
Introduction
The X-CUBE-SFXS2LP1 expansion software package for STM32Cube runs on the STM32 and includes the drivers for S2-LP
and the library for the Sigfox™ proprietary protocol.

This software together with the suggested combination of STM32 and S2-LP device can be used, for example, to develop
applications for smart home/building and smart cities, agriculture, parking, lighting, etc.

The expansion is built on STM32Cube software technology to ease portability across different STM32 microcontrollers.

The software comes with a sample implementation of the drivers running on the X-NUCLEO-S2868A1 expansion board
connected to a NUCLEO-L053R8, NUCLEO-L152RE or NUCLEO-L476RG development board.

Getting started with the X-CUBE-SFXS2LP1 software expansion for STM32Cube

UM2497

User manual

UM2497 - Rev 1 - October 2018
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/X-CUBE-SFXS2LP1
https://www.st.com/stm32cube
https://www.st.com/en/product/s2-lp
https://www.st.com/en/product/x-nucleo-s2868a1
https://www.st.com/en/product/nucleo-l053r8
https://www.st.com/en/product/nucleo-l152re
https://www.st.com/en/product/nucleo-l476rg

1 Acronyms and abbreviations

Table 1. List of acronyms

Acronym Description

BSP Board support package

CLI Command line interface

CMSIS Cortex® microcontroller software interface standard

GUI Graphical user interface

HAL Hardware abstraction layer

ID Unique device ID

PAC Port authorization code

SPI Serial peripheral interface

UM2497
Acronyms and abbreviations

UM2497 - Rev 1 page 2/22

2 What is STM32Cube?

STM32Cube™ represents the STMicroelectronics initiative to make developers’ lives easier by reducing
development effort, time and cost. STM32Cube covers the STM32 portfolio.
STM32Cube version 1.x includes:
• STM32CubeMX, a graphical software configuration tool that allows the generation of C initialization code

using graphical wizards.
• A comprehensive embedded software platform specific to each series (such as the STM32CubeF4 for the

STM32F4 series), which includes:
– the STM32Cube HAL embedded abstraction-layer software, ensuring maximized portability across the

STM32 portfolio
– a consistent set of middleware components such as RTOS, USB, TCP/IP and graphics
– all embedded software utilities with a full set of examples

2.1 STM32Cube architecture
The STM32Cube firmware solution is built around three independent levels that can easily interact with one
another, as described in the diagram below.

Figure 1. Firmware architecture

Level 0: This level is divided into three sub-layers:
• Board Support Package (BSP): this layer offers a set of APIs relative to the hardware components in the

hardware boards (Audio codec, IO expander, Touchscreen, SRAM driver, LCD drivers. etc…); it is based on
modular architecture allowing it to be easily ported on any hardware by just implementing the low level
routines. It is composed of two parts:

UM2497
What is STM32Cube?

UM2497 - Rev 1 page 3/22

http://www.st.com/stm32cube
http://www.st.com/stm32cube

– Component: is the driver relative to the external device on the board and not related to the STM32, the
component driver provides specific APIs to the external components of the BSP driver, and can be
ported on any other board.

– BSP driver: links the component driver to a specific board and provides a set of easy to use APIs. The
API naming convention is BSP_FUNCT_Action(): e.g., BSP_LED_Init(), BSP_LED_On().

• Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the hardware interfacing
methods to interact with the upper layers (application, libraries and stacks). It provides generic, multi-
instance and function-oriented APIs to help offload user application development time by providing ready to
use processes. For example, for the communication peripherals (I²C, UART, etc.) it provides APIs for
peripheral initialization and configuration, data transfer management based on polling, interrupt or DMA
processes, and communication error management. The HAL Drivers APIs are split in two categories: generic
APIs providing common, generic functions to all the STM32 series and extension APIs which provide
special, customized functions for a specific family or a specific part number.

• Basic peripheral usage examples: this layer houses the examples built around the STM32 peripherals using
the HAL and BSP resources only.

Level 1: This level is divided into two sub-layers:
• Middleware components: set of libraries covering USB Host and Device Libraries, STemWin, FreeRTOS,

FatFS, LwIP, and PolarSSL. Horizontal interaction among the components in this layer is performed directly
by calling the feature APIs, while vertical interaction with low-level drivers is managed by specific callbacks
and static macros implemented in the library system call interface. For example, FatFs implements the disk
I/O driver to access a microSD drive or USB Mass Storage Class.

