SERVICE_ON: modem powered on and initialized. The other field values of
structure are significant

– Other value not used

Example

#include "dc_cellular.h"

dc_sim_info_t cst_sim_info;

dc_com_read(&dc_com_db, DC_COM_SIM_INFO, (void *)&cst_sim_info,
sizeof(dc_sim_info_t));

Data Network information

Contains information about the network.

#include dc_cellular.h

Identifier: DC_COM_NIFMAN_INFO

typedef struct

{

 dc_service_rt_header_t header;

 dc_service_rt_state_t rt_state;

 dc_nifman_network_t network;

 dc_network_addr_t ip_addr;

} dc_nifman_info_t;

• rt_status values

– DC_SERVICE_UNAVAIL: service not initialized. The field values of structure are
not significant

– DC_SERVICE_ON: network available. The other field values of structure are
significant

– DC_SERVICE_OFF: network not available

– DC_SERVICE_FAIL: network stack returns error. Network is not available

– DC_SERVICE_SHUTTING_DOWN: network shut down. Network is not available

– Other value not used

UM2426 Rev 2 73/95

UM2426 How to customize the software?

Example:

#include "dc_cellular.h"

dc_nifman_info_t nifman_info;

dc_com_read(&dc_com_db, DC_COM_NIFMAN_INFO, (void
*)&nifman_info, sizeof(dc_nifman_info_t));

8.4.4 Example of producer/consumer code

The following example shows how NIFMAN Data Cache entry in managed. It shows:

• the NIFMAN code: NIFMAN is the producer of NIFMAN Data Cache entry

• httpclient as an example of consumer: at the beginning httpclient waits for the
network start.

Producer code (NIFMAN)

dc_cellular.h

/* Declaration of Data Cache structure */

typedef struct

{

 dc_service_rt_header_t header;

 dc_service_rt_state_t rt_state;

 dc_nifman_network_t network;

 dc_network_addr_t ip_addr;

} dc_nifman_info_t;

/* Declaration of NIFMAN Data Cache identifier */

extern dc_com_res_id_t DC_COM_NIFMAN ;

nifman.c

/* Update of NIMAN Data Cache structure */

dc_nifman_info_t nifman_info;

dc_com_status_t dc_status ;

/* read the current Data Cache structure tu update */

dc_status = dc_com_read(&dc_com_db, DC_COM_NIFMAN_INFO, (void
*)&nifman_info, (uint16_t)sizeof(nifman_info));

/* modify structure values */

nifman_info.network = DC_CELLULAR_SOCKET_MODEM;

nifman_info.rt_state = DC_SERVICE_ON;

How to customize the software? UM2426

74/95 UM2426 Rev 2

dc_status = dc_com_write(&dc_com_db, DC_COM_NIFMAN_INFO, (void
*)&nifman_info, (uint16_t)sizeof(nifman_info));

Consumer code (httpclient)

void http_client_start(void)

{

 /* … */

 /* Registration callback to Data Cache - for Network On/Off
detection */

 dc_com_register_gen_event_cb(&dc_com_db, http_client_notif_cb,
(void *) NULL);

 /* … */

}

/* http client callback code */

static void http_client_notif_cb(dc_com_event_id_t dc_event_id,

 void *private_gui_data)

{

 /* Test if it is the NIFMAN event */

 if (dc_event_id == DC_COM_NIFMAN_INFO)

 {

 dc_nifman_info_t dc_nifman_info;

 /* read the NIFMAN Data Cache structure */

 dc_com_read(&dc_com_db, DC_COM_NIFMAN_INFO,

 (void *)&dc_nifman_info, sizeof(dc_nifman_info));

 if (dc_nifman_info.rt_state == DC_SERVICE_ON)

 {

 /* the Network is On */

 network_is_on = HTTPCLIENT_TRUE;

 http_client_ip_addr = dc_nifman_info.ip_addr.addr;

 /* wakeup the http client task to complete the processing */

 osMessagePut(http_client_queue, (uint32_t)dc_event_id, 0U);

 }

 else

UM2426 Rev 2 75/95

UM2426 How to customize the software?

