
B035-1145-170K
DOCS.TERADATA.COM

Teradata Vantage™ -
SQL Functions, Expressions,
and Predicates
Release 17.00

June 2020

Copyright and Trademarks
Copyright © 2000 - 2020 by Teradata. All Rights Reserved.

All copyrights and trademarks used in Teradata documentation are the property of their respective owners. For more information, see
Trademark Information.

Product Safety

Safety type Description

NOTICE
Indicates a situation which, if not avoided, could result in damage to property, such as to equipment
or data, but not related to personal injury.

CAUTION
Indicates a hazardous situation which, if not avoided, could result in minor or moderate
personal injury.

WARNING
Indicates a hazardous situation which, if not avoided, could result in death or serious personal injury.

Third-Party Materials
Non-Teradata (i.e., third-party) sites, documents or communications (“Third-party Materials”) may be accessed or accessible (e.g., linked or
posted) in or in connection with a Teradata site, document or communication. Such Third-party Materials are provided for your convenience
only and do not imply any endorsement of any third party by Teradata or any endorsement of Teradata by such third party. Teradata is not
responsible for the accuracy of any content contained within such Third-party Materials, which are provided on an “AS IS” basis by Teradata.
Such third party is solely and directly responsible for its sites, documents and communications and any harm they may cause you or others.

Warranty Disclaimer
Except as may be provided in a separate written agreement with Teradata or required by applicable law, the information available
from the Teradata Documentation website or contained in Teradata information products is provided on an "as-is" basis, without
warranty of any kind, either express or implied, including the implied warranties of merchantability, fitness for a particular purpose,
or noninfringement.
The information available from the Teradata Documentation website or contained in Teradata information products may contain references
or cross-references to features, functions, products, or services that are not announced or available in your country. Such references do not
imply that Teradata Corporation intends to announce such features, functions, products, or services in your country. Please consult your local
Teradata Corporation representative for those features, functions, products, or services available in your country.
The information available from the Teradata Documentation website or contained in Teradata information products may be changed or
updated by Teradata at any time without notice. Teradata may also make changes in the products or services described in this information at
any time without notice.

Feedback
To maintain the quality of our products and services, e-mail your comments on the accuracy, clarity, organization, and value of this document
to: docs@teradata.com.
Any comments or materials (collectively referred to as "Feedback") sent to Teradata Corporation will be deemed nonconfidential. Without any
payment or other obligation of any kind and without any restriction of any kind, Teradata and its affiliates are hereby free to (1) reproduce,
distribute, provide access to, publish, transmit, publicly display, publicly perform, and create derivative works of, the Feedback, (2) use any
ideas, concepts, know-how, and techniques contained in such Feedback for any purpose whatsoever, including developing, manufacturing,
and marketing products and services incorporating the Feedback, and (3) authorize others to do any or all of the above.

https://docs.teradata.com/access/sources/dita/map?dita:mapPath=wbc1537988759565.ditamap
mailto:docs@teradata.com

Chapter 1: Introduction to SQL Functions, Expressions, and Predicates . 9

Chapter 2: Functions, Operators, Expressions, and Predicates . 11
SQL Functions . 11
SQL Operators . 13
SQL Expressions . 13
SQL Predicates . 15

Chapter 3: Aggregate Functions . 17
About Aggregate Functions . 17
Aggregates in the Select List . 17
Aggregates and GROUP BY . 18
Aggregates and Date . 18
Aggregates and Literal Expressions in the Select List . 18
Nesting Aggregates . 19
Results of Aggregation on Zero Rows . 19
Aggregates and Nulls . 20
Aggregate Operations on Floating Point Data . 20
Aggregates and LOBs . 21
Aggregates and Period Data Types . 21
Aggregates and SELECT AND CONSUME Statements . 21
Aggregates and Recursive Queries . 21
Aggregates in WHERE and HAVING Clauses . 21
DISTINCT Option . 21
Aggregates and Row Level Security Tables . 22
Time Series Aggregate Functions Overview . 22
Related Information . 22
AVG . 23
CORR . 25
COUNT . 28
COVAR_POP . 34
COVAR_SAMP . 36
GROUPING . 39
KURTOSIS . 42
MAXIMUM . 44
MINIMUM . 46
PIVOT . 49
REGR_AVGX . 64
REGR_AVGY . 66

Contents

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 3

REGR_COUNT . 69
REGR_INTERCEPT . 72
REGR_R2 . 76
REGR_SLOPE . 79
REGR_SXX . 82
REGR_SXY . 85
REGR_SYY . 88
SKEW . 90
STDDEV_POP . 92
STDDEV_SAMP . 94
SUM . 96
UNPIVOT . 99
VAR_POP . 105
VAR_SAMP . 107

Chapter 4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions . 110
ANSI Compliance . 110
Arithmetic Operators and LOBs . 110
Arithmetic Operators and UDTs . 110
Related Information . 111
Binary Arithmetic Result Data Types . 111
Structure of Arithmetic Expressions . 119
Arithmetic Functions . 120
ABS . 121
CASE_N . 122
CEILING . 133
DEGREES/RADIANS . 135
EXP . 137
FLOOR . 139
HYPERBOLIC . 141
LN . 143
LOG . 145
MOD . 146
NULLIFZERO . 147
POWER . 150
RANDOM . 151
RANGE_N . 155
ROUND . 171
SIGN . 173
SQRT . 175
TRIGONOMETRIC . 177
TRUNC . 180
WIDTH BUCKET . 182
ZEROIFNULL . 186

Contents

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 4

Chapter 5: Attribute Functions . 189
ANSI Equivalence of Teradata Attribute Functions . 189
BIT_LENGTH . 189
BYTE/BYTES . 190
CHARACTER_LENGTH . 192
DEFAULT . 195
FORMAT . 200
OCTET_LENGTH . 201
TITLE . 204
TYPE . 205

Chapter 6: Bit/Byte Manipulation Functions . 209
Bit and Byte Numbering Model . 209
Performing Bit-Byte Operations against Arguments with Non-Equal Lengths 212
BITAND . 214
BITNOT . 218
BITOR . 220
BITXOR . 223
COUNTSET . 225
GETBIT . 227
ROTATELEFT . 229
ROTATERIGHT . 232
SETBIT . 235
SHIFTLEFT . 237
SHIFTRIGHT . 240
SUBBITSTR . 242
TO_BYTE . 245

Chapter 7: Built-In Functions . 248
ACCOUNT . 248
CURRENT_DATE/CURDATE . 249
CURRENT_ROLE . 253
CURRENT_TIME/CURTIME . 254
CURRENT_TIMESTAMP . 259
CURRENT_USER . 263
DATABASE . 264
DATE . 265
NOW . 269
PROFILE . 269
ROLE . 270
SESSION . 272
TEMPORAL_DATE . 273
TEMPORAL_TIMESTAMP . 273
TIME . 274

Contents

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 5

USER . 277

Chapter 8: Comparison Operators and Functions . 279
Comparison Operators . 279
Comparisons That Produce TRUE Results . 282
Data Type Evaluation . 284
Implicit Type Conversion of Comparison Operands . 285
Comparison of ANSI DateTime and Interval in USING Clause . 288
Proper Forms of DATE Types in Comparisons . 289
Character String Comparisons . 290
Comparison of KANJI1 Characters . 293
Comparison Operators and the DEFAULT Function in Predicates . 295
DECODE . 296
GREATEST . 299
LEAST . 302

Chapter 9: CASE Expressions . 306
Valued CASE Expression . 306
Searched CASE Expression . 311
Error Conditions . 317
Rules for the CASE Expression Result Type . 318
Format for a CASE Expression . 325
CASE and Nulls . 326

Chapter 10: Hash-Related Functions . 334
HASHAMP . 334
HASHBAKAMP . 338
HASHBUCKET . 341
HASHROW . 344

Chapter 11: Logical Predicates . 347
About Logical Predicates . 347
Logical Operators and Search Conditions . 349
ANY/ALL/SOME . 354
BETWEEN/NOT BETWEEN . 359
EXISTS/NOT EXISTS . 360
IN/NOT IN . 366
IS NULL/IS NOT NULL . 373
LIKE/NOT LIKE . 375
OVERLAPS . 386

Chapter 12: Null-Handling Functions . 387
NVL . 387
NVL2 . 389

Contents

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 6

Chapter 13: Ordered Analytical/Window Aggregate Functions . 392
Ordered Analytical Functions . 392
Characteristics of Ordered Analytical Functions . 394
The Window Feature . 401
Window Aggregate Functions . 409
The Window Specification . 410
CSUM . 433
CUME_DIST . 436
DENSE_RANK (ANSI) . 439
FIRST_VALUE/LAST_VALUE . 441
LAG/LEAD . 444
MAVG . 455
MDIFF . 458
MEDIAN . 461
MLINREG . 462
MSUM . 465
PERCENT_RANK . 467
PERCENTILE_CONT/PERCENTILE_DISC . 471
QUANTILE . 474
RANK (ANSI) . 477
RANK (Teradata) . 481
ROW_NUMBER . 484

Chapter 14: Regular Expression Functions . 488
REGEXP_SUBSTR . 488
REGEXP_REPLACE . 491
REGEXP_INSTR . 496
REGEXP_SIMILAR . 499
REGEXP_SPLIT_TO_TABLE . 502

Chapter 15: String Operators and Functions . 506
String Operators and Functions . 506
Effects of Server Character Sets on Character String Functions . 507
Concatenation Operator . 509
ASCII . 515
CHAR2HEXINT . 516
CHR . 519
CONCAT . 521
CSV . 522
CSVLD . 524
EDITDISTANCE . 526
INDEX . 529
INITCAP . 538
INSTR . 540

Contents

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 7

LEFT . 542
LENGTH . 543
LOCATE . 545
LOWER . 546
LPAD . 548
LTRIM . 550
NGRAM . 552
NVP . 557
OREPLACE . 560
OTRANSLATE . 563
POSITION . 566
REVERSE . 570
RIGHT . 571
RPAD . 572
RTRIM . 575
SOUNDEX . 577
STRING_CS . 581
STRTOK . 584
STRTOK_SPLIT_TO_TABLE . 586
SUBSTRING . 588
TRANSLATE . 596
TRANSLATE_CHK . 605
TRIM . 611
UPPER/UCASE . 615
VARGRAPHIC . 618

Chapter 16: User-Defined Functions . 633
SQL UDF . 633

Chapter 17: Elastic TCore Functions . 639
GetSystemTCore . 639
SetSystemTCore . 639

Appendix A: Notation Conventions . 641

Appendix B: Additional Information . 644

Contents

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 8

Teradata Vantage™ is our flagship analytic platform offering, which evolved from our industry-leading
Teradata® Database. Until references in content are updated to reflect this change, the term Teradata
Database is synonymous with Teradata Vantage.

ARRAY/VARRAY functions, operators,
expressions, and methods

Teradata Vantage™ - Data Types and Literals, B035-1143

BLOB and CLOB functions Teradata Vantage™ - Data Types and Literals, B035-1143

Calendar and business calendar functions Teradata Vantage™ - SQL Date and Time Functions and
Expressions, B035-1211

The CAST expression and data type
conversion functions

Teradata Vantage™ - Data Types and Literals, B035-1143

Compression/decompression functions Teradata Vantage™ - SQL Operators and User-Defined
Functions, B035-1210

DATASET functions and methods Teradata Vantage™ - DATASET Data Type, B035-1198

DateTime and interval functions
and expressions

Teradata Vantage™ - SQL Date and Time Functions and
Expressions, B035-1211

Export width procedures (manage
the amount of data exported to
client applications)

Teradata Vantage™ - SQL Operators and User-Defined
Functions, B035-1210

File system information macros and functions
(gain information on specific data blocks)

Teradata Vantage™ - SQL Operators and User-Defined
Functions, B035-1210

Geospatial functions and methods Teradata Vantage™ - Geospatial Data Types, B035-1181

JSON functions and methods Teradata Vantage™ - JSON Data Type, B035-1150

Map functions, macros, and procedures
(optimize the placement of tables
across AMPs)

Teradata Vantage™ - SQL Operators and User-Defined
Functions, B035-1210

Period functions and operators Teradata Vantage™ - SQL Date and Time Functions and
Expressions, B035-1211

Script installation procedures Teradata Vantage™ - SQL Operators and User-Defined
Functions, B035-1210

SET operators (INTERSECT, MINUS/
EXCEPT, UNION)

Teradata Vantage™ - SQL Data Manipulation
Language, B035-1146

Table operators Teradata Vantage™ - SQL Operators and User-Defined
Functions, B035-1210

Introduction to SQL Functions, Expressions,
and Predicates

1

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 9

User-defined type expressions and these
UDFs supplied by Teradata:
• Aggregate
• Scalar
• Window aggregate

Teradata Vantage™ - SQL Operators and User-Defined
Functions, B035-1210

XML functions and methods Teradata Vantage™ - XML Data Type, B035-1140

1: Introduction to SQL Functions, Expressions, and Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 10

SQL Functions
SQL functions return information about some aspect of the database, depending on the arguments specified
at the time the function is invoked.

Functions provide a single result by accepting input arguments and returning an output value. Some SQL
functions, referred to as niladic functions, do not have arguments, but they do return values. An example of
a niladic SQL function is CURRENT_DATE.

Types of SQL Functions
Function
Type Definition

Scalar The arguments are individual scalar values of either the same or mixed type that can have
different meanings.
The result is a single value or null.
Scalar functions can be used in any SQL statement where an expression can be used.

Aggregate The argument is a group of rows.
The result is a single value or null.
Normally aggregate functions are used in the expression list of a SELECT statement and
in the summary list of a WITH clause.

Table The arguments are individual scalar values of either same or mixed type that can have
different meanings.
The result is a table.
Table functions can be used only within the FROM clause of a SELECT statement.
Table functions are a form of user-defined functions and are described in Teradata
Vantage™ - SQL External Routine Programming, B035-1147.

Ordered
Analytical

The arguments are any normal SQL expression.
The result is handled the same way as any other SQL expression. It can be a result column
or part of a more complex arithmetic expression.
Ordered analytical functions are used in operations that require an ordered set of results
rows or that depend on values in a previous row.

Examples of Functions
Function Description

SELECT CHARACTER_
LENGTH(Details)

Scalar function taking the character or CLOB value in the Details
column and returning a numeric value for each row in the Orders table.

Functions, Operators, Expressions, and
Predicates

2

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 11

Function Description

FROM Orders;

SELECT AVG(Salary)
FROM Employee;

Aggregate function returning a single numeric value for the group of
numeric values specified by the Salary column in the Employee table.

Embedded Services System Functions
Vantage provides a set of system functions that support a range of functionality such as string handling,
DateTime operations, byte/bit manipulation, and more.

Activating Embedded Services System Functions

Before you can use the embedded services functions, you must run the Database Initialization
Program (DIP) utility and execute the DIPALL or DIPSYSFNC script. DIPALL is executed as part
of system installation.

The DIP scripts create the TD_SYSFNLIB database which should be used only by the system to support
the embedded services functions. Do not store any database objects in this database. Doing so may
interfere with the proper operation of the embedded services functions.

If you perform a BAR operation that involves the TD_SYSFNLIB database or the DBC dictionary tables,
you must re-execute the DIPALL or the DIPSYSFNC script to reactivate the embedded services functions.

Invoking Embedded Services System Functions

Embedded Services System Functions are a type of UDF. They are located in the TD_SYSFNLIB
database. To invoke these system functions, you should use the fully qualified syntax, for example,
TD_SYSFNLIB.CEILING (arg).

Optionally, you can omit the database name, and use the function name by itself. For example, CEILING
(arg). However, if you do not qualify the function name, and there is also a customer-developed UDF
with the same name in the current database or in the SYSLIB database, Vantage follows the normal
search path precedence for UDFs, and executes the customer-developed UDF instead of the embedded
services system function. For more information on UDF search path precedence, see "UDF Locations" in
Teradata Vantage™ - SQL External Routine Programming, B035-1147.

To ensure you invoke the embedded services function, do one of the following:

• Use the fully qualified function name, including the containing database: prepend TD_SYSFNLIB.
when you invoke embedded services system functions.

• Use the SET SESSION UDFSEARCHPATH statement to specify a UDF search path precendence
that explicitly searches the TD_SYSFNLIB database before other locations. For more information

2: Functions, Operators, Expressions, and Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 12

on SET SESSION, see Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144

• Remove any customer-developed UDFs with the same name from the normal UDF search path.

Implicit Data Type Conversion Rules

Embedded services functions follow the implicit data type conversion rules that apply to UDFs. The UDF
implicit type conversion rules are more restrictive than the implicit type conversion Vantage normally
uses. If a function argument cannot be converted to the required data type by following the UDF implicit
conversion rules, it must be explicitly cast. For details, see “Compatible Types” in Teradata Vantage™ -
SQL External Routine Programming, B035-1147.

Related Information
• For examples of table functions, see Teradata Vantage™ - SQL External Routine

Programming, B035-1147.
• For example, TD_SYSFNLIB.embedded_services_function.

SQL Operators
SQL operators are symbols and keywords that perform operations on their arguments.

The following types of operators are available in SQL:

• Arithmetic operators such as + and - operate on numeric, DateTime, and Interval data types.
• The concatenation operator || operates on character and byte types.
• Comparison operators such as = and > test the truth of relations between their arguments. For

information on comparison operators, see Comparison Operators and Functions.

Comparison operators are also known as conditional expressions because they result in a value of
TRUE, FALSE, or unknown (NULL).

• Set operators, or relational operators, such as INTERSECT and UNION combine result sets from
multiple sources into a single result set.

SQL Expressions
SQL expressions specify a value, allowing you to perform arithmetic and logical operations and to generate
new values or Boolean results from literals and stored values. An expression can consist of any of the
following things:

• Column name
• Literal (sometimes referred to as a constant)
• Function
• USING variable

2: Functions, Operators, Expressions, and Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 13

• Parameter
• Parameter marker (question mark (?) placeholder)
• Combination of column names, literals, and functions connected by operators

Types of Expressions
SQL expressions generally fall into the following categories.

Type Description

Numeric
expression

Expressions are generally classified by the type of result they produce.
For example, a numeric expression consists of a column name, literal, function, or
combination of column names, literals, and functions connected by arithmetic operators
where the result is a numeric type.String

expression

DateTime
expression

Interval
expression

Period
expression,
including a
derived period

CASE
expression

A CASE expression consists of a set of WHEN/THEN clauses and an optional
ELSE clause.
A valued CASE expression tests for the first WHEN expression that is equal to a
test expression and returns the value of the matching THEN expression. If no WHEN
expression is equal to the test expression, CASE returns the ELSE expression, or, if
omitted, NULL.
A searched CASE expression tests for the first WHEN expression that evaluates to
TRUE and returns the value of the matching THEN expression. If no WHEN expression
evaluates to TRUE, CASE returns the ELSE expression, or, if omitted, NULL.

Examples of Expressions
Expression Description

'Test Tech' Character string literal

1024 Numeric literal

Employee.FirstName Column name

Salary * 12 + 100 Arithmetic expression producing a numeric value

INTERVAL '10' MONTH * 4 Interval expression producing an interval value

CURRENT_DATE + INTERVAL '2' DAY DateTime expression producing a DATE value

2: Functions, Operators, Expressions, and Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 14

Expression Description

CURRENT_TIME - INTERVAL '1' HOUR DateTime expression producing a TIME value

'Last' || ' Order' String expression producing a character string value

CASE x
 WHEN 1
 THEN 1001
 ELSE 1002
END

Valued CASE conditional expression producing a
numeric value

SQL Predicates
SQL predicates, also referred to as logical predicates, are types of conditional expressions. They specify a
condition of a row or group that has one of three possible states:

• TRUE
• FALSE
• NULL (or unknown)

Predicates can appear in the following:

• WHERE, ON, or HAVING clause to qualify or disqualify rows in a SELECT statement.
• WHEN clause search condition of a searched CASE expression.
• CASE_N function.
• IF, WHILE, REPEAT, and CASE statements in stored procedures.

Types of Logical Predicates
SQL provides the following logical predicates:

• Comparison operators
• [NOT] BETWEEN
• LIKE
• [NOT] IN
• [NOT] EXISTS
• OVERLAPS
• IS [NOT] NULL

Logical Operators that Operate on Predicates
• NOT
• AND
• OR

2: Functions, Operators, Expressions, and Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 15

Predicate Quantifiers
• SOME
• ANY
• ALL

Examples of Predicates
Predicate Description

SELECT *
FROM Employee
WHERE Salary < 40000;

Predicate in a WHERE clause specifying a condition for selecting
rows from the Employee table.

SELECT SUM(CASE
 WHEN part BETWEEN 100 AND 199
 THEN 0
 ELSE cost
 END)
FROM Orders;

Predicate in a CASE expression specifying a condition that
determines the value passed to the SUM function for a particular
row in the Orders table.

2: Functions, Operators, Expressions, and Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 16

The following sections describe SQL aggregate functions.

For information on:

• Window aggregate functions and their Teradata-specific equivalents, see Window Aggregate Functions.
• Aggregate user-defined functions (UDFs), see "Aggregate UDF" in Teradata Vantage™ - SQL

Operators and User-Defined Functions, B035-1210.
• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ - SQL Operators and

User-Defined Functions, B035-1210.

About Aggregate Functions
Aggregate functions are typically used in arithmetic expressions. Aggregate functions operate on a group
of rows and return a single numeric value in the result table for each group.

In the following statement, the SUM aggregate function operates on the group of rows defined by the
Sales_Table table:

 SELECT SUM(Total_Sales)
 FROM Sales_Table;
 Sum(Total_Sales)

 5192.40

You can use GROUP BY clauses to produce more complex, finer grained results in multiple result values. In
the following statement, the SUM aggregate function operates on groups of rows defined by the Product_ID
column in the Sales_Table table:

 SELECT Product_ID, SUM(Total_Sales)
 FROM Sales_Table
 GROUP BY Product_ID;
 Product_ID Sum(Total_Sales)
 ---------- ----------------
 101 2100.00
 107 1000.40
 102 2092.00

Aggregate Functions

3

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 17

Aggregates in the Select List
Aggregate functions are normally used in the expression list of a SELECT statement and in the summary
list of a WITH clause.

Aggregates and GROUP BY
If you use an aggregate function in the select list of an SQL statement, then either all other columns occurring
in the select list must also be referenced by means of aggregate functions or their column name must appear
in a GROUP BY clause. For example, the following statement uses an aggregate function and a column in
the select list and references the column name in the GROUP BY clause:

 SELECT COUNT(*), Product_ID
 FROM Sales_Table
 GROUP BY Product_ID;

The reason for this is that aggregates return only one value, while a non-GROUP BY column reference can
return any number of values.

Aggregates and Date
It is valid to apply AVG, MIN, MAX, or COUNT to a date. It is not valid to specify SUM(date).

Aggregates and Literal Expressions in the Select List
Literal expressions in the select list may optionally appear in the GROUP BY clause. For example, the
following statement uses an aggregate function and a literal expression in the select list, and does not use
a GROUP BY clause:

 SELECT COUNT(*),
 SUBSTRING(CAST(CURRENT_TIME(0) AS CHAR(14)) FROM 1 FOR 8)
 FROM Sales_Table;

The results of such statements when the table has no rows depends on the type of literal expression.

IF the literal
expression … THEN the result of the literal expression in the query result is …

does not contain a
column reference
is a non-deterministic
function, such
as RANDOM

the value of the literal expression.
Functions such as RANDOM are computed in the immediate retrieve step of the
request instead of in the aggregation step.
Here is an example:
SELECT COUNT(*),
SUBSTRING(CAST(CURRENT_TIME(0) AS CHAR(14))
FROM 1 FOR 8)

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 18

IF the literal
expression … THEN the result of the literal expression in the query result is …

FROM Sales_Table;
Count(*) Substring(Current Time(0) From 1 For 8)
-------- ---------------------------------------
 0 09:01:43

contains a
column reference
is a UDF

NULL.
Here is an example:
SELECT COUNT(*), UDF_CALC(1,2)
FROM Sales_Table;
 Count(*) UDF_CALC(1,2)
----------- -------------
 0 ?

Nesting Aggregates
Aggregate operations cannot be nested. The following aggregate is not valid and returns an error:

 AVG(MAXIMUM (Salary))

Although direct nesting of aggregates is not supported, nested aggregates can be evaluated using a derived
table that contains the aggregates to be nested. For more information, see Teradata Vantage™ - Time
Series Tables and Operations, B035-1208.

Also, aggregates can be nested in aggregate window functions. The following statement is valid and
includes an aggregate SUM function nested in a RANK window function:

 SELECT region
 ,product
 ,SUM(amount)
 ,RANK() OVER (PARTITION BY region ORDER by SUM (amount))
 FROM table;

Results of Aggregation on Zero Rows
Aggregation on zero rows behaves as indicated by the following table.

This form of aggregate function …
Returns this result when there are zero
rows …

COUNT(expression) WHERE … 0

all other forms of aggregate_operator (expression) WHERE … Null

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 19

This form of aggregate function …
Returns this result when there are zero
rows …

aggregate_operator (expression) … GROUP BY …
aggregate_operator (expression) … HAVING …

No Record Found

Aggregates and Nulls
Aggregates (with the exception of COUNT(*)) ignore nulls in all computations.

Note:
A UDT column value is null only when you explicitly place a NULL in a column, not when a UDT
instance has an attribute that is set to null.

Ignoring nulls can result in apparent nontransitive anomalies. For example, if there are nulls in either column
A or column B (or both), then the following expression is virtually always true.

 SUM(A) + SUM(B) <> SUM(A+B)

The only exception to this is the case in which the values for columns A and B are both null in the same rows,
because in those cases the entire row is disregarded in the aggregation. This is a trivial case that does not
violate the general rule.

More formally stated, if and only if field A and field B are both null for every occurrence of a null in either field
is the above inequality false.

For examples that illustrate this behavior, see "Example: Employees Returned as Nulls" and "Example:
Counting Employees Not Yet Assigned to a Department" in Result Type and Attributes. Note that the
aggregates are behaving exactly as they should, the results are not mathematically anomalous.

There are several ways to work around this apparent nontransitivity issue if it presents a problem. Either
solution provides the same consistent results.

• Always define your numeric columns as NOT NULL DEFAULT 0.
• Use the ZEROIFNULL function within the aggregate function to convert any nulls to zeros for the

computation, for example SUM(ZEROIFNULL(x) + ZEROIFNULL(y)), which produces the same result
as SUM(ZEROIFNULL(x)) + SUM(ZEROIFNULL(y)).

Aggregate Operations on Floating Point Data
Operations involving floating point numbers are not always associative due to approximation and rounding
errors: ((A + B) + C) is not always equal to (A + (B + C)).

Although not readily apparent, the non-associativity of floating point arithmetic can also affect aggregate
operations: you can get different results each time you use an aggregate function on a given set of
floating point data. When Vantage performs an aggregation, it accumulates individual terms from each AMP

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 20

involved in the computation and evaluates the terms in order of arrival to produce the final result. Because
the order of evaluation can produce slightly different results, and because the order in which individual AMPs
finish their part of the work is unpredictable, the results of an aggregate function on the same data on the
same system can vary.

Aggregates and LOBs
Aggregates do not operate on CLOB or BLOB data types.

Aggregates and Period Data Types
Aggregates (with the exception of COUNT) do not operate on Period data types.

Aggregates and SELECT AND CONSUME Statements
Aggregates cannot appear in SELECT AND CONSUME statements.

Aggregates and Recursive Queries
Aggregate functions cannot appear in a recursive statement of a recursive query. However, a non-recursive
seed statement in a recursive query can specify an aggregate function.

Aggregates in WHERE and HAVING Clauses
Aggregates can appear in the following types of clauses:

• The WHERE clause of an ABORT statement to specify an abort condition.

But an aggregate function cannot appear in the WHERE clause of a SELECT statement.

• A HAVING clause to specify a group condition.

DISTINCT Option
The DISTINCT option specifies that duplicate values are not to be used when an expression is processed.

The following SELECT returns the number of unique job titles in a table.

 SELECT COUNT(DISTINCT JobTitle) FROM Employee;

A query can have multiple aggregate functions that use DISTINCT with the same expression, as shown by
the following example.

 SELECT SUM(DISTINCT x), AVG(DISTINCT x) FROM XTable;

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 21

A query can also have multiple aggregate functions that use DISTINCT with different expressions,
for example:

 SELECT SUM(DISTINCT x), SUM(DISTINCT y) FROM XYTable;

Aggregates and Row Level Security Tables
When a request that includes an aggregate function, such as SUM, COUNT, MAX, MIN or AVG, references
a table protected by row level security, the aggregation is based on only the rows that are accessible to
the requesting user. In order to apply all rows of the table to the aggregation, the user must have one of
the following:

• The required security credentials to access all rows of the table.
• The required OVERRIDE privileges on the security constraints in the table.

Time Series Aggregate Functions Overview
A set of aggregate functions is provided to support time series data (optionally stored in Primary Time Index
(PTI) tables). Additionally, some traditional functions support time series as well. To operate on time series
data, both time series-specific functions and traditional functions are invoked in a GROUP BY TIME clause.

Traditional Aggregate Functions that Support Time Series
You can use the following aggregate functions on time series data in PTI tables by using the GROUP BY
TIME clause and in non-PTI tables by using the GROUP BY TIME clause with the USING TIMECODE
option. For more information on these functions, see Teradata Vantage™ - Time Series Tables and
Operations, B035-1208.

• AVERAGE
• COUNT
• KURTOSIS
• MAXIMUM
• MINIMUM
• RANK (ANSI)
• SKEW
• STANDARD DEVIATION OF A POPULATION (STDDEV_POP)
• STANDARD DEVIATION OF A SAMPLE (STDDEV_SAMP)
• SUM
• VARIANCE OF A POPULATION (VAR_POP)
• VARIANCE OF A SAMPLE (VAR_SAMP)

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 22

Related Information
• Potential problems associated with floating point values in computations: Teradata Vantage™ - Data

Types and Literals, B035-1143.
• Window aggregate functions and their Teradata-specific equivalents, see Window

Aggregate Functions.
• Aggregate user-defined functions (UDFs), see Teradata Vantage™ - Advanced SQL Engine Security

Administration, B035-1100.
• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ - SQL Operators and

User-Defined Functions, B035-1210.
• Row level security, see Teradata Vantage™ - Advanced SQL Engine Security

Administration, B035-1100.
• Time series-specific aggregate functions, see Teradata Vantage™ - Time Series Tables and

Operations, B035-1208.

AVG
Returns the arithmetic average of all values in value_expression.

AVG is valid only for numeric data.

Nulls are not included in the result computation.

This function returns the REAL data type.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

For the AVG window function that computes a group, cumulative, or moving average, see Window
Aggregate Functions.

AVG Function Syntax
{ AVERAGE | AVG | AVE } ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
Exclude duplicates specified by value_expression from the computation.

ALL
All values that are not null of value_expression, including duplicates, are included in
the computation.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 23

value_expression
A literal or column expression for which an average is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

AVERAGE and AVE are Teradata extensions to the ANSI standard.

AVG Usage Notes

Computation of INTEGER or DECIMAL Values

An AVG of a DECIMAL or INTEGER value may overflow if the individual values are very large or if there
is a large number of values.

If this occurs, change the AVG call to include a CAST function that converts the DECIMAL or INTEGER
values to REAL as shown in the following example:

 AVG(CAST(value AS REAL))

Casting the values as REAL before averaging causes a slight loss in precision.

The type of the result is REAL in either case, so the only effect of the CAST is to accept a slight loss of
precision where a result might not otherwise be available at all.

If x is an integer, AVG does not display a fractional value. A fractional value may be obtained by casting
the value as DECIMAL, for example the following CAST to DECIMAL.

 CAST(AVG(value) AS DECIMAL(9,2))

Example: Using the AVG Function
Example: Querying the Sales Table for Average Sales by Region

This example queries the sales table for average sales by region and returns the following results.

 SELECT Region, AVG(sales)
 FROM sales_tbl
 GROUP BY Region
 ORDER BY Region;

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 24

 Region Average (sales)
 ------ ---------------
 North 21840.17
 East 55061.32
 Midwest 15535.73

For time series examples, see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

Related Information
• For more information on potential problems associated with floating point values in computations, see

Teradata Vantage™ - Data Types and Literals, B035-1143.
• For an explanation of the formatting characters in the format, see “Data Type Formats and Format

Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.
• Teradata Vantage™ - Advanced SQL Engine Security Administration, B035-1100
• For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language

Syntax and Examples, B035-1144.
• To disable the AVG extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control

Record to TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For more information on nulls, see Teradata Vantage™ - SQL Fundamentals, B035-1141 and

Aggregates and Nulls.
• Aggregate user-defined functions (UDFs), see "Aggregate UDF" in Teradata Vantage™ - SQL

Operators and User-Defined Functions, B035-1210.
• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ - SQL Operators and

User-Defined Functions, B035-1210.

CORR
Returns the Sample Pearson product moment correlation coefficient of its arguments for all non-null data
point pairs.

For the CORR window function that performs a group, cumulative, or moving computation, see Window
Aggregate Functions.

Sample Pearson Product Moment Correlation Coefficient

The Sample Pearson product moment correlation coefficient is a measure of the linear association between
variables. The boundary on the computed coefficient ranges from -1.00 to +1.00.

Note that high correlation does not imply a causal relationship between the variables.

The following table indicates the meaning of four extreme values for the coefficient of correlation between
two variables.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 25

IF the correlation
coefficient has this
value … THEN the association between the variables …

-1.00 is perfectly linear, but inverse.
As the value for y varies, the value for x varies identically in the opposite direction.

0 does not exist and they are said to be uncorrelated.

+1.00 is perfectly linear.
As the value for y varies, the value for x varies identically in the same direction.

NULL cannot be measured because there are no non-null data point pairs in the data
used for the computation.

CORR Function Syntax
CORR (value_expression_1, value_expression_2)

Syntax Elements

value_expression_1
A numeric expression to be correlated with a second numeric expression.

The expression cannot contain any ordered analytical or aggregate functions.

value_expression_2
A numeric expression to be correlated with a second numeric expression.

The expression cannot contain any ordered analytical or aggregate functions.

Computation

The equation for computing CORR is defined as follows:

This variable … Represents …

x value_expression_2

y value_expression_1

Division by zero results in NULL rather than an error.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 26

Result Type and Attributes
The data type, format, and title for CORR(y, x) are as follows.

Data Type Format Title

REAL the default format for DECIMAL(7,6) CORR(y,x)

For an explanation of the formatting characters in the format, see “Data Type Formats and Format Phrases”
in Teradata Vantage™ - Data Types and Literals, B035-1143.

CORR Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including CORR,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Combination With Other Functions

CORR can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or ORDER
BY clause. For information on ordered analytical functions, see Ordered Analytical Functions.

CORR cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause, or
ORDER BY clause.

Example: Querying Data from the HomeSales Table
This example uses the data from the HomeSales table.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 27

SalesPrice NbrSold Area
---------- ------- ---------
 160000 126 358711030
 180000 103 358711030
 200000 82 358711030
 220000 75 358711030
 240000 82 358711030
 260000 40 358711030
 280000 20 358711030

Consider the following query.

 SELECT CAST (CORR(NbrSold,SalesPrice) AS DECIMAL (6,4))
 FROM HomeSales
 WHERE area = 358711030
 AND SalesPrice Between 160000 AND 280000;

 CORR(NbrSold,SalesPrice)

 -.9543

The result -.9543 suggests an inverse relationship between the variables. That is, for the area and sales
price range specified in the query, the value for NbrSold increases as sales price decreases and decreases
as sales price increases.

Related Information
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For details, see Teradata Vantage™ - Database Utilities, B035-1102.

COUNT
Returns a column value that is the total number of qualified rows in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

COUNT Function Syntax
COUNT ({ [DISTINCT | ALL] value_expression | * })

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 28

Syntax Elements

DISTINCT
Exclude duplicates specified by value_expression from the computation.

The expression cannot contain any ordered analytical or aggregate functions.

ALL
All values of value_expression that are not null, including duplicates, are included in
the computation.

value_expression
A literal or column expression for which the number of values is to be counted.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

*
Counts all rows in the group of rows on which COUNT operates.

Result Type and Attributes
The following table lists the data type and format for the result of COUNT.

Mode Data Type and Format

ANSI MaxDecimal is general field 13 in the DBS Control utility.
If MaxDecimal in DBSControl is…
• 0 or 15, then the result type is DECIMAL(15,0) and the format is -(15)9.
• 18, then the result type is DECIMAL(18,0) and the format is -(18)9.
• 38, then the result type is DECIMAL(38,0) and the format is -(38)9.

Teradata INTEGER and the format is the default format for INTEGER.

COUNT The default value for the DBSControl General Field(80), COUNT_mode, is 0. The default is
compatibility mode, which disables all extensions that impact external applications.

BIGINT and NUMBER modes impact COUNT performance:

• Type promotion may entail computing expressions using a different type if the mode is changed. This
occurs when the result of the COUNT (*) based expression is materialized as a BIGINT/NUMBER
type, and later used as a subexpression for computing another expression. The performance
overhead is the same as that incurred when casting COUNT (*) as BIGINT/NUMBER.

• Since the data type of COUNT (*) changes if the mode is changed, queries that made assumptions on
format, title, and data type must be aware of the change.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 29

If the result of COUNT overflows and reports an error, you can cast the result to another data type, as
illustrated by the following example.

 SELECT CAST(COUNT(*) AS BIGINT)
 FROM BIGTABLE;

A similar example is provided for COUNT and rank window functions:

SELECT CAST(COUNT(*) over([PARTITION/ORDER BY]) AS BIGINT)
FROM BIGTABLE;
SELECT CAST(rank over([PARTITION/ORDER BY]) AS BIGINT)
FROM BIGTABLE;

Note:
The CAST is required only for default or compatibility mode. If value of 1 or 2 is specified for NUMBER
or BIGINT mode of computing COUNT, then the CAST is not required.

The following table lists the default title for the result of COUNT.

Operation Title

COUNT(x) Count(x)

COUNT(*) Count(*)

COUNT Specification in Aggregate Join Index

You can specify COUNT, COUNT cast to FLOAT OR DECIMAL(38,0), BIGINT, or NUMBER for a COUNT
aggregate function in a join index. The following illustrates a SHOW JOIN INDEX that accommodates data
type casts to BIGINT:

CREATE JOIN INDEX TEST.j1 ,NO FALLBACK ,CHECKSUM = DEFAULT AS
SELECT COUNT (*)(BIGINT, NAMED a),TEST.t1.a1
FROM TEST.t1
GROUP BY TEST.t1.a1
PRIMARY INDEX (a1);

Usage Notes
This syntax … Counts the total number of rows …

COUNT(value_expression) in the group for which value_expression is not null.

COUNT (DISTINCT value_expression) in the group for which value_expression is unique and not null.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 30

This syntax … Counts the total number of rows …

COUNT(*) in the group of rows on which COUNT operates.

COUNT is valid for any data type.

Examples: Using the COUNT Function
Example: Reporting the Number of Employees in Each Department

COUNT(*) reports the number of employees in each department because the GROUP BY clause groups
results by department number.

 SELECT DeptNo, COUNT(*) FROM Employee
 GROUP BY DeptNo
 ORDER BY DeptNo;

Without the GROUP BY clause, only the total number of employees represented in the Employee table
is reported:

 SELECT COUNT(*) FROM Employee;

Note that without the GROUP BY clause, the select list cannot include the DeptNo column because it
returns any number of values and COUNT(*) returns only one value.

Example: Employees Returned as Nulls

If any employees have been inserted but not yet assigned to a department, the return includes them as
nulls in the DeptNo column.

 SELECT DeptNo, COUNT(*) FROM Employee
 GROUP BY DeptNo
 ORDER BY DeptNo;

Assuming that two new employees are unassigned, the results table is:

 DeptNo Count(*)
 ------ --------
 ? 2
 100 4
 300 3
 500 7
 600 4
 700 3

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 31

Example: Counting Employees Not Yet Assigned to a Department

If you ran the report in Example: Reporting the Number of Employees in Each Department using SELECT...
COUNT … without grouping the results by department number, the results table would have only registered
non-null occurrences of DeptNo and would not have included the two employees not yet assigned to
a department(nulls). The counts differ (23 in Example: Reporting the Number of Employees in Each
Department as opposed to 21 using the statement documented in this example).

Recall that in addition to the 21 employees in the Employee table who are assigned to a department, there
are two new employees who are not yet assigned to a department (the row for each new employee has a
null department number).

 SELECT COUNT(deptno) FROM employee ;

The result of this SELECT is that COUNT returns a total of the non-null occurrences of department number.

Because aggregate functions ignore nulls, the two new employees are not reflected in the figure.

 Count(DeptNo)

 21

Example: Using COUNT to Find the Number of Employees by Gender

This example uses COUNT to provide the number of male employees in the Employee table of
the database.

 SELECT COUNT(sex)
 FROM Employee
 WHERE sex = 'M' ;

The result is as follows.

 Count(Sex)

 12

Example: Providing a Total of the Rows with Non-Null Department Numbers

In this example COUNT provides, for each department, a total of the rows that have non-null
department numbers.

 SELECT deptno, COUNT(deptno)
 FROM employee

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 32

 GROUP BY deptno
 ORDER BY deptno ;

Notice once again that the two new employees are not included in the count.

 DeptNo Count(DeptNo)
 ------ -------------
 100 4
 300 3
 500 7
 600 4
 700 3

Example: Returning the Number of Employees by Department

To get the number of employees by department, use COUNT(*) with GROUP BY and ORDER BY clauses.

 SELECT deptno, COUNT(*)
 FROM employee
 GROUP BY deptno
 ORDER BY deptno ;

In this case, the nulls are included, indicated by QUESTION MARK.

 DeptNo Count(*)
 ------ --------
 ? 2
 100 4
 300 3
 500 7
 600 4
 700 3

Example: Determining the Number of Departments in the Employee Table

To determine the number of departments in the Employee table, use COUNT (DISTINCT) as illustrated in
the following SELECT COUNT.

 SELECT COUNT (DISTINCT DeptNo)
 FROM Employee ;

The system responds with the following report.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 33

 Count(Distinct(DeptNo))

 5

For time series examples, see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

Related Information
• For COUNT functions that return the group, cumulative, or moving count, see Window

Aggregate Functions.
• With the exception of COUNT(*), the computation does not include nulls. For more information, see

Teradata Vantage™ - SQL Fundamentals, B035-1141 and Aggregates and Nulls.
• For information on data type default formats, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ - Data Types and Literals, B035-1143.
• For information on the COUNT_mode field, see Teradata Vantage™ - Database Utilities, B035-1102.

COVAR_POP
Returns the population covariance of its arguments for all non-null data-point pairs.

For the COVAR_POP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Covariance

Covariance measures whether or not two random variables vary in the same way. It is the average of the
products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.

Computation

When there are no non-null data point pairs in the data used for the computation, then COVAR_POP
returns NULL.

Division by zero results in NULL rather than an error.

COVAR_POP Function Syntax
COVAR_POP (value_expression_1, value_expression_2)

Syntax Elements

value_expression_1
A numeric expression to be paired with a second numeric expression to determine
their covariance.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 34

The expression cannot contain any ordered analytical or aggregate functions.

value_expression_2
A numeric expression to be paired with a second numeric expression to determine
their covariance.

The expression cannot contain any ordered analytical or aggregate functions.

Result Format Types

The data type, format, and title for COVAR_POP are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for COVAR_POP are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

COVAR_POP Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 35

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including COVAR_POP,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143 .

Combination With Other Functions

COVAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

COVAR_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

COVAR_SAMP
Returns the sample covariance of its arguments for all non-null data point pairs.

For the COVAR_SAMP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Covariance

Covariance measures whether or not two random variables vary in the same way. It is the sum of the
products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.

Computation

When there are no non-null data point pairs in the data used for the computation, then COVAR_SAMP
returns NULL.

Division by zero results in NULL rather than an error.

COVAR_SAMP Function Syntax

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 36

COVAR_SAMP (value_expression_1, value_expression_2)

Syntax Elements

value_expression_1
A numeric expression to be paired with a second numeric expression to determine
their covariance.

The expression cannot contain any ordered analytical or aggregate functions.

value_expression_2
A numeric expression to be paired with a second numeric expression to determine
their covariance.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for COVAR_SAMP(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

COVAR_SAMP Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 37

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including COVAR_SAMP,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143 .

Combination with Other Functions

COVAR_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

COVAR_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Using the SELECT statement to Return the Sample
Covariance of Weight and Height
This example is based on the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

c1 height weight

1 60 84

2 62 95

3 64 140

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 38

c1 height weight

12 ? ?

The following SELECT statement returns the sample covariance of weight and height where neither weight
nor height is null.

 SELECT COVAR_SAMP(weight,height)
 FROM regrtbl;

 Covar_Samp(weight,height)

 150

GROUPING
Returns a value that indicates whether a specified column in the result row was excluded from the grouping
set of a GROUP BY clause.

IF the value of the specified column in the result row is …
THEN GROUPING
returns …

a NULL generated when the extended grouping specification aggregated over
the column and excluded it from the particular grouping

1

anything else 0

GROUPING Function Syntax
GROUPING (expression)

Syntax Elements

expression
A column in the result row that might have been excluded from a grouped query containing
CUBE, ROLLUP, or GROUPING SET.

The argument must be an item of a GROUP BY clause.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 39

Result Type and Attributes
The data type, format, and title for GROUPING(x) are as follows.

Data Type Format Title

INTEGER Default format of the INTEGER data type Grouping(x)

Usage Notes
A null in the result row of a grouped query containing CUBE, ROLLUP, or GROUPING SET can mean one
of the following:

• The actual data for the column is null.
• The extended grouping specification aggregated over the column and excluded it from the particular

grouping. A null in this case really represents all values for this column.

Use GROUPING to distinguish between rows with nulls in actual data from rows with nulls generated from
grouping sets.

Example: Viewing Sales Summaries by County and by City
Suppose you have the following data in the sales_view table.

PID Cost Sale Margin State County City

1 38350 50150 11800 CA Los Angeles Long Beach

1 63375 82875 19500 CA San Diego San Diego

1 46800 61200 14400 CA Los Angeles Avalon

2 40625 53125 12500 CA Los Angeles Long Beach

To look at sales summaries by county and by city, use the following SELECT statement:

 SELECT county, city, sum(margin)
 FROM sale_view
 GROUP BY GROUPING SETS ((county),(city));

The query reports the following data:

 County City Sum(margin)
 ----------- ---------- -----------
 Los Angeles ? 38700
 San Diego ? 19500

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 40

 ? Long Beach 24300
 ? San Diego 19500
 ? Avalon 14400

Notice that in this example, a null represents all values for a column because the column was excluded from
the grouping set represented.

To distinguish between rows with nulls in actual data from rows with nulls generated from grouping sets,
use the GROUPING function:

 SELECT county, city, sum(margin),
 GROUPING(county) AS County_Grouping,
 GROUPING(city) AS City_Grouping
 FROM sale_view
 GROUP BY GROUPING SETS ((county),(city));

The results are:

 County City Sum(margin) County_Grouping City_Grouping
 ----------- ---------- ----------- --------------- -------------
 Los Angeles ? 38700 0 1
 San Diego ? 19500 0 1
 ? Long Beach 24300 1 0
 ? San Diego 19500 1 0
 ? Avalon 14400 1 0

You can also use GROUPING to replace the nulls that appear in a result row because the extended
grouping specification aggregated over a column and excluded it from the particular grouping.
For example:

 SELECT CASE
 WHEN GROUPING(county) = 1
 THEN '-All Counties-'
 ELSE county
 END AS County,
 CASE
 WHEN GROUPING(city) = 1
 THEN '-All Cities-'
 ELSE city
 END AS City,
 SUM(margin)
 FROM sale_view
 GROUP BY GROUPING SETS (county,city);

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 41

The query reports the following data:

 County City Sum(margin)
 -------------- ------------ -----------
 Los Angeles -All Cities- 38700
 San Diego -All Cities- 19500
 -All Counties- Long Beach 24300
 -All Counties- San Diego 19500
 -All Counties- Avalon 14400

Related Information
• For more information on GROUP BY, GROUPING SETS, ROLLUP, and CUBE, see Teradata

Vantage™ - SQL Data Manipulation Language, B035-1146.
• For information on the default format of data types, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ - Data Types and Literals, B035-1143.

KURTOSIS
Returns the kurtosis of the distribution of value_expression.

This function returns the REAL data type.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

Kurtosis

Kurtosis is the fourth moment of the distribution of the standardized (z) values. It is a measure of the outlier
(rare, extreme observation) character of the distribution as compared with the normal, Gaussian distribution.

The normal distribution has a kurtosis of 0.

Positive kurtosis indicates that the distribution is more outlier-prone than the normal distribution, while
negative kurtosis indicates that the distribution is less outlier-prone than the normal distribution.

Computation

The equation for computing KURTOSIS is defined as follows:

where:

This variable … Represents …

x value_expression

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 42

KURTOSIS Function Syntax
KURTOSIS ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
Exclude duplicates specified by value_expression from the computation.

ALL
All values of value_expression that are not null, including duplicates, are included in
the computation.

value_expression
A literal or column expression for which the kurtosis of the distribution of its values is to
be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

KURTOSIS Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on a UDT argument that has an implicit cast that
casts between the UDT and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including KURTOSIS,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 43

DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143 .

Conditions That Produce a NULL Return Value

The following conditions produce a null return value:

• Fewer than four non-null data points in the data used for the computation
• STDDEV_SAMP(x) = 0
• Division by zero

MAXIMUM
Returns a column value that is the maximum value for value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

For the MAXIMUM window function that computes a group, cumulative, or moving maximum value, see
Window Aggregate Functions.

MAXIMUM Function Syntax
{ MAXIMUM | MAX } ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
Exclude duplicates specified by value_expression from the computation.

Duplicate and values that are not null specified by value_expression are eliminated from the
maximum value computation for the group.

ALL
All values that are not null specified by value_expression, including duplicates, are included
in the maximum value computation for the group. This is the default.

value_expression
A literal or column expression for which the maximum value is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 44

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

MAXIMUM is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The following table lists the default attributes for the result of MAX(x).

Attribute Value

Data Type If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Format If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Title Maximum(x)

Usage Notes
MAX is valid for character data as well as numeric data. When used with a character expression, MAX
returns the highest sort order.

Nulls are not included in the result computation. For more information, see Teradata Vantage™ - SQL
Fundamentals, B035-1141 and Aggregates and Nulls.

If value_expression is a column expression, the column must refer to at least one column in the table from
which data is selected.

The value_expression must not specify a column reference to a view column that is derived from a function.

Support for UDTs

By default, Vantage performs implicit type conversion on a UDT argument that has an implicit cast that
casts between the UDT and any of the following predefined types:

• Numeric
• Character
• Byte
• DATE
• TIME or TIMESTAMP
• Interval

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 45

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including MAX, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143 .

Examples: Using the MAXIMUM Function
Example: CHARACTER Data

The following SELECT returns the immediately following result.

 SELECT MAX(Name)
 FROM Employee;

 Maximum(Name)

 Zorn J

Example: Column Expressions

You want to know which item in your warehouse stock has the maximum cost of sales.

 SELECT MAX(CostOfSales) AS m, ProdID
 FROM Inventory
 GROUP BY ProdID
 ORDER BY m DESC;

 Maximum(CostOfSales) ProdID
 -------------------- ------
 1295 3815
 975 4400
 950 4120

For time series examples, see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

MINIMUM
Returns a column value that is the minimum value for value_expression.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 46

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

For the MINIMUM window function that computes a group, cumulative, or moving minimum value, see
Window Aggregate Functions.

MINIMUM Function Syntax
{ MINIMUM | MIN } ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
Exclude duplicates specified by value_expression from the computation.

Duplicate and values that are not null specified by value_expression are eliminated from the
minimum value computation for the group.

ALL
All values that are not null specified by value_expression, including duplicates, are included
in the minimum value computation for the group. This is the default.

value_expression
A literal or column expression for which the minimum value is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

MINIMUM is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The following table lists the default attributes for the result of MIN(x).

Attribute Value

Data type If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Title Minimum(x)

Format If operand x is not a UDT, the result format is the format of operand x.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 47

Attribute Value

If operand x is a UDT, the result format is the format of the data type to which the UDT is
implicitly cast.

Usage Notes
MINIMUM is valid for character data as well as numeric data. MINIMUM returns the lowest sort order of a
character expression.

The computation does not include nulls. For more information, see “Manipulating Nulls” in Teradata
Vantage™ - SQL Fundamentals, B035-1141 and Aggregates and Nulls.

If value_expression specifies a column expression, the expression must refer to at least one column in the
table from which data is selected.

If value_expression specifies a column reference, the column must not be a view column that is derived
from a function.

Support for UDTs

By default, Vantage performs implicit type conversion on a UDT argument that has an implicit cast that
casts between the UDT and any of the following predefined types:

• Numeric
• Character
• Byte
• DATE
• TIME or TIMESTAMP
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including MIN, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143 .

Examples: Using the MINIMUM Function

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 48

Example: MINIMUM Used with CHARACTER Data

The following SELECT returns the immediately following result.

 SELECT MINIMUM(Name)
 FROM Employee;

 Minimum(Name)

 Aarons A

Example: JIT Inventory

Your manufacturing shop has recently changed vendors and you know that you have no quantity of parts
from that vendor that exceeds 20 items for the ProdID. You need to know how many of your other inventory
items are low enough that you need to schedule a new shipment, where “low enough” is defined as fewer
than 30 items in the QUANTITY column for the part.

 SELECT ProdID, MINIMUM(QUANTITY)
 FROM Inventory
 WHERE QUANTITY BETWEEN 20 AND 30
 GROUP BY ProdID
 ORDER BY ProdID;

The report is as follows:

 ProdID Minimum(Quantity)
 ----------- -----------------
 1124 24
 1355 21
 3215 25
 4391 22

For time series examples, see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

PIVOT
PIVOT is a relational operator for transforming rows into columns. The function is useful for reporting
purposes, as it allows you to aggregate and rotate data to create easy-to-read tables. You can perform
PIVOT aggregation on PIVOT column results by using the WITH clause.

Specify the PIVOT operator in the FROM clause of the SELECT statement. There are no restrictions on
other clauses that can be specified with the SELECT query that include PIVOT operators.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 49

PIVOT Function Syntax
PIVOT (pivot_spec)
 [WITH with_spec [,...]]
 [AS] derived_table_name [(cname [,...])]

Syntax Elements

pivot_spec

aggr_fn_spec [,...] FOR for_spec

with_spec

aggr_fn ({ cname [,...] | * }) [AS] aggr_alias

derived_table_name
The table name specified for the resultant pivoted table.

cname
A column name.

aggr_fn_spec

aggr_fn (cname) [[AS] pvt_aggr_alias]

for_spec

{ cname IN (expr_spec_1 [,...]) |
 (cname [,...]) IN (expr_spec_2 [,...]) |
 cname IN (subquery)
}

aggr_fn
An aggregate function that supports a single argument.

*
Option to include all the Pivot columns without specifying columns explicitly.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 50

aggr_alias
Name of the aggregate result column.

pvt_aggr_alias
An alias name specified for the Aggregate function.

expr_spec_1

expr [[AS] expr_alias_name]

expr_spec_2

(expr [,...]) [[AS] expr_alias_name]

expr
An expression or a column value.

expr_alias_name
An alias name specified for the values/expressions specified in the IN list.

Usage Notes

Note:
For the PIVOT operation, column names within the Aggregate functions are referred to as measure
columns, and column names in the FOR clause are referred to as pivot columns.

As indicated in the syntax, specify at least one Aggregate function with the PIVOT operator.

Columns with CLOB, BLOB, UDT, XML, or JSON data types are not allowed with the PIVOT operator.

Column names are not allowed within the IN-list. Only values or expressions (arithmetic expressions such
as MOD or ABS, or string Manipulation expressions such as LENGTH, REVERSE) are allowed.

Measure columns and pivot columns of the PIVOT operator are not allowed in the assign list of the
SELECT statement.

If n number of Aggregate functions are specified where n is greater than 1, then the alias name must be
specified for at least (n-1) aggregate functions.

The cname specified in the derived_table_name takes precedence over the alias names derived from
the IN-list.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 51

If the alias names are not specified for the column values listed in the IN clause, the database processing
encloses the column values into double quotes and converts these string literals to alias names using the
default format. The alias names are used as column names of the pivoted table.

If the length of the alias name derived from a column value exceeds the alias name limit of 128 characters
(if EON feature is enabled) or 30 characters (if EON is not enabled), the alias name is truncated.

If the IN-list contains case-specific values such as ‘abc’ & ‘ABC’, the values are treated the same and an
error occurs.

PIVOT supports the UNPIVOT or TD_UNPIVOT functions as a query source for the PIVOT operator.

The PIVOT/UNPIVOT operator uses a single dimensional way of converting rows to columns, or columns
to rows. You can swap both rows and columns within a single query (for example, using UNPIVOT as
source to PIVOT). This provides flexibility when using the two-dimensional method of interchanging data
in a table.

Using the DT column list for UNPIVOT as a query source to PIVOT is optional.

If the WITH clause is specified in the PIVOT query:

• Specifiying at least one aggregate function with the WITH operator is mandatory.
• SUM, AVG, MIN, and MAX aggregate functions are supported.
• The cname specified in the derived_table_name takes precedence over the alias names derived for

the aggregated result columns.
• DISTINCT keyword is not supported with aggregate column.
• Column list is not allowed if an asterisk (*) is specified.
• Aggregating a column list or * may produce meaningless results if the values aggregated are not

related. For example, if some pivot columns are for SUM and some are for an AVG, WITH SUM(*) is
not a meaningful value.

• Column names mentioned in the aggregate function should be PIVOT columns or subset of
PIVOT columns.

To avoid the overhead of issuing a separate query to generate values for input to the PIVOT IN-list clause
as hard coded constants, you can issue the query as a subquery in the PIVOT IN-list. If a PIVOT query has
a subquery in the IN-list:

• Alias names are not allowed in the IN-list.
• Alias names in the PIVOT derived table are not allowed.
• The SELECT list of the subquery must contain only one column reference.
• The subquery must return at least one row.
• The results returned by the subquery cannot exceed 32KB, and the row count must be less than or

equal to 16.
• SET operations are not allowed on a PIVOT query that has a subquery in the IN-list.
• Columns generated by an IN-list subquery cannot be explicitly used in the SELECT.
• You cannot use a subquery in a PIVOT IN-list with DDL statements or multistatement requests.
• A PIVOT query cannot include both a WITH clause and a subquery in the IN-list.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 52

For examples of wide tables, see Pivot Examples.

Examples

Example: Alias Names Contained in the IN List

This example uses the star1 table, with the following definition and contents:

CREATE TABLE star1(country VARCHAR(20),state VARCHAR(10), yr INTEGER,qtr
VARCHAR(3),sales INTEGER,cogs INTEGER);

SELECT * FROM star1;
country state yr qtr sales cogs
------- ----- ----------- --- ----------- -----------
USA CA 2001 Q1 30 15
Canada ON 2001 Q2 10 0
Canada BC 2001 Q3 10 0
USA NY 2001 Q1 45 25
USA CA 2001 Q2 50 20

In this example, the IN list contains alias names. The alias names are concatenated with the alias names
specified by the aggregate functions to build the column names of the output pivoted table.

SELECT *
FROM star1 PIVOT (
 SUM(sales) as ss1, SUM(cogs) as sc FOR
qtr

 IN (‘Q1’ AS
Quarter1,

 ‘Q2’ AS Quarter2,
 ‘Q3’ AS Quarter3)
)Tmp;

The output is re-written as an equivalent SELECT query using CASE statements:

SELECT * FROM (SELECT country ,state ,yr ,
SUM(CASE WHEN qtr = 'Q1' THEN sales ELSE NULL END)AS Quarter1_ss1,
SUM(CASE WHEN qtr = 'Q1' THEN (cogs) ELSE NULL END)AS Quarter1_sc,
SUM(CASE WHEN qtr = 'Q2' THEN (sales) ELSE NULL END)AS Quarter2_ss1,
SUM(CASE WHEN qtr = 'Q2' THEN (cogs) ELSE NULL END)AS Quarter2_sc,

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 53

https://docs.teradata.com/search/books?filters=featnum~%2522B035-1209-162K%2522

SUM(CASE WHEN qtr = 'Q3' THEN (sales) ELSE NULL END)AS Quarter3_ss1,
SUM(CASE WHEN qtr = 'Q3' THEN (cogs) ELSE NULL END)AS Quarter3_sc
FROM star1 GROUP BY country ,state ,yr) Tmp ;

Output pivoted table:

country state yr Quarter1_ss1 Quarter1_sc Quarter2_ss1 Quarter2_sc
Quarter3_ssl Quarter3_sc
------- ---- ---- ------------ ----------- ------------ -----------
------------ -----------
USA CA 2001 30 15
50 20 ? ?
USA NY 2001
45 25 ? ? ? ?
Canada ON 2001 ? ?
10 0 ? ?
Canada BC 2001 ? ? ? ?
10 0

Example: Naming Columns with the <column_value_list> Values

In this example, the SELECT statement does not specify the names to use for columns explicitly.
The names of the columns are built internally by adding the aggregated column name to the
<column_value_list> values.

SELECT *
FROM star1 PIVOT (SUM(sales) AS ss1, SUM(cogs) AS sc FOR (yr, qtr)
 IN ((2001, ‘Q1’),
 (2001, ‘Q2’),
 (2001, ‘Q3’))
)Tmp;

This is re-written as an equivalent SELECT query that uses CASE statements:

SELECT * FROM (SELECT country ,state ,
SUM(CASE WHEN yr = 2001 AND qtr = 'Q1' THEN sales ELSE NULL END)
AS "2001_'Q1'_ss1" ,
SUM(CASE WHEN yr = 2001 AND qtr = 'Q1' THEN cogs ELSE NULL END)
AS "2001_'Q1'_sc",
SUM(CASE WHEN yr = 2001 AND qtr = 'Q2' THEN sales ELSE NULL END)
AS "2001_'Q2'_ss1" ,
SUM(CASE WHEN yr = 2001 AND qtr = 'Q2' THEN cogs ELSE NULL END)

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 54

AS "2001_'Q2'_sc",
SUM(CASE WHEN yr = 2001 AND qtr = 'Q3' THEN sales ELSE NULL END)
AS "2001_'Q3'_ss1",
SUM(CASE WHEN yr = 2001 AND qtr = 'Q3' THEN cogs ELSE NULL END)
AS "2001_'Q3'_sc"
FROM star1 GROUP BY country ,state) Tmp ;

Output pivoted table:

country state 2001_'Q1'_ss1 2001'_'Q1'_sc 2001_'Q2'_ss1 2001_'Q2'_sc
2001_'Q3'_ssl 2001_'Q3'_sc
------- ---- ------------- ------------- ------------- ------------
------------- ------------
USA CA 30 15
50 20 ? ?
USA NY
45 25 ? ? ? ?
Canada ON ? ?
10 0 ? ?
Canada BC ? ? ? ?
10 0

Example: Pivot Operation on View

The following example of a view as a PIVOT source.

Assume a view, v1, is defined on the table s1:

CREATE TABLE s1(yr INTEGER, mon VARCHAR(4), sales INTEGER);

sel * from s1;

sel * from s1;

 *** Query completed. 8 rows found. 3 columns returned.
 *** Total elapsed time was 1 second.

 yr mon sales
----------- ---- -----------
 2001 jan 100
 2003 jan 300
 2002 jan 150
 2001 feb 110

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 55

 2003 feb 310
 2002 feb 200
 2001 mar 120
 2002 mar 250

CREATE VIEW V1 AS select yr,sales from s1;

 *** View has been created.
 *** Total elapsed time was 1 second.

sel * from v1;

select * from v1;

 *** Query completed. 8 rows found. 2 columns returned.
 *** Total elapsed time was 1 second.

 yr sales
----------- -----------
 2002 150
 2003 300
 2002 200
 2003 310
 2002 250
 2001 100
 2001 110
 2001 120

The following query generates sales report with respect to each year on view V1:

SELECT *
FROM v1 PIVOT (SUM(sales) FOR yr IN (2001,2002,2003)) tmp;

 *** Query completed. One row found. 3 columns returned.
 *** Total elapsed time was 1 second.

 2001 2002 2003
----------- ----------- -----------
 330 600 610

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 56

Example: Table Source Using the WITH Clause

The following is an example of a table using the WITH clause as a source to the pivot query.

SELECT *
FROM (with temp
as (select * from s1) select * from temp)dt PIVOT (SUM(sales) FOR mon IN
('Jan','Feb', 'Mar'))tmp;

 *** Query completed. 3 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.
 yr Jan Feb Mar
 ----- ------ ------ -------
 2001 100 110 120
 2002 150 200 250
 2003 300 310 ?

Example: SELECT Query with the WHERE Condition

The following is an example of using a SELECT query with the WHERE condition:

SELECT *
FROM s1 PIVOT (SUM(sales) FOR mon IN (‘Jan’ as Jan, ‘Feb’ as Feb, ‘Mar’ as
Mar))tmp where Jan=100;

 *** Query completed. 1 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.
 Yr Jan Feb Mar
 ------ -------- -------- --------
 2001 100 110 120

Example: CREATE TABLE AS Statement Contains Special Characters

In this example, the CREATE TABLE AS statement contains special characters in the pivot query IN list.

CREATE TABLE t1 AS
(SELECT *
FROM s1 PIVOT (SUM(sales) FOR mon IN (U&"#FAD7" UESCAPE '#')) tmp) WITH DATA;

*** Failure 4306 Invalid PIVOT query: Unsupported In-List Values/Expressions.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 57

 Statement# 1, Info =0
 *** Total elapsed time was 1 second.

Example: The PIVOT Query Response in Different Response Modes

Assume a table t1 is defined as:

CREATE TABLE t1(yr INTEGER,mon VARCHAR(3),sales INTEGER);

Assume that following insert statements
INSERT t1 VALUES(2003,'Jan',300);
INSERT t1 VALUES(2001,'Jan',100);
INSERT t1 VALUES(2003,'Feb',310);
INSERT t1 VALUES(2001,'Feb',110);
INSERT t1 VALUES(2002,'Jan',150);
INSERT t1 VALUES(2001,'Mar',120);
INSERT t1 VALUES(2002,'Feb',200);
INSERT t1 VALUES(2002,'Mar',250);
INSERT t1 VALUES(2003,'Mar',1000);

Assuming that the PIVOT query is submitted for execution, the output returns as different
responses modes.

For a PIVOT query:

SELECT * FROM t1 PIVOT(SUM(sales) FOR mon IN ('Jan','Feb','Mar')) tmp;

For a PIVOT query re-written as a SELECT statement using CASE expressions:

SELECT yr,SUM(case when mon='Jan' then sales end) AS "Jan",
SUM(case when mon='Feb' then sales end) AS "Feb",
SUM(case when mon='Mar' then sales end) AS "Mar"
FROM t1 GROUP BY yr;

.field mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
----------- ----------- ----------- -----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 58

.multipartrecord mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
---------- ---------- ---------- ----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

.record mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
----------- ----------- ----------- -----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

.indicator mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
----------- ----------- ----------- -----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

Example: Pivot Query Truncates the Alias Name

For the first part of this example, the EnableEON dbscontrol flag is set to false, so the column name limit
defaults to 30 characters.

Assume the table t1 is defined as:

CREATE TABLE t1(yr INTEGER, mon VARCHAR(41), sales INTEGER);

Also assume that the table t1 contains the following row:

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 59

SELECT * FROM t1;
yr mon sales
---- ---------------------------------- -----
2001 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 200

The row contains 35 characters for the column ‘mon’.

The following pivot query results truncate the ‘mon’ column value from 35 characters to 30 characters:

SELECT * FROM t1 PIVOT(SUM(sales) FOR mon IN
('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'))tmp;

YR aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
---- -------------------------------
2001 200

Now, assume that the EnableEON dbscontrol flag is set to true, so the column name limit defaults to
128 characters.

Also assume that table t2 is defined as follows:

CREATE TABLE t2(yr INTEGER, mon VARCHAR(131), sales INTEGER);

Assume that the table t2 contains the following row:

SELECT mon FROM t2;
mon
--

aa
aa

The row contains 130 characters for the column ‘mon’.

The following pivot query truncates the ‘mon’ column value from 130 characters to 128 characters:

SELECT * FROM t2 PIVOT(SUM(sales) FOR mon IN
('aa
aa')) tmp;

YR

2001
aa
aa

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 60

--
--
200

Example: Using TD_UNPIVOT or UNPIVOT as a Source to PIVOT

PIVOT supports UNPIVOT query or the TD_UNPIVOT function as a source for the PIVOT operator.

PIVOT/ UNPIVOT uses a single dimensional method to interchange data, such as converting rows to
columns, or columns to rows, based on some aggregation on a column data.

Swap rows and columns within a single query by giving UNPIVOT query as a source to PIVOT. This
provides flexibility for a two-dimensional way of interchanging data in a table based on some aggregation
on a column.

Note:

To change data with a two-dimensional method, aggregate data on a column, and then interchange
the rows and columns twice. In this case, swap rows and columns based on some aggregation on
a column data. The table rotates twice by some aggregation, but might not return the actual table
rows. It could introduce new rows where data is missing, or eliminate rows if data is aggregated in
the process.

Two-dimensional uses PIVOT as source to the UNPIVOT query, or UNPIVOT as a source to a
PIVOT query. Using PIVOT as source to an UNPIVOT query is complex when writing the SQL,
whereas using UNPIVOT as a source to PIVOT query is easier.

First, create a table with the following data:

CREATE TABLE t1 (place CHAR(5), sales1 INTEGER, sales2 INTEGER,
 sales3 INTEGER, sales4 INTEGER, sales5 INTEGER)
PRIMARY INDEX (place);

place sales1 sales2 sales3 sales4 sales5
----- --------- -------- -------- -------- --------
Hyd 110 100 1000 1100 500
Che 120 200 2000 1200 600
Kol 150 500 5000 1500 900
Mee 140 400 4000 1400 800
Pun 130 300 3000 1300 700

To get the SUM of sales for each place, swap the sales and place using the following query:

SELECT * from (SELECT * from t1
 UNPIVOT(saleval
 for sales in (sales1, sales2, sales3,

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 61

 sales4, sales5))dt1)dt2
 PIVOT(SUM(saleval)
 for place in ('hyd','Che','pun',
 'mee','kol'))dt3;

The results for using UNPIVOT as the source:

sales Hyd Che Pun Mee Kol
----- -------- -------- -------- -------- --------
sales1 110 120 130 140 150
sales2 100 200 300 400 500
sales3 1000 2000 3000 4000 5000
sales4 1100 1200 1300 1400 1500
sales5 500 600 700 800 900

Example: Aggregation on Two Columns from PIVOT Results

This example shows how to sum sales in the months of Jan and Feb for each year. This is an aggregation
on two columns from the PIVOT result.

Table s1 is defined as:

CREATE TABLE s1 (yr INTEGER, mon VARCHAR(20), sales INTEGER);

The table contains:

SELECT * FROM s1;
yr mon sales
----- --- -----
2001 Jan 100
2003 Jan 300
2002 Jan 150
2001 Feb 110
2003 Feb 310
2002 Feb 200
2001 Mar 120
2002 Mar 250

The PIVOT query is:

SELECT * FROM s1 PIVOT(SUM(SALES) FOR MON IN ('JAN', 'FEB', 'MAR')
 WITH SUM("'JAN'", "'FEB'") AS AGGR1) DT
order by 1;

AGGR1 is the name of the aggregated result column.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 62

Output:

 yr 'JAN' 'FEB' 'MAR' AGGR1
-------- ----------- ----------- ----------- -----------
 2001 100 110 120 210
 2002 150 200 250 350
 2003 300 310 ? 610

Example: Subquery in PIVOT IN-List

This is an example of having a subquery in PIVOT IN-list.

Table s1 is defined as:

CREATE TABLE s1(yr INTEGER, mon VARCHAR (5), sales INTEGER);
CREATE TABLE s2(yr INTEGER, mon VARCHAR (5), sales INTEGER);

The table contains:

SELECT * FROM s1;
yr mon sales
----- --- -----
2001 Jan 100
2003 Jan 300
2002 Jan 150
2001 Feb 110
2003 Feb 310
2002 Feb 200
2001 Mar 120
2002 Mar 250

SELECT * FROM s2;
 yr mon sales
----- ----- -------
2001 Jan 100
2002 Mar 250
2003 Feb 310

The table as a source to a PIVOT query having a subquery in PIVOT IN-list:

SELECT * FROM s1 PIVOT (SUM (sales) FOR mon in (SELECT mon FROM s2)) dt;

The output pivoted table:

*** Query completed. 3 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 63

 yr 'Feb' 'Jan' 'Mar'
----------- ----------- ----------- -----------
 2001 110 100 120
 2003 310 300 ?
 2002 200 150 250

Related Information
• For more information, see UNPIVOT.

REGR_AVGX
Returns the mean of the independent_variable_expression for all non-null data pairs of the dependent and
independent variable arguments.

For the REGR_AVGX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_AVGX returns NULL.

Division by zero results in NULL rather than an error.

REGR_AVGX Function Syntax
REGR_AVGX (dependent_variable_expression, independent_variable_expression)

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 64

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_AVGX(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

REGR_AVGX Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_AVGX,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 65

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_AVGX can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_AVGX cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Returning the Mean Height for regrtbl
This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the mean height for regrtbl where neither weight nor height is null.

 SELECT REGR_AVGX(weight,height)
 FROM regrtbl;

 Regr_Avgx(weight,height)

 68

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 66

REGR_AVGY
Returns the mean of the dependent_variable_expression for all non-null data pairs of the dependent and
independent variable arguments.

For the REGR_AVGY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_AVGY returns NULL.

Division by zero results in NULL rather than an error.

REGR_AVGY Function Syntax
REGR_AVGY (dependent_variable_expression, independent_variable_expression)

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_AVGY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 67

REGR_AVGY Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_AVGY,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_AVGY can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_AVGY cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Returning the Mean Weight from regrtbl
This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 68

 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the mean weight from regrtbl where neither height nor weight
is null.

 SELECT REGR_AVGY(weight,height)
 FROM regrtbl;

 Regr_Avgy(weight,height)

 140

Related Information
Teradata Vantage™ - Data Types and Literals, B035-1143:

• Information on the default format of data types and an explanation of the formatting characters in
the format

• Information on implicit type conversion of UDTs

REGR_COUNT
Returns the count of all non-null data pairs of the dependent and independent variable arguments.

For the REGR_COUNT window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

REGR_COUNT Function Syntax
REGR_COUNT (dependent_variable_expression, independent_variable_expression)

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 69

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The following table lists the data type for the result of REGR_COUNT(y,x).

Mode Data Type

ANSI If MaxDecimal in DBSControl is…
• 0 or 15, then the result type is DECIMAL(15,0).
• 18, then the result type is DECIMAL(18,0).
• 38, then the result type is DECIMAL(38,0).

Teradata INTEGER

The result type of REGR_COUNT is consistent with the result type of COUNT for ANSI transaction mode
and Teradata transaction mode.

When in Teradata mode, if the result of REGR_COUNT overflows and reports an error, you can cast the
result to another data type, as illustrated by the following example.

 SELECT CAST(REGR_COUNT(weight,height) AS BIGINT)
 FROM regrtbl;

Here are default formats and titles for the result of REGR_COUNT.

• If operand y is numeric or character, the format is:

◦ For ANSI mode, if MaxDecimal in DBSControl is:

0 or 15, the format is -(15)9

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 70

18, the format is -(18)9

38, the format is -(38)9

◦ For Teradata mode, the format is the default format for INTEGER

• If operand y is UDT, the format is the format for the data type to which the UDT is implicitly cast.

REGR_COUNT Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_COUNT,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_COUNT can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_COUNT cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Returning the Number of Rows in regrtbl
This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 71

c1 height weight

1 60 84

2 62 95

3 64 140

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

12 ? ?

The following SELECT statement returns the number of rows in regrtbl where neither height nor weight
is null.

 SELECT REG_COUNT(weight,height)
 FROM regrtbl;

Here is the result:

 Regr_Count(weight,height)

 9

Related Information
• For information on data type default formats, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ - Data Types and Literals, B035-1143.
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For information on the REGR_COUNT window function that performs a group, cumulative, or moving

computation, see Window Aggregate Functions.

REGR_INTERCEPT

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 72

Returns the intercept of the univariate linear regression line through all non-null data pairs of the dependent
and independent variable arguments.

For the REGR_INTERCEPT window function that performs a group, cumulative, or moving computation,
see Window Aggregate Functions.

Definition

The intercept is the point at which the regression line through the non-null data pairs in the sample intersects
the ordinate, or y-axis, of the graph.

The plot of the linear regression on the variables is used to predict the behavior of the dependent variable
from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables, and the
computation of the simple linear regression between such variable pairs does not reflect such a relationship.

Independent and Dependent Variables

An independent variable is a treatment: something that is varied under your control to test the behavior of
another variable.

A dependent variable is something that is measured in response to a treatment.