• Examples based on the middleware components: each middleware component comes with one or more
examples (or applications) showing how to use it. Integration examples that use several middleware
components are provided as well.

Level 2: This level is a single layer with a global, real-time and graphical demonstration based on the middleware
service layer, the low level abstraction layer and basic peripheral usage applications for board-based functions.

UM2497 STM32Cube
architecture

UM2497 - Rev 1 page 4/22

3 X-CUBE-SFXS2LP1 software expansion for STM32Cube

3.1 Overview
The X-CUBE-SFXS2LP1 software package key features are:
• Complete software to build applications using Sigfox™ long range wireless area network running on the S2-

LP high performance ultra-low power RF transceiver
• S2-LP Sigfox™ library with a complete set of APIs to develop embedded applications
• Compatible with the STSW-S2LP-SFX-DK graphical user interface (GUI) to register end-device to Sigfox™

network and get ID (Unique Device ID)/PAC (Port Authorization code) /Key from the pool assigned to ST
devices

• GUI PC application available as interactive interface to transmit messages to the Sigfox™ network
• Sample implementation available on the X-NUCLEO-S2868A1 expansion board connected to a NUCLEO-

L053R8, NUCLEO-L152RE or NUCLEO-L476RG development board
• ID/PAC/Key stored in internal MCU flash or external EEPROM
• Easy portability across different MCU families, thanks to STM32Cube
• Free, user-friendly license terms

3.2 Architecture
The software is based on the STM32CubeHAL hardware abstraction layer for the STM32 microcontroller and
extends STM32Cube by providing the middleware library for the Sigfox application using the S2-LP expansion
board and ready-to-use samples to show this library usage.
The software layers used by the application software to access and use the board are:
• STM32Cube HAL layer: provides a generic, multi-instance set of simple APIs (application programming

interfaces) to interact with the upper layers (application, libraries and stacks). It is composed of generic and
extension APIs. It is directly built around a generic architecture and allows the layers that are built upon,
such as the middleware layer, to implement their functionalities without dependencies on the specific
hardware configuration for a given Microcontroller Unit (MCU). This structure improves the library code
reusability and guarantees easy portability across devices.

• Board support package (BSP) layer: supports the peripherals on the STM32 Nucleo board, except for the
MCU. This limited set of APIs provides a programming interface for certain board specific peripherals (like
the user button, the reset button, etc.) and helps in identifying the specific board version.

• Middleware: includes the Sigfox Libraries in lib(.a) form with a complete set of APIs to develop embedded
applications.

UM2497
X-CUBE-SFXS2LP1 software expansion for STM32Cube

UM2497 - Rev 1 page 5/22

https://www.st.com/en/product/X-CUBE-SFXS2LP1
https://www.st.com/en/product/s2-lp
https://www.st.com/en/product/s2-lp
https://www.st.com/en/product/STSW-S2LP-SFX-DK
https://www.st.com/en/product/x-nucleo-s2868a1
https://www.st.com/en/product/nucleo-l053r8
https://www.st.com/en/product/nucleo-l053r8
https://www.st.com/en/product/nucleo-l152re
https://www.st.com/en/product/nucleo-l476rg
https://www.st.com/stm32cube
http://www.st.com/stm32cube
https://www.st.com/en/product/s2-lp
https://www.st.com/stm32nucleo

Figure 2. X-CUBE-SFXS2LP1 architecture

3.3 Folder structure

Figure 3. X-CUBE-SFXS2LP1 package folder structure

The software is packaged in the following main folders:
• Documentation: with a compiled HTML file generated from the source code that details the software

components and APIs.
• Drivers: contains the HAL drivers, the board specific drivers for each supported board or hardware platform,

including the on-board components ones and the CMSIS layer which is a vendor-independent hardware
abstraction layer for the ARM Cortex-M processor series.

• Middlewares: contains the Sigfox library and Sigfox interface for STM32 as well as the libraries for ETSI,
ARIB,FCC and ALL specification.