 {

 /* the Network is Off */

 network_is_on = HTTPCLIENT_FALSE;

 }

 }

}

8.5 Thread stack consumption monitoring

The Stack Analysis module enables the monitoring of the thread stack consumption.

Each time a thread is created, its registration must be added to Stack Analysis to
provide its stack size allocation (this is already done for all the threads declared in the
project).

Table 8 shows, as for any new thread creation, the addition of a call to service
stackAnalysis_addThreadStackSizeByHandle().

The number of project threads is calculated according to feature activation (refer to file
plf_stack_size.h) as shown in Table 9.

Table 8. New thread registration example

osThreadDef(defaultTask, StartDefaultTask, CTRL_THREAD_PRIO, 0,

 CTRL_THREAD_STACK_SIZE);

defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);

#if (STACK_ANALYSIS_TRACE == 1)

 stackAnalysis_addThreadStackSizeByHandle(defaultTaskHandle,
CTRL_THREAD_STACK_SIZE);

#endif /* STACK_ANALYSIS_TRACE */

How to customize the software? UM2426

76/95 UM2426 Rev 2

To monitor the consumption of the thread stacks during software execution, the lines shown
in Table 10 are added to StartDefaultTask, at the end of initialization.

The monitoring is not activated by default. To activate it (printf of all thread stack size
evolutions), change in file plf_sw_config.h

#define STACK_ANALYSIS_TRACE (0)

by

#define STACK_ANALYSIS_TRACE (1)

The monitoring default configuration results in a print of all thread stack size maximum
occupation every 5 seconds.

For more options regarding the configuration monitoring refer to file stack_analysis.h.

Table 9. Number of project threads setting example

#define THREAD_NUMBER \

 USED_TCPIP_THREAD \

 +USED_DEFAULT_THREAD \

 +USED_PPPOSIF_CLIENT_THREAD \

 +USED_DC_CTRL_THREAD \

 +USED_ATCORE_THREAD \

 +USED_NIFMAN_THREAD \

 +USED_DC_TEST_THREAD \

 +USED_DC_MEMS_THREAD \

 +USED_DC_EMUL_THREAD \

 +USED_HTTPCLIENT_THREAD \

 +USED_PINGCLIENT_THREAD \

 +USED_FREERTOS_TIMER_THREAD \

 +USED_FREERTOS_IDLE_THREAD \

 +USED_CMD_THREAD \

 +USED_CELLULAR_SERVICE_THREAD

Table 10. Code for thread stack consumption monitoring

 for(;;)

 {

#if (STACK_ANALYSIS_TRACE == 1)

 stackAnalysis_trace(true);

 /* print stack analysis status every 5 sec*/

 osDelay(5000);

#else

 osDelay(1000);

#endif

 }

UM2426 Rev 2 77/95

UM2426 Support material

Appendix A Support material

A.1 How to configure a Grovestreams account?

The different steps are:

1. Create an email account if needed (a valid email account is needed to create a
Grovestreams account)

2. Create a Grovestreams account (free sign up)

3. Setup the Grovestreams account (create the organization with the blueprint)

4. Get the needed API keys (used in STM32 MCU FW)

The series of figures from Figure 28 to Figure 33 illustrate the creation and configuration of
a Grovestreams account.

Figure 28 shows the login screen for the creation of a Grovestreams organization.

Figure 28. Grovestreams organization creation acceptance screen

The blueprint (template) is used for the creation of the organization as shown in Figure 29:

• Enter the organization name in field Organization Name

• Tick the Create with a custom blueprint option

• Select the Blueprint File

• Validate with Create Organization

Figure 29. Grovestreams organization creation screen

Support material UM2426

78/95 UM2426 Rev 2

Get access to the organization as shown in Figure 30.

Figure 30. Grovestreams organization access screen

Prepare to copy the API keys by selecting Admin > API Keys as shown in Figure 31.

Figure 31. Grovestreams organization administration menu

UM2426 Rev 2 79/95

UM2426 Support material

Select Feed Put API Key as shown in Figure 32.

Figure 32. Grovestreams API key selection screen

Select View Secret Key to display the key as illustrated in Figure 33.

Figure 33. Grovestreams API key display screen

The API key can be copied and pasted as per need. Proceed similarly for the dashboard
API key, by un-selecting Feed Put API Key before selecting Dashboard API Key.