For example, you might want to test the ability of various promotions to enhance sales of a particular item.

In this case, the promotion is the independent variable and the sales of the item made as a result of the
individual promotion is the dependent variable.

The value of the linear regression intercept tells you the predicted value for sales when there is no promotion
for the item selected for analysis.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

REGR_INTERCEPT Function Syntax
REGR_INTERCEPT (dependent_variable_expression, independent_variable_expression)

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 73

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_INTERCEPT(y, x) are as follows.

Data Type Format Title

REAL Default format of the REAL data type REGR_INTERCEPT(y,x)

REGR_INTERCEPT Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_INTERCEPT,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 74

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_INTERCEPT can be combined with any of the ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical functions, see
Window Aggregate Functions.

REGR_INTERCEPT cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Example: Returning the Intercept of the Regression Line for
NbrSold and SalesPrice
This example uses the data from the HomeSales table.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030

240000 82 358711030

260000 40 358711030

280000 20 358711030

The following query returns the intercept of the regression line for NbrSold and SalesPrice in the range of
160000 to 280000 in the 358711030 area.

 SELECT CAST (REGR_INTERCEPT(NbrSold,SalesPrice) AS DECIMAL (5,1))
 FROM HomeSales
 WHERE area = 358711030
 AND SalesPrice BETWEEN 160000 AND 280000;

Here is the result:

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 75

 REGR_INTERCEPT(NbrSold,SalesPrice)

 249.9

Related Information
• For information on the default format of data types and an explanation of the formatting characters in

the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

• For details on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

• For the REGR_INTERCEPT window function that performs a group, cumulative, or moving
computation, see Window Aggregate Functions.

REGR_R2
Returns the coefficient of determination for all non-null data pairs of the dependent and independent
variable arguments.

For the REGR_R2 window function that performs a group, cumulative, or moving computation, see Window
Aggregate Functions.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_R2 returns NULL.

Division by zero results in NULL rather than an error.

REGR_R2 Function Syntax
REGR_R2 (dependent_variable_expression, independent_variable_expression)

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 76

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_R2(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

REGR_R2 Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_R2,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 77

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_R2 can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_R2 cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Example: Returning the Coefficient of Determination for Height
and Weight
This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the coefficient of determination for height and weight where
neither height nor weight is null.

 SELECT CAST(REGR_R2(weight,height) AS DECIMAL(4,2))
 FROM regrtbl;

 REGR_R2(weight,height)

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 78

 .58

Related Information
• For information on the default format of data types and an explanation of the formatting characters in

the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

• For the REGR_R2 window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

REGR_SLOPE
Returns the slope of the univariate linear regression line through all non-null data pairs of the dependent and
independent variable arguments.

For the REGR_SLOPE window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Slope

The slope of the best fit linear regression is a measure of the rate of change of the regression of one
independent variable on the dependent variable.

The plot of the linear regression on the variables is used to predict the behavior of the dependent variable
from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables, and the
computation of the simple linear regression between such variable pairs does not reflect such a relationship.

Independent and Dependent Variables

An independent variable is a treatment: something that is varied under your control to test the behavior of
another variable.

A dependent variable is something that is measured in response to a treatment.

For example, you might want to test the ability of various promotions to enhance sales of a particular item.

In this case, the promotion is the independent variable and the sales of the item made as a result of the
individual promotion is the dependent variable.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SLOPE returns NULL.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 79

Division by zero results in NULL rather than an error.

REGR_SLOPE Function Syntax
REGR_SLOPE (dependent_variable_expression, independent_variable_expression)

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_SLOPE(y, x) are as follows.

Data Type Format Title

REAL Default format of the REAL data type REGR_SLOPE(y,x)

REGR_SLOPE Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 80

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SLOPE,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_SLOPE can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SLOPE cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Returning the Slope of the Regression Line for NbrSold
and SalesPrice
This example uses the data from the HomeSales table.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030

240000 82 358711030

260000 40 358711030

280000 20 358711030

The following query returns the slope of the regression line for NbrSold and SalesPrice in the range of
160000 to 280000 in the 358711030 area.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 81

 SELECT CAST (REGR_SLOPE(NbrSold,SalesPrice) AS FLOAT)
 FROM HomeSales
 WHERE area = 358711030
 AND SalesPrice BETWEEN 160000 AND 280000;

Here is the result:

 REGR_SLOPE(NbrSold,SalesPrice)

 -7.92857142857143E-004

Related Information
• For information on the default format of data types and the formatting characters in the format,

see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

• For the REGR_SLOPE window function that performs a group, cumulative, or moving computation,
see Window Aggregate Functions.

REGR_SXX
Returns the sum of the squares of the independent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

For the REGR_SXX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SXX returns NULL.

Division by zero results in NULL rather than an error.

REGR_SXX Function Syntax
REGR_SXX (dependent_variable_expression, independent_variable_expression)

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 82

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_SXX(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

REGR_SXX Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 83

Implicit type conversion of UDTs for system operators and functions, including REGR_SXX,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_SXX can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SXX cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Returning the Sum of Squares for Height
This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of squares for height where neither height nor weight
is null.

 SELECT REGR_SXX(weight,height)
 FROM regrtbl;

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 84

 Regr_Sxx(weight,height)

 240

Related Information
• For information on the default format of data types, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ - Data Types and Literals, B035-1143.
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For the REGR_SXX window function that performs a group, cumulative, or moving computation, see

Window Aggregate Functions.

REGR_SXY
Returns the sum of the products of the independent_variable_expression and the
dependent_variable_expression for all non-null data pairs of the dependent and independent
variable arguments.

For the REGR_SXY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SXY returns NULL.

Division by zero results in NULL rather than an error.

REGR_SXY Function Syntax
REGR_SXY (dependent_variable_expression, independent_variable_expression)

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 85

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_SXY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

REGR_SXY Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SXY,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 86

Combination With Other Functions

REGR_SXY can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SXY cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Returning the Sum of Products of Height and Weight
This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of products of height and weight where neither height
nor weight is null.

 SELECT REGR_SXY(weight,height)
 FROM regrtbl;

 Regr_Sxy(weight,height)

 1200

Related Information
Teradata Vantage™ - Data Types and Literals, B035-1143:

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 87

• Information on the default format of data types and an explanation of the formatting characters in
the format

• Information on implicit type conversion of UDTs

REGR_SYY
Returns the sum of the squares of the dependent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

For the REGR_SYY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Computation

When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

REGR_SYY Function Syntax
REGR_SYY (dependent_variable_expression, independent_variable_expression)

Syntax Elements

dependent_variable_expression
The dependent variable for the regression. A dependent variable is something that is
measured in response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression
The independent variable for the regression. An independent variable is a treatment:
something that is varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for REGR_SYY(y, x) are as follows.

Data type: REAL

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 88

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ - Data Types and Literals, B035-1143.

REGR_SYY Usage Notes

Support for UDTs

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts that cast
between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SYY,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions

REGR_SYY can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SYY cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example: Returning the Sum of Squares for Weight

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 89

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of squares for weight where neither height nor weight
is null.

 SELECT REGR_SYY(weight,height)
 FROM regrtbl;

 Regr_Syy(weight,height)

 10426

SKEW
Returns the skewness of the distribution of value_expression.

This function returns the REAL data type.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

Skewness

Skewness is the third moment of a distribution. It is a measure of the asymmetry of the distribution about its
mean compared with the normal, Gaussian, distribution.

The normal distribution has a skewness of 0.

Positive skewness indicates a distribution having an asymmetric tail extending toward more positive values,
while negative skewness indicates an asymmetric tail extending toward more negative values.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 90

Computation

The equation for computing SKEW is defined as follows:

where:

This variable … Represents …

x value_expression

Conditions That Produce a Null Result

The following conditions product a null result:

• Fewer than three non-null data points in the data used for the computation
• STDDEV_SAMP(x) = 0
• Division by zero

SKEW Function Syntax
SKEW ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
Null and duplicate values specified by value_expression are eliminated from the computation
for the group.

ALL
All values of value_expression that are not null, including duplicates, are included in
the computation.

value_expression
A literal or column expression for which the skewness of the distribution of its values is to
be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 91

Related Information
Teradata Vantage™ - Data Types and Literals, B035-1143.

STDDEV_POP
Returns the population standard deviation for the non-null data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

For the STDDEV_POP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Standard Deviation

The standard deviation is the second moment of a population. For a population, it is a measure of dispersion
from the mean of that population.

Do not use STDDEV_POP unless the data points you are processing are the complete population.

Computation

STANDARD DEVIATION OF A SAMPLE is valid only for numeric data.

Nulls are not included in the result computation.

When there are no non-null data points in the population, then STDDEV_POP returns NULL.

Division by zero results in NULL rather than an error.

STDDEV_POP Function Syntax
STDDEV_POP ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
To exclude duplicates of value_expression from the computation.

ALL
Include all values that are not null specified by value_expression, including duplicates, in the
computation. This is the default.

value_expression
A numeric literal or column expression whose population standard deviation is to
be computed.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 92

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

Return Values

This function returns the REAL data type.

• If the value_expression is character, the format is the default format for FLOAT.
• If the value_expression is numeric, date, or interval, the format is the same format as x.
• If the value_expression is UDT, the format is the format for the data type to which the UDT is

implicitly cast.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

STDDEV_POP Usage Notes

Combination With Other Functions

STDDEV_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

STDDEV_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

How GROUP BY Affects Report Breaks

STDDEV_POP operates differently depending on whether there is a GROUP BY clause in the
SELECT statement.

IF the query … THEN STDDEV_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population

If your data represents only a sample of the entire population for the variable, then use the
STDDEV_SAMP function. For information, see STDDEV_SAMP.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 93

As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the same
number, but you should always use the more conservative STDDEV_SAMP calculation unless you are
absolutely certain that your data constitutes the entire population for the variable.

Related Information
• Teradata Vantage™ - Data Types and Literals, B035-1143
• Window Aggregate Functions

STDDEV_SAMP
Returns the sample standard deviation for the non-null data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

For the STDDEV_SAMP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Standard Deviation

The standard deviation is the second moment of a distribution. For a sample, it is a measure of dispersion
from the mean of that sample. The computation is more conservative for the population standard deviation
to minimize the effect of outliers on the computed value.

Computation

Division by zero results in NULL rather than an error.

When there are fewer than two non-null data points in the sample used for the computation, then
STDDEV_SAMP returns NULL.

STDDEV_SAMP Function Syntax
STDDEV_SAMP ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
Exclude duplicates of value_expression from the computation.

ALL
All values of value_expression that are not null, including duplicates, are included in
the computation.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 94

value_expression
A numeric literal or column expression whose sample standard deviation is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

Return Values

This function returns the REAL data type.

• If the value_expression is character, the format is the default format for FLOAT.
• If the value_expression is numeric, date, or interval, the format is the same format as x.
• If the value_expression is UDT, the format is the format for the data type to which the UDT is

implicitly cast.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

STDDEV_SAMP Usage Notes

Combination With Other Functions

STDDEV_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

STDDEV_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

How GROUP BY Affects Report Breaks

The GROUP BY clause affects the STDDEV_SAMP operation.

IF the query … THEN STDDEV_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 95

Measuring the Standard Deviation of a Population

If your data represents the entire population for the variable, then use the STDDEV_POP function. For
information, see STDDEV_POP.

As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the same
number, but you should use the more conservative STDDEV_SAMP calculation unless you are absolutely
certain that your data constitutes the entire population for the variable.

Related Information
• Teradata Vantage™ - Data Types and Literals, B035-1143
• Window Aggregate Functions

SUM
Returns a column value that is the arithmetic sum of value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

SUM Function Syntax
SUM ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
Exclude duplicates of value_expression from the computation.

ALL
All values of value_expression that are not null, including duplicates, are included in
the computation.

value_expression
A literal or column expression whose sum is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 96

Return Values

The following table lists the default attributes for the result of SUM(x).

Data Type
of Operand Data Type of Result Format Title

BYTEINT
or SMALLINT

INTEGER Default format of the
INTEGER data type

Sum(x)

character FLOAT Default format
for FLOAT

UDT Same as the operand Format for the data
type to which the UDT
is implicitly cast

DECIMAL(n,m) DECIMAL(p,m), where p is determined by the
rules in the following rules:
If MaxDecimal in DBSControl is 0 or 15 and
• n ≤ 15, then p = 15.
• 15 < n ≤ 18, p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 18 and
• n ≤ 18, then p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 38 and n = any
value, the p = 38.

Default format for
the data type of
the operand

Sum(x)

Other than
UDT, SMALLINT,
BYTEINT,
DECIMAL,
or character

Same as the operand Default format for
the data type of
the operand

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
SUM is valid only for numeric data.

Nulls are not included in the result computation. For details, see “Manipulating Nulls” in Teradata
Vantage™ - SQL Fundamentals, B035-1141 and Aggregates and Nulls.

The SUM function can result in a numeric overflow or the loss of data because of the default output format.
If this occurs, a data type declaration may be used to override the default.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 97

For example, if QUANTITY comprises many rows of INTEGER values, it may be necessary to specify a
data type declaration like the following for the SUM function:

SUM(QUANTITY(FLOAT))

Possible Result Overflow with SELECT Sum

Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Examples

Example: Accounts Receivable

You need to know how much cash you need to pay all vendors who billed you 30 or more days ago.

 SELECT SUM(Invoice)
 FROM AcctsRec
 WHERE (CURRENT_DATE - InvDate) >= 30;

Example: Face Value of Inventory

You need to know the total face value for all items in your inventory.

 SELECT SUM(QUANTITY * Price)
 FROM Inventory;

 Sum((QUANTITY * Price))

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 98

 38,525,151.91

Related Information
• For an explanation of the formatting characters in the format, and information on data type default

formats, see Teradata Vantage™ - Data Types and Literals, B035-1143.
• For the SUM function that returns the cumulative, group, or moving sum, see Window

Aggregate Functions.

UNPIVOT
UNPIVOT is the reverse of the PIVOT operation. It provides a mechanism for transforming columns
into rows.

The UNPIVOT functionality was introduced previously via the TD_UNPIVOT table operator. This feature
introduces grammar to support the UNPIVOT operator in the FROM clause of the SELECT statement.

Note:
UNPIVOT invokes the TD_UNPIVOT table operator internally. You can still use TD_UNPIVOT
independent of UNPIVOT.

UNPIVOT Function Syntax
UNPIVOT [{ INCLUDE | EXCLUDE } NULLS] (unpivot_spec)
 [AS] derived_table_name [(cname [,...])]

Syntax Elements

unpivot_spec

{ cname FOR cname IN (cname_spec_1 [,...]) |
 (cname [,...]) FOR cname IN (cname_spec_2 [,...])
}

derived_table_name
The table name specified for the resultant unpivoted table.

cname
A column name.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 99

Note:
For the UNPIVOT operation, column names within the Aggregate functions are referred
to as measure columns, and column names in the FOR clause are referred to as
pivot columns.

cname_spec_1

cname [[AS] literal]

cname_spec_2

(cname [,...]) [[AS] literal]

literal
Any supported Teradata numeric, character or string literal.

Usage Notes

Note:
Column names specified just before the FOR clause are referred to as measure_columns in the
context of UNPIVOT operation. Column names specified after the FOR clause are referred to
as unpivot_columns.

Similar to the PIVOT operator, columns with CLOB, BLOB, UDT, XML, or JSON data types are not allowed
with the UNPIVOT operator.

The UNPIVOT column name and measure column names cannot be the same as the column names
defined in the derived_table_name.

When multiple measure_columns are involved in UNPIVOT operation, the columns are compatible only if
they belong to any of the following three groups:

• CHAR and VARCHAR
• BYTE and VARBYTE
• BYTEINT SMALLINT INTEGER BIGINT REAL DECIMAL NUMBER

Column names specified in the IN list cannot be specified in the assign list of the SELECT statement.

Examples
The examples in this section use the following denormalized pivoted table, star1p, which is defined as:

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 100

CREATE TABLE star1p(country VARCHAR(20),state VARCHAR(20),Q101Sales
INTEGER,Q201Sales INTEGER,Q301Sales INTEGER,Q101Cogs INTEGER,Q201Cogs
INTEGER,Q301Cogs INTEGER);

SELECT * FROM star1p;

country state Q101Sales Q201Sales Q301Sales Q101Cogs Q201Cogs Q301Cogs
------- ----- --------- --------- --------- -------- -------- --------
Canada ON ? 10 ? ? 0 ?
Canada BC ? ? 10 ? ? 0
USA NY 45 ? ? 25 ? ?
USA CA 30 50 ? 15 20 ?

Example: Unpivoted Sales and Cogs Columns

In this example, the sales and cogs columns are unpivoted.

SELECT *
FROM star1p UNPIVOT ((sales,cogs) FOR yr_qtr
 IN ((Q101Sales, Q101Cogs) AS ‘Q101’,
 (Q201Sales, Q201Cogs) AS ‘Q201’,
 (Q301Sales, Q301Cogs) AS ‘Q301’)) Tmp;

The output for the unpivoted table:

country state yr_qtr sales cogs
------- ----- ------ ----------- -----------
Canada ON Q201 10 0
Canada ON Q301 10 0
USA NY Q101 45 25
USA CA Q101 30 15
USA CA Q201 50 20

Note that a pivot combined with a matching unpivot may introduce rows with NULL values. It is possible
to unpivot just the ‘yr’ column.

Example: Using UNPIVOT for a Unique Year Value

This example shows only one unique value of year, so the unpivot is straightforward.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 101

SELECT *
FROM star1p UNPIVOT (Q1sales, Q2sales, Q3sales, Q1cogs, Q2cogs, Q3cogs) FOR
yr IN ((Q101Sales, Q201Sales, Q301Sales, Q101Cogs, Q201Cogs, Q301Cogs) AS
‘2001’) Tmp;

country state yr Q1sales Q2sales Q3sales Q1cogs Q2cogs Q3cogs
------- ----- ---- -------- ------- ------- ------ ------ ------
Canada ON 2001 ? 10 ? ? 0 ?
Canada BC 2001 ? ? 10 ? ? 0
USA NY 2001 45 ? ? 25 ? ?
USA CA 2001 30 50 ? 15 20

Example: Normalizing the UNPIVOT Operation

This example showcases using UNPIVOT to capture elaborate data of a base table (star1p, in this case).
The data is spread over many columns into a compact table with an optimal number of columns and no
data loss.

SELECT *
FROM star1p UNPIVOT (measure_value FOR yr_qtr_measure IN
(Q101Sales, Q201Sales, Q301Sales,Q101Cogs, Q201Cogs, Q301Cogs)) Tmp;
country state yr_qtr_measure measure_value
------- ----- -------------- -------------
Canada BC Q301Cogs 0
Canada BC Q301Sales 10
Canada ON Q201Cogs 0
Canada ON Q201Sales 10
USA CA Q101Cogs 15
USA CA Q101Sales 30
USA CA Q201Cogs 20
USA CA Q201Sales 50
USA NY Q101Cogs 25
USA NY Q101Sales 45

Example: Using UNPIVOT with the INCLUDE NULLS Clause

In this example, there are some rows with nulls in the sales and cogs columns. The rows are included in
the output when using the INCLUDE NULLS clause.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 102

SELECT *
FROM star1p UNPIVOT INCLUDE NULLS ((sales,cogs) FOR yr_qtr IN
((Q101Sales, Q101Cogs) AS 'Q101', (Q201Sales, Q201Cogs) AS 'Q201', (Q301Sales,
Q301Cogs) AS 'Q301')) Tmp;

country state yr_qtr sales cogs
------- ----- ------ ----------- -----------
Canada BC Q101 ? ?
Canada ON Q101 ? ?
Canada ON Q201 10 0
Canada ON Q301 10 0
USA NY Q101 45 25
USA CA Q101 30 15
Canada BC Q201 ? ?
USA NY Q201 ? ?
USA CA Q201 50 20
Canada BC Q301 ? ?
USA NY Q301 ? ?
USA CA Q301 ? ?

Example: Using UNPIVOT with the EXCLUDE NULLS Clause

In this example, there are no rows with nulls in either the sales or cogs columns, and the rows are excluded
in the output when using EXCLUDE NULLS clause. This is the default option.

SELECT *
FROM star1p UNPIVOT EXCLUDE NULLS (sales, cogs) FOR yr_qtr IN
((Q101Sales, Q101Cogs) AS 'Q101', (Q201Sales, Q201Cogs) AS 'Q201', (Q301Sales,
Q301Cogs) AS 'Q301') Tmp;

country state yr_qtr sales cogs
------- ------ -------- ------------ -------
Canada ON Q201 10 0
Canada ON Q301 10 0
USA NY Q101 45 25
USA CA Q101 30 15
USA CA Q201 50 20

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 103

Example: Using an IN List with Multiple Column Lists and
Unspecified Aliases

In this example, the aliases that the IN list uses were not specified. Instead, the values of the yr_qtr column
were built by adding the column names with an underscore symbol.

SELECT *
FROM star1p UNPIVOT ((sales, cogs) FOR yr_qtr IN
((Q101Sales, Q101Cogs),(Q201Sales, Q201Cogs), (Q301Sales, Q301Cogs)) Tmp;

country state yr_qtr sales cogs
------- -------- ----------------------- -------- --------
Canada ON Q201Sales_Q201Cogs 10 0
Canada ON Q301Sales_Q301Cogs 10 0
USA NY Q101Sales_Q101Cogs 45 25
USA CA Q101Sales_Q101Cogs 30 15
USA CA Q201Sales_Q201Cogs 50 20

Example: Using an IN List that Contains Multiple Columns with a
Compatible Data Type

In this example, the Q101Sales column contains an INTEGER data type, and Q201Sales is a BYTEINT
data type. Both the INTEGER and BYTEINT data types are compatible with each other.

SELECT * FROM star1p UNPIVOT (measure_value FOR yr_qtr_measure IN
(Q101Sales, Q201Sales)) Tmp;

country state yr_qtr_measure measure_value
------- ----- -------------- -------------
Canada ON Q201Sales 10
USA CA Q101Sales 30
USA CA Q201Sales 50
USA NY Q101Sales 45

Example: Using an IN List that Contains Multiple Columns with an
Incompatible Data Type

In this example, the star1p table is altered to contain a new column Q401Sales with a VARCHAR(20) data
type. The Q101Sales column is an INTEGER data type, and the Q401Sales is VARCHAR.

The INTEGER and VARCHAR data types are not compatible.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 104

SELECT *
FROM star1p UNPIVOT (measure_value FOR yr_qtr_measure IN
(Q101Sales, Q401Sales)) Tmp;

Error 9134 Failure in TD_Unpivot contract function. Error determining column
type of value columns.

Related Information
• PIVOT
• "TD_UNPIVOT" in Teradata Vantage™ - SQL Operators and User-Defined Functions, B035-1210

VAR_POP
Returns the population variance for the data points in value_expression.

This function returns the REAL data type.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

Variance

The variance of a population is a measure of dispersion from the mean of that population.

Do not use VAR_POP unless the data points you are processing are the complete population.

Computation

When the population has no non-null data points, VAR_POP returns NULL.

Division by zero results in NULL rather than an error.

VAR_POP Function Syntax
VAR_POP ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
To exclude duplicates of value_expression from the computation.

ALL
All values of value_expression that are not null, including duplicates, are included in
the computation.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 105

value_expression
A numeric literal or column expression whose population variance is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

The following restrictions apply to value_expression:

• If the value_expression is character, the format is the default format for FLOAT.
• If the value_expression is numeric, date, or interval, the format is the same format as x.
• If the value_expression is UDT, the format is the format for the data type to which the

UDT is implicitly cast.

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

VAR_POP Usage Notes

Combination With Other Functions

VAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

VAR_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

GROUP BY Affects Report Breaks

The GROUP BY clause affects the VAR_POP operation.

IF the query … THEN VAR_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population

If your data represents the only a sample of the entire population for the variable, then use the VAR_SAMP
function. For information, see “VAR_SAMP”.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 106

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same number,
but you should always use the more conservative STDDEV_SAMP calculation unless you are absolutely
certain that your data constitutes the entire population for the variable.

Related Information
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For more information on ordered analytical functions, see Ordered Analytical/Window

Aggregate Functions.
• For the VAR_POP window function that performs a group, cumulative, or moving computation, see

Window Aggregate Functions.

VAR_SAMP
Returns the sample variance for the data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more information,
see Teradata Vantage™ - Time Series Tables and Operations, B035-1208.

Variance

The variance of a sample is a measure of dispersion from the mean of that sample. It is the square of the
sample standard deviation.

The computation is more conservative than that for the population standard deviation to minimize the effect
of outliers on the computed value.

Computation

When the sample used for the computation has fewer than two non-null data points,
VAR_SAMP returns NULL.

Division by zero results in NULL rather than an error.

VAR_SAMP Function Syntax
VAR_SAMP ([DISTINCT | ALL] value_expression)

Syntax Elements

DISTINCT
To exclude duplicates of value_expression from the computation.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 107

ALL
All values of value_expression that are not null, including duplicates, are included in
the computation.

value_expression
A numeric literal or column expression whose sample variance is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

• If the value_expression is character, the format is the default format for FLOAT.
• If the value_expression is numeric, date, or interval, the format is the same format as x.
• If the value_expression is UDT, the format is the format for the data type to which the

UDT is implicitly cast.

The value_expression cannot be a reference to a view column derived from a function, and
cannot contain any ordered analytical or aggregate functions.

VARIANCE OF A SAMPLE is valid only for numeric data.

Nulls are not included in the result computation.

Division by zero results in NULL rather than an error.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

VAR_SAMP Usage Notes

Combination With Other Functions

VAR_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

VAR_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

GROUP BY Affects Report Breaks

VAR_SAMP operates differently depending on whether or not there is a GROUP BY clause in the
SELECT statement.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 108

IF the query … THEN VAR_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Variance of a Population

If your data represents the entire population for the variable, then use the VAR_POP function.

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same number, but
you should always use the more conservative VAR_SAMP calculation unless you are absolutely certain
that your data constitutes the entire population for the variable.

Related Information
• For more information on ordered analytical functions, see Ordered Analytical/Window

Aggregate Functions.
• For the VAR_SAMP window function that performs a group, cumulative, or moving computation, see

Window Aggregate Functions.
• If your data represents the entire population for the variable, then use the VAR_POP function. For

information, see VAR_POP.
• For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language

Syntax and Examples, B035-1144.
• For details about the DisableUDTImplCastForSysFuncOp field, see Teradata Vantage™ - Database

Utilities, B035-1102.
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and

Literals, B035-1143.

3: Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 109

The following sections describe the SQL arithmetic, trigonometric, and hyperbolic operators and functions.

Teradata SQL supports the following arithmetic operators.

Operator Function

** Exponentiate
This is a Teradata extension to the ANSI SQL:2011 standard.

* Multiply

/ Divide

MOD Modulo (remainder).
MOD calculates the remainder in a division operation.
For example, 60 MOD 7 = 4: 60 divided by 7 equals 8, with a remainder of 4. The result takes the
sign of the dividend, thus:
 -17 MOD 4 = -1
 -17 MOD -4 = -1
 17 MOD -4 = 1
 17 MOD 4 = 1
This is a Teradata extension to the ANSI SQL:2011 standard.

+ Add

- Subtract

+ Unary plus (positive value)

- Unary minus (negative value)

ANSI Compliance
Except for MOD and **, the arithmetic operators are ANSI SQL:2011 compliant.

Arithmetic Operators and LOBs
Arithmetic operators do not support BLOB or CLOB types.

Arithmetic Operators and UDTs
By default, Vantage performs implicit type conversion on a UDT argument that has an implicit cast that casts
between the UDT and a predefined numeric data type such as FLOAT or INTEGER.

Arithmetic, Trigonometric, Hyperbolic
Operators/Functions

4

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 110

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including arithmetic operators,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Related Information
• For details on the arithmetic operators permitted for DateTime and Interval data types, see Teradata

Vantage™ - Data Types and Literals, B035-1143 .
• For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language

Syntax and Examples, B035-1144.
• For details about the DisableUDTImplCastForSysFuncOp field of the DBS Control Record, see

Teradata Vantage™ - Database Utilities, B035-1102.
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ - Data Types and

Literals, B035-1143.

Binary Arithmetic Result Data Types
The data type of the result of an arithmetic expression depends on the data types of the two operands.
Operands are converted to the result type before the operation is performed.

For example, before an INTEGER value is added to a FLOAT value, the INTEGER value is converted to
FLOAT, the data type of the result.

Result Data Type
The following table shows the result data type for binary arithmetic operators.

The result data type for binary arithmetic operations involving UDT operands is the same as the result data
type for the predefined data types to which the UDTs are implicitly cast.

For details on the result data type for binary arithmetic operations involving DateTime and Interval types,
see Arithmetic, Trigonometric, Hyperbolic Operators/Functions.

When the
operand on the
left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

any data type any data type ** FLOAT

DATE BYTEINT
SMALLINT
INTEGER
BIGINT

+ - DATE
If the value of a date result is not in the range
of values allowed for the DATE type, an error
is reported. The range is any date on the
Gregorian calendar from year 1 to year 9999.

BYTEINT * / MOD INTEGER

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 111

When the
operand on the
left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

SMALLINT
INTEGER

These operations on DATE do not report an
error, but results are generally not meaningful.

BIGINT * / MOD BIGINT
These operations on DATE do not report an
error, but results are generally not meaningful.

DECIMAL(k,j) + - DATE
These operations on DATE do not report an
error, but results are generally not meaningful.
Fractions of decimal values are truncated
when added to or subtracted from date values.
If the value of a date result is not in the range
of values allowed for the DATE type, an error
is reported. The range is any date on the
Gregorian calendar from year 1 to year 9999.

* / MOD DECIMAL(p,j)
These operations on DATE do not report an
error, but results are generally not meaningful.
For details about the value of p, see DECIMAL
Result Data Type.

NUMBER(k,j)
NUMBER(k)
NUMBER(*,j)
NUMBER

+ - DATE
These operations on DATE do not report an
error, but results are generally not meaningful.
Fractions of decimal values are truncated
when added to or subtracted from date values.
If the value of a date result is not in the range
of values allowed for the DATE type, an error
is reported. The range is any date on the
Gregorian calendar from year 1 to year 9999.

* / MOD NUMBER

FLOAT * / + - MOD FLOAT

DATE - INTEGER
The difference between two dates is the
number of days between those dates. Note
that this is not the numeric difference between
the values.

+ * / MOD INTEGER
These operations on DATE do not report an
error, but results are generally not meaningful.

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT
These operations on DATE do not report an
error, but results are generally not meaningful.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 112

When the
operand on the
left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

BYTEINT
SMALLINT
INTEGER

BYTEINT
SMALLINT
INTEGER

* / + - MOD INTEGER

BIGINT * / + - MOD BIGINT

DECIMAL(k,j) * / + - MOD DECIMAL(p,j)
For details about the value of p, see DECIMAL
Result Data Type.

NUMBER(k,j)
NUMBER(k)
NUMBER(*,j)
NUMBER

* / + - MOD NUMBER

FLOAT * / + - MOD FLOAT

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT
If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

DATE + DATE
If the value of a date result is not in the range
of values allowed for the DATE type, an error
is reported. The range is any date on the
Gregorian calendar from year 1 to year 9999.

- error

* / MOD INTEGER
These operations on DATE do not report an
error, but results are generally not meaningful.

BIGINT BYTEINT
SMALLINT
INTEGER
BIGINT

* / + - MOD BIGINT

DECIMAL(k,j) * / + - MOD DECIMAL(p,j)
For details about the value of p, see DECIMAL
Result Data Type.

NUMBER(k,j) * / + - MOD NUMBER

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 113

When the
operand on the
left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

NUMBER(k)
NUMBER(*,j)
NUMBER

FLOAT * / + - MOD FLOAT

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT
If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

DATE + DATE
If the value of a date result is not in the range
of values allowed for the DATE type, an error
is reported. The range is any date on the
Gregorian calendar from year 1 to year 9999.

- error

* / MOD BIGINT
These operations on DATE do not report an
error, but results are generally not meaningful.

DECIMAL(m,n) BYTEINT
SMALLINT
INTEGER
BIGINT

+ - * DECIMAL(p,n)
For details about the value of p, see DECIMAL
Result Data Type.

/ MOD DECIMAL(m,n)

DECIMAL(k, j) + - DECIMAL(min(p,(1+max(n,j)+max(m -n,k-j))),
max(n,j))
For details about the value of p, see DECIMAL
Result Data Type.

* DECIMAL(min(p,m +k),(n+j))
For details about the value of p, see DECIMAL
Result Data Type.

/ MOD DECIMAL(p,max(n,j))
For details about the value of p, see DECIMAL
Result Data Type.

NUMBER(k,j)
NUMBER(k)
NUMBER(*,j)
NUMBER

* / + - MOD NUMBER

FLOAT * / + - MOD FLOAT

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 114

When the
operand on the
left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT
If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

DATE + DATE
Fractions of decimal values are truncated
when added to or subtracted from date values.
If the value of a date result is not in the range
of values allowed for the DATE type, an error
is reported. The range is any date on the
Gregorian calendar from year 1 to year 9999.

- error

* DECIMAL(p,n)
These operations on DATE do not report an
error, but results are generally not meaningful.
For details about the value of p, see DECIMAL
Result Data Type.

/ MOD DECIMAL(m,n)
These operations on DATE do not report an
error, but results are generally not meaningful.

NUMBER(m,n)
NUMBER(m)
NUMBER(*,n)
NUMBER

BYTEINT
SMALLINT
INTEGER
BIGINT

* / + - MOD NUMBER

DECIMAL(k,j)

FLOAT * / + - MOD FLOAT

CHAR(n)
VARCHAR(n)

FLOAT
If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

DATE + DATE
Fractions of decimal values are truncated
when added to or subtracted from date values.
If the value of a date result is not in the range
of values allowed for the DATE type, an error
is reported. The range is any date on the
Gregorian calendar from year 1 to year 9999.

- error

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 115

When the
operand on the
left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

* NUMBER
These operations on DATE do not report an
error, but results are generally not meaningful.

/ MOD NUMBER
These operations on DATE do not report an
error, but results are generally not meaningful.

NUMBER(k,j)
NUMBER(k)
NUMBER(*,j)
NUMBER

* / + - MOD NUMBER

FLOAT BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL(k,j)
NUMBER(k,j)
NUMBER(k)
NUMBER(*,j)
NUMBER
FLOAT

* / + - MOD FLOAT

DATE * / + - MOD FLOAT
These operations on DATE do not report an
error, but results are generally not meaningful.

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT
If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

CHAR(n)
VARCHAR(n)

BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL(k,j)
NUMBER(k,j)
NUMBER(k)
NUMBER(*,j)
NUMBER
FLOAT
CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT
If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 116

When the
operand on the
left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

DATE * / + - MOD FLOAT
These operations on DATE do not report an
error, but results are generally not meaningful.
If an argument of an arithmetic operator is a
character string, the first action is to attempt to
convert the character string to a floating value.
If this conversion fails, an error is reported.

DECIMAL Result Data Type
The result data type for binary arithmetic operations involving DECIMAL operands is as follows:

When the operand
on the left is …

And the operand on
the right is …

And the
operator is … Then the result data type is …

DATE DECIMAL(k,j) * / MOD DECIMAL(p,j)
These operations on DATE do not
report an error, but results are
generally not meaningful.

BYTEINT
SMALLINT
INTEGER
BIGINT

* / + - MOD DECIMAL(p,j)

DECIMAL(m,n) BYTEINT
SMALLINT
INTEGER
BIGINT

+ - * DECIMAL(p,n)

DATE * DECIMAL(p,n)
These operations on DATE do not
report an error, but results are
generally not meaningful.

In these cases the value of p, the number of digits in the decimal result, depends on:

• The value specified for MaxDecimal in DBSControl.

For more information on DBSControl and MaxDecimal, see “DBS Control utility” in Teradata
Vantage™ - Database Utilities, B035-1102.

• The number of digits in the decimal operand, where the number of digits is k for a DECIMAL(k,j)
operand on the right side of the operator or m for a DECIMAL(m,n) operand on the left side of
the operator.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 117

IF MaxDecimal is … AND the number of digits in the decimal operand is … THEN p is …

0 or 15 ≤ 15 15

> 15 and ≤18 18

> 18 38

18 ≤ 18 18

> 18 38

38 any value 38

When the operand
on the left is …

And the operand on
the right is …

And the
operator is … Then the result data type is …

DECIMAL(m,n) DECIMAL(k,j) + - DECIMAL(min(p, (1+max(n,j)+max(m
-n,k -j))),max(n,j))

* DECIMAL(min(p,m +k),(n +j))

/ MOD DECIMAL(p,max(n,j))

In these cases, the value of p in the definition of the decimal result data type depends on the
value specified for MaxDecimal in DBSControl and the number of digits in the DECIMAL(m,n) and
DECIMAL(k,j) operands.

IF MaxDecimal is … AND … THEN p is …

0 or 15 m and k ≤ 15 15

(m or k > 15) and (m and k ≤18) 18

m or k > 18 38

18 m and k ≤ 18 18

m or k > 18 38

38 m and k = any value 38

Numeric Results and Rounding
When computing an expression, numeric results that are not exact are rounded, not truncated.

For more information on rounding rules and how the RoundHalfwayMagUp and RoundNumberAsDec
fields in DBSControl affect rounding, see “Numeric Data Types” in Teradata Vantage™ - Data Types and
Literals, B035-1143 and “DBS Control utility” in Teradata Vantage™ - Database Utilities, B035-1102.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 118

Error Conditions
An error is reported when any of the following events occurs:

• Division by zero is attempted.
• The numeric range is exceeded.
• The exponentiation operator is used with a negative left argument and a right argument that is not a

whole number.

Integer Division and Truncation
Integer division yields whole results, truncated toward zero.

Structure of Arithmetic Expressions

Order of Evaluation
The following table lists the precedence of operations in arithmetic expressions.

Precedence Operation

Highest + operand (unary plus)
- operand (unary minus)

Intermediate operand ** operand (exponentiation)

operand * operand (multiplication)
operand / operand (division)
operand MOD operand (modulo operator)

operand + operand (addition)
operand - operand (subtraction)

In general, the order of evaluation is:

1. Operations enclosed in parentheses are performed first.
2. When no parentheses are present, operations are performed in order of precedence.
3. Operators of the same precedence are evaluated from left to right.

The Optimizer may reorder evaluations based on associative and commutative properties of the
operations involved.

Format
The format of an arithmetic expression is the same as the default format of the result data type.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 119

You can use the FORMAT phrase to change the default format of the result data type. The FORMAT phrase
is relevant only in field mode, such as BTEQ applications, and in conversion to a character data type.

Example: Determining Employee Salary Increases
You want to raise the salary for each employee in department 600 by $200 for each year spent with the
company (up to a maximum of $2500 per month).

To determine who is eligible, and the new salary, enter the following statement:

 SELECT Name, (Salary+(YrsExp*200))/12 AS Projection
 FROM Employee
 WHERE Deptno = 600
 AND Projection < 2500 ;

This statement returns the following response:

 Name Projection
 -------- ----------
 Newman P 2483.33

The statement uses parentheses to perform the operation YrsExp * 200 first. Its result is then added to
Salary and the total is divided by 12.

The parentheses enclosing YrsExp * 200 are not strictly necessary, but the parentheses enclosing
Salary + (YrsExp * 200) are necessary, because, if no parentheses were used in this expression,
the operation YrsExp * 200 would be divided by 12 and the result added to Salary, producing an
erroneous value.

The phrase AS Projection in this example associates the arithmetic expression (Salary + (YrsExp *
200)/12) with Projection. Using the AS phrase lets you use the name Projection in the WHERE clause to
refer to the entire expression.

The result is formatted without a comma separating thousands from hundreds.

Arithmetic Functions
The next sections describe the following arithmetic functions:

• ABS
• CASE_N
• CEILING
• EXP
• FLOOR
• LN
• LOG

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 120

• MOD
• NULLIFZERO
• RANDOM
• RANGE_N
• SQRT
• WIDTH_BUCKET
• ZEROIFNULL

ABS
Computes the absolute value of an argument.

ABS Function Syntax
ABS (arg)

Syntax Elements

arg
A numeric column on which ABS() is requested. You must specify the input as a
dynamic UDT.

Argument Types and Rules

If the argument is not numeric, it is converted to a numeric value, based on implicit type conversion rules. If
the argument cannot be converted, an error is reported. For more information on implicit type conversion,
see Teradata Vantage™ - Data Types and Literals, B035-1143.

If arg is a character string, it is converted to a numeric value of the FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DateTime
◦ Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL
Data Definition Language Syntax and Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including ABS, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 121

DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see
Teradata Vantage™ - Database Utilities, B035-1102.

ABS cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
Here are the default attributes for the result of ABS.

• If the operand is numeric, the format is the default format for the resulting data type.
• If the operand is character, the format is the default format for FLOAT.
• If the operand is a UDT, the format is the default format for the predefined type to which the UDT is

implicitly cast.

Note:
The NULL keyword has a data type of INTEGER.

For information on data type formats, see Teradata Vantage™ - Data Types and Literals, B035-1143.

Examples: Using ABS Arithmetic Function Expressions
Representative ABS arithmetic function expressions and the results are as follows.

Expression Result

ABS(-12) 12

ABS('23') 2.30000000000000E+001

CASE_N
Evaluates a list of conditions and returns the position of the first condition that evaluates to TRUE, provided
that no prior condition in the list evaluates to UNKNOWN.

CASE_N Function Syntax
CASE_N (conditional_expression [,...] [, case_spec])

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 122

Syntax Elements

conditional_expression
An expression or comma-separated list of condition expressions to evaluate.

A conditional expression must evaluate to TRUE, FALSE, or UNKNOWN.

CASE_N evaluates conditional_expressions from left to right until a condition evaluates to
TRUE or UNKNOWN, or until every condition evaluates to FALSE. The position of the first
conditional_expression is one and the positions of subsequent conditions increment by one
up to n, where n is the total number of conditional expressions.

IF … THEN …

a conditional_expression
evaluates to TRUE, and
all prior conditions evaluate
to FALSE

CASE_N returns the position of the
conditional_expression.

a conditional_expression
evaluates to UNKNOWN, and
all prior conditions evaluate
to FALSE

If NO CASE OR UNKNOWN is specified, CASE_N returns
n + 1.
If UNKNOWN is specified and NO CASE is not specified,
CASE_N returns n + 1.
If NO CASE and UNKNOWN are specified, CASE_N
returns n + 2.
If neither UNKNOWN nor NO CASE OR UNKNOWN is
specified, CASE_N returns NULL.

every conditional_expression
evaluates to FALSE

If NO CASE or NO CASE OR UNKNOWN is specified,
CASE_N returns n + 1.
If neither NO CASE nor NO CASE OR UNKNOWN is
specified, CASE_N returns NULL

case_spec

{ NO CASE [{ OR | , } UNKNOWN] | UNKNOWN }

NO CASE
Evaluates to TRUE if every conditional_expression in the list evaluates to FALSE.

{ OR | , } UNKNOWN
The NO CASE OR UNKNOWN condition evaluates to TRUE if every conditional_expression
in the list evaluates to FALSE, or if a conditional_expression evaluates to UNKNOWN and all
prior conditions in the list evaluate to FALSE.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 123

UNKNOWN
Evaluates to TRUE if a conditional_expression evaluates to UNKNOWN and all prior
conditions in the list evaluate to FALSE.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for CASE_N are as follows.

Data Type Format Title

INTEGER Default format for INTEGER <CASE_N function>

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

CASE_N Usage Notes

Using CASE_N to Define Partitioned Primary Indexes

The primary index for a table or join index controls the distribution and retrieval of the data for that table
or join index across the AMPs. If the primary index is a partitioned primary index (PPI), the data can be
assigned to user-defined partitions on the AMPs.

To define a primary index for a table or join index, you specify the PRIMARY INDEX phrase in the CREATE
TABLE or CREATE JOIN INDEX data definition statement. To define a partitioned primary index, you
include the PARTITION BY phrase when you define the primary index.

The PARTITION BY phrase requires one or more partitioning expressions that determine the partition
assignment of a row. You can use CASE_N to construct a partitioning expression such that a row with any
value or NULL for the partitioning columns is assigned to some partition.

You can also use RANGE_N to construct a partitioning expression. For more information,
see “RANGE_N”.

If the PARTITION BY phrase specifies a list of partitioning expressions, the PPI is a multilevel PPI, where
each partition for a level is subpartitioned according to the next partitioning expression in the list. Unlike
the partitioning expression for a single-level PPI, which can consist of any valid SQL expression (with
some exceptions), each expression in the list of partitioning expressions for a multilevel PPI must be a
CASE_N or RANGE_N function.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 124

You cannot ADD or DROP partitioning expressions that are based on a CASE_N function. To modify a
partitioning expression that is based on a CASE_N function, you must use the ALTER TABLE statement
with the MODIFY PRIMARY INDEX option to redefine the entire PARTITION BY clause, and the table
must be empty.

For more information, see “ALTER TABLE” in Teradata Vantage™ - SQL Data Definition Language
Syntax and Examples, B035-1144.

Using CASE_N with CURRENT_DATE or CURRENT_TIMESTAMP in a PPI

You can define a partitioning expression that uses CASE_N with the built-in functions CURRENT_DATE
or CURRENT_TIMESTAMP. Subsequently, you can use the ALTER TABLE TO CURRENT statement to
re-partition the table data using a newly resolved current date or timestamp.

For more information, see “Rules and Guidelines for Optimizing the Reconciliation of CASE_N PPI
Expressions Based On Updatable Current Date and Updatable Current Timestamp” in Teradata
Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.

Using CASE_N with Character Comparison

You can specify conditional expressions in the CASE_N function that compare CHAR, VARCHAR,
GRAPHIC or VARGRAPHIC data types. The following usage rules apply:

• A CASE_N partitioning expression can use character or graphic comparison except when the
comparison involves KANJI1 or KANJISJIS columns or literal expressions.

• A CASE_N partitioning expression can use the UPPERCASE qualifier and the following
functions: LOWER, UPPER, TRANSLATE, TRIM, VARGRAPHIC, INDEX, MINDEX, POSITION,
TRANSLATE_CHK, CHAR2HEXINT.

• Any string literal referenced within a CASE_N expression must be less than 31,000 bytes.
• The order of character data used in evaluating the conditional expressions in a CASE_N function is

determined by the session collation and case specificity of the expression.

◦ If the expression is not part of a PPI, the current session collation is used.
◦ If the expression is part of a PPI, evaluation is done using the session collation that was in effect

when the table or join index was created, or when the partitioning was modified using the ALTER
TABLE statement.

◦ The case specificity of column references and literals is determined based on the session
default, or an explicit CAST, or a specification in the CREATE TABLE statement when the
table was created. The column can be explicitly assigned to be CASESPECIFIC or NOT
CASESPECIFIC, and literal expressions can be CAST with these qualifiers.

If not explicitly specified, the default of NOT CASESPECIFIC is used if Teradata session
transaction semantics are in effect. If ANSI session transaction semantics are in effect, the
default is CASESPECIFIC.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 125

For example, if a conditional expression is a combination of NOT CASESPECIFIC expressions
and a literal with no case specific qualifier (CASESPECIFIC, NOT CASESPECIFIC), the case
specificity will be case specific in ANSI mode sessions and not case specific in Teradata
mode sessions.

All character string comparisons involving graphic data are case specific.

• In character comparison operations (=, <, >, <=, >=, <>, BETWEEN, LIKE), if a string literal is shorter
than the column data to which it is compared, the string literal is treated as if it is padded with a pad
character specific to the character set (for example, a <space> character).

Note that the pad character might not collate to the lowest code point in the collation. For a literal of
length n, if the column value being compared precisely matches the literal for the first n characters,
but contains a character that collates less than the pad character at position n+1, then the column
value will collate less than the string literal.

Restrictions

If CASE_N is used in a PARTITION BY phrase, it:

• Can specify a maximum of 65533 conditions (unless it is part of a larger partitioning expression)
• Must not contain the system-derived columns PARTITION or PARTITION#L1

through PARTITION#L15
• Must not use Period data types, but can use the following:

◦ BEGIN bound function for which input is a Period data type column and not a Period expression.
◦ END bound function for which input is a Period data type column and not a Period expression.
◦ IS [NOT] UNTIL_CHANGED.
◦ IS [NOT] UNTIL_CLOSED.

If CASE_N is used in a partitioning expression for a multilevel PPI, it must define at least two partitions.

Note that partition elimination for queries is often limited to literal or using value equality conditions on the
partitioning columns, and the Optimizer may not eliminate some partitions when it possibly could. Also,
evaluating a complex CASE_N may be costly in terms of CPU cycles and the overhead of CASE_N may
cause the table header to be excessively large.

Examples

Example: Defining the Partition to Which a Row is Assigned

Here is an example that uses CASE_N and the value of the totalorders column to define the partition to
which a row is assigned:

 CREATE TABLE orders
 (storeid INTEGER NOT NULL

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 126

 ,productid INTEGER NOT NULL
 ,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
 ,totalorders INTEGER)
 PRIMARY INDEX (storeid, productid)
 PARTITION BY CASE_N(totalorders < 100, totalorders < 1000,
 NO CASE, UNKNOWN);

In the example, CASE_N specifies four partitions to which a row can be assigned, based on the value of
the totalorders column.

Partition
Number Condition

1 The value of the totalorders column is less than 100.

2 The value of the totalorders column is less than 1000, but greater than or equal to 100.

3 The value of the totalorders column is greater than or equal to 1000.

4 The totalorders column is NULL.

Example: Using CASE_N in a List of Partitioning Expressions that Define
a Multilevel PPI

Here is an example that modifies “Example: Defining the Partition to Which a Row is Assigned” to use
CASE_N in a list of partitioning expressions that define a multilevel PPI:

 CREATE TABLE orders
 (storeid INTEGER NOT NULL
 ,productid INTEGER NOT NULL
 ,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
 ,totalorders INTEGER NOT NULL)
 PRIMARY INDEX (storeid, productid)
 PARTITION BY (CASE_N(totalorders < 100, totalorders < 1000,
 NO CASE)
 ,CASE_N(orderdate <= '2005-12-31', NO CASE));

The example defines six partitions to which a row can be assigned. The first CASE_N expression defines
three partitions based on the value of the totalorders column. The second CASE_N expression subdivides
each of the three partitions into two partitions based on the value of the orderdate column.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 127

Level 1
Partition
Number

Level 2
Partition
Number Condition

1 1 The value of the totalorders column is less than 100 and the value of the
orderdate column is less than or equal to '2005-12-31'.

2 The value of the totalorders column is less than 100 and the value of the
orderdate column is greater than '2005-12-31'.

2 1 The value of the totalorders column is less than 1000 but greater than or
equal to 100, and the value of the orderdate column is less than or equal
to '2005-12-31'.

2 The value of the totalorders column is less than 1000 but greater than
or equal to 100, and the value of the orderdate column is greater
than '2005-12-31'.

3 1 The value of the totalorders column is greater than or equal to 1000 and
the value of the orderdate column is less than or equal to '2005-12-31'.

2 The value of the totalorders column is greater than or equal to 1000 and
the value of the orderdate column is greater than '2005-12-31'.

Example: Showing the Count of Rows in Each Partition

The following example shows the count of rows in each partition if the orders table were to be partitioned
using the CASE_N expression.

 CREATE TABLE orders
 (orderkey INTEGER NOT NULL
 ,custkey INTEGER
 ,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL)
 PRIMARY INDEX (orderkey);

 INSERT INTO orders (1, 1, '1996-01-01');
 INSERT INTO orders (2, 1, '1997-04-01');

The CASE_N expression in the following SELECT statement specifies three conditional expressions and
the NO CASE condition.

 SELECT COUNT(*),
 CASE_N(orderdate >= '1996-01-01' AND
 orderdate <= '1996-12-31' AND
 custkey <> 999999,
 orderdate >= '1997-01-01' AND
 orderdate <= '1997-12-31' AND

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 128

 custkey <> 999999,
 orderdate >= '1998-01-01' AND
 orderdate <= '1998-12-31' AND
 custkey <> 999999,
 NO CASE
) AS Partition_Number
 FROM orders
 GROUP BY Partition_Number
 ORDER BY Partition_Number;

The results look like this:

 Count(*) Partition_Number
 ----------- ----------------
 1 1
 1 2

Example: Creating a Table Partitioned with Orders Data

The following example creates a table partitioned with orders data for each quarter in 2008.

 CREATE TABLE Orders
 (O_orderkey INTEGER NOT NULL,
 O_custkey INTEGER,
 O_orderperiod PERIOD (DATE) NOT NULL,
 O_orderpriority CHAR (21),
 O_comment VARCHAR (79))
 PRIMARY INDEX (O_orderkey)
 PARTITION BY
 CASE_N (END (O_orderperiod) <= date'2008-03-31', /* First Quarter */
 END (O_orderperiod) <= date'2008-06-30', /* Second Quarter */
 END (O_orderperiod) <= date'2008-09-30', /* Third Quarter */
 END (O_orderperiod) <= date'2008-12-31' /* Fourth Quarter */
);

The following SELECT statement scans two partitions and displays the details of the orders placed for the
first two quarters.

SELECT *
FROM Orders
WHERE END (O_orderperiod) > date'2008-06-30';

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 129

Example: Verifying the Ending Bound of a Period Expression

The following example uses IS [NOT] UNTIL_CHANGED in the PPI partitioning expression to check
whether or not the ending bound of a Period expression is UNTIL_CHANGED.

 CREATE TABLE TESTUC
 (A INTEGER,
 B PERIOD (DATE),
 C INTEGER)
 PRIMARY INDEX (A)
 PARTITION BY
 CASE_N (END (b) IS UNTIL_CHANGED,
 END (b) IS NOT UNTIL_CHANGED, UNKNOWN);

Example: Verifying the Ending Bound of a Transaction Time Column

The following example uses IS [NOT] UNTIL_CLOSED in the PPI partitioning expression to check
whether or not the ending bound of a transaction time column is UNTIL_CLOSED.

 CREATE TABLE TESTUC
 (A INTEGER,
 B PERIOD (TIMESTAMP (6) WITH TIME ZONE) NOT NULL AS TRANSACTIONTIME,
 C INTEGER)
 PRIMARY INDEX (A)
 PARTITION BY
 CASE_N (END (b) IS UNTIL_CHANGED,
 END (b) IS NOT UNTIL_CHANGED, UNKNOWN);

Example: Viewing Results for FALSE Conditions

In this example, the session collation is ASCII.

CASE_N (a<'b', a>='ba' and a<'dogg' and b<>'cow', c<>'boy', NO CASE OR UNKNOWN)

The following table shows the result value returned by the above CASE_N function given the specified
values for a, b, and c. x and yrepresent any value or NULL. The value 4 is returned when all the conditions
are FALSE, or a condition is UNKNOWN with all preceding conditions evaluating to FALSE.

a b c Result

'a' x y 1

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 130

a b c Result

'boy' 'girl' y 2

'boy' NULL y 4

'boy' 'cow' 'man' 3

'boy' 'cow' 'boy' 4

'dog' 'ball' y 2

'dogg' x NULL 4

'dogg' x 'man' 3

'egg' x 'boy' 4

'egg' x NULL 4

'egg' x 'girl' 3

Example: Viewing Results for UNKNOWN Conditions

In this example, the session collation is ASCII.

CASE_N (a<'b', a>='ba' and a<'dogg' and b<>'cow', c<>'boy', UNKNOWN)

The following table shows the result value returned by the above CASE_N function given the specified
values for a, b, and c. The x and yrepresent any value or NULL. The value 4 is returned if a condition
is UNKNOWN with all preceding conditions evaluating to FALSE. NULL is returned if all the conditions
are false.

a b c Result

'a' x y 1

'boy' 'girl' y 2

'boy' NULL y 4

'boy' 'cow' 'man' 3

'boy' 'cow' 'boy' NULL

'dog' 'ball' y 2

'dogg' x NULL 4

'dogg' x 'man' 3

'egg' NULL 'boy' NULL

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 131

a b c Result

'egg' x 'boy' NULL

'egg' x NULL 4

'egg' x 'girl' 3

Example: Defining Partitions Based on the Value of a

In this example, the session collation is ASCII when submitting the CREATE TABLE statement, and the
pad character is <space>. The example defines two partitions (numbered 1 and 2) based on the value of a:

• The value of a is between 'a ' (a followed by 9 spaces) and 'b '.
• The value of a is between 'b ' and 'c '.

 CREATE SET TABLE t2
 (a VARCHAR(10) CHARACTER SET UNICODE NOT CASESPECIFIC,
 b INTEGER)
 PRIMARY INDEX (a)
 PARTITION BY CASE_N(a BETWEEN 'a' AND 'b', a BETWEEN 'b' AND 'c');

The following INSERT statement inserts a character string consisting of a single <tab> character between
the 'b' and '1'.

 INSERT t2 ('b 1', 1);

The following INSERT statement inserts a character string consisting of a single <space> character
between the 'b' and '1'.

 INSERT t2 ('b 1', 2);

The following SELECT statement shows the result of the INSERT statements. Since the <tab> character
has a lower code point than the <space> character, the first string inserted maps to partition 1.

 SELECT PARTITION, a, b FROM t2 ORDER BY 1;
 *** Query completed. 2 rows found. 3 columns returned.
 *** Total elapsed time was 1 second.
 PARTITION a b
 ----------- ------ -----
 1 b 1 1 (string contains single <tab> character)
 2 b 1 2 (string contains single <space> character)

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 132

Related Information
• For more information about PPI properties and performance considerations and PPI considerations

and capacity planning, see Teradata Vantage™ - Database Design, B035-1094.
• For more information about the specification of a PPI for a table, see CREATE TABLE in Teradata

Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.
• For more information about the specification of a PPI for a join index, see CREATE JOIN INDEX in

Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.
• For more information about the modification of the partitioning of the primary index for a

table, see ALTER TABLE in Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144.

• For more information about the reconciliation of the partitioning based on newly resolved
CURRENT_DATE and CURRENT_TIMESTAMP values, see ALTER TABLE TO CURRENT
inTeradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.

CEILING
Returns the smallest integer value that is not less than the input argument.

CEILING is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

CEILING Function Syntax
[TD_SYSFNLIB.] { CEILING | CEIL } (arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

arg
Expression with one of the following data types:

• BYTEINT
• SMALLINT
• INTEGER
• BIGINT
• FLOAT/REAL/DOUBLE PRECISION
• DECIMAL/NUMERIC
• NUMBER

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 133

IF arg is... THEN CEILING returns...

a non-exact number the next integer value that is greater than arg.

an exact number the input argument arg.

NULL NULL.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result type is the same data type as that of the numeric input argument.

If the input argument is defined as a DECIMAL/NUMERIC with a precision less than 38, the return
DECIMAL/NUMERIC value will have its precision increased by 1. For example, if DECIMAL(6,4) is passed
in, it will be increased and returned as a DECIMAL(7,4). If the precision is 38, the scale will be reduced by
1 unless the scale is 0. For example, a DECIMAL(38,38) results in a return data type of DECIMAL(38,37).

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Examples
Example: Querying SELECT CEILING(157E-1);

The following query returns the FLOAT value 16E0, since 16 is the smallest integer that is not less than the
FLOAT value 15.7E0.

SELECT CEILING(157E-1);

Example: Querying SELECT CEILING(15.7);

The following query returns a DECIMAL value of 16.0 since 16 is the smallest integer that is not less than
the DECIMAL literal 15.7.

SELECT CEILING(15.7);

Example: Querying SELECT CEILING(-12.3);

The following query returns a DECIMAL value of -12.0 since -12 is the smallest integer that is not less than
the DECIMAL literal -12.3.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 134

SELECT CEILING(-12.3);

Example: Querying SELECT CEIL(CAST(9.99 AS DECIMAL(3,2)));

The following query returns the value 10.00 with a data type of DECIMAL(4,2), since 10 is the smallest
integer that is not less than 9.99. Note that the precision of the return value is increased by 1.

SELECT CEIL(CAST(9.99 AS DECIMAL(3,2)));

DEGREES/RADIANS
DEGREES takes a value specified in radians and converts it to degrees.

RADIANS takes a value specified in degrees and converts it to radians.

DEGREES/RADIANS Function Syntax
{ DEGREES | RADIANS } (arg)

Syntax Elements

DEGREES
Converts value specified in radians to degrees.

RADIANS
Converts value specified in degrees to radians.

arg
A numeric argument.

• If the function is DEGREES, the arg is interpreted as an angle in radians.
• If the function is RADIANS, the arg is interpreted as an angle in degrees.

Result Format Types

IF arg is... THEN result format is default format for ...

numeric resulting data type

character FLOAT

UDT predefined type to which UDT is implicitly cast

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 135

Default Result Titles

Function Title

DEGREES(arg) (5.72957795130823E001*arg)

RADIANS(arg) (1.74532925199433E-002*arg)

Argument Types and Rules

If the argument is not numeric, it is converted to a numeric value, based on implicit type conversion rules.
If the argument cannot be converted, an error is reported. For more information, see Teradata Vantage™
- Data Types and Literals, B035-1143.

If arg is a character string, it is converted to a numeric value of the FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DateTime
◦ Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including DEGREES and
RADIANS, is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see
Teradata Vantage™ - Database Utilities, B035-1102.

Neither DEGREES nor RADIANS can be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Format
Here are the result type and format of DEGREES and RADIANS.

• If the operand is numeric, the format is the default format for the resulting data type.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 136

• If the operand is character, the format is the default format for FLOAT.
• If the operand is a UDT, the format is the default format for the predefined type to which the UDT is

implicitly cast.

Note:
The NULL keyword has a data type of INTEGER.

For information on data type formats, see Teradata Vantage™ - Data Types and Literals, B035-1143.

Usage Notes
DEGREES and RADIANS are useful when working with trigonometric functions such as SIN and COS,
which expect arguments to be specified in radians, and inverse trigonometric functions such as ASIN and
ACOS, which return values specified in radians.

Examples: Representative DEGREES/RADIANS
Function Expressions
Representative DEGREES and RADIANS function expressions and the results are as follows.

Expression Result

SIN(RADIANS(60.0)) 8.66025403784439E-001

DEGREES(1.0) 5.72957795130823E 001

EXP
Raises e (the base of natural logarithms) to the power of the argument, where e = 2.71828182845905.

EXP Function Syntax
EXP (arg)

Syntax Elements

arg
A numeric argument.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 137

Argument Types and Rules

If arg is not FLOAT, the value is converted to FLOAT, based on implicit type conversion rules. If the
argument cannot be converted, an error is reported. For more information, see Teradata Vantage™ - Data
Types and Literals, B035-1143.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

• Implicit type conversion of UDTs for system operators and functions, including EXP, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

EXP cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The following table lists the default attributes for the result of EXP(arg).

Data Type Format Title

FLOAT Default format for the resulting data type EXP(arg)

Usage Notes
Executing EXP may sometimes result in a numeric overflow error.

Examples: Representative EXP Arithmetic Function Expressions
Representative EXP arithmetic function expressions and the results are as follows.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 138

Expression Result

EXP(1) 2.71828182845905E+000

EXP(0) 1.00000000000000E+000

Related Information
• For information on default data type formats, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language

Syntax and Examples, B035-1144.
• For details on setting the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to

TRUE, see Teradata Vantage™ - Database Utilities, B035-1102.

FLOOR
Returns the largest integer equal to or less than the input argument.

FLOOR is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

FLOOR Function Syntax
[TD_SYSFNLIB.] FLOOR (arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

arg
A numeric argument.

IF arg is... THEN FLOOR returns...

a non-exact number the next largest integer that is equal to or less than arg.

an exact number the input argument arg.

NULL NULL.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 139

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

BYTEINT, SMALLINT, INTEGER, BIGINT, FLOAT/REAL/DOUBLE PRECISION, DECIMAL/NUMERIC,
or NUMBER

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result type is the same data type as that of the numeric input argument.

If the input argument is defined as a DECIMAL/NUMERIC with a precision less than 38, the return
DECIMAL/NUMERIC value will have its precision increased by 1. For example, if DECIMAL(6,4) were
passed in, it would be increased and returned as a DECIMAL(7,4). If the precision is 38, the scale will
be reduced by 1 unless the scale is 0. For example, a DECIMAL(38,38) results in a return data type
of DECIMAL(38,37).

The default title for FLOOR is FLOOR(arg).

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Examples: Using the FLOOR Function
Example: Querying SELECT FLOOR (136E-1);

The following query returns the FLOAT value 13E0, since 13 is the largest integer that is less than the
FLOAT value 13.6E0.

 SELECT FLOOR (136E-1);

Example: Querying SELECT FLOOR(-6.5);

The following query returns a DECIMAL value of -7.0 since -7 is the largest integer that is less than the
DECIMAL literal -6.5.

 SELECT FLOOR(-6.5);

Example: Querying SELECT FLOOR (CAST(-6.5 AS DECIMAL(2,1)));

The following query returns a value of -7.0 with a data type of DECIMAL(3,1), since -7 is the largest integer
less than DECIMAL -6.5. Note that the precision of the return value is increased by 1.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 140

 SELECT FLOOR (CAST(-6.5 AS DECIMAL(2,1)));

Related Information
• Embedded Services System Functions
• Teradata Vantage™ - Data Types and Literals, B035-1143

HYPERBOLIC
Performs the hyperbolic or inverse hyperbolic function of an argument.

HYPERBOLIC Function Syntax
{ COSH | SINH | TANH | ACOSH | ASINH | ATANH } (arg)

Syntax Elements

arg
Any real number.

Function Result

COSH(arg) Hyperbolic cosine of arg.

SINH(arg) Hyperbolic sine of arg.

TANH(arg) Hyperbolic tangent of arg.

ACOSH(arg) Inverse hyperbolic cosine of arg. The inverse hyperbolic cosine is the value
whose hyperbolic cosine is a number so that:
 acosh(cosh(arg)) = arg

ASINH(arg) Inverse hyperbolic sine of arg. The inverse hyperbolic sine is the value whose
hyperbolic sine is a number so that:
 asinh(sinh(arg)) = arg

ATANH(arg) Inverse hyperbolic tangent of arg. The inverse hyperbolic tangent is the value
whose hyperbolic tangent is a number so that:
 atanh(tanh(arg)) = arg

Argument Types and Rules

If arg is not FLOAT, it is converted to a FLOAT value, based on implicit type conversion rules. If the
argument cannot be converted, an error is reported. For more information, see Teradata Vantage™ - Data
Types and Literals, B035-1143.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 141

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including hyperbolic and inverse
hyperbolic functions, is a Teradata extension to the ANSI SQL standard. To disable this extension, set
the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see
Teradata Vantage™ - Database Utilities, B035-1102.

Hyperbolic and inverse hyperbolic functions cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

Examples: Representative Hyperbolic and Inverse Hyperbolic Function Expressions

The following are representative hyperbolic and inverse hyperbolic function expressions and results.

Expression Result

COSH(EXP(1)) 7.61012513866229E 000

SINH(1) 1.17520119364380E 000

TANH(0) 0.00000000000000E 000

ACOSH(3) 1.76274717403909E 000

ASINH(LOG(0.1)) -8.81373587019543E -001

ATANH(LN(0.5)) -8.53988047997524E -001

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
Here are the default attributes for the result of hyperbolic and inverse hyperbolic functions.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 142

Data Type Format Title

FLOAT Default format for FLOAT Hyperbolic Cos(arg)
Hyperbolic Sin(arg)
Hyperbolic Tan(arg)
Hyperbolic ArcCos(arg)
Hyperbolic ArcSin(arg)
Hyperbolic ArcTan(arg)

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Related Information
• Teradata Vantage™ - Database Utilities, B035-1102
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144
• Teradata Vantage™ - Data Types and Literals, B035-1143

LN
Computes the natural logarithm of the argument.

LN Function Syntax
LN (arg)

Syntax Elements

arg
A nonzero, positive numeric argument.

Argument Types and Rules

If arg is not FLOAT, it is converted to FLOAT based on implicit type conversion rules. If the argument
cannot be converted, an error is reported.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 143

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

• Implicit type conversion of UDTs for system operators and functions, including LN, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

LN cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for LN(arg) are as follows.

Data Type Format Title

FLOAT Default format for FLOAT LN(arg)

Examples: Representative LN Arithmetic Function Expressions
Representative LN arithmetic function expressions and the results are as follows.

Expression Result

LN(2.71828182845905) 1.00000000000000E+000

LN(0) Error

Related Information
• For more information on implicit type conversion, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language

Syntax and Examples, B035-1144.
• For details on setting the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to

TRUE, see Teradata Vantage™ - Database Utilities, B035-1102.

• For information on default data type formats, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ - Data Types and Literals, B035-1143.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 144

LOG
Computes the base 10 logarithm of an argument.

LOG Function Syntax
LOG (arg)

Syntax Elements

arg
A nonzero, positive numeric argument.

Argument Types and Rules

If arg is not FLOAT, the value is converted to FLOAT based on implicit type conversion rules. If the
argument cannot be converted, an error is reported. For more information, see Teradata Vantage™ - Data
Types and Literals, B035-1143.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including LOG, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. See Teradata
Vantage™ - Database Utilities, B035-1102.

LOG cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 145

Result Type and Attributes
The data type, format, and title for LOG(arg) are as follows.

Data Type Format Title

FLOAT Default format for FLOAT LOG(arg)

For information on default data type formats, see Teradata Vantage™ - Data Types and Literals.

Example: Representative LOG Arithmetic Function Expressions
Representative LOG arithmetic function expressions and the results are as follows.

Expression Result

LOG(50) 1.69897000433602E+000

LOG(100) 2.00000000000000E+000

Related Information
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144
• Teradata Vantage™ - Database Utilities, B035-1102
• Teradata Vantage™ - Data Types and Literals, B035-1143

MOD
Returns the remainder (modulus) of expr1 divided by expr2.

MOD Function Syntax
MOD (expr1, expr2)

Syntax Elements

expr1
Numeric argument that is the dividend.

expr2
A numeric argument that is the divisor.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 146

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

• BYTEINT
• SMALLINT
• INTEGER
• BIGINT
• FLOAT/REAL/DOUBLE PRECISION
• DECIMAL/NUMERIC
• NUMBER

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL-2011 standard.

Result Type and Attributes
The results take the sign of the dividend:

MOD (-17, 4) = -1
MOD (-17, -4) = -1
MOD (17, -4) = 1
MOD (17, 4) = 1

Example: Using MOD Arithmetic Function Expression
Example usage of the MOD function:

SELECT MOD(17,4);

SELECT MOD(-17,4);

Related Information
This function has the same functionality as arithmetic operator MOD. For more information, see Arithmetic,
Trigonometric, Hyperbolic Operators/Functions.

NULLIFZERO
Converts data from zero to null to avoid problems with division by zero.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 147

NULLIFZERO Function Syntax
NULLIFZERO (arg)

Syntax Elements

arg
A numeric argument, or an argument that can be converted to a numeric argument based on
implicit type conversion rules.

IF the value of arg is … THEN NULLIFZERO returns …

nonzero the value of the numeric argument

null or zero NULL

Argument Types and Rules

If arg is not numeric, the value is converted to a numeric value, based on implicit type conversion rules. If
the argument cannot be converted, an error is reported. For more information on implicit type conversion,
see Teradata Vantage™ - Data Types and Literals, B035-1143.

If arg is a character string, the value is converted to a numeric value of FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE
◦ Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including NULLIFZERO,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. See Teradata
Vantage™ - Database Utilities, B035-1102.

NULLIFZERO cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 148

• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

The ANSI form of this function is the CASE shorthand expression NULLIF. For more information, see
NULLIF Expression.

Result Type and Attributes
Here are the default attributes for the result of NULLIFZERO.

• If arg is numeric, the data type is the same types as arg and the format is the same format as arg.
• If arg is character, the data type is FLOAT and the default format is FLOAT.
• If arg is a UDT, the data type is the type of which the UDT is implicitly cast and the format is the format

of the data type to which the UDF is implicitly cast.

Note:
The NULL keyword has a data type of INTEGER.

For information on data type formats, see Teradata Vantage™ - Data Types and Literals, B035-1143.

Examples
Example: Returned Expression Errors for NULLIFZERO

The following expressions return an error if the value of x or expression is zero.

 6 / x
 6 / expression

On the other hand, the following expressions return null, which is not an error because there is no violation
of the divide by zero rule.

 6 / NULLIFZERO(x)
 6 / NULLIFZERO(expression)

Example: Returned Request Errors for NULLIFZERO

The following request returns a null in the second column because the HCap field value for Newman is
zero. In BTEQ (field mode) this appears as a ‘?’.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 149

 SELECT empno, NULLIFZERO(hcap)
 FROM employee
 WHERE empno = 10019 ;

Related Information
• COALESCE Expression
• NULLIF Expression
• ZEROIFNULL
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144
• Teradata Vantage™ - Database Utilities, B035-1102
• Teradata Vantage™ - Data Types and Literals, B035-1143

POWER
Returns base_value raised to the power of exponent_value.

POWER is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

POWER Function Syntax
[SYSLIB.] POWER (base_value, exponent_value)

Syntax Elements

SYSLIB.
Name of the database where the function is located.

base_value
A numeric argument.

If base_value is negative, exponent_value must be an integer.

If any input argument is NULL, the function returns NULL.

exponent_value
A numeric argument.

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 150

BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/DOUBLE PRECISION,
or NUMBER

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
If either of the input arguments is a FLOAT type, the result data type is FLOAT. Otherwise, the result data
type is NUMBER.

Examples: Querying Returns for the Power of exponent_value
Example 1: Querying POWER(2, 3)

The following query returns the result 8.0.

 SELECT POWER(2, 3);

Example 2: Querying POWER(2, -3)

The following query returns the result 0.125.

 SELECT POWER(2, -3);

Example 3: Querying POWER(2.2, 3)

The following query returns the result 10.648.

 SELECT POWER(2.2, 3);

Example 4: Querying POWER(-2.2, 3.1)

The following query returns an error because the base value is negative and the exponent value is not
an integer.

 SELECT POWER(-2.2, 3.1);

Related Information
• Embedded Services System Functions
• Teradata Vantage™ - Data Types and Literals, B035-1143

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 151

RANDOM
Returns a random integer number for each row of the results table.

Computation

RANDOM uses the linear congruential algorithm and 48-bit integer arithmetic.

The algorithm works by generating a sequence of 48-bit integer values, Xi.

RANDOM Function Syntax
RANDOM (lower_bound, upper_bound)

Syntax Elements

lower_bound
An integer literal to define the lower bound on the closed interval over which a random
number is to be selected.

The limits for lower_bound range from -2147483648 to 2147483647.

lower_bound must be less than or equal to upper_bound.

upper_bound
An integer literal to define the upper bound on the closed interval over which a random
number is to be selected.

The limits for upper_bound range from -2147483648 to 2147483647.

upper_bound must be greater than or equal to lower_bound.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for RANDOM(x,y) are as follows.

Data Type Format Title

INTEGER Default format for INTEGER Random(x,y)

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 152

RANDOM Usage Notes

Restrictions

The following rules and restrictions apply to the use of the RANDOM function.

• RANDOM can only be called in one of the following SELECT query clauses:

◦ WHERE
◦ GROUP BY
◦ ORDER BY
◦ HAVING/QUALIFY

• RANDOM cannot be referenced by position in a GROUP BY or ORDER BY clause.
• RANDOM cannot be nested inside aggregate or ordered analytical functions.
• RANDOM cannot be used in the expression list of an INSERT statement to create a primary index

or partitioning column value.

For example:

 INSERT t1 (RANDOM(1,10),...)

RANDOM causes an error to be reported in this case if the first column in the table is a primary index
or partitioning column.

Multiple RANDOM Calls Within a SELECT List

You can call RANDOM any number of times in the SELECT list, for example:

 SELECT RANDOM(1,100), RANDOM(1,100);

Each call defines a new random value.

Using RANDOM as a Condition on an Index

Because the RANDOM function is evaluated for each selected row, a condition on an index column that
includes the RANDOM function results in an all-AMP operation.

For example, consider the following table definition:

 CREATE TABLE t1
 (c1 INTEGER

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 153

 ,c2 VARCHAR(9))
 PRIMARY INDEX (c1);

The following SELECT statement results in an all-AMP operation:

 SELECT *
 FROM t1
 WHERE c1 = RANDOM(1,12);

Example: Returning Random Integer Numbers as Results
Suppose you have a table named sales_table with the following subset of columns.

Store_ID Product_ID Sales

1003 C 20000

1002 C 35000

1001 C 60000

1002 D 50000

1003 D 50000

1001 D 35000

1001 A 100000

1002 A 40000

1001 E 30000

The following SELECT statement returns a random number between 1 and 3, inclusive, for each row in the
results table.

 SELECT store_id, product_id, sales, RANDOM(1,3)
 FROM sales_table;

The results table might look like this.

Store_ID Product_ID Sales RANDOM(1,3)

1003 C 20000 1

1002 C 35000 2

1001 C 60000 2

1002 D 50000 3

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 154

Store_ID Product_ID Sales RANDOM(1,3)

1003 D 50000 2

1001 D 35000 3

1001 A 100000 2

1002 A 40000 1

1001 E 30000 2

Related Information
• Teradata Vantage™ - Data Types and Literals, B035-1143

RANGE_N
Evaluates an expression and maps the result into one of a list of specified ranges and returns the position
of the range in the list.