• Projects: provides sample applications for the push button demo and CLI demo.
In the push button demo, the Sigfox message is transmitted by simply pressing the user button on the
STM32 Nucleo boards. The message is shown on the Sigfox web application.
In the CLI demo, CLI (command line interface) mode provides the connectivity with Sigfox GUI. The Sigfox
message is transmitted by clicking “Tx” in the GUI. The projects are provided for the NUCLEO-L053R8,
NUCLEO-L152RE and NUCLEO-L476RG platforms with three development environments (IAR Embedded

UM2497
Folder structure

UM2497 - Rev 1 page 6/22

https://www.st.com/en/product/nucleo-l053r8
https://www.st.com/en/product/nucleo-l152re
https://www.st.com/en/product/nucleo-l476rg

Workbench for ARM, RealView Microcontroller Development Kit (MDK-ARM) and System Workbench for
STM32 (SW4STM32)).

• Utilities: contains the files to interpret the commands sent via PC using the GUI or any terminal utility. It also
contains the Sigfox GUI.

3.4 APIs
Detailed function and parameter descriptions for the user-APIs are compiled in an HTML file in the software
package Documentation folder.

3.5 Sample application description
The Sigfox over S2-LP library features:
• complete set of the APIs to develop the embedded application
• graphical user interface (GUI) PC application to provide an interactive interface to transmit messages to the

Sigfox network
• ready-to-use projects available for IAR, Keil and SW4STM32
• easy portability across different MCU families, thanks to STM32Cube

The user application features:
• initialization of the Sigfox and S2-LP stack
• user functions required for the application
• application handling

3.5.1 RF_LIB library
The RF_LIB library configures and implements the S2-LP modulation scheme.
The library drives the S2-LP according to the Sigfox modulation protocol:
• DBPSK for uplink (14 dBm at 100 bps for RCZ1/3, 22 dBm at 600 bps for RCZ2/4)
• 2GFSK, BT=1 for downlink

The channel frequency, data rate and other relevant parameters depend on the applicable radio control zone
(RCZ).
The library is compiled for devices equipped with certain ARM® Cortex® cores. Separate versions are supplied in
the Projects/Middlewares/Sigfox/CMx folder for specific radio control zones:
• RCZ1: ST_RF_LIB_ETSIv_CMx_C.c
• RCZ2 and 4: ST_RF_LIB_FCCv_CMx_C.a
• RCZ3: ST_RF_LIB_ARIBv_CMx_C.a
• All RCZ: ST_RF_LIB_ALLv_CMx_C.a

Note: In the above naming convention:
• v = version number of the library (ex. v = 250 for V2.50)
• x = the CMx core class (CM0, CM3, CM4 or CM7)
• C = compiler (IAR, Keil, GCC)
User applications call generic APIs not linked to any specific hardware whereas the RF_LIB library calls low level
APIs to provide the necessary hardware platform support.

3.5.2 MCU_API module
The framework can be easily ported to another board equipped with a microprocessor of the same type but with a
different pinout by simply re-implementing the MCU_API module.

UM2497
APIs

UM2497 - Rev 1 page 7/22

https://www.st.com/en/product/s2-lp
https://www.st.com/en/product/SW4STM32
https://www.st.com/stm32cube
https://www.st.com/en/product/s2-lp

Table 2. MCU_API module details

Name Argument Description

MCU_API_malloc
size: the number of bytes to be allocated

pointer: pointer to the new allocated block of
memory

Allocates memory for library usage (memory
usage = size in bytes) This function is called
only once at the Sigfox library opening.

MCU_API_free pointer: pointer to the memory of free up Free memory allocated to the library.

MCU_API_get_voltage_temperature

voltage_idle: pointer to the variable where voltage
in idle should be stored

voltage_tx: pointer to the variable where voltage in
TX should be stored
temperature: pointer to the variable where
temperature should be stored

Gets voltage and temperature for out of band
frames. The value must respect the units for
backend compatibility.

MCU_API_delay delay_ms: number of ms to wait Blocking function for delay_ms milliseconds.

MCU_API_aes_128_cbc_encrypt

encrypted_data: pointer to the destination buffer
where the encrypted data must be stored

data_to_encrypt: pointer to the source buffer where
the data to encrypt are stored
data_len: length of the data buffer to encrypt

This function is in charge of encrypting the
data transmitted by the Sigfox library.

MCU_API_get_nv_mem read_data: pointer to the array where the NVM
content should be stored.

This function is used to read data from the
NVM used by the Sigfox library.

MCU_API_set_nv_mem data_to_write: pointer to the array containing the
data to be stored in the NVM.

This function is used to write data to the
NVM used by the Sigfox library.