A.2 How to activate the soldered SIM card?

The C2C kits are provided with a UICC chip pre-provisioned by the EMnify MVNO, which
allows worldwide 2G and 3G roaming. This is not an eUICC but an embedded SIM. It is a
classical SIM profile provisioned in a chip during the factory process. It is not an eUICC that
allows remote profile update.

Note: This section does not apply to the “Discovery IoT node cellular” set, which features no
embedded SIM provisioned by an M(V)NO.

LTE Cat M1 and NB1 technologies are not supported by EMnify. In case of UICC activation
on a BG96 board, only 2G fallback is possible.

To use the BG96 modem in Cat M1 or NB1 mode, the user must operate with the microSIM
plastic card.

There is no restriction for UG96 add-on boards.

Support material UM2426

80/95 UM2426 Rev 2

The steps to activate EMnify on the UICC chip are:

1. Boot the board with a terminal connected so that a text can be read

2. Get the voucher from the displayed text

3. Connect with a PC to https://stm32-c2c.com

4. Register the board using the voucher

5. Select the EMnify item in the displayed board

6. Follow the activation procedure

7. The EMnify profile is immediately activated (double click on the SIM to display the SIM
status)

A.3 Frequently asked questions

Q: Where to find the blueprint file for creating a Grovestreams organization?

A: In /Utilities/PC_Software/Grovestreams, as file GS_Blueprint.txt.

Q: Where to find the text file for updating Grovestreams parameters?

A: In /Utilities/PC_Software/Grovestreams, as file GS_Setup.txt.

Q: How to know if the cellular application is up and running?

A: Either with the trace on Teraterm or by connecting to the Grovestreams account and
checking that the data is updated.

Q: Nothing is displayed in Teraterm.

A: Ensure that Teraterm options (such as Baud rate) are correctly set.

Q: Wrong echo in Teraterm during setup.

A: Ensure that Teraterm options (such as New-line and Transmit delay) are correctly set.

Q: It boots but there is an issue with the network.

A: Check that the correct SIM is selected (Plastic SIM or soldered UICC; Plastic SIM by
default).

Q: How to check that the EMnify profile on UICC is correctly activated?

A: Connect to the EMnify account and check the status.

Q: EMnify is correctly activated but it does not work.

A: Check in the EMnify account if the correct tariff is selected.

UM2426 Rev 2 81/95

UM2426 Support material

Q: The log indicates it is properly up and running but nothing changes in Grovestreams.

A: Check that the correct API keys are used (the ones associated with the organization
used for the demonstration).

Q: The voucher cannot be read because the initial image was overwritten.

A: Browse to www.stm32-c2c.com and download Restore factory firmware.

Q: With the out-of-the-box FW, there is no information on the console.

A: Set the correct parameter in Teraterm (Baud rate as 9600 to obtain the voucher) and
make sure that the modem is not connected upside-down to the host board through the
STMod+ connector.

Support material UM2426

82/95 UM2426 Rev 2

A.4 X-CUBE-CELLULAR API descriptions

This section presents the API used by upper layers (applications).

The API are exposed from 2 modules, COM, and Data Cache.

A.4.1 COM API

The pieces of software in this section are extracted from file
Application\net\com\inc\com_sockets.h.

Socket management

Table 11. COM API management - Socket handle creation

/**

 * @brief Socket handle creation

 * @note Create a communication endpoint called socket

 * @param family - address family

 * @param type - connection type

 * @param protocol - protocol type

 * @retval int32_t - socket handle or error value

 */

int32_t com_socket(int32_t family, int32_t type, int32_t protocol);

Table 12. COM API management - Socket option set

/**

 * @brief Socket option set

 * @note Set option for the socket

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param level - level at which the option is defined

 * @param optname - option name for which the value is to be set

 * @param optval - pointer to the buffer containing the option value

 * @param optlen - size of the buffer containing the option value

 * @retval int32_t - ok or error value

 */

int32_t com_setsockopt(int32_t sock, int32_t level, int32_t optname,

 const void *optval, int32_t optlen);

UM2426 Rev 2 83/95

UM2426 Support material

Table 13. COM API management - Socket option get

/**

 * @brief Socket option get

 * @note Get option for a socket

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param level - level at which option is defined