Range

A range is defined by a starting boundary and an optional ending boundary. If an ending boundary is not
specified, the range is defined by its starting boundary, inclusively, up to but not including the starting
boundary of the next range.

The list of ranges must specify ranges in increasing order, where the ending boundary of a range is less than
the starting boundary of the next range.

RANGE_N Function Syntax
RANGE_N (test_expression BETWEEN range_expression [, range_spec])

Syntax Elements

test_expression
An expression that results in a BYTEINT, SMALLINT, INTEGER, DATE, CHAR, VARCHAR,
GRAPHIC or VARGRAPHIC data type.

RANGE_N evaluates test_expression and determines whether the result is within a range in
the list of ranges. The position of the first range is one and the positions of subsequent ranges
increment by one up to n, where n is the total number of ranges.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 155

IF … THEN …

the result of test_
expression is within
a range

RANGE_N returns the position of the range.

the result of test_
expression is NULL

If RANGE_N does not specify one of the following:
• BETWEEN * AND *
• UNKNOWN
• NO RANGE OR UNKNOWN
RANGE_N returns NULL.
If RANGE_N specifies the range BETWEEN * AND *, RANGE_
N returns 1, regardless of whether NO RANGE, NO RANGE OR
UNKNOWN, or UNKNOWN is specified.
If RANGE_N does not specify the range BETWEEN * AND * and
• If NO RANGE OR UNKNOWN is specified, RANGE_N returns n

+ 1.
• If UNKNOWN is specified and NO RANGE is not specified,

RANGE_N returns n + 1.
• NO RANGE and UNKNOWN are specified, RANGE_N returns n

+ 2.

test_expression is
outside all the ranges
in the list

If NO RANGE or NO RANGE OR UNKNOWN is specified,
RANGE_N returns n + 1.
If neither NO RANGE nor NO RANGE OR UNKNOWN is specified,
RANGE_N returns NULL.

range_expression

{ range_expr_1 | range_expr_2 | range_list }

range_spec

{ NO RANGE [{ OR | , } UNKNOWN] | UNKNOWN }

range_expr_1

start_expression AND { end_expression | * } [EACH range_size]

range_expr_2

* AND { end_expression | * }

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 156

range_list

{ range_expr_3 | * [AND end_expression] }
 [, range_expr_3 [,...]] , range_expr_1

NO RANGE
A range to handle a test_expression that does not map into any of the specified ranges.

OR UNKNOWN
NO RANGE OR UNKNOWN handles a test_expression that does not map into any of the
specified ranges, or a test_expression that evaluates to NULL when RANGE_N does not
specify the range BETWEEN * AND *.

UNKNOWN
Handles a test_expression that evaluates to NULL when RANGE_N does not specify the
range BETWEEN * AND *.

start_expression
A literal or literal expression that defines the starting boundary of a range.

The data type of start_expression must be the same as the data type of test_expression, or
must be implicitly cast to the same data type as test_expression.

If an ending boundary is not specified, the range is defined by its starting boundary (and this
starting boundary is included in this range), up to but not including the starting boundary of
the next range.

Use an asterisk (*) for the starting boundary of the first range in the list to indicate the lowest
possible value (all values and NULL are greater than a starting boundary specified as an
asterisk). An asterisk is compatible with any data type.

end_expression
A literal or literal expression that defines the ending boundary of a range.

The data type of end_expression must be the same as the data type of test_expression, or
must be implicitly cast to the same data type as test_expression.

The last range in the list must specify an ending boundary. For all other ranges, if an ending
boundary is not specified, the range is defined by its starting boundary (and this starting
boundary is included in this range), up to but not including the starting boundary of the
next range.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 157

Use an asterisk (*) for the ending boundary of the last range in the list to indicate the
highest possible value (all values and NULL are less than an ending boundary specified as
an asterisk).

range_size
A literal or literal expression with a value greater than zero.

A range that specifies an EACH phrase is equivalent to a series of ranges, where
the first range in the series starts at start_expression, and subsequent ranges start at
start_expression + (range_size * n), where n starts at one and increments by one while
start_expression + (range_size * n) is less than or equal to end_expression, or less than the
next start_expression in the list of ranges.

For DATE types, the calculation of valid dates in subsequent ranges uses ADD_MONTHS
instead of the + arithmetic operator.

The data type of range_size must be compatible for adding to test_expression.

Note:
If the data type of test_expression is a character type (CHAR, VARCHAR, GRAPHIC
or VARGRAPHIC), you cannot specify the EACH phrase.

range_expr_3

start_expression [AND end_expression] [EACH range_size]

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for RANGE_N are as follows.

Data Type Format Title

INTEGER Default format of the INTEGER data type <RANGE_N function>

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 158

RANGE_N Usage Notes

Restrictions

If RANGE_N appears in a PARTITION BY phrase, it:

• Can specify a maximum of 65,533 ranges (unless it is part of a larger partitioning expression)
• Must not contain the system-derived columns PARTITION or PARTITION#L1

through PARTITION#L15
• Must not use Period data types, but can use the BEGIN or END bound functions on a Period data

type column when they result in a DATE data type.

If RANGE_N is used in a partitioning expression for a multilevel PPI, it must define at least two partitions.

If RANGE_N specifies CURRENT_DATE or CURRENT_TIMESTAMP in a partitioning expression, you
cannot use ALTER TABLE to add or drop ranges for the table. You must use the ALTER TABLE TO
CURRENT statement to achieve this function.

Using RANGE_N to Define Partitioned Primary Indexes

The primary index for a table or join index controls the distribution of the data for that table or join index
across the AMPs, as well as its retrieval. If the primary index is a partitioned primary index (PPI), the data
can be assigned to user-defined partitions on the AMPs.

To define a primary index for a table or join index, you specify the PRIMARY INDEX phrase in the CREATE
TABLE or CREATE JOIN INDEX data definition statement. To define a partitioned primary index, you
include the PARTITION BY phrase when you define the primary index.

The PARTITION BY phrase requires one or more partitioning expressions that determine the partition
assignment of a row. You can use RANGE_N to construct a partitioning expression such that a row with
any value or NULL for the partitioning columns is assigned to some partition.

You can also use CASE_N to construct a partitioning expression. For more information, see CASE_N.

If the PARTITION BY phrase specifies a list of partitioning expressions, the PPI is a multilevel PPI, where
each partition for a level is subpartitioned according to the next partitioning expression in the list. Unlike
the partitioning expression for a single-level PPI, which can consist of any valid SQL expression (with
some exceptions), each expression in the list of partitioning expressions for a multilevel PPI must be a
CASE_N or RANGE_N function.

Using RANGE_N with CURRENT_DATE or CURRENT_TIMESTAMP in
a PPI

You can define a partitioning expression that uses RANGE_N with the built-in functions CURRENT_DATE
or CURRENT_TIMESTAMP. Use of CURRENT_DATE or CURRENT_TIMESTAMP in a partitioning

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 159

expression is most appropriate when the data must be partitioned as one or more current partitions and
one or more history partitions where the current and history partitions are based on the resolved
CURRENT_DATE or CURRENT_TIMESTAMP in the partitioning expression. This allows you to
periodically reconcile the table to move older data from the current partition into one or more history
partitions using the ALTER TABLE TO CURRENT statement instead of redefining the partitioning using
explicit dates which must be determined each time the ALTER TABLE DROP/ADD RANGE is done.

For more information, see “Rules and Guidelines for Optimizing the Reconciliation of RANGE_N
PPI Expressions Based On Updatable Current Date and Updatable Current Timestamp” in Teradata
Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.

Using RANGE_N with Character Data

You can specify character expressions (CHAR, VARCHAR, GRAPHIC or VARGRAPHIC) as the
test_expression and/or the range boundaries in a RANGE_N function. The following usage rules apply:

• A RANGE_N partitioning expression can use the UPPERCASE qualifier and the following
functions: LOWER, UPPER, TRANSLATE, TRIM, VARGRAPHIC, INDEX, MINDEX, POSITION,
TRANSLATE_CHK, CHAR2HEXINT.

• If test_expression is a character data type, you cannot specify the EACH phrase.
• Any string literal referenced within a RANGE_N expression must be less than 31,000 bytes.
• If test_expression is a character data type, and the length of any of the range boundaries (minus

trailing pad characters) is greater than the length of test_expression, an error is returned.
• For character RANGE_N partitioning, the increasing order of ranges is determined by the session

collation and case specificity of the test_expression. If the test_expression is a combination of NOT
CASESPECIFIC expressions and a literal with no case specific qualifier (CASESPECIFIC, NOT
CASESPECIFIC), the case specificity will be case specific in ANSI mode sessions and not case
specific in Teradata mode sessions.

Note:
All character string comparisons involving graphic data are case specific.

• An error is returned if any of the specified ranges are defined with null boundaries, are not increasing,
or overlap. For character test values, increasing order is determined by the session collation and case
specificity of the test_expression.

◦ The case sensitivity of column references and literals is determined based on the session
default, or an explicit CAST, or a specification in the CREATE TABLE statement when the
table was created. The column can be explicitly assigned to be CASESPECIFIC or NOT
CASESPECIFIC, and constant expressions can be CAST with these qualifiers.

If not explicitly specified, the default of NOT CASESPECIFIC is used if Teradata session
transaction semantics are in effect. If ANSI session transaction semantics are in effect, the
default is CASESPECIFIC.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 160

For example, if a conditional expression is a combination of NOT CASESPECIFIC expressions
and a constant with no case sensitivity qualifier (CASESPECIFIC, NOT CASESPECIFIC),
the case sensitivity will be case sensitive in ANSI mode sessions and case blind in Teradata
mode sessions.

All character string comparisons involving graphic data are case sensitive.

• In character comparison operations (=, <, >, <=, >=, <>, BETWEEN, LIKE), if a string literal is shorter
than the column data to which it is compared, the string literal is treated as if it is padded with a pad
character specific to the character set (for example, a <space> character). Therefore, if a character
test_expression is defined with a longer length than a character range boundary, comparison of
the test _expression to that range boundary will behave as if the range boundary is padded with
pad characters.

Note that the pad character might not collate to the lowest code point in the collation. For a range
boundary of length n, if the test_expression precisely matches that range boundary for the first n
characters, but contains a character that collates less than the pad character at position n +1, then
the test_expression will collate less than the range boundary. See Examples.

Using a UDT as the Test Expression

The test_expression should not be an expression that results in a UDT data type. An error is reported if
this occurs when RANGE_N is used to define a PPI. If RANGE_N is not used to define a PPI, you should
explicitly cast the expression so that it is BYTEINT, SMALLINT, INTEGER, DATE, CHAR, VARCHAR,
GRAPHIC or VARGRAPHIC instead of depending upon any implicit conversions.

Examples
Example 1: Specifying Four Partitions to which a Row Can Be Assigned

Here is an example that uses RANGE_N and the value of the totalorders column to define the partition to
which a row is assigned:

 CREATE TABLE orders
 (storeid INTEGER NOT NULL
 ,productid INTEGER NOT NULL
 ,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
 ,totalorders INTEGER)
 PRIMARY INDEX (storeid, productid)
 PARTITION BY RANGE_N(totalorders BETWEEN *, 100, 1000 AND *,
 UNKNOWN);

In the example, RANGE_N specifies four partitions to which a row can be assigned, based on the value of
the totalorders column:

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 161

Partition
Number Condition

1 The value of the totalorders column is less than 100.

2 The value of the totalorders column is less than 1000, but greater than or equal to 100.

3 The value of the totalorders column is greater than or equal to 1000.

4 The totalorders column is NULL, so the range is UNKNOWN.

Example 2: Using RANGE_N in a List of Partitioning Expressions

Here is an example that modifies “Examples” to use RANGE_N in a list of partitioning expressions that
define a multilevel PPI:

 CREATE TABLE orders
 (storeid INTEGER NOT NULL
 ,productid INTEGER NOT NULL
 ,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
 ,totalorders INTEGER NOT NULL)
 PRIMARY INDEX (storeid, productid)
 PARTITION BY (RANGE_N(totalorders BETWEEN *, 100, 1000 AND *)
 ,RANGE_N(orderdate BETWEEN *, '2005-12-31' AND *));

The example defines six partitions to which a row can be assigned. The first RANGE_N expression
defines three partitions based on the value of the totalorders column. The second RANGE_N expression
subdivides each of the three partitions into two partitions based on the value of the orderdate column.

Level 1
Partition
Number

Level 2
Partition
Number Condition

1 1 The value of the totalorders column is less than 100 and the value of the
orderdate column is less than '2005-12-31'.

2 The value of the totalorders column is less than 100 and the value of the
orderdate column is greater than or equal to '2005-12-31'.

2 1 The value of the totalorders column is less than 1000 but greater
than or equal to 100, and the value of the orderdate column is less
than '2005-12-31'.

2 The value of the totalorders column is less than 1000 but greater than or
equal to 100, and the value of the orderdate column is greater than or equal
to '2005-12-31'.

3 1 The value of the totalorders column is greater than or equal to 1000 and the
value of the orderdate column is less than '2005-12-31'.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 162

Level 1
Partition
Number

Level 2
Partition
Number Condition

2 The value of the totalorders column is greater than or equal to 1000 and the
value of the orderdate column is greater than or equal to '2005-12-31'.

Example 3: Defining a Partitioned Primary Index that Specifies One Partition

Here is an example that defines a partitioned primary index that specifies one partition to which rows are
assigned, for any value of the totalorders column, including NULL:

 CREATE TABLE orders
 (storeid INTEGER NOT NULL
 ,productid INTEGER NOT NULL
 ,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
 ,totalorders INTEGER)
 PRIMARY INDEX (storeid, productid)
 PARTITION BY RANGE_N(totalorders BETWEEN * AND *);

Example 4: Counting Rows in Each Partition if the Table is Partitioned Using
the RANGE_N Expression

The following example shows the count of rows in each partition if the table were to be partitioned using
the RANGE_N expression.

 CREATE TABLE orders
 (orderkey INTEGER NOT NULL
 ,custkey INTEGER
 ,orderdate DATE FORMAT 'yyyy-mm-dd')
 PRIMARY INDEX (orderkey);

 INSERT INTO orders (1, 100, '1998-01-01');
 INSERT INTO orders (2, 100, '1998-04-01');
 INSERT INTO orders (3, 109, '1998-04-01');
 INSERT INTO orders (4, 101, '1998-04-10');
 INSERT INTO orders (5, 100, '1998-07-01');
 INSERT INTO orders (6, 109, '1998-07-10');
 INSERT INTO orders (7, 101, '1998-08-01');
 INSERT INTO orders (8, 101, '1998-12-01');
 INSERT INTO orders (9, 111, '1999-01-01');
 INSERT INTO orders (10, 111, NULL);

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 163

The RANGE_N expression in the following SELECT statement uses the EACH phrase to define a series of
12 ranges, where the first range starts at '1998-01-01' and the ranges that follow have starting boundaries
that increment sequentially by one month intervals.

 SELECT COUNT(*),
 RANGE_N(orderdate
 BETWEEN DATE '1998-01-01' AND DATE '1998-12-31'
 EACH INTERVAL '1' MONTH
) AS Partition_Number
 FROM orders
 GROUP BY Partition_Number
 ORDER BY Partition_Number;

The results look like this:

 Count(*) Partition_Number
 ----------- ----------------
 2 ?
 1 1
 3 4
 2 7
 1 8
 1 12

Example 5: Table Partitioning Using a RANGE_N Expression

The following example creates a table with partitioning defined using a RANGE_N expression involving the
END bound function. The table creates 10 partitions where each partition represents the sales history for
one year.

 CREATE TABLE SalesHistory
 (product_code CHAR (8),
 quantity_sold INTEGER,
 transaction_period PERIOD (DATE))
 PRIMARY INDEX (product_code)
 PARTITION BY
 RANGE_N (END (transaction_period) BETWEEN date'2006-01-01'
 AND date '2015-12-31' EACH INTERVAL'1' YEAR);

The following SELECT statement scans five partitions of the sales history before the year 2010.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 164

 SELECT *
 FROM SalesHistory
 WHERE transaction_period < period (date'2010-01-01');

Example 6: Start_expression with CURRENT_DATE

If CURRENT_DATE or CURRENT_TIMESTAMP is specified in the start_expression of the first
range in RANGE_N, and if this start_expression when resolved with a new CURRENT_DATE or
CURRENT_TIMESTAMP falls on a partition boundary, then all partitions prior to the partition matched are
dropped. Otherwise, the entire table is re-partitioned with the new partitioning expression.

Consider the following CREATE TABLE statement submitted on April 1, 2006:

 CREATE TABLE ppi (i INT, j DATE)
 PRIMARY INDEX (i)
 PARTITION BY
 RANGE_N (j BETWEEN CURRENT_DATE AND
 CURRENT_DATE + INTERVAL '1' YEAR - INTERVAL '1' DAY
 EACH INTERVAL '1' MONTH);

The last resolved date is April 1, 2006. If you submit an ALTER TABLE TO CURRENT statement on
June 1, 2006, the start_expression, newly resolved to CURRENT_DATE ('2006-06-01'), falls on a partition
boundary of the third partition. Therefore, partitions 1 and 2 are dropped, and the last reconciled date is set
to the newly resolved CURRENT_DATE.

However, if you submitted the ALTER TABLE TO CURRENT statement on June 10, 2006 instead of June 1,
2006, the start_expression, newly resolved to CURRENT_DATE ('2006-06-10'), does not fall on a partition
boundary. Therefore, all rows are scanned and the rows are repartitioned based on the new partitioning
expression. The partition boundary after this statement aligns with the 10th day of the month instead of the
earlier 1st day of the month.

Example 7: Table Partitioning to Record History

The following table definition is created in the year 2007 (the current year at the time). The table is
partitioned to record 5 years of order history plus orders for the current year and one future year.

 CREATE TABLE Orders
 (o_orderkey INTEGER NOT NULL,
 o_custkey INTEGER,
 o_orderstatus CHAR(1) CASESPECIFIC,
 o_totalprice DECIMAL(13,2) NOT NULL,
 o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
 o_orderpriority CHAR(21),
 o_comment VARCHAR(79))
 PRIMARY INDEX (o_orderkey)
 PARTITION BY RANGE_N(

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 165

 o_orderdate BETWEEN DATE '2002-01-01' AND DATE '2008-12-31'
 EACH INTERVAL '1' MONTH)
 UNIQUE INDEX (o_orderkey);

If, in 2008, you want to alter the table such that it continues to maintain 5 years of history plus the current
year and one future year, you can submit the following statement in 2008:

 ALTER TABLE Orders MODIFY PRIMARY INDEX (o_orderkey)
 DROP RANGE WHERE PARTITION BETWEEN 1 AND 12
 ADD RANGE BETWEEN DATE '2009-01-01' AND DATE '2009-12-31'
 EACH INTERVAL '1' MONTH
 WITH DELETE;

In this case, you must compute the new dates and specify them explicitly in the ADD RANGE clause. This
requires manual intervention every year the statement is submitted.

Alternatively, you can define the table using CURRENT_DATE as follows. This makes it easier to alter
the partitioning.

 CREATE TABLE Orders
 (o_orderkey INTEGER NOT NULL,
 o_custkey INTEGER,
 o_orderstatus CHAR(1) CASESPECIFIC,
 o_totalprice DECIMAL(13,2) NOT NULL,
 o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
 o_orderpriority CHAR(21),
 o_comment VARCHAR(79))
 PRIMARY INDEX (o_orderkey)
 PARTITION BY RANGE_N(o_orderdate BETWEEN
 CAST(((EXTRACT(YEAR FROM CURRENT_DATE)-5-1900)*10000+0101) AS DATE)
 AND
 CAST(((EXTRACT(YEAR FROM CURRENT_DATE)+1-1900)*10000+1231) AS DATE)
 EACH INTERVAL '1' MONTH)
 UNIQUE INDEX (o_orderkey);

You can schedule the following ALTER TABLE statement to occur yearly. This statement rolls the partition
window forward by efficiently dropping and adding partitions.

ALTER TABLE Orders TO CURRENT WITH DELETE;

With the use of CURRENT_DATE, you do not need to modify the ALTER TABLE statement each time you
want to repartition the data based on the new dates.

In both cases, the partitioning starts on a year boundary. In the first example, the ALTER TABLE statement
does not change this, so partitioning continues to start on a year boundary. However, you can specify

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 166

an ALTER TABLE statement that changes the partitioning to start on a different boundary. For example,
you can roll forward to start on a particular month in a year by specifying the desired dates in the ALTER
TABLE statement.

In the second example, which uses CURRENT_DATE, you can only roll forward to start on a year
boundary. However, you can modify the example as follows so that partitioning can be used to roll forward
to start at the beginning of a month. This case assumes that, as of the CREATE TABLE date, the Orders
table will contain the last 71 months of history plus the current month and 12 months in the future (a total
of 84 months).

 CREATE TABLE Orders
 (o_orderkey INTEGER NOT NULL,
 o_custkey INTEGER,
 o_orderstatus CHAR(1) CASESPECIFIC,
 o_totalprice DECIMAL(13,2) NOT NULL,
 o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
 o_orderpriority CHAR(21),
 o_comment VARCHAR(79))
 PRIMARY INDEX (o_orderkey)
 PARTITION BY RANGE_N(o_orderdate BETWEEN
 CAST(((EXTRACT(YEAR FROM CURRENT_DATE)-1900)*10000 +
 EXTRACT(MONTH FROM CURRENT_DATE)*100 + 01) AS DATE) -
 INTERVAL '71' MONTH
 AND
 CAST(((EXTRACT(YEAR FROM CURRENT_DATE)+1-1900)*10000 +
 EXTRACT(MONTH FROM CURRENT_DATE)*100 + 01) AS DATE)+
 INTERVAL '13' MONTH - INTERVAL '1' DAY
 EACH INTERVAL '1' MONTH)
 UNIQUE INDEX (o_orderkey);

You can schedule the following ALTER TABLE statement to occur monthly or less frequently (but before
running out of future months). This statement rolls the partition window forward by dropping and adding
partitions so that the Orders table continues to contain the last 71 months of history plus the current month
and 12 months in the future.

 ALTER TABLE Orders TO CURRENT WITH DELETE;

You can define the following simpler partitioning, but it might not be optimized, and the entire table might
be scanned to reconcile rows when you submit an ALTER TABLE TO CURRENT statement. This case
assumes that, as of the CREATE TABLE date, the Orders table will contain about 2,191 days of history plus
the current day and about 365 days in the future (a total of about 7 years).

 CREATE TABLE Orders
 (o_orderkey INTEGER NOT NULL,

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 167

 o_custkey INTEGER,
 o_orderstatus CHAR(1) CASESPECIFIC,
 o_totalprice DECIMAL(13,2) NOT NULL,
 o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
 o_orderpriority CHAR(21),
 o_comment VARCHAR(79))
 PRIMARY INDEX (o_orderkey)
 PARTITION BY RANGE_N(o_orderdate BETWEEN
 CURRENT_DATE - INTERVAL '6' YEAR
 AND
 CURRENT_DATE + INTERVAL '1' YEAR
 EACH INTERVAL '1' MONTH)
 UNIQUE INDEX (o_orderkey);

You can schedule the following ALTER TABLE statement to occur daily or less frequently (but before
running out of future days). This statement rolls the partition window forward by dropping and adding
partitions only if the CURRENT_DATE is the same day of the month as the day when the last CREATE
TABLE or ALTER TABLE TO CURRENT statement was submitted. Otherwise, the entire table is scanned
to reconcile the rows.

 ALTER TABLE Orders TO CURRENT WITH DELETE;

This can be very inefficient if the ALTER TABLE statement is not submitted on the same day of the month
as the day when the last CREATE TABLE or ALTER TABLE TO CURRENT statement was submitted.
Performance degrades as the number of days between the last resolved date and the new resolved date
increases due to the increasing number of rows that must be moved.

For example, if the last resolved date was January 1, 2008, and the next ALTER TABLE TO CURRENT
statement is submitted on February 2, 2008, all the rows of the table will be moved to new partitions.

Example 8: Defining Ranges

The following example defines 5 ranges. The session collation is ASCII.

 RANGE_N(animal BETWEEN *, 'ape', 'bird', 'bull' AND 'cow',
 'dog' AND *, NO RANGE, UNKNOWN)

where:

Range Includes...

1 all values less than 'ape'.

2 strings greater than or equal to 'ape' and less than 'bird'.

3 strings greater than or equal to 'bird' and less than 'bull'.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 168

Range Includes...

4 strings between 'bull' and 'cow'.

5 strings greater than or equal to 'dog'.

If the value of animal matches one of the defined ranges, RANGE_N returns the number of the
matched range.

If the value of animal is greater than 'cow' but less than 'dog', it does not match any of the ranges, so
RANGE_N returns 6 because NO RANGE is specified.

If the value of animal is NULL, RANGE_N returns 7 because UNKNOWN is specified.

Example 9: Defining Five Ranges

The following example defines 5 ranges. The session collation is ASCII.

 RANGE_N(animal BETWEEN *, 'ape', 'bird', 'bull' AND 'cow',
 'dog' AND *, UNKNOWN)

where:

Range Includes...

1 all values less than 'ape'.

2 strings greater than or equal to 'ape' and less than 'bird'.

3 strings greater than or equal to 'bird' and less than 'bull'.

4 strings between 'bull' and 'cow'.

5 strings greater than or equal to 'dog'.

If the value of animal matches one of the defined ranges, RANGE_N returns the number of the
matched range.

If the value of animal is greater than 'cow' but less than 'dog', it does not match any of the ranges, so
RANGE_N returns NULL because NO RANGE is not specified.

If the value of animal is NULL, RANGE_N returns 6 because UNKNOWN is specified.

Example 10: Defining Two Ranges

In this example, the session collation is ASCII when submitting the CREATE TABLE statement, and the pad
character is <space>. The example defines two ranges (numbered 1 and 2):

• Any values greater than or equal to 'a ' (a followed by 9 spaces) or less than 'b ' are mapped
to partition 1.

• Any values greater than or equal to 'b ' or less than 'c ' are mapped to partition 2.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 169

 CREATE SET TABLE t2
 (a VARCHAR(10) CHARACTER SET UNICODE NOT CASESPECIFIC,
 b INTEGER)
 PRIMARY INDEX (a)
 PARTITION BY RANGE_N(a BETWEEN 'a','b' AND 'c');

The following INSERT statement inserts a character string consisting of a single <tab> character between
the 'b' and '1'.

 INSERT t2 ('b 1', 1);

The following INSERT statement inserts a character string consisting of a single <space> character
between the 'b' and '1'.

 INSERT t2 ('b 1', 2);

The following SELECT statement shows the result of the INSERT statements. Since the <tab> character
has a lower code point than the <space> character, the first string inserted maps to partition 1.

 SELECT PARTITION, a, b FROM t2 ORDER BY 1;
 *** Query completed. 2 rows found. 3 columns returned.
 *** Total elapsed time was 1 second.
 PARTITION a b
 ----------- ------ -----
 1 b 1 1 (string contains single <tab> character)
 2 b 1 2 (string contains single <space> character)

Related Information
• For more information about PPI properties and performance considerations or PPI considerations and

capacity planning, see Teradata Vantage™ - Database Design, B035-1094.
• For more information about specifying a PPI for a table, see CREATE TABLE in Teradata Vantage™

- SQL Data Definition Language Syntax and Examples, B035-1144.
• For more information about specifying a PPI for a join index, see CREATE JOIN INDEX in Teradata

Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.
• For more information about modifying the partitioning of the primary index for a table, see ALTER

TABLE in Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.
• For more information about the reconciliation of the partitioning based on newly resolved

CURRENT_DATE and CURRENT_TIMESTAMP values, see ALTER TABLE TO CURRENT in
Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.

• For more information on ADD_MONTHS, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 170

ROUND
Returns numeric_value rounded places_value places to the right or left of the decimal point.

ROUND is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

ROUND Function Syntax
[TD_SYSFNLIB.] ROUND (numeric_value [, places_value])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

numeric_value
A numeric argument.

places_value
The number of places to round. If not specified, numeric_value is rounded to 0 places
by default.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• numeric_value = BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/
DOUBLE PRECISION, or NUMBER

• places_value = NUMBER

For the places_value argument, you can also pass values with data types that can be converted to
INTEGER using the implicit data type conversion rules that apply to UDFs. Implicit type conversion is not
supported for the numeric_value argument.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 171

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is the same type as that of the numeric_value argument.

If the data type of numeric_value is DECIMAL/NUMERIC with a precision less than 38, the return
DECIMAL/NUMERIC value will have its precision increased by 1. For example, a DECIMAL(6,4) argument
is returned as a DECIMAL(7,4). If the precision is 38, the scale will be reduced by 1 unless the scale is 0.
For example, a DECIMAL(38,38) argument is returned as DECIMAL(38,37).

For information on the default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Usage Notes
ROUND functions as follows:

• It rounds places_value places to the right of the decimal point if places_value is positive.
• It rounds places_value places to the left of the decimal point if places_value is negative.
• It rounds to 0 places if places_value is zero or is omitted.
• If numeric_value or places_value is NULL, the function returns NULL.
• ROUND rounds the value away from zero and it only rounds when the next digit is a value of 5

or greater.

Note:
The rounding behavior always follows the above formula regardless of the setting of the DBS
Control Record RoundHalfWayMagUp field. That is, the rounding behavior always functions as if the
RoundHalfWayMagUp field is set to TRUE.

Examples
Example 1: Query Returns with Result 32.4000

The following query returns the result 32.4000.

 SELECT ROUND(32.4467, 1);

Example 2: Query Returns with Result 32.4600

The following query returns the result 32.4600.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 172

 SELECT ROUND(32.4567, 2);

Example 3: Query Returns with Result 100.0000

The following query returns the result 100.0000.

 SELECT ROUND(99.9999, 3);

Example 4: Query Returns with Result 30.0000

The following query returns the result 30.0000.

 SELECT ROUND(32.4567, -1);

Example 5: Query Returns with Result 100.0000

The following query returns the result 100.0000.

 SELECT ROUND(55.4567, -2);

Example 6: Query Returns with Result 0.0000

The following query returns the result 0.0000.

 SELECT ROUND(55.4567, -3);

Example 7: Query Returns with Result -5.00

The following query returns the result -5.00.

 SELECT ROUND(-5.35, 0);

Example 8: Query Returns with Result -6.00

The following query returns the result -6.00.

 SELECT ROUND(-5.55, 0);

Related Information
• Teradata Vantage™ - SQL External Routine Programming, B035-1147
• Embedded Services System Functions
• Teradata Vantage™ - Data Types and Literals, B035-1143

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 173

SIGN
Returns the sign of numeric_value.

SIGN is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

SIGN Function Syntax
[TD_SYSFNLIB.] SIGN (numeric_value)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

numeric_value
A numeric argument.

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/DOUBLE PRECISION,
or NUMBER

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is NUMBER.

For information on the default data type format for NUMBER, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Usage Notes
For all numeric types except FLOAT/REAL/DOUBLE PRECISION, SIGN will return the following:

• If numeric_value is < 0, -1 is returned.
• If numeric_value is = 0, 0 is returned.
• If numeric_value is > 0, 1 is returned.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 174

For FLOAT/REAL/DOUBLE PRECISION, SIGN will return the following:

• If numeric_value is < 0, -1 is returned.
• If numeric_value is >= 0, 1 is returned.

If the input argument is NULL, the function returns NULL.

Examples
Example 1: Query SELECT SIGN(-2);

The following query returns the result -1.

 SELECT SIGN(-2);

Example 2: Query Results When the Value is an Integer and Equal to 0

The following query returns the result 0 since the value is an integer and equal to 0.

 SELECT SIGN(CAST(0 AS INTEGER));

Example 3: Query Results When the data type is FLOAT and the value is >= 0

The following query returns the result 1 since the data type is FLOAT and the value is >= 0.

 SELECT SIGN(CAST(0 as FLOAT));

Example 4: Query SELECT SIGN(3.74);

The following query returns the result 1.

 SELECT SIGN(3.74);

Related Information
• Embedded Services System Functions
• Teradata Vantage™ - Data Types and Literals, B035-1143

SQRT
Computes the square root of an argument.

SQRT Function Syntax
SQRT (arg)

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 175

Syntax Elements

arg
A positive, numeric argument.

Argument Types and Rules

If arg is not FLOAT, it is converted to FLOAT based on implicit type conversion rules. If the argument
cannot be converted, an error is reported. For more information on implicit type conversion, see Teradata
Vantage™ - Data Types and Literals, B035-1143.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including SQRT,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. See Teradata
Vantage™ - Database Utilities, B035-1102.

SQRT cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for SQRT(arg) are as follows.

Data Type Format Title

FLOAT Default format for FLOAT SQRT(arg)

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 176

Examples: Representative SQRT Arithmetic
Function Expressions
Representative SQRT arithmetic function expressions and the results are as follows.

Expression Result

SQRT(2) 1.41421356237309E+000

SQRT(-2) Error

Related Information
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144
• Teradata Vantage™ - Database Utilities, B035-1102
• Teradata Vantage™ - Data Types and Literals, B035-1143

TRIGONOMETRIC
Performs the trigonometric or inverse trigonometric function of an argument.

TRIGONOMETRIC Function Syntax
{ { COS | SIN | TAN | ACOS | ASIN | ATAN } (arg) |
 ATAN2 (x, y)
}

Syntax Elements

COS
Cosine. The cosine of an angle is the ratio of two sides of a right triangle. The ratio is the
length of the side adjacent to the angle divided by the length of the hypotenuse.

COS (arg) is a value in radians in the range -1 to 1, inclusive.

SIN
Sine. The sine of an angle is the ratio of two sides of a right triangle. The ratio is the length
of the side opposite to the angle divided by the length of the hypotenuse.

SIN (arg) is a value in radians in the range -1 to 1, inclusive.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 177

TAN
Tangent. The tangent of an angle is the ratio of two sides of a right triangle. The ratio is the
length of the side opposite to the angle divided by the length of the side adjacent to the angle.

TAN (arg) is a value in radians.

ACOS
Arccosine. The arccosine is the angle whose cosine is the argument.

ACOS (arg) is an angle in the range 0 to π radians, inclusive.

ASIN
Arcsine. The arcsine is the angle whose sine is the argument.

ASIN (arg) is an angle in the range -π /2 to π /2 radians, inclusive.

ATAN
Arctangent. The arctangent is the angle whose tangent is the argument.

ATAN (arg) is an angle in the range -π /2 to π /2 radians, inclusive.

ATAN2
ATAN2 (arg) is an angle between -π and π radians, excluding -π.

A positive result represents a counterclockwise angle from the x-axis. A negative result
represents a clockwise angle.

ATAN2(x,y) equals ATAN(y/x), except that x can be 0 in ATAN2(x,y) and x cannot be 0 in
ATAN(y/x) since this results in a divide by zero error.

If both x and y are 0, an error is returned.

arg
Any valid numeric expression that expresses an angle in radians.

x
The x-coordinate of a point to use in the arctangent2 calculation.

y
The y-coordinate of a point to use in the arctangent2 calculation.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 178

Argument Types and Rules

Arguments that are not FLOAT are converted to FLOAT based on implicit type conversion rules. See
Teradata Vantage™ - Data Types and Literals, B035-1143. If an argument cannot be converted, an error
is reported.

If an argument is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. See Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including trigonometric and
inverse trigonometric functions, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Teradata Vantage™ - Database Utilities, B035-1102.

Trigonometric and inverse trigonometric functions cannot take the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
Here are the default data type, format, and title for the result of the trigonometric and inverse
trigonometric functions.

Data Type Format Title

FLOAT Default format for FLOAT Cos(arg)
Sin(arg)
Tan(arg)
ArcCos(arg)
ArcSin(arg)
ArcTan(arg)
Atan2(x,y)

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 179

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Examples: Representative Function Expressions
The following are representative function expressions and results.

Expression Result

COS(5-4) 5.40302305868140E -001

SIN(LOG(0.5)) -2.96504042171437E -001

SIN(RADIANS(180.0)) 1.22464679914735E-016

TAN(ABS(-3)) -1.42546543074278E -001

ACOS(-0.5) 2.09439510239320E 000

ASIN(1) 1.57079632679490E 000

ATAN(1+2) 1.24904577239825E 000

ATAN2(1,1) 7.85398163397448E -001

Related Information
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144
• Teradata Vantage™ - Database Utilities, B035-1102
• Teradata Vantage™ - Data Types and Literals, B035-1143

TRUNC
Returns numeric_value truncated places_value places to the right or left of the decimal point.

TRUNC is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

TRUNC Function Syntax
[TD_SYSFNLIB.] TRUNC (numeric_value [, places_value])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 180

numeric_value
A numeric argument.

places_value
The number of places to truncate. If not specified, numeric_value is truncated to 0 places
by default.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• numeric_value = BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/
DOUBLE PRECISION, or NUMBER

• places_value = NUMBER

For the places_value argument, you can also pass values with data types that can be converted to
INTEGER using the implicit data type conversion rules that apply to UDFs. Implicit type conversion is not
supported for the numeric_value argument.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is the same type as that of the numeric_value argument. For example, if the data type
of numeric_value is DECIMAL/NUMERIC, the return type is DECIMAL/NUMERIC with the same precision
and scale as the numeric_value argument.

For information on the default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Usage Notes
TRUNC functions as follows:

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 181

• It truncates places_value places to the right of the decimal point if places_value is positive.
• It truncates (makes 0) places_value places to the left of the decimal point if places_value is negative.
• It truncates to 0 places if places_value is zero or is omitted.
• If numeric_value or places_value is NULL, the function returns NULL.

Examples: Query Returns for SELECT TRUNC
The following query returns the result 32.4500.

 SELECT TRUNC(32.4567, 2);

The following query returns the result 30.0000.

 SELECT TRUNC(32.4567, -1);

Related Information
• Teradata Vantage™ - SQL External Routine Programming, B035-1147
• Embedded Services System Functions
• Teradata Vantage™ - Data Types and Literals, B035-1143

WIDTH BUCKET
Returns the number of the partition to which value_expression is assigned.

WIDTH BUCKET Function Syntax
WIDTH BUCKET (value_expression, lower_bound, upper_bound, partition_count)

Syntax Elements

value_expression
The value for which a partition number is to be returned.

lower_bound
The lower boundary for the range of values to be partitioned equally.

upper_bound
The upper boundary for the range of values to be partitioned equally.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 182

partition_count
Number of partitions to be created.

This value also specifies the width of the partitions by default.

The number of partitions created is partition_count + 2. Partition 0 and partition
partition_count + 1 account for values of value_expression that are outside the lower and
upper boundaries.

Argument Types and Rules

Refer to the following table for rules regarding WIDTH_BUCKET arguments.

If an argument cannot be implicitly converted to an acceptable type, an error is reported. For more
information, see Teradata Vantage™ - Data Types and Literals, B035-1143.

Data Type Rules

Numeric WIDTH_BUCKET accepts all numeric data types as arguments. The
arguments value_expression, lower_bound, and upper_bound are converted
to REAL before processing. The partition_count argument is converted to
INTEGER before processing.

Character WIDTH_BUCKET accepts character strings that represent numeric values, and
converts the character strings to the appropriate numeric type.

• TIME, TIMESTAMP,
or Period

• INTERVAL
• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or

VARCHAR if the
server character set
is GRAPHIC

WIDTH_BUCKET does not accept these types of arguments.

UDT • The UDT must have an implicit cast to any of the following predefined types:
Numeric
Character
DATE
To define an implicit cast for a UDT, use the CREATE CAST statement and
specify the AS ASSIGNMENT clause. For more information, see Teradata
Vantage™ - Data Types and Literals, B035-1143.

• Implicit type conversion of UDTs for system operators and
functions, including WIDTH_BUCKET, is a Teradata extension to
the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 183

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for WIDTH_BUCKET(x, l, u, y) are as follows.

Data Type Format Title

INTEGER the default format for INTEGER Width_bucket(x, l, u, y)

WIDTH BUCKET Usage Notes

Rules

The following rules apply to WIDTH_BUCKET:

• If any argument is null, then the result is also null.
• If partition_count <=0 or if partition_count > 2147483646, an error is returned to the requestor.
• If lower_bound = upper_bound, an error is returned to the requestor.
• If lower_bound < upper_bound, then the rules in the following table apply.

IF … THEN the result is …

value_expression <
lower_bound

0.

value_expression >=
upper_bound

partition_count +1.
If the result cannot be represented by the data type specified for the result, then
an error is returned.

anything else the greatest exact numeric value with scale 0 that is less than or equal to the
following expression.

• If lower_bound > upper_bound, then the rules in the following table apply.

IF … THEN the result is …

value_expression >
lower_bound

0.

value_expression <=
upper_bound

partition_count +1.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 184

IF … THEN the result is …

If the result cannot be represented by the data type specified for the result, then
an error is returned.

anything else the least exact numeric value with scale 0 that is less than or equal to the
following expression.

Example: Using WIDTH BUCKET to Create a Histogram for
Employee Salaries within a Range
You want to create a histogram for the salaries of all employees whose salary amount ranges between
$70000 and $200000. The width of each partition, or bucket, within the specified range is to be $32500.

The employee salary table contains eight employees:

salary first_name last_name
-------- ------------ -----------
50000 William Crawford
150000 Todd Crawford
220000 Bob Stone
199999 Donald Stone
70000 Betty Crawford
70000 James Crawford
70000 Mary Lee
120000 Mary Stone

You perform the following SELECT statement.

 SELECT salary, WIDTH_BUCKET(salary,70000,200000,4),COUNT(salary)
 FROM emp_salary
 GROUP BY 1Teradata Vantage
 ORDER BY 1;

The report produced by this statement looks like this.

salary Width_bucket(salary,70000,200000,4) Count(salary)
-------- ------------------------------------ ----------------
50000 0 1
70000 1 3
120000 2 1
150000 3 1

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 185

199999 4 1
220000 5 1

Related Information
• Teradata Vantage™ - Database Utilities, B035-1102
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144
• Teradata Vantage™ - Data Types and Literals, B035-1143

ZEROIFNULL
Converts data from null to 0 to avoid cases where a null result creates an error.

ZEROIFNULL Function Syntax
ZEROIFNULL (arg)

Syntax Elements

arg
A numeric argument.

Argument Types and Rules

Value of arg ZEROIFNULL Value Returned

Not null Value of the numeric argument.

Null or zero
Note:
A structured UDT column value is null only when you explicitly place
a NULL in the column, not when a structured UDT instance has an
attribute that is set to NULL.

Zero.

If the argument is not numeric, the value is converted to a numeric value according to implicit type
conversion rules. If the argument cannot be converted, an error is reported. For more information, see
Teradata Vantage™ - Data Types and Literals, B035-1143.

If arg is a character string, the string is converted to a numeric value of FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

◦ Numeric

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 186

◦ Character
◦ DATE
◦ Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

• Implicit type conversion of UDTs for system operators and functions, including ZEROIFNULL,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see
Teradata Vantage™ - Database Utilities, B035-1102.

ZEROIFNULL cannot be applied to the following types of arguments:

• BYTE or VARBYTE
• BLOB or CLOB
• CHARACTER or VARCHAR if the server character set is GRAPHIC

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
Here are the default attributes for the result of ZEROIFNULL.

• If the operand is numeric, the format is the same format as arg.
• If the operand is character, the format is the default format for FLOAT.
• If the operand is a UDT, the format is the format of the predefined type to which the UDT is

implicitly cast.

Note:
The NULL keyword has a data type of INTEGER.

Example: Testing the Salary Column for Null
In this example, you can test the Salary column for null.

 SELECT empno, ZEROIFNULL(salary)
 FROM employee ;

A nonzero value is returned for each employee number, indicating that no nulls exist in the Salary column.

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 187

Related Information
• COALESCE Expression
• NULLIF Expression
• NULLIFZERO
• Teradata Vantage™ - Data Types and Literals, B035-1143
• Teradata Vantage™ - Database Utilities, B035-1102
• Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144

4: Arithmetic, Trigonometric, Hyperbolic Operators/Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 188

The following sections describe SQL attribute functions.

Attribute functions return descriptive information about their operand. Except for the DEFAULT function, the
operand need not be a column reference; it can be a general expression that is not evaluated mathematically.

When an attribute function is used in a request, the response returns one row for every data row that meets
the search condition.

Some of these functions are extensions to ANSI SQL.

For a list of data type attributes, see “Data Type Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

Each attribute function is described individually in the following topics.

ANSI Equivalence of Teradata Attribute Functions
Several of the Teradata attribute functions are extensions to the ANSI SQL:2011 standard.

To maintain ANSI compatibility, use the ANSI equivalent functions instead of Teradata attribute functions,
when available. As listed in the table below, change the Teradata function to the ANSI function in
new applications.

Teradata Function ANSI Function

CHARACTERS
CHARS
CHAR

CHARACTER_LENGTH

MCHARACTERS†

† This function is no longer documented because its use is deprecated and it will no longer be supported after
support for KANJI1 is dropped.

The following Teradata functions have no ANSI equivalents:

• BYTES
• FORMAT
• TYPE

BIT_LENGTH
Returns the length of the string expression in bits.

Attribute Functions

5

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 189

BIT_LENGTH Function Syntax
BIT_LENGTH (string_expression [, character_set_name])

Syntax Elements

string_expression
The character string for which the number of bits is required.

The data type of string_expression must be one of the following:

• CHARACTER or VARCHAR
• UDT that has an implicit cast to a predefined character type

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the
AS ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including
OCTET_LENGTH, is a Teradata extension to the ANSI SQL standard. To disable
this extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control
Record to TRUE.

If the string_expression argument is null, the result is null.

character_set_name
The character set in which the result is returned. If character_set_name is not provided, the
session character set is assumed.

If the string _expression argument is NULL, the result is NULL.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Example
An example of BIT_LENGTH usage:

SELECT BIT_LENGTH('Hello');

Related Information
OCTET_LENGTH.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 190

BYTE/BYTES
Returns the number of bytes contained in the specified byte string.

BYTE/BYTES Function Syntax
{ BYTE | BYTES } (byte_expression)

Syntax Elements

byte_expression
An expression of one of the following types:

• BYTE, VARBYTE and BLOB
• UDT that has an implicit cast to a predefined byte type

To define an implicit cast for a UDT, use the CREATE CAST statement and specify
the AS ASSIGNMENT clause. For more information on CREATE CAST, see Teradata
Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including BYTES,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

BYTE/BYTES Usage Notes

Length Includes Trailing Zeros

Because trailing double zero bytes are considered bytes, the length of the value in a fixed length column
is always equal to the length defined for the column.

The length of the value in a variable length column is always equal to the number of bytes, including any
trailing double zero bytes, contained in that value.

If you do not want trailing blanks included in the byte count for a data value, use the TRIM function on the
argument to BYTES. For example:

 SELECT BYTES(TRIM(TRAILING FROM byte_col)) FROM table1;

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 191

Example: Using BYTE to Obtain the Number of Bytes in a
Badge Picture
The following statement applies the BYTES function to the BadgePic column, which is type
VARBYTE(32000), to obtain the number of bytes in each badge picture.

 SELECT BadgePic, BYTES(BadgePic)
 FROM Employee;

The result is as follows:

 BadgePic Bytes(BadgePic)
 -------------- ---------------
 20003BA0 4
 9A3243F805 5
 EEFF08C3441900 7

Related Information
• Teradata Vantage™ - Data Types and Literals, B035-1143
• Teradata Vantage™ - Database Utilities, B035-1102
• TRIM

CHARACTER_LENGTH
Returns the length of a string either in logical characters or in bytes.

CHARACTER_LENGTH Function Syntax
{ CHARACTER_LENGTH | CHAR_LENGTH } (string_expression)

Syntax Elements

string_expression
The string expression for which the length is to be returned.

The type of string_expression must be CHARACTER, VARCHAR, or CLOB. For non-
character data types, the function returns an error.

By default, Vantage performs implicit type conversion on a UDT argument that has an implicit
cast that casts between the UDT and a predefined character type.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 192

Implicit type conversion of UDTs for system operators and functions, including
CHARACTER_LENGTH, is a Teradata extension to the ANSI SQL standard. To disable
this extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record
to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type
For all server character sets except KANJI1, CHARACTER_LENGTH returns the length of
string_expression in characters.

If the string_expression argument is null, the result is null.

For KANJI1, the following results are obtained.

FOR this client
character set … CHARACTER_LENGTH returns …

KanjiEBCDIC the length of string_expression as the number of bytes.
A mix of single and multibyte characters is expected.
If any Shift-Out/Shift-In characters are present, they are included in the
result count.

KanjiEUC
KanjiShift-JIS

the length of string_expression as the number of logical characters, based on the
client session character set.
A mix of single and multibyte characters is expected.

ASCII
EBCDIC

the length of string_expression as the number of bytes.

Note:

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information, see
KANJI1 Character Set in Teradata Vantage™ - Advanced SQL Engine International Character Set
Support, B035-1125.

Because trailing pad characters are considered characters, the length of the value in a CHARACTER
column is always equal to the length defined for the column.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 193

The length of the value in a VARCHAR or CLOB column is always equal to the number of characters,
including any trailing pad characters, contained in that value.

Usage Notes
CHARACTER_LENGTH is the ANSI form of the Teradata CHARACTERS function. Use
CHARACTER_LENGTH instead of CHARACTERS for ANSI SQL:2011 conformance.

Use CHARACTER_LENGTH in place of MCHARACTERS. (MCHARACTERS no longer appears in this
book because its use is deprecated and it will not be supported after support for KANJI1 is dropped.)

Suppressing Trailing Pad Characters

To suppress trailing pad characters from the character count for a data value, use the TRIM function on
the argument to CHARACTER_LENGTH. For example:

 SELECT CHARACTER_LENGTH(TRIM(TRAILING FROM Name))
 FROM Employee;

Examples
The following statement applies the CHARACTER_LENGTH function to the Name column, which is type
VARCHAR(30) CHARACTER SET LATIN, to obtain the number of characters in each employee name:

 SELECT Name, CHARACTER_LENGTH(Name)
 FROM Employee;

The result is as follows (note that separator blanks are considered characters):

 Name Character_Length(Name)
 -------- ----------------------
 Smith T 7
 Newman P 8
 Omura H 7
 . .

Example Set 1: KanjiEBCDIC

FOR this server character set … AND example … CHARACTER_LENGTH returns …

GRAPHIC ABC 3

KANJI1 De<MNP > 10

<><> 4

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 194

Set 2: KanjiShift-JIS

FOR this server character set … AND example … CHARACTER_LENGTH returns …

KANJI1 <><> 10

D eF 3

UNICODE ABC 3

GRAPHIC ABC 3

Set 3: KanjiEUC

FOR this server character set … AND example … CHARACTER_LENGTH returns …

KANJI1 ss3 C ss3 D 2

GRAPHIC 2

UNICODE <><> 0

dA ss2 B ss3 E 4

LATIN ABC 3

Related Information
• For information on data type conversions, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language Syntax

and Examples, B035-1144.
• Teradata Vantage™ - Database Utilities, B035-1102.
• “KANJI1 Character Set" in Teradata Vantage™ - Advanced SQL Engine International Character Set

Support, B035-1125.

DEFAULT
Returns the current default value for the specified or derived column.

The DEFAULT function cannot be used as a partitioning expression for defining PPIs.

DEFAULT Function Syntax
DEFAULT [(column_name)]

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 195

Syntax Elements

column_name
The name of a column in a base table, view, queue table, or derived table.

The column name can be qualified or unqualified.

The DEFAULT function returns the default value of the specified column or derived column
(if column_name is omitted).

If the specified or derived column is a view column or derived table column, the DEFAULT
function returns the default value of the underlying table column.

If the default value of a column evaluates to a system variable, for example when the default
value is CURRENT_TIME or USER, the DEFAULT function returns the value of the system
variable at the time the statement is executed.

DEFAULT returns null when any of the following conditions are true:

• The specified or derived column was defined with a DEFAULT NULL phrase
• The specified or derived column has no explicit default value
• The data type of the specified or derived column is UDT
• The specified or derived column is the name of a view column that is derived from a

single underlying table column that has no explicit default value

For an example, see “Example: Specifying a View Column Name”.

• The specified or derived column is the name of a view column that is not derived
from a single underlying table column, for example, the view column is derived from a
literal expression

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

Result Type and Attributes
The result type, format, and title for DEFAULT(x) appear in the following table.

Data Type Format Title

Data type of the specified column Format of the specified column Default(x)

For information on data type default formats, see “Data Type Formats and Format Phrases” in Teradata
Vantage™ - Data Types and Literals, B035-1143.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 196

DEFAULT Usage Notes

Omitting the Column Name

You can use the form of DEFAULT that omits the column name under certain conditions in an INSERT,
UPDATE, or MERGE statement or in a predicate clause that involves a comparison operation. The form
of DEFAULT that omits the column name cannot be part of an expression.

When the DEFAULT function does not specify a column name, Vantage derives the column based on
context. For example, consider the following table definition:

 CREATE TABLE Manager
 (Emp_ID INTEGER
 ,Dept_No INTEGER DEFAULT 99
);

The following INSERT statement uses DEFAULT without a column name to insert the default value into
the Dept_No column:

 INSERT INTO Manager VALUES (103499, DEFAULT);

Using the DEFAULT function without specifying a column name can produce an error if Vantage cannot
derive the column context.

For an example that omits the column name when using the DEFAULT function in a predicate clause that
involves a comparison operation, see Example: Using DEFAULT in a Predicate.

For details on using the DEFAULT function in INSERT, UPDATE, and MERGE statements, see Teradata
Vantage™ - SQL Data Manipulation Language, B035-1146.

Using a Qualified Column Name

If you specify a qualified column name that includes the name of the table, you can use DEFAULT in a
SELECT statement that has no FROM clause. For example, you can use the following statement to get
the default value of the Dept_No column in the Manager table:

 SELECT DEFAULT(Manager.Dept_No);

Error Conditions

Using the DEFAULT function can result in an error when any of the following conditions are true:

• The column name is omitted and Vantage cannot derive the column context

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 197

• The DEFAULT function appears in a partitioning expression for defining PPIs
• The column name is omitted and the DEFAULT function appears in an expression that does not

support the DEFAULT function without a column name
• The DEFAULT function appears in an expression for which the result type is incompatible

For example, consider the following table definition:

 CREATE TABLE Parts_Table
 (Part_Code INTEGER DEFAULT 9999
 ,Part_Name CHAR(20)
);

The following statement results in an error because the result type of the DEFAULT function is not
compatible with the column to which the result is being compared:

 SELECT * FROM Parts_Table WHERE Part_Name = DEFAULT(Part_Code);

Examples

Example: Inserting the Default Value under Certain Conditions

Consider the following Employee table definition:

 CREATE TABLE Employee
 (Emp_ID INTEGER
 ,Last_Name VARCHAR(30)
 ,First_Name VARCHAR(30)
 ,Dept_No INTEGER DEFAULT 99
);

The following statement uses DEFAULT to insert the default value of the Dept_No column when the
supplied value is negative.

 USING (id INTEGER, n1 VARCHAR(30), n2 VARCHAR(30), dept INTEGER)
 INSERT INTO Employee VALUES
 (:id
 ,:n1
 ,:n2
 ,CASE WHEN (:dept < 0) THEN DEFAULT(Dept_No) ELSE :dept END
);

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 198

Example: Using DEFAULT in a Predicate

The following statement uses DEFAULT to compare the values of the Dept_No column with the default
value of the Dept_No column. Because the comparison operation involves a single column reference,
Vantage can derive the column context of the DEFAULT function even though the column name is omitted.

 SELECT * FROM Employee WHERE Dept_No < DEFAULT;

Note that if the DEFAULT function evaluates to null, the predicate is unknown and the WHERE condition
is false.

Example: Specifying a View Column Name

Consider the DBC.HostsInfo system view, which has the following definition:

 REPLACE VIEW DBC.HostsInfo (LogicalHostId, HostName, DefaultCharSet)
 AS SELECT
 LogicalHostId
 ,HostName
 ,DefaultCharSet
 FROM DBC.Hosts WITH CHECK OPTION;

The underlying table, DBC.Hosts, has the following definition:

 CREATE SET TABLE DBC.Hosts, FALLBACK, NO BEFORE JOURNAL,
 NO AFTER JOURNAL, CHECKSUM = DEFAULT
 (LogicalHostId SMALLINT FORMAT 'ZZZ9' NOT NULL
 ,HostName VARCHAR(128) CHARACTER SET UNICODE NOT CASESPECIFIC NOT NULL
 ,DefaultCharSet VARCHAR(128) CHARACTER SET UNICODE NOT CASESPECIFIC
 NOT NULL)
 UNIQUE PRIMARY INDEX (LogicalHostId)
 UNIQUE INDEX (HostName);

The following statement uses the DEFAULT function with the DBC.HostsInfo.HostName view
column name:

 SELECT DISTINCT DEFAULT(HostName) FROM DBC.HostsInfo;

The result of the DEFAULT function is null because the HostName view column is derived from a table
column that has no explicit default value.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 199

Related Information
• About using predicates, see Logical Predicates.
• About comparison operations in predicates, see Comparison Operators and Functions.
• About the DEFAULT value control phrase, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• About INSERT, UPDATE, and MERGE statements, see Teradata Vantage™ - SQL Data Manipulation

Language, B035-1146.

FORMAT
Returns the declared format for the named expression.

FORMAT Function Syntax
FORMAT (expression)

Syntax Elements

expression
The expression for which the FORMAT is to be reported.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
FORMAT returns a CHAR(n) character string of up to 30 characters. The result type, character set, format,
and title for FORMAT appear in the following table.

Data Type Format Title

CHAR(n) CHARACTER SET UNICODE X(30) Format(named_expression)

Example: Requesting the Format of the Salary Column
The following statement requests the format of the Salary column in the Employee table.

 SELECT FORMAT(Employee.Salary);

The result is the following.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 200

 Format(Salary)

 ZZZ,ZZ9.99

Related Information
Teradata Vantage™ - Data Types and Literals, B035-1143.

OCTET_LENGTH
Returns the length of string_expression in octets when it is converted to the named character set (taking the
export width value into consideration). The maximum possible value returned from the OCTET_LENGTH
function is 64,000 octets.

OCTET_LENGTH Function Syntax
OCTET_LENGTH (string_expression [, character_name])

Syntax Elements

string_expression
The character string for which the number of octets is required.

The data type of string_expression must be one of the following:

• CHARACTER or VARCHAR
• UDT that has an implicit cast to a predefined character type

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the
AS ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including
OCTET_LENGTH, is a Teradata extension to the ANSI SQL standard. To disable
this extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control
Record to TRUE.

If the string_expression argument is null, the result is null.

character_name
The character set in which the result is to be returned. If character_set_name is not provided,
the session character set is assumed.

If the string_expression argument is null, the result is null.

See the list of Teradata-provided character sets in the table in Usage Notes.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 201

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
Any Shift-Out/Shift-In and trailing GRAPHIC pad characters are included in the result count.

OCTET_LENGTH operates in the same manner in both Teradata and ANSI modes.

IF string_expression is … THEN …

of type KANJI1 the result is independent of character_set_name.

not CHARACTER data an error is generated.

OCTET_LENGTH takes the export width value into consideration. For information about export
width, see “CREATE USER” in Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144.

The following table lists the client character sets shipped with Teradata. Although these character sets
are shipped with the system, your system administrator must install them individually to become available
for use.

Your site might also have site-defined character sets. Check with your system administrator for a complete
list of character sets available at your site.

Character Sets found in Built-in:

• ASCII
• EBCDIC
• UTF8
• UTF16

Character Sets found in DBC.CharTranslationsV:

• EBCDIC037_0E
• EBCDIC273_0E
• EBCDIC277_0E
• HANGULEBCDIC933_1II
• HANGULKSC5601_2R4
• KANJIEBCDIC5026_0I
• KANJIEBCDIC5035_0I
• KANJIEUC_0U
• KANJISJIS_0S
• KATAKANAEBCDIC
• LATIN1252_0A

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 202

• LATIN1_0A
• LATIN9_0A
• SCHEBCDIC935_2IJ
• SCHGB2312_1T0
• TCHBIG5_1R0
• TCHEBCDIC937_3IB

Character Sets found in DBC.CharTranslationsV with Windows code page compatible session
character set:

• ARABIC1256_6A0
• CYRILLIC1251_2A0
• HANGUL949_7R0
• HEBREW1255_5A0
• KANJI932_1S0
• LATIN1250_1A0
• LATIN1252_0A
• LATIN1254_7A0
• LATIN1258_8A0
• SCHINESE936_6R0
• TCHINESE950_8R0
• THAI874_4A0

Examples: Output from OCTET_LENGTH
Examples of output from OCTET_LENGTH appear in the following table.

Client Character Set Server Character Set string_expression Result

EBCDIC LATIN abcdefgh 8

ASCII KANJI1 abcdefgh 8

KanjiEBCDIC KANJI1 AB<CDE >P 11

KanjiEBCDIC GRAPHIC MNOP 8 (record mode)

10 (field mode)

KanjiEUC KANJISJIS dA ss2 B ss3 E 8

KanjiShift-JIS KANJISJIS D eF 5

KanjiShift-JIS UNICODE ABC 6

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 203

Related Information
• For information on data type conversions, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• Teradata Vantage™ - Database Utilities, B035-1102.
• For information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language Syntax

and Examples, B035-1144.

TITLE
Returns the title of an expression as it would appear in the heading for displayed or printed results.

TITLE Function Syntax
TITLE (expression)

Syntax Elements

expression
The expression for which the title is to be returned.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
TITLE returns a CHAR(n) character string of up to 60 characters. The result type, character set, format, and
title for TITLE appear in the following table.

Data Type Format Title

CHAR(n) CHARACTER SET UNICODE X(60) Title(named_expression)

Usage Notes
Use the TITLE phrase to change the heading for displayed or printed results that is different from the
column name, which is the default heading.

Example: Requesting the title of the Salary Column
The following statement requests the title of the Salary column in the Employee table.

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 204

 SELECT TITLE(Employee.Salary);

The result is the following.

 Title(Salary)
 --
 Salary

Related Information
• Teradata Vantage™ - Data Types and Literals, B035-1143.
• Teradata Vantage™ - Data Types and Literals, B035-1143.

TYPE
Returns the data type defined for an expression.

TYPE Function Syntax
TYPE (expression)

Syntax Elements

expression
The expression for which the data type is to be returned.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
TYPE returns a CHAR(n) character string that contains the name of the data type of the expression.

When the argument is a function or operation, TYPE returns a character string that contains the result
type of the function or operation. For rules on the result type for an operation or function, refer to the
documentation for the specific function or operation.

The result type, character set, format, and title for TYPE appear in the following table.

Data Type Format Title

CHAR(n) CHARACTER SET LATIN X(39) Type(named_expression)

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 205

For a list of the supported data types, see Teradata Vantage™ - Data Types and Literals, B035-1143. For
information on geospatial types, see Teradata Vantage™ - Geospatial Data Types, B035-1181.

TYPE Usage Notes

Character Type Arguments

If the server character set for a character type argument is different from the user default server character
set, then the resulting character string also contains the CHARACTER SET phrase and the name of the
server character set for the argument.

Examples
Example 1: If User Default Server Character Set is LATIN

Consider the Name column in the following table definition:

 CREATE TABLE Employee
 (EmployeeID INTEGER
 ,Name CHARACTER(30) CHARACTER SET LATIN
 ,Salary DECIMAL(8,2));

If the user default server character set is LATIN, then the character string that TYPE returns for the Name
column does not contain the CHARACTER SET phrase.

 SELECT TYPE(Employee.Name);

 Type(Name)

 CHAR(30)

Example 2: If User Default Server Character Set is LATIN but Server Character
Set for Name Column is UNICODE

If the user default server character set is LATIN, but the server character set for the Name column is
UNICODE, then the result string contains the CHARACTER SET phrase.

 CREATE TABLE Employee
 (EmployeeID INTEGER
 ,Name VARCHAR(30) CHARACTER SET UNICODE
 ,Salary DECIMAL(8,2));

 SELECT TYPE(Employee.Name);

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 206

 Type(Name)

 VARCHAR(30) CHARACTER SET UNICODE

Example 3: Returning the types of the Name and Salary columns

The following statement returns the types of the Name and Salary columns:

 SELECT TYPE(Employee.Name), TYPE(Employee.Salary);
 Type(Name) Type(Salary)
 ----------- ------------
 VARCHAR(30) DECIMAL(8,2)

Example 4: Using TYPE to Request the Data Type of Two Columns

If TYPE is used to request the data type of two columns, defined as GRAPHIC and LONG VARCHAR
CHARACTER SET GRAPHIC, respectively, the result is as follows.

 TYPE(GColName) TYPE(LVGColName)
 ----------------------------- ------------------------------------
 CHAR(4) CHARACTER SET GRAPHIC VARCHAR(32000) CHARACTER SET GRAPHIC

In the case of a LONG VARCHAR CHARACTER SET GRAPHIC column, the length returned is the
maximum length of 32000.

Example 5: Using the TYPE Function

Consider the following TYPE function.

 SELECT TYPE(SUBSTR(Employee.Name,3,2));

The result type of SUBSTR depends on the session mode.

If the session is set to ANSI mode, the returned result is as follows:

 Type(Substr(Name,3,2))

 VARCHAR(30)

If the session is set to Teradata mode, the returned result is as follows:

 Type(Substr(Name,3,2))

 VARCHAR(2)

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 207

Example 6: Applying the TYPE function to the BLOB Column

Consider the following table definition:

 CREATE TABLE images
 (imageid INTEGER
 ,imagedesc VA
RCHAR(50)
 ,image BLOB(2K))
 UNIQUE PRIMARY INDEX (imageid);

The following statement applies the TYPE function to the BLOB column:

 SELECT TYPE(images.image) FROM images;

The result is:

 Type(image)

 BLOB(2048)

Note that the result is a normal integer length, and does not use the K option that was used to define the
BLOB column the CREATE TABLE statement.

Related Information
• Teradata Vantage™ - Geospatial Data Types, B035-1181
• Teradata Vantage™ - Data Types and Literals, B035-1143

5: Attribute Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 208

The byte/bit manipulation functions in the following sections are embedded services system functions.
For information on activating and invoking embedded services functions, see Embedded Services
System Functions.

Bit and Byte Numbering Model
The following diagrams show the logical bit and byte numbering model employed by the byte/bit
manipulation functions described in these sections.

The model is big endian or little endian independent. Note that the numbering system used for numeric data
types is consistent with that used for byte strings. This simplifies the development of appropriate bit masks.

Users of the byte/bit manipulation functions should mentally visualize the numeric and byte data types
as shown below when contemplating what masks (bit_mask_arg) need to be applied to the target
data (target_arg).

BYTEINT

Example: A BYTEINT Value

A BYTEINT value of 40 with a binary representation of 00101000:

Bit/Byte Manipulation Functions

6

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 209

SMALLINT

Example: A SMALLINT Value

A SMALLINT value of 10,280 with a binary representation of 0010100000101000:

INTEGER

Example: An INTEGER Value

An INTEGER value of 673,720,360 with a binary representation of
00101000 00101000 00101000 00101000:

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 210

BIGINT

Example: A BIGINT Value

A BIGINT value of 2,893,606,913,523,066,920 with a binary representation of
00101000 00101000 00101000 00101000 00101000 00101000 00101000 00101000:

BYTE and VARBYTE
Example: A VARBYTE Value

A VARBYTE(8) with 8 bytes:

Example: A VARBYTE Value with 3 bytes

A VARBYTE(8) with 3 bytes:

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 211

Example: A VARBYTE Value

Example of BYTE(4):

HEXADECIMAL BYTE LITERALS
With respect to byte-bit system functions, hexadecimal byte literals are interpreted as follows:

A 2-byte hexadecimal byte literal: '00FF'XB

A 4-byte hexadecimal byte literal: '01020304'XB

Note that hexadecimal byte literals are represented by an even number of hexadecimal digits.
Hexadecimal literals are extended on the right with zeros when required. For example:

A 3-byte hexadecimal byte literal, '112233'XB, becomes a 4-byte hexadecimal byte literal: '11223300'XB

For more information, see “Hexadecimal Byte Literals” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 212

Performing Bit-Byte Operations against Arguments with
Non-Equal Lengths
This topic applies only to the BITOR, BITXOR, and BITAND functions.

If the target_arg and bit_mask_arg arguments passed to these functions differ in length:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.
• The smaller argument is padded with zeros to the left until it becomes the same size as the

larger argument.

Vantage pads to the left (instead of to the right) so that the hexadecimal byte literals, serving as bit
masks, will not have to be changed every time the size of a byte string is changed.

Example: Querying the BITAND Operation On An INTEGER
The following query performs the BITAND operation on an INTEGER and a single-byte hexadecimal
byte literal.

 SELECT BITAND(287454020, 'FFFF'XB);

The INTEGER value 287,454,020 has a hexadecimal value of 0x11223344 and a bit numbering
representation of:

The hexadecimal byte literal 0xFFFF has a bit numbering representation of:

To process the BITAND operation, the two arguments are aligned on their least significant byte/bit
as follows:

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 213

The shorter-length hexadecimal byte literal 0xFFFF is padded with zeros to the left until it is the same length
as the INTEGER value 287,454,020.

When both operands are the same size, the BITAND operation is performed, producing the following result:

BITAND
Performs the logical AND operation on the corresponding bits from the two input arguments.

This function takes two bit patterns of equal length and performs the logical AND operation on each pair of
corresponding bits. If the bits at the same position are both 1, then the result is 1; otherwise, the result is 0.
If either input argument is NULL, the function returns NULL.

BITAND Function Syntax

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 214

[TD_SYSFNLIB.] BITAND (target_arg, bit_mask_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

bit_mask_arg
A fixed byte value, a variable byte value, or a numeric expression.

If the target_arg and bit_mask_arg arguments differ in length, the arguments are processed as follows:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.
• The smaller argument is padded with zeros to the left until it becomes the same size as the

larger argument.

Argument Types and Rules

BITAND is an overloaded scalar function. The data type of the target_arg parameter can be one of
the following:

• BYTEINT
• SMALLINT
• INTEGER
• BIGINT
• DECIMAL
• NUMBER
• VARBYTE(n)

Note:
DECIMAL input is implicitly converted to NUMBER(38,0). target_arg is not defined for DECIMAL,
but it is defined for NUMBER(38,0). Due to UDF implicit type conversion rules, DECIMAL will be
accepted as input.

The data type of the bit_mask_arg parameter varies depending upon the data type of the target_arg
parameter. The following (target_arg, bit_mask_arg) input combinations are permitted:

target_arg type bit_mask_arg type

BYTEINT BYTE(1)

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 215

target_arg type bit_mask_arg type

BYTEINT BYTEINT

SMALLINT BYTE(2)

SMALLINT SMALLINT

INTEGER BYTE(4)

INTEGER INTEGER

BIGINT BYTE(8)

BIGINT BIGINT

NUMBER(38,0) VARBYTE(16)

NUMBER(38,0) NUMBER(38,0)

VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can
be converted to these types using the implicit data type conversion rules that apply to UDFs.
For example, BITAND(BYTEINT, INTEGER) is allowed because it can be implicitly converted
to BITAND(INTEGER,INTEGER).

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast. For more information, see
“Compatible Types” and “Parameter Types in Overloaded Functions” in Teradata Vantage™ - SQL
External Routine Programming, B035-1147.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table:

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 216

IF the data type of target_arg is... THEN the result type is...
AND the result format is the default
format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

DECIMAL NUMBER(38,0) NUMBER(38,0)

NUMBER NUMBER(38,0) NUMBER(38,0)

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Note:
DECIMAL input is implicitly converted to NUMBER(38,0). target_arg is not defined for DECIMAL, but
it is defined for NUMBER(38,0). Due to UDF implicit type conversion rules, DECIMAL is accepted
as input.

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITAND is: BITAND(target_arg, bit_mask_arg).

Examples: Querying with the BITAND Function
Passing a BYTEINT Value to BITAND

In the following query, the input argument 23 has a data type of BYTEINT and a binary representation of
00010111. The input argument 20 has a data type of BYTEINT and a binary representation of 00010100.
The bitwise AND product of the two arguments results in a BYTEINT value of 20, or binary 00010100, which
is returned by the query.

 SELECT BITAND(23,20);

Passing a NUMBER Value to BITAND

SELECT BITAND(CAST('A593C38281B4D2E1'XI8 AS NUMBER), 'FFFFFFFFFFFFFFFF'xb);

Result:

BITAND(-6515649270585699615,'FFFFFFFFFFFFFFFF'XB)

 -6515649270585699615

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 217

SELECT TO_BYTE(CAST(BITAND(CAST('5A393C28184B2D1E'XI8 AS NUMBER),
'0000FFFFFFFFFFFF'xb) AS BIGINT));

Result:

TO_BYTE(BITAND(6501293679989959966,'0000FFFFFFFFFFFF'XB))

00003C28184B2D1E

Related Information
• “Function Name Overloading” in Teradata Vantage™ - SQL External Routine

Programming, B035-1147

• Teradata Vantage™ - Data Types and Literals, B035-1143.

• For more information about target_arg and bit_mask_arg, see Performing Bit-Byte Operations against
Arguments with Non-Equal Lengths.

BITNOT
Performs a bitwise complement on the binary representation of the input argument.

The bitwise NOT, or complement, is a unary operation which performs logical negation on each bit, forming
the ones' complement of the specified binary value. The digits in the argument which were 0 become 1, and
vice versa.

BITNOT Function Syntax
[TD_SYSFNLIB.] BITNOT (target_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

BITNOT returns NULL if target_arg is NULL.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 218

Argument Types and Rules

BITNOT is an overloaded scalar function. It is defined with the following parameter data types:

• BYTEINT
• SMALLINT
• INTEGER
• BIGINT
• VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast. For details, see “Compatible
Types” and “Parameter Types in Overloaded Functions” in Teradata Vantage™ - SQL External
Routine Programming, B035-1147.

If the argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in Teradata Vantage™
- SQL External Routine Programming, B035-1147.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table:

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 219

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITNOT is: BITNOT(target_arg).

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Example: Querying with the BITNOT Function
In the following query, the input argument 2 has a data type of BYTEINT and a binary representation
of 00000010. Performing a BITNOT operation on this value results in a BYTEINT value of -3, or
binary 11111101.

 SELECT BITNOT(2);

BITOR
Performs the logical OR operation on the corresponding bits from the two input arguments.

This function takes two bit patterns of equal length and performs the logical OR operation on each pair of
corresponding bits as follows.

IF... THEN the result is...

either of the bits from the input arguments is 1 1

both of the bits from the input arguments are 0 0

any of the input arguments is NULL NULL

BITOR Function Syntax
[TD_SYSFNLIB.] BITOR (target_arg, bit_mask_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 220

target_arg
A numeric or variable byte expression.

bit_mask_arg
A fixed byte value, a variable byte value, or a numeric expression.

If the target_arg and bit_mask_arg arguments differ in length, the arguments are processed as follows:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.
• The smaller argument is padded with zeros to the left until it becomes the same size as the

larger argument.

For more information, see Performing Bit-Byte Operations against Arguments with Non-Equal Lengths.

Argument Types and Rules

BITOR is an overloaded scalar function. The data type of the target_arg parameter can be one of
the following:

• BYTEINT
• SMALLINT
• INTEGER
• BIGINT
• VARBYTE(n)

The data type of the bit_mask_arg parameter varies depending upon the data type of the target_arg
parameter. The following (target_arg, bit_mask_arg) input combinations are permitted.

target_arg type bit_mask_arg type

BYTEINT BYTE(1)

BYTEINT BYTEINT

SMALLINT BYTE(2)

SMALLINT SMALLINT

INTEGER BYTE(4)

INTEGER INTEGER

BIGINT BYTE(8)

BIGINT BIGINT

VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 221

All expressions passed to this function must either match these declared data types or can
be converted to these types using the implicit data type conversion rules that apply to UDFs.
For example, BITOR(BYTEINT, INTEGER) is allowed because it can be implicitly converted
to BITOR(INTEGER,INTEGER).

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast. For more information, see
“Compatible Types” and “Parameter Types in Overloaded Functions” in Teradata Vantage™ - SQL
External Routine Programming, B035-1147.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in Teradata Vantage™
- SQL External Routine Programming, B035-1147.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table.

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITOR is: BITOR(target_arg, bit_mask_arg).

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Example: Querying with the BITOR Function

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 222

In the following query, the input argument 23 has a data type of BYTEINT and a binary representation of
00010111. The input argument 45 has a data type of BYTEINT and a binary representation of 00101101.
The bitwise OR product of the two arguments results in a BYTEINT value of 63, or binary 00111111, which
is returned by the query.

 SELECT BITOR(23,45);

BITXOR
Performs a bitwise XOR operation on the binary representation of the two input arguments.

The bitwise exclusive OR takes two bit patterns of equal length and performs the logical XOR operation on
each pair of corresponding bits. The result in each position is 1 if the two bits are different, and 0 if they are
the same. If either input argument is NULL, the function returns NULL.