MCU_API_timer_start_carrier_sense
timer_duration_ms: the total duration of the timer in
milliseconds. This function starts a timer without
blocking the application.

This timer is used for the carrier sense (in
RCZ3 only).

MCU_API_timer_start timer_duration_ms: the total duration of the timer in
milliseconds

This function starts a timer without blocking
the application. You should use an RTC to let
the μC enter low power mode.

MCU_API_timer_stop None This function stops the timer started by the
MCU_API_timer_start.

MCU_API_timer_stop_carrier_sense None This function stops the timer started by the
MCU_API_timer_start_carrier_sense

MCU_API_timer_wait_for_end None
Blocking function to wait for interrupt
indicating timer elapsed. This function is
used only for the 20 seconds in downlink.

MCU_API_report_test_result

status: 1 - passed

0 - failed

rssi: RSSI of the received frame

Reports the result of RX test for each valid
message received/validated by the library.

MCU_API_get_version pointer to the array variable and size This function gets current version

MCU_API_get_device_id_and_payload_e
ncryption_flag

pointer to the uint8_t array variable where the
returned ID should be stored. Gets the device ID

MCU_API_get_initial_pac pointer to the uint8_t array variable where the
returned PAC should be stored. Gets the device initial PAC

ST_MCU_API_SpiRaw

number: number of elements of the total SPI
transaction

value_ptr_in: pointer to the input buffer (μC
memory where the SPI data to write are stored)

value_ptr_out: pointer to the output buffer (the μC
memory where the data from SPI must be stored)

can_return_bef_tx: if this flag is 1, the function can
be non-blocking, returning immediately.

Performs a raw SPI operation with the
passed input buffer and stores the returned
SPI bytes in the output buffer.

UM2497
Sample application description

UM2497 - Rev 1 page 8/22

Name Argument Description

ST_MCU_API_GpioIRQ

pin: the GPIO pin of the S2-LP (integer from 0 to 3)

new_state: enables or disables the EXTI

trigger_flag: 1: rising edge, 0: falling edge

Enables or disables the external interrupt on
the μC side. The interrupt must be set on the
rising or falling edge of the input signal
according to the trigger_flag. The pin number
represents the S2-LP GPIO number.

ST_MCU_API_Shutdown sdn_flag: 1 - enter shutdown 0 - exit shutdown Sets the S2-LP on or off via GPIO

ST_MCU_API_LowPower low_power_flag: 1 - enter in low power mode 0 - do
not use low power

Instructs the firmware to use the low power
when blocking procedures are called.

ST_MCU_API_WaitForInterrupt None
The μC waits for an interrupt function. This
can be a null implementation or can activate
μC low power mode.

ST_MCU_API_SetSysClock None Sets the system clock. This function is used
after waking up from low power.

ST_MCU_API_TimerCalibration None RTC calibration routine.

ST_MCU_API_SetEncryptionPayload ePayload: 1 -Enable encryption 0 - Disable
encryption Enables the encryption payload flag.

This module has to call the callbacks listed below and implemented by the ST Sigfox library.

Table 3. Callbacks exported by the RF_LIB module

Name Arguments Description

ST_RF_API_S2LP_IRQ_CB None
The RF_LIB module configures the S2-LP to raise interrupts
and to notify them on a GPIO. This function must be called in
case of GPIO interrupt.

ST_RF_API_Timer_CB None It must be called when the timer started by the
MCU_API_timer_start expires.

ST_RF_API_Timer_Channel_Clear_CB None It must be called when the timer started by the
MCU_API_timer_start_Carrier_sense expires.

The applicative callback void Appli_Exti_CB(uint16_t GPIO_Pin) can be implemented to demand
application management of all the ETXI interrupts different from the ST_RF_API_S2LP_IRQ_CB.

3.5.3 Sigfox data retriever
The MCU_API_aes_128_cbc_encrypt function encrypts an input buffer using AES128-CBC encryption.
While the CBC algorithm IV vector should be set to 0, the encryption key is provided by Sigfox and is associated
with each node.
This key must be stored and used in the MCU_API_aes_128_cbc_encrypt routine.
In the ST reference design, the key is stored in the board during the registration phase.
ST provides a compiled ID_KEY_RETRIEVERv_CMx_C.a library that exports the functions listed below.