 * @param optname - option name for which the value is requested

 * @param optval - pointer to the buffer that will contain the option value

 * @param optlen - size of the buffer that will contain the option value

 * @retval int32_t - ok or error value

 */

int32_t com_getsockopt(int32_t sock, int32_t level, int32_t optname,

 void *optval, int32_t *optlen);

Table 14. COM API management - Socket bind

/**

 * @brief Socket bind

 * @note Assign a local address and port to a socket

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param addr - local IP address and port

 * @param addrlen - addr length

 * @retval int32_t - ok or error value

 */

int32_t com_bind(int32_t sock,

 const com_sockaddr_t *addr, int32_t addrlen);

Table 15. COM API management - Socket close

/**

 * @brief Socket close

 * @note Close a socket and release socket handle

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @retval int32_t - ok or error value

 */

int32_t com_closesocket(int32_t sock);

Support material UM2426

84/95 UM2426 Rev 2

Client functionalities

Table 16. COM API client - Socket connect

/**

 * @brief Socket connect

 * @note Connect socket to a remote host

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param addr - remote IP address and port

 * @param addrlen - addr length

 * @retval int32_t - ok or error value

 */

int32_t com_connect(int32_t sock,

 const com_sockaddr_t *addr, int32_t addrlen);

Table 17. COM API client - Socket send data

/**

 * @brief Socket send data

 * @note Send data on already connected socket

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param buf - pointer to application data buffer to send

 * @param len - size of the data to send (in bytes)

 * @param flags - options

 * @retval int32_t - number of bytes sent or error value

 */

int32_t com_send(int32_t sock,

 const com_char_t *buf, int32_t len, int32_t flags);

Table 18. COM API client - Socket receive data

/**

 * @brief Socket receive data

 * @note Receive data on already connected socket

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param buf - pointer to application data buffer to store the data to

 * @param len - size of application data buffer (in bytes)

 * @param flags - options

 * @retval int32_t - number of bytes received or error value

 */

int32_t com_recv(int32_t sock,

 com_char_t *buf, int32_t len, int32_t flags);

UM2426 Rev 2 85/95

UM2426 Support material

Server functionalitie

Table 19. COM API server - Socket listen

/**

 * @brief Socket listen

 * @note Set socket in listening mode

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param backlog - number of connection requests that can be queued

 * @retval int32_t - ok or error value

 */

int32_t com_listen(int32_t sock, int32_t backlog);

Table 20. COM API server - Socket accept

/**

 * @brief Socket accept

 * @note Accept a connect request for a listening socket

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param addr - IP address and port number of the accepted connection

 * @param len - addr length

 * @retval int32_t - ok or error value

 */

int32_t com_accept(int32_t sock,com_sockaddr_t *addr, int32_t *addrlen);

Table 21. COM API server - Socket send to data

/**

 * @brief Socket send to data

 * @note Send data to a remote host

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param buf - pointer to application data buffer to send

 * @param len - length of the data to send (in bytes)

 * @param flags - options

 * @param addr - remote IP address and port number

 * @param len - addr length

 * @retval int32_t - number of bytes sent or error value

 */

int32_t com_sendto(int32_t sock,

 const com_char_t *buf, int32_t len, int32_t flags,

 const com_sockaddr_t *to, int32_t tolen);

Support material UM2426

86/95 UM2426 Rev 2

Other functionalities

Table 22. COM API server - Socket receive from data

/**

 * @brief Socket receive from data

 * @note Receive data from a remote host

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param buf - pointer to application data buffer to store the data to

 * @param len - size of application data buffer (in bytes)

 * @param flags - options

 * @param addr - remote IP address and port number

 * @param len - addr length

 * @retval int32_t - number of bytes received or error value

 */

int32_t com_recvfrom(int32_t sock,

 com_char_t *buf, int32_t len, int32_t flags,

 com_sockaddr_t *from, int32_t *fromlen);

Table 23. COM API other - Component initialization

/**

 * @brief Component initialization

 * @note must be called only one time and

 * before using any other functions of com_*

 * @param None

 * @retval bool - true/false init ok/nok

 */

com_bool_t com_init(void);