BITXOR Function Syntax
[TD_SYSFNLIB.] BITXOR (target_arg, bit_mask_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

bit_mask_arg
A fixed byte value, a variable byte value, or a numeric expression.

If the target_arg and bit_mask_arg arguments differ in length, the arguments are processed as follows:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.
• The smaller argument is padded with zeros to the left until it becomes the same size as the

larger argument.

Argument Types and Rules

BITXOR is an overloaded scalar function. The data type of the target_arg parameter can be one of
the following:

• BYTEINT
• SMALLINT

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 223

• INTEGER
• BIGINT
• VARBYTE(n)

The data type of the bit_mask_arg parameter varies depending upon the data type of the target_arg
parameter. The following (target_arg, bit_mask_arg) input combinations are permitted.

target_arg type bit_mask_arg type

BYTEINT BYTE(1)

BYTEINT BYTEINT

SMALLINT BYTE(2)

SMALLINT SMALLINT

INTEGER BYTE(4)

INTEGER INTEGER

BIGINT BYTE(8)

BIGINT BIGINT

VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can
be converted to these types using the implicit data type conversion rules that apply to UDFs.
For example, BITXOR(BYTEINT, INTEGER) is allowed because it can be implicitly converted
to BITXOR(INTEGER,INTEGER).

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table:

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 224

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITXOR is: BITXOR(target_arg, bit_mask_arg).

Example: Querying with the BITXOR Function
In the following query, the input argument 12 has a data type of BYTEINT and a binary representation of
00001100. The input argument 45 has a data type of BYTEINT and a binary representation of 00101101.
The bitwise XOR product of the two arguments results in a BYTEINT value of 33, or binary 00100001,
which is returned by the query.

 SELECT BITXOR(12,45);

Related Information
• Performing Bit-Byte Operations against Arguments with Non-Equal Lengths.
• Teradata Vantage™ - Data Types and Literals, B035-1143.
• For more information about UDF implicit type conversion rules, see “Compatible Types” and

“Parameter Types in Overloaded Functions” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

• For more information on overloaded functions, see “Function Name Overloading” in Teradata
Vantage™ - SQL External Routine Programming, B035-1147.

COUNTSET
Returns the count of the binary bits within the target_arg expression that are either set to 1 or set to 0
depending on the target_value_arg value.

COUNTSET Function Syntax
[TD_SYSFNLIB.] COUNTSET (target_arg [, target_value_arg])

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 225

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

If target_arg is NULL, the function returns NULL.

target_value_arg
An integer value. Only a value of 0 or 1 is allowed. If target_value_arg is not specified, the
default is 1.

If target_value_arg is NULL, the function returns NULL.

Argument Types and Rules

COUNTSET is an overloaded scalar function. It is defined with the following parameter data types for the
following (target_arg [,target_value_arg]) input combinations:

target_arg type target_value_arg type (optional)

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 226

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type is INTEGER.

The result format is the default format for INTEGER.

The default title for COUNTSET is: COUNTSET(target_arg [, target_value_arg]).

Example: Querying with the COUNTSET Function
The following query takes the input argument 23, which has a data type of BYTEINT and a binary
representation of 00010111. Since target_value_arg is not specified, the default value of 1 is used.
Therefore, the function counts the number of bit values that are set to 1. The query result is an INTEGER
value of 4.

 SELECT COUNTSET(23);

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.
• For information on default data type formats, see Teradata Vantage™ - Data Types and

Literals, B035-1143.

GETBIT
Returns the value of the bit specified by target_bit_arg from the target_arg byte expression.

GETBIT Function Syntax
[TD_SYSFNLIB.] GETBIT (target_arg, target_bit_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 227

If target_arg is NULL, the function returns NULL.

target_bit_arg
An integer expression.

The range of input values for target_bit_arg can vary from 0 (bit 0 is the least significant bit)
to the (sizeof(target_arg) - 1).

If target_bit_arg is negative or out-of-range (meaning that it exceeds the size of target_arg),
an error is returned.

If target_bit_arg is NULL, the function returns NULL.

Argument Types and Rules

GETBIT is an overloaded scalar function. It is defined with the following parameter data types for the
following (target_arg, target_bit_arg) input combinations:

target_arg type target_bit_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 228

Result Type and Attributes
GETBIT returns a BYTEINT value of either 0 or 1, reflecting the value of the bit residing at the target_bit_arg
position of the target_arg byte expression.

The result format is the default format for BYTEINT.

The default title for GETBIT is: GETBIT(target_arg, target_bit_arg).

Example: Querying with the GETBIT Function
The following query gets the value of the third bit of the input argument 23, which has a data type
of BYTEINT and a binary representation of 00010111. The query result is a BYTEINT value of 1 or
binary 00000001.

 SELECT GETBIT(23,2);

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.
• For information on default data type formats, see Teradata Vantage™ - Data Types and

Literals, B035-1143.

ROTATELEFT
Returns an expression rotated to the left by the number of bits you specify, with the most significant bits
wrapping around to the right.

ROTATELEFT Function Syntax
[TD_SYSFNLIB.] ROTATELEFT (target_arg, num_bits_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 229

num_bits_arg
An integer expression indicating the number of bit positions to rotate.

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative rotates the bits to the right instead of the left.

target_arg and/or num_bits_arg are NULL returns NULL.

num_bits_arg is larger than the size of
target_arg

rotates (num_bits_arg MOD sizeof(target_arg)) bits.
The scope of the rotation operation is bounded by the size
of the target_arg expression.

Note:
When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or BIGINT), rotating a
bit into the most significant position will result in the integer becoming negative. This is because all
integers in Vantage are signed integers.

Argument Types and Rules

ROTATELEFT is an overloaded scalar function. It is defined with the following parameter data types for
the following (target_arg, num_bits_arg) input combinations:

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 230

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table.

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for ROTATELEFT is: ROTATELEFT(target_arg, num_bits_arg).

Examples

Example: Querying Input Argument 16 with the ROTATELEFT Function

In the following query, the input argument 16 has a data type of BYTEINT and a binary representation
of 00010000. When this value is rotated left by two bits, the result in binary is 01000000. This value
translates to a BYTEINT value of 64, which is the result returned by the query.

 SELECT ROTATELEFT(16,2);

Example: Querying Input Argument 64 with the ROTATELEDT Function

In the following query, the input argument 64 has a data type of BYTEINT and a binary representation
of 01000000. When this value is rotated left by three bits, the result in binary is 00000010. This value
translates to a BYTEINT value of 2, which is the result returned by the query.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 231

 SELECT ROTATELEFT(64,3);

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.
• For details about UDF implicit type conversion rules, see “Compatible Types” and “Parameter Types

in Overloaded Functions” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

ROTATERIGHT
Returns an expression rotated to the right by the number of bits you specify, with the least significant bits
wrapping around to the left.

ROTATERIGHT Function Syntax
[TD_SYSFNLIB.] ROTATERIGHT (target_arg, num_bits_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

num_bits_arg
An integer expression indicating the number of bit positions to rotate.

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative rotates the bits to the left instead of the right.

target_arg and/or num_bits_arg are NULL returns NULL.

num_bits_arg is larger than the size of
target_arg

rotates (num_bits_arg MOD sizeof(target_arg)) bits.
The scope of the rotation operation is bounded by the size
of the target_arg expression.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 232

Note:
When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or BIGINT), rotating a
bit into the most significant position will result in the integer becoming negative. This is because all
integers in Vantage are signed integers.

Argument Types and Rules

ROTATERIGHT is an overloaded scalar function. It is defined with the following parameter data types for
the following (target_arg, num_bits_arg) input combinations.

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table:

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 233

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for ROTATERIGHT is: ROTATERIGHT(target_arg, num_bits_arg).

For information on default data type formats, see Teradata Vantage™ - Data Types and
Literals, B035-1143.

Examples

Example: Querying Input Argument 32 with the ROTATERIGHT Function

In the following query, the input argument 32 has a data type of BYTEINT and a binary representation
of 00100000. When this value is rotated right by two bits, the result in binary is 00001000. This value
translates to a BYTEINT value of 8, which is the result returned by the query.

 SELECT ROTATERIGHT(32,2);

Example: Querying Input Argument 4 with the ROTATERIGHT Function

In the following query, the input argument 4 has a data type of BYTEINT and a binary representation
of 00000100. When this value is rotated right by four bits, the result in binary is 01000000. This value
translates to a BYTEINT value of 64, which is the result returned by the query.

 SELECT ROTATERIGHT(4,4);

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.

• Teradata Vantage™ - Data Types and Literals, B035-1143.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 234

• For details about UDF implicit type conversion rules, see “Compatible Types” and “Parameter Types
in Overloaded Functions” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

SETBIT
Sets the value of the bit specified by target_bit_arg to the value of target_value_arg in the target_arg
byte expression.

SETBIT Function Syntax
[TD_SYSFNLIB.] SETBIT (target_arg, target_bit_arg [, target_value_arg])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

If target_arg is NULL, the function returns NULL.

target_bit_arg
An integer expression.

If target_bit_arg is NULL, the function returns NULL.

target_value_arg
An integer value. Only a value of 0 or 1 is allowed. If target_value_arg is not specified, the
default is 1.

The range of input values for target_bit_arg can vary from 0 (bit 0 is the least significant bit)
to the (sizeof(target_arg) - 1).

If target_bit_arg is negative or out-of-range (meaning that it exceeds the size of target_arg),
an error is returned.

If target_value_arg is NULL, the function returns NULL.

Argument Types and Rules

SETBIT is an overloaded scalar function. It is defined with the following parameter data types for the
following (target_arg, target_bit_arg [,target_value_arg]) input combinations:

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 235

target_arg type target_bit_arg type target_value_arg type (optional)

BYTEINT INTEGER INTEGER

SMALLINT INTEGER INTEGER

INTEGER INTEGER INTEGER

BIGINT INTEGER INTEGER

VARBYTE(n) INTEGER INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table:

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for SETBIT is: SETBIT(target_arg, target_bit_arg[,target_value_arg]).

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 236

Examples

Example: Querying with the SETBIT Function

The following query takes the input argument 23, which has a data type of BYTEINT and a binary
representation of 00010111, and sets the value of the third bit to 1. The query result is a BYTEINT value
of 23 or binary 00010111.

 SELECT SETBIT(23,2);

Example: Querying Input Argument 23 with the ROTATERIGHT Function

The following query takes the input argument 23, which has a data type of BYTEINT and a binary
representation of 00010111, and sets the value of the third bit to 0. The query result is a BYTEINT value
of 19 or binary 00010011.

 SELECT SETBIT(23,2,0);

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.

• Teradata Vantage™ - Data Types and Literals, B035-1143.

• For details about UDF implicit type conversion rules, see “Compatible Types” and “Parameter Types
in Overloaded Functions” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

SHIFTLEFT
Returns the expression target_arg shifted by the specified number of bits (num_bits_arg) to the left. The bits
in the most significant positions are lost, and the bits in the least significant positions are filled with zeros.

SHIFTLEFT Function Syntax
[TD_SYSFNLIB.] SHIFTLEFT (target_arg, num_bits_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 237

target_arg
A numeric or variable byte expression.

num_bits_arg
An integer expression indicating the number of bit positions to shift.

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative shifts the bits to the right instead of the left.

target_arg and/or num_bits_arg are NULL returns NULL.

num_bits_arg is larger than the size of
target_arg

returns an error.
The scope of the shift operation is bounded by the size of
the target_arg expression. Specifying a shift that is outside
the range of target_arg results in an SQL error.

Note:
When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or BIGINT), shifting a
bit into the most significant position will result in the integer becoming negative. This is because all
integers in Vantage are signed integers.

Argument Types and Rules

SHIFTLEFT is an overloaded scalar function. It is defined with the following parameter data types for the
following (target_arg, num_bits_arg) input combinations:

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 238

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table:

IF the data type of target_arg is... THEN the result type is... AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for SHIFTLEFT is: SHIFTLEFT(target_arg, num_bits_arg).

Example: Querying with the SHIFTLEFT Function
In the following query, the input argument 3 has a data type of BYTEINT and a binary representation of
00000011. When this value is shifted left by two bits, the result in binary is 00001100. This value translates
to a BYTEINT value of 12, which is the result returned by the query.

 SELECT SHIFTLEFT(3,2);

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 239

• For details about UDF implicit type conversion rules, see “Compatible Types” and “Parameter Types
in Overloaded Functions” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

SHIFTRIGHT
Returns the expression target_arg shifted by the specified number of bits (num_bits_arg) to the right. The
bits in the least significant positions are lost, and the bits in the most significant positions are filled with zeros.

SHIFTRIGHT Function Syntax
[TD_SYSFNLIB.] SHIFTRIGHT (target_arg, num_bits_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

num_bits_arg
An integer expression indicating the number of bit positions to shift.

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative shifts the bits to the left instead of the right.

target_arg and/or num_bits_arg are NULL returns NULL.

num_bits_arg is larger than the size of
target_arg

returns an error.
The scope of the shift operation is bounded by the size of
the target_arg expression. Specifying a shift that is outside
the range of target_arg results in an SQL error.

Note:
When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or BIGINT), shifting a bit
out of the most significant position will result in the integer becoming negative. This is because all
integers in Vantage are signed integers.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 240

Argument Types and Rules

SHIFTRIGHT is an overloaded scalar function. It is defined with the following parameter data types for the
following (target_arg, num_bits_arg) input combinations:

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type depends on the data type of the target_arg input argument that is passed to the
function as shown in the following table:

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 241

IF the data type of target_arg is... THEN the result type is...
AND the result format is the
default format for...

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for SHIFTRIGHT is: SHIFTRIGHT(target_arg, num_bits_arg).

Example: Querying with the SHIFTRIGHT Function
In the following query, the input argument 3 has a data type of BYTEINT and a binary representation of
00000011. When this value is shifted right by two bits, the result in binary is 00000000. This value translates
to a BYTEINT value of 0, which is the result returned by the query.

 SELECT SHIFTRIGHT(3,2);

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.

• Teradata Vantage™ - Data Types and Literals, B035-1143.

• For details about UDF implicit type conversion rules, see “Compatible Types” and “Parameter Types
in Overloaded Functions” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

SUBBITSTR
Extracts a bit substring from the target_arg string expression starting at the bit position specified by
position_arg. For the range of bit positions for each data type, see Bit and Byte Numbering Model.

SUBBITSTR Function Syntax
[TD_SYSFNLIB.] SUBBITSTR (target_arg, position_arg, num_bits_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 242

If target_arg is NULL, the function returns NULL.

position_arg
An integer expression indicating the starting position of the bit substring to be extracted.

If position_arg is negative or out-of-range (meaning that it exceeds the size of target_arg), an
error is returned.

If position_arg is NULL, the function returns NULL.

num_bits_arg
An integer expression indicating the length of the bit substring to be extracted. This specifies
the number of bits for the function to return. Because the return value of the function is a
VARBYTE string, the number of bits returned is rounded to the byte boundary greater than
the number of bits requested.

The bits returned is right-justified, and the excess bits (those exceeding the requested
number of bits) are filled with zeros.

If num_bits_arg is negative, or is greater than the number of bits remaining after the starting
position_arg is taken into account, an error is returned.

If num_bits_arg is NULL, the function returns NULL.

Argument Types and Rules

SUBBITSTR is an overloaded scalar function. It is defined with the following parameter data types for the
following (target_arg, position_arg, num_bits_arg) input combinations:

target_arg type position_arg type num_bits_arg type

BYTEINT INTEGER INTEGER

SMALLINT INTEGER INTEGER

INTEGER INTEGER INTEGER

BIGINT INTEGER INTEGER

VARBYTE(n) INTEGER INTEGER

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 243

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If any argument cannot be converted to one of the declared data types
by following UDF implicit conversion rules, it must be explicitly cast.

If any argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type is a VARBYTE string. The size (number of bytes) of the VARBYTE string depends on
the data type of the target_arg input argument and the number of bits requested.

For example:

IF the data type of target_
arg is... THEN the result type is...

AND the result format is the
default format for...

BYTEINT VARBYTE(1) VARBYTE(1)

SMALLINT VARBYTE(2) VARBYTE(2)

INTEGER VARBYTE(4) VARBYTE(4)

BIGINT VARBYTE(8) VARBYTE(8)

VARBYTE(n) VARBYTE(m)
where m is the smallest number of bytes
to accommodate the requested number
of bits.

VARBYTE(m)

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for SUBBITSTR is: SUBBITSTR(target_arg, position_arg, num_bits_arg).

Example: Querying with the SUBBITSTR Function
The following query takes the input argument 20, which has a data type of BYTEINT and a binary
representation of 00010100, and requests that 3 bits be returned starting at the third bit. The 3 bits returned
are 101, which are placed into a right-justified zero-filled byte. The result from the query is a value of 5, or
binary 00000101, with the result data type being VARBYTE(1).

 SELECT SUBBITSTR(20,2,3);

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 244

Related Information
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.
• For details about UDF implicit type conversion rules, see “Compatible Types” and “Parameter Types

in Overloaded Functions” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

TO_BYTE
Converts a numeric data type to Vantage byte representation (byte value) of the input value.

The number of bytes returned by the function varies according to the data type of the target_arg value.

TO_BYTE Function Syntax
[TD_SYSFNLIB.] TO_BYTE (target_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

target_arg
A numeric or variable byte expression.

If target_arg is NULL, the function returns NULL.

Argument Types and Rules

TO_BYTE is an overloaded scalar function. It is defined with the following parameter data types:

• BYTEINT
• SMALLINT
• INTEGER
• BIGINT

All expressions passed to this function must either match these declared data types or can be converted
to these types using the implicit data type conversion rules that apply to UDFs.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 245

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to one of the declared data types by
following UDF implicit conversion rules, it must be explicitly cast.

If the argument cannot be converted to one of the declared data types, an error is returned indicating that
no function exists that matches the DML UDF expression submitted.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result data type is a BYTE value (a fixed byte data type). The size of the byte string returned varies
according to the data type of the target_arg input argument as shown in the following table.

IF the data type of target_arg is... THEN the result type is...
AND the result format is the default
format for...

BYTEINT BYTE(1) BYTE(1)

SMALLINT BYTE(2) BYTE(2)

INTEGER BYTE(4) BYTE(4)

BIGINT BYTE(8) BYTE(8)

The default title for TO_BYTE is: TO_BYTE(target_arg).

Example: Querying with the TO_BYTE Function
In the following query, the input argument 23 has a data type of BYTEINT and a binary representation of
00010111. Performing a TO_BYTE operation on this value results in the hexadecimal value of 00010111
being returned with the data type of BYTE(1).

 SELECT TO_BYTE(23);

Related Information
• For information on the server representation of integral values, see Teradata Vantage™ - Data Types

and Literals, B035-1143.
• For more information on overloaded functions, see “Function Name Overloading” in Teradata

Vantage™ - SQL External Routine Programming, B035-1147.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 246

• For details about UDF implicit type conversion rules, see “Compatible Types” and “Parameter Types
in Overloaded Functions” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

6: Bit/Byte Manipulation Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 247

Built-in functions return information about the system. Built-in functions are sometimes referred to as
special registers.

The built-in functions can be used anywhere that a literal can appear.

If a SELECT statement that contains a built-in function references a table name, then the result of the query
contains one row for every row of the table that satisfies the search condition.

ACCOUNT
Returns the account string for the current user.

ACCOUNT Function Syntax
ACCOUNT

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for ACCOUNT are as follows:

Data Type Format Title

VARCHAR(30) CHARACTER SET UNICODE X(30) Account

Usage Notes
If a SET SESSION ACCOUNT statement has changed the current account string, then the ACCOUNT
function returns the new account string based on the request level: whether for an entire session or for an
individual request.

Example: Requesting Account Strings for a User
The following statement requests the account string for the current user:

 SELECT ACCOUNT;

Built-In Functions

7

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 248

The system responds with something like the following:

 Account

 $M_D2102

CURRENT_DATE/CURDATE
Returns the current date.

CURRENT_DATE provides similar functionality to the Teradata function DATE using ANSI-compliant
syntax. For information on the Teradata DATE function, see DATE.

CURRENT_DATE/CURDATE Function Syntax
{ CURRENT_DATE | CURDATE } [()]
 [AT { LOCAL | [TIME ZONE] { expression | time_zone_string } }]

Syntax Elements

AT LOCAL
The value returned is constructed from the session time and session time zone if the DBS
Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed from the time value local
to Vantage and the session time zone.

AT [TIME ZONE] expression

Use the time zone displacement defined by expression.

The data type of expression should be INTERVAL HOUR(2) TO MINUTE or it must be a data
type that can be implicitly converted to INTERVAL HOUR(2) TO MINUTE.

AT [TIME ZONE] time_zone_string
time_zone_string determines the time zone displacement.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

Result Type and Attributes
The result data type, format, and title for CURRENT_DATE are:

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 249

Data Type Format Title

DATE Default format for the DATE data type when the Dateform mode is set to IntegerDate.
For more information on the default formats, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.

Date

To convert CURRENT_DATE, use Teradata explicit conversion syntax or ANSI CAST syntax.

Usage Notes
The optional parenthesis is syntax supported by the ODBC driver. For example:

SELECT CURRENT_DATE();

CURRENT_DATE returns the current date at the time when the request started. If CURRENT_DATE is
invoked more than once during the request, the same date is returned. The date returned does not change
during the duration of the request.

If you specify CURRENT_DATE without the AT clause or CURRENT_DATE AT LOCAL, then the value
returned depends on the setting of the DBS Control flag TimeDateWZControl as follows:

• If the TimeDateWZControl flag is enabled, CURRENT_DATE returns a date constructed from the
session time and session time zone.

• If the TimeDateWZControl flag is disabled, CURRENT_DATE returns a date constructed from the time
value local to Vantage and the session time zone.

For more information, see “DBS Control (dbscontrol)” in Teradata Vantage™ - Database
Utilities, B035-1102.

CURRENT_DATE returns a value that is adjusted to account for the start and end of daylight saving time
(DST) only in the following cases:

• CURRENT_DATE is specified with AT [TIME ZONE] time_zone_string, where time_zone_string
follows different DST and standard time zone displacements.

• CURRENT_DATE is specified with AT LOCAL or without an AT clause and the session time zone was
defined with a time zone string that follows different DST and standard time zone displacements.

Examples

Example: Returning the Current Date for INTERVAL -'08:00' HOUR
TO MINUTE

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 250

 SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;
 SELECT CURRENT_DATE AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;
 SELECT CURRENT_DATE AT INTERVAL -'08:00' HOUR TO MINUTE;
 SELECT CURRENT_DATE AT TIME ZONE INTERVAL -'08' HOUR;
 SELECT CURRENT_DATE AT INTERVAL -'08' HOUR;
 SELECT CURRENT_DATE AT TIME ZONE '-08:00';
 SELECT CURRENT_DATE AT '-08:00';
 SELECT CURRENT_DATE AT TIME ZONE '-8';
 SELECT CURRENT_DATE AT '-8';
 SELECT CURRENT_DATE AT TIME ZONE -8;
 SELECT CURRENT_DATE AT -8;
 SELECT CURRENT_DATE AT -8.0;

The above SELECT statements return the current date based on the time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP '2008-06-01
06:30:00.000000+00:00', these SELECT statements would return '08/05/31' as the date.

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and the DBS
Control flag TimeDateWZControl is enabled, the statement would return
'08/06/01' as the current date based on the current session time and time zone displacement, INTERVAL
'01:00' HOUR TO MINUTE. For example:

 SELECT CURRENT_DATE;
 SELECT CURRENT_DATE AT LOCAL;

SELECT CURRENT_DATE();
 SELECT CURRENT_DATE() AT LOCAL;

The date returned is not adjusted to account for the start or end of daylight saving time.

Example: Returning the Current Date for INTERVAL -'09:00' HOUR
TO MINUTE

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

 SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;
 SELECT CURRENT_DATE AT INTERVAL '09:00' HOUR TO MINUTE;

The above SELECT statement returns the current date based on the time zone displacement,
INTERVAL '09:00' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP '2008-06-01
19:30:00.000000+00:00', the SELECT statement would return '08/06/02' as the date.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 251

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and the DBS
Control flag TimeDateWZControl is enabled, the statement would return
'08/06/01' as the current date based on the current session time and time zone displacement, INTERVAL
'01:00' HOUR TO MINUTE.

The date returned is not adjusted to account for the start or end of daylight saving time.

Example: Returning the Current Date for INTERVAL -'05:45' HOUR
TO MINUTE

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

 SET TIME ZONE INTERVAL '10:00' HOUR TO MINUTE;
 SELECT CURRENT_DATE AT '05:45';
 SELECT CURRENT_DATE AT 5.75;

The above SELECT statements return the current date based on the time zone displacement,
INTERVAL '05:45' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP '2008-06-01
17:30:00.000000+00:00', the SELECT statements would return '08/06/01' as the date.

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and the DBS
Control flag TimeDateWZControl is enabled, the statement would return
'08/06/02' as the current date based on the current session time and time zone displacement, INTERVAL
'10:00' HOUR TO MINUTE.

The date returned is not adjusted to account for the start or end of daylight saving time.

Example: Returning the Current Date for the Time Zone String,
'America Pacific'

The following queries return the current date at the time zone displacement based on the time zone string,
'America Pacific'. Vantage determines the time zone displacement based on the time zone string and
the CURRENT_TIMESTAMP AT '00:00' (that is, at UTC). The date returned is automatically adjusted to
account for the start and end of daylight saving time.

 SELECT CURRENT_DATE AT TIME ZONE 'America Pacific';
 SELECT CURRENT_DATE AT 'America Pacific';

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 252

Example: Changing the Default Output Format

To change the default output format of the CURRENT_DATE result, use Teradata explicit conversion
syntax and specify the FORMAT phrase. For example, the following statement requests the current date
and specifies a format that is different from the default:

 SELECT CURRENT_DATE (FORMAT 'MMMBDD,BYYYY');

The result is similar to:

 Date

 May 31, 2007

Related Information
• For information on default data type formats and the FORMAT phrase, see “Data Type Formats and

Format Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.
• For an example that uses Teradata explicit conversion syntax to change the default output format, see

Example: Changing the Default Output Format.
• For information about time zone strings, see Teradata Vantage™ - Data Types and

Literals, B035-1143.

CURRENT_ROLE
Returns the current role of the current authorized user.

CURRENT_ROLE is not supported in the FastLoad and MultiLoad utilities.

CURRENT_ROLE Function Syntax
CURRENT_ROLE

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for CURRENT_ROLE are as follows.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 253

Data Type Format Title

VARCHAR(30) CHARACTER SET UNICODE X(30) Current_Role

CURRENT_ROLE Usage Notes

Result Value

If you are not accessing Vantage through a proxy connection, CURRENT_ROLE functions exactly like the
ROLE built-in function and returns the session current role, which is the current role of the session user.
For more information, see ROLE.

If you are accessing Vantage through a proxy connection, then CURRENT_ROLE returns the current role
of the proxy user as shown in the following table.

IF the current role for the session
is … THEN the result value is …

a role set by PROXYROLE the name of the role.

the default If there is one proxy role in the CONNECT THROUGH privilege
of the proxy user, the result value is the name of the role.
If there are multiple proxy roles in the CONNECT THROUGH
privilege of the proxy user, the result value is ALL.

PROXYROLE=ALL ALL

PROXYROLE=NONE or NULL NULL

Example: Selecting CURRENT_ROLE
You can identify the current role for the current authorized user with the following statement:

 SELECT CURRENT_ROLE;

The system displays a response similar to the following:

 Current_Role

 Buyers_role

CURRENT_TIME/CURTIME
Returns the current time.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 254

The fields in CURRENT_TIME are:

• HOUR
• MINUTE
• SECOND

The seconds precision of the result of CURRENT_TIME is limited to hundredths of a second.
CURRENT_TIME returns zeros for any digits to the right of the two most significant digits in the
fractional portion of seconds.

• TIMEZONE_HOUR
• TIMEZONE_MINUTE

CURRENT_TIME provides similar functionality to the Teradata function TIME using ANSI-compliant syntax.
For information on the Teradata TIME function, see TIME.

CURRENT_TIME/CURTIME Function Syntax
{ CURRENT_TIME | CURTIME () } [(fractional_precision)]
 [AT { LOCAL | [TIME ZONE] { expression | time_zone_string } }]

Syntax Elements

fractional_precision
A precision range for the returned value. The valid range is 0 through 6. The default is 0.

AT LOCAL
The value returned is constructed from the session time and session time zone if the DBS
Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed from the time value local
to Vantage and the session time zone.

AT [TIME ZONE] expression

Use the time zone displacement defined by expression.

The data type of expression should be INTERVAL HOUR(2) TO MINUTE or it must be a data
type that can be implicitly converted to INTERVAL HOUR(2) TO MINUTE.

AT [TIME ZONE] time_zone_string
time_zone_string determines the time zone displacement.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 255

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

Result Type and Attributes
The result data type, format, and title for CURRENT_TIME are:

Data Type Format Title

TIME WITH TIME ZONE Default format for the TIME WITH TIME ZONE
data type.

Current Time
(fractional_precision)

To convert CURRENT_TIME, use Teradata explicit conversion syntax or ANSI CAST syntax.

Usage Notes
CURRENT_TIME returns the current time when the request started. If CURRENT_TIME is invoked more
than once during the request, the same time is returned. The time returned does not change during the
duration of the request.

If you specify CURRENT_TIME without the AT clause or CURRENT_TIME AT LOCAL, then the value
returned depends on the setting of the DBS Control flag TimeDateWZControl as follows:

• If the TimeDateWZControl flag is enabled, CURRENT_TIME returns a time constructed from the
session time and session time zone.

• If the TimeDateWZControl flag is disabled, CURRENT_TIME returns a time constructed from the time
value local to Vantage and the session time zone.

The following occurs when using CURRENT_TIME with daylight saving time (DST):

• When TimeDateWZControl flag is enabled and the session time zone is defined with a time zone
string that follows different Daylight Saving Time and standard time zone displacements, then
CURRENT_TIME AT LOCAL gives TIME value corresponding to Standard time zone rather than the
Daylight Saving Time time zone.

• During the Daylight Saving Time period, CURRENT_TIME AT LOCAL follows Standard time zone,
whereas CURRENT_TIME follows the Daylight Saving Time zone. During Standard time zone period,
both CURRENT_TIME and CURRENT_TIME AT LOCAL follow the standard time zone.

For example, during DST period:

BTEQ -- Enter your SQL request or BTEQ command:
.os date
Sat Sep 5 14:00:23 PDT 2015

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 256

BTEQ -- Enter your SQL request or BTEQ command:
.os date -u
Sat Sep 5 21:00:26 UTC 2015

BTEQ -- Enter your SQL request or BTEQ command:
select current_time, current_time at local;

*** Query completed. One row found. 2 columns returned.
 *** Total elapsed time was 1 second.

Current Time(0) Current Time(0) AT LOCAL
--------------- ------------------------
14:00:30-07:00 13:00:30-08:00

During Standard Time Zone Period:

BTEQ -- Enter your SQL request or BTEQ command:
.os date
Fri Nov 6 04:18:04 PST 2015

BTEQ -- Enter your SQL request or BTEQ command:
.os date -u
Fri Nov 6 12:18:07 UTC 2015

BTEQ -- Enter your SQL request or BTEQ command:
select current_time, current_time at local;

*** Query completed. One row found. 2 columns returned.
 *** Total elapsed time was 1 second.

Current Time(0) Current Time(0) AT LOCAL
--------------- ------------------------
04:18:20-08:00 04:18:20-08:00

Note:
If CURRENT_TIME is used in a stored procedure, the procedure must be recompiled whenever the
DBS Control fields System TimeZone Hour or System TimeZone Minute are changed. Recompiling
stored procedures is not necessary if a time zone string is set using the tdlocaledef utility.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 257

Examples

Example: Requesting the Current Time

If the DBS Control flag TimeDateWZControl is enabled, the following statements request the current time
based on the current session time and time zone.

 SELECT CURRENT_TIME;
 SELECT CURRENT_TIME AT LOCAL;

The result is similar to:

 Current Time(0)

 15:53:34+00:00

When TimeDateWZControl flag is enabled and the session time zone is defined with a time zone string
that follows different Daylight Saving Time and standard time zone displacements, then CURRENT_TIME
AT LOCAL gives TIME value corresponding to Standard time zone rather than the Daylight Saving Time
time zone.

During the Daylight Saving Time period, CURRENT_TIME AT LOCAL follows Standard time zone,
whereas CURRENT_TIME follows the Daylight Saving Time zone. During Standard time zone period,
both CURRENT_TIME and CURRENT_TIME AT LOCAL follow the standard time zone.

Example: Requesting the Current Time with a Time Zone String

The following queries return the current time at the time zone displacement based on the time zone string,
'America Pacific'. The time returned is automatically adjusted to account for the start and end of daylight
saving time.

 SELECT CURRENT_TIME AT TIME ZONE 'America Pacific';
 SELECT CURRENT_TIME AT 'America Pacific';

Example: Changing the Default Output Format

To change the default output format of the CURRENT_TIME result, use Teradata explicit conversion
syntax and specify the FORMAT phrase. For example, the following statement requests the current time
and specifies a format that is different from the default:

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 258

 SELECT CURRENT_TIME (FORMAT 'HH:MIBT');

The result looks like this:

 Current Time(0)

 02:29 PM

Related Information
• For information about AT LOCAL and AT TIME ZONE time zone specifiers, see Teradata Vantage™

- Data Types and Literals, B035-1143.
• For information on default data type formats and the FORMAT phrase, see “Data Type Formats and

Format Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.
• For an example that uses Teradata explicit conversion syntax to change the default output format, see

Example: Changing the Default Output Format.
• For details, see “CREATE PROCEDURE (SQL Form)” in Teradata Vantage™ - SQL Data Definition

Language Syntax and Examples, B035-1144 and “DBS Control (dbscontrol)” in Teradata Vantage™
- Database Utilities, B035-1102.

CURRENT_TIMESTAMP
Returns the current timestamp.

The fields in CURRENT_TIMESTAMP are:

• YEAR
• MONTH
• DAY
• HOUR
• MINUTE
• SECOND

The seconds precision of the result of CURRENT_TIMESTAMP is limited to hundredths of a second.
CURRENT_TIMESTAMP returns zeros for any digits to the right of the two most significant digits in the
fractional portion of seconds.

• TIMEZONE_HOUR
• TIMEZONE_MINUTE

CURRENT_TIMESTAMP Function Syntax

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 259

CURRENT_TIMESTAMP [(fractional_precision)]
 [AT { LOCAL | [TIME ZONE] { expression | time_zone_string } }]

Syntax Elements

fractional_precision
A precision range for the returned value. The valid range is 0 through 6. The default is 0.

AT LOCAL
The value returned is constructed from the session time and session time zone if the DBS
Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed from the time value local
to Vantage and the session time zone.

AT [TIME ZONE] expression

Use the time zone displacement defined by expression.

The data type of expression should be INTERVAL HOUR(2) TO MINUTE or it must be a data
type that can be implicitly converted to INTERVAL HOUR(2) TO MINUTE.

AT [TIME ZONE] time_zone_string
time_zone_string determines the time zone displacement.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

Result Type and Attributes
The result data type, format, and title for CURRENT_TIMESTAMP are:

Data Type Format Title

TIMESTAMP WITH
TIME ZONE

Default format for the TIMESTAMP WITH TIME ZONE
data type.
For more information on the default formats, see “Data
Type Formats and Format Phrases” in Teradata Vantage™
- Data Types and Literals, B035-1143.

Current TimeStamp
(fractional_
precision)

To convert CURRENT_TIMESTAMP, use Teradata explicit conversion syntax or ANSI CAST syntax. For an
example that uses Teradata explicit conversion syntax to change the default output format, see Example:
Changing the Default Output Format.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 260

Usage Notes
CURRENT_TIMESTAMP returns the current timestamp when the request started. If
CURRENT_TIMESTAMP is invoked more than once during the request, the same timestamp is returned.
The timestamp returned does not change during the duration of the request.

If you specify CURRENT_TIMESTAMP without the AT clause or CURRENT_TIMESTAMP AT LOCAL,
then the value returned depends on the setting of the DBS Control flag TimeDateWZControl as follows:

• If the TimeDateWZControl flag is enabled, CURRENT_TIMESTAMP returns a timestamp constructed
from the session time and session time zone.

• If the TimeDateWZControl flag is disabled, CURRENT_TIMESTAMP returns a timestamp constructed
from the time value local to Vantage and the session time zone.

CURRENT_TIMESTAMP returns a value that is adjusted to account for the start and end of daylight saving
time (DST) only in the following cases:

• CURRENT_TIMESTAMP is specified with AT [TIME ZONE] time_zone_string, where
time_zone_string follows different DST and standard time zone displacements.

• CURRENT_TIMESTAMP is specified with AT LOCAL or without an AT clause and the session
time zone was defined with a time zone string that follows different DST and standard time
zone displacements.

Note:
If CURRENT_TIMESTAMP is used in a stored procedure, the procedure must be recompiled
whenever the DBS Control fields System TimeZone Hour or System TimeZone Minute are changed.
Recompiling stored procedures is not necessary if a time zone string is set using the tdlocaledef utility.

Examples

Example: Requesting the Current Timestamp

If the DBS Control flag TimeDateWZControl is enabled, the following statements request the current
timestamp based on the current session time and time zone.

 SELECT CURRENT_TIMESTAMP;
 SELECT CURRENT_TIMESTAMP AT LOCAL;

The result is similar to:

 Current TimeStamp(6)

 2001-11-27 15:53:34.910000+00:00

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 261

If the session time zone was defined with a time zone string that follows different DST and standard time
zone displacements, then the timestamp returned is automatically adjusted to account for the start and
end of daylight saving time. Otherwise, no adjustment for daylight saving time is done.

Example: CURRENT_TIMESTAMP and the TimeDateWZControl Flag

This example shows the effect of the DBS Control flag TimeDateWZControl on the results returned
by CURRENT_TIMESTAMP when the function is specified without an AT clause or with an AT
LOCAL clause.

Assume the following:

• The time local to Vantage is 11:59:00 Coordinated Universal Time (UTC), January 31, 2010.
• User TK lives in Tokyo, and has a time zone defined as +9 hours offset from UTC.
• User LA lives in Los Angeles, and has a time zone defined as -8 hours offset from UTC.
• User TK and User LA run the CURRENT_TIMESTAMP function at exactly the same time.

If the TimeDateWZControl flag is enabled:

For User TK, the CURRENT_TIMESTAMP function returns:

 2010-02-01 10:59:00.000000+09:00

For User LA, the CURRENT_TIMESTAMP function returns:

 2010-01-31 16:59:00.000000-08:00

If the TimeDateWZControl flag is disabled:

For User TK, the CURRENT_TIMESTAMP function returns:

 2010-01-31 11:59:00.000000+09:00

For User LA, the CURRENT_TIMESTAMP function returns:

 2010-01-31 11:59:00.000000-08:00

Example: Requesting the Current Timestamp with a Time Zone String

The following queries return the current timestamp at the time zone displacement based on the time zone
string, 'America Pacific'. The timestamp returned is automatically adjusted to account for the start and end
of daylight saving time.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 262

 SELECT CURRENT_TIMESTAMP AT TIME ZONE 'America Pacific';
 SELECT CURRENT_TIMESTAMP AT 'America Pacific';

Example: Changing the Default Output Format

To change the default output format of the CURRENT_TIMESTAMP result, use Teradata explicit
conversion syntax and specify the FORMAT phrase. For example, the following statement requests the
current timestamp and specifies a format that is different from the default:

 SELECT CURRENT_TIMESTAMP (FORMAT 'MMMBDD,BYYYYBHH:MIBT');

The result looks like this:

 Current TimeStamp(6)

 Feb 19, 2002 07:45 am

Related Information
• For information about time zone strings, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• Example: Changing the Default Output Format
• “CREATE PROCEDURE (SQL Form)” in Teradata Vantage™ - SQL Data Definition Language Syntax

and Examples, B035-1144
• “DBS Control (dbscontrol)” in Teradata Vantage™ - Database Utilities, B035-1102
• For information on default data type formats and the FORMAT phrase, see “Data Type Formats and

Format Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.

CURRENT_USER
Provides the user name of the current authorized user.

CURRENT_USER Function Syntax
CURRENT_USER

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 263

Result Type and Attributes
The data type, format, and title for CURRENT_USER are as follows.

Data Type Format Title

VARCHAR(30) CHARACTER SET UNICODE X(30) Current_User

CURRENT_USER Usage Notes

Result Value

If you are accessing Vantage through a proxy connection, CURRENT_USER returns the proxy user
name. Otherwise, it functions exactly like the USER built-in function and returns the session user name.
For more information, see USER.

Examples

Example: Identifying the Current User

You can identify the current authorized user with the following statement:

 SELECT CURRENT_USER;

The system responds with something like the following:

 Current_User

 BO-JSMITH

Example: Selecting the Job Title for the Current User

The following example selects the job title for the current authorized user:

 SELECT JobTitle FROM Employee WHERE Name = CURRENT_USER;

DATABASE
Returns the name of the default database for the current user.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 264

If a DATABASE request has changed the current default database, then the DATABASE function returns the
new name of the default.

DATABASE Function Syntax
DATABASE

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for DATABASE are as follows:

Data Type Format Title

VARCHAR(30) CHARACTER SET UNICODE X(30) Database

Example: Requesting the Name of the Default Database
The following statement requests the name of the default database:

 SELECT DATABASE;

The system responds with something like the following:

 Database

 Customer_Service

DATE
Returns the current date.

DATE Function Syntax
DATE [AT { LOCAL | [TIME ZONE] { expression | time_zone_string } }]

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 265

Syntax Elements

AT LOCAL
The value returned is constructed from the session time and session time zone if the DBS
Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed from the time value local
to Vantage and the session time zone.

AT [TIME ZONE] expression

Use the time zone displacement defined by expression.

The data type of expression should be INTERVAL HOUR(2) TO MINUTE or it must be a data
type that can be implicitly converted to INTERVAL HOUR(2) TO MINUTE.

AT [TIME ZONE] time_zone_string
time_zone_string determines the time zone displacement.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

Result Type and Attributes
The default format of DATE depends on the value of the Dateform mode. The data type, format, and title
for DATE are as follows:

Data Type
Format

Title
Dateform Mode DATE Function Format

DATE INTEGERDATE the default format for DATE data types as specified in the SDF. Date

ANSIDATE 'YYYY-MM-DD'

Usage Notes
DATE returns the current date at the time when the request started. If DATE is invoked more than once
during the request, the same date is returned. The date returned does not change during the duration of
the request.

If you specify DATE without the AT clause or DATE AT LOCAL, then the value returned depends on the
setting of the DBS Control flag TimeDateWZControl as follows:

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 266

• If the TimeDateWZControl flag is enabled, DATE returns a date constructed from the session time and
session time zone.

• If the TimeDateWZControl flag is disabled, DATE returns a date constructed from the time value local
to Vantage and the session time zone.

DATE returns a value that is adjusted to account for the start and end of daylight saving time (DST) only
in the following cases:

• DATE is specified with AT [TIME ZONE] time_zone_string, where time_zone_string follows different
DST and standard time zone displacements.

• DATE is specified with AT LOCAL or without an AT clause and the session time zone was defined with
a time zone string that follows different DST and standard time zone displacements.

DATE cannot appear as the first argument in a user-defined method invocation.

DATE versus CURRENT_DATE

DATE is deprecated. Use the ANSI SQL:2011 compliant CURRENT_DATE function instead.

Examples
Example 1: Returning the Current Date Based on INTERVAL -'08:00' HOUR
TO MINUTE

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;
SELECT DATE AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;
SELECT DATE AT INTERVAL -'08:00' HOUR TO MINUTE;
SELECT DATE AT TIME ZONE INTERVAL -'08' HOUR;
SELECT DATE AT INTERVAL -'08' HOUR;
SELECT DATE AT TIME ZONE '-08:00';
SELECT DATE AT '-08:00';
SELECT DATE AT TIME ZONE '-8';
SELECT DATE AT '-8';
SELECT DATE AT TIME ZONE -8;
SELECT DATE AT -8;
SELECT DATE AT -8.0;

The above SELECT statements return the current date based on the time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP '2008-06-01
06:30:00.000000+00:00', these SELECT statements would return '08/05/31' as the date.

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and the DBS
Control flag TimeDateWZControl is enabled, the statement would return

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 267

'08/06/01' as the current date based on the current session time and time zone displacement, INTERVAL
'01:00' HOUR TO MINUTE. For example:

 SELECT DATE;
 SELECT DATE AT LOCAL;

The date returned is not adjusted to account for the start or end of daylight saving time.

Example 2: Changing the Presentation by 'mm-dd-yy'

Use the FORMAT phrase to change the presentation:

 SELECT DATE (FORMAT 'mm-dd-yy');
 Date

 03-30-96

Example 3: Returning the Current Date Based on Time Zone String
'America Pacific'

The following queries return the current date at the time zone displacement based on the time zone string,
'America Pacific'. Vantage determines the time zone displacement based on the time zone string and
the CURRENT_TIMESTAMP AT '00:00' (that is, at UTC). The date returned is automatically adjusted to
account for the start and end of daylight saving time.

 SELECT DATE AT TIME ZONE 'America Pacific';
 SELECT DATE AT 'America Pacific';

Example 4: Changing the Presentation by 'mmmbdd,byyyy'

Another form gives:

 SELECT DATE (FORMAT 'mmmbdd,byyyy');
 Date

 Mar 30, 1996

Related Information
• For information about dbscontrol, see “DBS Control (dbscontrol)” in Teradata Vantage™ - Database

Utilities, B035-1102.
• For information about time zone strings, see Teradata Vantage™ - Data Types and

Literals, B035-1143.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 268

• For information on default data type formats, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ - Data Types and Literals, B035-1143.

• For information about DATE versus CURRENT_DATE, see CURRENT_DATE/CURDATE.

NOW
Returns current date and current time as a TIMESTAMP value.

NOW Function Syntax
NOW ()

ANSI Compliance
This statement is ANSI SQL:2011, but includes non-ANSI Vantage extensions.

Result Type and Attributes
The result data type, format, and title are:

Data Type Format Title

TIMESTAMP(0) Default format for date, followed by time without a fraction of a second. NOW()

Example
Example of NOW function usage:

SELECT NOW()

Related Information
CURRENT_DATE/CURDATE and CURRENT_TIME/CURTIME.

PROFILE
Returns the current profile for the session or NULL if none.

PROFILE Function Syntax
PROFILE

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 269

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for PROFILE are as follows.

Data Type Format Title

VARCHAR(30) CHARACTER SET UNICODE X(30) Profile

Example
You can identify the current profile for the session with the following statement:

 SELECT PROFILE ;

ROLE
Returns the session current role.

ROLE is not supported in the FastLoad and MultiLoad utilities.

ROLE Function Syntax
ROLE

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for ROLE are as follows.

Data Type Format Title

VARCHAR(30) CHARACTER SET UNICODE X(30) Role

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 270

ROLE Usage Notes

Result Value

The session logon can be not directory-based or directory-based.

If you are accessing Vantage through a proxy connection, and you want to get the current role of the proxy
user, use the CURRENT_ROLE built-in function.

Session logon is not directory-based

If the session logon is not directory-based, refer to the following table.

Current Role for the Session Result Value

Existing role Name of the role

ALL 'ALL'

NONE or NULL NULL

Session logon is directory-based

If the session logon is directory-based, refer to the following table.

Session Result Value

Assigned a set of directory-managed roles and does not change the current role 'EXTERNAL'

Uses a SET ROLE EXTERNAL statement

• does not have an assigned set of directory-managed roles,
• maps to a permanent user that has a default database-managed role, and
• does not change the current role

Name of the
default role of the
permanent user

Uses a SET ROLE role_name statement, where role_name is either a
directory-managed or database-managed role

Name of the
specified role

Uses a SET ROLE ALL statement 'ALL'

• Not assigned a set of directory-managed roles,
• Does not change the current role, and one of the following condition is true”

Directory-based logon does not map to a permanent user
Permanent user that the directory-based logon maps to does not have a
default database-managed role

NULL

Uses a SET ROLE NONE statement

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 271

Session Result Value

Uses a SET ROLE NULL statement

Example: Identifying the Session Current Role
You can identify the session current role with the following statement:

 SELECT ROLE;

The system responds with something like the following:

 Role

 EXTERNAL

SESSION
Returns the number of the session for the current user.

SESSION Function Syntax
SESSION

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for SESSION are as follows.

Data Type Format Session

INTEGER Default format for the INTEGER data type.
For more information on the default formats, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.

Session

Example: Identifying the Session Number for the Current User
The following statement identifies the number of the session for the current user:

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 272

 SELECT SESSION;

The system responds with something like the following:

 Session

 1048

TEMPORAL_DATE
Returns the current transaction date where the evaluation is based on the session time zone.

TEMPORAL_DATE is not supported in a partitioning expression for the PARTITION BY clause that defines
a partitioned primary index.

TEMPORAL_DATE Function Syntax
TEMPORAL_DATE

Result Type and Attributes
The result data type, format, and title for TEMPORAL_DATE are as follows.

Data Type Format Title

DATE Default format for the DATE data type when the Dateform mode is set to IntegerDate.
For details on default formats, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ - Data Types and Literals, B035-1143.

Date

Usage Notes
The value of TEMPORAL_DATE is the same for all requests submitted in a single transaction.

The system uses the session time zone to evaluate TEMPORAL_DATE.

When TEMPORAL_DATE appears in a CHECK constraint or DEFAULT clause, the result value is
evaluated when the request applies the CHECK constraint (during an insert or update) or when the request
uses the DEFAULT value for a given column.

TEMPORAL_TIMESTAMP
Returns the current transaction timestamp where the evaluation is based on the session time zone.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 273

The seconds precision of the result of TEMPORAL_TIMESTAMP is limited to hundredths of a second.
TEMPORAL_TIMESTAMP returns zeros for any digits to the right of the two most significant digits in the
fractional portion of seconds.

TEMPORAL_TIMESTAMP Function Syntax
TEMPORAL_TIMESTAMP [(precision)]

Syntax Elements

precision
A precision range for the returned value. The valid range is 0 through 6. The default is 0.

Result Type and Attributes
The result data type, format, and title for TEMPORAL_TIMESTAMP are as follows.

Data Type Format Title

TIMESTAMP(n) WITH TIME ZONE, where n is the
same as the precision argument or 6 if omitted

Default format for the
TIMESTAMP WITH TIME
ZONE type.

Timestamp

Usage Notes
The value of TEMPORAL_TIMESTAMP is the same for all requests submitted in a single transaction.

The system uses the session time zone to evaluate TEMPORAL_TIMESTAMP.

When TEMPORAL_TIMESTAMP appears in a CHECK constraint or DEFAULT clause, the result value is
evaluated when the request applies the CHECK constraint (during an insert or update) or when the request
uses the DEFAULT value for a given column.

Related Information
• ANSI Temporal Table Support Teradata Vantage™ - Temporal Table Support, B035-1182.
• For details on default formats, see “Data Type Formats and Format Phrases” in Teradata Vantage™

- Data Types and Literals, B035-1143.

TIME
Returns the current time.

TIME is deprecated. Use the ANSI SQL:2011 compliant CURRENT_TIME function instead.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 274

TIME Function Syntax
TIME [AT { LOCAL | [TIME ZONE] { expression | time_zone_string } }]

Syntax Elements

LOCAL
The value returned is constructed from the session time and session time zone if the DBS
Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed from the time value local
to Vantage and the session time zone.

TIME ZONE
Use the time zone displacement defined by expression.

expression
The data type of expression should be INTERVAL HOUR(2) TO MINUTE or it must be a data
type that can be implicitly converted to INTERVAL HOUR(2) TO MINUTE.

time_zone_string
time_zone_string determines the time zone displacement.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

Result Type and Attributes
The data type, format, and title for TIME are as follows:

Data Type Format Title

FLOAT HHMMSS.CC (hours, minutes, seconds, hundredths of a second) Time

Usage Notes
TIME returns the current time when the request started. If TIME is invoked more than once during the
request, the same time is returned. The time returned does not change during the duration of the request.

If you specify TIME without the AT clause or TIME AT LOCAL, then the value returned depends on the
setting of the DBS Control flag TimeDateWZControl as follows:

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 275

• If the TimeDateWZControl flag is enabled, TIME returns a time constructed from the session time and
session time zone.

• If the TimeDateWZControl flag is disabled, TIME returns a time constructed from the time value local
to Vantage and the session time zone.

TIME data is stored internally in UTC, which can affect how TIME result values sort.

TIME returns a value that is adjusted to account for the start and end of daylight saving time (DST) only in
the following cases:

• TIME is specified with AT [TIME ZONE] time_zone_string, where time_zone_string follows different
DST and standard time zone displacements.

• TIME is specified with AT LOCAL or without an AT clause and the session time zone was defined with
a time zone string that follows different DST and standard time zone displacements.

TIME cannot appear as the first argument in a user-defined method invocation.

Examples
Example 1: Requesting the Current Time by Session Time and Time Zone

If the DBS Control flag TimeDateWZControl is enabled, the following statements request the current time
based on the current session time and time zone.

 SELECT TIME;
 SELECT TIME AT LOCAL;

The result is similar to:

 Time

16:20:20

If the session time zone was defined with a time zone string that follows different DST and standard time
zone displacements, then the time returned is automatically adjusted to account for the start and end of
daylight saving time. Otherwise, no adjustment for daylight saving time is done.

Example 2: Returning the Current Time Based on Time Zone String,
'America Pacific'

The following queries return the current time at the time zone displacement based on the time zone string,
'America Pacific'. The time returned is automatically adjusted to account for the start and end of daylight
saving time.

 SELECT TIME AT TIME ZONE 'America Pacific';
 SELECT TIME AT 'America Pacific';

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 276

Example 3: Displaying Hundredths of a Second

The hundredths of a second are not displayed by the default format, but you can use the FORMAT phrase
to display it:

 SELECT TIME (FORMAT '99:99:99.99');

The system responds with something like the following:

 Time

16:26:30.19

Example 4: Inserting a Row in a Table

The following example inserts a row in a hypothetical table in which the column InsertTime has data type
FLOAT and records the time that the row was inserted:

 INSERT INTO HypoTable (ColumnA, ColumnB, InsertTime)
 VALUES ('Abcde', 12345, TIME);

Related Information
• For more information, see “DBS Control (dbscontrol)” in Teradata Vantage™ - Database

Utilities, B035-1102.
• For information about how TIME data is stored internally in UTC, see “ORDER BY Clause” in Teradata

Vantage™ - SQL Data Manipulation Language, B035-1146.
• For information about time zone strings, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For information about TIME versus CURRENT_TIME, see CURRENT_TIME/CURTIME.

USER
Provides the session user name.

IF the session logon
is … THEN …

not directory-based the result value is the session user name.

directory-based If the session maps to a permanent table, the result value is the name of the
permanent user.
If the session does not map to a permanent user, the result value is the authcid
of the external user.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 277

USER Function Syntax
USER

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
The data type, format, and title for USER are as follows.

Data Type Format Title

VARCHAR(30) CHARACTER SET UNICODE X(30) User

Examples

Example: Identifying the User Name

You can identify the session user name with the following statement:

 SELECT USER;

The system responds with something like the following.

 User

 JJ43901

Example: Selecting the User Job Title

The following example selects the job title for the session user.

 SELECT JobTitle FROM Employee WHERE Name = USER;

Related Information
CURRENT_USER.

7: Built-In Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 278

The following sections describe SQL comparison operators.

Comparison Operators
Comparison operators, which are types of logical predicates (also called conditional expressions), test the
truth of relations between expressions.

• IF, WHILE, REPEAT, and CASE statements in stored procedures
• WHEN clauses in searched CASE expressions
• WHERE, ON, and HAVING clauses to qualify or disqualify rows in a SELECT statement
• CASE_N functions

Comparison Operator Syntax
{ expression_1 operator expression_2 |
 expression_1 operator quantifier (literal [,...]) |
 expression_1 operator [quantifier] (subquery) |
 (expression_1 [,...]) operator [quantifier] (subquery)
}

Syntax Elements

expression_1
An SQL scalar expression, including derived period expressions.

Comparison operators do not support BLOB or CLOB type expressions. You can explicitly
cast BLOBs to BYTE or VARBYTE and cast CLOBs to CHARACTER or VARCHAR, and use
the result with comparison operators.

An expression that results in a UDT data type can only be compared with another expression
that results in the same UDT data type.

operator
A comparison operator—see Supported Comparison Operators.

expression_2
An SQL scalar expression, including derived period expressions.

Comparison Operators and Functions

8

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 279

quantifier
One of the following quantifier keywords:

• ANY
• SOME
• ALL

literal
Any of the following:

• Defined value
• Macro parameter
• Built-in value such as TIME, DATE, or USER

The comparison operation may compare an expression against a list of explicit literals.

The data types of expression and literal must be compatible. If the data types of the operands
differ, Vantage performs an implicit conversion from one type to another in some cases.

subquery
An SQL SELECT statement.

Using a subquery in a condition is restricted in certain cases.

ANSI Compliance
The following comparison operators are ANSI SQL:2011 compliant.

• =
• >

• <
• <>

• <=
• >=

The following comparison operators are Teradata extensions to the ANSI SQL:2011 standard.Their use
is deprecated.

• EQ
• ^=
• NE

• NOT=
• LT
• LE

• GT
• GE

Results
A logical expression that uses a comparison operator evaluates to TRUE, FALSE, or UNKNOWN.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 280

Comparison Operators Usage Notes

Supported Comparison Operators

Vantage supports the following comparison operators.

ANSI Operator Teradata Extensions Function

= EQ Tests for equality.

<> ^=
NE
NOT=

Tests for inequality.

< LT Tests for less than.

<= LE Tests for less than or equal.

> GT Tests for greater than.

>= GE Tests for greater than or equal.

Comparison Operators Using Subqueries

A subquery is a SELECT statement that returns values used to satisfy the comparison operation. The
subquery must be enclosed in parentheses, and it does not end with a semicolon.

The subquery must refer to at least one table. A table that is in the WHERE clause, but that is not referred
to in any other parts of the subquery, is not applicable.

A comparison operation may be used with a subquery whether or not a quantifier is used. If a quantifier
is not used, however, then an error condition results if the subquery returns more than one value.

If a subquery returns no values, and if a quantifier is not used, then the result of the comparison is false.
Therefore, if the following form is used, the subquery must return either no values (in which case the
comparison evaluates to false), or it returns one value.

 expression > (subquery)

With the following form, subquery must select the same number of expressions as are specified in the
expression list.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 281

The two expression lists are equal if each of the respective expressions are equal.

If the respective expressions are not equal, then the result of the comparison is determined by comparing
the first pair of expressions (from the left) for which the comparison is not true.

A subquery in a comparison operation cannot specify a SELECT AND CONSUME statement.

Example: Using the ALL Quantifier to Compare Two Expressions
The following statement uses the ALL quantifier to compare two expressions with the values returned from
a subquery to find the employee(s) with the most years of experience in the group of employees having the
highest salary:

 SELECT EmpNo, Name, DeptNo, JobTitle, Salary, YrsExp
 FROM Employee
 WHERE (Salary,YrsExp) >= ALL
 (SELECT Salary,YrsExp FROM Employee) ;

Related Information
• Supported Comparison Operators
• Implicit Type Conversion of Comparison Operands
• ANY/ALL/SOME

Comparisons That Produce TRUE Results

Conditions
The following table provides the conditions when comparisons produce TRUE results.

For simplicity, assume the syntax:

expression_1 operator expression_2

expression_1 and expression_2 must contain the same number of scalar values and range from 1 through
n rows, represented by r, so that the rth components of expression_1 and
expression_2 are expression_1r and expression_2r.

The δth item in the range is notated as row δ such that the δth component of expression_1 is notated as
expression_1δ and the δth component of expression_2 is notated as expression_2δ.

The data types of expression_1 and expression_2 must be compatible. If the data types of the expressions
differ, Vantage performs an implicit conversion from one type to another in some cases.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 282

This comparison … Is TRUE if …

expression_1 = expression_2 ∀ r, expression_1r = expression_2r is TRUE.

expression_1 <> expression_2 ∃ δ such that expression_1δ <> expression_2δ is TRUE.

expression_1 < expression_2 ∃ δ such that expression_1δ < expression_2δ is TRUE and for all r < δ,
expression_1r = expression_2r is TRUE.

expression_1 > expression_2 ∃ δ such that expression_1δ >expression_2δ is TRUE and for all r > δ,
expression_1r = expression_2r is TRUE.

expression_1 <= expression_2 expression_1 < expression_2 is TRUE or
expression_1 = expression_2 is TRUE.

expression_1 => expression_2 expression_1 > expression_2 is TRUE or
expression_1 = expression_2 is TRUE.

Null Expressions
If any expression in a comparison is null, the result of the comparison is unknown.

For a comparison to provide a TRUE result when comparing fields that might result in nulls, the statement
must include the IS [NOT] NULL operator.

Floating Point Expressions
Calculations involving floating point values often produce results that are not what you expect. If you
perform a floating point calculation and then compare the results against some expected value, it is unlikely
that you get the intended result.

Instead of comparing the results of a floating point calculation, make sure that the result is greater or less
than what is needed, with a given error. Here is an example:

 SELECT i, SUM(a) as sum_a, SUM(b) as sum_b
 FROM t1
 GROUP BY i
 HAVING ABS(sum_a - sum_b) > 1E-10;

Related Information
• For more information on potential problems associated with floating point values in comparison

operations, see Teradata Vantage™ - Data Types and Literals, B035-1143.
• For details about expression_1 and expression_2, see Implicit Type Conversion of

Comparison Operands.
• For more information about using comparison operators in conditional expressions in searched CASE

expressions, see CASE Expressions.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 283

• For more information about using comparison operators in conditional expressions in WHERE, ON,
or HAVING clauses in SELECT statements, see “The SELECT Statement” in Teradata Vantage™ -
SQL Data Manipulation Language, B035-1146.

• For more information about using comparison operators in conditional expressions in IF, WHILE, or
REPEAT statements in stored procedures, see Teradata Vantage™ - SQL Stored Procedures and
Embedded SQL, B035-1148.

• For more information about other comparison operators, including the following, see
Logical Predicates:

◦ [NOT] EXISTS
◦ [NOT] IN
◦ LIKE
◦ IS [NOT] NULL
◦ [NOT] BETWEEN … AND …

• For more information about the following predicate quantifiers, see Logical Predicates:

◦ ALL
◦ ANY
◦ SOME

Data Type Evaluation
Different data types define equality and inequality differently. The following table explains the foundations
for how the various data types are compared:

This data
type … Is evaluated in this way …

Numeric Algebraically, with negatives considered to be smaller irrespective of their absolute value.

Byte Bit-by-bit from left to right. A 0 bit is less than a 1 bit.
• If every pair comparison is equal, then the two byte string are equal.
• If any pairwise comparison is not equal, then that comparison determines the result.
• If two byte strings of different lengths are compared, then the shorter string is padded to the

right with binary zeros to make the lengths equal prior to making the comparison.

Character Character-by-character from left to right. Exact comparisons depend on the collation
sequence assigned and whether the comparison is case specific or case blind.
The available collations are:
• ASCII
• EBCDIC
• MULTINATIONAL
• CHARSET_COLL
• JIS_COLL
If every pairwise comparison is equal, then the two character strings are equal.
If any pairwise comparison is not equal, then that comparison determines the result.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 284

This data
type … Is evaluated in this way …

For more information on character comparison, see Comparison of Character Strings of
Unequal Length.

DateTime Chronologically.
For information on how Time Zone affects Time comparison, see "Time Zone Sort Order" in
Teradata Vantage™ - Data Types and Literals, B035-1143.

Interval According to sign and magnitude.

Period Assuming p1 and p2 are Period expressions or derived periods, the evaluation of a Period
comparison predicate uses the following logic:
IF BEGIN(p1) = BEGIN(p2) is TRUE, return END(p1) operator END(p2)
ELSE return (BEGIN(p1) operator BEGIN(p2))
For details on BEGIN and END, see "Period Functions and Operators" in Teradata Vantage™
- Data Types and Literals, B035-1143.

UDT According to the ordering definition of the UDT.
Vantage generates ordering functionality for distinct UDTs where the source types are
not LOBs. To create an ordering definition for structured UDTs or distinct UDTs where
the source types are LOBs, or to replace system-generated ordering functionality, use
CREATE ORDERING.
For more information on CREATE ORDERING, see Teradata Vantage™ - SQL Data
Definition Language Syntax and Examples, B035-1144.

Implicit Type Conversion of Comparison Operands
Expression operands must be of the same data type before a comparison operation can occur.

Data Types on Which Implicit Conversion is Performed
If operand data types differ, Vantage performs an implicit conversion according to the following table.
Implicit conversions are Teradata extensions to the ANSI SQL:2011 standard.

Comparisons between character and numeric data types require that the character field be convertible to
a numeric value.

IF one expression
operand is …

AND the other expression operand
is …

THEN Vantage compares the data
as …

Character Character Character.
For more details, see Character
String Comparisons.

Date Date.
Vantage returns an error for
character data with GRAPHIC
server character set.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 285

IF one expression
operand is …

AND the other expression operand
is …

THEN Vantage compares the data
as …

BYTEINT
SMALLINT
INTEGER
FLOAT

FLOAT.
Vantage returns an error for
character data with GRAPHIC
server character set.

Period Period.

CHAR(k)
VARCHAR(k))
WHERE k <= 16

BIGINT
DECIMAL(m,n)

FLOAT.
Vantage returns an error for
character data with GRAPHIC
server character set.

CHAR(k)
VARCHAR(k)
where k > 16

DECIMAL(m,n)
where m <= 16

FLOAT.
Vantage returns an error for
character data with GRAPHIC
server character set.

BIGINT
DECIMAL(m,n)
where m> 16

Vantage returns an error.

CHAR(k)
VARCHAR(k)

NUMBER and k<=16 FLOAT.
Vantage returns an error for
character data with GRAPHIC
server character set.

NUMBER and k> 16 Vantage returns an error.

BYTEINT SMALLINT SMALLINT.

BYTEINT
SMALLINT

INTEGER INTEGER.

BYTEINT
SMALLINT
INTEGER
BIGINT

BIGINT BIGINT.

BYTEINT DECIMAL(m,n)
where m <= 18 and m-n >= 3

DECIMAL(18,n).

SMALLINT DECIMAL(m,n)
where m <= 18 and m-n >= 5

INTEGER DECIMAL(m,n)
where m <= 18 and m-n >= 10

DATE

BYTEINT DECIMAL(m,n)
where m > 18 or m-n < 3

DECIMAL(38,n).

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 286

IF one expression
operand is …

AND the other expression operand
is …

THEN Vantage compares the data
as …

SMALLINT DECIMAL(m,n)
where m > 18 or m-n < 5

INTEGER DECIMAL(m,n)
where m > 18 or m-n < 10

DATE

BIGINT DECIMAL(m,n)

DECIMAL(m,n) DECIMAL(k,j)
where max(m-n,k-j) + max(j,n) <= 18

DECIMAL(18,max(j,n)).

DECIMAL(k,j)
where max(m-n,k-j) + max(j,n) > 18

DECIMAL(38,max(j,n)).

BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL(m,n)
NUMBER(m,n)
NUMBER(m)
NUMBER(*,n)
NUMBER

NUMBER(k,j)
NUMBER(k)
NUMBER(*,j)
NUMBER

NUMBER

DATE BYTEINT
SMALLINT
INTEGER

INTEGER.

BIGINT BIGINT.

FLOAT FLOAT.

FLOAT BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL(m,n)
NUMBER(m,n)
NUMBER(m)
NUMBER(*,n)
NUMBER

FLOAT.

Period Character Period.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 287

Implicit Conversion of DateTime Types
In comparisons involving DateTime operands that differ, Vantage performs an implicit conversion
according to the following table.

IF one expression
operand is …

AND the other
expression operand
is … THEN Vantage compares the data as …

TIMESTAMP DATE
ANSIDate dateform
mode or IntegerDate
dateform mode

DATE.
See "Implicit TIMESTAMP-to-DATE Conversion"
in Teradata Vantage™ - Data Types and Literals,
B035-1143 .

TIMESTAMP WITH
TIME ZONE

Interval
The INTERVAL type must
have only one field, e.g.
INTERVAL YEAR.

Exact Numeric Numeric.
See "Implicit INTERVAL-to-NUMERIC
Conversion" in Teradata Vantage™ - Data Types
and Literals, B035-1143 .

Data Types on Which Implicit Conversion is Not Performed
The following table identifies data types on which Vantage does not perform implicit type conversion.

Type Rules

Byte Byte data types can only be compared with byte data types. Attempts to compare a byte
type with another type produces an error.

DateTime Vantage does not perform implicit type conversion on the operands of a comparison
operation involving a combination of DateTime and Interval data types. For details, see
"Data Type Compatibility" in Teradata Vantage™ - Data Types and Literals, B035-1143 and
Comparison of ANSI DateTime and Interval in USING Clause.

Interval

TIME Vantage does not perform implicit type conversion from TIME to TIMESTAMP and from
TIMESTAMP to TIME in comparison operations.

TIMESTAMP

UDT Vantage does not perform implicit type conversion on UDTs for comparison operations. A
UDT value can only be compared with another value of the same UDT type.
To compare UDTs with other data types, you must use explicit data type conversion. For
information, see "Data Type Conversions" in Teradata Vantage™ - Data Types and Literals,
B035-1143 .

Comparison of ANSI DateTime and Interval in
USING Clause
External values for ANSI DateTime and Interval data are expressed as fixed length character strings in the
designated client character set for the session.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 288

When you import ANSI DateTime and Interval values with a USING phrase, you must explicitly cast them
from the external character format to the proper ANSI DateTime and Interval types for comparison.

For example, consider the following statement, where the data type of the TimeField column is TIME(2):

 USING (TimeVal CHARACTER(11), NumVal INTEGER)
 UPDATE TABLE_1
 SET TimeField=:TimeVal, NumField=:NumVal
 WHERE CAST(:TimeVal AS TIME(2)) > TimeField;

Although you can use TimeVal CHAR(11) directly for assignment in this USING phrase, you must CAST
the column data definition explicitly as TIME(2) in order to compare the field value TimeField in the table
because TimeField is an ANSI TIME defined as TIME(2).

Proper Forms of DATE Types in Comparisons
A DATE operand must be submitted in the proper form in order to achieve a correct comparison.

Arithmetic on DATE operands causes an error if a created value is not a valid date. Therefore, although
a date value can be submitted in integer form for comparison purposes, a column that contains date data
should be defined as data type DATE, not INTEGER.

If an integer is used for input to DATE (this is not recommended), the way to enter the first date of the year
2000 is 1000101.

For more information, see "Teradata Date and Time Expressions" in Teradata Vantage™ - Data Types and
Literals, B035-1143.

Proper forms for submitting a DATE operand are:

• An integer in the form (year-1900)*10000 + month*100 + day. The form YYMMDD is only valid for the
years 1900 - 1999. For the years 2000 - 2099, the form is 1YYMMDD.

• As a character string in the same form as the date against which the compare is being done or as the
date field the assignment is being done.

• A character string that is qualified with a data type phrase defining the appropriate data conversion, and
a FORMAT phrase defining the format.

• As an ANSI date literal, which is always valid for a date comparison with any date format.

Examples
The following examples use a comparison operator on a value in the Employee.DOB column (defined as
DATE FORMAT ' MMMbDDbYYYY ') to illustrate correct forms for a DATE operand.

Example: Entering the Operand as an Integer

In the first example, the operand is entered as an integer.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 289

 SELECT *
 FROM Employee
 WHERE DOB = 420327 ;

Example: Entering the Character String to Agree with the DOB column Format

In the second example, the character string is entered in a form that agrees with the format of the
DOB column.

 SELECT *
 FROM Employee
 WHERE DOB = 'Mar 27 1942';

Example: Entering the Character String with Data Type and FORMAT Phrases

In the third example, the value is entered as a character string, and so is cast with both a data type phrase
(DATE) and a FORMAT phrase.

 SELECT *
 FROM Employee
 WHERE DOB = CAST ('03/27/42' AS DATE FORMAT 'MM/DD/YY');

Example: Entering the Value as an ANSI Date Literal

In the fourth example, the value is entered as an ANSI date literal, which works regardless of the date
format of the column.

 SELECT *
 FROM Employee
 WHERE DOB = DATE '1942-03-27';

Character String Comparisons

Comparison of Character Strings of Unequal Length
If character strings of unequal length are being compared, the shorter of the two is padded on the right with
pad characters before the comparison occurs.

Character Strings and Server Character Sets
When comparing character strings, data characters must have the same server character set. If they do
not, then the system translates them using the implicit translation rules described in "Implicit Character-to-
Character Conversion" in Teradata Vantage™ - Data Types and Literals, B035-1143.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 290

Effect of Collation on Character String Comparisons
Collations control character ordering. The results of character comparisons depends on the collation
sequence of the character set in use.

You can set the default collation to a sequence that is compatible with the character set for your session.
Use the HELP SESSION SQL statement to determine the collation setting for your current session.

The availability of diacritical or Japanese character sets, and your default collation sequence are under the
control of your database administrator.

To ensure that sorting and comparison of character data are identical with the same operations performed
by the client, users on a Japanese language site should set collation to CHARSET_COLL.

Case Sensitivity
All character data, except for CLOBs, accessed in the execution of a Teradata SQL statement has
an attribute of CASESPECIFIC or NOT CASESPECIFIC, either by default or by explicit designation.
Character string comparisons use this attribute to determine whether the comparison is case blind or case
specific. Case specificity does not apply to CLOBs.

This is not an ANSI SQL:2011 compatible attribute—ANSI does all character comparisons as the
equivalent of CASESPECIFIC.

The CASESPECIFIC attribute has higher precedence over the NOT CASESPECIFIC attribute:

IF … THEN the comparison is …

either argument is CASESPECIFIC case specific.

both arguments are NOT CASESPECIFIC case blind.

The exception is comparisons on GRAPHIC character data, which are always CASESPECIFIC.

To apply a case specification attribute to a character string, you can:

• Use the default case specification for the session.

IF the session mode is … THEN the default case specification is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.
The exception is character data of type GRAPHIC, which is
always CASESPECIFIC.

Default case specification applies to all character data, including literals.

• Use the CASESPECIFIC or NOT CASESPECIFIC phrase with a character column in a CREATE
TABLE or ALTER TABLE statement.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 291

For example:

CREATE TABLE Students
 (StudentID INTEGER
 ,Firstname CHAR(10) CASESPECIFIC
 ,Lastname CHAR(20) NOT CASESPECIFIC);

Table columns carry the attribute assigned at the time the columns were defined or altered unless a
CASESPECIFIC or NOT CASESPECIFIC phrase is used in their access.

• Apply the CASESPECIFIC or NOT CASESPECIFIC phrase to a character expression in
the comparison.

For example, the following statement applies the CASESPECIFIC phrase to a character literal:

SELECT *
FROM Students
WHERE Firstname = 'Ike' (CASESPECIFIC);

Use this to override the default case specification for character data, or to override the case
specification attribute assigned at the time a character column was defined or altered.

For case blind comparisons, any lowercase single byte Latin letters are converted to uppercase before
comparison begins. The prepared strings are compared and any trailing pad characters are ignored.

A case blind comparison always considers lowercase and uppercase Cyrillic, Greek and full-width ASCII
letters to be equivalent. To distinguish lowercase and uppercase Cyrillic, Greek, and fullwidth ASCII letters
you must explicitly declare CASESPECIFIC comparison.

These options work for the KANJISJIS character set as if the data were first converted to the Unicode type
and then the options applied.

Using UPPER for Case Blind Comparisons
Case blind comparisons can be accomplished using the UPPER function, to make sure a character string
value contains no lowercase Latin letters.

The UPPER function is not the same as declaring a value UPPERCASE.

Example: Querying for Case-Specific Names
Consider the following query:

 SELECT *
 FROM STUDENTS
 WHERE Firstname = 'George';

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 292

The behavior of the comparison Firstname = 'George' under different case specification attributes and
session modes is described in the table that follows.

IF column
Firstname is … THEN …

CASESPECIFIC • If the session mode is ANSI, then ‘George’ is CASESPECIFIC and the match
succeeds for rows with Firstname containing ‘George’.

• If the session mode is Teradata, then “George’ is NOT CASESPECIFIC and the
match succeeds for rows with Firstname containing ‘George’.

When either character sting is CASESPECIFIC, the comparison is case specific.

NOT
CASESPECIFIC

• If the session mode is ANSI, then ‘George’ is CASESPECIFIC and the match
succeeds for rows with Firstname containing ‘George’. When either character
string is CASESPECIFIC, the comparison is case specific.

• If the session mode is Teradata, then ‘George’ is NOT CASESPECIFIC and the
match succeeds for rows with Firstname containing any combination of cases that
spell the name George, such as ‘george’ or ‘GEORGE’ or ‘George’. When both
character strings are NOT CASESPECIFIC, the comparison is case blind.