UM2497
Sample application description

UM2497 - Rev 1 page 9/22

Table 4. ID_KEY_RETRIEVER_CMx.a functions

Name Arguments Description

enc_utils_encrypt

encrypted_data: pointer to the destination buffer
where the encrypted data must be stored

data_to_encrypt: pointer to the source buffer
where the data to encrypt are stored

data_len: length of the data buffer to encrypt

Perform the AES128-CBC encryption using the AES
KEY associated with the board.

enc_utils_retrieve_data

id_ptr: pointer to the 32bits word variable where
the ID of the board must be stored.

pac_ptr: pointer to the 8bytes array where the
PAC of the board must be stored.

rcz_ptr: pointer to the byte where the RCZ
number of this board must be stored.

Retrieve the ID, PAC and RCZ number of the board
and returns it to the caller. The ID should be used
when opening the library. The PAC is used to register
the node on the backend.

enc_utils_set_public_key en: if 1 switch to the public key, if 0 (default
config) use the one associated to the board.

Set the public key for encryption (used for test
purposes).

enc_utils_get_id pointer to the ID uint8_t array Gets the ID stored in the EEPROM.

enc_utils_get_initial_pac pointer to the PAC uint8_t array Gets the PAC stored into the EEPROM.

enc_utils_set_test_key en: if 1 switch to test key; if 0 reset to default Sets the RSA test key:
0x0123456789ABCDEF0123456789ABCDEF

enc_utils_set_test_id en: if 1 switch to test ID; if 0 reset to default Sets the RSA test key: 0xFEDCBA98

enc_utils_set_credentials_data Sigfox settings Overrides credentials and RCZ.

3.5.4 Application level Sigfox API

Table 5. Sigfox API details

Name Arguments Description

SIGFOX_API_open rcz: pointer to sfx_rc_t type representing the RCZ
number (1, 2, 3 or 4).

This function opens the library initializing all state
machine parameters. It does not involve the radio
configuration.

SIGFOX_API_send_frame

cust_data: pointer to the data to transmit

cust_data_size: size in bytes of the data to
transmit (max. 12)

cust_response: pointer to the buffer where to
store the received payload (only if
initiate_downlink_flag=1)

tx_repetition: number of repetitions

initiate_downlink_flag: wait for a response after
transmitting

Sends the frame.

SIGFOX_API_close None Closes the Sigfox library, resetting its state.

SIGFOX_API_set_std_config

config_words_ptr: 3-config-word array to select
the FCC channels to use.

default_sigfox_channel: default channel to be
used among those selected by the config_words.

Sets the standard configuration.

SIGFOX_API_get_version

version_ptr: pointer to the array where to store the
lib version.

version_size_ptr: size of the written version array
type (MCU, RF, etc.)

Returns the library version.

SIGFOX_API_get_info info: array containing info Gets info

UM2497
Sample application description

UM2497 - Rev 1 page 10/22

Name Arguments Description

SIGFOX_API_send_outofband oob_type: type of the OOB frame to send
Sends an out-of-band frame, that is a test frame
used to monitor the node parameters (voltage,
temperature)

SIGFOX_API_send_bit

bit_value: bit value to send

cust_response: pointer to the buffer where to
store the received payload (only if
initiate_downlink_flag=1)

tx_repetition: number of repetitions (only if
initiate_downlink_flag=1)

initiate_downlink_flag: wait for a response after
transmitting

This function is used to send a single bit mainly
when the node seeks downlink data (not to
transmit).

SIGFOX_API_start_continuous_trans
mission

frequency: frequency at which the signal has to be
generated

type: type of modulation to use in continuous
mode

Executes a continuous wave or modulation
depending on the parameter type

SIGFOX_API_stop_continuous_trans
mission None Stops the current continuous transmission

SIGFOX_API_send_test_frame

frequency: frequency at which the wave is
generated

customer_data: data to transmit

customer_data_length: data length in bytes

initiate_downlink_flag: flag to initiate a downlink
response

This function builds a Sigfox frame with the
customer payload and sends it at a specific
frequency

SIGFOX_API_receive_test_frame

frequency: frequency at which the wave is
generated

mode: mode (AUTHENTICATION_ON or
AUTHENTICATION_OFF)

buffer: depends on the authentication mode:
• if AUTHENTICATION_OFF : buffer is used

as input to check the bit stream of the
received frame

• if AUTHENTICATION_ON : buffer is used
as output to get the received payload

timeout: timeout for the reception of a valid
downlink frame

rssi: RSSI of the received frame

This function waits for a valid downlink frame
during timeout time and returns the data received
in customer_data.