Table 24. COM API other - Component start

/**

 * @brief Component start

 * @note must be called only one time but

 * after com_init and dc_start

 * and before using any other functions of com_*

 * @param None

 * @retval None

 */

void com_start(void);

UM2426 Rev 2 87/95

UM2426 Support material

Table 25. COM API other - Get host IP from host name

/**

 * @brief Get host IP from host name

 * @note Retrieve host IP address from host name

 * @param name - host name

 * @param addr - host IP corresponding to host name

 * @retval int32_t - ok or error value

 */

int32_t com_gethostbyname(const com_char_t *name,

 com_sockaddr_t *addr);

Table 26. COM API other - Get peer name

/**

 * @brief Get peer name

 * @note Retrieve IP address and port number

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param name - IP address and port number of the peer

 * @param namelen - name length

 * @retval int32_t - ok or error value

 */

int32_t com_getpeername(int32_t sock,

 com_sockaddr_t *name, int32_t *namelen);

Table 27. COM API other - Get sock name

/**

 * @brief Get sock name

 * @note Retrieve local IP address and port number

 * @param sock - socket handle obtained with com_socket

 * @note socket handle on which operation has to be done

 * @param name - IP address and port number

 * @param namelen - name length

 * @retval int32_t - ok or error value

 */

int32_t com_getsockname(int32_t sock,

 com_sockaddr_t *name, int32_t *namelen);

Support material UM2426

88/95 UM2426 Rev 2

Table 28. COM API other - Ping APIs

#if (USE_COM_PING == 1)

/**

 * @brief Ping handle creation

 * @note Create a ping session

 * @param None

 * @retval int32_t - ping handle or error value

 */

int32_t com_ping(void);

/**

 * @brief Ping process request

 * @note Create a ping session

 * @param ping - ping handle obtained with com_ping

 * @note ping handle on which operation has to be done

 * @param addr - remote IP address and port

 * @param addrlen - addr length

 * @param timeout - timeout for ping response (in sec)

 * @param rsp - ping response

 * @retval int32_t - ok or error value

 */

int32_t com_ping_process(int32_t ping,

 const com_sockaddr_t *addr, int32_t addrlen,

 uint8_t timeout, com_ping_rsp_t *rsp);

/**

 * @brief Ping close

 * @note Close a ping session and release ping handle

 * @param ping - ping handle obtained with com_socket

 * @note ping handle on which operation has to be done

 * @retval int32_t - ok or error value

 */

int32_t com_closeping(int32_t ping);

#endif /* USE_COM_PING == 1 */

;

UM2426 Rev 2 89/95

UM2426 Support material

A.4.2 Data Cache API

The Data Cache API is split into several files and covers event ID, data ID and services.

Event ID

Cellular data ID

Sensor data ID

Table 29. Data Cache API in dc_control.h (event ID)

extern dc_com_res_id_t DC_COM_BUTTON_UP ;

extern dc_com_res_id_t DC_COM_BUTTON_DN ;

extern dc_com_res_id_t DC_COM_BUTTON_RIGHT ;

extern dc_com_res_id_t DC_COM_BUTTON_LEFT ;

extern dc_com_res_id_t DC_COM_BUTTON_SEL ;

Table 30. Data Cache API in dc_cellular.h (cellular data ID)

extern dc_com_res_id_t DC_COM_CELLULAR ;

extern dc_com_res_id_t DC_COM_PPP_CLIENT ;

extern dc_com_res_id_t DC_COM_CELLULAR_DATA ;

extern dc_com_res_id_t DC_COM_RADIO_LTE ;

extern dc_com_res_id_t DC_COM_NIFMAN ;

extern dc_com_res_id_t DC_COM_NFMC_TEMPO ;

extern dc_com_res_id_t DC_COM_SIM_INFO ;

Table 31. Data Cache API in dc_mems.h (sensor data ID)

extern dc_com_res_id_t DC_COM_PRESSURE ;

extern dc_com_res_id_t DC_COM_HUMIDITY ;

extern dc_com_res_id_t DC_COM_TEMPERATURE ;

extern dc_com_res_id_t DC_COM_ACCELEROMETER ;

extern dc_com_res_id_t DC_COM_GYROSCOPE ;

extern dc_com_res_id_t DC_COM_MAGNETOMETER ;