Related Information
• “SET SESSION COLLATION” in Teradata Vantage™ - SQL Data Definition Language Syntax and

Examples, B035-1144
• Teradata Vantage™ - Advanced SQL Engine International Character Set Support, B035-1125
• “ORDER BY Clause” in Teradata Vantage™ - SQL Data Manipulation Language, B035-1146

Comparison of KANJI1 Characters
The following sections describe how Vantage compares KANJI1 characters.

NOTICE

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information, see
KANJI1 Character Set in Teradata Vantage™ - Advanced SQL Engine International Character Set
Support, B035-1125.

Equality Comparison
Comparison of character strings, which can contain mixed single byte and multibyte character data, is
handled as follows:

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 293

• If expression_1 and expression_2 have different server character sets, then they are converted to the
same type. For details, see "Implicit Character-to-Character Translation" in Teradata Vantage™ - Data
Types and Literals, B035-1143.

• If expression_1 and expression_2 are of different lengths, the shorter string is padded with enough pad
characters to make both the same length.

• Session mode is identified:

In this mode … The default case specification for a character string is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.
Unless the CASESPECIFIC phrase is applied to one or both of the expressions,
any simple Latin letters in both expression_1 and expression_2 are converted to
uppercase before comparison begins.

To override the default case specification of a character expression, apply the CASESPECIFIC or NOT
CASESPECIFIC phrase.

• Case specification is determined:

IF … THEN the comparison is …

either argument is CASESPECIFIC case specific.

both arguments are NOT CASESPECIFIC case blind.

• Trailing pad characters are ignored.

Nonequality Comparison
Nonequality comparisons are handled as follows:

1. If expression_1 and expression_2are of different lengths, the shorter string is padded with enough pad
characters to make both the same length.

2. Session mode is identified.

In this mode … The default case specification for a character string is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.
Unless the CASESPECIFIC qualifier is applied to one or both of the expressions,
any simple Latin letters in both expression_1 and expression_2 are converted to
uppercase before comparison begins.

To override the default case specification of a character expression, apply the CASESPECIFIC or NOT
CASESPECIFIC phrase.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 294

3. Characters identified as single byte characters under the current character set are converted according
to the collation sequence in effect for the session.

4. For the KanjiEUC character set, the ss3 0x8F character is converted to 0xFF. This means that a
user-defined KanjiEUC codeset 3 is not properly ordered with respect to other KanjiEUC code sets.

The ordering of other KanjiEUC codesets is proper; that is, ordering is the same as the binary ordering
on the client system.

5. The prepared strings are compared and trailing pad characters are ignored.

Nonequality comparisons involve the collation in effect for the session. Five collations are available:

• EBCDIC
• ASCII
• MULTINATIONAL
• CHARSET_COLL
• JIS_COLL

Collation can be set at the user level with the COLLATION option of the CREATE USER or MODIFY
USER statements, and at the session level with the [[.]SET] SESSION COLLATION statement or the CLIv2
CHARSET call.

If the MULTINATIONAL collation sequence is in effect, the collation sequence of a Japanese language site
is determined by the collation setting installed during start-up.

Related Information
For further details on collation sequences, see Teradata Vantage™ - Advanced SQL Engine International
Character Set Support, B035-1125.

Comparison Operators and the DEFAULT Function
in Predicates
The DEFAULT function returns the default value of a column. It has two forms: one that specifies a column
name and one that omits the column name.

Predicates using comparison operators support both forms of the DEFAULT function, but when the
DEFAULT function omits the column name, the following conditions must be true:

• The comparison can only involve a single column reference.
• The DEFAULT function cannot be part of an expression.

For example, the following statement uses DEFAULT to compare the values of the Dept_No column with
the default value of the Dept_No column. Because the comparison operation involves a single column
reference, Vantage can derive the column context of the DEFAULT function even though the column name
is omitted.

 SELECT * FROM Employee WHERE Dept_No < DEFAULT;

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 295

Note that if the DEFAULT function evaluates to null, the predicate is unknown and the WHERE condition
is false.

DECODE
Compares expr to each search parameter with its corresponding result parameter.

DECODE is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

DECODE Function Syntax
[TD_SYSFNLIB.] DECODE (expr, search_result [,...] default)

Syntax Elements

search_result

search, result,

TD_SYSFNLIB.
Name of the database where the function is located.

expr
A numeric or character expresssion.

• If expr is equal to one of the search arguments, the function returns the corresponding
result value.

• If expr is not equal to any of the search arguments, the functions returns default, if the
default value is specified.

• If expr is NULL, the function returns the result of the first search parameter that is NULL.

search
A numeric or character expresssion.

DECODE supports 1-10 search arguments tied to an equal number of result arguments.

result
A numeric or character expresssion.

DECODE supports 1-10 result arguments tied to an equal number of search arguments.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 296

default
A numeric or character expresssion.

If default is not specified and there are no matches, the function returns NULL.

Argument Types and Rules

Expressions passed to this function must be one of the following data types:

BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/DOUBLE PRECISION,
NUMBER, CHAR, VARCHAR

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
This function is CASESPECIFIC.

Result Type

DECODE is a scalar function whose return value data type depends on the data type associated with the
result parameter passed into the function.

• If result or default is a numeric type, DECODE determines which argument has the highest
precedence and converts the other result or default arguments to that data type and returns that
data type.

If that data type is DECIMAL/NUMERIC and the precision and scale of the result or default
argument is different, the precision and scale of the return type is set to achieve the maximum
precision possible.

For example, if the result / default argument are DECIMAL(6,3), DECIMAL(7,4), and DECIMAL(8,7),
the return type would need 3 digits to the left of the decimal point and 7 digits to the right of the decimal
point to avoid any reduction in precision. In this case, the return data type is set to DECIMAL(10,7).

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 297

In cases where it is not possible to maintain the maximum precision, the data is rounded according
to the DBS Control RoundHalfWayMagUp field. For example, if the result and default argument are
DECIMAL(32, 8) and DECIMAL(30, 28), the return type is DECIMAL(38,14). This allows for 24 digits
to the left of the decimal point required for DECIMAL(32, 8) and 14 digits to the right of the decimal
point. If the DECIMAL(30,28) result or default argument is the greatest value, it is rounded to 14
places to the right of the decimal point.

If the data type is fixed point NUMBER and the precision is less than or equal to 38, the precision
and scale of the return type are calculated with the same method used for DECIMAL/NUMERIC.
However, if the precision is greater than 38, the return type is changed to NUMBER(*) to avoid loss
of accuracy. If the data type is floating point NUMBER, the return type is NUMBER(*).

• If result or default is a character data type, the function returns a VARCHAR in the character set of
the first result argument.

Examples

Example: Decoding IDs

The following query:

SELECT DECODE(country_id, 1, 'United States',
 2, 'England',
 3, 'France',
 'United States')
 FROM customers;

returns:

• 'United States' if the country_id is 1
• 'England' if the country_id is 2
• 'France' if the country_id is 3
• 'United States' if the country_id is not equal to 1, 2, or 3

Example: Decoding IDs Using NULL

The following query

SELECT DECODE(country_id, 1, 'United States',
 2, 'England')
 FROM customers;

returns:

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 298

• 'United States' if the country_id is 1
• 'England' if country_id is 2
• NULL if country_id isn't in the range 1 to 2

Example: Decoding IDs When ID is Not Equal to 1, 2 or NULL

The following query:

SELECT DECODE(country_id, 1, 'United States',
 2, 'England',
 NULL, 'France')
 FROM customers;

returns:

• 'United States' if the country_id is 1
• 'England' if the country_id is 2
• NULL if the country_id is NULL
• NULL if the country_id is not equal to 1, 2, or NULL

Related Information
• For details about the order of precedence, see “Compatible Types” in Teradata Vantage™ - SQL

External Routine Programming, B035-1147.
• For information on the default data type format for DOUBLE PRECISION, see Teradata Vantage™ -

Data Types and Literals, B035-1143.

GREATEST
Returns the greatest value in the list of input arguments.

GREATEST is an embedded services system function.

GREATEST Function Syntax
[TD_SYSFNLIB.] GREATEST
 { (numeric_value [,...]) |
 (string_value [,...]) |
 (date_value [,...]) |
 (timestamp_value [,...])
 }

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 299

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

numeric_value
A numeric argument.

string_value
A string value.

date_value
A DATE value.

timestamp_value
A TIMESTAMP or TIMESTAMP WITH TIME ZONE value.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/DOUBLE
PRECISION, or NUMBER

• CHAR or VARCHAR
• DATE
• TIMESTAMP or TIMESTAMP WITH TIME ZONE

All of the input arguments must be the same data type or else the types must be compatible.

The function accepts a maximum of 10 input arguments.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
If the arguments are character types, the string comparison uses non-padded comparison semantics.
Character comparison is binary and based on the numerical codes of the characters. The string is treated
as a sequence of bytes for the comparison rather than character by character.

Timestamp comparisons are made in GMT. GMT conversion occurs if a time zone is associated with the
timestamp input.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 300

This function is CASESPECIFIC.

Result Type

If the input arguments are numeric types, the function determines which argument has the highest
precedence, converts the other arguments to that data type, and returns that data type.

If the data type is DECIMAL/NUMERIC and the precision and scale of the input arguments are different,
the precision and scale of the return type is set to achieve the maximum precision possible. For example,
if the input arguments are DECIMAL(6,3), DECIMAL(7,4), and DECIMAL(8,7), the return type would need
3 digits to the left of the decimal point and 7 digits to the right of the decimal point to avoid any reduction
in precision. In this case, the return data type is set to DECIMAL(10,7).

In cases where it is not possible to maintain the maximum precision, the data is rounded according to the
DBS Control Record RoundHalfWayMagUp field. For example, if the input arguments are DECIMAL(32,
8) and DECIMAL(30, 28), the return type is DECIMAL(38,14). This allows for 24 digits to the left of the
decimal point (required for the DECIMAL(32,8) argument), and 14 digits to the right of the decimal point.
If the DECIMAL(30,28) input argument is the greatest value, it is rounded to 14 places to the right of the
decimal point.

If the data type is fixed point NUMBER and the precision is less than or equal to 38, the precision and
scale of the return type are calculated with the same method used for DECIMAL/NUMERIC. However, if
the precision is greater than 38, the return type is changed to NUMBER(*) to avoid loss of accuracy. If the
data type is floating point NUMBER, the return type is NUMBER(*).

If the input arguments are character types, the function converts the 2nd through 10th arguments to the
data type of the 1st argument and returns the type as VARCHAR in the character set of the 1st argument.

If the input arguments are DATE types, the function returns a DATE type.

If the input arguments are TIMESTAMP types, the function returns a TIMESTAMP type. If the first
parameter includes an explicit time zone, the result will also include a time zone.

If any of the input arguments is NULL, the function returns NULL.

Examples
Example: Querying for the Largest Integer Value

The following query returns the result 13.

 SELECT GREATEST(13, 6);

Example: GREATEST with DECIMAL Input

In the following query, if the input arguments have data types of DECIMAL(4,2) and DECIMAL(5,4), the
return data type is DECIMAL(6,4) and the result value is 13.1200.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 301

 SELECT GREATEST(13.12, 6.1234);

Example: GREATEST with Character Input

The following query returns the result 'apples'.

 SELECT GREATEST('apples', 'alpha');

Example: Comparing Milliseconds in a TIMESTAMP

SELECT GREATEST('2003-08-17 12:15:24.756' (TIMESTAMP(6)), '2003-08-17
12:15:24.456' (TIMESTAMP(6)));

Result:

greatest('2003-08-17 12:15:24.756','2003-08-17 12:15:24.456')

 2003-08-17 12:15:24.756000

Related Information
• For information on activating and invoking embedded services functions, see Embedded Services

System Functions.
• For information on the default data type formats, see Teradata Vantage™ - Data Types and

Literals, B035-1143.
• For details about the order of precedence, see “Compatible Types” in Teradata Vantage™ - SQL

External Routine Programming, B035-1147.

LEAST
Returns the least value in the list of input arguments.

LEAST is an embedded services system function.

LEAST Function Syntax
[TD_SYSFNLIB.] LEAST
 { (numeric_value [,...]) |
 (string_value [,...]) |
 (date_value [,...]) |
 (timestamp_value [,...])
 }

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 302

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

numeric_value
A numeric argument.

string_value
A string value.

date_value
A DATE value.

timestamp_value
A TIMESTAMP or TIMESTAMP WITH TIME ZONE value.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/DOUBLE
PRECISION, or NUMBER

• CHAR or VARCHAR
• DATE
• TIMESTAMP or TIMESTAMP WITH TIME ZONE

All of the input arguments must be the same data type or else the types must be compatible.

The function accepts a maximum of 10 input arguments.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
If the arguments are character types, the string comparison uses non-padded comparison semantics.
Character comparison is binary and based on the numerical codes of the characters. The string is treated
as a sequence of bytes for the comparison rather than character by character.

Timestamp comparisons are made in GMT. GMT conversion occurs if a time zone is associated with the
timestamp input.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 303

This function is CASESPECIFIC.

Result Type

• If the input arguments are numeric types, the function determines which argument has the highest
precedence, converts the other arguments to that data type, and returns that data type.

If the data type is DECIMAL/NUMERIC and the precision and scale of the input arguments
are different, the precision and scale of the return data types are set to achieve the maximum
precision possible. For example, if the input arguments are DECIMAL(6,3), DECIMAL(7,4), and
DECIMAL(8,7), the return data type would need 3 digits to the left of the decimal point and 7 digits
to the right of the decimal point to avoid any reduction in precision. In this case, the return data type
is set to DECIMAL(10,7).

In cases where it is not possible to maintain the maximum precision, the data is rounded according to
the DBS Control RoundHalfWayMagUp field. For example, if the input arguments are DECIMAL(32,
8) and DECIMAL(30, 28), the return data type is DECIMAL(38,14). This allows for 24 digits to the
left of the decimal point (required for the DECIMAL(32,8) parameter), and 14 digits to the right of the
decimal point. If the DECIMAL(30,28) input argument is the least value, it is rounded to 14 places to
the right of the decimal point.

If the data type is fixed point NUMBER and the precision is less than or equal to 38, the precision
and scale of the return type are calculated with the same method used for DECIMAL/NUMERIC.
However, if the precision is greater than 38, the return type is changed to NUMBER(*) to avoid loss
of accuracy. If the data type is floating point NUMBER, the return type is NUMBER(*).

• If the input arguments are character types, the function converts the 2nd through 10th arguments
to the data type of the first argument and returns the type as VARCHAR in the character set of the
first argument.

• If the input arguments are DATE types, the function returns a DATE type.
• If the input arguments are TIMESTAMP types, the function returns a TIMESTAMP type. If the first

parameter includes an explicit time zone, the result will also include a time zone.

If any of the input arguments is NULL, the function returns NULL.

Examples
Example: Querying for the Smallest Integer Value

The following query returns 6.

SELECT LEAST(13, 6);

Example: LEAST with DECIMAL Input

In the following query, if the input arguments have data types of DECIMAL(5,4) and DECIMAL(4,2), the
return data type is DECIMAL(6,4) and the return value is 1.1234.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 304

SELECT LEAST(1.1234, 36.12);

Example: LEAST with Character Input

The following query returns 'alpha'.

SELECT LEAST('apples', 'alpha');

Example: Comparing Time Zones in a TIMESTAMP

SELECT LEAST(CAST('2003-08-17 20:15:24-05:00' AS TIMESTAMP WITH TIME ZONE),
CAST('2003-08-17 20:15:24-02:00' AS TIMESTAMP WITH TIME ZONE));

Result:

LEAST('2003-08-17 20:15:24-05:00','2003-08-17 20:15:24-02:00')
--
 2003-08-17 20:15:24.000000-02:00

Related Information
• For information on activating and invoking embedded services functions, see Embedded Services

System Functions.
• For details about the order of precedence, see “Compatible Types” in Teradata Vantage™ - SQL

External Routine Programming, B035-1147.

8: Comparison Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 305

Specifies alternate values for a conditional expression or expressions based on equality comparisons and
conditions that evaluate to TRUE.

CASE provides an efficient and powerful method for application developers to change the representation of
data, permitting conversion without requiring host program intervention.

For example, you could code employee status as 1 or 2, meaning full-time or part-time, respectively. For
efficiency, the system stores the numeric code but prints or displays the appropriate textual description in
reports. This storage and conversion is managed by Vantage.

In addition, CASE permits applications to generate nulls based on information derived from the database,
again without host program intervention. Conversely, CASE can be used to convert a null into a value.

Valued CASE Expression
Evaluates a set of expressions for equality with a test expression and returns as its result the value of
the scalar expression defined for the first WHEN clause whose value equals that of the test expression.
If no equality is found, then CASE returns the scalar value defined by an optional ELSE clause, or if
omitted, NULL.

Default Title

The default title for a CASE expression appears as:

<CASE expression>

Valued CASE Expression Syntax
CASE value_expression_1 when_clause [...] [ELSE scalar_expression_m] END

Syntax Elements

value_expression_1
An expression whose value is tested for equality with value_expression_n.

when_clause

WHEN value_expression_n THEN scalar_expression_n

CASE Expressions

9

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 306

scalar_expression_m
An expression whose value is returned if evaluation falls through to the ELSE clause.

value_expression_n
A set of expressions against which the value for value_expression_1 is tested for equality.

scalar_expression_n
An expression whose value is returned on the first equality comparison of
value_expression_1 and value_expression_n.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Vantage does not enforce the ANSI restriction that value_expression_1 must be a deterministic function.
In particular, Vantage allows the function RANDOM to be used in value_expression_1.

Note that if RANDOM is used, nondeterministic behavior may occur, depending on whether
value_expression_1 is recalculated for each comparison to value_expression_n.

Usage Notes
WHEN clauses are processed sequentially.

The first WHEN clause value_expression_n that equates to value_expression_1 returns the value of its
associated scalar_expression_n as its result. The evaluation process then terminates.

If no value_expression_n equals value_expression_1, then scalar_expression_m, the argument of the
ELSE clause, is the result.

If no ELSE clause is defined, then the result defaults to NULL.

The data type of value_expression_1 must be comparable with the data types of all of the
value_expression_n values.

For information on the result data type of a CASE expression, see Rules for the CASE Expression
Result Type.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a runtime error
is returned.

Recommendation: Do not use the built-in functions CURRENT_DATE or CURRENT_TIMESTAMP in a
CASE expression that is specified in a partitioning expression for a partitioned primary index (PPI). In this
case, all rows are scanned during reconciliation.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 307

Restrictions on the Data Types in a CASE Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data
Type Restrictions

BLOB A BLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m,
or scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m,
or scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression, with the following restrictions:
• The data type of value_expression_1 through value_expression_n must have the same UDT

data type if one of them has a UDT data type.
• scalar_expression_n and scalar_expression_m must be the same UDT data type if one them

has a UDT data type.
Vantage does not perform implicit type conversion on UDTs in CASE expressions. A
workaround for this restriction is to use CREATE CAST to define casts that cast between
the UDTs, and then explicitly invoke the CAST function in the CASE expression. For more
information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language
Syntax and Examples, B035-1144.

Examples

Example: Calculating the Fraction of Cost

The following example uses a Valued CASE expression to calculate the fraction of cost in the total cost
of inventory represented by parts of type ‘1’:

 SELECT SUM(CASE part
 WHEN '1'
 THEN cost
 ELSE 0
 END
)/SUM(cost)
 FROM t;

Example: Using a CASE Expression

A CASE expression can be used in place of any value-expression.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 308

 SELECT *
 FROM t
 WHERE x = CASE y
 WHEN 2
 THEN 1001
 WHEN 5
 THEN 1002
 END;

Example: Combining a CASE Expression with a Concatenation Operator

The following example shows how to combine a CASE expression with a concatenation operator:

 SELECT prodID, CASE prodSTATUS
 WHEN 1
 THEN 'SENT'
 ELSE 'BACK ORDER'
 END || ' STATUS'
 FROM t1;

Example: Using UDT Data Types in Value Expressions

You use value_expression_1through value_expression_nto test for equality in a valued
CASE expression.

For these examples, the table is defined as follows:

create table udtval038_t1(id integer, udt1 testcircleudt, udt2
testrectangleudt) PRIMARY INDEX (id);

The following example shows a valued CASE expression, where all value expressions are of the same
UDT data type:

 SELECT CASE udt1
 WHEN new testcircleudt('1,1,2,yellow,circ')
 THEN 'Row 1'
 WHEN new testcircleudt('2,2,4,purple,circ')
 THEN 'Row 2'
 WHEN new testcircleudt('3,3,9,green,circ')
 THEN 'Row 3'
 ELSE 'Row is NULL'
 END

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 309

 FROM t1;
*** Query completed. 4 rows found. One column returned.
<CASE expression>

Row 3
Row 1
Row is NULL
Row 2

However, the following example does not complete successfully because testrectangleudt does not
match the other UDT data types:

 SELECT CASE udt1
 WHEN new testcircleudt('1,1,2,yellow,circ')
 THEN 'Row 1'
 WHEN new testrectangleudt('2,2,4,4,purple,rect')
 THEN 'Row 2'
 WHEN new testcircleudt('3,3,9,green,circ')
 THEN 'Row 3'
 ELSE 'Row is NULL'
 END
 FROM t1;

Example 1: Using UDT Data Types in Scalar Expressions

You use scalar_expression_nand scalar_expression_mas the expressions to return on when the
equality comparison on a valued or searched CASE expression evaluates to TRUE, or the value to return
on in an ELSE condition.

For these examples, the table is defined as follows:

create table udtval038_t1(id integer, udt1 testcircleudt, udt2
testrectangleudt) PRIMARY INDEX (id);

Following is an example of a searched CASE Expression where all scalar expressions are of the same
UDT data type.

Note:
The search_condition_ncan be a different UDT data type than the scalar_expression_n. SELECT
* FROM udtval038_t1

 WHERE udt1 = CASE
 WHEN udt2 <> new testrectangleudt('2,2,4,4,pink,rect')

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 310

 THEN new testcircleudt('1,1,2,blue,circ')
 ELSE new testcircleudt('2,2,4,purple,circ')
*** Query completed. 2 rows found. 3 columns returned.
 END;
id udt1
----------- ---
 1 1, 1, 2, yellow, circ
 2 2, 2, 4, purple, circ

However, the following example does not complete successfully because the scalar expressions are of
different data types.

 SELECT * FROM udtval038_t1
 WHERE udt1 = CASE
 WHEN udt2 <> new testrectangleudt('2,2,4,4,pink,rect')
 THEN new testcircleudt('1,1,2,blue,circ')
 ELSE new testrectangleudt('2,2,4,4,purple,rect')
 END;

Related Information
• For information about error conditions, see Error Conditions.
• For information about the result data type of a CASE expression, see Rules for the CASE Expression

Result Type.
• For information about format of the result of a CASE expression, see Default Format.
• For information about nulls and CASE expressions, see CASE and Nulls.

Searched CASE Expression
Evaluates a search condition and returns one of a WHEN clause-defined set of scalar values when it finds
a value that evaluates to TRUE. If no TRUE test is found, then CASE returns the scalar value defined by an
ELSE clause, or if omitted, NULL.

Default Title

The default title for a CASE expression appears as:

<CASE expression>

Searched CASE Expression Syntax
CASE when_clause [,...] [ELSE scalar_expression_m] END

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 311

Syntax Elements

when_clause

WHEN search_condition_n THEN scalar_expression_n

scalar_expression_m
A scalar expression whose value is returned when no search_condition_n evaluates
to TRUE.

search_condition_n
A predicate condition to be tested for truth.

scalar_expression_n
A scalar expression whose value is returned when search_condition_n is the first search
condition that evaluates to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
WHEN clauses are processed sequentially.

The first WHEN clause search_condition_n that is TRUE returns the value of its associated
scalar_expression_n as its result. The evaluation process then ends.

If no search_condition_n is TRUE, then scalar_expression_m, the argument of the ELSE clause, is
the result.

If no ELSE clause is defined, then the default value for the result is NULL.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a runtime error
is returned.

Recommendation: Do not use the built-in functions CURRENT_DATE or CURRENT_TIMESTAMP in a
CASE expression that is specified in a partitioning expression for a partitioned primary index (PPI). In this
case, all rows are scanned during reconciliation.

Rules for WHEN Search Conditions

WHEN search conditions have the following properties:

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 312

• Can take the form of any comparison operator, such as LIKE, =, or <>.
• Can be a quantified predicate, such as ALL or ANY.
• Can contain a scalar subquery.
• Can contain joins of two tables.

For example:

 SELECT CASE
 WHEN t1.x=t2.x THEN t1.y
 ELSE t2.y
 END FROM t1,t2;

• Cannot contain SELECT statements.

Restrictions on the Data Types in a CASE Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data
Type Restrictions

BLOB A BLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m,
or scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m,
or scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression, with the following restrictions:
• The data type of value_expression_1 through value_expression_n must have the same UDT

data type if one of them has a UDT data type.
• scalar_expression_n and scalar_expression_m must be the same UDT data type if one them

has a UDT data type.
Vantage does not perform implicit type conversion on UDTs in CASE expressions. A
workaround for this restriction is to use CREATE CAST to define casts that cast between
the UDTs, and then explicitly invoke the CAST function in the CASE expression. For more
information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language
Syntax and Examples, B035-1144.

Examples

Example: Evaluating a Search Condition

The following statement is equivalent to the first example of the valued form of CASE on “Example”:

 SELECT SUM(CASE
 WHEN part='1'

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 313

 THEN cost
 ELSE 0
 END
) / SUM(cost)
 FROM t;

Example: Using a CASE Expression

CASE expressions can be used in place of any value-expressions.

Note that the following example does not specify an ELSE clause. ELSE clauses are always optional in a
CASE expression. If an ELSE clause is not specified and none of the WHEN conditions are TRUE, then
a null is returned.

 SELECT *
 FROM t
 WHERE x = CASE
 WHEN y=2
 THEN 1
 WHEN (z=3 AND y=5)
 THEN 2
 END;

Example: Using an ELSE Clause

The following example uses an ELSE clause.

 SELECT *
 FROM t
 WHERE x = CASE
 WHEN y=2
 THEN 1
 ELSE 2
 END;

Example: Using a CASE expression to Enhance Performance

The following example shows how using a CASE expression can result in significantly enhanced
performance by eliminating multiple passes over the data. Without using CASE, you would have to
perform multiple queries for each region and then consolidate the answers to the individual queries in a
final report.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 314

 SELECT SalesMonth, SUM(CASE
 WHEN Region='NE'
 THEN Revenue
 ELSE 0
 END),
 SUM(CASE
 WHEN Region='NW'
 THEN Revenue
 ELSE 0
 END),
 SUM(CASE
 WHEN Region LIKE 'N%'
 THEN Revenue
 ELSE 0
 END)
 AS NorthernExposure, NorthernExposure/SUM(Revenue),
 SUM(Revenue)
 FROM Sales
 GROUP BY SalesMonth;

Example: Producing a Report to Show Employee Salary

All employees whose salary is less than $40000 are eligible for an across the board pay increase.

IF your salary is less than … AND you have greater than this
many years of service …

THEN you receive this
percentage salary increase …

$30000.00 8 15

$35000.00 10 10

$40000.00 5

The following SELECT statement uses a CASE expression to produce a report showing all employees
making under $40000, displaying the first 15 characters of the last name, the salary amount (formatted
with $and punctuation), the number of years of service based on the current date (in the column named
On_The_Job) and which of the four categories they qualify for: '15% Increase', '10% Increase', '05%
Increase' or 'Not Qualified'.

 SELECT CAST(last_name AS CHARACTER(15))
 ,salary_amount (FORMAT '$,$$9,999.99')
 ,(date - hire_date)/365.25 (FORMAT 'Z9.99') AS On_The_Job
 ,CASE
 WHEN salary_amount < 30000 AND On_The_Job > 8

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 315

 THEN '15% Increase'
 WHEN salary_amount < 35000 AND On_The_Job > 10
 THEN '10% Increase'
 WHEN salary_amount < 40000 AND On_The_Job > 10
 THEN '05% Increase'
 ELSE 'Not Qualified'
 END AS Plan
 WHERE salary_amount < 40000
 FROM employee
 ORDER BY 4;

The result of this query appears in the following table:

last_name salary_amount On_The_Job Plan

Trader $37,850.00 20.61 05% Increase

Charles $39,500.00 18.44 05% Increase

Johnson $36,300.00 20.41 05% Increase

Hopkins $37,900.00 19.99 05% Increase

Morrissey $38,750.00 18.44 05% Increase

Ryan $31,200.00 20.41 10% Increase

Machado $32,300.00 18.03 10% Increase

Short $34,700.00 17.86 10% Increase

Lombardo $31,000.00 20.11 10% Increase

Phillips $24,500.00 19.95 15% Increase

Rabbit $26,500.00 18.03 15% Increase

Kanieski $29,250.00 20.11 15% Increase

Hoover $25,525.00 20.73 15% Increase

Crane $24,500.00 19.15 15% Increase

Stein $29,450.00 20.41 15% Increase

Related Information
• For information about error conditions, see Error Conditions.
• For information about the result data type of a CASE expression, see Rules for the CASE Expression

Result Type.
• For information about format of the result of a CASE expression, see Default Format.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 316

• For information about nulls and CASE expressions, see CASE and Nulls.

Error Conditions
The following conditions or expressions are considered illegal in a CASE expression:

Condition or Expression Example

A condition after the keyword CASE is supplied. SELECT CASE a=1
 WHEN 1
 THEN 1
 ELSE 0
 END
FROM t;

A non valid WHEN expression is supplied in a valued
CASE expression. SELECT CASE a

 WHEN a=1
 THEN 1
 ELSE 0
 END
FROM t;

A non valid WHEN condition is supplied in a searched
CASE expression. SELECT CASE

 WHEN a
 THEN 1
 ELSE 0
 END
FROM t;
SELECT CASE
 WHEN NULL
 THEN 'NULL'
 END
FROM table_1;

A non-scalar subquery is specified in a WHEN condition
of a searched CASE expression. SELECT CASE

 WHEN t.a IN
 (SELECT u.a
 FROM u)
 THEN 1
 ELSE 0
 END
FROM t;

A CASE expression references multiple UDTs that are
not identical to each other. SELECT CASE t.shape.gettype()

 WHEN 1
 THEN NEW circle('18,18,324')
 WHEN 2
 THEN NEW square('20,20,400')
 END;

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 317

Rules for the CASE Expression Result Type
Because the expressions in CASE THEN/ELSE clauses can be different data types, determining the result
type is not always straightforward. You can use the TYPE attribute function with the CASE expression as
the argument to find out the result data type. See TYPE.

The following rules apply to the data type of the CASE expression result.

THEN/ELSE Expressions Having the Same Non-Character
Data Type
If all of the THEN and ELSE expressions have the same non-character data type, the result of the CASE
expression is that type. For example, if all of the THEN and ELSE expressions have an INTEGER type, the
result type of the CASE expression is INTEGER.

For information about how the precision and scale of DECIMAL results are calculated, see Binary
Arithmetic Result Data Types.

THEN/ELSE Character Type Expressions
The following rules apply to CASE expressions where the data types of all of the THEN/ELSE expressions
are character:

• The result of the CASE expression is also a character data type, with the length equal to the maximum
length of the different character data types of the THEN/ELSE expressions.

• If the data types of all of the THEN/ELSE expressions are CHARACTER (or CHAR), the result data
type is CHARACTER. If one or more expressions are VARCHAR (or LONG VARCHAR), the result
data type is VARCHAR.

• The server character set of the result is determined as follows:

◦ If the CASE expression contains 1 nonliteral character expression and 1 or more literals, then
Vantage tries to translate every literal to the character set of the nonliteral. If the translations
are successful, then the character set of the nonliteral is used for the result data type. If the
translations are not successful, the server character set of the result is Unicode.

◦ If the CASE expression contains more than 1 nonliteral character expression and 1 or more
literals, then:

If all of the nonliteral expressions have the same character set, then Vantage uses this character
set as the common data type. Otherwise, if the nonliteral expressions have differing character
sets, then Vantage uses the Unicode character set as the common data type.

Vantage tries to translate every literal to the character set of the common data type. If the
translations are successful, then the result data type has the character set of the common data
type. If the translations are not successful, the server character set of the result is Unicode.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 318

Examples

Examples of Character Data in a CASE Expression

For the following examples of CHARACTER data behavior, assume the default server character set is
KANJI1 and the table definition for the CASE examples is as follow:

 CREATE TABLE table_1
 (
 i INTEGER,
 column_l CHARACTER(10) CHARACTER SET LATIN,
 column_u CHARACTER(10) CHARACTER SET UNICODE,
 column_j CHARACTER(10) CHARACTER SET KANJISJIS,
 column_g CHARACTER(10) CHARACTER SET GRAPHIC,
 column_k CHARACTER(10) CHARACTER SET KANJI1
);

Note:
In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information,
see "KANJI1 Character Set" in Teradata Vantage™ - Advanced SQL Engine International Character
Set Support, B035-1125.

Examples of Character Data in a CASE Expression: Example 1

The server character set of the result of the following query is UNICODE because the CASE expression
contains more than 1 nonliteral character expressions with differing character sets.

 SELECT i, CASE
 WHEN i=2 THEN column_u
 WHEN i=3 THEN column_j
 WHEN i=4 THEN column_g
 WHEN i=5 THEN column_k
 ELSE column_l
 END
 FROM table_1
 ORDER BY 1;

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 319

In the following query, the CASE expression returns a VARCHAR result because the THEN  and  ELSE
clause contains FLOAT and VARCHAR values. The length of the result is 30 since the default format for
FLOAT is a string less than 30 characters, and USER is defined as VARCHAR(30) CHARACTER SET
UNICODE. The result is CHARACTER SET UNICODE because USER is UNICODE.

 SELECT a, CASE
 WHEN a=1
 THEN TIME
 ELSE USER
 END
 FROM table_1
 ORDER BY 1;

Examples of Character Data in a CASE Expression: Example 2

The result of the following query is a 5354 failure (Arguments must be of type KANJI1) because one
THEN/ELSE expression is a KANJI1 literal, but the server character sets of all the other THEN/ELSE
expressions are not KANJI1.

 SELECT i, CASE
 WHEN i=1 THEN column_l
 WHEN i=2 THEN column_u
 WHEN i=3 THEN column_j
 WHEN i=4 THEN column_g
 WHEN i=5 THEN _Kanji1'4142'XC
 ELSE column_k
 END
 FROM table_1
 ORDER BY 1;

For this example, assume the following table definition:

 CREATE table_1
 (i INTEGER,
 column_l CHARACTER(10) CHARACTER SET LATIN,
 column_u CHARACTER(10) CHARACTER SET UNICODE,
 column_j CHARACTER(10) CHARACTER SET KANJISJIS,
 column_g CHARACTER(10) CHARACTER SET GRAPHIC,
 column_k CHARACTER(10) CHARACTER SET KANJI1);

The following query fails because the server character set is GRAPHIC (because the server character set
of the first THEN with a character type is GRAPHIC):

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 320

 SELECT i, CASE
 WHEN i=1 THEN 4
 WHEN i=2 THEN column_g
 WHEN i=3 THEN 5
 WHEN i=4 THEN column_l
 WHEN i=5 THEN column_k
 ELSE 10
 END
 FROM table_1
 ORDER BY 1;

Examples of Character Data in a CASE Expression: Example 3

One THEN/ELSE expression in the following query has a Unicode column. The query is successful and
the result data type is UNICODE because the CASE expression contains 1 Unicode column and all other
literals can be successfully translated to Unicode.

 SELECT i, CASE
 WHEN i=1 THEN column_u
 WHEN i=2 THEN 'abc'
 WHEN i=3 THEN 8
 WHEN i=4 THEN _KanjiSJIS'4142'XC
 ELSE 10
 END
 FROM table_1
 ORDER BY 1;

Examples of Character Data in a CASE Expression: Example 4

One THEN/ELSE expression in the following query has a Latin column. The query is successful and the
result data type is Latin because the other literals can be successfully translated to Latin.

 SELECT i, CASE
 WHEN i=1 THEN 'abc'
 WHEN i=2 THEN column_l
 ELSE 'def'
 END
 FROM table_1
 ORDER BY 1;

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 321

THEN/ELSE Expressions Having Mixed Data Types

The rules for mixed data appear in the following table.

IF the THEN / ELSE
clause expressions … THEN …

consist of BYTE and/or
VARBYTE data types

if the data types of all of the THEN/ELSE expressions are BYTE, the result
data type is BYTE. If one or more expressions are VARBYTE, the result data
type is VARBYTE.
The result has a length equal to the maximum length of the different byte
data types.

contain a DateTime or
Interval data type

all of the THEN/ELSE clause expressions must have the same data type.

contain a FLOAT
(approximate numeric)
and no character strings

the CASE expression returns a FLOAT result.
Note:
Some inaccuracy is inherent and unavoidable when FLOAT data types
are involved.

are composed only of
DECIMAL data

the CASE expression returns a DECIMAL result.
Note:
A DECIMAL arithmetic result can have up to 38 digits. A result larger than
38 digits produces a numeric overflow error.
For information about how the precision and scale of DECIMAL results are
calculated, see Binary Arithmetic Result Data Types.
all are implicitly converted to FLOAT and the CASE expression returns a
FLOAT result.

Note:
Some inaccuracy is inherent and unavoidable when FLOAT data types are
involved. Implicit conversion of DECIMAL and INTEGER values to FLOAT
values may result in a loss of precision or produce a number that cannot be
represented exactly.

are composed only
of mixed DECIMAL,
BYTEINT, SMALLINT,
INTEGER, and
BIGINT data

are a mix of BYTEINT,
SMALLINT, INTEGER,
and BIGINT data

the resulting type is the largest type of any of the THEN/ELSE clause
expressions, where the following list orders the types from largest
to smallest:
• BIGINT
• INTEGER
• SMALLINT
• BYTEINT

are composed only
of numeric and
character data

the numeric data is converted to CHARACTER with a length as determined
by the format associated with the numeric expression. Then, the rules for
the result data type for character, length, and character set are applied. For
details, see THEN/ELSE Character Type Expressions.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 322

IF the THEN / ELSE
clause expressions … THEN …

Note:
An error is generated if the server character set is GRAPHIC.

Examples of Numeric Data in a CASE Expression

For the following examples of numeric data behavior, assume the following table definitions for the
CASE examples:

 CREATE TABLE dec22
 (column_l INTEGER
 ,column_2 INTEGER
 ,column_3 DECIMAL(22,2));

Example: CASE Expression Fails

In the following statement, the CASE expression fails when column_2 contains the value 1 and column_3
contains the value 11223344556677889900.12 because the result is a DECIMAL value that requires
more than 38 digits of precision:

 SELECT SUM (CASE
 WHEN column_2=1
 THEN column_3 * 6.112233445566778800000
 ELSE column_3
 END)
 FROM dec22;

Example: Shortening the Scale of the Multiplier

The following query corrects the problem in Example: CASE Expression Fails by shortening the scale of
the multiplier in the THEN expression:

 SELECT SUM (CASE
 WHEN column_2=1
 THEN column_3 * 6.1122334455667788
 ELSE column_3
 END)
 FROM dec22;

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 323

Example: Returning a DECIMAL(38,2) Result

In the following query, the CASE expression returns a DECIMAL(38,2) result because the THEN  and  
ELSE clauses contain DECIMAL values:

 SELECT SUM (CASE
 WHEN column_2=1
 THEN column_3 * 6
 ELSE column_3
 END)
 FROM dec22;

Examples of Character and Numeric Data in a CASE Expression

The following examples illustrate the behavior of queries containing CASE expressions with a THEN/
ELSE clause composed of numeric and character data.

Examples of Character and Numeric Data in a CASE Expression:
Example 1

In the following query, the CASE expression returns a VARCHAR result because the THEN  and  ELSE
clause contains FLOAT and VARCHAR values. The length of the result is 30 since the default format for
FLOAT is a string less than 30 characters, and USER is defined as VARCHAR(30) CHARACTER SET
UNICODE. The result is CHARACTER SET UNICODE because USER is UNICODE.

 SELECT a, CASE
 WHEN a=1
 THEN TIME
 ELSE USER
 END
 FROM table_1
 ORDER BY 1;

Examples of Character and Numeric Data in a CASE Expression:
Example 2

For this example, assume the following table definition:

 CREATE table_1
 (i INTEGER,

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 324

 column_l CHARACTER(10) CHARACTER SET LATIN,
 column_u CHARACTER(10) CHARACTER SET UNICODE,
 column_j CHARACTER(10) CHARACTER SET KANJISJIS,
 column_g CHARACTER(10) CHARACTER SET GRAPHIC,
 column_k CHARACTER(10) CHARACTER SET KANJI1);

The following query fails because the server character set is GRAPHIC (because the server character set
of the first THEN with a character type is GRAPHIC):

 SELECT i, CASE
 WHEN i=1 THEN 4
 WHEN i=2 THEN column_g
 WHEN i=3 THEN 5
 WHEN i=4 THEN column_l
 WHEN i=5 THEN column_k
 ELSE 10
 END
 FROM table_1
 ORDER BY 1;

Related Information
• Binary Arithmetic Result Data Types

Format for a CASE Expression

Default Format
The result of a CASE expression is displayed using the default format for the resulting data type. The result
of a CASE expression does not apply the explicit format that may be defined for a column appearing in a
THEN/ELSE expression.

Consider the following table definition:

 CREATE TABLE duration
 (i INTEGER
 ,start_date DATE FORMAT 'EEEEBMMMBDD,BYYYY'
 ,end_date DATE FORMAT 'DDBM3BY4');

Assume the default format for the DATE data type is 'YY/MM/DD'.

The following query displays the result of the CASE expression using the 'YY/MM/DD' default DATE format,
not the format defined for the start_date or end_date columns:

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 325

 SELECT i, CASE
 WHEN i=1
 THEN start_date
 WHEN i=2
 THEN end_date
 END
 FROM duration
 ORDER BY 1;

Using Explicit Type Conversion to Change Format
To modify the format of the result of a CASE expression, use CAST and specify the FORMAT clause.

Here is an example that uses CAST to change the format of the result of the CASE expression in the
previous query.

 SELECT i, (CAST ((CASE
 WHEN i=1
 THEN start_date
 WHEN i=2
 THEN end_date
 END) AS DATE FORMAT 'M4BDD,BYYYY'))
 FROM duration
 ORDER BY 1;

For information on the default data type formats and the FORMAT phrase, see Teradata Vantage™ - Data
Types and Literals, B035-1143.

CASE and Nulls
The ANSI SQL:2011 standard specifies that the CASE expression and its related expressions COALESCE
and NULLIF must be capable of returning a null result.

Nulls and CASE Expressions

The rules for null usage in CASE, NULLIF, and COALESCE expressions are as follows.

• If no ELSE clause is specified in a CASE expression and the evaluation falls through all the WHEN
clauses, the result is null.

• Nulls and expressions containing nulls are valid as value_expression_1 in a valued CASE expression.

The following examples are valid.

 SELECT CASE NULL
 WHEN 10
 THEN 'TEN'

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 326

 END;

 SELECT CASE NULL + 1
 WHEN 10
 THEN 'TEN'
 END;

Both of the preceding examples return NULL because no ELSE clause is specified, and the evaluation
falls through the WHEN clause because NULL is not equal to any value or to NULL.

• Comparing NULL to any value or to NULL is always FALSE. When testing for NULL, it is best to use a
searched CASE expression using IS NULL or IS NOT NULL in the WHEN condition.

The following example is valid.

 SELECT CASE
 WHEN column_1 IS NULL
 THEN 'NULL'
 END
 FROM table_1;

Often, Vantage can detect when an expression that always evaluates to NULL is compared to some
other expression or NULL, and gives an error that recommends using IS NULL or IS NOT NULL instead.
Note that ANSI SQL does not consider this to be an error; however, Vantage reports an error since it is
unlikely that comparing NULL in this manner is the intent of the user.

The following examples are not legal.

 SELECT CASE column_1
 WHEN NULL
 THEN 'NULL'
 END
 FROM table_1;

 SELECT CASE column_1
 WHEN NULL + 1
 THEN 'NULL'
 END
 FROM table_1;
 SELECT CASE
 WHEN column_1 = NULL
 THEN 'NULL'
 END
 FROM table_1;
 SELECT CASE

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 327

 WHEN column_1 = NULL + 1
 THEN 'NULL'
 END
 FROM table_1;

• Nulls and expressions containing nulls are valid as THEN clause expressions.

The following example is valid.

 SELECT CASE
 WHEN column_1 = 10
 THEN NULL
 END
 FROM table_1

Note that, unlike the previous examples, the NULL in the THEN clause is an SQL keyword and not the
value of a character literal.

CASE Shorthands
ANSI also defines two shorthand special cases of CASE specifically for handling nulls.

• COALESCE expression (see COALESCE Expression)
• NULLIF expression (see NULLIF Expression)

COALESCE Expression
Returns NULL if all its arguments evaluate to null. Otherwise, it returns the value of the first non-null
argument in the scalar_expression list.

COALESCE is a shorthand expression for the following full CASE expression:

 CASE
 WHEN scalar_expression_1 IS NOT NULL
 THEN scalar_expression_1
 ...
 WHEN scalar_expression_n IS NOT NULL
 THEN scalar_expression_n
 ELSE NULL
 END

Default Title

The default title for a COALESCE expression appears as:

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 328

<CASE expression>

COALESCE Expression Syntax

COALESCE (scalar_expression_1, scalar_expression_n [,...])

Syntax Elements

scalar_expression_1
A scalar expression.

scalar_expression_n
A scalar expression.

ANSI Compliance

This statement is ANSI SQL:2011 compliant.

Usage Notes

A scalar_expression_n in the argument list may be evaluated twice: once as a search condition and again
as a return value for that search condition.

Using a nondeterministic function, such as RANDOM, in a scalar_expression_n may have unexpected
results, because if the first calculation of scalar_expression_n is not NULL, the second calculation of that
scalar_expression_n, which is returned as the value of the COALESCE expression, might be NULL.

You can use a scalar subquery in a COALESCE expression. However, if you use a non-scalar subquery
(a subquery that returns more than one row), a runtime error is returned.

Restrictions on the Data Types in a COALESCE Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a COALESCE expression.

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types because
Vantage does not perform implicit type conversion on UDTs in a COALESCE expression.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 329

Examples

Example: Querying for a Phone Number

The following example returns the home phone number of the named individual (if present), or office
phone if HomePhone is null, or MessageService if present and both home and office phone values are
null. Returns NULL if all three values are null.

 SELECT Name, COALESCE (HomePhone, OfficePhone, MessageService)
 FROM PhoneDir;

Example: Using COALESCE with an Arithmetic Operator

The following example uses COALESCE with an arithmetic operator.

 SELECT COALESCE(Boxes,0) * 100
 FROM Shipments;

Example: Using COALESCE with an Comparison Operator

The following example uses COALESCE with a comparison operator.

 SELECT Name
 FROM Directory
 WHERE Organization <> COALESCE (Level1, Level2, Level3);

Related Information

• For additional information, such as the rules for evaluation and result data type, see
CASE Expressions.

NULLIF Expression
Returns NULL if its arguments are equal. Otherwise, it returns its first argument, scalar_expression_1.

NULLIF is a shorthand expression for the following full CASE expression:

 CASE
 WHEN scalar_expression_1=scalar_expression_2
 THEN NULL

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 330

 ELSE scalar_expression_1
 END

Default Title

The default title for a NULLIF expression appears as:

<CASE expression>

NULLIF Expression Syntax

NULLIF (scalar_expression_1, scalar_expression_2)

Syntax Elements

scalar_expression_1
The scalar expression to the left of the = in the expanded CASE expression:

CASE
 WHEN scalar_expression_1 = scalar_expression_2
 THEN NULL
 ELSE scalar_expression_1
END

scalar_expression_2
The scalar expression to the right of the = in the expanded CASE expression:

CASE
 WHEN scalar_expression_1 = scalar_expression_2
 THEN NULL
 ELSE scalar_expression_1
END

ANSI Compliance

This statement is ANSI SQL:2011 compliant.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 331

Usage Notes

The scalar_expression_1 argument may be evaluated twice: once as part of the search condition (see the
preceding expanded CASE expression) and again as a return value for the ELSE clause.

Using a nondeterministic function, such as RANDOM, may have unexpected results if the first calculation
of scalar_expression_1 is not equal to scalar_expression_2, in which case the result of the CASE
expression is the value of the second calculation of scalar_expression_1, which may be equal
to scalar_expression_2.

You can use a scalar subquery in a NULLIF expression. However, if you use a non-scalar subquery (a
subquery that returns more than one row), a runtime error is returned.

Restrictions on the Data Types in a NULLIF Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a NULLIF expression.

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types and have
an ordering definition.

Examples

The following examples show queries on the following table:

 CREATE TABLE Membership
 (FullName CHARACTER(39)
 ,Age SMALLINT
 ,Code CHARACTER(4));

Example: Querying with the ANSI-Compliant Form

Here is the ANSI-compliant form of the Teradata SQL NULLIFZERO(Age) function, and is more versatile.

 SELECT FullName, NULLIF (Age,0) FROM Membership;

Example: Blank Spaces

In the following query, blanks indicate no value.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 332

 SELECT FullName, NULLIF (Code, ' ') FROM Membership;

Example: Querying for NULLIF in an Expression with an Arithmetic Operator

The following example uses NULLIF in an expression with an arithmetic operator.

 SELECT NULLIF(Age,0) * 100;

Related Information

• For additional information, such as the rules for evaluation and result data type, see CASE and Nulls.

9: CASE Expressions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 333

Hash-related functions return information about the:

• Primary or fallback AMP that corresponds to a given hash bucket number
• Hash bucket number that corresponds to a given row hash value
• Row hash value for the primary index of a row
• Highest AMP number
• Highest hash bucket number
• Maximum value that can be generated by applying the hash function to an unsigned integer

Use the hash-related functions to identify the statistical properties of the current primary index or secondary
index, or to evaluate these properties for other columns to determine their suitability as a future primary index
or secondary index. The statistics can help you to minimize hash synonyms and enhance the uniformity of
data distribution.

HASHAMP
Finds the primary AMP corresponding to the hash bucket number specified in the expression and returns
the AMP ID. If no hash bucket number is specified, HASHAMP returns one less than the maximum number
of AMPs in the system.

HASHAMP Function Syntax
HASHAMP ([hash_bucket_number_expr])

Syntax Elements

hash_bucket_number_expr

{ expression [MAP = sparsemap_name COLOCATE USING = colocation_name
] |
 [expression] MAP = contiguousmap_name
}

expression
An expression that evaluates to a valid hash bucket number.

MAP
An object that specifies which AMPs store the rows of a table.

Hash-Related Functions

10

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 334

sparsemap_name
The name of the sparse map, the map that includes a subset of AMPs from a
contiguous map.

COLOCATE USING
A clause that forces tables that use the same sparse map to be stored on the same subset
of AMPs.

COLOCATE USING is required with a sparse map. It cannot be used with a contiguous map.

colocation_name
The colocation name, usually databasename_tablename.

contiguousmap_name
The name of the contiguous map, the map that includes all AMPs within a specified range.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
About Default Arguments

Arguments Result

None HASHAMP () returns an INTEGER that is one less than the maximum number of
AMPs in the system.

expression is
not specified

For a contiguous map: The function returns an INTEGER representing the highest
AMP number in the specified or default contiguous map. For a contiguous map
starting at AMP zero, adding one to the result gives the total number of AMPs in the
contiguous map. For a sparse map: Expression must be specified for a sparse map.

expression
is specified

The function returns the ID of the primary AMP corresponding to the hash bucket
number specified in expression, based on the specified or default map.

About the Default Map

To determine the default map, the system evaluates the following, in order, and uses the first map found:

1. User profile.
2. User.
3. System.

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 335

About Expression

The expression argument must evaluate to an INTEGER data type where the range of valid values
depends on the system hash bucket size.

IF the hash bucket size is … THEN the range of values for expression is …

16 bits 0 to 65,535.

20 bits 0 to 1,048,575.

For information on how to set the system hash bucket size, see “DBS Control utility” in Teradata Vantage™
- Database Utilities, B035-1102.

If expression cannot be implicitly converted to an INTEGER, an error is reported.

If expression results in a UDT, Vantage performs implicit type conversion on the UDT, if the UDT has an
implicit cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information, see Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including HASHAMP,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Examples

Example Assumptions

The following two examples assume a table T with columns column_1, column_2, and an INTEGER
column B populated with integer numbers from zero to the maximum number of hash buckets on the
system. This table is created as follows:

 CREATE TABLE T
 (column_1 INTEGER
 ,column_2 INTEGER
 ,B INTEGER)
 UNIQUE PRIMARY INDEX (column_1, column_2);

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 336

Example: Querying the Distribution of Hash Buckets

The following query returns the distribution of the hash buckets among the primary AMPs.

 SELECT B, HASHAMP (B)
 FROM T
 ORDER BY 1;

Example: Querying the Number of Rows on Each Primary AMP

The following query returns the number of rows on each primary AMP where column_1 and column_2 are
the primary index of table T.

 SELECT HASHAMP (HASHBUCKET (HASHROW (column_1,column_2))), COUNT (*)
 FROM T
 GROUP BY 1
 ORDER BY 1;

Example: HASHAMP with a Contiguous Map

The following query returns the ID of the highest AMP number in the specified contiguous map.

Select HashAmp (map = contiguousmap_name);

Example: HASHAMP with an Expression and a Contiguous Map

The following query returns the ID of the primary AMP corresponding to the specified hash bucket number:

Select HashAmp (HashBucket(HashRow(column1, column2)) map = contiguousmap_name
) from t1;

Example: Which AMPs Contain the Rows of a Table

The following query shows which AMPs contain the rows of a table.

sel col1, hashamp(hashbucket(hashrow(col1))
 map = map1count3 colocate using u1_tabm1c3)
 (named "which amp?")
from u1.tabm1c3 order by 1;

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 337

 col1 which amp?
----------- -----------
 0 3
 1 2
 2 3
 3 2
 4 2
 5 2
 6 3
 7 2
 8 3
 9 1

Related Information
For more information on implicit type conversion, see "Data Type Conversions" in Teradata Vantage™ -
Data Types and Literals, B035-1143.

HASHBAKAMP
Finds the fallback AMP corresponding to the hash bucket number specified in the expression and returns
the AMP ID. If no hash bucket is specified, HASHBAKAMP returns one less than the maximum number of
fallback AMPs in the system.

HASHBAKAMP Function Syntax
HASHBAKAMP ([hash_bucket_number_expr])

Syntax Elements

hash_bucket_number_expr

{ expression [MAP = sparsemap_name COALESCE USING = colocation_name
] |
 [expression] MAP = contiguousmap_name
}

expression
An expression that evaluates to a valid hash bucket number.

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 338

MAP
An object that specifies which AMPs store the rows of a table.

sparsemap_name
The name of the sparse map, the map that includes a subset of AMPs from a
contiguous map.

COLOCATE USING
A clause that forces tables that use the same sparse map to be stored on the same subset
of AMPs.

COLOCATE USING is required with a sparse map. It cannot be used with a contiguous map.

colocation_name
The colocation name, usually databasename_tablename.

contiguousmap_name
The name of the contiguous map, the map that includes all AMPs within a specified range.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
About Default Arguments

Arguments Result

None HASHBAKAMP () returns an INTEGER that is one less than the maximum number of
AMPs in the system.

expression is
not used

For a contiguous map: The function returns an INTEGER representing the highest
fallback AMP number in the specified or default contiguous map. For a contiguous
map starting at AMP zero, adding one to the result gives the total number of AMPs
in the contiguous map. For a sparse map: Expression must be specified for a
sparse map.

expression
is specified

The function returns the ID of the fallback AMP corresponding to the hash bucket
number specified in expression, based on the specified or default map.

About the Default Map

To determine the default map, the system evaluates the following, in order, and uses the first map found:

1. User profile.

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 339

2. User.
3. System.

About Expression

The expression argument must evaluate to an INTEGER data type where the range of valid values
depends on the system hash bucket size.

IF the hash bucket size is … THEN the range of values for expression is …

16 bits 0 to 65,535.

20 bits 0 to 1,048,575.

For information on how to set the system hash bucket size, see “DBS Control utility” in Teradata Vantage™
- Database Utilities, B035-1102.

If expression cannot be implicitly converted to an INTEGER, an error is reported.

If expression results in a UDT, Vantage performs implicit type conversion on the UDT, if the UDT has an
implicit cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information, see Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including HASHBAKAMP,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Examples

Example Assumptions

The following example assumes a table T with an INTEGER column B populated with integer numbers
from zero to the maximum number of hash buckets on the system.

Example: Distributing the Hash Buckets Among the Fallback AMPs

This query returns the distribution of the hash buckets among the fallback AMPs.

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 340

 SELECT B, HASHBAKAMP (B)
 FROM T
 ORDER BY 1;

Example: Which Fallback AMPs Contain the Rows of a Table

The following query shows which fallback AMPs contain the rows of a table.

sel col1, hashbakamp(hashbucket(hashrow(col1))
 map = map1count3 colocate using u1_tabm1c3)
 (named "which amp?")
from u1.tabm1c3 order by 1;

 col1 which amp?
----------- -----------
 0 2
 1 3
 2 2
 3 3
 4 3
 5 3
 6 2
 7 3
 8 2
 9 0

Related Information
For more information on implicit type conversion, see "Data Type Conversions" in Teradata Vantage™ -
Data Types and Literals, B035-1143.

HASHBUCKET
Returns the hash bucket number that corresponds to a specified row hash value. If no row hash value is
specified, HASHBUCKET returns the highest hash bucket number.

HASHBUCKET returns an INTEGER data type.

HASHBUCKET Function Syntax
HASHBUCKET (expression)

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 341

Syntax Elements

expression
An optional expression that evaluates to a valid BYTE(4) row hash value.

If expression results in a UDT, Vantage performs implicit type conversion on the UDT,
provided that the UDT has an implicit cast to a predefined byte type.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see Teradata Vantage™ -
SQL Data Definition Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including
HASHBUCKET, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

IF expression … THEN …

does not appear in the
argument list

HASHBUCKET returns an INTEGER value that is the highest
hash bucket number.

evaluates to NULL HASHBUCKET returns NULL.

evaluates to a
valid BYTE(4) row
hash value

HASHBUCKET returns the hash bucket number corresponding to
the row hash value.
The range of values for hash bucket numbers depends on the
system setting of the hash bucket size.
• If the hash bucket size is 16 bits, the hash bucket numbers can

have a value from 0 to 65535.
• If the hash bucket size is 20 bits, the hash bucket numbers can

have a value from 0 to 1048575.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

HASHBUCKET Usage Notes

Using HASHBUCKET to Convert a BYTE Type to an INTEGER Type

When a byte data type is the source type of a conversion using CAST syntax or Teradata Conversion
syntax, the target data type must also be a byte type.

To convert a BYTE(1) or BYTE(2) data type to INTEGER, you can use the HASHBUCKET function.

Consider the following table definition:

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 342

 CREATE TABLE ByteData(b1 BYTE(1), b2 BYTE(2));

To convert column b1 to INTEGER regardless of the system setting of the hash bucket size, use
the following:

 SELECT HASHBUCKET('00'XB || b1 (BYTE(4))) / ((HASHBUCKET()+1)/65536)
 FROM ByteData;

To convert column b2 to INTEGER regardless of the system setting of the hash bucket size, use
the following:

 SELECT HASHBUCKET(b2 (BYTE(4))) / ((HASHBUCKET()+1)/65536)
 FROM ByteData;

Examples

Example Assumptions

The following examples assume a table T with columns C1 and C2 and possibly other columns.

Example

If you call HASHBUCKET without an argument, it returns the maximum hash bucket.

 SELECT HASHBUCKET();

Example

If you call a HASHBUCKET function with an argument of NULL, the function returns NULL.

 SELECT HASHBUCKET(NULL);

Example

Building on the previous example, you can nest a call to HASHROW within a HASHBUCKET call.

Calling HASHBUCKET (HASHROW (NULL)) returns the 0 hash bucket.

 SELECT HASHBUCKET(HASHROW(NULL));

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 343

Example

The following example returns the number of rows in each hash bucket where C1 and C2 are to be the
primary index of T.

 SELECT HASHBUCKET (HASHROW (C1,C2)), COUNT (*)
 FROM T
 GROUP BY 1
 ORDER BY 1;

Example

The results of the following example lists each hash bucket that has one or more rows and its
corresponding primary AMP.

 SELECT HASHAMP (HASHBUCKET (HASHROW (C1, C2))),
 HASHBUCKET (HASHROW (C1,C2))
 FROM T
 GROUP BY 1,2
 ORDER BY 1,2 ;

HASHROW
Returns the hexadecimal row hash value for an expression or sequence of expressions. If no expression is
specified, HASHROW returns the maximum hash code value.

The resulting row hash value is typed BYTE(4).

HASHROW Function Syntax
HASHROW ([expression [,...]])

Syntax Elements

expression
An optional expression or comma-separated list of expressions that can appear in the
expression list of the select clause of a SELECT statement; typically a comma-separated list
of column names that make up a (potential) index.

HASHROW does not support expressions that result in UDT data types.

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 344

IF expression is … THEN HASHROW …

empty returns the maximum hash code value.

an expression that evaluates to NULL returns '00000000'XB.

a list of expressions where all the
expressions evaluate to NULL

an expression that evaluates to 0, '', ' ', or a
similar value

a valid, non-NULL expression that
can appear in the select list of a
SELECT statement

evaluates expression or the list of
expressions and applies the hash function on
the result. HASHROW returns the resulting
row hash value.

a list of expressions that can appear in the
select list of a SELECT statement, where
some expressions can evaluate to NULL

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
HASHROW is particularly useful for identifying the statistical properties of the current primary index, or to
evaluate these properties for other columns to determine their suitability as a future primary index. You can
also use these statistics to help minimize hash synonyms and enhance the uniformity of data distribution.

There are a maximum of 4,294,967,295 hash codes available in the system, ranging from '00000000'XB
to 'FFFFFFFF'XB.

You can embed a HASHROW call within a HASHBUCKET call.

Examples

Example

If you call HASHROW without an argument, it returns 'FFFFFFFF'XB, which is the maximum hash code
in the system.

 SELECT HASHROW();

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 345

Example

The following example returns the average number of rows per row hash, where columns date_field and
time_field constitute the primary index of the table eventlog.

 SELECT COUNT(*) / COUNT(DISTINCT HASHROW (date_field,time_field))
 FROM eventlog;

If columns date_field and time_field qualify for a unique index, this example returns the average number
of rows with the same hash synonym.

Example

The following example evaluates the efficiency of changing the decimal format of a numeric field to
eliminate synonyms.

Assume that column_1 and column_2 are declared as DECIMAL(2,2).

You can determine the effect of reformatting the columns to DECIMAL(8,6) and DECIMAL(8,4) on hash
collisions by submitting these two queries.

 SELECT COUNT (DISTINCT column_1(DECIMAL(8,6)) ||
 column_2(DECIMAL(8,4))
 FROM T;

 SELECT COUNT (DISTINCT HASHROW (column_1(DECIMAL(8,6)),
 column_2 (DECIMAL(8,4)))
 FROM T;

If the result of the second query is significantly less than the result of the first query, there are a significant
number of hash collisions. That is, the closer the second result is to the first value indicates elimination of
more hash synonyms.

Related Information
• For information on HASHBUCKET, see HASHBUCKET.

10: Hash-Related Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 346

The following sections describe SQL logical predicates.

Logical predicates are also known as comparison operators and conditional expressions. The ANSI SQL
standard calls logical predicates search conditions.

Related Information:

Comparison Operators and Functions

About Logical Predicates
A logical predicate tests an operand against one or more other operands to evaluate to a logical (Boolean
TRUE, FALSE, or UNKNOWN) result.

The tested operand can be one of the following:

• A column name
• A literal
• An arithmetic expression
• A Period expression, including a derived period
• The DEFAULT function
• A built-in function such as CURRENT_DATE or USER that evaluates to a system variable

Where Logical Predicates Are Used
Logical predicates are typically used in a WHERE, ON, or HAVING clause to qualify or disqualify rows as
a table expression is evaluated in a SELECT statement.

Logical predicates can be used in a WHEN clause search condition in a searched CASE expression.

The type of test performed is a function of the predicate.

Conditional Expressions as a Collection of Logical Primitives
You can think of a conditional expression as a collection of logical predicate primitives where the order
of evaluation is controlled by the use of the logical operators AND, OR, and NOT and by the placement
of parentheses.

Superficially similar conditional expressions can produce radically different results depending on how you
group their component primitives, so use caution in planning the logic of any conditional expressions.

SQL supports the logical predicate primitives listed in the following table. Note that Match and Unique
conditions are not supported.

Logical Predicates

11

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 347

Logical
Predicate
Primitive
Condition SQL Logical Predicate Function

Comparison For a complete list
of SQL comparison
operators, see Supported
Comparison Operators.

Tests for equality, inequality, or magnitude difference
between two data values.

Range BETWEEN
NOT BETWEEN

Tests whether a data value is included within (or excluded
from) a specified range of column data values.

Like LIKE Tests for a pattern match between a specified character
string and a column data value.

In IN
NOT IN

Tests whether a data value is (or is not) a member of a
specified set of column values.
IN is equivalent to = ANY.
NOT IN is equivalent to <> ALL.

All ALL Tests whether a data value compares TRUE to all column
values in a specified set.

Any ANY
SOME

Tests whether a data value compares TRUE to any
column value in a specified set.

Exists EXISTS
NOT EXISTS

Tests whether a specified table contains at least one row.

Period
predicates

For a complete list
of period predicate
operators, see "Period
Functions and Operators"
in Teradata Vantage™
- Data Types and
Literals, B035-1143.

Operates on:
• Two Period expressions
• Two derived periods
• One Period expression and one derived period
• One Period expression and one DateTime expression
Evaluates to TRUE, FALSE, or UNKNOWN.

OVERLAPS Tests whether two time periods, including derived
periods, overlap

IS UNTIL_CHANGED
IS NOT
UNTIL_CHANGED

Tests whether the ending bound of a Period
expression, including a derived period is (or is not)
UNTIL_CHANGED.

Restrictions on the Data Types Involved in Predicates
The restrictions in the following table apply to operations involving predicates and CLOB, BLOB, and
UDT types.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 348

Data
Type Restrictions

BLOB Predicates do not support BLOB or CLOB data types.
You can explicitly cast BLOBs to BYTE and VARBYTE types and CLOBs to CHARACTER and
VARCHAR types, and use the results in a predicate.CLOB

UDT The LIKE and OVERLAPS logical predicates do not support UDTs.
For EXISTS and NOT EXISTS: Multiple UDTs involved as predicate operands must be identical
types because Vantage does not perform implicit type conversion on UDTs involved as
predicate operands.
A workaround for this restriction is to use CREATE CAST to define casts that cast between the
UDTs and then explicitly invoke the CAST function within the operation involving predicates.
For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.
For BETWEEN/ NOT BETWEEN and IN/NOT:
• Multiple UDTs involved as predicate operands must be identical types because Vantage does

not perform implicit type conversion on UDTs involved as predicate operands.
A workaround for this restriction is to use CREATE CAST to define casts that cast between the
UDTs and then explicitly invoke the CAST function within the operation involving predicates.

• UDTs involved as predicate operands must have ordering definitions.
Vantage generates ordering functionality for distinct UDTs where the source types are
not LOBs. To create an ordering definition for structured UDTs or distinct UDTs where
the source types are LOBs, or to replace system-generated ordering functionality, use
CREATE ORDERING.

For more information on CREATE CAST and CREATE ORDERING, see Teradata Vantage™ -
SQL Data Definition Language Syntax and Examples, B035-1144.

Restrictions on the DEFAULT Function in a Predicate
The DEFAULT function returns the default value of a column. It has two forms: one that specifies a column
name and one that omits the column name. Predicates support both forms of the DEFAULT function, but
the following conditions must be true when the DEFAULT function omits the column name:

• The predicate uses a comparison operator
• The comparison involves a single column reference
• The DEFAULT function is not part of an expression

For example, the following statement uses DEFAULT to compare the values of the Dept_No column with
the default value of the Dept_No column. Because the comparison operation involves a single column
reference, Vantage can derive the column context of the DEFAULT function even though the column name
is omitted.

 SELECT * FROM Employee WHERE Dept_No < DEFAULT;

Note that if the DEFAULT function evaluates to null, the predicate is unknown and the WHERE condition
is false.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 349

Logical Operators and Search Conditions
A search condition, or conditional expression, consists of one or more conditional terms connected by one
or more of the following logical predicates:

• Comparison operators
• BETWEEN/NOT BETWEEN
• LIKE
• IN/NOT IN
• ALL or ANY/SOME
• EXISTS/NOT EXISTS
• OVERLAPS
• IS NULL/IS NOT NULL

Logical Operators
An operator applied to the result of a predicate to determine the result of a search condition.

The logical operators are:

• AND
• NOT
• OR

For example:

expression_1 OR expression_2 OR expression_3

Use NOT to negate an expression, for example:

expression_1 AND NOT expression_2

Where To Use Search Conditions
A search condition can be used in various SQL clauses such as WHERE, ON, QUALIFY, RESET WHEN,
or HAVING.

When used in a HAVING clause, a logical expression can be used with an aggregate operator.

For example, the following query uses a search condition in a HAVING clause to select from the Employee
table those departments with the number 100, 300, 500, or 600, and with a salary average of at least
$35,000 but not more than $55,000:

 SELECT AVG(Salary)
 FROM Employee
 WHERE DeptNo IN (100,300,500,600)

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 350

 GROUP BY DeptNo
 HAVING AVG(Salary) BETWEEN 35000 AND 55000 ;

Rules for Order of Evaluation
The following rules apply to evaluation order for conditional expressions:

• If an expression contains more than one of the same operator, the evaluation precedence is left
to right.

• If an expression contains a combination of logical operators, the order of evaluation is as follows:

NOT
AND
OR

• Parentheses can be used to establish the desired evaluation precedence.
• The logical expressions in a conditional expression are not always evaluated left to right.

Avoid using a conditional expression if its accuracy depends on the order in which its logical
expressions are evaluated.

For example, compare the following two expressions:

 F2/(NULLIF(F1,0)) > 500
 F1 <> 0 AND F2/F1 > 500

The first expression guarantees exclusion of division by zero.

The second allows the possibility of error, because the order of its evaluation determines the exclusion
of zeros.

Evaluation Results
Each logical expression in a conditional expression evaluates to one of three results:

• TRUE
• FALSE
• UNKNOWN

AND Truth Table
The following table illustrates the AND logic used in evaluating search conditions.

x FALSE x UNKNOWN x TRUE

y FALSE FALSE FALSE FALSE

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 351

y UNKNOWN FALSE UNKNOWN UNKNOWN

y TRUE FALSE UNKNOWN TRUE

OR Truth Table
The following table illustrates the OR logic used in evaluating search conditions.

x FALSE x UNKNOWN x TRUE

y FALSE FALSE UNKNOWN TRUE

y UNKNOWN UNKNOWN UNKNOWN TRUE

y TRUE TRUE TRUE TRUE

NOT Truth Table
The following table illustrates the NOT logic used in evaluating search conditions.

Result

x FALSE TRUE

x UNKNOWN UNKNOWN

x TRUE FALSE

Subquery Restrictions
Predicates in search conditions cannot specify SELECT AND CONSUME statements in subqueries.

Examples of Logical Operators in Search Conditions
The following examples illustrate the use of logical operators in search conditions.

The following example uses a search condition to select from a user table named Profile the names of
applicants who have either more than two years of experience or at least twelve years of schooling with a
high school diploma:

 SELECT Name
 FROM Profile
 WHERE YrsExp > 2
 OR (EdLev >= 12 AND Grad = 'Y') ;

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 352

The following statement requests a list of all the employees who report to manager number 10007
or manager number 10012. The manager information is contained in the Department table, while the
employee information is contained in the Employee table. The request is processed by joining the tables
on DeptNo, their common column.

DeptNo must be fully qualified in every reference to avoid ambiguity and an extra set of parentheses is
needed to group the ORed IN conditions. Without them, the result is a Cartesian product.

 SELECT EmpNo,Name,JobTitle,Employee.DeptNo,Loc
 FROM Employee,Department
 WHERE (Employee.DeptNo=Department.DeptNo)
 AND ((Employee.DeptNo IN
 (SELECT Department.DeptNo
 FROM Department
 WHERE MgrNo=10007))
 OR (Employee.DeptNo IN
 (SELECT Department.DeptNo
 FROM Department
 WHERE MgrNo=10012))) ;

Assuming that the Department table contains the following rows:

DeptNo Department Loc MgrNo

100 Administration NYC 10005

600 Manufacturing CHI 10007

500 Engineering ATL 10012

300 Exec Office NYC 10018

700 Marketing NYC 10021

The join statement returns:

EmpNo Name JobTitle DeptNo Loc

10012 Watson L Vice Pres 500 ATL

10004 Smith T Engineer 500 ATL

10014 Inglis C Tech Writer 500 ATL

10009 Marston A Secretary 500 ATL

10006 Kemper R Assembler 600 CHI

10015 Omura H Programmer 500 ATL

10007 Aguilar J Manager 600 CHI

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 353

EmpNo Name JobTitle DeptNo Loc

10010 Reed C Technician 500 ATL

10013 Regan R Purchaser 600 CHI

10016 Carter J Engineer 500 ATL

10019 Newman P Test Tech 600 CHI

ANY/ALL/SOME
Enables quantification in a comparison operation or IN/NOT IN predicate.

ANY/ALL/SOME Predicate Syntax
{ expression quantifier (literal [{, | OR} ...]) |
 { expression | (expression [,...]) } quantifier (subquery)
}

Syntax Elements

expression
An expression that specifies a value.

quantifier

{ comparison_operator [NOT] IN } { ALL |ANY | SOME }

literal
A literal value.

subquery
A subquery that selects the same number of expressions as are specified in the expression
or list of expressions.

The subquery cannot specify a SELECT AND CONSUME statement.

comparison_operator
A comparison operator that compares the expression or list of expressions and the literals
in the list (Literals syntax) or the subquery (Subquery syntax) to produce a TRUE, FALSE or
UNKNOWN result.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 354

[NOT] IN
A predicate that tests the existence of the expression or list of expressions in the list of
literals (Literals syntax) or the subquery (Subquery syntax) to produce a TRUE, FALSE, or
UNKNOWN result.

ANSI Compliance
ANY, SOME, and ALL are ANSI SQL:2011 compliant quantifiers.

ANY/ALL/SOME Usage Notes

ANY/ALL/SOME Quantifiers and Literal Syntax

When a list of literals is used with quantifiers and comparison operations or IN/NOT IN predicates, the
results are determined as follows.

IF the predicate is …
AND
specifies … THEN the result is true when …

a comparison
operation

ALL the comparison of expression and every literal in the list
produces true results.

ANY the comparison of expression and any literal in the list is true.

SOME

IN ALL expression is equal to every literal in the list.

ANY expression is equal to any literal in the list.

SOME

NOT IN ALL expression is not equal to any literal in the list.

ANY expression is not equal to every literal in the list.

SOME

For comparison operations, implicit conversion rules are the same as for the comparison operators.

If expression evaluates to NULL, the result is considered to be unknown.

ANY/ALL/SOME Quantifiers and Subquery Syntax

When subqueries are used with quantifiers and comparison operations or IN/NOT IN predicates, the
results are determined as follows.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 355

IF this
quantifier is
specified …

AND the
predicate is …

THEN the
result is … WHEN …

ALL a comparison
operation

TRUE the comparison of expression and every value in
the set of values returned by subquery produces
true results.

IN TRUE expression is equal to every value in the set of
values returned by subquery.

NOT IN TRUE expression is not equal to any value in the set of
values returned by subquery.

ALL a comparison
operation

TRUE subquery returns no values.

IN

NOT IN

ANY
SOME

a comparison
operation

TRUE the comparison of expression and at least one
value in the set of values returned by subquery
is true.

IN TRUE expression is equal to at least one value in the set
of values returned by subquery.

NOT IN TRUE expression is not equal to at least one value in the
set of values returned by subquery.

a comparison
operation

FALSE subquery returns no values.

IN

NOT IN

Equivalences Using ANY/ALL/SOME and Comparison Operators

The following table provides equivalences for the ANY/ALL/SOME quantifiers, where op is a
comparison operator.

This … Is equivalent to …

x op ALL (:a, :b, :c) (x op :a) AND (x op :b) AND (x op :c)

x op ANY (:a, :b, :c) (x op :a) OR (x op :b) OR (x op :c)

x op SOME (:a, :b, :c)

Here are some examples.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 356

This expression … Is equivalent to …

x < ALL (:a, :b, :c) (x < :a) AND (x < :b) AND (x < :c)

x > ANY (:a, :b, :c) (x > :a) OR (x > :b) OR (x > :c)

x > SOME (:a, :b, :c)

Equivalences Using ANY/ALL/SOME and IN/NOT IN

The following table provides equivalences for the ANY/ALL/SOME quantifiers, where op is IN or NOT IN.