SIGFOX_API_get_device_id dev_id: pointer where to write the device ID This function copies the device ID to the pointer
given as parameter.

SIGFOX_API_get_initial_pac initial_pac: pointer to initial PAC Sets initial pac

SIGFOX_API_switch_public_key use_public_key: switch to public key if
SFX_TRUE, private key else Switches device to public or private key

SIGFOX_API_set_rc_sync_period rc_sync_period: transmission period of the RC
Sync frame (in number of 'normal' frames) Sets the period for transmission of RC Sync frame

3.5.5 ST_RF_API
The application calls a set of functions to instruct the RF_LIB to configure the radio properly. These functions are
exported by the ST_RF_API header (st_rf_api.h) and are implemented in the RF_LIB module.

UM2497
Sample application description

UM2497 - Rev 1 page 11/22

Table 6. ST_RF_API functions

Name Arguments Description

ST_RF_API_set_xtal_freq An integer with the XTAL value in Hz. Sets the XTAL frequency of the S2-LP in Hertz
(default is 50 MHz).

ST_RF_API_set_freq_offset An integer with the RF offset value in Hz. Sets the RF frequency offset in Hertz (default is 0
Hz).

ST_RF_API_set_tcxo A boolean value (0 or 1).
Instructs the library to configure the S2- LP for a
TCXO or for a XTAL. This is needed to configure
the S2-LP oscillator registers.

ST_RF_API_set_rssi_offset An integer with the RSSI offset value in dB.
Sets an RSSI offset for the RSSI. Very useful if the
RF frontend has an LNA or to calibrate the RSSI
measurement

ST_RF_API_get_rssi_offset A pointer to the variable where the RSSI value
should be stored. Gets the RSSI offset for the RSSI

ST_RF_API_gpio_irq_pin An integer representing the number of the GPIO to
be set as an interrupt source. Configures one of the S2-LP pin to be an IRQ pin.

ST_RF_API_gpio_tx_rx_pin

An integer representing the number of the GPIO to
be set as a TX or RX state indication. 0xFF to
configure no one of the S2-LP GPIO with this
function.

Configures one of the S2-LP pin to be to be
configured as (RX or TX) signal

ST_RF_API_gpio_rx_pin
An integer representing the number of the GPIO to
be set as a RX state indication. 0xFF to configure
no one of the S2-LP GPIO with this function.

Configures one of the S2-LP pin to be configured as
RX signal

ST_RF_API_gpio_tx_pin
An integer representing the number of the GPIO to
be set as a TX state indication. 0xFF to configure no
one of the S2-LP GPIO with this function.

Configures one of the S2-LP pin to be configured as
TX signal.

ST_RF_API_reduce_output_pow
er Power reduction in half dB

Reduces the output power of the transmitted signal
by a factor (reduction*0.5 dB against the actual
value)

ST_RF_API_smps SMPS voltage word Instructs the library to configure the S2-LP with a
user defined smps frequency

ST_RF_API_set_pa A boolean value (0 or 1). Instructs the library to configure the S2- LP for a
external PA (Power Amplifier).

ST_RF_API_get_ramp_duration None Returns the duration of the initial (or final) ramp in
ms

ST_RF_API_Get_Transmission_
State None Returns information about the TX state of the MCU

API

3.5.6 Opening the Sigfox library
SIGFOX_API_open must be called to initialize the library before performing any other operation.
This API requires pointer to the Radio Configuration zone structure to be used.
Uplink frequencies are:
• RCZ1 - 868.13 MHz
• RCZ2 - 902.2 MHz
• RCZ3 - 923.3 MHz
• RCZ4 - 920.8 MHz

Note: As frequency hopping is implemented, the transmission frequency is not fixed.
Downlink frequencies are:
• RCZ1 - 869.525 MHz
• RCZ2 - 905.2 MHz
• RCZ3 - 922.2 MHz
• RCZ4 - 922.3 MHz

UM2497
Sample application description

UM2497 - Rev 1 page 12/22

https://www.st.com/en/product/s2-lp

3.5.7 Sending the frames
SIGFOX_API_send_frame is the core Sigfox library function; this blocking function handles message exchange
between the node and the base-stations.