Support material UM2426

90/95 UM2426 Rev 2

Services

Table 32. Data Cache API in dc_common.h (services)

/**

 * @brief to register a generic cb to a given dc_db

 * @param dc_db data base reference

 * @param notif_cb user callback

 * @param private_gui_data user context

 * @retval dc_com_reg_id_t created entry identifier

 */

dc_com_reg_id_t dc_com_register_gen_event_cb(

 dc_com_db_t*dc_db,

 dc_com_gen_event_callback_t notif_cb, /* the user event callback */

 void *private_gui_data); /* user private data */

/**

 * @brief update a data info in the DC

 * @param dc data base reference

 * @param res_id resource id

 * @param data data to write

 * @param len len of data to write

 * @retval dc_com_status_t return status

 */

dc_com_status_t dc_com_write (void *dc, dc_com_res_id_t res_id, void *data, uint16_t
len);

/**

 * @brief read current data info in the DC

 * @param dc data base reference

 * @param res_id resource id

 * @param data data to read

 * @param len len of data to read

 * @retval dc_com_status_t return status

 */

dc_com_status_t dc_com_read (void *dc, dc_com_res_id_t res_id, void *data, uint16_t
len);

/**

 * @brief send an event to DC

 * @param dc data base reference

 * @param event_id event id

 * @retval dc_com_status_t return status

 */

dc_com_status_t dc_com_write_event (void *dc, dc_com_event_id_t event_id);

UM2426 Rev 2 91/95

UM2426 Support material

Table 33. Data Cache API in dc_time.h (services)

/**

 * @brief set system date and time

 * @param dc_time_date_rt_info (in) date to set

 * @param dc_time_data_type_t (in) time to set

 * @retval dc_srv_ret_t return status

 */

dc_srv_ret_t dc_srv_get_time_date(dc_time_date_rt_info_t* dc_time_date_rt_info,

 dc_time_data_type_t time_date);

/**

 * @brief get system date and time

 * @param dc_time_date_rt_info (out) date

 * @param dc_time_data_type_t (out) time

 * @retval dc_srv_ret_t return status

 */

dc_srv_ret_t dc_srv_set_time_date(const dc_time_date_rt_info_t* time,

 dc_time_data_type_t time_date);

Table 34. Data Cache API in cellular_init.h (services)

/**

 * @brief get cellular component initialization

 * @retval no return value

 */

void cellular_init(void);

/**

 * @brief get cellular component start

 * @retval no return value

 */

void cellular_start(void);

Support material UM2426

92/95 UM2426 Rev 2

A.5 How to measure cellular throughput?

A.5.1 Introduction

Throughput measurements are done by sending data to a server.

The measurements are done successively for buffer data of 16, 32, 64, 128,256, 512, 1024
and 1400 bytes.

For each data size, several iterations are done to increase accuracy.

A.5.2 Preparation of the measurements

• Server installation

– Get the server IP ADDR using the ipconfig command

ipconfig

– Copy the Utilities\PC_Software\Performance\perf_server\perf_tcp_rcv_server.c
file onto a Linux® PC connected to the network

– Compile the perf_tcp_rcv_server.c file using

cc -o perf_tcp_rcv_server perf_tcp_rcv_server.c

– Start the server

./perf_tcp_rcv_server

• Target preparation

– Enable performance feature :

in file
Projects\STM32L496G-Discovery\Common_Projects_Files\inc\plf_features.h
update the following lines:

#define USE_HTTP_CLIENT (0) // 0: not activated, 1: activated

#define USE_CMD_CONSOLE (1) // 0: not activated, 1: activated

#define USE_CELPERF (1) // 0: not activated, 1: activated

– Generate and load and start new firmware

– Connect a serial console to the target (refer to Chapter 7: Interacting with the host
board on page 44)

– Wait for the network start

– Disable trace using command on the serial console

trace off

– Set right server IP address using command on the serial console

perf addr <IP addr of server: ddd.ddd.ddd.ddd>

– Start throughput measure. Note: the measurements takes several minutes.

perf start

UM2426 Rev 2 93/95

UM2426 Support material

A.5.3 Example

>trace off

 <<< TRACE INACTIVE >>>

>perf start

socket connect OK

tcpip perf snd started...

 size iter data(B) time(ms) throughput(Byte/s)

 16 5000 80000 103843 776

 32 3000 96000 66772 1454

 64 1000 64000 24837 2666

 128 1000 128000 30330 4266

 256 500 128000 20894 6400

 512 200 102400 12925 8533

 1024 100 102400 10986 10240

 1400 100 140000 14277 10000

Perf measure completed

A.6 How to select BG96 modem configuration bands?