This … Is equivalent to …

NOT (x op ALL (:a, :b, :c)) x NOT op ANY (:a, :b, :c)

x NOT op SOME (:a, :b, :c)

NOT (x op ANY (:a, :b, :c)) x NOT op ALL (:a, :b, :c)

NOT (x op SOME (:a, :b, :c))

If op is NOT IN, then NOT op is IN, not NOT NOT IN.

Here are some examples.

This expression … Is equivalent to …

NOT (x IN ANY (:a, :b, :c)) x NOT IN ALL (:a, :b, :c)

NOT (x IN ALL (:a, :b, :c)) x NOT IN ANY (:a, :b, :c)

NOT (x NOT IN ANY (:a, :b, :c)) x IN ALL (:a, :b, :c)

NOT (x NOT IN ALL (:a, :b, :c)) x IN ANY (:a, :b, :c)

Examples

Example: ANY Quantifier

The following statement uses a comparison operator with the ANY quantifier to select the employee
number, name, and department number of anyone in departments 100, 300, and 500:

This Expression … Is Equivalent to this expression…

SELECT EmpNo, Name, DeptNo
FROM Employee

SELECT EmpNo, Name, DeptNo
FROM Employee

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 357

This Expression … Is Equivalent to this expression…

WHERE DeptNo = ANY (100,300,500) ; WHERE (DeptNo = 100)
OR (DeptNo = 300)
OR (DeptNo = 500) ;
and
SELECT EmpNo, Name, DeptNo
FROM Employee
WHERE DeptNo IN (100,300,500) ;

Example: ALL Quantifier

Here is an example that uses a subquery in a comparison operation that specifies the ALL quantifier:

 SELECT EmpNo, Name, JobTitle, Salary, YrsExp
 FROM Employee
 WHERE (Salary, YrsExp) >= ALL
 (SELECT Salary, YrsExp FROM Employee) ;

Example: ANY/ALL/SOME

This example shows the behavior of ANY/ALL/SOME.

Consider the following table definition and contents:

 CREATE TABLE t (x INTEGER);
 INSERT t (1);
 INSERT t (2);
 INSERT t (3);
 INSERT t (4);
 INSERT t (5);

IF you use this query … THEN the result is …

SELECT * FROM t WHERE x IN ANY (1,2) 1, 2

SELECT * FROM t WHERE x = SOME (1,2) 1, 2

SELECT * FROM t WHERE x NOT IN ALL (1,2) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN ANY (1,2)) 3, 4, 5

SELECT * FROM t WHERE NOT (x = SOME (1,2)) 3, 4, 5

SELECT * FROM t WHERE x NOT IN SOME (1, 2) 1, 2, 3, 4, 5

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 358

IF you use this query … THEN the result is …

SELECT * FROM t WHERE x NOT = ANY (1, 2) 1, 2, 3, 4, 5

SELECT * FROM t WHERE x IN ALL (1,2) no rows

SELECT * FROM t WHERE NOT (x NOT IN SOME (1,2)) no rows

SELECT * FROM t WHERE x = ALL (1,2) no rows

SELECT * FROM t WHERE NOT (x NOT = ANY (1,2)) no rows

BETWEEN/NOT BETWEEN
Tests whether an expression value is between two other expression values.

BETWEEN/NOT BETWEEN Predicate Syntax
expr1 [NOT] BETWEEN expr2 AND expr3

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
The BETWEEN test is satisfied if the following condition is true.

 expression_2 <= expression_1 <= expression_3

If the BETWEEN test fails, no rows are returned.

The BETWEEN test is treated as two separate logical comparisons.

 expression_1 >= expression_2 AND expression_1 <= expression_3.

This expression … Is equivalent to …

x BETWEEN y AND z ((x >= y) AND (x <=z))

Note that because expression_1 is actually evaluated twice, using a nondeterministic function, such as
RANDOM, can produce unexpected results.

Example

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 359

The following example uses a search condition in a HAVING clause to select from the Employee table those
departments with the number 100, 300, 500, or 600, and with a salary average of at least $35,000 but not
more than $55,000:

 SELECT AVG(Salary)
 FROM Employee
 WHERE DeptNo IN (100,300,500,600)
 GROUP BY DeptNo
 HAVING AVG(Salary) BETWEEN 35000 AND 55000 ;

EXISTS/NOT EXISTS
Tests a specified table (normally a derived table) for the existence of at least one row (that is, it tests whether
the table in question is non-empty).

EXISTS is supported as the predicate of the search condition in a WHERE clause.

EXISTS/NOT EXISTS Predicate Syntax
[NOT] EXISTS subquery

Syntax Elements

subquery
A subquery that selects the same number of expressions as are specified in the expression
or list of expressions.

The subquery cannot specify a SELECT AND CONSUME statement.

The function of the EXISTS predicate is to test the result of subquery.

If execution of the subquery returns response rows then the where condition is
considered satisfied.

Using the NOT qualifier for the EXISTS predicate reverses the sense of the test. Execution
of the subquery does not, in fact, return any response rows. Instead, it returns a boolean
result to indicate whether responses would or would not have been returned had they
been requested.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 360

EXISTS/NOT EXISTS Usage Notes

Relationship Between EXISTS/NOT EXISTS and IN/NOT IN

EXISTS predicate tests the existence of specified rows of a subquery. In general, EXISTS can be used
to replace comparisons with IN and NOT EXISTS can be used to replace comparisons with NOT IN.
However, the reverse is not true. Some problems can be solved only by using EXISTS and/or NOT
EXISTS predicate. For an example, see For ALL.

Example

To select rows of t1 whose values in column x1 are equal to the value in column x2 of t2, one of the
following queries can be used:

 SELECT *
 FROM t1
 WHERE x1 IN
 (SELECT x2
 FROM t2);
 SELECT *
 FROM t1
 WHERE EXISTS
 (SELECT *
 FROM t2
 WHERE t1.x1=t2.x2);

To select rows of t1 whose values in column x1 are not equal to any value in column x2 of t2, you can
use any one of the following queries:

 SELECT *
 FROM t1
 WHERE x1 NOT IN
 (SELECT x2
 FROM t2);

 SELECT *
 FROM t1
 WHERE NOT EXISTS
 (SELECT *
 FROM t2
 WHERE t1.x1=t2.x2);

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 361

 SELECT 'T1 is not empty'
 WHERE EXISTS
 (SELECT *
 FROM t1);

 SELECT 'T1 is empty'
 WHERE NOT EXISTS
 (SELECT *
 FROM t1);

EXISTS Predicate Versus NOT IN and Nulls

Use the NOT EXISTS predicate instead of NOT IN if the following conditions are true:

• Some column of the NOT IN condition is defined as nullable.
• Any rows from the main query with a null in any column of the NOT IN condition should always

be returned.
• Any nulls returned in the select list of the subquery should not prevent any rows from the main query

from being returned.

For example, if all of the previous conditions are true for the following query, use NOT EXISTS instead of
NOT IN:

 SELECT dept, DeptName
 FROM Department
 WHERE Dept NOT IN
 (SELECT Dept
 FROM Course);

The NOT EXISTS version looks like this:

 SELECT dept, DeptName
 FROM Department
 WHERE NOT EXISTS
 (SELECT Dept
 FROM Course
 WHERE Course.Dept=Department.Dept);

That is, either Course.Dept or Department.Dept is nullable and a row from Department with a null for
Dept should be returned and a null in Course.Dept should not prevent rows from Department from
being returned.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 362

For ALL

Two nested NOT EXISTS can be used to express a SELECT statement that embodies the notion of “for
all (logical ∀) the values in a column, there exists (logical ∃) …”

For example the query to select a ‘true’ value if the library has at least one book for all the publishers can
be expressed as follows:

 SELECT 'TRUE'
 WHERE NOT EXISTS
 (SELECT *
 FROM publisher pb
 WHERE NOT EXISTS
 (SELECT *
 FROM book bk
 WHERE pb.PubNum=bk.PubNum);

NOT EXISTS Clauses and Stored Procedures

You cannot specify a NOT EXISTS clause in a stored procedure conditional expression if that expression
also references an alias for a local variable, parameter, or cursor.

NOT EXISTS and Recursive Queries

NOT EXISTS cannot appear in a recursive statement of a recursive query. However, a non-recursive seed
statement in a recursive query can specify the NOT EXISTS predicate.

Examples

Example: EXISTS with Correlated Subqueries

Select all student names who have registered in at least one class offered by some department.

 SELECT SName, SNo
 FROM student s
 WHERE EXISTS
 (SELECT *
 FROM department d
 WHERE EXISTS
 (SELECT *

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 363

 FROM course c, registration r, class cl
 WHERE c.Dept=d.Dept
 AND c.CNo=r.CNo
 AND s.SNo=r.SNo
 AND r.CNo=cl.CNo
 AND r.Sec=cl.Sec));

The content of the student table is as follows.

Sname SNo

Helen Chu 1

Alice Clark 2

Kathy Kim 3

Tom Brown 4

The content of the department table is as follows.

Dept DeptName

100 Computer Science

200 Physic

300 Math

400 Science

The content of course table is as follows.

CNo Dept

10 100

11 100

12 200

13 200

14 300

The content of the class table is as follows.

CNo Sec

10 1

11 1

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 364

CNo Sec

12 1

13 1

14 1

The content of the registration table is as follows.

CNo SNo Sec

10 1 1

10 2 1

11 3 1

12 1 1

13 2 1

14 1 1

The following rows are returned:

 SName SNo
 ----------- ---
 Helen Chu1 *
 Alice Clark 2
 Kathy Kim 3

Example: NOT EXISTS with Correlated Subqueries

Select the names of all students who have registered in at least one class offered by each department that
offers a course.

 SELECT SName, SNo
 FROM student s
 WHERE NOT EXISTS
 (SELECT *
 FROM department d
 WHERE d.Dept IN
 (SELECT Dept
 FROM course) AND NOT EXISTS
 (SELECT *
 FROM course c, registration r, class cl

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 365

 WHERE c.Dept=d.Dept
 AND c.CNo=r.CNo
 AND s.SNo=r.SNo
 AND r.CNo=cl.CNo
 AND r.Sec=cl.Sec)));

With the contents of the tables as in “Example: EXISTS with Correlated Subqueries”, the following rows
are returned:

 SName SNo
 ----- ---
 Helen Chu 1

Related Information
• For a full explanation of correlated subqueries, see “Correlated Subqueries” in Teradata Vantage™ -

SQL Data Manipulation Language, B035-1146.

IN/NOT IN
Tests the existence of the value of an expression or expression list in a comparable set in one of two ways:

• Compares the value of an expression with values in an explicit list of literals.
• Compares values in a list of expressions with values and in a set of corresponding expressions in

a subquery.

IN/NOT IN Predicate Syntax
expression_1 [NOT] IN
 { expression_2 | (literal_specification [{ OR | , }...]) }

Syntax Elements

expression_1
The value of the expression whose existence is to be tested in expression_2 or in an explicit
list of literals named by literal, signed_literal TO signed_literal, or datetime_literal.

The expression_1 data type and the literal values must be compatible. Implicit conversion
rules are the same as for the comparison operators.

IN
Specifies whether the test is inclusive or exclusive.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 366

You can substitute any of the following for IN unless a list of literals is specified and includes
signed_literal_1 TO signed_literal_2:

• IN ANY
• IN SOME
• = ANY
• = SOME5

You can substitute:

• <> ALL
• NOT IN ALL

expression_2
The value in which the existence of expression_1 is to be tested.

literal_specification

{ literal |
 signed_literal_1 TO signed_literal_2 |
 datetime_literal
}

literal

• literal
• macro parameter
• built-in value such as TIME or DATE

signed_literal_1 TO signed_literal_2
A range of literals.

datetime_literal
An ANSI DateTime literal.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Using TO in a list of literals is a Teradata extension to the ANSI standard.

expression IN and NOT IN expression or literals

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 367

IN/NOT IN Usage Notes

Result

If IN is used with a list of literals, the result is true if the value of expression_1 is:

• equal to any literal in the list,
• between signed_literal_1 and signed_literal_2, inclusively, when signed_literal_1 is less than or

equal to signed_literal_2, or
• between signed_literal_2 and signed_literal_1, inclusively, when signed_literal_2 is less

than signed_literal_1

If the value of expression_1 is null, then the result is considered to be unknown.

If the value of expression_1 is not null, and none of the conditions are satisfied for the result to be true,
then the result is false.

Using this form, the IN search condition is satisfied if the expression is equal to any of the values in the
list of literals; the NOT IN condition is satisfied if none of the values in the list of literals are equal to
the expression.

THE condition is true for this form … WHEN …

expression_1 IN expression_2 expression_1 = expression_2

expression_1 NOT IN expression_2 expression_1 <> expression_2

expression_1 IN (const_1, const_2) (expression_1 = const_1) OR (expression_1 =
const_2)

expression_1 NOT IN (const_1, const_2) (expression_1 <> const_1) AND (expression_1
<> const_2)

expression_1 IN (signed_const_1 TO signed_const_2)
where signed_const_1 <= signed_const_2

(signed_const_1 <= expression_1) AND
(expression_1 <= signed_const_2)

expression_1 IN (signed_const_1 TO signed_const_2)
where signed_const_2 < signed_const_1

(signed_const_2 <= expression_1) AND
(expression_1 <= signed_const_1)

expression_1 NOT IN (signed_const_1 TO signed_
const_2)
where signed_const_1 <= signed_const_2

(expression_1 < signed_const_1) OR
(expression_1 > signed_const_2)

expression_1 NOT IN (signed_const_1 TO signed_
const_2)
where signed_const_2 < signed_const_1

(expression_1 < signed_const_2) OR
(expression_1 > signed_const_1)

Here are some examples.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 368

This statement … Is equivalent to this statement …

SELECT DeptNo
FROM Department
WHERE DeptNo IN (500, 600);

SELECT DeptNo
FROM Department
WHERE DeptNo IN (500)
OR (DeptNo = 600);

UPDATE Employee
SET Salary=Salary + 200
WHERE DeptNo NOT IN (100, 700);

UPDATE Employee
SET Salary=Salary + 200
WHERE (DeptNo ^= 100)
AND (DeptNo ^= 700);

Relationship Between IN/NOT IN and EXISTS/NOT EXISTS

In general, you can use EXISTS to replace comparisons with IN, and NOT EXISTS to replace
comparisons with NOT IN. However, the reverse is not true. The solutions to some problems require
using the EXISTS or NOT EXISTS predicate. For information on EXISTS and NOT EXISTS, see
EXISTS/NOT EXISTS.

Equivalences Using IN/NOT IN, NOT, and ANY/ALL/SOME

The following table provides equivalences for the ANY/ALL/SOME quantifiers, where op is IN or NOT IN.

This usage … Is equivalent to …

NOT (x op ALL (:a, :b, :c)) x NOT op ANY (:a, :b, :c)

x NOT op SOME (:a, :b, :c)

NOT (x op ANY (:a, :b, :c)) x NOT op ALL (:a, :b, :c)

NOT (x op SOME (:a, :b, :c))

NOT (x op (:a, :b, :c)) x NOT op (:a, :b, :c)

In the equivalences, if op is NOT IN, then NOT op is IN, not NOT NOT IN.

Here are some examples.

This expression … Is equivalent to …

NOT (x IN ANY (:a, :b, :c)) x NOT IN ALL (:a, :b, :c)

NOT (x IN ALL (:a, :b, :c)) x NOT IN ANY (:a, :b, :c)

NOT (x NOT IN ANY (:a, :b, :c)) x IN ALL (:a, :b, :c)

NOT (x NOT IN ALL (:a, :b, :c)) x IN ANY (:a, :b, :c)

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 369

This expression … Is equivalent to …

NOT (x IN (:a, :b, :c)) x NOT IN (:a, :b, :c)

NOT (x NOT IN (:a, :b, :c)) x IN (:a, :b, :c)

Syntax 2: expression IN and NOT IN subquery

This syntax for IN and NOT IN is correct in either of the following two forms:

Behavior of Nulls for IN

A statement result does not include column nulls when IN is used with a subquery.

Behavior of Nulls for NOT IN

The following table explains the behavior of nulls for NOT IN for queries of various forms.

FOR a query of the following form … IF … THEN …

SELECT ... FROM T1 WHERE x
NOT IN
(SELECT y FROM T2);

one of the y values is null no T1 rows are returned for
the entire query.

some rows are returned
by the subquery, and if x
contains some nulls

those T1 rows that contain
a null in x are not returned.

SELECT ... FROM T1
WHERE expression_list_1 NOT IN
(SELECT expression_list_2
FROM T2);

a null is the first field in
expression_list_2

no rows from T1
are returned.

a null is in a field other than
the first field of expression_
list_2

some rows may
be returned

the subquery returns some
rows, and if a null is in
the first field in expression_
list_1

the T1 rows containing
a null in the first field
of expression_list_1 are
not returned.

SELECT ... FROM T1WHERE
expression_list_1 NOT IN
(SELECT expression_list_2

the search_condition on T2
returns no rows

all T1 rows, including those
containing a NULL in the
first field of expression_
list_1, are returned.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 370

FOR a query of the following form … IF … THEN …

FROM T2
WHERE search_condition);

NOT IN Clauses and Stored Procedures

You cannot specify a NOT IN clause in a stored procedure conditional expression if that expression also
references an alias for a local variable, parameter, or cursor.

NOT IN and Recursive Queries

NOT IN cannot appear in a recursive statement of a recursive query. However, a non-recursive seed
statement in a recursive query can specify the NOT IN predicate.

Queries With Large NOT IN Clauses Can Fail

Queries that contain thousands of arguments within an IN or NOT IN clause sometimes fail.

For example, suppose you ran the following query with 16000 IN clause arguments, and it failed.

 SELECT MAX(emp_num)
 FROM employee
 WHERE emp_num IN(1,2,7,8,...,121347);

A workaround when this problem occurs is to rewrite the query using a temporary or volatile table to
contain the arguments within the IN clause.

The following statements allow you to make the same selection, but without failure.

 CREATE VOLATILE TABLE temp_IN_values (
 in_value INTEGER) ON COMMIT PRESERVE ROWS;

 INSERT INTO temp_IN_values
 SELECT emp_num
 FROM table_with_emp_num_values;

The new query is as follows:

 SELECT MAX(emp_num)
 FROM employee AS e JOIN temp_IN_values AS en
 ON (e.emp_num = en.in_value);

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 371

Examples

Example: Searching for Atlanta Employees

The following statement searches for the names of all employees who work in Atlanta.

 SELECT Name
 FROM Employee
 WHERE DeptNo IN
 (SELECT DeptNo
 FROM Department
 WHERE Loc = 'ATL');

Example: Searching when DeptNo Has Two Columns

Using a similar example but assuming that the DeptNo is divided into two columns, the following statement
could be used:

 SELECT Name
 FROM Employee
 WHERE (DeptNoA, DeptNoB) IN
 (SELECT DeptNoA, DeptNoB
 FROM Department
 WHERE Loc = 'LAX') ;

Example: Using IN/NOT IN with a List of Literals

This example shows the behavior of IN/NOT IN with a list of literals.

Consider the following table definition and contents:

 CREATE TABLE t (x INTEGER);
 INSERT t (1);
 INSERT t (2);
 INSERT t (3);
 INSERT t (4);
 INSERT t (5);

IF you use this query … THEN the result is …

SELECT * FROM t WHERE x IN (1,2) 1, 2

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 372

IF you use this query … THEN the result is …

SELECT * FROM t WHERE x IN ANY (1,2) 1, 2

SELECT * FROM t WHERE NOT (x NOT IN (1,2)) 1, 2

SELECT * FROM t WHERE x NOT IN (1,2) 3, 4, 5

SELECT * FROM t WHERE x NOT IN ALL (1,2) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN (1, 2)) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN ANY (1,2)) 3, 4, 5

SELECT * FROM t WHERE x IN (3 TO 5) 3, 4, 5

SELECT * FROM t WHERE x NOT IN SOME (1, 2) 1, 2, 3, 4, 5

SELECT * FROM t WHERE x IN (1, 2 TO 4, 5) 1, 2, 3, 4, 5

SELECT * FROM t WHERE x IN ALL (1,2) no rows

SELECT * FROM t WHERE NOT (x NOT IN SOME (1,2)) no rows

SELECT * FROM t WHERE x NOT IN (1 TO 5) no rows

IS NULL/IS NOT NULL
Searches for or excludes nulls in an expression.

IS NULL/IS NOT NULL Predicate Syntax
expression IS [NOT] NULL

Syntax Elements

expression
An expression that specifies a value that is tested for nulls.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Examples

Example

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 373

To search for the names of all employees who have not been assigned to a department, enter the
following statement:

 SELECT Name
 FROM Employee
 WHERE DeptNo IS NULL;

The result of this query is the names of all employees with a null in the DeptNo field.

Example

Conversely, to search for the names of all employees who have been assigned to a department, you could
enter the following statement:

 SELECT Name
 FROM Employee
 WHERE DeptNo IS NOT NULL;

This query returns the names of all employees with a value that is non-NULL in the DeptNo field.

Example: Searching for NULL and NOT-NULL in the Same Statement

If you are searching for values that are NULL and non-NULL in the same statement, the search condition
for the NULLs must appear separately.

For example, to select the names of all employees without the job title of “Manager” or “Vice Pres”, plus
the names of all employees with a null in the JobTitle column, you must enter the statement as follows:

 SELECT Name, JobTitle
 FROM Employee
 WHERE (JobTitle NOT IN ('Manager' OR 'Vice Pres'))
 OR (JobTitle IS NULL) ;

Example: Searching a Table That Might Contain Nulls

You must be careful when searching a table that might contain nulls. For example, if the EdLev column
contains nulls and you submit the following query, the result contains only the names of employees with
an education level of less than 16 years.

 SELECT Name, EdLev
 FROM Employee
 WHERE (EdLev < 16) ;

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 374

To ensure that the result of a statement contains nulls, you must structure it as follows.

 SELECT Name, EdLev
 FROM Employee
 WHERE (EdLev < 16)
 OR (EdLev IS NULL) ;

LIKE/NOT LIKE
Searches for a character string pattern within another character string or character string expression.

LIKE/NOT LIKE Predicate Syntax
{ expression [NOT] LIKE
 { pattern_expression | [ALL | ANY | SOME] (subquery) } |

 (expression [,...]) } [NOT] LIKE [ALL | ANY | SOME]
 { (subquery) | (pattern_expression [,...]) }

} [ESCAPE escape_character]

Syntax Elements

expression
A character string or character string expression argument to be searched for the
substring pattern_expression.

pattern_expression
A character expression for which expression is to be searched.

ALL
ANY
SOME

A quantifier that allows one or more expressions to be searched for one or more patterns or
for one or more values returned by a subquery.

subquery

{ expr | (expr [,...]) } [NOT] LIKE quantifier (subquery)

A subquery that selects the same number of expressions as are specified in the expression
or list of expressions.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 375

The subquery cannot specify a SELECT AND CONSUME statement.

escape_character
Keyword/variable combination specifying a single escape character (single or multibyte).

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

LIKE/NOT LIKE Usage Notes

Optimized Performance Using a NUSI

If it is cost-effective, the Optimizer may choose to evaluate a LIKE expression by scanning a NUSI with
or without accessing the base table. The cost of using a NUSI depends on the selectivity of the LIKE
expression, the size of the NUSI subtable, and if the NUSI is a covering index or a partially covering index.
For a partially covering index, the cost of sorting the RowID spool is also included. For details on NUSIs
and query covering, see Teradata Vantage™ - Database Design, B035-1094.

The Optimizer can perform a better cost comparison between using a NUSI and using an all-rows scan
if the following are true:

• There are statistics collected for both the base table primary index and for the NUSI columns against
which the expression string is evaluated.

• The expression string is either the mode or max value in at least one interval in the base table
statistics histogram.

You cannot use a NUSI with a VARCHAR field for processing a LIKE expression when:

• the NUSI contains a VARCHAR field, and the VARCHAR field is used in a NOT LIKE operation.
• the NUSI contains a VARCHAR field, and the VARCHAR field is used in a string function.For

example, the following is not allowed if d1 is a NUSI column of VARCHAR type.

d1||‘ab’ LIKE ‘b ab’

In addition, a NUSI with a VARCHAR field cannot be used as a partially covering index for an
unconstrained aggregate query.

Null Expressions

If any expression in a comparison is null, the result of the comparison is unknown.

For a LIKE operation to provide a true result when searching fields that may contain nulls, the statement
must include the IS [NOT] NULL operator.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 376

Case Specification

If neither pattern_expression nor expression has been designated CASESPECIFIC, any lowercase
letters in pattern_expression and expression are converted to uppercase before the comparison
operation occurs. If ESCAPE is specified and the escape character is a lowercase character, it is
also converted to uppercase before the comparison operation occurs.

If either expression or pattern_expression has been designated CASESPECIFIC, two letters match only
if they are the same letters and the same case.

Wildcard Characters

The % and _ characters may be used in any combination in pattern_expression.

Character Description

% (PERCENT SIGN) Represents any string of zero or more arbitrary characters.
Any string of characters is acceptable as a replacement for the percent.

_ (LOW LINE) Represents exactly one arbitrary character.
Any single character is acceptable in the position in which the underscore
character appears.

The underscore and percent characters cannot be used in a pattern. To get around this, specify a single
escape character in addition to pattern_expression. For details, see ESCAPE Feature of LIKE.

The following table describes how the metacharacters % and _ (and their fullwidth equivalents) behave
when matching strings for various server character sets. Note that ANSI only defines the single byte
spacing underscore and percent sign metacharacters.

Teradata SQL extends the permissible metacharacter set for the LIKE predicate to include the fullwidth
underscore and the fullwidth percent sign.

FOR this
server
character set
…

USE this
metacharacter …

TO match this character or characters …

ANSI Mode Teradata Mode

KANJI1 spacing underscore any one single- or
multibyte character.

any one single
byte character.

fullwidth
spacing underscore

any one single
byte character or
multibyte character.

any one single byte character
or multibyte character.

percent sign any sequence of single or
multibyte characters.

any sequence of single
byte characters or
multibyte characters.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 377

FOR this
server
character set
…

USE this
metacharacter …

TO match this character or characters …

ANSI Mode Teradata Mode

fullwidth percent sign any sequence of single or
multibyte characters.

any sequence of single
byte characters or
multibyte characters.

UNICODE
LATIN
KANJISJIS

fullwidth
spacing underscore

none.
These characters are not treated as metacharacters in order
to maintain compliance with the ANSI SQL standard.

fullwidth percent

GRAPHIC fullwidth
spacing underscore

any one single GRAPHIC character.

fullwidth percent sign any sequence of GRAPHIC characters.

ESCAPE Feature of LIKE

When the defined ESCAPE character is in the pattern string, it must be immediately followed by an
underscore, percent sign, or another ESCAPE character.

In a left-to-right scan of the pattern string the following rules apply when ESCAPE is specified:

• Until an instance of the ESCAPE character occurs, characters in the pattern are interpreted at
face value.

• When an ESCAPE character immediately follows another ESCAPE character, the two character
sequence is treated as though it were a single instance of the ESCAPE character, considered as a
normal character.

• When an underscore metacharacter immediately follows an ESCAPE character, the sequence is
treated as a single underscore character (not a wildcard character).

• When a percent metacharacter immediately follows an ESCAPE character, the sequence is treated
as a single percent character (not a wildcard character).

• When an ESCAPE character is not immediately followed by an underscore metacharacter, a percent
metacharacter, or another instance of itself, the scan stops and an error is reported.

Pad Characters

The following notes apply to pad characters and how they are treated in strings:

• Pad characters are significant in both the character expression, and in the pattern string.
• When using pattern matching, be aware that both leading and trailing pad characters in the field or

expression must match exactly with the pattern.

For example, ‘A%BC’ matches ‘AxxBC’, but not ‘AxxBCΔ’, and ‘A%BCΔ’ matches ‘AxxBCΔ’, but not
‘AxxBC’ or ‘AxxBCΔΔ’ (Δ indicates a pad character).

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 378

• To retrieve the row in all cases, consider using the TRIM function, which removes both leading and
trailing pad characters from the source string before doing the pattern match.

For example, to remove trailing pad characters:

 TRIM (TRAILING FROM expression) LIKE pattern-string

To remove leading and trailing pad characters:

 TRIM (BOTH FROM expression) LIKE pattern-string

• If pattern_expression is forced to a fixed length, trailing pad characters might be appended. In such
cases, the field must contain the same number of trailing pad characters in order to match.

For example, the following statement appends trailing pad characters to pattern strings shorter than
5 characters long.

 CREATE MACRO (pattern (CHAR(5)) AS
 field LIKE :pattern…

• To retrieve the row in all cases, apply the TRIM function to the pattern string (TRIM (TRAILING
FROM :pattern)), or the macro parameter can be defined as VARCHAR.

These two methods do not always return the same results.TRIM removes pad characters, while the
VARCHAR method maintains the data pattern exactly as entered.

ANY/ALL/SOME Quantifiers

SQL recognizes the quantifiers ANY (or SOME) and ALL. A quantifier allows one or more expressions to
be compared with one or more values such as shown by the following generic example.

IF you specify this
quantifier …

THEN the search condition is satisfied if expression LIKE pattern_
string … is true for …

ALL every string in the list.

ANY any string in the list.

The ALL quantifier is the logical statement FOR .

The ANY quantifier is the logical statement FOR Ǝ.

The following table restates this.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 379

THIS expression … IS equivalent to this expression …

x LIKE ALL ('A%','%B','%C%') x LIKE 'A%'
AND x LIKE '%B'
AND x LIKE '%C%'

x LIKE ANY ('A%','%B','%C%') x LIKE 'A%'
OR x LIKE '%B'
OR x LIKE '%C%'

The following statement selects from the employee table the row of any employee whose job title includes
the characters “Pres” or begins with the characters “Man”:

 SELECT *
 FROM Employee
 WHERE JobTitle LIKE ANY ('%Pres%', 'Man%');

The result of this statement is:

EmpNo Name DeptNo JobTitle Salary

10021 Smith T 700 Manager 45, 000.00

10008 Phan A 300 Vice Pres 55, 000.00

10007 Aguilar J 600 Manager 45, 000.00

10018 Russell S 300 President 65, 000.00

10012 Watson L 500 Vice Pres 56, 000.00

For the following forms, if you specify the ALL or ANY/SOME quantifier, then the subquery may return
none, one, or several rows.

If, however, a quantifier is not used, then the subquery must return either no value or a single value as
described in the following table.

This expression … Is TRUE when expression matches …

expression LIKE (subquery) the single value returned by subquery.

expression LIKE ANY (subquery) at least one value of the set of values returned by subquery; is false if
subquery returns no values.

expression LIKE ALL (subquery) each individual value in the set of values returned by subquery, and is
true if subquery returns no values.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 380

Behavior of the ESCAPE Character

When escape_character is used in (generic) string_2, it must be followed immediately by a metacharacter
of the appropriate server character set or another escape_character.

The resultant two-character sequence matches a single character in string_1 if and only if the character
in string_1 collates identically to the character following the escape_character in string_2.

In other words, escape_character is ignored for matching purposes and the character following
escape_character is matched for a single occurrence of itself.

When string_1 and string_2 do not share a common server character set, then the valid metacharacters
are SPACING UNDERSCORE and PERCENT SIGN because the arguments are translated to UNICODE
automatically when mismatched. Their behavior then follows the rules described in “Implicit Character-to-
Character Translation”.

LIKE/NOT LIKE Examples

Example: ESCAPE

The following example illustrates the use of ESCAPE:

To look for the pattern ‘95%’ in a string such as ‘Result is 95% effective’, if Result is the field to be
checked, use:

WHERE Result LIKE '%95Z%%' ESCAPE 'Z'

This clause finds the value ‘95%’.

Example: ANY

The following statement uses the ANY quantifier to retrieve every row from the Project table, which
contains either the Accounts Payable or the Accounts Receivable project code:

 SELECT * FROM Project
 WHERE Proj_Id LIKE ANY
 (SELECT Proj_Id
 FROM Charges
 WHERE Proj_Id LIKE ANY ('A%')) ;

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 381

Example: Matching Patterns from Another Table

The following form of subquery might return none, one, or several values:

expr [NOT] LIKE quantifier (subquery)

The following example shows how you can match using patterns selected from another table.

There are two base tables.

This table … Defines these things …

Project • Unique project ID
• Project description

Department_Proj The association between project ID patterns and departments.

Department_Proj has two columns: Proj_pattern and Department. The rows in this table look like
the following.

Proj_pattern Department

AP% Finance

AR% Finance

Nut% R&D

Screw% R&D

The following query uses LIKE to match patterns selected from the Department_Proj table to select all
rows in the Project table that have a Proj_Id that matches project patterns associated with the Finance
department as defined in the Department_Proj table.

 SELECT *
 FROM Project
 WHERE Proj_Id LIKE ANY
 (SELECT Proj_Pattern
 FROM Department_Proj
 WHERE Department = 'Finance');

When this syntax is used, the subquery must select the same number of expressions as are in the
expression list:

(expr [,...]) [NOT] LIKE quantifier (subquery)

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 382

For example:

 (x,y) LIKE ALL (SELECT a,b FROM c)

is equivalent to:

 (x LIKE c.a) AND (y LIKE c.b)

Example: LIKE Predicate

The following example uses the LIKE predicate to select a list of employees whose job title contains the
string “Pres”:

 SELECT Name, DeptNo, JobTitle
 FROM Employee
 WHERE JobTitle LIKE '%Pres%' ;

The form %string% requires Vantage to examine much of each string x. If x is long and there are many
rows in the table, the search for qualifying rows may take a long time.

The result returned is:

Name DeptNo JobTitle

Watson L 500 Vice President

Phan A 300 Vice President

Russel S 300 President

Example: Last Name Spelling

This example selects a list of all employees whose last name begins with the letter P.

 SELECT Name
 FROM Employee
 WHERE Name LIKE 'P%';

The result returned is:

 Name

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 383

 Phan A
 Peterson J

Example: % and _ Characters

This example uses the % and _ characters to select a list of employees with the letter A as the second
letter in the last name. The length of the return string may be two or more characters.

 SELECT Name
 FROM Employee
 WHERE Name LIKE '_a%';

returns the result:

 Name

 Marston A
 Watson L
 Carter J

Replacing _a% with _a_ changes the search to a three-character string with the letter a as the second
character. Because none of the names in the Employee table fit this description, the query returns
no rows.

Both leading and trailing pad characters in a pattern are significant to the matching rules.

Example: Pad Characters and Letter

LIKE ’ΔΔZ%’ locates only those fields that start with two pad characters followed by Z.

KanjiEBCDIC Examples

The following examples indicate the behavior of LIKE with KanjiEBCDIC strings using the function
(expression LIKE pattern_expression).

expression pattern_expression Server Character Set Result

MN<AB> % KANJI1 TRUE

MN<AB>P <%B>% KANJI1 TRUE

MN<AB>P %P KANJI1 TRUE

MN<AB>P %<__C>% KANJI1 FALSE

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 384

expression pattern_expression Server Character Set Result

__ represents a FULLWIDTH UNDERSCORE.

KanjiEUC Examples

The following examples indicate the behavior of LIKE with KanjiEUC strings using the function
(expression LIKE pattern_expression).

expression pattern_expression Server Character Set Result

ss3A ss2B ss3C ss2D % ss2B% UNICODE TRUE

M ss2B N ss2D M __% GRAPHIC TRUE

ss3A ss2B ss3C ss2D __% KANJISJIS TRUE

ss3A ss2B ss3C ss2D _ % KANJISJIS TRUE

__ represents a FULLWIDTH UNDERSCORE.

_ represents a SPACING UNDERSCORE.

KanjiShift-JIS Examples

The following examples indicate the behavior of LIKE with KanjiShift-JIS strings using the function
(expression LIKE pattern_expression).

expression pattern_
expression

Server
Character Set ANSI Mode Result Teradata

Mode Result

ABCD __B% GRAPHIC TRUE TRUE

mnABCI %B% UNICODE TRUE TRUE

mnABCI %I UNICODE TRUE TRUE

mnABCI mn_%I KANJI1 TRUE
The underscore in
pattern_expression
matches a single byte-
or multibyte character
in ANSI mode.

FALSE
The underscore in
pattern_expression
matches a single
byte character in
Teradata mode.

mnABCI mn__%I KANJI1 TRUE TRUE

__ represents a FULLWIDTH UNDERSCORE.

_ represents a SPACING UNDERSCORE.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 385

Miscellaneous Examples

Function Result

_KanjiSJIS ‘92 abc’ LIKE _Unicode ‘%abc’ TRUE

_KanjiSJIS ‘92 abc’ LIKE _Unicode ‘%abc’ FALSE
% (FULLWIDTH PERCENT SIGN) is not a metacharacter
in either KanjiSJIS or Unicode.

‘c%’ LIKE ‘c%%’ ESCAPE ‘%’ TRUE

‘c%’ LIKE ‘c%%’ ESCAPE ‘%’ FALSE
% (FULLWIDTH PERCENT SIGN) does not match %
(PERCENT SIGN).

OVERLAPS
For OVERLAPS, see "Period Functions and Operators" in Teradata Vantage™ - Data Types and
Literals, B035-1143.

11: Logical Predicates

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 386

The following sections describe functions that handle null input values.

NVL
Replaces a NULL with a numeric or a string value as the result value.

NVL is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

NVL Function Syntax
[TD_SYSFNLIB.] NVL (expr1, expr2)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

expr1
A numeric or character expresssion.

• If expr1 is NULL, expr2 is returned.
• If expr1 is not NULL, expr1 is returned.

expr2
A numeric or character expresssion.

Argument Types and Rules

Expressions passed to this function must have the following data types:

BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/DOUBLE PRECISION,
NUMBER, CHAR, VARCHAR

All of the input arguments must be the same data type or else the types must be compatible.

Null-Handling Functions

12

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 387

Result Type
NVL is a scalar function whose return value data type depends on the data type associated with the
arguments passed to it.

• If the input arguments are numeric types, the function determines which argument has the highest
precedence, converts the other argument to that data type, and returns that data type. For details
about the order of precedence, see “Compatible Types” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

If that data type is DECIMAL/NUMERIC and the precision and scale of the input arguments are
different, the precision and scale of the return type is set to achieve the maximum precision possible.
For example, if the input arguments are DECIMAL(6,3), DECIMAL(7,4), and DECIMAL(8,7), the return
type would need three digits to the left of the decimal point and seven digits to the right of the decimal
point to avoid any reduction in precision.

In cases where it is not possible to maintain the maximum precision, the data is rounded according
to the DBS Control Record RoundHalfWayMagUp field. For example, if the input arguments are
DECIMAL(32, 8) and DECIMAL(30, 28), the return type will be DECIMAL(38,14). This will allow for 24
digits to the left of the decimal point (required for the DECIMAL(32,8) argument), and 14 digits to the
right of the decimal point.

If the data type is fixed point NUMBER and the precision is less than or equal to 38, the precision and
scale of the return type are calculated with the same method used for DECIMAL/NUMERIC. However,
if the precision is greater than 38, the return type is changed to NUMBER(*) to avoid loss of accuracy.
If the data type is floating point NUMBER, the return type is NUMBER(*).

• If the two arguments are character data types, the function converts the second argument to the data
type of the first argument and returns the type as VARCHAR.

• If all input character types are LATIN, the result is LATIN. If any input is not LATIN, the function converts
all input to Unicode and the return character set is Unicode.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following the
UDF implicit conversion rules, it must be explicitly cast.

Example
The following query:

SELECT department_name,
 NVL(last_name,'NO EMPLOYEE') "LAST NAME"

12: Null-Handling Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 388

FROM employee E
 FULL OUTER JOIN Department D
ON department_number=d.department_number;
WHERE department_number IN(402,600);

returns:

Department_name LAST NAME
--------- --------------------
Software Support Crane
New Department NO EMPLOYEE

In this example, the NVL function returned the result as last_name column value from the employee table
and for the cases where the last_name value is NULL, the function returned the result as NO EMPLOYEE.

Related Information
• For details, see “Compatible Types” in Teradata Vantage™ - SQL External Routine

Programming, B035-1147.

NVL2
Returns one of two values based on whether or not expr1 is NULL.

NVL2 is an embedded services system function.

NVL2 Function Syntax
[TD_SYSFNLIB.] NVL2 (expr1, expr2, expr3)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

expr1
A numeric or character expresssion.

• If expr1 is not NULL, expr2 is returned.
• If expr1 is NULL, expr3 is returned.

expr2
A numeric or character expresssion.

12: Null-Handling Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 389

expr3
A numeric or character expresssion.

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, FLOAT/REAL/DOUBLE PRECISION,
NUMBER, CHAR, VARCHAR

expr2 and expr3 must be the same data type or else the types must be compatible.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
NVL2 is a scalar function whose return data type depends on the data types associated with the arguments
passed to the function.

• If expr2 and expr3 are numeric types, the function determines which argument has the highest
precedence, converts the other argument to that data type, and returns that data type. For details
about the order of precedence, see “Compatible Types” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

If that data type is DECIMAL/NUMERIC and the precision and scale of the two arguments are different,
the precision and scale of the return type will be set to achieve the maximum precision possible. For
example, if the input arguments are DECIMAL(6,3), DECIMAL(7,4), and DECIMAL(8,7), the return
type would need three digits to the left of the decimal point and seven digits to the right of the decimal
point to avoid any reduction in precision. In this case, the return data type is set to DECIMAL(10,7)

In cases where it is not possible to maintain the maximum precision, the data will be rounded
according to the DBS Control Record RoundHalfWayMagUp field. For example, if the two arguments
are DECIMAL(32, 8) and DECIMAL(30, 28), the return type will be DECIMAL(38,14). This will allow
for 24 digits to the left of the decimal point (required for the DECIMAL(32,8) argument), and 14 digits
to the right of the decimal point.

If the data type is fixed point NUMBER and the precision is less than or equal to 38, the precision and
scale of the return type are calculated with the same method used for DECIMAL/NUMERIC. However,
if the precision is greater than 38, the return type is changed to NUMBER(*) to avoid loss of accuracy.
If the data type is floating point NUMBER, the return type is NUMBER(*).

• If expr2 and expr3 are character types, the function converts the second argument to the data type of
the first argument and returns the type as VARCHAR.

12: Null-Handling Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 390

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following the
UDF implicit conversion rules, it must be explicitly cast.

Examples

Example

The following query:

SELECT NVL2('England', 'France', 'Spain');

returns the second argument, 'France', because the first argument is not NULL.

Example

The following query:

SELECT NVL2(NULL, 'France', 'Spain');

returns the third argument, 'Spain', because the first argument is NULL.

Related Information
• For information on activating and invoking embedded services functions, see Embedded Services

System Functions.
• For details, see “Compatible Types” in Teradata Vantage™ - SQL External Routine

Programming, B035-1147.

12: Null-Handling Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 391

The following sections describe:

• Ordered analytical functions
• Window Aggregate Functions

Ordered Analytical Functions
Ordered analytical functions provide support for many common operations in analytical processing and data
mining that require an ordered set of results rows or depend on values in a previous row. Ordered analytical
functions enable and expedite the processing of queries containing On Line Analytical Processing (OLAP)
style decision support requests.

For example, computing a seven-day running sum requires:

• First, that rows be ordered by date.
• Then, that the value for the running sum be computed by:

◦ Adding the current row value to the value of the sum from the previous row, and
◦ Subtracting the value from the row eight days ago.

Benefits
Ordered analytical functions use values from multiple rows to compute a new value.

The result of an ordered analytical function is handled the same as any other SQL expression. It can be a
result column or part of a more complex arithmetic expression within its SELECT.

Each of the ordered analytical functions permit you to specify the sort ordering column or columns on
which to sort the rows retrieved by the SELECT statement. The sort order and any other input parameters
to the functions are specified the same as arguments to other SQL functions and can be any normal
SQL expression.

Ordered Analytical Calculations at the SQL Level
Performing ordered analytical computations at the SQL level rather than through a higher-level OLAP
calculation engine provides four distinct advantages.

• Reduced programming effort.
• Elimination of the need for external sort routines.
• Elimination of the need to export large data sets to external tools because ordered analytical functions

enable you to target the specific data for analysis within the warehouse itself by specifying conditions
in the query.

Ordered Analytical/Window Aggregate
Functions

13

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 392

• Marked enhancement of analysis performance over the slow, single-threaded operations that external
tools perform on large data sets.

Teradata Warehouse Miner
You need not directly code SQL queries to take advantage of ordered analytical functions. Both Vantage
and many third-party query management and analytical tools have full access to the Teradata SQL
ordered analytical functions. Teradata Warehouse Miner, for example, a tool that performs data mining
preprocessing inside the database engine, relies on these features to perform functions in the database
itself rather than requiring data extraction.

Teradata Warehouse Miner includes approximately 40 predefined data mining functions in SQL based on
the Teradata SQL-specific functions. For example, the Teradata Warehouse Miner FREQ function uses the
Teradata SQL-specific functions CSUM, RANK, and QUALIFY to determine frequencies.

Example
The following example shows how the SQL query to calculate a frequency of gender to marital status would
appear using Teradata Warehouse Miner.

SELECT gender, marital_status, xcnt,xpct
 ,CSUM(xcnt, xcnt DESC, gender, marital_status) AS xcum_cnt
 ,CSUM(xpct, xcnt DESC, gender, marital_status) AS xcum_pct
 ,RANK(xcnt DESC, gender ASC, marital_status ASC) AS xrank
FROM
 (SELECT gender, marital_status, COUNT(*) AS xcnt
 ,100.000 * xcnt / xall (FORMAT 'ZZ9.99') AS xpct
 FROM customer_table A,
 (SELECT COUNT(*) AS xall
 FROM customer_table) B
GROUP BY gender, marital_status, xall
HAVING xpct >= 1) T1
QUALIFY xrank <= 8
ORDER BY xcnt DESC, gender, marital_status

The result for this query looks like the following table.

gender marital_status xcnt xpct xcum_cnt xcum_pct xrank

F Married 3910093 36.71 3910093 36.71 1

M Married 2419511 22.71 6329604 59.42 2

F Divorced 1612130 15.13 7941734 74.55 3

M Divorced 1412624 3.26 9354358 87.81 4

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 393

gender marital_status xcnt xpct xcum_cnt xcum_pct xrank

F Single 491224 4.61 9845582 92.42 5

F Widowed 319881 3.01 10165463 95.43 6

M Single 319794 3.00 10485257 98.43 7

M Widowed 197131 1.57 10652388 100.00 8

Characteristics of Ordered Analytical Functions

The Function Value
The function value for a column in a row considers that row (and a subset of all other rows in the group)
and produces a new value.

The generic function describing this operation is as follows:

 new_column_value = FUNCTION(column_value,rows_defined_by_window)

Use of QUALIFY Clause
Rows can be eliminated by applying conditions on the new column value. The QUALIFY clause is
analogous to the HAVING clause of aggregate functions. The QUALIFY clause eliminates rows based on
the function value, returning a new value for each of the participating rows. For example:

 SELECT StoreID, SUM(profit) OVER (PARTITION BY StoreID)
 FROM facts
 QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

An SQL query that contains both ordered analytical functions and aggregate functions can have both a
QUALIFY clause and a HAVING clause, as in the following example:

 SELECT StoreID, SUM(sale),
 SUM(profit) OVER (PARTITION BY StoreID)
 FROM facts
 GROUP BY StoreID, sale, profit
 HAVING SUM(sale) > 15
 QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

DISTINCT Clause Restriction
The DISTINCT clause is not permitted in window aggregate functions.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 394

Permitted Query Objects
Ordered analytical functions are permitted in the following database query objects:

• Views
• Macros
• Derived tables
• INSERT ... SELECT

Where Ordered Analytical Functions are Not Permitted
Ordered analytical functions are not permitted in:

• Subqueries
• WHERE clauses
• SELECT AND CONSUME statements

Use of Standard SQL Features
You can use standard SQL features within the same query to make your statements more sophisticated.

For example, you can use ordered analytical functions in the following ways.

Use an analytical function in this operation … To …

INSERT … SELECT populate a new column.

derived table create a new table to participate in a complex query.

Ordered analytical functions having different sort expressions are evaluated one after another, reusing the
same spool file. Different functions having the same sort expression are evaluated simultaneously.

Unsupported Data Types
Ordered analytical functions do not operate on the following data types:

• CLOB or BLOB data types
• UDT data types

Note that CLOB, BLOB, or UDT data types are usable inside an expression if the result is a supported data
type. For example:

 SELECT
 RANK() OVER
 (PARTITION BY(CASE WHEN b IS NULL THEN 1 ELSE 0 END) ORDER BY id)
 FROM btab;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 395

However, the following example results in an error because the function cannot sort by BLOB:

 SELECT
 RANK() OVER
 (PARTITION BY b ORDER BY id)
 FROM btab;

Ordered Analytical Functions and Period Data Types
Expressions that evaluate to Period data types can be specified for any expression within the following
ordered analytical functions: QUANTILE, RANK (Teradata-specific function), and RANK (ANSI SQL
Window function).

Ordered Analytical Functions and Recursive Queries
Ordered analytical functions cannot appear in a recursive statement of a recursive query. However, a
non-recursive seed statement in a recursive query can specify an ordered analytical function.

Ordered Analytical Functions and Hash or Join Indexes
When a single table query specifies an ordered analytical function on columns that are also defined for a
single table compressed hash or join index, the Optimizer does not select the hash or join index to process
the query.

Ordered Analytical Functions and Row Level Security Tables
When a request that includes an ordered analytical function, such as MAVG, CSUM, or RANK, references
a table protected by row level security, the operation is based on only the rows that are accessible to
the requesting user. In order to apply all rows of the table to the function, the user must have one of
the following:

• The required security credentials to access all rows of the table.
• The required OVERRIDE privileges on the security constraints in the table.

Computation Sort Order and Result Order
The sort order that you specify in the window specification defines the sort order of the rows over which the
function is applied; it does not define the ordering of the results.

For example, to compute the average sales for the months following the current month, order the rows
by month:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 396

 FROM sales_tbl;

 StoreID SMonth ProdID Sales Remaining Avg(Sales)
 ------- ------ ------ --------- --------------------
 1001 6 C 30000.00 ?
 1001 5 C 30000.00 30000.00
 1001 4 C 25000.00 30000.00
 1001 3 C 40000.00 28333.33
 1001 2 C 25000.00 31250.00
 1001 1 C 35000.00 30000.00

The default sort order is ASC for the computation. However, the results are returned in the reverse order.

To order the results, use an ORDER BY phrase in the SELECT statement. For example:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM sales_tbl
 ORDER BY SMonth;

 StoreID SMonth ProdID Sales Remaining Avg(Sales)
 ------- ------ ------ --------- --------------------
 1001 1 C 35000.00 30000.00
 1001 2 C 25000.00 31250.00
 1001 3 C 40000.00 28333.33
 1001 4 C 25000.00 30000.00
 1001 5 C 30000.00 30000.00
 1001 6 C 30000.00 ?

Data in Partitioning Column of Window Specification and
Resource Impact
The columns specified in the PARTITION BY clause of a window specification determine the partitions
over which the ordered analytical function executes. For example, the following query specifies the StoreID
column in the PARTITION BY clause to compute the group sales sum for each store:

 SELECT StoreID, SMonth, ProdID, Sales,
 SUM(Sales) OVER (PARTITION BY StoreID)
 FROM sales_tbl;

At execution time, Vantage moves all of the rows that fall into a partition to the same AMP. If a very large
number of rows fall into the same partition, the AMP can run out of spool space. For example, if the
sales_tbl table in the preceding query has millions or billions of rows, and the StoreID column contains

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 397

only a few distinct values, an enormous number of rows are going to fall into the same partition, potentially
resulting in out-of-spool errors.

To avoid this problem, examine the data in the columns of the PARTITION BY clause. If necessary, rewrite
the query to include additional columns in the PARTITION BY clause to create smaller partitions that
Vantage can distribute more evenly among the AMPs. For example, the preceding query can be rewritten
to compute the group sales sum for each store for each month:

 SELECT StoreID, SMonth, ProdID, Sales,
 SUM(Sales) OVER (PARTITION BY StoreID, SMonth)
 FROM sales_tbl;

Using Ordered Analytical Functions
Example: Using RANK and AVG

Consider the result of the following SELECT statement using the following ordered analytical functions,
RANK and AVG.

 SELECT item, smonth, sales,
 RANK() OVER (PARTITION BY item ORDER BY sales DESC),
 AVG(sales) OVER (PARTITION BY item
 ORDER BY smonth
 ROWS 3 PRECEDING)
 FROM sales_tbl
 ORDER BY item, smonth;

The results table might look like the following.

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-01 110 13 110

A 1996-02 130 10 120

A 1996-03 170 6 137

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

A 1996-09 160 7 195

A 1996-10 140 9 168

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 398

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-11 150 8 158

A 1996-12 120 11 142

A 1997-01 120 11 132

B 1996-02 30 5 30

...

Example: Using QUALIFY With RANK

Adding a QUALIFY clause to a query eliminates rows from an unqualified table.

For example, if you wanted to see whether the high sales months were unusual, you could add a QUALIFY
clause to the previous query.

 SELECT item, smonth, sales,
 RANK() OVER (PARTITION BY item ORDER BY sales DESC),
 AVG(sales) OVER (PARTITION BY item ORDER BY smonth ROWS 3 PRECEDING)
 FROM sales_tbl
 ORDER BY item, smonth
 QUALIFY RANK() OVER(PARTITION BY item ORDER BY sales DESC) <=5;

This additional qualifier produces a results table that might look like the following.

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

B 1996-02 30 1 30

...

The result indicates that sales had probably been fairly low prior to the start of the current sales season.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 399

Example: Using QUALIFY With RANK

Consider the following sales table named sales_tbl.

Store ProdID Sales

1003 C 20000.00

1003 D 50000.00

1003 A 30000.00

1002 C 35000.00

1002 D 25000.00

1002 A 40000.00

1001 C 60000.00

1001 D 35000.00

1001 A 100000.00

1001 B 10000.00

Now perform the following simple SELECT statement against this table, qualifying answer rows by rank.

SELECT store, prodID, sales,
RANK() OVER (PARTITION BY store ORDER BY sales DESC)
FROM sales_tbl
QUALIFY RANK() OVER (PARTITION BY store ORDER BY sales DESC) <=3;

The result appears in the following typical output table.

Store ProdID Sales Rank(Sales)

1001 A 100000.00 1

1001 C 60000.00 2

1001 D 35000.00 3

1002 A 40000.00 1

1002 C 35000.00 2

1002 D 25000.00 3

1003 D 50000.00 1

1003 A 30000.00 2

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 400

Store ProdID Sales Rank(Sales)

1003 C 20000.00 3

Note that every row in the table is returned with the computed value for RANK except those that do not
meet the QUALIFY clause (sales rank is less than third within the store).

Related Information
• For more information about row level security, see Teradata Vantage™ - Advanced SQL Engine

Security Administration, B035-1100.
• For details on the QUALIFY clause, see Teradata Vantage™ - SQL Data Manipulation

Language, B035-1146.

The Window Feature
The ANSI SQL:2011 window feature provides a way to dynamically define a subset of data, or window, in
an ordered relational database table. A window is specified by the OVER() phrase, which can include the
following clauses inside the parentheses:

• PARTITION BY
• ORDER BY
• RESET WHEN
• ROWS

PARTITION BY Phrase
PARTITION BY takes a column reference list and groups the rows based on the specified column reference
list over which the ordered analytical function executes. Such a grouping is static. To define a group
or partition based on a condition, use the RESET WHEN phrase. For more information, see RESET
WHEN Phrase.

If there is no PARTITION BY phrase or RESET WHEN phrase, then the entire result set, delivered by the
FROM clause, constitutes a single partition, over which the ordered analytical function executes.

Consider the following table named sales_tbl.

StoreID SMonth ProdID Sales

1001 1 C 35000.00

1001 2 C 25000.00

1001 3 C 40000.00

1001 4 C 25000.00

1001 5 C 30000.00

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 401

StoreID SMonth ProdID Sales

1001 6 C 30000.00

1002 1 C 40000.00

1002 2 C 35000.00

1002 3 C 110000.00

1002 4 C 60000.00

1002 5 C 35000.00

1002 6 C 100000.00

The following SELECT statement, which does not include PARTITION BY, computes the average sales for
all the stores in the table:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER ()
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Group Avg(Sales)
 ------- ------ ------ --------- ----------------
 1001 1 C 35000.00 47083.33
 1001 2 C 25000.00 47083.33
 1001 3 C 40000.00 47083.33
 1001 4 C 25000.00 47083.33
 1001 5 C 30000.00 47083.33
 1001 6 C 30000.00 47083.33
 1002 1 C 40000.00 47083.33
 1002 2 C 35000.00 47083.33
 1002 3 C 110000.00 47083.33
 1002 4 C 60000.00 47083.33
 1002 5 C 35000.00 47083.33
 1002 6 C 100000.00 47083.33

To compute the average sales for each store, partition the data in sales_tbl by StoreID:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID)
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Group Avg(Sales)
 ------- ------ ------ --------- ----------------
 1001 3 C 40000.00 30833.33

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 402

 1001 5 C 30000.00 30833.33
 1001 6 C 30000.00 30833.33
 1001 4 C 25000.00 30833.33
 1001 2 C 25000.00 30833.33
 1001 1 C 35000.00 30833.33
 1002 3 C 110000.00 63333.33
 1002 5 C 35000.00 63333.33
 1002 6 C 100000.00 63333.33
 1002 4 C 60000.00 63333.33
 1002 2 C 35000.00 63333.33
 1002 1 C 40000.00 63333.33

ORDER BY Phrase
ORDER BY specifies how the rows are ordered in a partition, which determines the sort order of the rows
over which the function is applied.

To add the monthly sales for a store in the sales_tbl table to the sales for previous months, compute the
cumulative sales sum and order the rows in each partition by SMonth:

 SELECT StoreID, SMonth, ProdID, Sales,
 SUM(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Cumulative Sum(Sales)
 ------- ------ ------ --------- ---------------------
 1001 1 C 35000.00 35000.00
 1001 2 C 25000.00 60000.00
 1001 3 C 40000.00 100000.00
 1001 4 C 25000.00 125000.00
 1001 5 C 30000.00 155000.00
 1001 6 C 30000.00 185000.00
 1002 1 C 40000.00 40000.00
 1002 2 C 35000.00 75000.00
 1002 3 C 110000.00 185000.00
 1002 4 C 60000.00 245000.00
 1002 5 C 35000.00 280000.00
 1002 6 C 100000.00 380000.00

RESET WHEN Phrase
RESET WHEN is a Teradata extension to the ANSI SQL standard.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 403

Depending on the evaluation of the specified condition, RESET WHEN determines the group or partition,
over which the ordered analytical function operates. If the condition evaluates to TRUE, a new dynamic
partition is created inside the specified window partition. To define a partition based on a column reference
list, use the PARTITION BY phrase. For more information, see PARTITION BY Phrase.

If there is no RESET WHEN phrase or PARTITION BY phrase, then the entire result set, delivered by the
FROM clause, constitutes a single partition, over which the ordered analytical function executes.

You can have different RESET WHEN clauses in the same SELECT list.

Note:
A window specification that specifies a RESET WHEN clause must also specify an ORDER
BY clause.

RESET WHEN Condition Rules

The condition in the RESET WHEN clause is equivalent in scope to the condition in a QUALIFY
clause with the additional constraint that nested ordered analytical functions cannot specify
conditional partitioning.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

The following rules apply for RESET WHEN conditions.

A RESET WHEN condition can contain the following:

• Ordered analytical functions that do not include the RESET WHEN clause
• Scalar subqueries
• Aggregate operators
• DEFAULT functions

However, DEFAULT without an explicit column specification is valid only if it is specified as a
standalone condition in the predicate. For more information, see Rules For Using a DEFAULT
Function As Part of a RESET WHEN Condition.

A RESET WHEN condition cannot contain the following:

• Ordered analytical functions that include the RESET WHEN clause
• The SELECT statement
• LOB columns
• UDT expressions, including UDFs that return a UDT value

However, a RESET WHEN condition can include an expression that contains UDTs as long as that
expression returns a result that has a predefined data type.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 404

Rules For Using a DEFAULT Function As Part of a RESET
WHEN Condition

The following rules apply to the use of the DEFAULT function as part of a RESET WHEN condition:

• You can specify a DEFAULT function with a column name argument within a predicate. The system
evaluates the DEFAULT function to the default value of the column specified as its argument. After
the system evaluates the DEFAULT function, it treats it like a literal in the predicate.

• You can specify a DEFAULT function without a column name argument within a predicate only if there
is one column specification and one DEFAULT function as the terms on each side of the comparison
operator within the expression.

• Following existing comparison rules, a condition with a DEFAULT function used with comparison
operators other than IS [NOT] NULL is unknown if the DEFAULT function evaluates to null.

A condition other than IS [NOT]NULL with a DEFAULT function compared with a null evaluates
to unknown.

IF a DEFAULT function is used with... THEN the comparison is...

IS NULL TRUE if the default is null,
else it is FALSE.

IS NOT NULL FALSE if the default is null,
else it is TRUE.

Examples

Example

This example finds cumulative sales for all periods of increasing sales for each region.

 SUM(sales) OVER (
 PARTITION BY region
 ORDER BY day_of_calendar
 RESET WHEN sales < /* preceding row */ SUM(sales) OVER (
 PARTITION BY region
 ORDER BY day_of_calendar
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)
 ROWS UNBOUNDED PRECEDING
)

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 405

Example

This example finds sequences of increasing balances. This implies that we reset whenever the current
balance is less than or equal to the preceding balance.

 SELECT account_key, month, balance,
 ROW_NUMBER() over
 (PARTITION BY account_key
 ORDER BY month
 RESET WHEN balance /* current row balance */ <=
 SUM(balance) over (PARTITION BY account_key ORDER BY month
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) /* prev row */
) - 1 /* to get the count started at 0 */ as balance_increase
 FROM accounts;

The possible results of the preceding SELECT appear in the table below:

account_key month balance balance_increase
----------- ----- ------- ----------------
 1 1 60 0
 1 2 99 1
 1 3 94 0
 1 4 90 0
 1 5 80 0
 1 6 88 1
 1 7 90 2
 1 8 92 3
 1 9 10 0
 1 10 60 1
 1 11 80 2
 1 12 10 0

Example

The following example illustrates a window function with a nested aggregate. The query is processed
as follows:

1. We use the SUM(balance) aggregate function to calculate the sum of all the balances for a given
account in a given quarter.

2. We check to see if a balance in a given quarter (for a given account) is greater than the balance of
the previous quarter.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 406

3. If the balance increased, we track a cumulative count value. As long as the RESET WHEN condition
evaluates to false, the balance is increasing over successive quarters, and we continue to increase
the count.

4. We use the ROW_NUMBER() ordered analytical function to calculate the count value. When we
reach a quarter whose balance is less than or equal to that of the previous quarter, the RESET
WHEN condition evaluates to true, and we start a new partition and ROW_NUMBER() restarts the
count from 1. We specify ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING to access the
previous value.

5. Finally, we subtract 1 to ensure that the count values start with 0.

The balance_increase column shows the number of successive quarters where the balance was
increasing. In this example, we only have one quarter (1->2) where the balance has increased.

 SELECT account_key, quarter, sum(balance),
 ROW_NUMBER() over
 (PARTITION BY account_key
 ORDER BY quarter
 RESET WHEN sum(balance) /* current row balance */ <=
 SUM(sum(balance)) over (PARTITION BY account_key ORDER BY quarter
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)/* prev row */
) - 1 /* to get the count started at 0 */ as balance_increase
 FROM accounts
 GROUP BY account_key, quarter;

The possible results of the preceding SELECT appear in the table below:

account_key quarter balance balance_increase
----------- ------- ------- ----------------
 1 1 253 0
 1 2 258 1
 1 3 192 0
 1 4 150 0

Example

In the following example, the condition in the RESET WHEN clause contains SELECT as a nested
subquery. This is not allowed and results in an error.

 SELECT SUM(a1) OVER
 (ORDER BY 1
 RESET WHEN 1 in (SELECT 1))
 FROM t1;
 $

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 407

 *** Failure 3706 Syntax error: SELECT clause not supported in
 RESET...WHEN clause.

ROWS Phrase
ROWS defines the rows over which the aggregate function is computed for each row in the partition.

If ROWS is specified, the computation of the aggregate function for each row in the partition includes only
the subset of rows in the ROWS phrase.

If there is no ROWS phrase, then the computation includes all the rows in the partition.

To compute the three-month moving average sales for each store in the sales_tbl table, partition by
StoreID, order by SMonth, and perform the computation over the current row and the two preceding rows:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID
 ORDER BY SMonth
 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW)
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Moving Avg(Sales)
 ------- ------ ------ --------- -----------------
 1001 1 C 35000.00 35000.00
 1001 2 C 25000.00 30000.00
 1001 3 C 40000.00 33333.33
 1001 4 C 25000.00 30000.00
 1001 5 C 30000.00 31666.67
 1001 6 C 30000.00 28333.33
 1002 1 C 40000.00 40000.00
 1002 2 C 35000.00 37500.00
 1002 3 C 110000.00 61666.67
 1002 4 C 60000.00 68333.33
 1002 5 C 35000.00 68333.33
 1002 6 C 100000.00 65000.00

Multiple Window Specifications
In an SQL statement using more than one window function, each window function can have a unique
window specification.

For example,

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID
 ORDER BY SMonth

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 408

 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW),
 RANK() OVER (PARTITION BY StoreID ORDER BY Sales DESC)
 FROM sales_tbl;

Related Information
• See DEFAULT for more information about the DEFAULT function.
• The window specification can also be applied to a user-defined aggregate function. For details, see

SQL UDF.
• To see the syntax for the OVER() phrase and the associated clauses, see Window

Aggregate Functions.

Window Aggregate Functions
An aggregate function on which a window specification is applied is called a window aggregate function.
Without a window specification, aggregate functions return one value for all qualified rows examined.
Window aggregate functions return a new value for each of the qualifying rows participating in the query.

Thus, the following SELECT statement, which includes the aggregate AVG, returns one value only: the
average of sales.

 SELECT AVG(sale)
 FROM monthly_sales;

 Average(sale)

 1368

The AVG window function retains each qualifying row.

The following SELECT statement might return the results that follow.

 SELECT territory, smonth, sales,
 AVG(sales) OVER (PARTITION BY territory
 ORDER BY smonth ROWS 2 PRECEDING)
 FROM sales_history;

 territory smonth sales Moving Avg(sales)
 --------- ------- ----- -----------------
 East 199810 10 10
 East 199811 4 7
 East 199812 10 8
 East 199901 7 7
 East 199902 10 9

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 409

 West 199810 8 8
 West 199811 12 10
 West 199812 7 9
 West 199901 11 10
 West 199902 6 8

The Window Specification
Cumulative, group, moving, or remaining computation of an aggregate function.

Window Specification Syntax
{ AVG (value_expression) |

 CORR (value_expression_1, value_expression_2) |

 COUNT ({ value_expression | * }) |

 COVAR_POP (value_expression_1, value_expression_2) |

 COVAR_SAMP (value_expression_1, value_expression_2) |

 MAX (value_expression) |

 MIN (value_expression) |

 REGR_AVGX (dependent_variable_expression, independent_variable_expression) |

 REGR_AVGY (dependent_variable_expression, independent_variable_expression) |

 REGR_COUNT (dependent_variable_expression, independent_variable_expression) |

 REGR_INTERCEPT (dependent_variable_expression, independent_variable_expression) |

 REGR_R2 (dependent_variable_expression, independent_variable_expression) |

 REGR_SLOPE (dependent_variable_expression, independent_variable_expression) |

 REGR_SXX (dependent_variable_expression, independent_variable_expression) |

 REGR_SXY (dependent_variable_expression, independent_variable_expression) |

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 410

 REGR_SYY (dependent_variable_expression, independent_variable_expression) |

 STDDEV_POP (value_expression) |

 STDDEV_SAMP (value_expression) |

 VAR_POP (value_expression) |

 VAR_SAMP (value_expression)

} window

Syntax Elements

window

OVER ([partition_by_clause] [order_by_clause] [rows_clause])

partition_by_clause

PARTITION BY column_reference [,...]

In its column_reference, or comma-separated list of column references, the group, or groups,
over which the function operates.

PARTITION BY is optional. If there are no PARTITION BY or RESET WHEN clauses, then
the entire result set, delivered by the FROM clause, constitutes a single group, or partition.

PARTITION BY clause is also called the window partition clause.

order_by_clause

ORDER BY value_specification [,...] [RESET WHEN condition]

In its value_expression the order in which the values in a group, or partition, are sorted.

rows_clause

{ ROWS { { UNBOUNDED | value } PRECEDING | CURRENT ROW } |

 ROWS BETWEEN { { UNBOUNDED | value } PRECEDING AND

 { { UNBOUNDED | value }
 FOLLOWING | value PRECEDING | CURRENT ROW } |

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 411

 CURRENT ROW AND { { UNBOUNDED | value }
FOLLOWING } |

 value FOLLOWING AND { UNBOUNDED | value
} FOLLOWING
 }
}

value_specification

value_expression [ASC | DESC] [NULLS { FIRST | LAST }]

OVER
How values are grouped, ordered, and considered when computing the cumulative, group,
or moving function.

Values are grouped according to the PARTITION BY and RESET WHEN clauses, sorted
according to the ORDER BY clause, and considered according to the aggregation group
within the partition.

RESET WHEN
The group or partition, over which the function operates, depending on the evaluation of the
specified condition. If the condition evaluates to TRUE, a new dynamic partition is created
inside the specified window partition.

RESET WHEN is optional. If there are no RESET WHEN or PARTITION BY clauses, then the
entire result set, delivered by the FROM clause, constitutes a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified also.

condition
A conditional expression used to determine conditional partitioning. The condition in the
RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause with the
additional constraint that nested ordered analytical functions cannot specify a RESET WHEN
clause. In addition, you cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-
partitions within the particular window partitions.

ROWS
The starting point for the aggregation group within the partition. The aggregation group end
is the current row.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 412

The aggregation group of a row R is a set of rows, defined relative to R in the ordering of the
rows within the partition.

If there are no ROWS or ROWS BETWEEN clause, the default aggregation group is ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

The default when there is no ROWS clause for FIRST_VALUE/LAST_VALUE is different. For
more information, see FIRST_VALUE/LAST_VALUE.

ROWS BETWEEN
The aggregation group start and end, which defines a set of rows relative to the current row
in the ordering of the rows within the partition.

The row specified by the group start must precede the row specified by the group end.

If there are no ROWS or ROWS BETWEEN clause, the default aggregation group is ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

UNBOUNDED PRECEDING
The entire partition preceding the current row.

UNBOUNDED FOLLOWING
The entire partition following the current row.

CURRENT ROW
The start or end of the aggregation group as the current row.

value PRECEDING
The number of rows preceding the current row.

The value for value is always a positive integer literal.

The maximum number of rows in an aggregation group is 4096 when value PRECEDING
appears as the group start or group end.

value FOLLOWING
The number of rows following the current row.

The value for value is always a positive integer literal.

The maximum number of rows in an aggregation group is 4096 when value FOLLOWING
appears as the group start or group end.

ASC
That the results are to be ordered in ascending sort order.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 413

If the sort field is a character string, the system orders it in ascending order according to the
definition of the collation sequence for the current session.

The default order is ASC.

DESC
That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the
definition of the collation sequence for the current session.

NULLS FIRST
NULL results are to be listed first.

NULLS LAST
NULL results are to be listed last.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

In the presence of an ORDER BY clause and the absence of a ROWS or ROWS BETWEEN
clause, ANSI SQL:2011 window aggregate functions use ROWS UNBOUNDED PRECEDING as the
default aggregation group, whereas Teradata SQL window aggregate functions use ROWS BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

Type of Computation
To compute
this type of
function …

Use this aggregation group …

Cumulative • ROWS UNBOUNDED PRECEDING
• ROWS BETWEEN UNBOUNDED PRECEDING AND value PRECEDING
• ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
• ROWS BETWEEN UNBOUNDED PRECEDING AND value FOLLOWING

Group ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Moving • ROWS value PRECEDING
• ROWS CURRENT ROW
• ROWS BETWEEN value PRECEDING AND value PRECEDING
• ROWS BETWEEN value PRECEDING AND CURRENT ROW
• ROWS BETWEEN value PRECEDING AND value FOLLOWING
• ROWS BETWEEN CURRENT ROW AND CURRENT ROW
• ROWS BETWEEN CURRENT ROW AND value FOLLOWING

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 414

To compute
this type of
function …

Use this aggregation group …

• ROWS BETWEEN value FOLLOWING AND value FOLLOWING

Remaining • ROWS BETWEEN value PRECEDING AND UNBOUNDED FOLLOWING
• ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
• ROWS BETWEEN value FOLLOWING AND UNBOUNDED FOLLOWING

Arguments to Window Aggregate Functions
Window aggregate functions can take literals, literal expressions, column names (sales, for example), or
column expressions (sales + profit) as arguments.

Window aggregates can also take regular aggregates as input parameters to the PARTITION BY and
ORDER BY clauses. The RESET WHEN clause can take an aggregate as part of the RESET WHEN
condition clause.

COUNT can take “*” as an input argument, as in the following SQL query:

 SELECT city, kind, sales, profit,
 COUNT(*) OVER (PARTITION BY city, kind
 ROWS BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING)
 FROM activity_month;

Result Type and Format
The result data type and format for window aggregate functions are as follows.

Function Result Type Format

AVG(x)
where x is a character type

FLOAT Default format
for FLOAT

AVG(x)
where x is a numeric, DATE, or
INTERVAL type

FLOAT Same format as
operand x

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX(y,x)
REGR_AVGY(y,x)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)

FLOAT Default format
for FLOAT

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 415

Function Result Type Format

REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x,)
STDDEV_SAMP(x,)
VAR_POP(x,)
VAR_SAMP(x)
where x is a character type

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX (y,x)
REGR_AVGY(y,x)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)
REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x)
STDDEV_SAMP(x)
VAR_POP(x)
VAR_SAMP(x)
where x is one of the following types:
• Numeric
• DATE
• Interval

Same data type as operand x. Default format for the
data type of operand x

REGR_AVGX(y,x)
REGR_AVGY(y, x)
where x is a UDT

Default format for the
data type to which the
UDT is implicitly cast.

COUNT(x)
COUNT(*)
REGR_COUNT(x ,y)
where the transaction mode is ANSI

If MaxDecimal in DBSControl is…
• 0 or 15, then the result type is DECIMAL(15,0) and the format is

-(15)9.
• 18, then the result type is DECIMAL(18,0) and the format is

-(18)9.
• 38, then the result type is DECIMAL(38,0) and the format is

-(38)9.
ANSI transaction mode uses DECIMAL because tables frequently
have a cardinality exceeding the range of INTEGER.

COUNT(x)
COUNT(*)

INTEGER Default format
for INTEGER

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 416

Function Result Type Format

REGR_COUNT(x,y)
where the transaction mode
is Teradata

Teradata transaction mode
uses INTEGER to avoid
regression problems.

Note:
You can cast the final result of a
COUNT window aggregate function;
however, the cast is not used
as part of the window function
computation as it is for the COUNT
aggregate function and, therefore,
cannot be used to avoid numeric
overflow errors that might occur
during the computation.

MAX(x), MIN(x) Same data type as operand x. Same format as
operand x

SUM(x)
where x is a character type

Same as operand x. Default format
for FLOAT

SUM(x)
where x is a DECIMAL(n,m) type

DECIMAL(p,m), where p is determined
according to the following rules:
If MaxDecimal in DBSControl is 0 or
15 and
• n ≤ 15, then p = 15.
• 15 < n ≤ 18, p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 18 and
• n ≤ 18, then p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 38 and
n = any value, the p = 38.

Default format
for DECIMAL

SUM(x)
where x is any numeric type other
than DECIMAL

Same as operand x. Default format for the
data type of the operand

Result Title
The default title that appears in the heading for displayed or printed results depends on the type of
computation performed.

IF the type of computation is … THEN the result title is …

cumulative Cumulative Function_name (argument_list)
For example, consider the following computation:

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 417

IF the type of computation is … THEN the result title is …

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS UNBOUNDED PRECEDING)
 FROM sales_history;

The title that appears in the result heading is:
Cumulative Avg(sales)

group Group Function_name (argument_list)
For example, consider the following computation:

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING)
 FROM sales_history;

The title that appears in the result heading is:
Group Avg(sales)

moving Moving Function_name (argument_list)
For example, consider the following computation:

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS 2 PRECEDING)
 FROM sales_history;

The title that appears in the result heading is:
Moving Avg(sales)

remaining Remaining Function_name (argument_list)
For example, consider the following computation:

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING)
 FROM sales_history;

The title that appears in the result heading is:
Remaining Avg(sales)

Problems with Missing Data
Make sure that data you analyze has no missing data points. Computing a moving function over data with
missing points produces unexpected and incorrect results because the computation considers n physical
rows of data rather than n logical data points.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 418

Nesting Aggregates in Window Functions
Although you can nest aggregates in window functions, including the select list, HAVING, QUALIFY, and
ORDER BY clauses, the HAVING clause can only contain aggregate function references because HAVING
cannot contain nested syntax like RANK() OVER (ORDER BY SUM(x)).