3.5.8 Setting the standard configuration
This function has different purposes according to the RC mode used for the serial port opening.
FCC allows the transmitters to choose certain macro channels to implement a frequency hopping pattern allowed
by the standard.
The channel map is specified in the first argument of SIGFOX_API_set_std_config, which consists of an
array of three 32-bit configuration words.

3.5.9 Running CLI demo commands via terminal
For the CLI demo, some commands can be run via any terminal utility.
The command list can be retrieved using the help command in the terminal window (for the complete command
list, refer to UM2169, Section 4.3.1, on www.st.com).

Figure 4. SigFox CLI demo: running commands via terminal

Once the board is programmed using the CLI mode demo, it can be connected to the GUI.

UM2497
Sample application description

UM2497 - Rev 1 page 13/22

Figure 5. Running the CLI demo via GUI

Figure 6. Sigfox message captured

UM2497
Sample application description

UM2497 - Rev 1 page 14/22

4 System setup guide

4.1 Hardware description

4.1.1 STM32 Nucleo platform
STM32 Nucleo development boards provide an affordable and flexible way for users to test solutions and build
prototypes with any STM32 microcontroller line.
The Arduino™ connectivity support and ST morpho connectors make it easy to expand the functionality of the
STM32 Nucleo open development platform with a wide range of specialized expansion boards to choose from.
The STM32 Nucleo board does not require separate probes as it integrates the ST-LINK/V2-1 debugger/
programmer.
The STM32 Nucleo board comes with the comprehensive STM32 software HAL library together with various
packaged software examples.

Figure 7. STM32 Nucleo board

Information regarding the STM32 Nucleo board is available at www.st.com/stm32nucleo

4.1.2 X-NUCLEO-S2868A1 expansion board
The X-NUCLEO-S2868A1 expansion board is based on the S2-LP radio and operates in the 868 MHz ISM
frequency band.
The expansion board is compatible with ST morpho and Arduino UNO R3 connectors.
The X-NUCLEO-S2868A1 interfaces with the STM32 Nucleo microcontroller via SPI connections and GPIO pins.
You can change some of the GPIOs by mounting or removing the resistors.

UM2497 System
setup guide

UM2497 - Rev 1 page 15/22

http://www.st.com/stm32nucleo
http://www.st.com/stm32nucleo
https://www.st.com/en/product/x-nucleo-s2868a1
https://www.st.com/en/product/s2-lp
http://www.st.com/stm32nucleo

Figure 8. X-NUCLEO-S2868A1 expansion board

4.2 Hardware setup
The following hardware components are needed:
1. One STM32 Nucleo development platform (NUCLEO-L053R8,NUCLEO-L152RE or NUCLEO-L476RG)
2. One S2-LP expansion board (order code: X-NUCLEO-S2868A1)
3. One USB type A to Mini-B USB cable to connect the STM32 Nucleo to the PC

4.2.1 STM32 Nucleo and X-NUCLEO-S2868A1 expansion board setup
The STM32 Nucleo board integrates the ST-LINK/V2-1 debugger/programmer.
The developer can download the ST-LINK/V2-1 USB driver by looking for the STSW-LINK009 software on
www.st.com.
The S2-LP X-NUCLEO-S2868A1 expansion board can interface the external STM32 microcontroller on the
STM32 Nucleo using SPI.
It also can be easily connected to the STM32 Nucleo through the Arduino UNO R3 extension connector as shown
below.

UM2497
Hardware setup

UM2497 - Rev 1 page 16/22

https://www.st.com/stm32nucleo
https://www.st.com/en/product/nucleo-l053r8
https://www.st.com/en/product/nucleo-l152re
https://www.st.com/en/product/nucleo-l476rg
https://www.st.com/en/product/s2-lp
https://www.st.com/en/product/x-nucleo-s2868a1
https://www.st.com/stm32nucleo
https://www.st.com/en/product/stsw-link009
https://www.st.com/en/product/s2-lp
https://www.st.com/en/product/x-nucleo-s2868a1

Figure 9. X-NUCLEO-S2868A1 expansion board connected to the STM32 Nucleo board

4.3 Software setup
The following software components are needed for a suitable development environment for creating applications
for the STM32 Nucleo equipped with the S2-LP X-NUCLEO-S2868A1 expansion board:
• X-CUBE-SFXS2LP1 expansion for STM32Cube dedicated to Sigfox applications development.
• One of the following development tool-chain and compilers:

– Keil RealView Microcontroller Development Kit (MDK-ARM-STM32) + ST-LINK
– IAR Embedded Workbench for ARM (IAR-EWARM) + ST-LINK
– OpenSTM32 System Workbench for STM32 (SW4STM32) + ST-LINK

UM2497
Software setup

UM2497 - Rev 1 page 17/22

https://www.st.com/stm32nucleo
https://www.st.com/en/product/s2-lp
https://www.st.com/en/product/x-nucleo-s2868a1
https://www.st.com/en/product/X-CUBE-SFXS2LP1
http://www.st.com/stm32cube
http://www.st.com/en/product/mdk-arm-stm32
http://www.st.com/en/product/iar-ewarm
http://www.st.com/en/product/sw4stm32

Revision history

Table 7. Document revision history

Date Version Changes

09-Oct-2018 1 Initial release.

UM2496

UM2497 - Rev 1 page 18/22

Contents

1 Acronyms and abbreviations .2

2 What is STM32Cube? .3

2.1 STM32Cube architecture . 3

3 X-CUBE-SFXS2LP1 software expansion for STM32Cube. .5

3.1 Overview . 5

3.2 Architecture . 5

3.3 Folder structure . 6

3.4 APIs . 7

3.5 Sample application description . 7

3.5.1 RF_LIB library . 7

3.5.2 MCU_API module . 7

3.5.3 Sigfox data retriever . 9

3.5.4 Application level Sigfox API. 10

3.5.5 ST_RF_API. 11

3.5.6 Opening the Sigfox library . 12

3.5.7 Sending the frames. 13

3.5.8 Setting the standard configuration. 13

3.5.9 Running CLI demo commands via terminal. 13

4 System setup guide. .15

4.1 Hardware description . 15

4.1.1 STM32 Nucleo platform . 15

4.1.2 X-NUCLEO-S2868A1 expansion board. 15

4.2 Hardware setup . 16

4.2.1 STM32 Nucleo and X-NUCLEO-S2868A1 expansion board setup 16

4.3 Software setup. 17

Revision history .18

UM2497
Contents

UM2497 - Rev 1 page 19/22

List of tables
Table 1. List of acronyms . 2
Table 2. MCU_API module details . 8
Table 3. Callbacks exported by the RF_LIB module . 9
Table 4. ID_KEY_RETRIEVER_CMx.a functions . 10
Table 5. Sigfox API details. 10
Table 6. ST_RF_API functions . 12
Table 7. Document revision history . 18

UM2497
List of tables

UM2497 - Rev 1 page 20/22

List of figures
Figure 1. Firmware architecture . 3
Figure 2. X-CUBE-SFXS2LP1 architecture . 6
Figure 3. X-CUBE-SFXS2LP1 package folder structure . 6
Figure 4. SigFox CLI demo: running commands via terminal . 13
Figure 5. Running the CLI demo via GUI . 14
Figure 6. Sigfox message captured. 14
Figure 7. STM32 Nucleo board . 15
Figure 8. X-NUCLEO-S2868A1 expansion board . 16
Figure 9. X-NUCLEO-S2868A1 expansion board connected to the STM32 Nucleo board . 17

UM2497
List of figures

UM2497 - Rev 1 page 21/22

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

UM2496

UM2496 - Rev 1 page 22/22

	1 Acronyms and abbreviations
	2 What is STM32Cube?
	2.1 STM32Cube architecture

	3 X-CUBE-SFXS2LP1 software expansion for STM32Cube
	3.1 Overview
	3.2 Architecture
	3.3 Folder structure
	3.4 APIs
	3.5 Sample application description
	3.5.1 RF_LIB library
	3.5.2 MCU_API module
	3.5.3 Sigfox data retriever
	3.5.4 Application level Sigfox API
	3.5.5 ST_RF_API
	3.5.6 Opening the Sigfox library
	3.5.7 Sending the frames
	3.5.8 Setting the standard configuration
	3.5.9 Running CLI demo commands via terminal

	4 System setup guide
	4.1 Hardware description
	4.1.1 STM32 Nucleo platform
	4.1.2 X-NUCLEO-S2868A1 expansion board

	4.2 Hardware setup
	4.2.1 STM32 Nucleo and X-NUCLEO-S2868A1 expansion board setup

	4.3 Software setup

	Revision history