The configuration of BG96 modem bands can be done using console commands (refer to
Chapter 7: Interacting with the host board on page 44).

Revision history UM2426

94/95 UM2426 Rev 2

Revision history

Table 35. Document revision history

Date Revision Changes

28-Jun-2018 1 Initial release.

2-Nov-2018 2

X-CUBE-CELLULAR support extended to the
“Discovery IoT node cellular” set:

– Updated Introduction, Chapter 1: General information,
Section 4.2: Modem socket versus LwIP, Chapter 6:
Hardware and software environment setup,
Section 5.4: Grovestreams (HTTP) access example,
and A.2 How to activate the soldered SIM card?

Augmented X-CUBE-CELLULAR feature description:

– Added Section 7.3: Console command, Section 8.4:
Data cache, Section 8.2.3: Different kinds of available
traces, Section 8.2.4: How to configure traces?, and
A.6 How to select BG96 modem configuration bands?

Updated X-CUBE-CELLULAR feature description:

– NIFMAN in Section 4.3.2: Static architecture view

– PING in Section 5.3: PING example, Section 7.2.3:
“Setup Menu” option, and Section 7.2.8: Boot menu
and configuration complete example

– Menu in Section 7.2: Boot menu

– Compilation variables in Table 6: Compilation
variables for applications in firmware

UM2426 Rev 2 95/95

UM2426

95

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 General information
	1.1 Terms and definitions
	Table 1. List of acronyms

	1.2 References

	2 Important note regarding the security
	3 Service connectivity description
	Figure 1. Cellular IoT connectivity

	4 Package description
	4.1 General description
	4.2 Modem socket versus LwIP
	4.3 Architecture
	4.3.1 Architecture concept
	Figure 2. Architecture concept

	4.3.2 Static architecture view
	Figure 3. Static architecture view

	4.3.3 Dynamic architecture view
	Figure 4. Dynamic architecture - Platform initialization
	Figure 5. Dynamic architecture - Platform service startup
	Figure 6. Dynamic architecture - Cellular Service start
	Figure 7. Dynamic architecture - Modem initialization
	Figure 8. Dynamic architecture - PLMN search and registration to a cellular network
	Figure 9. Dynamic architecture - Registration to a packet service domain
	Figure 10. Dynamic architecture - PDN activation (modem socket option)
	Figure 11. Dynamic architecture - PDN activation (LwIP socket option with UG96)
	Figure 12. Dynamic architecture - PDN activation (LwIP socket option with BG96)
	Figure 13. Dynamic architecture - Socket creation (modem socket option)
	Figure 14. Dynamic architecture - Socket creation (LwIP socket option)
	Figure 15. Dynamic architecture - Data transfer - Send data to remote application (modem socket option)
	Figure 16. Dynamic architecture - Data transfer - Send data to remote application (LwIP socket option)
	Figure 17. Dynamic architecture - Data transfer - Receive data from remote application (modem socket option)
	Figure 18. Dynamic architecture - Data transfer - Receive data from remote application (LwIP socket option)

	4.4 X-CUBE-CELLULAR Expansion Package description
	4.5 Folder structure
	Figure 19. Project file structure

	4.6 Reset push-button
	4.7 Application LED
	4.8 Real-time clock

	5 Cellular connectivity examples
	5.1 Real network or simulator
	5.2 Connection overview
	Figure 20. Grovestreams connection overview

	5.3 PING example
	5.4 Grovestreams (HTTP) access example
	Figure 21. Grovestreams web interface, component view
	Figure 22. Grovestreams web interface, dashboard view