Aggregate functions cannot be specified with Teradata-specific functions.

Example

The following query nests the SUM aggregate function within the RANK ordered analytical function in the
select list:

 SELECT state, city, SUM(sale),
 RANK() OVER (PARTITION BY state ORDER BY SUM(sale))
 FROM T1
 WHERE T1.cityID = T2.cityID
 GROUP BY state, city
 HAVING MAX(sale) > 10;

Alternative: Using Derived Tables

Although only window functions allow aggregates specified together in the same SELECT list, window
functions and Teradata-specific functions can be combined with aggregates using derived tables or views.
Using derived tables or views also clarifies the semantics of the computation.

Example

The following example shows the sales rank of a particular product in a store and its percent contribution
to the store sales for the top three products in each store.

 SELECT RT.storeid, RT.prodid, RT.sales,
 RT.rank_sales, RT.sales * 100.0/ST.sum_store_sales
 FROM (SELECT storeid, prodid, sales, RANK(sales) AS rank_sales
 FROM sales_tbl
 GROUP BY storeID
 QUALIFY RANK(sales) <=3) AS RT,
 (SELECT storeID, SUM(sales) AS sum_store_sales
 FROM sales_tbl
 GROUP BY storeID) AS ST
 WHERE RT.storeID = ST.storeID
 ORDER BY RT.storeID, RT.sales;

The results table might look something like the following.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 419

storeID prodID sales rank_sales sales*100.0/sum_store_sales

1001 D 35000.00 3 17.949

1001 C 60000.00 2 30.769

1001 A 100000.00 1 51.282

1002 D 25000.00 3 25.000

1002 C 35000.00 2 35.000

1002 A 40000.00 1 40.000

1003 C 20000.00 3 20.000

1003 A 30000.00 2 30.000

1003 D 50000.00 1 50.000

...

Teradata-Specific Alternatives to Ordered Analytical Functions
Teradata SQL supports two syntax alternatives for ordered analytical functions:

• Teradata-specific
• ANSI SQL:2011 compliant

Window aggregate, rank, distribution, and row number functions are ANSI SQL:2011 compliant. Teradata-
specific functions are not.

Teradata-Specific Functions and ANSI SQL:2011 Window Functions

The following table identifies equivalent ANSI SQL:2011 window functions for Teradata-specific functions.

Note:
The use of the Teradata-specific functions listed in the following table is strongly discouraged. These
functions are retained only for backward compatibility with existing applications. Be sure to use the
ANSI-compliant window functions for any new applications you develop.

Teradata-Specific Functions Equivalent ANSI SQL:2011 Window Functions

CSUM SUM

MAVG AVG

MDIFF(x, w, y) composable from SUM

MLINREG composable from SUM and COUNT

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 420

Teradata-Specific Functions Equivalent ANSI SQL:2011 Window Functions

QUANTILE composable from RANK and COUNT

RANK RANK

MSUM SUM

Comparing Window Aggregate Functions and Teradata-Specific Functions

Avoid using Teradata-specific functions such as MAVG, CSUM, and MSUM for applications intended to
be ANSI-compliant and portable.

ANSI
Function

Teradata
Function Relationship

AVG MAVG The form of the AVG window function that specifies an aggregation group
of ROWS value PRECEDING is the ANSI equivalent of the MAVG Teradata-
specific function.
Note that the ROWS value PRECEDING phrase specifies the number of rows
preceding the current row that are used, together with the current row, to
compute the moving average. The total number of rows in the aggregation
group is value + 1. For the MAVG function, the total number of rows in the
aggregation group is the value of width.
For AVG window function, an aggregation group of ROWS 5 PRECEDING, for
example, means that the 5 rows preceding the current row, plus the current
row, are used to compute the moving average. Thus the moving average for
the 6th row of a partition would have considered row 6, plus rows 5, 4, 3, 2, and
1 (that is, 6 rows in all).
For the MAVG function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving average. The moving
average for the 6th row would have considered row 6, plus rows 4, 5, 3, and
2 (that is, 5 rows in all).

SUM CSUM
MSUM

Be sure to use the ANSI-compliant SUM window function for any new
applications you develop. Avoid using CSUM and MSUM for applications
intended to be ANSI-compliant and portable.
The following defines the relationship between the SUM window function and
the CSUM and MSUM Teradata-specific functions, respectively:
• The SUM window function that uses the ORDER BY clause and specifies

ROWS UNBOUNDED PRECEDING is the ANSI equivalent of CSUM.
• The SUM window function that uses the ORDER BY clause and specifies

ROWS value PRECEDING is the ANSI equivalent of MSUM.
Note that the ROWS value PRECEDING phrase specifies the number of
rows preceding the current row that are used, together with the current
row, to compute the moving average. The total number of rows in the
aggregation group is value + 1. For the MSUM function, the total number of
rows in the aggregation group is the value of width.
Thus for the SUM window function that computes a moving sum, an
aggregation group of ROWS 5 PRECEDING means that the 5 rows
preceding the current row, plus the current row, are used to compute
the moving sum. The moving sum for the 6th row of a partition, for example,

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 421

ANSI
Function

Teradata
Function Relationship

would have considered row 6, plus rows 5, 4, 3, 2, and 1 (that is, 6 rows in
all).
For the MSUM function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving sum. The moving sum for
the 6th row, for example, would have considered row 6, plus rows 5, 4, 3,
and 2 (that is, 5 rows in all).
Moreover, for data having fewer than width rows, MSUM computes the sum
using all the preceding rows. MSUM returns the current sum rather than
nulls when the number of rows in the sample is fewer than width.

Example: Group Count

The following SQL query might yield the results that follow it, where the group count for sales is
returned for each of the four partitions defined by city and kind. Notice that rows that have no sales are
not counted.

 SELECT city, kind, sales, profit,
 COUNT(sales) OVER (PARTITION BY city, kind
 ROWS BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING)
 FROM activity_month;

 city kind sales profit Group Count(sales)
 ------- -------- ----- ------ ------------------
 LA Canvas 45 320 4
 LA Canvas 125 190 4
 LA Canvas 125 400 4
 LA Canvas 20 120 4
 LA Leather 20 40 1
 LA Leather ? ? 1
 Seattle Canvas 15 30 3
 Seattle Canvas 20 30 3
 Seattle Canvas 20 100 3
 Seattle Leather 35 50 1
 Seattle Leather ? ? 1

Example: Remaining Count

To count all the rows, including rows that have no sales, use COUNT(*). Here is an example that counts
the number of rows remaining in the partition after the current row:

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 422

 SELECT city, kind, sales, profit,
 COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM activity_month;

 city kind sales profit Remaining Count(*)
 ------- -------- ----- ------ ------------------
 LA Canvas 20 120 ?
 LA Canvas 125 190 1
 LA Canvas 45 320 2
 LA Canvas 125 400 3
 LA Leather ? ? ?
 LA Leather 20 40 1
 Seattle Canvas 15 30 ?
 Seattle Canvas 20 30 1
 Seattle Canvas 20 100 2
 Seattle Leather ? ? ?
 Seattle Leather 35 50 1

Note that the sort order that you specify in the window specification defines the sort order of the rows over
which the function is applied; it does not define the ordering of the results.

In the example, the DESC sort order is specified for the computation, but the results are returned in the
reverse order.

To order the results, use the ORDER BY phrase in the SELECT statement:

 SELECT city, kind, sales, profit,
 COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC
 ROWS BETWEEN 1 FOLLOWING AND
 UNBOUNDED FOLLOWING)
 FROM activity_month
 ORDER BY city, kind, profit DESC;

 city kind sales profit Remaining Count(*)
 ------- -------- ----- ------ ------------------
 LA Canvas 125 400 3
 LA Canvas 45 320 2
 LA Canvas 125 190 1
 LA Canvas 20 120 ?
 LA Leather 20 40 1
 LA Leather ? ? ?
 Seattle Canvas 20 100 2
 Seattle Canvas 20 30 1
 Seattle Canvas 15 30 ?

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 423

 Seattle Leather 35 50 1
 Seattle Leather ? ? ?

Example: Cumulative Maximum

The following SQL query might yield the results that follow it, where the cumulative maximum value for
sales is returned for each partition defined by city and kind.

 SELECT city, kind, sales, week,
 MAX(sales) OVER (PARTITION BY city, kind
 ORDER BY week ROWS UNBOUNDED PRECEDING)
 FROM activity_month;

 city kind sales week Cumulative Max(sales)
 ------- -------- ----- ---- ---------------------
 LA Canvas 263 16 263
 LA Canvas 294 17 294
 LA Canvas 321 18 321
 LA Canvas 274 20 321
 LA Leather 144 16 144
 LA Leather 826 17 826
 LA Leather 489 20 826
 LA Leather 555 21 826
 Seattle Canvas 100 16 100
 Seattle Canvas 182 17 182
 Seattle Canvas 94 18 182
 Seattle Leather 933 16 933
 Seattle Leather 840 17 933
 Seattle Leather 899 18 933
 Seattle Leather 915 19 933
 Seattle Leather 462 20 933

Example: Cumulative Minimum

The following SQL query might yield the results that follow it, where the cumulative minimum value for
sales is returned for each partition defined by city and kind.

 SELECT city, kind, sales, week,
 MIN(sales) OVER (PARTITION BY city, kind
 ORDER BY week
 ROWS UNBOUNDED PRECEDING)
 FROM activity_month;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 424

 city kind sales week Cumulative Min(sales)
 ------- -------- ----- ---- ---------------------
 LA Canvas 263 16 263
 LA Canvas 294 17 263
 LA Canvas 321 18 263
 LA Canvas 274 20 263
 LA Leather 144 16 144
 LA Leather 826 17 144
 LA Leather 489 20 144
 LA Leather 555 21 144
 Seattle Canvas 100 16 100
 Seattle Canvas 182 17 100
 Seattle Canvas 94 18 94
 Seattle Leather 933 16 933
 Seattle Leather 840 17 840
 Seattle Leather 899 18 840
 Seattle Leather 915 19 840
 Seattle Leather 462 20 462

Example: Cumulative Sum

The following query returns the cumulative balance per account ordered by transaction date:

 SELECT acct_number, trans_date, trans_amount,
 SUM(trans_amount) OVER (PARTITION BY acct_number
 ORDER BY trans_date
 ROWS UNBOUNDED PRECEDING) as balance
 FROM ledger
 ORDER BY acct_number, trans_date;

Here are the possible results of the preceding SELECT.

acct_number trans_date trans_amount balance

73829 1998-11-01 113.45 113.45

73829 1988-11-05 -52.01 61.44

73929 1998-11-13 36.25 97.69

82930 1998-11-01 10.56 10.56

82930 1998-11-21 32.55 43.11

82930 1998-11-29 -5.02 38.09

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 425

Example: Group Sum

The query below finds the total sum of meat sales for each city.

 SELECT city, kind, sales,
 SUM(sales) OVER (PARTITION BY city ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) FROM monthly;

The possible results of the preceding SELECT appear in the following table.

city kind sales Group Sum (sales)

Omaha pure pork 45 220

Omaha pure pork 125 220

Omaha pure pork 25 220

Omaha variety pack 25 220

Chicago variety pack 55 175

Chicago variety pack 45 175

Chicago pure pork 50 175

Chicago variety pack 25 175

Example: Group Sum

The following query returns the total sum of meat sales for all cities. Note there is no PARTITION BY
clause in the SUM function, so all cities are included in the group sum.

 SELECT city, kind, sales,
 SUM(sales) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING)
 FROM monthly;

The possible results of the preceding SELECT appear in the table below.

city kind sales Group Sum (sales)

Omaha pure pork 45 395

Omaha pure pork 125 395

Omaha pure pork 25 395

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 426

city kind sales Group Sum (sales)

Omaha variety pack 25 395

Chicago variety pack 55 395

Chicago variety pack 45 395

Chicago pure pork 50 395

Chicago variety pack 25 395

Example: Moving Sum

The following query returns the moving sum of meat sales by city. Notice that the query returns the
moving sum of sales by city (the partition) for the current row (of the partition) and three preceding rows
where possible.

The order in which each meat variety is returned is the default ascending order according to profit.

Where no sales figures are available, no moving sum of sales is possible. In this case, there is a null in
the sum(sales) column.

 SELECT city, kind, sales, profit,
 SUM(sales) OVER (PARTITION BY city, kind
 ORDER BY profit ROWS 3 PRECEDING)
 FROM monthly;

city kind sales profit Moving sum (sales)

Omaha pure pork 25 40 25

Omaha pure pork 25 120 50

Omaha pure pork 45 140 95

Omaha pure pork 125 190 220

Omaha pure pork 45 320 240

Omaha pure pork 1255 400 340

Omaha variety pack ? ? ?

Omaha variety pack 25 40 25

Omaha variety pack 25 120 50

Chicago pure pork ? ? ?

Chicago pure pork 15 10 15

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 427

city kind sales profit Moving sum (sales)

Chicago pure pork 54 12 69

Chicago pure pork 14 20 83

Chicago pure pork 54 24 137

Chicago pure pork 14 34 136

Chicago pure pork 95 80 177

Chicago pure pork 95 140 258

Chicago pure pork 15 220 219

Chicago variety pack 23 39 23

Chicago variety pack 25 40 48

Chicago variety pack 125 70 173

Chicago variety pack 125 100 298

Chicago variety pack 23 100 298

Chicago variety pack 25 120 298

Example: Remaining Sum

The following query returns the remaining sum of meat sales for all cities. Note there is no PARTITION
BY clause in the SUM function, so all cities are included in the remaining sum.

 SELECT city, kind, sales,
 SUM(sales) OVER (ORDER BY city, kind
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM monthly;

The possible results of the preceding SELECT appear in the table below.

city kind sales Remaining Sum(sales)
------- ------------- ------- --------------------
Omaha variety pack 25 ?
Omaha pure pork 125 25
Omaha pure pork 25 150
Omaha pure pork 45 175
Chicago variety pack 55 220
Chicago variety pack 25 275

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 428

Chicago variety pack 45 300
Chicago pure pork 50 345

Note that the sort order for the computation is alphabetical by city, and then by kind. The results, however,
appear in the reverse order.

The sort order that you specify in the window specification defines the sort order of the rows over which
the function is applied; it does not define the ordering of the results. To order the results, use an ORDER
BY phrase in the SELECT statement.

For example:

 SELECT city, kind, sales,
 SUM(sales) OVER (ORDER BY city, kind
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM monthly
 ORDER BY city, kind;

The possible results of the preceding SELECT appear in the table below:

city kind sales Remaining Sum(sales)
------- ------------- ------- --------------------
Chicago pure pork 50 345
Chicago variety pack 55 265
Chicago variety pack 25 320
Chicago variety pack 45 220
Omaha pure pork 25 70
Omaha pure pork 125 95
Omaha pure pork 45 25
Omaha variety pack 25 ?

IF you want to compute the … THEN use this function …

cumulative sum • SUM window function
• CSUM

cumulative, group, or moving count COUNT window function

group sum SUM window function

moving average • AVG window function
• MAVG

moving difference between the current row-column value and the
preceding n th row-column value

MDIFF

moving linear regression MLINREG

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 429

IF you want to compute the … THEN use this function …

moving sum • SUM window function
• MSUM

quantile scores for the values in a column QUANTILE

ordered rank of all rows in a group • RANK window function
• RANK

relative rank of a row in a group PERCENT_RANK window function

sequential row number of the row within its window partition
according to the window ordering of the window

ROW_NUMBER

cumulative, group, or moving maximum value MAX window function

cumulative, group, or moving minimum value MIN window function

GROUP BY Clause

GROUP BY and Window Functions

For window functions, the GROUP BY clause must include all the columns specified in the:

• Select list of the SELECT clause
• Window functions in the select list of a SELECT clause
• Window functions in the search condition of a QUALIFY clause
• The condition in the RESET WHEN clause

For example, the following SELECT statement specifies the column City in the select list and the column
StoreID in the COUNT window function in the select list and QUALIFY clause. Both columns must also
appear in the GROUP BY clause:

 SELECT City, StoreID, COUNT(StoreID) OVER ()
 FROM sales_tbl
 GROUP BY City, StoreID
 QUALIFY COUNT(StoreID) >=3;

For window functions, GROUP BY collapses all rows with the same value for the group-by columns into
a single row.

For example, the following statement uses the GROUP BY clause to collapse all rows with the same value
for City and StoreID into a single row:

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 430

 SELECT City, StoreID, COUNT(StoreID) OVER ()
 FROM sales_tbl
 GROUP BY City, StoreID;

The results look like this:

 City StoreID Group Count(StoreID)
 ----- ------- --------------------
 Pecos 1001 3
 Pecos 1002 3
 Ozona 1003 3

Without the GROUP BY, the results look like this:

 City StoreID Group Count(StoreID)
 ----- ------- --------------------
 Pecos 1001 9
 Pecos 1001 9
 Pecos 1001 9
 Pecos 1001 9
 Pecos 1002 9
 Pecos 1002 9
 Pecos 1002 9
 Ozona 1003 9
 Ozona 1003 9

GROUP BY and Teradata-Specific Functions

For Teradata-specific functions, GROUP BY determines the partitions over which the function executes.
The clause does not collapse all rows with the same value for the group-by columns into a single row.
Thus, the GROUP BY clause in these cases need only specify the partitioning column for the function.

For example, the following statement computes the running sales for each store by using the GROUP BY
clause to partition the data in sales_tbl by StoreID:

 SELECT StoreID, Sales, CSUM(Sales, StoreID)
 FROM sales_tbl
 GROUP BY StoreID;

The results look like this:

 StoreID Sales CSum(Sales,StoreID)
 ------- -------- -------------------

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 431

 1001 1100.00 1100.00
 1001 400.00 1500.00
 1001 1000.00 2500.00
 1001 2000.00 4500.00
 1002 500.00 500.00
 1002 1500.00 2000.00
 1002 2500.00 4500.00
 1003 1000.00 1000.00
 1003 3000.00 4000.00

Combining Window Functions, Teradata-Specific Functions, and
GROUP BY

The following table provides the semantics of the allowable combinations of window functions, Teradata-
specific functions, aggregate functions, and the GROUP BY clause.

Combination Semantics

Window
Function

Teradata-
Specific
Function

Aggregate
Function

GROUP
BY
Clause

X A value is computed for each row.

X A value is computed for each row. The
entire table constitutes a single group, or
partition, over which the Teradata-specific
function executes.

X One aggregate value is computed for the
entire table.

X X GROUP BY collapses all rows with the same
value for the group-by columns into a single
row, and a value is computed for each
resulting row.

X X GROUP BY determines the partitions over
which the Teradata-specific function executes.
The clause does not collapse all rows with the
same value for the group-by columns into a
single row.

X X An aggregation is performed for each group.

X X Teradata-specific functions do not have
partitions. The whole table is one partition.

X X X GROUP BY determines partitions for
Teradata-specific functions. GROUP BY does
not collapse all rows with the same value for

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 432

Combination Semantics

Window
Function

Teradata-
Specific
Function

Aggregate
Function

GROUP
BY
Clause

the group-by columns into a single row, and
does not affect window function computation.

X X X GROUP BY collapses all rows with the
same value for the group-by columns into a
single row. For window functions, a value is
computed for each resulting row; for aggregate
functions, an aggregation is performed for
each group.

Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format '$ZZZ,ZZ9.99'

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format '$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Related Information
• For descriptions of aggregate functions and arguments, see Aggregate Functions.
• For more information, see “RESET WHEN Condition Rules” and “QUALIFY Clause” in Teradata

Vantage™ - SQL Data Manipulation Language, B035-1146.
• For information on the default format of data types and an explanation of the formatting characters

in the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types
and Literals.

CSUM
Returns the cumulative (or running) sum of a value expression for each row in a partition, assuming the rows
in the partition are sorted by the sort_expression list.

CSUM accumulates a sum over an ordered set of rows, providing the current value of the SUM on each row.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 433

Type

Teradata-specific function.

CSUM Function Syntax
CSUM (value_expression, sort_spec [,...])

Syntax Elements

sort_spec

sort_expression [ASC | DESC]

value_expression
A numeric literal or column expression for which a running sum is to be computed.

By default, CSUM uses the default data type of value_expression. Larger numeric values are
supported by casting it to a higher data type.

The expression cannot contain any ordered analytical or aggregate functions.

sort_expression
A literal or column expression or comma-separated list of literal or column expressions to be
used to sort the values.

The expression cannot contain any ordered analytical or aggregate functions.

ASC
Ascending sort order.

DESC
Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for CSUM are as follows:

Data Type: Same as operand x

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 434

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, the format is the same format as x.

CSUM Usage Notes

Using SUM Instead of CSUM

The use of CSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard,
and is equivalent to the ANSI-compliant SUM window function that specifies ROWS UNBOUNDED
PRECEDING as its aggregation group. CSUM is retained only for backward compatibility with
existing applications.

Possible Result Overflow with SELECT Sum

Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Examples

Example

Report the daily running sales total for product code 10 for each month of 1998.

 SELECT cmonth, CSUM(sumPrice, cdate)
 FROM
 (SELECT a2.month_of_year,
 a2.calendar_date,a1.itemID, SUM(a1.price)
 FROM Sales a1, SYS_CALENDAR.Calendar a2
 WHERE a1.calendar_date=a2.calendar_date
 AND a2.calendar_date=1998

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 435

 AND a1.itemID=10
 GROUP BY a2.month_of_year, a1.calendar_date,
 a1.itemID) AS T1(cmonth, cdate, sumPrice)
 GROUP BY cmonth;

Grouping by month allows the total to accumulate until the end of each month, when it is then set to zero
for the next month. This permits the calculation of cumulative totals for each item in the same query.

Example

Provide a running total for sales of each item in store 5 in January and generate output that is ready to
export into a graphing program.

 SELECT Item, SalesDate, CSUM(Revenue,Item,SalesDate) AS CumulativeSales
 FROM
 (SELECT Item, SalesDate, SUM(Sales) AS Revenue
 FROM DailySales
 WHERE StoreId=5 AND SalesDate BETWEEN
 '1/1/1999' AND '1/31/1999'
 GROUP BY Item, SalesDate) AS ItemSales
 ORDER BY SalesDate;

The result might like something like the following table.

Item SalesDate CumulativeSales

InstaWoof dog food 01/01/1999 972.99

InstaWoof dog food 01/02/1999 2361.99

InstaWoof dog food 01/03/1999 5110.97

InstaWoof dog food 01/04/1999 7793.91

CUME_DIST
Calculates the cumulative distribution of a value in a group of values.

CUME_DIST is similar to PERCENT_RANK. Unlike PERCENT_RANK, which considers the RANK value in
the presence of ties, CUME_DIST uses the highest tied rank, that is, the position of the last tied value when
there are peers. CUME_DIST is the ratio of that position in the partition (RANK-HIGH/NUM ROWS).

Type

ANSI SQL:2011 window function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 436

CUME_DIST Function Syntax
CUME_DIST() OVER (
 [PARTITION BY column_reference [,...]]
 ORDER BY value_spec [,...]
 [RESET WHEN condition]
)

Syntax Elements

OVER
Specifies how values are grouped, ordered, and considered when computing the cumulative,
group, or moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses
END, sorted according to the ORDER BY clause, and considered according to the
aggregation group within the partition.

PARTITION BY column_reference [,...]
The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered
by the FROM clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY value_spec [,...]

value_expression [ASC | DESC] [NULLS { FIRST | LAST }]

The order in which the values in a group or partition are sorted.

RESET WHEN condition
A conditional expression used to determine conditional partitioning. The condition in the
RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause with the
additional constraint that nested ordered analytical functions cannot specify a RESET WHEN
clause. In addition, you cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-
partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in
Teradata Vantage™ - SQL Data Manipulation Language, B035-1146.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 437

ASC
That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the
definition of the collation sequence for the current session.

The default order is ASC.

DESC
That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the
definition of the collation sequence for the current session.

NULLS FIRST
NULL results are to be listed first.

NULLS LAST
NULL results are to be listed last.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Results
The range of values returned by CUME_DIST is >0 to <=1.

Example
The following SELECT statement:

SELECT lname, serviceyrs,
 CUME_DIST()OVER(ORDER BY serviceyrs)
 FROM schooltbl
 GROUP BY 1,2;

returns the cumulative distribution by service years for teachers listed in schooltbl.

lname serviceyrs CUME_DIST

Adams 10 0.333333

Peters 10 0.333333

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 438

lname serviceyrs CUME_DIST

Murray 10 0.333333

Rogers 15 0.444333

Franklin 16 0.555333

Smith 20 0.888889

Ford 20 0.888889

Derby 20 0.888889

Baker 20 1.000000

DENSE_RANK (ANSI)
Returns an ordered ranking of rows based on the value_expression in the ORDER BY clause.

The ranks are consecutive integers beginning with 1. Rows with equal values receive the same rank. Rank
values are not skipped in the event of ties.

Type

ANSI SQL:2011 window function.

DENSE_RANK Function Syntax (ANSI)
DENSE_RANK() OVER (
 [PARTITION BY column_reference [,...]]
 ORDER BY value_spec [,...]
 [RESET WHEN condition]
)

Syntax Elements

OVER
Specifies how values are grouped, ordered, and considered when computing the cumulative,
group, or moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses
END, sorted according to the ORDER BY clause, and considered according to the
aggregation group within the partition.

PARTITION BY column_reference [,...]
The group or groups over which the function operates.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 439

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered
by the FROM clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY value_spec [,...]

value_expression [ASC | DESC] [NULLS { FIRST | LAST }]

The order in which the values in a group or partition are sorted.

RESET WHEN condition
The group, or groups, over which the function operates, depending on the evaluation of the
specified condition. If the condition evaluates to TRUE, a new dynamic partition is created
inside the specified window partition.

If there are no RESET WHEN or PARTITION BY clauses, then the entire result set constitutes
a single partition.

A conditional expression used to determine conditional partitioning. The condition in the
RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause with the
additional constraint that nested ordered analytical functions cannot specify a RESET WHEN
clause. In addition, you cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-
partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in
Teradata Vantage™ - SQL Data Manipulation Language, B035-1146.

ASC
That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the
definition of the collation sequence for the current session.

The default order is ASC.

DESC
That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the
definition of the collation sequence for the current session.

NULLS FIRST
NULL results are to be listed first.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 440

NULLS LAST
NULL results are to be listed last.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is INTEGER.

Example
The following SELECT statement:

SELECT lname, serviceyrs,
 DENSE_RANK()OVER(ORDER BY serviceyrs)
 FROM schooltbl
 GROUP BY 1,2;

returns the ordered ranking by service years for teachers listed in schooltbl.

lname serviceyrs DENSE_RANK

Adams 10 1

Peters 10 1

Murray 10 1

Rogers 15 2

Franklin 16 3

Smith 20 4

Ford 20 4

Derby 20 4

Baker 25 5

FIRST_VALUE/LAST_VALUE
Returns the first value or last value in an ordered set of values.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 441

Type

ANSI SQL:2011 window function.

FIRST_VALUE/LAST_VALUE Function Syntax
{ FIRST_VALUE | LAST_VALUE } (
 value_expression [{ IGNORE | RESPECT } NULLS]
) window

Syntax Elements

value_expression
A column expression.

FIRST_VALUE and LAST_VALUE use the default data type of value_expression.

Larger numeric values are supported by casting them to a higher data type.

The expression cannot contain any ordered analytical or aggregate functions.

IGNORE NULLS
Keyword that specifies not to return NULL.

• IGNORE NULLS (with FIRST_VALUE) = returns the first non-null value in the set, or
NULL if all values are NULL.

• If IGNORE NULLS (with LAST_VALUE) = returns the last non-null value in the set, or
NULL if all values are NULL.

RESPECT NULLS
Optional keyword that specifies whether to return NULL.

• RESPECT NULLS (with FIRST_VALUE) = returns the first value, whether or not it is null.
• RESPECT NULLS (with LAST_VALUE) = returns the last value, whether or not it is null.

If all values are null, NULL is returned.

window
A group, cumulative, or moving computation.

See The Window Specification.

In presence of ties in the sort key of the Window Aggregate Function syntax, FIRST_VALUE
and LAST_VALUE are non-deterministic. They return value_expression from any one of the
rows with tied order by value.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 442

Note:
If the ROWS phrase is omitted and there is an ORDER BY phrase, the default ROWS
is UNBOUNDED PRECEDING AND CURRENT ROW.

If the ROWS phrase is omitted and there is no ORDER BY phrase, the default ROWS
is UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
FIRST_VALUE and LAST_VALUE are especially valuable because they are often used as the baselines
in calculations. For instance, with a partition holding sales data ordered by day, you may want to know how
much the sales for each day were compared to the first sales day (FIRST_VALUE) for the period, or you
may want to know, for a set of rows in increasing sales order, what the percentage size of each sale in the
region was compared to the largest sale (LAST_VALUE) in the region.

IGNORE NULLS is particularly useful in populating an inventory table properly.

Selecting neither IGNORE NULLS or RESPECT NULLS is equivalent to selecting RESPECT NULLS.

Example
The following example returns by start date the salary, moving average (ma), and first and last salary in the
moving average group.

Note:

The functions are going to return the first/last value in the window. In the example, the first and last
rows fall within the window. If the window were between 3 preceding and 2 preceding rows, you would
see NULL for first value in the 1st two rows.

SELECT start_date, salary,
 AVG(salary) OVER(ORDER BY start_date
 ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) ma,
 FIRST_VALUE(salary) OVER(ORDER BY start_date
 ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) first,
 LAST_VALUE(salary) OVER(ORDER BY start_date
 ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) last
FROM employee
ORDER BY start_date;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 443

start_date salary ma first last

21-MAR-76 6661.78 6603.280 6661.78 6544.78

12-DEC-78 6544.78 5183.780 6661.78 2344.78

24-OCT-82 2344.78 4471.530 6661.78 2344.78

15-JAN-84 2334.78 4441.780 6661.78 4322.78

30-JUL-87 4322.980 4688.980 6544.78 7897.78

31-DEC-90 7897.78 3626.936 2344.78 1234.56

25-JUL-96 1234.56 3404.536 2334.78 1232.78

17-SEP-96 1232.78 3671.975 4322.78 1232.78

LAG/LEAD
Ordered analytic functions calculate an aggregate or non-aggregate value on a window of rows within a
group of rows. The window of rows is defined by the Window Framing clause, also called the ROWS clause.
Window sizes are based on the size specified in the ROWS clause. The group of rows is defined by the
PARTITION BY clause of the Window function.

The LAG function accesses data from the row preceding the current row at a specified offset value in a
window group, while the LEAD function returns data from the row following the current row. If the offset value
is outside the scope of the window, the user-specified default value is returned.

The LAG and LEAD functions are used for OLAP and decision support queries.

LAG/LEAD Function Syntax
ANSI

{ LAG | LEAD } (value_expression [, offset_spec]])
 [{ RESPECT | IGNORE } NULLS]
 OVER ([PARTITION BY expression] [order_by_clause])

offset_spec

[offset_value] [, [default_value_expression]]

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 444

order_by_clause

ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST }]
 [RESET WHEN expression]

Teradata

{ LAG | LEAD }
 (value_expression [{ IGNORE | RESPECT } NULLS] [, offset_spec]])
 OVER ([PARTITION BY expression] [order_by_clause])

offset_spec

[offset_value] [, [default_value_expression]]

order_by_clause

ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST }]
 [RESET WHEN condition]

Syntax Elements

value_expression
The expression cannot contain any ordered analytical functions.

value_expression is mandatory and can be any expression that returns a scalar value. It
cannot be a table function.

offset_value
A literal unsigned integer value between 0 and 4096. If not specified, the default value is 1.

offset_value specifies the physical row position relative to the current row in a given window
of rows. The row position is the row following the current row for the LEAD function, and the
preceding row for the LAG function.

An offset_value of 0 specifies the current row.

default_value_expression
Any expression that returns a scalar value.

If not specified, the value is assumed to be NULL.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 445

When running in ANSI mode, the default_value_expression data type must match
value_expression. An error occurs if the data types do not match.

In Teradata mode, the database attempts to match the default_value_expression data type
to value_expression by doing a cast to value_expression data type to execute the query. If
there are casting rule violations, Vantage displays an error message.

IGNORE NULLS
If value_expression returns a NULL value where the preceding or following row, as
determined by the specified offset_value, is within the scope of the window group, LAG or
LEAD ignores the NULL value.

LAG or LEAD then continues searching for the non-NULL value_expression in the preceding
or following row, which may be far from the current row but within the scope of the window
group. The search terminates at the window boundaries:

• For LAG, the search terminates at the first row of the window group.
• For LEAD, the search terminates at the last row of the window group.

At the end of the search, LAG or LEAD returns default_value_expression if no non-NULL
value_expression is found.

If the preceding or following row is outside the scope of the window group, LAG or LEAD
returns default_value_expression.

If the optional NULL clause is not specified, the default option is RESPECT NULLS.

RESPECT NULLS
If the preceding or following row determined by offset_value is within the scope of the window
group, and if the value_expression evaluation returns a NULL, LAG or LEAD returns NULL.
This setting indicates that the NULL value is not ignored.

If the preceding or following row is outside the scope of the window group, LAG or LEAD
returns default_value_expression.

If the optional NULL clause is not specified, the default option is RESPECT NULLS.

OVER
Specifies how values are grouped, ordered, and considered while computing the LAG or
LEAD function.

Values are grouped by the optional PARTITION BY clause and the optional RESET WHEN
clause. Values are sorted according to the ORDER BY clause in a given partition of rows.

PARTITION BY expression
The group or groups over which the function operates.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 446

This is a comma-separated value expression list.

ORDER BY expression
The order in which the values in a group or partition are sorted.

This is a comma-separated value expression list.

ASC
That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the
definition of the collation sequence for the current session.

The default order is ASC.

DESC
Descending sort order.

NULLS FIRST
NULL results are to be listed first.

NULLS LAST
NULL results are to be listed last.

RESET WHEN condition
The group, or groups, over which the function operates, depending on the evaluation of the
specified condition. If the condition evaluates to TRUE, a new dynamic partition is created
inside the specified window partition.

If there are no RESET WHEN or PARTITION BY clauses, then the entire result set constitutes
a single partition.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type
The data type of the LEAD or LAG function's returned values is the same as the specified value of
value_expression. If default_value_expression and value_expression have different data types, Teradata
recommends explicitly casting default_value_expression to the data type of value_expression.

In ANSI mode, an error occurs if default_value_expression and value_expression data types do not match.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 447

In the Teradata Transaction (BTET) mode, if the data types do not match, the database attempts to cast
the default_value_expression to the value_expression data type based on the internal casting rules. If this
results in casting rule violations, an error message displays.

Usage Notes
Because the LEAD and LAG functions do not support the ROWS clause in the syntax, the window size
is the same as the size of the group of rows defined by the PARTITION BY clause. If the PARTITION BY
clause is absent, the entire table becomes a single group, and the size of the group of rows is the same as
the total number of rows in the table.

The RESET WHEN clause, which is applicable to all window functions in Vantage, is extended to the LEAD
and LAG functions.

The RESET WHEN clause is a Teradata Extension to ANSI. The LEAD and LAG functions support
performance-driven rewrites, and support both Teradata syntax and ANSI syntax to simplify data migration
from other databases.

In ANSI Transaction mode, the value_expression data type must match the default value expression data
type, or else an error occurs.

Examples

Example: LAG with IGNORE NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LAG(sal, 1, 0) IGNORE NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 950
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 2450
 14 RICH PRESIDENT 5000 0

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 448

 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 1250
 8 MATTHEW SALESMAN 1600 1500

Teradata style syntax:

SELECT empno, empname, job, sal,
 LAG(sal IGNORE NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 950
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 2450
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 1250
 8 MATTHEW SALESMAN 1600 1500

Example: LAG with RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LAG(sal, 1, 0) RESPECT NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 449

 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

Teradata style syntax:

SELECT empno, empname, job, sal,
 LAG(sal RESPECT NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 450

Example: LAG with RESPECT NULLS without Explicitly Specifying
RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LAG (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

Teradata style syntax:

SELECT empno, empname, job, sal,
 LAG (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 451

 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

Example: LEAD with RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal, 1, 0) RESPECT NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 ?
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Teradata style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal RESPECT NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 452

ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 ?
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Example: LEAD with IGNORE NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal, 1, 0) IGNORE NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 1300
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 2850
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 1500
 5 LYNN SALESMAN ? 1500

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 453

 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Teradata style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal IGNORE NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 1300
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 2850
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 1500
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Example: LEAD with RESPECT NULLS without Explicitly Specifying
RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LEAD (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next

FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 454

 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 ?
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Teradata style syntax:

SELECT empno, empname, job, sal,
 LEAD (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 ?
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

MAVG
Computes the moving average of a value expression for each row in a partition using the specified value
expression for the current row and the preceding width-1 rows.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 455

Type

Teradata-specific function.

MAVG Function Syntax
MAVG (value_expression, width, sort_spec [,...])

Syntax Elements

value_expression
The expression cannot contain any ordered analytical or aggregate functions.

width
The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_spec

sort_expression [ASC | DESC]

sort_expression
A literal or column expression or comma-separated list of literal or column expressions to be
used to sort the values.

For example, MAVG(Sale, 6, Region ASC, Store DESC), where Sale is the
value_expression, 6 is the width, and Region ASC, Store DESC is the sort_expression list.

The expression cannot contain any ordered analytical or aggregate functions.

ASC
That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the
definition of the collation sequence for the current session.

The default order is ASC.

DESC
That the results are to be ordered in descending sort order.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 456

If the sort field is a character string, the system orders it in descending order according to the
definition of the collation sequence for the current session.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for MAVG are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, date, or interval, the format is the same format as x.

MAVG Usage Notes

Using AVG Instead of MAVG

The use of MAVG is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is equivalent to the ANSI-compliant AVG window function that specifies ROWS value PRECEDING as its
aggregation group. MAVG is retained only for backward compatibility with existing applications.

Problems With Missing Data

Ensure that data you analyze using MAVG has no missing data points. Computing a moving average over
data with missing points produces unexpected and incorrect results because the computation considers
n physical rows of data rather than n logical data points.

Computing the Moving Average When Number of Rows < width

For the (possibly grouped) resulting relation, the moving average considering width rows is computed
where the rows are sorted by the sort_expression list.

When there are fewer than width rows, the average is computed using the current row and all
preceding rows.

Examples

Example

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 457

Compute the 7-day moving average of sales for product code 10 for each day in the month of
October, 1996.

 SELECT cdate, itemID, MAVG(sumPrice, 7, date)
 FROM (SELECT a1.calendar_date, a1.itemID,
 SUM(a1.price)
 FROM Sales a1
 WHERE a1.itemID=10 AND a1.calendar_date
 BETWEEN 96-10-01 AND 96-10-31
 GROUP BY a1.calendar_date, a1.itemID) AS T1(cdate,
 itemID, sumPrice);

Example

The following example calculates the 50-day moving average of the closing price of the stock for
Zemlinsky Bros. Corporation. The ticker name for the company is ZBC.

 SELECT MarketDay, ClosingPrice,
 MAVG(ClosingPrice,50, MarketDay) AS ZBCAverage
 FROM MarketDailyClosing
 WHERE Ticker = 'ZBC'
 ORDER BY MarketDay;

The results for the query might look something like the following table.

MarketDay ClosingPrice ZBCAverage

12/27/1999 89 1/16 85 1/2

12/28/1999 91 1/8 86 1/16

12/29/1999 92 3/4 86 1/2

12/30/1999 94 1/2 87

MDIFF
Returns the moving difference between the specified value expression for the current row and the preceding
width rows for each row in the partition.

Type

Teradata-specific function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 458

MDIFF Function Syntax
MDIFF (value_expression, width, sort_spec [,...])

Syntax Elements

value_expression
A numeric column or literal expression for which a moving difference is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

width
The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_spec

sort_expression [ASC | DESC]

sort_expression
A literal or column expression or comma-separated list of literal or column expressions to be
used to sort the values.

ASC
Ascending sort order.

DESC
Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for MDIFF are as follows:

• If operand x is character, the data type is the same as x and the format is the default format for FLOAT.
• If operand x is numeric, the data type is the same as x and the format is the same format as x.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 459

• If operand is date, the data type is INTEGER and the format is the default format for INTEGER.

MDIFF Usage Notes

Using SUM Instead of MDIFF

The use of MDIFF is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is retained only for backward compatibility with existing applications. MDIFF(x, w, y) is equivalent to:

 x - SUM(x) OVER (ORDER BY y
 ROWS BETWEEN w PRECEDING AND w PRECEDING)

Problems With Missing Data

Ensure that rows you analyze using MDIFF have no missing data points. Computing a moving difference
over data with missing points produces unexpected and incorrect results because the computation
considers n physical rows of data rather than n logical data points.

Computing the Moving Difference When No Preceding Row Exists

When the number of preceding rows to use in a moving difference computation is fewer than the specified
width, the result is null.

Examples

Example

Display the difference between each quarter and the same quarter sales for last year for product code 10.

 SELECT year_of_calendar, quarter_of_calendar,
 MDIFF(sumPrice, 4, year_of_calendar, quarter_of_calendar)
 FROM (SELECT a2.year_of_calendar,
 a2.quarter_of_calendar, SUM(a2.Price) AS sumPrice
 FROM Sales a1, SYS_CALENDAR.Calendar a2
 WHERE a1.itemID=10 and a1.calendar_date=a2.calendar_date
 GROUP BY a2.year_of_calendar, a2.quarter_of_calendar) AS T1
 ORDER BY year_of_calendar, quarter_of_year;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 460

Example

The following example computes the changing market volume week over week for the stock of company
Horatio Parker Imports. The ticker name for the company is HPI.

 SELECT MarketWeek, WeekVolume,
 MDIFF(WeekVolume,1,MarketWeek) AS HPIVolumeDiff
 FROM
 (SELECT MarketWeek, SUM(Volume) AS WeekVolume
 FROM MarketDailyClosing
 WHERE Ticker = 'HPI'
 GROUP BY MarketWeek)
 ORDER BY MarketWeek;

The result might look like the following table. Note that the first row is null for column HPIVolume Diff,
indicating no previous row from which to compute a difference.

MarketWeek WeekVolume HPIVolumeDiff

11/29/1999 9817671 ?

12/06/1999 9945671 128000

12/13/1999 10099459 153788

12/20/1999 10490732 391273

12/27/1999 11045331 554599

Related Information
• For information on the default format of data types, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ - Data Types and Literals, B035-1143.
• For more information on the SUM window function, see Window Aggregate Functions.

MEDIAN
For numeric values, returns the middle value or an interpolated value that would be the middle value after
the values are sorted. Nulls are ignored in the calculation.

The function returns the same data type as the data type of the argument.

Type

MEDIAN is an aggregate function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 461

MEDIAN Function Syntax
MEDIAN (value_expression)

Syntax Elements

value_expression
A single expression that must be a numeric or interval data type.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Example
MEDIAN, an inverse distribution function that assumes a continuous distribution model, is a specific case
of PERCENTILE_CONT where the percentile value is 0.5.

MEDIAN (value_expression)

is same as:

PERCENTILE_CONT (0.5) WITHIN GROUP (ORDER BY value_expression)

Related Information
• See PERCENTILE_CONT/PERCENTILE_DISC.

MLINREG
Returns a predicted value for an expression based on a least squares moving linear regression of the
previous width -1 (based on sort_expression) column values.

All rows in the results table except the first two, which are always null, display the predicted value.

Type

Teradata-specific function.

MLINREG Function Syntax
MLINREG (value_expression, width, sort_expression [ASC | DESC])

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 462

Syntax Elements

value_expression
The expression cannot contain any ordered analytical or aggregate functions.

width
The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_expression
A column expression that defines the independent variable for calculating the
linear regression.

For example, MLINREG(Sales, 6, Fiscal_Year_Month ASC), where Sales is the
value_expression, 6 is the width, and Fiscal_Year_Month ASC is the sort_expression.

The data type of the column reference must be numeric or a data type that Vantage can
successfully convert implicitly to numeric.

ASC
Ascending sort order.

DESC
Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for MLINREG are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, date, or interval, the format is the same format as x.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 463

MLINREG Usage Notes

Using ANSI-Compliant Window Functions Instead of MLINREG

Using ANSI-compliant window functions instead of MLINREG is strongly encouraged. MLINREG is a
Teradata extension to the ANSI SQL:2011 standard, and is retained only for backward compatibility with
existing applications.

Computing MLINREG When Preceding Rows < width - 1

When there are fewer than width -1 preceding rows, MLINREG computes the regression using all the
preceding rows.

Example
Consider the itemID, smonth, and sales columns from sales_table:

 SELECT itemID, smonth, sales
 FROM fiscal_year_sales_table
 ORDER BY itemID, smonth;
 itemID smonth sales
 ------ -------- -----
 A 1 100
 A 2 110
 A 3 120
 A 4 130
 A 5 140
 A 6 150
 A 7 170
 A 8 190
 A 9 210
 A 10 230
 A 11 250
 A 12 ?
 B 1 20
 B 2 30
 ...

Assume that the NULL in the sales column is because in this example the month of December (month 12)
is a future date and the value is unknown.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 464

The following statement uses MLINREG to display the expected sales using past trends for each month
for each product using the sales data for the previous six months.

 SELECT itemID, smonth, sales, MLINREG(sales,7,smonth)
 FROM fiscal_year_sales_table;
 GROUP BY itemID;
 itemID smonth sales MLinReg(sales,7,smonth)
 ------ -------- ----- -----------------------
 A 1 100 ?
 A 2 110 ?
 A 3 120 120
 A 4 130 130
 A 5 140 140
 A 6 150 150
 A 7 170 160
 A 8 190 177
 A 9 210 198
 A 10 230 222
 A 11 250 247
 A 12 ? 270
 B 1 20 ?
 B 2 30 ?
 ...

Related Information
For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ - Data Types and
Literals, B035-1143.

MSUM
Computes the moving sum specified by a value expression for the current row and the preceding n-1 rows.
This function is very similar to the MAVG function.

Type

Teradata-specific function.

MSUM Function Syntax
MSUM (value_expression, width, sort_spec [,...])

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 465

Syntax Elements

value_expression
The expression cannot contain any ordered analytical or aggregate functions.

width
The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_spec

sort_expression [ASC | DESC]

sort_expression
A literal or column expression or comma-separated list of literal or column expressions to be
used to sort the values.

ASC
Ascending sort order.

DESC
Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for MSUM are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, the format is the same format as x.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 466

MSUM Usage Notes

Using SUM Instead of MSUM

The use of MSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard,
and is equivalent to the ANSI-compliant SUM window function. MSUM is retained only for backward
compatibility with existing applications.

Problems With Missing Data

Ensure that data you analyze using MSUM has no missing data points. Computing a moving average over
data with missing points produces unexpected and incorrect results because the computation considers
n physical rows of data rather than n logical data points.

Computing MSUM When Number of Rows < width

For data having fewer than width rows, MSUM computes the sum using all the preceding rows. MSUM
returns the current sum rather than nulls when the number of rows in the sample is fewer than width.

Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

PERCENT_RANK
Returns the relative rank of rows for a value_expression.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 467

Type

ANSI SQL:2011 window function.

Computation

The assigned rank of a row is defined as 1 (one) plus the number of rows that precede the row and are not
peers of it.

PERCENT_RANK is expressed as an approximate numeric ratio between 0.0 and 1.0.

PERCENT_RANK has this value … FOR the result row assigned this rank …

0.0 1.

1.0 highest in the result.

PERCENT_RANK Function Syntax
PERCENT_RANK() OVER (
 [PARTITION BY column_reference [,...]]
 ORDER BY value_spec [,...]
 [RESET WHEN condition]
)

Syntax Elements

OVER
Specifies how values are grouped, ordered, and considered when computing the cumulative,
group, or moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses
END, sorted according to the ORDER BY clause, and considered according to the
aggregation group within the partition.

PARTITION BY column_reference [,...]
The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered
by the FROM clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY
The order in which the values in a group or partition are sorted.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 468

value_spec

value_expression [ASC | DESC] [NULLS { FIRST | LAST }]

RESET WHEN
The group, or groups, over which the function operates, depending on the evaluation of the
specified condition. If the condition evaluates to TRUE, a new dynamic partition is created
inside the specified window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered
by the FROM clause, constitutes a partition.

condition
A conditional expression used to determine conditional partitioning. The condition in the
RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause with the
additional constraint that nested ordered analytical functions cannot specify a RESET WHEN
clause. In addition, you cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-
partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in
Teradata Vantage™ - SQL Data Manipulation Language, B035-1146.

ANSI Compliance
This is ANSI SQL:2011 compliant.

The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Result Type and Attributes
For PERCENT_RANK() OVER (PARTITION BY x ORDER BY y direction), the data type, format, and title
are as follows:

Data Type Format Title

REAL the default format for DECIMAL(7,6). Percent_Rank(y direction)

Examples

Example: Relative Rank

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 469

Determine the relative rank, called the percent_rank, of Christmas sales.

The following query:

 SELECT sales_amt,
 PERCENT_RANK() OVER (ORDER BY sales_amt)
 FROM xsales;

might return the following results. Note that the relative rank is returned in ascending order, the default
when no sort order is specified and that the currency is not reported explicitly.

sales_amt Percent_Rank

100.00 0.000000

120.00 0.125000

130.00 0.250000

140.00 0.375000

143.00 0.500000

147.00 0.625000

150.00 0.750000

155.00 0.875000

160.00 1.000000

Example: Rank and Relative Rank

Determine the rank and the relative rank of Christmas sales.

 SELECT sales_amt,
 RANK() OVER (ORDER BY sales_amt),
 PERCENT_RANK () OVER (ORDER BY sales_amt)
 FROM xsales;

sales_amt Rank Percent_Rank

100.00 1 0.000000

120.00 2 0.125000

130.00 3 0.250000

140.00 4 0.375000

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 470

sales_amt Rank Percent_Rank

143.00 5 0.500000

147.00 6 0.625000

150.00 7 0.750000

155.00 8 0.875000

160.00 9 1.000000

Example: PERCENT_RANK and CUM_DIST

The following SQL statement illustrates the difference between PERCENT_RANK and
cumulative distribution.

SELECT sales_amt,
 PERCENT_RANK() OVER (ORDER BY sales_amt),
 CUME_DIST() OVER (ORDER BY sales_amt)
 FROM xsales;

sales_amt PERCENT_Rank CUME_DIST

100. .000000 0.125000

120. .142857 0.250000

130 .285714 .375000

140. .428571 .500000

147. .571429 .625000

150. .714286 .750000

155. .857143 .875000

160. 1.000000 1.000000

PERCENTILE_CONT/PERCENTILE_DISC
Returns an interpolated value that falls within its value_expression with respect to its sort specification.

The function returns the same data type as the data type of the argument.

Nulls are ignored in the calculation.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 471

Type

PERCENTILE_CONT and PERCENTILE_DISC are aggregate functions.

PERCENTILE_CONT/PERCENTILE_DISC Function Syntax
{ PERCENTILE_CONT | PERCENTILE_DISC } (value_expression_1)
 WITHIN GROUP (ORDER BY value_spec [,...])

Syntax Elements

value_expression_1
A numeric value between 0 and 1 inclusive.

WITHIN GROUP
The order in which the values in a group or partition are sorted.

ORDER BY
The order in which the values in a group or partition are sorted.

value_spec

value_expression_2 [ASC | DESC] [NULLS { FIRST | LAST }]

value_expression_2
A single expression that must be a numeric value.

ASC
Ascending sort order.

DESC
Descending sort order.

NULLS FIRST
NULL results are to be listed first.

NULLS LAST
NULL results are to be listed last.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 472

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
Both functions are inverse distribution functions that assume a continuous distribution.

• PERCENTILE_CONT returns a computed result after doing linear interpolation.
• PERCENTILE_DISC simply returns a value from the set of values.

Example
Using this table:

Area Address Price

Downtown 72 Easy Street 509000

Downtown 29 Right Way 402000

Downtown 45 Diamond Lane 203000

Downtown 76 Blind Alley 201000

Downtown 15 Tern Pike 199000

Downtown 444 Kanga Road 102000

Uptown 15 Peak Street 456000

Uptown 27 Primrose Path 349000

Uptown 44 Shady Lane 341000

Uptown 34 Design Road 244000

Uptown 2331 Highway 64 244000

Uptown 77 Sunset Strip 102000

the following SQL statement returns a computed result after doing linear interpolation, as shown in the table
immediately below.

SELECT area,
 AVG(price),
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY price),
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY price)
FROM market
GROUP BY area;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 473

Area Average Price PERC_DISC PERC_CONT

Downtown 269333 201000 202000

Uptown 289333 244000 292500

QUANTILE
Computes the quantile scores for the values in a group.

Quantile

A quantile is a generic interval of user-defined width. For example, percentiles divide data among 100 evenly
spaced intervals, deciles among 10 evenly spaced intervals, quartiles among 4, and so on. A quantile score
indicates the fraction of rows having a sort_expression value lower than the current value. For example, a
percentile score of 98 means that 98 percent of the rows in the list have a sort_expression value lower than
the current value.

Type

Teradata-specific function.

QUANTILE Function Syntax
QUANTILE (quantile_literal, sort_spec [,...])

Syntax Elements

quantile_literal
A positive integer literal used to define the number of quantile partitions to be used.

Quantile values range from 0 through (Q-1), where Q is the number of quantile partitions
specified by quantile_literal.

sort_spec

sort_expression [ASC | DESC]

sort_expression
A literal or column expression or comma-separated list of literal or column expressions to be
used to sort the values.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 474

For each row in the group, QUANTILE returns an integer value that represents the quantile
of the sort_expression value for that row relative to the sort_expression value for all the rows
in the group.

ASC
Ascending sort order.

DESC
Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for QUANTILE(Q, list) are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Quantile(Q, list)

QUANTILE Usage Notes

Using ANSI Window Functions Instead of QUANTILE

The use of QUANTILE is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard
and is retained only for backward compatibility with existing applications.

To compute QUANTILE(q, s) using ANSI window functions, use the following:

 (RANK() OVER (ORDER BY s) - 1) * q / COUNT(*) OVER()

Examples

Example

Display each item and its total sales in the ninth (top) decile according to the total sales.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 475

 SELECT itemID, sumPrice
 FROM (SELECT a1.itemID, SUM(price)
 FROM Sales a1
 GROUP BY a1.itemID) AS T1(itemID, sumPrice)
 QUALIFY QUANTILE(10,sumPrice)=9;

Example

The following example groups all items into deciles by profitability.

 SELECT Item, Profit, QUANTILE(10, Profit) AS Decile
 FROM
 (SELECT Item, Sum(Sales) — (Count(Sales) * ItemCost) AS Profit
 FROM DailySales, Items
 WHERE DailySales.Item = Items.Item
 GROUP BY Item) AS Item;

The result might look like the following table.

Item Profit Decile

High Tops 97112 9

Low Tops 74699 7

Running 69712 6

Casual 28912 3

Xtrain 100129 9

Example

Because QUANTILE uses equal-width histograms to partition the specified data, it does not partition the
data equally using equal-height histograms. In other words, do not expect equal row counts per specified
quantile. Expect empty quantile histograms when, for example, duplicate values for sort_expression are
found in the data.

For example, consider the following simple SELECT statement.

 SELECT itemNo, quantity, QUANTILE(10,quantity) FROM inventory;

The report might look like this.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 476

itemNo quantity Quantile(10, quantity)

13 1 0

9 1 0

7 1 0

2 1 0

5 1 0

3 1 0

1 1 0

6 1 0

4 1 0

10 1 0

8 1 0

11 1 0

12 9 9

Because the quantile sort is on quantity, and there are only two quantity scores in the inventory table, there
are no scores in the report for deciles 1 through 8.

Related Information
For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ - Data Types and Literals, B035-1143.

RANK (ANSI)
Returns an ordered ranking of rows based on the value_expression in the ORDER BY clause.

All rows having the same value_expression value are assigned the same rank.

If n rows have the same value_expression values, then they are assigned the same rank, call it rank r. The
next distinct value receives rank r +n. And so on.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the result. RANK returns
an integer that represents the rank of each row in the result.

To use this function with time series data, see Teradata Vantage™ - Time Series Tables and
Operations, B035-1208.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 477

Type

ANSI SQL:2011 window function.

RANK Function Syntax (ANSI)
RANK() OVER (
 [PARTITION BY column_reference [,...]]
 ORDER BY value_spec [,...]
 [RESET WHEN condition]
 [WITH TIES { LOW | HIGH | AVG | DENSE }]
)

Syntax Elements

OVER
Specifies how values are grouped, ordered, and considered when computing the cumulative,
group, or moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses
END, sorted according to the ORDER BY clause, and considered according to the
aggregation group within the partition.

PARTITION BY column_reference [,...]
The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered
by the FROM clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY
The order in which the values in a group or partition are sorted.

value_spec

value_expression [ASC | DESC] [NULLS { FIRST | LAST }]

RESET WHEN
The group, or groups, over which the function operates, depending on the evaluation of the
specified condition. If the condition evaluates to TRUE, a new dynamic partition is created
inside the specified window partition.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 478

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered
by the FROM clause, constitutes a partition.

condition
A conditional expression used to determine conditional partitioning. The condition in the
RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause with the
additional constraint that nested ordered analytical functions cannot specify a RESET WHEN
clause. In addition, you cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-
partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in
Teradata Vantage™ - SQL Data Manipulation Language, B035-1146.

WITH TIES
Specifies the rank for all ties:

Option Description

LOW All ties get lowest rank. Returns integer data type.

HIGH All ties get highest rank. Returns integer data type.

AVG All ties get average rank. Returns decimal data type.

DENSE All ties are ranked as DENSE_RANK ranks them. Returns integer data type.

ASC
Ascending sort order.

DESC
Descending sort order.

NULLS FIRST
NULL results are to be listed first.

NULLS LAST
NULL results are to be listed last.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 479

Result Type and Attributes
For RANK() OVER (PARTITION BY x ORDER BY y direction), the data type, format, and title are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(y direction)

Examples

Example: Ranking Salespeople Based on Sales

This example ranks salespersons by sales region based on their sales.

 SELECT sales_person, sales_region, sales_amount,
 RANK() OVER (PARTITION BY sales_region ORDER BY sales_amount DESC)
 FROM sales_table;

sales_person sales_region sales_amount Rank(sales_amount)

Garabaldi East 100 1

Baker East 99 2

Fine East 89 3

Adams East 75 4

Edwards West 100 1

Connors West 99 2

Davis West 99 2

The rank column in the preceding table lists salespersons in declining sales order according to the column
specified in the PARTITION BY clause (sales_region) and that the rank of their sales (sales_amount) is
reset when the sales_region changes.

Example: Finding Differences Between RANK(ANSI) and
DENSE_ RANK(ANSI)

The following SQL statement illustrates the difference between RANK(ANSI) and DENSE_RANK(ANSI),
returning the RANK and DENSE_RANK for sales_person by sales_region and sales_amount.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 480

SELECT sales_person, sales_region, sales_amount,
 RANK() OVER
 (PARTITION BY sales_region ORDER BY sales_amount DESC) as "Rank",
 DENSE_RANK() OVER
 (PARTITION BY sales_region ORDER BY sales_amount DESC) as "DenseRank"
 FROM sales_table;

sales_person sales_region sales_amount Rank DenseRank

Garabaldi East 100 1 1

Baker East 100 1 1

Fine East 89 3 2

Adams East 75 4 3

Edwards West 100 1 1

Connors West 99 2 2

Davis West 99 2 2

Russell West 50 4 3

Related Information
• For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata

Vantage™ - SQL Data Manipulation Language, B035-1146.
• For an explanation of the formatting characters in the format, see “Data Type Formats and Format

Phrases” in Teradata Vantage™ - Data Types and Literals, B035-1143.

RANK (Teradata)
Returns the rank (1 … n) of all the rows in the group by the value of sort_expression list, with the same
sort_expression values receiving the same rank.

A rank r implies the existence of exactly r -1 rows with sort_expression value preceding it. All rows having
the same sort_expression value are assigned the same rank.

For example, if n rows have the same sort_expression values, then they are assigned the same rank, call
it rank r. The next distinct value receives rank r +n.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the result. The only
argument for RANK is the sort column or columns, and the function returns an integer that represents the
rank of each row in the result.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 481

Type

Teradata-specific function.

RANK Function Syntax (Teradata)
RANK (sort_spec [,...])

Syntax Elements

sort_spec

sort_expression [ASC | DESC]

sort_expression
A literal or column expression or comma-separated list of literal or column expressions to be
used to sort the values.

The expression cannot contain any ordered analytical or aggregate functions.

ASC
Ascending sort order.

DESC
Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The data type, format, and title for RANK(x) are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(x)

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 482

RANK Usage Notes (Teradata)

Using ANSI RANK Instead of Teradata RANK

The use of Teradata RANK is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011
standard, and is equivalent to the ANSI-compliant RANK window function. Teradata RANK is retained
only for backward compatibility with existing applications.

Computing Top and Bottom Values

You can use RANK to compute top and bottom values as shown in the following examples.

Top(n, column) is computed as QUALIFY RANK(column DESC) <=n.

Bottom(n, column) is computed as QUALIFY RANK(column ASC) <=n.

Examples

Example

Display each item, its total sales, and its sales rank for the top 100 selling items.

 SELECT itemID, sumPrice, RANK(sumPrice)
 FROM
 (SELECT a1.itemID, SUM(a1.Price)
 FROM Sales a1
 GROUP BY a1.itemID AS T1(itemID, sumPrice)
 QUALIFY RANK(sumPrice) <=100;

Example

Sort employees alphabetically and identify their level of seniority in the company.

 SELECT EmployeeName, (HireDate - CURRENT_DATE) AS ServiceDays,
 RANK(ServiceDays) AS Seniority
 FROM Employee
 ORDER BY EmployeeName;

The result might look like the following table.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 483

EmployeeName Service Days Seniority

Ferneyhough 9931 2

Lucier 9409 4

Revueltas 9408 5

Ung 9931 2

Wagner 10248 1

Example

Sort items by category and report them in order of descending revenue rank.

 SELECT Category, Item, Revenue, RANK(Revenue) AS ItemRank
 FROM ItemCategory,
 (SELECT Item, SUM(sales) AS Revenue
 FROM DailySales
 GROUP BY Item) AS ItemSales
 WHERE ItemCategory.Item = ItemSales.Item
 ORDER BY Category, ItemRank DESC;

The result might look like the following table.

Category Item Revenue ItemRank

Hot Cereal Regular Oatmeal 39112.00 4

Hot Cereal Instant Oatmeal 44918.00 3

Hot Cereal Regular COW 59813.00 2

Hot Cereal Instant COW 75411.00 1

Related Information
• For information on the default format of data types, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ - Data Types and Literals, B035-1143.
• For more information on the RANK window function, see RANK (ANSI).

ROW_NUMBER
Returns the sequential row number, where the first row is number one, of the row within its window partition
according to the window ordering of the window.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 484

Type

ANSI SQL:2011 window function.

ROW_NUMBER Function Syntax
ROW_NUMBER() OVER (
 [PARTITION BY column_reference [,...]]
 ORDER BY value_spec [,...]
 [RESET WHEN condition]
)

Syntax Elements

OVER
Specifies how values are grouped, ordered, and considered when computing the cumulative,
group, or moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses
END, sorted according to the ORDER BY clause, and considered according to the
aggregation group within the partition.

PARTITION BY column_reference [,...]
The group or groups over which the function operates.

ORDER BY
The order in which the values in a group or partition are sorted.

value_spec

value_expression [ASC | DESC] [NULLS { FIRST | LAST }]

RESET WHEN
The group, or groups, over which the function operates, depending on the evaluation of the
specified condition. If the condition evaluates to TRUE, a new dynamic partition is created
inside the specified window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered
by the FROM clause, constitutes a partition.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 485

condition
A conditional expression used to determine conditional partitioning. The condition in the
RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause with the
additional constraint that nested ordered analytical functions cannot specify a RESET WHEN
clause. In addition, you cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-
partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in
Teradata Vantage™ - SQL Data Manipulation Language, B035-1146.

ASC
Ascending sort order.

DESC
Descending sort order.

NULLS FIRST
NULL results are to be listed first.

NULLS LAST
NULL results are to be listed last.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

ROW_NUMBER Usage Notes

Window Aggregate Equivalent

 ROW_NUMBER() OVER (PARTITION BY column
 ORDER BY value
)

is equivalent to

 COUNT(*) OVER (PARTITION BY column
 ORDER BY value

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 486

 ROWS UNBOUNDED PRECEDING).

Example
To order salespersons based on sales within a sales region, the following SQL query might yield the
following results.

 SELECT ROW_NUMBER() OVER (PARTITION BY sales_region
 ORDER BY sales_amount DESC),
 sales_person, sales_region, sales_amount
 FROM sales_table;

 Row_Number() sales_person sales_region sales_amount
 ------------ ------------ ------------ ------------
 1 Baker East 100
 2 Edwards East 99
 3 Davis East 89
 4 Adams East 75
 1 Garabaldi West 100
 2 Connors West 99
 3 Fine West 99

Related Information
• For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata

Vantage™ - SQL Data Manipulation Language, B035-1146.
• For more information on COUNT, see Window Aggregate Functions.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 487

The following sections describe regular expression functions you can use to search and manipulate strings.

These functions use Perl 5 syntax and semantics. For more information about regular expression
syntax and semantics, visit the Perl Compatible Regular Expressions (PCRE) open source website at:
http://www.pcre.org/.

REGEXP_SUBSTR
Extracts a substring from source_string that matches a regular expression specified by regexp_string.

REGEXP_SUBSTR supports 2, 3, 4, or 5 parameters.

REGEXP_SUBSTR is an embedded services system function.

REGEXP_SUBSTR Function Syntax
[TD_SYSFNLIB.] REGEXP_SUBSTR (source_string, regexp_string
 [, position_arg, occurrence_arg, match_arg])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character argument.

If source_string is NULL, NULL is returned.

regexp_string
A character argument.

If regexp_string is NULL, NULL is returned.

position_arg
A numeric argument.

position_arg specifies the position in source_string from which to start searching (default
is 1).

If position_arg is greater than the input string length, NULL is returned.

Regular Expression Functions

14

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 488

http://www.pcre.org/

If position_arg is NULL, the value NULL is used. If position_arg is not specified, the default
(1) is used.

occurrence_arg
A numeric argument.

Specifies the number of the occurrence to be returned (default is 1). For example, if
occurrence_arg is 2, the function matches the first occurrence in source_string and starts
searching from the character following the first occurrence in source_string for the second
occurrence in source_string.

If occurrence_arg is greater than the number of matches found, NULL is returned.

If occurrence_arg is NULL, a NULL result is returned. If occurrence_arg is omitted, the
default value (1) is used.

match_arg

A character argument.

Valid values are:

• 'i' = case-insensitive matching.
• 'c' = case sensitive matching.
• 'n' = the period character (match any character) can match the newline character.
• 'm' = source_string is treated as multiple lines instead of as a single line. With this

option, the '^' and '$' characters apply to each line in source_string instead of the
entire source_string.

• 'l' = if source_string exceeds the current maximum allowed source_string size (currently
16 MB), a NULL is returned instead of an error. This is useful for long-running queries
where you do not want long strings causing an error that would make the query fail.

• 'x' = ignore whitespace.

The argument can contain more than one character. If a character in the argument is not
valid, then that character is ignored.

If match_arg is not specified, is NULL, or is empty:

• The match is case-sensitive.
• A period does not match the newline character.
• source_string is treated as a single line.

Argument Types and Rules

Expressions passed to this function must have the following data types:

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 489

• source_string = CHAR, VARCHAR, or CLOB.
• regexp_string = CHAR or VARCHAR
• position_arg = NUMBER
• occurrence_arg = NUMBER
• match_arg = VARCHAR

The source_string maximum size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum source size is 32000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum source size is 64000 bytes.
• For parameters that are Latin or Unicode CLOBs, the maximum source size is 16 MB.

The regexp_string maximum pattern string size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum regexp_string size is 32000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum regexp_string size is

32000 bytes.
• For parameters that are Latin CLOBs, the maximum regexp_string size is 30000 bytes.
• For parameters that are Unicode CLOBs, the maximum regexp_string size is 30000 bytes.

The maximum return string size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum return string size is 16000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum return string size is

16000 bytes.
• For parameters that are Latin or Unicode CLOBs, the maximum return string size is 16 MB.

REGEXP_SUBSTR returns an error if this size is exceeded unless match_arg = 'l', in which case, it
returns NULL.

The x match option ignores whitespace characters in the pattern/regexp_string. By default, whitespace
characters match themselves.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 490

Result Type
REGEXP_SUBSTR is a scalar function whose return value data type depends on the data type associated
with source_string input parameter that is passed into the function.

A source_string of:

• CHAR, VARCHAR returns VARCHAR in the same character set as source_string.
• CLOB returns CLOB in the same character set as source_string.

Examples

Example

The following query:

SELECT REGEXP_SUBSTR('mint chocolate chip', 'ch(i|o)p', 1, 1, 'c');

returns 'chip'.

Example

The following query:

SELECT REGEXP_SUBSTR('mint chocolate chip chop', ' ch(i|o)p', 1, 2, 'i');

returns 'chop' because it is the second occurrence of the match.

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• For information on activating and invoking embedded services functions, see Embedded Services

System Functions.

REGEXP_REPLACE
Replaces portions of source_string that match regexp_string with the replace_string.

REGEXP_REPLACE supports 2, 3, 4, 5, or 6 parameters.

REGEXP_REPLACE is an embedded services system function.

REGEXP_REPLACE Function Syntax

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 491

[TD_SYSFNLIB.] REGEXP_REPLACE (source_string, regexp_string
 [, replace_string, position_arg, occurrence_arg, match_arg])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character argument.

If source_string is NULL, NULL is returned.

regexp_string
A character argument.

If regexp_string is NULL, NULL is returned.

replace_string
A character argument.

If a replace_string is not specified, is NULL or is an empty string, the matches are removed
from the result.

The maximum backreference number in a replace_string is 9 (for example, \9). Any
backreference in the replace_string that is higher than 9 is considered a backreference.

position_arg
A numeric argument.

position_arg specifies the position in source_string from which to start searching (default
is 1).

If position_arg is greater than the input string length, NULL is returned.

If position_arg is NULL, the value NULL is used. If position_arg is not specified, the default
(1) is used.

occurrence_arg
A numeric argument.

Specifies the occurrence to replace the match with replace_string.

• If a value of 0 is specified, all occurrences are replaced.
• If the value is greater than 1, the search begins for the second occurrence beginning with

the first character following the first occurrence of the regexp_string, and so on.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 492

If occurrence_arg is greater than the number of matches found, nothing is replaced and
source_string is returned.

If occurrence_arg is NULL, a NULL result is returned. If occurrence_arg is omitted, 0 is the
default value.

match_arg

A character argument.

The argument can contain more than one character. If a character in the argument is not
valid, then that character is ignored.

If match_arg is not specified, is NULL, or is empty:

• The match is case-sensitive.
• A period does not match the newline character.
• source_string is treated as a single line.

• 'i' = case-insensitive matching.
• 'c' = case-sensitive matching.
• 'n' = the period character (match any character) can match the newline character.
• 'm' = source_string is treated as multiple lines instead of as a single line. With this

option, the '^' and '$' characters apply to each line in source_string instead of the
entire source_string.

• 'l' = For a CLOB data type, if source_string exceeds the current maximum allowed
source_string size (currently 16 MB), a NULL is returned instead of an error. This is
useful for long-running queries where you do not want long strings causing an error that
would make the query fail. You can only specify this option for a CLOB data type.

• 'x' = ignore whitespace.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• source_string = CHAR, VARCHAR, or CLOB
• regexp_string = CHAR or VARCHAR
• replace_string = CHAR, VARCHAR CLOB
• position_arg = NUMBER
• occurrence_arg = NUMBER
• match_arg = VARCHAR

The source_string maximum size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum source size is 32000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum source size is 64000 bytes.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 493

• For parameters that are Latin or Unicode CLOBs, the maximum source size is 16 MB.

The regexp_string maximum pattern string size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum regexp_string size is 16000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum regexp_string size is

16000 bytes.
• For parameters that are Latin or Unicode CLOBs, the maximum regexp_string size is 30000 bytes.

The maximum replace string size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum replace string size is 16000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum replace string size is

16000 bytes.
• For parameters that are Latin or Unicode CLOBs, the maximum replace string size is 30000 bytes.

The maximum return string size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum return string size is 16000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum return string size is

16000 bytes.
• For parameters that are Latin or Unicode CLOBs, the maximum return string size is 16 MB.

The function returns an error if this size is exceeded unless match_arg = 'l', in which case, it returns the
original string.

If position_arg is omitted, the default value (1) is used.

The maximum backreference number in a replace string is 9 (for example, \9). Any backreference in the
replace string that is higher than 9 is not considered a backreference.

The x match option ignores whitespace characters in the pattern/regexp_string. By default, whitespace
characters match themselves.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 494

Result Type
REGEXP_REPLACE is a scalar function whose return value data type depends on the data type
associated with source_string input parameter that is passed into the function.

A source_string of:

• CHAR, VARCHAR returns VARCHAR in the same character set as source_string.
• CLOB returns CLOB in the same character set as source_string.

REGEXP_REPLACE Usage Notes

Limitation: NULL inside Input Strings

REGEXP_REPLACE has a limitation in handling ASCII Chr(0), which is NULL. If you concatenate two
strings using ASCII Chr(0), REGEXP_REPLACE cannot handle that input string. For example, consider
the following code:

sel TD_SYSFNLIB.RegExp_Replace ('a'||chr(0)||'bc', '[b]', 'X', 1, 0) AS
regex_rep_input_string;

The function is supposed to replace the b in the input string 'a'||chr(0)||'bc' with X. The result should
be a Xc. However, because of the limitation, the result is a.

Examples

Example

The following query:

SELECT REGEXP_REPLACE('Hello World World', '(world)$', 'My', 1, 1, 'i');

returns the result "Hello World My".

Example

The following query:

SELECT REGEXP_REPLACE('Friday is the best day of the week.', 'of the week',
'EVER', 1, 1, 'c');

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 495

returns the result 'Friday is the best day EVER'.

Example

The following query:

SELECT REGEXP_REPLACE('Hello Santa says ho ho', 'ho', 'HO!', 1, 2, 'c');

returns the result 'Hello Santa says ho HO!'.

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• For information on activating and invoking embedded services functions, see Embedded Services

System Functions.

REGEXP_INSTR
Searches source_string for a match to regexp_string.

REGEXP_INSTR supports 2, 3, 4, 5, or 6 parameters.

REGEXP_INSTR is an embedded services system function.

REGEXP_INSTR Function Syntax
[TD_SYSFNLIB.] REGEXP_INSTR (source_string, regexp_string
 [, position_arg, occurrence_arg, return_opt, match_arg])

Syntax Elements

TD_SYSFNLIB
Name of the database where the function is located.

source_string
A character argument.

If source_string is NULL, NULL is returned.

regexp_string
A character argument.

If regexp_string is NULL, NULL is returned.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 496

position_arg
A numeric argument.

position_arg specifies the position in source_string from which to start searching (default
is 1).

If position_arg is greater than the input string length, zero is returned.

If position_arg is NULL, NULL is used. If position_arg is not specified, the default (1) is used.

occurrence_arg
A numeric argument.

Specifies the number of the occurrence to be returned. For example, if occurrence_arg
is 2, the function matches the first occurrence in source_string and starts searching from
the character following the first occurrence in source_string for the second occurrence
in source_string.

If occurrence_arg is greater than the number of matches found, 0 is returned.

If occurrence_arg is NULL, a NULL result is returned. If occurrence_arg is omitted, the
default value (1) is used.

return_opt
A numeric argument.

Valid values are:

• 0 = function returns the beginning position of the match (default).
• 1 = function returns the end position (character following the occurrence) of the match.

If this syntax element is NULL, NULL is returned. If the syntax element is omitted, the default
value (0) value is used.

match_arg
A character argument.

Valid values are:

• 'i' = case-insensitive matching.
• 'c' = case sensitive matching.
• 'n' = the period character (match any character) can match the newline character.
• 'm' = source_string is treated as multiple lines instead of as a single line. With this

option, the '^' and '$' characters apply to each line in source_string instead of the
entire source_string.

• 'l' = if source_string exceeds the current maximum allowed source_string size (currently
16 MB), a NULL is returned instead of an error. This is useful for long-running queries
where you do not want long strings causing an error that would make the query fail.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 497

• 'x' = ignore whitespace.