	6 Hardware and software environment setup
	Figure 23. Hardware setup (P-L496G-CELL02 example)
	Figure 24. Hardware view (P-L496G-CELL02 example)
	Figure 25. Hardware view (“Discovery IoT node cellular” set example)

	7 Interacting with the host board
	Figure 26. Serial port settings to interact with the host board
	Figure 27. Serial port settings to interact with the host board (new-line)
	7.1 Debug
	7.2 Boot menu
	Table 2. Boot menu
	7.2.1 “Start” option
	7.2.2 “Modem power on” option
	7.2.3 “Setup Menu” option
	Table 3. Setup menu at boot
	Table 4. List of config sources example

	7.2.4 Cellular Service and Grovestreams configuration sub-menu
	Table 5. Configuration sub-menu

	7.2.5 Set config by console option
	7.2.6 Cellular Service configuration parameters
	7.2.7 Grovestreams configuration parameters
	7.2.8 Boot menu and configuration complete example

	7.3 Console command
	7.3.1 Console command activation
	7.3.2 Trace commands
	7.3.3 Atcmd commands
	7.3.4 Cellullar service task (cst) commands
	7.3.5 HTTP client commands
	7.3.6 Ping commands
	7.3.7 Modem configuration (modem config) commands

	8 How to customize the software?
	8.1 First customization level: user customization
	8.2 Second customization level: advanced user customization
	8.2.1 Adding/removing an application in firmware
	Table 6. Compilation variables for applications in firmware

	8.2.2 IP stack on MCU side or on modem side
	Table 7. Compilation variable for IP stack selection

	8.2.3 Different kinds of available traces
	8.2.4 How to configure traces?

	8.3 Third customization level: developer customization
	8.3.1 Boot
	8.3.2 Initialization of software components
	8.3.3 Software customization
	8.3.4 Firmware adaptation to a new HW configuration
	8.3.5 Adding a new component

	8.4 Data cache
	8.4.1 Introduction
	8.4.2 Data Cache API
	8.4.3 Main Data Cache entries
	8.4.4 Example of producer/consumer code

	8.5 Thread stack consumption monitoring
	Table 8. New thread registration example
	Table 9. Number of project threads setting example
	Table 10. Code for thread stack consumption monitoring

	Appendix A Support material
	A.1 How to configure a Grovestreams account?
	Figure 28. Grovestreams organization creation acceptance screen
	Figure 29. Grovestreams organization creation screen
	Figure 30. Grovestreams organization access screen
	Figure 31. Grovestreams organization administration menu
	Figure 32. Grovestreams API key selection screen
	Figure 33. Grovestreams API key display screen

	A.2 How to activate the soldered SIM card?
	A.3 Frequently asked questions
	A.4 X-CUBE-CELLULAR API descriptions
	A.4.1 COM API
	Table 11. COM API management - Socket handle creation
	Table 12. COM API management - Socket option set
	Table 13. COM API management - Socket option get
	Table 14. COM API management - Socket bind
	Table 15. COM API management - Socket close
	Table 16. COM API client - Socket connect
	Table 17. COM API client - Socket send data
	Table 18. COM API client - Socket receive data
	Table 19. COM API server - Socket listen
	Table 20. COM API server - Socket accept
	Table 21. COM API server - Socket send to data
	Table 22. COM API server - Socket receive from data
	Table 23. COM API other - Component initialization
	Table 24. COM API other - Component start
	Table 25. COM API other - Get host IP from host name
	Table 26. COM API other - Get peer name
	Table 27. COM API other - Get sock name
	Table 28. COM API other - Ping APIs

	A.4.2 Data Cache API
	Table 29. Data Cache API in dc_control.h (event ID)
	Table 30. Data Cache API in dc_cellular.h (cellular data ID)
	Table 31. Data Cache API in dc_mems.h (sensor data ID)
	Table 32. Data Cache API in dc_common.h (services)
	Table 33. Data Cache API in dc_time.h (services)
	Table 34. Data Cache API in cellular_init.h (services)

	A.5 How to measure cellular throughput?
	A.5.1 Introduction
	A.5.2 Preparation of the measurements
	A.5.3 Example

	A.6 How to select BG96 modem configuration bands?

	Revision history
	Table 35. Document revision history