If match_arg is not specified, is NULL, or is empty:

• The match is case sensitive.
• A period does not match the newline character.
• source_string is treated as a single line.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• source_string = CHAR, VARCHAR, or CLOB
• regexp_string = CHAR or VARCHAR
• position_arg = NUMBER
• occurrence_arg = NUMBER
• return_opt = NUMBER
• match_arg = VARCHAR

The source_string maximum size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum source size is 32000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum source size is 64000 bytes.
• For parameters that are Latin or Unicode CLOBs, the maximum source size is 16 MB.

The regexp_string maximum pattern string size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum regexp_string size is 32000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum regexp_string size is

32000 bytes.
• For parameters that are Latin CLOBs, the maximum regexp_string size is 30000 bytes.
• For parameters that are Unicode CLOBs, the maximum regexp_string size is 60000 bytes.

The function returns an error if this size is exceeded unless match_arg = 'l' is specified. If this is specified,
a NULL is returned instead of an error.

The x match option ignores whitespace characters in the pattern/regexp_string. By default, whitespace
characters match themselves.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 498

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
REGEXP_INSTR is a scalar function whose return value data type is:

• INTEGER if source_string is a CHAR or VARCHAR
• BIGINT if source_string is a CLOB

Examples

Example

The following query:

SELECT REGEXP_INSTR('Hello Santa says ho ho','Hello Santa says ho ho', 1, 1,
1, 'c');

returns the result 23.

Example

The following query:

SELECT REGEXP_INSTR('Hello Santa says ho ho', 'Hello Santa says ho ho', 1, 1,
0, 'c');

returns the result 1.

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• For information on activating and invoking embedded services functions, see Embedded Services

System Functions.

REGEXP_SIMILAR
Compares source_string to regexp_string and returns integer value.

REGEXP_SIMILAR supports 2 or 3 parameters.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 499

REGEXP_SIMILAR is an embedded services system function.

REGEXP_SIMILAR Function Syntax
[TD_SYSFNLIB.] REGEXP_SIMILAR (source_string, regexp_string [, match_arg])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character argument.

If source_string is NULL, NULL is returned.

regexp_string
A character argument.

If regexp_string is NULL, NULL is returned.

match_arg

A character argument.

Valid values are:

• 'i' = case-insensitive matching.
• 'c' = case sensitive matching.
• 'n' = the period character (match any character) can match the newline character.
• 'm' = source_string is treated as multiple lines instead of as a single line. With this

option, the '^' and '$' characters apply to each line in source_string instead of the
entire source_string.

• 'l' = if source_string exceeds the current maximum allowed source_string size (currently
16 MB), a NULL is returned instead of an error. This is useful for long-running queries
where you do not want long strings causing an error that would make the query fail.

• 'x' = ignore whitespace.

The argument can contain more than one character. If a character in the argument is not
valid, then that character is ignored.

If match_arg is not specified, is NULL, or is empty:

• The match is case-sensitive.
• A period does not match the newline character.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 500

• source_string is treated as a single line.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• source_string = CHAR, VARCHAR, CLOB
• regexp_string = CHAR, VARCHAR
• match_arg = VARCHAR

The source_string maximum size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum source size is 32000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum source size is 64000 bytes.
• For parameters that are Latin or Unicode CLOBs, the maximum source size is 16 MB.

The regexp_string maximum pattern string size is:

• For parameters that are Latin CHAR or VARCHAR, the maximum regexp_string size is 32000 bytes.
• For parameters that are Unicode CHAR or VARCHAR, the maximum regexp_string size is

32000 bytes.
• For parameters that are Latin CLOBs, the maximum regexp_string size is 30000 bytes.
• For parameters that are Unicode CLOBs, the maximum regexp_string size is 60000 bytes.

The function returns an error if this size is exceeded unless match_arg = 'l' is specified. If this is specified,
a NULL is returned instead of an error.

The x match option ignores whitespace characters in the pattern/regexp_string. By default, whitespace
characters match themselves.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
REGEXP_SIMILAR is a scalar function whose return value data type in an integer value:

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 501

• 1 (true) if the entire string matches regexp_arg
• 0 (false) if the entire string does not match regexp_arg

Example
The following query:

SELECT name FROM customers WHERE REGEXP_SIMILAR(name, '(Mike B(i|y)rd)|
(Michael B(i|y)rd)', 'c') = 1;

returns the names from the customers table that match:

• 'Mike Bird'
• 'Mike Byrd'
• 'Michael Bird'
• 'Michael Byrd'

The matching is case sensitive.

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• For information on activating and invoking embedded services functions, see Embedded Services

System Functions.

REGEXP_SPLIT_TO_TABLE
Splits source_string into a table of strings using regexp_string as the delimiter.

REGEXP_SPLIT_TO_TABLE is an embedded services system function.

REGEXP_SPLIT_TO_TABLE Function Syntax
[TD_SYSFNLIB.] REGEXP_SPLIT_TO_TABLE (inkey, source_string, regexp_string,
match_arg)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

inkey
A numeric or character argument that uniquely identifies the source_string in the output
result set.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 502

If the inkey is NULL, an empty string is returned.

source_string
A character argument.

If source_string is NULL, 0 rows are returned. Zero rows are also returned if the source_string
is the empty string.

regexp_string
A character argument.

If regexp_string is NULL, the original source_string is returned.

match_arg

A character argument.

Valid values are:

• 'i' = case-insensitive matching.
• 'c' = case sensitive matching.
• 'n' = the period character (match any character) can match the newline character.
• 'm' = source_string is treated as multiple lines instead of as a single line. With this

option, the '^' and '$' characters apply to each line in source_string instead of the
entire source_string.

• 'l' = if source_string exceeds the current maximum allowed source_string size (currently
16 MB), a NULL is returned instead of an error. This is useful for long-running queries
where you do not want long strings causing an error that would make the query fail.
Although the maximum source_string size is 16 MB, the resulting token can only be
VARCHAR, and has a maximum return token size of 64000 bytes.

If match_arg is not specified, an error is returned.

If there is no match, the original source_string is returned.

outkey
The value of inkey.

token_ndx
The ordinal position of the token in the input string.

token
A character argument.

The token from the input string in the same character set as instring.

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 503

Note:
REGEXP_SPLIT_TO_TABLE does not support the output type of CLOB in the
token section.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• inkey = NUMERIC, VARCHAR
• source_string = CHAR, VARCHAR
• regexp_string = CHAR, VARCHAR
• match_arg = VARCHAR

The function returns an error if this size is exceeded or if match_arg = 'l' is specified.

If the inkey is null, an empty string is returned.

The x match option ignores whitespace characters in the pattern/regexp_string. By default, whitespace
characters match themselves.

If Vantage passes constants as the second and third parameter in an OREPLACE call, the character type
of the first argument is passed as Unicode, and calls oreplace_unicode() with the return type VARCHAR
in Unicode charset.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result row type is:

• outkey = NUMERIC, VARCHAR
• token_ndx = INTEGER
• token = VARCHAR

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 504

Example
An example of a SELECT statement:

SELECT * from table(regexp_split_to_table
('phonemaker','Apple&Microsoft&Google','&','c')
returns (outkey varchar(30), token_ndx integer, token varchar(100))) as t1;

returns a table with the following rows:

outkey token_ndx token
------------------------------ ---------------- -----------------------
p h o n e m a k e r 1 A p p l e
p h o n e m a k e r 2 M i c r o s o f t
p h o n e m a k e r 3 G o o g l e

14: Regular Expression Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 505

String Operators and Functions
The following sections describe string operators and functions.

About String Functions
SQL provides a concatenation operator and string functions to translate, concatenate, and perform other
operations on strings.

The functions documented in the following sections are designed primarily to work with strings of
characters. Because many of them can also process byte and numeric literal and literal data strings, the
term string is frequently used here to refer to all three of these data type families.

Data Types on Which String Functions can Operate

The following table lists all the data types that can be processed as strings. Note that not all types are
acceptable to all functions. See the individual functions for the types they can process.

Data Type Grouping

Character Byte Numeric

• CHARACTER
• VARCHAR
• CLOB

• BYTE
• VARBYTE
• BLOB

• BYTEINT
• DECIMAL
• FLOAT
• INTEGER
• NUMERIC
• SMALLINT

ANSI Equivalence of Teradata SQL String Functions

Several of the Teradata SQL string functions are extensions to the ANSI SQL:2011 standard.

To maintain ANSI compatibility, use the ANSI equivalent functions instead of Teradata SQL string
functions, when available.

Change this Teradata string function … To this ANSI string function in new applications …

INDEX POSITION

String Operators and Functions

15

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 506

Change this Teradata string function … To this ANSI string function in new applications …

MINDEX†

SUBSTR SUBSTRING

MSUBSTR†

† These functions are no longer documented because their use is deprecated and they will no longer be
supported after support for KANJI1 is dropped.

The following Teradata functions have no ANSI equivalents:

• CHAR2HEXINT
• SOUNDEX
• TRANSLATE_CHK
• UPPER
• VARGRAPHIC

Additional Functions That Operate on Strings

SQL provides other string functions and operators that are not discussed here.

FOR more information on … SEE …

attribute functions that return descriptive information about strings,
such as:
• BYTE
• CHARACTER_LENGTH/

CHAR_LENGTH
• OCTET_LENGTH

Attribute Functions.

comparison operators Comparison Operators
and Functions.

the LIKE predicate Logical Predicates.

Effects of Server Character Sets on Character
String Functions
String functions that operate on character data follow the rules listed below.

Uppercase Character Conversion for LATIN
For the LATIN server character set, the method of converting to uppercase characters is based on ISO
8859 Latin1.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 507

Logical Characters vs. Physical Characters
For UNICODE, GRAPHIC and KANJISJIS server character sets, the functions operate on a logical
character basis, except for the functions that are sensitive to the ANSI mode vs. Teradata mode switch.

Although the storage space for KANJISJIS is allocated on a physical basis and is not ANSI compatible, all
string operations on this type operate on a character basis as dictated by ANSI.

Untranslatable KANJI1 Characters

Note:

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information, see
KANJI1 Character Set in Teradata Vantage™ - Advanced SQL Engine International Character Set
Support, B035-1125.

Character string functions do not work on all characters in the KANJI1 server character set when the
session character set is UTF8 or UTF16, because the KANJI1 server character set is ambiguous in regard
to multibyte characters and some single-byte characters.

Recommendation: Unless the KANJI1 server character set is required, use the UNICODE server character
set with the UTF8 and UTF16 session character sets for best results.

The following single-byte characters in KanjiEBCDIC to KANJI1 translations are mapped to the following
Unicode character names.

Hexadecimal Value Character Unicode Character Name

0x10 ¢ CENT SIGN

0x11 £ POUND SIGN

0x12 ¬ NOT SIGN

0x13 \ REVERSE SOLIDUS

0x14 ~ TILDE

However, with a KanjiSJIS character set, these hexadecimal values map to control characters.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 508

Implicit Server Character Set Translation
For functions that operate on more than one argument, if the arguments have different server character
sets, implicit translation rules take effect.

Concatenation Operator
Concatenates string expressions.

Concatenation Operator Syntax
string_expression_1 { || | ¦¦ } string_expression_2
 [{ || | ¦¦ } string_expression_n] [...]

Note:
The bold or colored vertical bar in the preceding syntax indicates a choice. One choice is two vertical
bars; the other is two broken vertical bars.

Syntax Elements

string_expression_1
string_expression_2
string_expression_n

A byte, numeric, or character string or string expression.

Argument Types and Rules

Use the concatenation operator on strings and string expressions of type:

• Byte

If any argument is a byte type, all other arguments must also be byte types.

• Numeric

A numeric argument is converted to a character string using the format for the numeric value.
For details about implicit numeric to character data type conversion, see “Implicit Numeric-to-
Character Conversion”

• Character

When the arguments are both character types, but have different server character sets, then implicit
string conversion occurs. For details, see "Implicit Character-to-Character Translation" in Teradata
Vantage™ - Data Types and Literals, B035-1143.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 509

• UDTs that have implicit casts to a predefined character type.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL
Data Definition Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including the concatenation
operator, is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see
Teradata Vantage™ - SQL Data Definition Language Syntax and Examples, B035-1144.

For more information on implicit type conversion of UDTs, see "Data Type Conversions" in Teradata
Vantage™ - Data Types and Literals, B035-1143.

ANSI Compliance
Solid and broken VERTICAL LINE character pairs (||) are ANSI SQL:2011 compliant forms of the
concatenation operator.

Result Type and Attributes
The result of a concatenation operation is a string formed by concatenating the arguments in a left-to-
right direction.

Here are the default result type and attributes for arg1 || arg2:

• If the arguments are byte strings, the result is a byte string.
• If the arguments are numeric, character strings, or UDTs that are implicitly cast to character strings,

the result is a character string.

If either argument is null, the result is null.

The data types and attributes of the arguments determine whether the result type of a concatenation
operation is a fixed length or varying length string. Result types appear in the following table, where n is
the sum of the lengths of all arguments:

IF this
argument … Is this data type or attribute …

THEN the result is this data type
or attribute …

either VARBYTE VARBYTE(n)

VARCHAR VARCHAR(n)

numeric

UDT that is implicitly cast to VARCHAR

CLOB CLOB(n)

BLOB BLOB(n)

both BYTE BYTE(n)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 510

IF this
argument … Is this data type or attribute …

THEN the result is this data type
or attribute …

CHARACTER (with same server character set) CHARACTER(n)

UDT that is implicitly cast to CHARACTER
(with the same server character set)

CHARACTER (with different server
character sets)

VARCHAR(n)

UDT that is implicitly cast to CHARACTER
(with different server character sets)

numeric

When either argument is a character string that specifies the CASESPECIFIC attribute, the result also
specifies the CASESPECIFIC attribute.

Concatenation Operator Usage Notes

Concatenating Character Strings Having Different Server Character Sets

There are special considerations for the concatenation of character strings that specify different server
character sets in the CHARACTER SET attribute.

Implicit translation rules apply.

If the strings are fixed strings, then the result is varying with length equal to the sum of the lengths of the
strings being concatenated.

This is true regardless of whether the string lengths are defined in terms of bytes or characters. So, a fixed
n -byte KANJISJIS character string concatenated with a fixed m -character UNICODE string produces a
VARCHAR(m+n) CHARACTER SET UNICODE result.

Consider the following table definition:

 CREATE TABLE tab1
 (cunicode CHARACTER(4) CHARACTER SET UNICODE
 ,clatin CHARACTER(3) CHARACTER SET LATIN
 ,csjis CHARACTER(3) CHARACTER SET KANJISJIS);

The following values are inserted into table tab1:

 INSERT tab1 ('abc', 'abc', 'abc');

The following table illustrates these concatenation properties.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 511

Concatenation Result Type of Result

cunicode || clatin 'abcΔ abc' VARCHAR(7) CHARACTER SET UNICODE

clatin || csjis 'abcabc' VARCHAR(6) CHARACTER SET UNICODE

cunicode || csjis 'abcΔ abc' VARCHAR(7) CHARACTER SET UNICODE

With the exception of KanjiEBCDIC, concatenation of KANJI1 character strings acts as described
above. Under KanjiEBCDIC, any adjacent shift-out (<) and shift-in (>) characters within the resulting
expression are removed. In this case, the result string is padded as necessary with trailing <single-byte
space> characters.

Examples

Example: Using Concatenation to Create More Readable Results

Literals, spaces, and the TITLE phrase can be included in the operation definition to format the result
heading and improve readability.

For example, the following definition returns side titles, evenly spaced result strings, and a blank heading.

 SELECT ('Sex ' || sex ||', Marital Status ' || mstat)(TITLE ' ')
 FROM Employee ;

 Sex M, Marital Status S
 Sex F, Marital Status M
 Sex M, Marital Status M
 Sex F, Marital Status M
 Sex F, Marital Status M
 Sex M, Marital Status M
 Sex F, Marital Status W
 ...

Example: Concatenating First Name With Last Name

Consider a table called names that contains last and first names columns, defined as VARCHAR, as
listed here:

 lname fname
 ------------ ------------
 Ryan Loretta
 Villegas Arnando

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 512

 Kanieski Carol
 Brown Alan

Use string concatenation and a space separator to combine first and last names:

 SELECT fname ||' '|| lname
 FROM names
 ORDER BY lname ;

The result is:

 ((fname||' ')||lname)

 Alan Brown
 Carol Kanieski
 Loretta Ryan
 Arnando Villegas

Example: Concatenating Last Name With First Name

Change the SELECT and the separator to obtain last and first names:

 SELECT lname||', '||fname
 FROM names
 ORDER BY lname;

The result is:

 ((lname||', ')||fname)

 Brown, Alan
 Kanieski, Carol
 Ryan, Loretta
 Villegas, Arnando

Example: Concatenating Byte Strings

This example shows how to concatenate byte strings. Consider the following table definition:

CREATE TABLE tsttbla
 (column_1 BYTE(2)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 513

 ,column_2 VARBYTE(10)
 ,column_3 BLOB(128K));

The following values are inserted into table tsttbla:

 INSERT tsttbla ('4142'XB, '7A7B7C'XB, '1A1B1C2B2C'XB);

The following SELECT statement concatenates column_2 and column_1 and column_3:

SELECT (column_2 || column_1 || column_3) (FORMAT 'X(20)')
FROM tsttbla ;

The result is:

((column_2||column_1)||column_3)

7A7B7C41421A1B1C2B2C

The resulting data type is BLOB.

Examples for Japanese Character Sets

The following tables show the results of concatenating string expressions under each of the Kanji
character sets supported by Vantage.

These examples assume that the string expressions follow the rules defined in the SQL data definition
rules in Teradata Vantage™ - Data Types and Literals, B035-1143.

Example: KanjiEBCDIC

 string_expression_1 || string_expression_2

string_expression_1 string_expression_2 Result

< ABC > < DEF >G < ABCDEF >G

< ABC > <> < ABC >

< ABC >a < DEF > < ABC >a< DEF >

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 514

Example: KanjiEUC

 string_expression_1 || string_expression_2

string_expression_1 string_expression_2 Result

ABC m DEF g ABC mDEF g

ss3 A ss2 B m ss3 C ss3 A ss2 B m ss3 C

Example: KanjiShift-JIS

 string_expression_1 || string_expression_2

string_expression_1 string_expression_2 Result

mnABC X B mnABC X B

mnABC X g mnABC X g

Related Information
For details on implicit translation rules, see "Implicit Character-to-Character Translation" in Teradata
Vantage™ - Data Types and Literals, B035-1143.

ASCII
Returns the decimal representation of the first character in string_expr as a NUMBER value. The decimal
representation will reflect the character set of the input string.

ASCII is an embedded services system function.

ASCII Function Syntax
[TD_SYSFNLIB.] ASCII (string_expr)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 515

string_expr
A character string or string expression.

If string_expr is NULL, NULL is returned.

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

• CHAR
• VARCHAR
• CLOB

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is NUMBER. ASCII returns the decimal representation in the character set of the input
argument. For example, if a Unicode string is passed to the function, the decimal representation of the
Unicode character is returned.

Example
The following query returns the result 121.

 SELECT ASCII('y');

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 516

CHAR2HEXINT
Returns the hexadecimal representation for a character string.

Use CHAR2HEXINT on character strings or character string expressions.

CHAR2HEXINT is not supported for CLOBs.

CHAR2HEXINT Function Syntax
CHAR2HEXINT (character_string_expr)

Syntax Elements

character_string_expr
A character string or character string expression for which the hexadecimal representation
is to be returned.

Result Type and Attributes
Here are the default attributes for CHAR2HEXINT(character_string_expression):

Data Type Heading

CHARACTER Char2HexInt(character_string_expression)

The length of the result is twice the length of character_string_expression.

The server character set of the result is LATIN.

If the character_string_expression argument is null, the result is null.

CHAR2HEXINT Usage Notes

CHAR2HEXINT and Literal Strings

You can apply CHAR2HEXINT to a string literal to determine its hexadecimal equivalent.

Character literals are treated as VARCHAR(n) CHARACTER SET UNICODE, where n is the length of
the literal.

The following statement and results illustrate how CHAR2HEXINT operates on literal strings:

 SELECT CHAR2HEXINT('123');

 Char2HexInt('123')

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 517

 003100320033

UDT Arguments

By default, Vantage performs implicit type conversion on a UDT argument that has an implicit cast that
casts between the UDT and a predefined character type.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including CHAR2HEXINT, is a
Teradata extension to the ANSI SQL standard.

Examples

Example

Assume that the system was enabled with Japanese language support during system
initialization (sysinit).

 CREATE TABLE tab1
 (clatin CHAR(3) CHARACTER SET LATIN
 ,cunicode CHAR(3) CHARACTER SET UNICODE
 ,csjis CHAR(3) CHARACTER SET KANJISJIS
 ,cgraphic CHAR(3) CHARACTER SET GRAPHIC
 ,ckanji1 CHAR(3) CHARACTER SET KANJI1);

 INSERT INTO tab1('abc','abc','abc',_GRAPHIC 'ABC
','abc');

The bold uppercase LATIN characters in the example represent full width LATIN characters.

CHAR2HEXINT returns the following results for the character strings inserted into tab1.

This function … Returns this result …

CHAR2HEXINT(clatin) 616263

CHAR2HEXINT(cunicode) 006100620063'

CHAR2HEXINT(csjis) 616263

CHAR2HEXINT(cgraphic) FF41FF42FF43

CHAR2HEXINT(ckanji1) 616263

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 518

Example

To find the internal hexadecimal representation of all table names, submit the following SELECT
statement using CHAR2HEXINT.

 SELECT CHAR2HEXINT(TRIM(t.tablename))(FORMAT 'X(30)')
 (TITLE 'Internal Hex Representation of TableName')
 ,t.tablename (TITLE 'TableName')
 FROM dbc.tables T
 WHERE t.tablekind = 'T'
 ORDER BY t.tablename;

Partial output from this SELECT statement is similar to the following report:

 Internal Hex Representation of TableName TableName
 -- ----------------
 416363657373526967687473 AccessRights
 4163634C6F6752756C6554626C AccLogRuleTbl
 4163634C6F6754626C AccLogTbl
 4163636F756E7473 Accounts
 4163637467 Acctg
 416C6C All
 436F70496E666F54626C CopInfoTbl

Related Information
• For information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language Syntax

and Examples, B035-1144.
• For details on how to disable the CHAR2HEXINT extension, see Teradata Vantage™ - Database

Utilities, B035-1102.
• For information on implicit type conversion of UDTs, see "Data Type Conversions" in Teradata

Vantage™ - Data Types and Literals, B035-1143.

CHR
Returns the Latin ASCII character given a numeric code value.

CHR is an embedded services system function.

CHR Function Syntax
[TD_SYSFNLIB.] CHR (numeric_expr)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 519

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

numeric_expr
numeric_expr must be zero or greater. If numeric_expr is greater than 255, an operation of
numeric_expr mod 256 is executed to return a value between 0 and 255.

If numeric_expr is NULL, NULL is returned.

Argument Types and Rules

Expressions passed to this function must have a data type of NUMBER.

You can also pass arguments with data types such as BYTEINT, SMALLINT, INTEGER, or BIGINT that
can be converted to NUMBER using the implicit data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is CHAR(1) CHARACTER SET LATIN.

Example
The following query returns the result 'B'.

 SELECT CHR(66);

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 520

CONCAT
Concatenates string expressions.

CONCAT Function Syntax
CONCAT (string_expression_1, string_expression_2 [, string_expression_n][...])

Syntax Elements

string_expression_1
string_expression_2
string_expression_n

A byte, numeric, character string or string expression.

Argument Type and Rules

Use the concatenation operator on strings and string expressions of type byte, numeric, character, or
UDTs that have implicit casts to a predefined character type.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The result of a concatenation operation is a string formed by concatenating the arguments in a left-to-
right direction.

Example
The result of this statement is Hello World!

SELECT CONCAT('Hello', 'World', '!')

This statement concats the first name with the last name.

SELECT CONCAT(fname, lname) FROM Names;

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 521

Related Topic
For more information, see Concatenation Operator.

CSV
CSV (Comma-Separated Value Data Unloading) returns input row column values in text format separated
by a user-specified delimiter character.

CSV is an embedded services system function.

CSV Function Syntax
[TD_SYSFNLIB.] CSV (
 NEW VARIANT TYPE (value [,...]),
 delimit_string_value,
 quote_string_value
)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

NEW VARIANT_TYPE value
A numeric or character expresssion.

NEW VARIANT_TYPE can support up to 8 row column values.

Each row column value can have a maximum of 128 columns of any supported data type.

delimit_string_value
A character expression.

A comma (,) is the default delimiter character.

quote_string_value
A character expression.

If you specify a quotation mark character, for example ‘”’, columns defined as string data
types are returned within quotation marks.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 522

Argument Types and Rules

Expressions passed to this function must have the following data types:

• NEW VARIANT_TYPE value = BYTEINT, SMALLINT, BIGINT, INTEGER, DECIMAL, FLOAT,
DATE, TIME, TIME WITH TIME ZONE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, INTERVAL,
CHAR, VARCHAR

Note:
value cannot be CLOB or GRAPHIC.

• delimit_string_value = VARCHAR
• quote_string_value = VARCHAR

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
CSV is a table function whose return value data type is VARCHAR in either the LATIN or UNICODE
character set.

Examples

Example

The following query:

SELECT * FROM TABLE(CSV(NEW VARIANT_TYPE(dt.c1, dt.c2, dt.c3), ',', '"')
RETURNS (op varchar(64000) character set LATIN)) as t1;

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 523

CSV returns a string where column values are separated by commas and columns with string data types
are enclosed in quotation marks.

SELECT * FROM TABLE (CSV(NEW VARIANT_TYPE(dt.c1, dt.c2, dt.c3), ',', '')
RETURNS (op varchar(32000) character set UNICODE)) as t1;

CSV returns a string where column values are separated by comma and columns with string data types
are not enclosed by any characters.

Example

The following query:

SELECT * FROM TABLE (CSV(NEW VARIANT_TYPE(dt.c1, dt.c2, dt.c3), ',', '')
RETURNS (op varchar(32000) character set UNICODE)) as t1;

CSV returns a string where column values are separated by comma and columns with string data types
are not enclosed by any characters.

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

CSVLD
CSVLD (Comma-Separated Value Data Loading) takes in a comma-separated string produced through the
CSV table function, parses the string, and returns VARCHAR columns.

CSVLD is an embedded services system function.

CSVLD Function Syntax
[TD_SYSFNLIB.] CSVLD (
 data_string_value,
 delim_string_value,
 quote_string_value
)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 524

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

data_string_value
A string argument.

delim_string_value
A character expression.

A comma (,) is the default delimiter character.

quote_string_value
A character expression.

The quotation mark character, for example “”, is used to indicate that the delimiter character
is a part of the value, and not a field separator.

The value inside the quote_string_value is returned as output exclusive of the
quote_string_value given.

Argument Types and Rules

Expressions passed to this function must have a VARCHAR data type.

You can also pass arguments with data types that can be converted to the above type using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
CSVLD is a table function can return up to 1024 VARCHAR columns in either the LATIN or UNICODE
character set.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 525

The number of output columns specified in this function must match the comma separated values in the
input string.

Example
The following query:

SELECT * FROM TABLE (CSVLD(load_date.data, ',', '"')
RETURNS (p1 varchar(100), p2 varchar(100))) as T1;

CSVLD parses the comma-separated strings and returns two VARCHAR columns.

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

EDITDISTANCE
Returns the minimum number of edit operations (insertions, deletions, substitutions and transpositions)
required to transform string1 into string2.

EDITDISTANCE is an embedded services system function.

EDITDISTANCE Function Syntax
[TD_SYSFNLIB.] EXITDISTANCE (string1, string2 [, ci, cd, cs, ct])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

string1
A character string or string expression.

string2
A character string or string expression.

ci
This syntax element cannot be a negative value.

If not specified, a default value of 1 is used.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 526

cd
This syntax element cannot be a negative value.

If not specified, a default value of 1 is used.

cs
This syntax element cannot be a negative value.

If not specified, a default value of 1 is used.

ct
This syntax element cannot be a negative value.

If not specified, a default value of 1 is used.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• string1 = CHAR, VARCHAR, or CLOB
• string2 = CHAR, VARCHAR, or CLOB
• ci = INTEGER
• cd = INTEGER
• cs = INTEGER
• ct = INTEGER

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is INTEGER.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 527

Usage Notes
EDITDISTANCE measures the similarity between two strings. A low number of deletions, insertions,
substitutions or transpositions implies a high similarity. The insertions, deletions, substitutions, and
transpositions are based on the Damerau-Levenshtein Distance algorithm with modifications for
costed operations.

If either string1 or string2 is NULL, the function returns NULL.

Examples

Example

The following query returns a result of 9.

 SELECT EDITDISTANCE('Jim D. Swain', 'John Smith');

The following query returns a result of 0 since the strings are the same.

 SELECT EDITDISTANCE('John Smith', 'John Smith');

The following query returns a result of 9.

 SELECT EDITDISTANCE('Jim D. Swain', 'John Smith', 2, 1, 1, 2);

The following query returns a result of 11.

 SELECT EDITDISTANCE('John Smith', 'Jim D. Swain', 2, 1, 1, 2);

Example

The following query returns a result of 0 since the strings are the same.

 SELECT EDITDISTANCE('John Smith', 'John Smith');

Example

The following query returns a result of 9.

 SELECT EDITDISTANCE('Jim D. Swain', 'John Smith', 2, 1, 1, 2);

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 528

Example

The following query returns a result of 11.

 SELECT EDITDISTANCE('John Smith', 'Jim D. Swain', 2, 1, 1, 2);

Related Information
For more information on activating and invoking embedded services functions, see Embedded Services
System Functions.

INDEX
Returns the position in string_expression_1 where string_expression_2 starts.

INDEX Function Syntax
INDEX (string_expression_1, string_expression_2)

Syntax Elements

string_expression_1
A full string to be searched.

string_expression_2
A substring to be searched for its position within the full string.

Argument Types and Rules

INDEX operates on the following types of arguments:

• Character
• Byte

If one string expression is of type BYTE, then both string expressions must be of type BYTE.

• Numeric

If any string expression is numeric, then it is converted implicitly to CHARACTER type.

• UDTs that have implicit casts that cast between the UDT and any of the following predefined types:

◦ Numeric
◦ Character

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 529

◦ DATE
◦ Byte

To define an implicit cast for a UDT, use CREATE CAST and specify AS ASSIGNMENT. For
details on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including INDEX,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Teradata Vantage™ - Database Utilities, B035-1102.

INDEX does not support CLOBs or BLOBs.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Use POSITION instead of INDEX for ANSI SQL:2011 compliance.

Result Type and Attributes
Here are the default result type and attributes for INDEX(arg1, arg2).

Data Type Heading

INTEGER Index(arg1, arg2)

INDEX Usage Notes

Expected Values

The following rules apply to the value that INDEX returns:

• If string_expression_2 is not found in string_expression_1, then the result is zero.
• If string_expression_2 is null, then the result is null.
• If the arguments are character types, INDEX returns a logical character position, not a byte position,

except when the server character set of the arguments is KANJI1 and the session client character
set is KanjiEBCDIC.

Rules for Character Type Arguments

If the arguments are character types, matching is in terms of logical characters. Single byte characters
are matched against single byte characters, and multibyte characters are matched against multibyte

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 530

characters. For a match to occur, representation of the logical character must be identical in
both expressions.

If the server character sets of the arguments are not the same, INDEX performs an implicit
character translation.

The CASESPECIFIC attribute affects whether characters are considered to be a match.

IF the session mode
is …

THEN the default case specification for character columns and literals
is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.
The exception is character data of type GRAPHIC, which is
always CASESPECIFIC.

To override the default case specification, you can apply the CASESPECIFIC or NOT CASESPECIFIC
phrase to a character column in CREATE TABLE or ALTER TABLE.

Or, you can apply the CASESPECIFIC or NOT CASESPECIFIC phrase to the INDEX character
string arguments.

IF … THEN …

either argument has a
CASESPECIFIC attribute (either by
default or specified explicitly)

simple Latin letters are considered to be matching only if they are
the same letters and the same case.

both arguments have a NOT
CASESPECIFIC attribute (either by
default or specified explicitly)

before the operation begins, some characters are converted
to uppercase.
If the character is a lowercase simple Latin letter, the character is
converted to uppercase before the operation begins.
If the character is a non-Latin single byte character, a multibyte
character, or a byte indicating a transition between single-byte
and multibyte character data, the character is not converted
to uppercase.

Using the rules for character type arguments, if you want INDEX to match letters only if they are the
same letters in the same case, specify the CASESPECIFIC phrase with at least one of the arguments.
For example:

 SELECT Name
 FROM Employee
 WHERE INDEX(Name, 'X' (CASESPECIFIC)) = 1;

If you want INDEX to match letters without considering the case, specify the NOT CASESPECIFIC phrase
with both of the arguments.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 531

Rules for KANJI1 Server Character Set

Note:

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information,
see KANJI1 Character Set in Teradata Vantage™ - Advanced SQL Engine International Character
Set Support, B035-1125.

When the server character set is KANJI1 and the client character set is KanjiEBCDIC, the offset count
includes Shift-Out/Shift-In characters, but they are not matched. They are treated only as an indication of
a transition from a single byte character and an multibyte character.

The nonzero position of the result is reported as follows:

IF the character set is … THEN the result is the …

KanjiEBCDIC position of the first byte of the logical character offset (including Shift-Out
/Shift-In in the offset count) within string_expression_1.

other than KanjiEBCDIC logical character offset within string_expression_1.

Relationship Between INDEX and POSITION

INDEX and POSITION behave identically, except on character type arguments when the client character
set is KanjiEBCDIC, the server character set is KANJI1, and an argument contains a multibyte character.

Examples

Example: Using Simple INDEX Expressions

The following table shows examples of simple INDEX expressions and their results.

Expression Result

INDEX('catalog','log') 5

INDEX('catalog','dog') 0

INDEX('41424344'XB,'43'XB) 3

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 532

The following examples show how INDEX(string_1, string_2) operates when the server character set for
string_1 and the server character set for string_2 differ. In these cases, both arguments are converted to
UNICODE (if needed) and the characters are matched logically.

IF string_1 is … AND string_2 is … THEN the result is …

Character Set Data Character Set Data

UNICODE 92 abc LATIN abc 4

UNICODE abc UNICODE c 3

KANJISJIS 92 04 UNICODE 0 4

The following examples show how INDEX(string_1, string_2) operates when the server character set for
both arguments is KANJI1 and the client character set is KanjiEBCDIC.

Note that for KanjiEBCDIC, results are returned in terms of physical units, making INDEX DB2-compliant
in that environment.

IF string_1 contains … AND string_2 contains … THEN the result is …

MN<AB > 6

MN<AB > <A > 4

MN<AB >P P 9

MX N<AB >P 7

The following examples show how INDEX(string_1, string_2) operates when the server character set for
both arguments is KANJI1 and the client character set is KanjiEUC.

IF string_1 contains … AND string_2 contains … THEN the result is …

a b ss3 A ss3 A 3

a b ss2 B ss2 B 3

CS1_DATA A 6

a b ss2 D ss3 E ss2 F ss2 F 5

a b C ss2 D ss3 E ss2 F ss2 F 6

CS1_D mATA A 7

The following examples show how INDEX(string_1, string_2) operates when the server character set for
both arguments is KANJI1 and the client character set is KanjiShift-JIS.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 533

IF string_1 contains … AND string_2 contains … THEN the result is …

mnABC X B 4

mnABC X X 6

In this example, INDEX is applied to ' ' (the SPACE character) in the value strings in the Name column of
the Employee table.

 SELECT name
 FROM employee
 WHERE INDEX(name, ' ') > 6 ;

INDEX examines the Name field and returns all names where a space appears in a character position
beyond the sixth (character position seven or higher).

The following example displays a list of projects in which the word Batch appears in the project
description, and lists the starting position of the word.

 SELECT proj_id, INDEX(description, 'Batch')
 FROM project
 WHERE INDEX(description, 'Batch') > 0 ;

The system returns the following report.

 proj_id Index (description, 'Batch')
 ------------- ----------------------------
 OE2-0003 5
 AP2-0003 13
 OE1-0003 5
 AP1-0003 13
 AR1-0003 10
 AR2-0003 10

A somewhat more complex construction employing concatenation, SUBSTRING, and INDEX might be
more instructive. Suppose the employee table contains the following values.

 empno name
 ---------- -----------
 10021 Smith T
 10007 Aguilar J
 10018 Russell S
 10011 Chin M
 10019 Newman P

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 534

You can transpose the form of the names from the name column selected from the employee table and
change the punctuation in the report using the following query:

 SELECT empno,
 SUBSTRING(name FROM INDEX(name,' ')+1 FOR 1)||
'. '||
 SUBSTRING(name FROM 1 FOR INDEX(name, ' ')-1)
 (TITLE 'Emp Name')
 FROM employee ;

The system returns the following report.

 empno Emp Name
 ---------- --------------
 10021 T. Smith
 10007 J. Aguilar
 10018 S. Russell
 10011 M. Chin
 10019 P. Newman

Example

The following examples show how INDEX(string_1, string_2) operates when the server character set for
string_1 and the server character set for string_2 differ. In these cases, both arguments are converted to
UNICODE (if needed) and the characters are matched logically.

IF string_1 is … AND string_2 is … THEN the result is …

Character Set Data Character Set Data

UNICODE 92 abc LATIN abc 4

UNICODE abc UNICODE c 3

KANJISJIS 92 04 UNICODE 0 4

Example: Using INDEX with KANJI1 and KanjiEBCDIC

The following examples show how INDEX(string_1, string_2) operates when the server character set for
both arguments is KANJI1 and the client character set is KanjiEBCDIC.

Note that for KanjiEBCDIC, results are returned in terms of physical units, making INDEX DB2-compliant
in that environment.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 535

IF string_1 contains … AND string_2 contains … THEN the result is …

MN<AB> 6

MN<AB> <A> 4

MN<AB>P P 9

MX N<AB>P 7

Example: Using INDEX with KANJI1 and KanjiEUC

The following examples show how INDEX(string_1, string_2) operates when the server character set for
both arguments is KANJI1 and the client character set is KanjiEUC.

IF string_1 contains … AND string_2 contains … THEN the result is …

a b ss3 A ss3 A 3

a b ss2 B ss2 B 3

CS1_DATA A 6

a b ss2 D ss3 E ss2 F ss2 F 5

a b C ss2 D ss3 E ss2 F ss2 F 6

CS1_D mATA A 7

Example: Using INDEX with KANJI1 and KanjiShift-JIS

The following examples show how INDEX(string_1, string_2) operates when the server character set for
both arguments is KANJI1 and the client character set is KanjiShift-JIS.

IF string_1 contains … AND string_2 contains … THEN the result is …

mnABC X B 4

mnABC X X 6

Example: Applying INDEX to the SPACE Character

In this example, INDEX is applied to ' ' (the SPACE character) in the value strings in the Name column of
the Employee table.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 536

 SELECT name
 FROM employee
 WHERE INDEX(name, ' ') > 6 ;

INDEX examines the Name field and returns all names where a space appears in a character position
beyond the sixth (character position seven or higher).

Example: Using "Batch" in the Project Description

The following example displays a list of projects in which the word Batch appears in the project
description, and lists the starting position of the word.

 SELECT proj_id, INDEX(description, 'Batch')
 FROM project
 WHERE INDEX(description, 'Batch') > 0 ;

The system returns the following report.

 proj_id Index (description, 'Batch')
 ------------- ----------------------------
 OE2-0003 5
 AP2-0003 13
 OE1-0003 5
 AP1-0003 13
 AR1-0003 10
 AR2-0003 10

Example: Using Concatenation, SUBSTRING, and INDEX

A somewhat more complex construction employing concatenation, SUBSTRING, and INDEX might be
more instructive. Suppose the employee table contains the following values.

 empno name
 ---------- -----------
 10021 Smith T
 10007 Aguilar J
 10018 Russell S
 10011 Chin M
 10019 Newman P

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 537

You can transpose the form of the names from the name column selected from the employee table and
change the punctuation in the report using the following query:

 SELECT empno,
 SUBSTRING(name FROM INDEX(name,' ')+1 FOR 1)||
'. '||
 SUBSTRING(name FROM 1 FOR INDEX(name, ' ')-1)
 (TITLE 'Emp Name')
 FROM employee ;

The system returns the following report.

 empno Emp Name
 ---------- --------------
 10021 T. Smith
 10007 J. Aguilar
 10018 S. Russell
 10011 M. Chin
 10019 P. Newman

Related Information
• For information on implicit type conversion, see "Data Type Conversions" in Teradata Vantage™ -

Data Types and Literals, B035-1143.
• For an example of when the two functions return different results for the same data, see How

POSITION and INDEX Differ.
• For details, see Rules for KANJI1 Server Character Set.
• For a description of implicit character translation rules, see "Implicit Character-to-Character

Translation" in Teradata Vantage™ - Data Types and Literals, B035-1143.

INITCAP
Modifies a string argument and returns the string with the first character in each word in uppercase and all
other characters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

INITCAP is an embedded services system function.

INITCAP Function Syntax
[TD_SYSFNLIB.] INITCAP (string)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 538

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

string
A character string or string expression.

If string is NULL, NULL is returned.

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

CHAR, VARCHAR, or CLOB

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type and character set are the same as those of the input string. For example, if the input
string has a data type of VARCHAR CHARACTER SET UNICODE, the result data type is VARCHAR
CHARACTER SET UNICODE.

Example
The following query returns the result 'Hello World'.

 SELECT INITCAP('hello WORLD');

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 539

• To activate and invoke embedded services functions, see Embedded Services System Functions.

INSTR
Searches the source_string argument for occurrences of search_string.

INSTR is an embedded services system function.

INSTR Function Syntax
[TD_SYSFNLIB.] INSTR (
 source_string,
 search_string
 [, position [, occurrence]]
)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character string or string expression.

search_string
A string of characters that the function searches for in source_string.

position
Specifies that the search will begin at this position in source_string.

If position is not specified, the search starts at the beginning of source_string.

If position is negative, the function counts and searches backwards from the end of
source_string. position cannot have a value of zero.

occurrence
Specifies which occurrence of search_string to find in source_string.

If occurrence is not specified, the function searches for the first occurrence.

If occurrence is greater than 1, the function searches for additional occurrences beginning
with the second character in the previous occurrence. occurrence cannot be zero or a
negative value.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 540

Argument Types and Rules

Expressions passed to this function must have the following data types:

• source_string = CHAR, VARCHAR, or CLOB
• search_string = CHAR, VARCHAR, or CLOB
• position = INTEGER, BIGINT, or NUMBER
• occurrence = INTEGER, BIGINT, or NUMBER

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

If a match is found, the function returns the position (starting from 1) in the source_string for the match;
otherwise the function returns 0. If any of the input arguments are NULL, the function returns NULL.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is NUMBER.

Usage Notes
This function is CASESPECIFIC.

REGEXP_INSTR is an extended version of INSTR that can perform case-insensitive string matching.

Examples

Example

The following query returns the result 20 indicating the position of 'ch' in 'chip'. This is the second
occurrence of 'ch' with the search starting from the second character of the source string.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 541

 SELECT INSTR('choose a chocolate chip cookie','ch',2,2);

Example

The following query returns the result 2, which indicates the position of the first occurrence of 'N' in the
source string with the search starting from the beginning of the string.

 SELECT INSTR('INSTR FUNCTION','N');

Related Information
For information on activating and invoking embedded services functions, see Embedded Services
System Functions.

LEFT
Truncates in input string to a specified number of characters.

The LEFT function can be called with the 'LEFT' or 'TD_LEFT' alias names.

The arguments include two parameters:

• First Parameter

The input string that the substring is created from. CHAR, VARCHAR, and CLOB are supported, but
other types must be explicitly cast. The input can be null or an empty string.

• Second Parameter

A positive integer specifying the number of characters desired from the left side of the string. If
the number of character exceeds the number of characters in the original string, the original string
is returned.

LEFT Function Syntax
[TD_SYSFNLIB.] LEFT (source_string, length)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character string or string expression.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 542

If source_string is NULL, NULL is returned.

length
An integer specifying the length of the returned string.

Usage Notes
When submitting queries using function LEFT on a client that uses ODBC, disable ODBC parsing.
Otherwise, the query may be altered by ODBC to a SUBSTR function call.

Character Sets Supported

The following character sets are supported with the LEFT function:

• Unicode
• Latin
• Kanji SJIS
• Graphic

Result Type
A substring is returned. The return type is set to the input type with the exception of CHAR. A CHAR input
has a result type of VARCHAR.

The result character set is the same as the source_string character set for Unicode and Latin. The result
character set is Unicode for all other supported character sets.

Example
SELECT LEFT('Test String',6);
Result- 'Test S'

LENGTH
Returns the number of characters in the expression.

LENGTH is an embedded services system function.

LENGTH Function Syntax
[TD_SYSFNLIB.] LENGTH (expr)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 543

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

expr
A character string or string expression.

If expr is NULL, NULL is returned.

A character string, string expression, or numeric expression.

If expr is NULL, NULL is returned.

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

CHAR, VARCHAR, or CLOB

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is NUMBER.

Example
The following query returns the result 7.

 SELECT LENGTH('astring');

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 544

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

LOCATE
Returns the position of the first occurrence of string_expr1 within string_expr2. The search for the first
occurrence of string_expr1 begins with the first character position in string_expr2 unless the optional
argument, n1, is specified.

LOCATE Function Syntax
LOCATE (string_expr1, string_expr2 [, n1])

Syntax Elements

string_expr1
Substring to be searched for its position within the full string.

string_expr2
The full string to be searched.

n1
The search begins with the character position indicated by the value of n1.

Argument Types and Rules

For information, see POSITION.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
For information, see POSITION.

Examples
Examples of LOCATE function usage:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 545

SELECT LOCATE ('world', 'Hello world!');

SELECT LOCATE ('world', 'Hello world!', 4);

LOWER
Returns a character string identical to character_string_expression, except that all uppercase letters are
replaced with their lowercase equivalents.

LOWER is valid only for character strings or character string expressions. The function does not accept
CLOBs and non-character arguments.

LOWER Function Syntax
LOWER (character_string_expression)

Syntax Elements

character_string_expression
A character string or character string expression for which all uppercase characters are to be
replaced with their lowercase equivalents.

Argument Types

LOWER is valid only for character strings or character string expressions. The function does not accept
CLOBs and non-character arguments.

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts to
predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including LOWER,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Result Type and Attributes
Here are the default result type and attributes for LOWER(arg).

Data Type Heading

Same type as arg Lower(arg)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 546

The LOWER function returns the result in the same character set as the input argument. The exception is
when the input is KANJI1 data; LOWER returns the result in the LATIN server character set.

Note:

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information, see
KANJI1 Character Set in Teradata Vantage™ - Advanced SQL Engine International Character Set
Support, B035-1125.

Usage Notes
See Teradata Vantage™ - Advanced SQL Engine International Character Set Support, B035-1125 for the
internal mappings that Vantage uses for the LOWER function.

Teradata SQL has the type attribute NOT CASESPECIFIC that allows case blind comparisons, but the type
attributes CASESPECIFIC and NOT CASESPECIFIC are Teradata extensions to the ANSI standard.

For ANSI portability, use the UPPER function for case blind comparisons with ANSI-compliant syntax.

UDT Arguments

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts to
predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including LOWER,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Example
The use of LOWER to return and store values is shown in the following example.

 SELECT LOWER (last_name)
 FROM names;
 INSERT INTO names
 SELECT LOWER(last_name),LOWER(first_name)
 FROM newnames;

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 547

The identical result is achieved with a USING phrase.

 USING (last_name CHAR(20),first_name CHAR(20))
 INSERT INTO names (LOWER(:last_name), LOWER(:first_name));

Related Information
• For information on implicit type conversion of UDTs, see "Data Type Conversions" in Teradata

Vantage™ - Data Types and Literals, B035-1143 .
• For details, see Teradata Vantage™ - Database Utilities, B035-1102.
• For details, see UPPER/UCASE.

LPAD
Returns the source_string padded to the left with the characters in fill_string so that the resulting string is
length characters.

LPAD is an embedded services system function.

LPAD Function Syntax
[TD_SYSFNLIB.] LPAD (source_string, length [, fill_string])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character string or string expression.

If the length of source_string is greater than length, source_string is truncated to
length characters.

length
The number of characters in the resulting string.

fill_string
The string of characters used to pad the source_string.

The sequence of characters in fill_string is replicated as necessary.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 548

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

• source_string = VARCHAR or CLOB
• length = INTEGER, BIGINT, or NUMBER
• fill_string = CHAR, VARCHAR, or CLOB

If any of the input arguments are NULL, the function returns NULL.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type and character set are the same as those of the source_string argument. For example,
if the source_string argument has a data type of VARCHAR CHARACTER SET UNICODE, the result data
type is VARCHAR CHARACTER SET UNICODE.

Examples

Example

The following query returns the result 'yzybuilding'.

 SELECT LPAD('building', 11, 'yz');

The following query returns the result 'build'.

 SELECT LPAD('building', 5, 'yz');

The following query returns the result ' building'. The space character is used by default to pad the
source string.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 549

 SELECT LPAD('building', 11);

Example

The following query returns the result 'build'.

 SELECT LPAD('building', 5, 'yz');

Example

The following query returns the result ' building'. The space character is used by default to pad the
source string.

 SELECT LPAD('building', 11);

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

LTRIM
Returns the argument expr1, with its left-most characters removed up to the first character that is not in the
argument expr2.

LTRIM is an embedded services system function.

LTRIM Function Syntax
[TD_SYSFNLIB.] LTRIM (expr1 [, expr2])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

expr1
A character string or string expression. If expr1 is NULL, NULL is returned

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 550

expr2
A string of characters or a numeric expression that will be removed from string1. If expr2 is
specified, it must be the same datatype as expr1. If expr2 is not specified, the default is to use
a single space character.

Argument Types and Rules

Expressions passed to this function can be one of the following data types:

• CHAR
• VARCHAR
• CLOB
• BYTEINT
• SMALLINT
• INTEGER
• BIGINT
• FLOAT/REAL/DOUBLE PRECISION
• DECIMAL/NUMERIC
• NUMBER

If any of the input arguments are NULL, the function returns NULL.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type and character set are the same as those of the expr1 argument. For example, if
the expr1 argument has a data type of VARCHAR CHARACTER SET UNICODE, the result data type is
VARCHAR CHARACTER SET UNICODE.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 551

Examples

Example

The following query returns the result 'XxyLAST WORD'. LTRIM removes the individual occurrences of 'x'
and 'y', and it stops removing characters when it encounters 'X' because 'X' is not in the expr2 argument.

 SELECT LTRIM('xyxXxyLAST WORD','xy');

The following query returns the result 'LEFT TRIM'. LTRIM removes the spaces from the left, and it stops
removing characters when it encounters 'L' because 'L' is not in the expr2 argument. Since the expr2
argument is not explicitly specified, the default of a single space is used.

 SELECT LTRIM(' LEFT TRIM');

Example

The following query returns the result 'LEFT TRIM'. LTRIM removes the spaces from the left, and it stops
removing characters when it encounters 'L' because 'L' is not in the string2 argument. Since the string2
argument is not explicitly specified, the default of a single space is used.

 SELECT LTRIM(' LEFT TRIM');

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

NGRAM
Returns the number of n-gram matches between string1 and string2.

A high number of matching n-gram patterns implies a high similarity between the two strings.

NGRAM is an embedded services system function.

NGRAM Function Syntax
[TD_SYSFNLIB.] NGRAM (string1, string2, length [, position])

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 552

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

string1
A character string or string expression.

If string1 is NULL, NULL is returned.

string2
A character string or string expression.

If string2 is NULL, NULL is returned.

length
The value ninn-gram, which is the comparison length.

position
Specifies that the n-gram is a positional n-gram match.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• string1 = CHAR, VARCHAR, or CLOB
• string2 = CHAR, VARCHAR, or CLOB
• length = INTEGER
• position = INTEGER

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 553

Result Type
If the data type of string1 is CHAR or VARCHAR, the result data type is INTEGER.

If the data type of string1 is CLOB, the result data type is BIGINT.

Usage Notes
For positional n-gram matching, the position as well as the pattern must match when measuring similarity.
The position value indicates how far away positionally the match may be between the 2 strings as follows:

• If position is set to a value of zero, the match must be at the same position in the 2 strings.
• If position is set to a value of x , the match must be within x positions in the 2 strings. For example, if

position = 2, then the match must be within 2 positions in the 2 strings.

As an example, for a string of 'abc', the 1-grams (length =1) are 'a', 'b', and 'c'. The 2-grams (length =2) are
'ab' and 'bc'. The 3-gram (length = 3) is 'abc'. By definition, there are no 4-grams or greater.

The function returns zero in the following cases:

• If the length argument is greater than the length of either string1 or string2.
• If the length argument is <= 0 or if either string1 or string2 is an empty string.

Patterns beyond the length of 255 are ignored.

Examples

Example

The following query returns a result of 2. The 3-grams 'mit' and 'ith' match. Note that 'Smi' and 'smi' do not
match because of the difference in case.

 SELECT NGRAM('John Smith','Allen smith 1',3);

The following query returns a result of zero. There are no 3-grams in the first string expression of '' since
the length of the string is less than 3.

 SELECT NGRAM ('','str1 empty',3);

The following query returns a result of zero. There are no 0-grams in the strings.

 SELECT NGRAM ('test with zero length', 'test with zero length',0);

The following query returns a result of 3. The 1-grams 'a', 'b', and 'c' match.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 554

 SELECT NGRAM ('abc','yyabc',1);

The following query returns a result of 2. The 2-grams 'ab' and 'bc' match.

 SELECT NGRAM ('abc','yyabc',2);

The following query returns a result of zero. The 2-grams 'ab' and 'bc' match, but they are not within 1
position of each other.

 SELECT NGRAM ('abc','yyabc',2, 1);

The following query returns a result of 2. The 2-grams 'ab' and 'bc' match, and they are within 2 positions
of each other.

 SELECT NGRAM ('abc','yyabc',2, 2);

The following query returns a result of 2. The 2-grams 'ab' and 'bc' match, and they are at the same
position in each string.

 SELECT NGRAM ('abc','abc',2, 0);

The following query returns a result of zero. There are no 5-grams since the length of either input string
is less than 5.

 SELECT NGRAM ('abc','abc',5,0);

Example

The following query returns a result of zero. There are no 3-grams in the first string expression of '' since
the length of the string is less than 3.

 SELECT NGRAM ('','str1 empty',3);

Example

The following query returns a result of zero. There are no 0-grams in the strings.

 SELECT NGRAM ('test with zero length', 'test with zero length',0);

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 555

Example

The following query returns a result of 3. The 1-grams 'a', 'b', and 'c' match.

 SELECT NGRAM ('abc','yyabc',1);

Example

The following query returns a result of 2. The 2-grams 'ab' and 'bc' match.

 SELECT NGRAM ('abc','yyabc',2);

Example

The following query returns a result of zero. The 2-grams 'ab' and 'bc' match, but they are not within 1
position of each other.

 SELECT NGRAM ('abc','yyabc',2, 1);

Example

The following query returns a result of 2. The 2-grams 'ab' and 'bc' match, and they are within 2 positions
of each other.

 SELECT NGRAM ('abc','yyabc',2, 2);

Example

The following query returns a result of 2. The 2-grams 'ab' and 'bc' match, and they are at the same
position in each string.

 SELECT NGRAM ('abc','abc',2, 0);

Example

The following query returns a result of zero. There are no 5-grams since the length of either input string
is less than 5.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 556

 SELECT NGRAM ('abc','abc',5,0);

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

NVP
Extracts the value of a name-value pair where the name in the pair matches the name and the number of
the occurrence specified.

NVP is an embedded services system function.

NVP Function Syntax
[TD_SYSFNLIB.] NVP (
 instring,
 name_to_search
 [, name_delimiters]
 [, value_delimiters]
 [, occurrence]
)

Syntax Elements

TD_SYSFNLIB
Name of the database where the function is located.

instring
The name-value pairs separated by multibyte delimiters.

name_to_search
The name whose instring value NVP returns.

name_delimiters
The multibyte delimiters used to separate name-value pairs.

Delimiters can contain any characters. They are separated from each other in the string by
spaces. If a space is used as part of a delimiter, it must be escaped using a backslash (\). The
maximum length of any delimiter is 10, and the maximum size of this parameter is 32.

This parameter is optional and if not specified, the default value is & (ampersand).

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 557

value_delimiters
The multibyte delimiters used to associate a name to its value in a name-value pair.

Delimiters can contain any characters. They are separated from each other in the string by
spaces. If a space is used as part of a delimiter, it must be escaped using a backslash (\). The
maximum length of any delimiter is 10, and the maximum size of this parameter is 32

This parameter is optional and if not specified, the default value is = (equal sign).

occurrence
The number of occurrences of name_to_search that NVP searches for.

This parameter is optional and if not specified, the default value is 1.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• instring = VARCHAR or CLOB
• name_to_search = VARCHAR
• name_delimiters = VARCHAR
• value_delimiters = VARCHAR
• occurrence = INTEGER

The character set of instring, name_to_search, name_delimiters, and value_delimiters can be LATIN or
UNICODE. If the parameter character sets are mixed, then all the parameters are converted to UNICODE.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

If a delimiter is part of a longer delimiter, the longer delimiter has precedence in the matching process.

Adjacent delimiters are treated as a single delimiter.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 558

Result Type
The result data type is VARCHAR with the same character set as that of instring.

Examples

Example: Querying for Entree

The following query:

SELECT NVP ('entree:orange chicken#entree2:honey salmon', 'entree','#', ':', 1);

returns 'orange chicken'.

Example: Querying for Second Occurrence of 'store'

The following query:

SELECT NVP('store = whole foods&&store: ?Bristol farms','store', '&&', '\ =\
:\ ?', 2);

returns 'Bristol farms'.

In this example, occurrence = 2 instructs NVP to search for the second occurrence of 'store'.

Example: Querying for Entree (Default Value)

The following query:

SELECT NVP('entree=orange chicken&entree2=honey salmon', 'entree', 1)

returns 'orange chicken'.

In this example, name_delimiters is & (default value) and value_delimiters is = (default value).

Example: Querying for Entree with 1 Occurrence

The following query:

SELECT NVP('entree=orange chicken&entree2=honey salmon', 'entree');

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 559

returns 'orange chicken'.

In this example, name_delimiters is & (default value), value_delimiters is = (default value), and occurrence
is 1 (default value).

Related Information
• To activate and invoke embedded services functions, see Embedded Services System Functions.
• For details about UDF implicit type conversion rules, see “Compatible Types” in Teradata Vantage™

- SQL External Routine Programming, B035-1147.

OREPLACE
Replaces every occurrence of search_string in the source_string with the replace_string. Use this function
either to replace or remove portions of a string.

OREPLACE is an embedded services system function.

OREPLACE Function Syntax
[TD_SYSFNLIB.] OREPLACE (source_string, search_string [, replace_string])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character string or string expression.

If source_string is NULL, NULL is returned.

search_string
A string of characters that the function searches for in source_string.

If search_string is NULL, NULL is returned.

replace_string
A string of characters that replaces the characters specified by search_string.

If replace_string is NULL or is an empty string, or is omitted, all occurrences of search_string
are removed from the source_string.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 560

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

• CHAR
• VARCHAR
• CLOB

If Vantage passes constants as the second and third parameter in an OREPLACE call, the character type
of the first argument is passed as Unicode, and calls oreplace_unicode() with the return type VARCHAR
in Unicode charset.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type and character set depend on those of the source_string argument.

• If the source_string is CHAR, the result data type is VARCHAR.
• If the source_string is VARCHAR, the result data type is VARCHAR.
• If the source_string is CLOB, the result data type is CLOB.

For example, if the source_string argument has a data type of CHAR CHARACTER SET UNICODE, then
the result data type will be VARCHAR CHARACTER SET UNICODE.

The maximum length of a VARCHAR result value is 16000 characters for LATIN, and 8000 characters
for UNICODE.

An error is returned if the result string is larger than the maximum result string size.

Usage Notes
OREPLACE provides a superset of the functionality provided by the OTRANSLATE function.
OTRANSLATE provides single character, 1-to-1 substitution while OREPLACE allows you to substitute 1
string for another, as well as to remove character strings.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 561

Examples

Example

The following query returns the string 'TD14.0 is the current version'. The string '13.1' in the source string
was replaced by the string '14.0'.

 SELECT OREPLACE('TD13.1 is the current version', '13.1', '14.0');

The following query returns the string 'This chair is a brown chair'. Both occurrences of the search string
'bag' in the source string were replaced by the string 'chair'.

 SELECT OREPLACE('This bag is a brown bag', 'bag', 'chair');

The following query returns the string 'TD13.1 is the current version'. The source string is returned
unchanged since the search string is NULL. The result would be the same if the search string is an empty
string or a string that has no matches in the source string.

 SELECT OREPLACE('TD13.1 is the current version', NULL, '14.0');

The following query returns the string 'We removed the extra word'. The occurrence of the search string
'superfluous' was removed from the source string.

 SELECT OREPLACE('We removed the superfluous extra word',
 'superfluous', NULL);

The result set from the following query will have an ADDRESS column that is the concatenation of the
ADDRESS1 and ADDRESS2 columns from the CUSTOMER table, with every occurrence of 'st.' replaced
with ' street'.

 SELECT OREPLACE(ADDRESS1||ADDRESS2, ' st.', ' street') AS ADDRESS
 from CUSTOMER;

Example

The following query returns the string 'This chair is a brown chair'. Both occurrences of the search string
'bag' in the source string were replaced by the string 'chair'.

 SELECT OREPLACE('This bag is a brown bag', 'bag', 'chair');

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 562

Example

The following query returns the string 'TD13.1 is the current version'. The source string is returned
unchanged since the search string is NULL. The result would be the same if the search string is an empty
string or a string that has no matches in the source string.

 SELECT OREPLACE('TD13.1 is the current version', NULL, '14.0');

Example

The following query returns the string 'We removed the extra word'. The occurrence of the search string
'superfluous' was removed from the source string.

 SELECT OREPLACE('We removed the superfluous extra word',
 'superfluous', NULL);

Example

The result set from the following query will have an ADDRESS column that is the concatenation of the
ADDRESS1 and ADDRESS2 columns from the CUSTOMER table, with every occurrence of 'st.' replaced
with ' street'.

 SELECT OREPLACE(ADDRESS1||ADDRESS2, ' st.', ' street') AS ADDRESS
 from CUSTOMER;

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

OTRANSLATE
Returns source_string with every occurrence of each character in from_string replaced with the
corresponding character in to_string.

OTRANSLATE is an embedded services system function.

OTRANSLATE Function Syntax
[TD_SYSFNLIB.] OTRANSLATE (source_string, from_string, to_string)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 563

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character string or string expression.

If source_string is NULL, NULL is returned.

from_string
A string of characters that will be replaced in source_string.

If from_string is NULL, the function returns source_string.

to_string
A string of characters that replaces the characters specified by from_string.

If to_string is NULL or empty, the function removes the characters specified in from_string.

Argument Types and Rules

Expressions passed to this function must have one of the following data types: CHAR or VARCHAR.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is VARCHAR. The character set is the same as that of the source_string argument.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 564

Usage Notes
If the first character in from_string occurs in the source_string, all occurrences of it are replaced by the first
character in to_string. This repeats for all characters in from_string and for all characters in to_string. The
replacement is performed character-by-character, that is, the replacement of the second character is done
on the string resulting from the replacement of the first character.

If from_string contains more characters than to_string, the extra characters are removed from
the source_string.

If from_string contains fewer characters than to_string, the extra characters in to_string have no effect.

If the same character occurs more than once in from_string, only the replacement character from the
to_string corresponding to the first occurrence is used.

Examples

Example: Returning the Current Database Version

The following query returns the string 'TD14.0 is the current database version'. The occurrence in
source_string of the character in from_string ('3') is replaced by the character in to_string ('4').

 SELECT OTRANSLATE('TD13.0 is the current database version',
 '3', '4');

Example: Removing Extra Characters from the Query Results

In the following query, the characters 'T' and 'h' are replaced with 'S' and 'p', resulting in the string 'Spin
and Spick'. Next, the extra character 'k' in the from_string (where there is no corresponding character in
the to_string) is removed from the source_string. The resulting string is 'Spin and Spic'.

 SELECT OTRANSLATE('Thin and Thick', 'Thk', 'Sp');

Example: Replacing and Returning Query Characters

In the following query, the characters 'T' and 'h' are replaced with 'S' and 'p'. The character 'T' occurs
twice in the from_string, but only the replacement character in the to_string that corresponds to the first
occurrence of 'T' is used. That is, only 'S' is used to replace 'T'. Next, the character 'k' is replaced with 'x',
and the extra characters 'y' and 'z' in the to_string are ignored. The resulting string is 'Spin and Spicx'.

 SELECT OTRANSLATE('Thin and Thick', 'ThTk', 'Sptxyz');

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 565

Example: Removing Characters without Replacing Them

The following query removes the from_string from source_string because to_string is empty.

SELECT OTRANSLATE('diet', 't', '');

 *** Query completed. One row found. One column returned.
 *** Total elapsed time was 1 second.

OTRANSLATE('diet','t','')

die

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

POSITION
Returns the position in string_expression_2 where string_expression_1 starts.

POSITION Function Syntax
POSITION (string_expression_1 IN string_expression_2)

Syntax Elements

string_expression_1
A substring to be searched for its position within the full string.

string_expression_2
A full string to be searched.

Argument Types and Rules

POSITION operates on the following types of arguments:

• Character, except for CLOB
• Byte, except for BLOB

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 566

If one string expression is of type BYTE, then both expressions must be of type BYTE.

• Numeric

Numeric string expressions are converted implicitly to CHARACTER type.

• UDTs that have implicit casts that cast between the UDT and any of the following predefined types:

◦ Numeric
◦ Character
◦ DATE
◦ Byte

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL
Data Definition Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including POSITION,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Teradata Vantage™ - Database Utilities, B035-1102.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Use POSITION instead of INDEX for ANSI SQL:2011 conformance. POSITION and INDEX behave
identically except when the client character set is KanjiEBCDIC and the server character for an argument
is KANJI1 and contains multibyte characters.

Use POSITION in place of MINDEX. (MINDEX no longer appears in this book because its use is
deprecated and it will not be supported after support for KANJI1 is dropped.)

Result Type and Attributes
Here are the default result type and attributes for POSITION(arg1 IN arg2):

Data Type Heading

INTEGER Position(arg1 in arg2)

POSITION Usage Notes

Expected Values

POSITION returns a value according to the following rules.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 567

IF … THEN the result is …

either argument is null null.

string_expression_1 has length zero one.

string_expression_1 is a substring within string_
expression_2

the position in string_expression_2 where
string_expression_1 starts.

none of the preceding is true zero.

If the arguments are character types, then regardless of the server character set, the value for POSITION
represents the position of a logical character, not a byte position.

How POSITION and INDEX Differ

INDEX and POSITION behave identically except when the session client character set is KanjiEBCDIC,
the server character set is KANJI1, and the parent string contains a multibyte character.

This is the only case for which the results of these two functions differ when performed on the same data.

Suppose we create the following table.

 CREATE TABLE iptest (
 column_1 VARCHAR(30) CHARACTER SET Kanji1
 column_2 VARCHAR(30) CHARACTER SET Kanji1);

We then insert the following set of values for the columns.

column_1 column_2

MN<AC> <C>

MN<AC>P <A>

MN<AB>P P

MN<AB>P

The client session character set is KanjiEBCDIC5026_0I. Now we perform a query that demonstrates how
INDEX and POSITION return different results in this condition.

 SELECT column_1, column_2, INDEX(column_1,column_2)
 FROM iptest;

The result of this query looks like the following:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 568

 column_1 column_2 Index(column_1,column_2)
 ----------- ----------- ------------------------
 MN<AC
> <C
> 6
 MN<AC
>P <A
> 4
 MN<AB
>P P 9
 MN<AB
>P 6

With the same session characteristics in place, perform the semantically identical query on the table using
POSITION instead of INDEX.

 SELECT column_1, column_2, POSITION(column_2 IN column_1)
 FROM iptest;

The result of this query looks like the following:

 column_1 column_2 Position(column_2 in column_1)
 ----------- ----------- ------------------------------
 MN<AC
> <C
> 4
 MN<AC
>P <A
> 3
 MN<AB
>P P 5
 MN<AB
>P 4

The different results are accounted for by the following differences in how INDEX and POSITION operate
in this particular case.

• INDEX counts Shift-Out and Shift-In characters; POSITION does not.
• INDEX counts bytes; POSITION counts logical characters. As a result, an A , for example, counts as

two bytes (two physical characters) for INDEX, but only one logical character for POSITION.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 569

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

REVERSE
Reverses the input string.

CHAR, VARCHAR, and CLOB are supported while other types must be explicitly cast. The input can be
NULL or an empty string.

The result character set is the same as the source_string character set for Unicode and Latin. The result
character set is Unicode for all other supported character sets.

REVERSE Function Syntax
[TD_SYSFNLIB.] REVERSE (source_string)

Syntax Elements

TD_SYSFNLIB
Name of the database where the function is located.

source_string
A character string or string expression.

Usage Notes
When submitting queries using function REVERSE on a client that uses ODBC, disable ODBC parsing.
Otherwise, the query may be altered by ODBC to a SUBSTR function call.

Character Sets Supported

The following character sets are supported with the REVERSE function:

• Unicode
• Latin
• Kanji SJIS
• Graphic

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 570

Result Type
The reverse of the input is returned. The return type is set to the input type with the exception of CHAR. A
CHAR input has a result type of VARCHAR.

Example
SELECT REVERSE('Test String');
Result- 'gnirtS tseT'

RIGHT
Starting from the end of the input string, a substring is created with the number of characters specified by
the second parameter.

The RIGHT function can be called with the 'RIGHT' or 'TD_RIGHT' alias names.

The arguments include two parameters:

• First Parameter

The input string that the substring will be created from. CHAR, VARCHAR, and CLOB are supported
while other types must be explicitly casted. The input can be null or an empty string.

• Second Parameter

A positive integer specifying the number of characters desired from the right side of the string. If the
number of character exceeds the number of characters in the original string, then the original string will
be returned.

RIGHT Function Syntax
[TD_SYSFNLIB.] RIGHT (source_string, length)

Syntax Elements

TD_SYSFNLIB
Name of the database where the function is located.

source_string
A character string or string expression.

If the length of source_string is greater than length, source_string is truncated to
length characters.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 571

length
An integer specifying the length of the returned string.

Usage Notes
When submitting queries using function RIGHT on a client that uses ODBC, disable ODBC parsing.
Otherwise, the query may be altered by ODBC to a SUBSTR function call.

Character Sets Supported

The following character sets are supported with the RIGHT function:

• Unicode
• Latin
• Kanji SJIS
• Graphic

Result Type
A substring is returned. The return type is set to the input type with the exception of CHAR. A CHAR input
has a result type of VARCHAR.

The result character set is the same as the source_string character set for Unicode and Latin. The result
character set is Unicode for all other supported character sets.

Example
SELECT RIGHT('Test String',6);
Result- 'String'

RPAD
Returns the source_string padded to the right with the characters in fill_string so that the resulting string is
length characters.

RPAD is an embedded services system function. For information on activating and invoking embedded
services functions, see Embedded Services System Functions.

RPAD Function Syntax
[TD_SYSFNLIB.] RPAD (source_string, length [, fill_string])

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 572

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

source_string
A character string or string expression.

If source_string is NULL, NULL is returned.

If the length of source_string is greater than length, source_string is truncated to
length characters.

length
The number of characters in the resulting string.

fill_string
The string of characters used to pad the source_string.

The sequence of characters in fill_string is replicated as necessary.

If fill_string is not specified, source_string will be padded to the right with space characters.

Argument Types and Rules

Expressions passed to this function must have one of the following data types:

• source_string = VARCHAR or CLOB
• length = INTEGER, BIGINT, or NUMBER
• fill_string = CHAR, VARCHAR, or CLOB

If any of the input arguments are NULL, the function returns NULL.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 573

Result Type
The result data type and character set are the same as those of the source_string argument. For example,
if the source_string argument has a data type of VARCHAR CHARACTER SET UNICODE, the result data
type is ARCHAR CHARACTER SET UNICODE.

Examples

Example

The following query returns the result 'buildingyzy'.

 SELECT RPAD('building', 11, 'yz');

The following query returns the result 'build'.

 SELECT RPAD('building', 5, 'yz');

The following query returns the result 'building '. The space character is used by default to pad the
source string.

 SELECT RPAD('building', 11);

Example

The following query returns the result 'build'.

 SELECT RPAD('building', 5, 'yz');

Example

The following query returns the result 'building '. The space character is used by default to pad the
source string.

 SELECT RPAD('building', 11);

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 574

Related Information
For details, see “Compatible Types” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

RTRIM
Returns the argument expr1, with its right-most characters removed up to the first character that is not in the
argument expr2.

RTRIM is an embedded services system function.

RTRIM Function Syntax
[TD_SYSFNLIB.] RTRIM (expr1 [, expr2])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

expr1
A character string or string expression. If expr1 is NULL, NULL is returned.

expr2
A string of characters or a numeric expression that will be removed from string1. If expr2 is
specified, it must be the same datatype as expr1. If expr2 is not specified, the default is to use
a single space character.

Argument Types and Rules

Expressions passed to this function can be one of the following data types:

• CHAR
• VARCHAR
• CLOB
• BYTEINT
• SMALLINT
• INTEGER
• BIGINT
• FLOAT/REAL/DOUBLE PRECISION

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 575

• DECIMAL/NUMERIC
• NUMBER

If any of the input arguments are NULL, the function returns NULL.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in Teradata Vantage™ - SQL External Routine
Programming, B035-1147.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type and character set are the same as those of the expr1 argument. For example, if
the expr2 argument has a data type of VARCHAR CHARACTER SET UNICODE, the result data type is
VARCHAR CHARACTER SET UNICODE.

Examples

Example

The following query returns the result 'TURNERyxX'. RTRIM removes the individual occurrences of 'x' and
'y', and it stops removing characters when it encounters 'X' because 'X' is not in the expr2 argument.

 SELECT RTRIM('TURNERyxXxy,'xy');

 SELECT RTRIM(' RIGHTT TRIM ');

Example

The following query returns the result ' RIGHTT TRIM' because the leading spaces are not removed. It
stops removing characters when it encounters 'M' because 'M' is not in the expr2 argument. Since the
expr2 argument is not explicitly specified, the default of a single space is used.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 576

 SELECT RTRIM(' RIGHTT TRIM ');

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

SOUNDEX
Returns a character string that represents the Soundex code for string_expression.

Soundex

Soundex is a system that codes surnames having the same or similar sounds, but variant spellings. The
Soundex system was first used by the National Archives in 1880 to index the United States census.

Soundex codes begin with the first letter of the surname followed by a three-digit code. Zeros are added to
names that do not have enough letters.

SOUNDEX Function Syntax
SOUNDEX (string_expression)

Syntax Elements

string_expression
A character string or expression that contains a surname to be evaluated in simple
Latin characters.

A simple Latin character is one that does not have diacritical marks such as tilde (~) or acute
accent (´).

There are 26 uppercase simple Latin characters and 26 lowercase simple Latin characters.

SOUNDEX is case insensitive.

Embedded or trailing pad characters within character_string return an error to the requestor.

Argument Types

Use SOUNDEX on character strings or character string expressions that use the LATIN or UNICODE
server character set.

SOUNDEX does not accept CLOB types.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 577

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts to
predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including SOUNDEX,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

If the string_expression argument is null, the result is null.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

SOUNDEX Usage Notes

Soundex Coding Guide

The following process outlines the Soundex coding guide:

1. Retain the first letter of the name.
2. Drop all occurrences of the following letters:

A, E, I, O, U, Y, H, W

in other positions.

3. Assign the following number to the remaining letters after the first letter:

1 = B, F, P, V

2 = C, G, J, K, Q, S X, Z

3 = D, T

4 = L

5 = M, N

6 = R

4. If two or more letters with the same code are adjacent in the original name or adjacent except for any
intervening H or W, omit all but the first.

5. Convert the form “letter, digit, digit, digit,” by adding trailing zeros if less than three digits.
6. Drop the rightmost digits if more than three digits.
7. Names with adjacent letters having the same equivalent number are coded as one letter with a

single number

Surname prefixes are generally not used.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 578

Examples

Example

The following SELECT statement returns the result that follows.

 SELECT SOUNDEX ('ashcraft');

 Soundex('ashcraft')

 a261

The surname “ashcraft” initially evaluates to “a2h2613,” but the following Soundex rules convert the result
to a261.

• “h” is dropped because it occurs in the third position. Soundex drops all occurrences of the following
characters in any position other than the first.

A, E, I, O, U, Y, H, W

• “2” is dropped because it represents the second occurrence of one of the following characters:

C, G, J, K, Q, S X, Z

If two or more characters with the same code are adjacent in the original name, or adjacent except
for any intervening H or W, Soundex omits all but the code for the first occurrence of the character in
the returned code.

• “3” is dropped because Soundex drops the rightmost digits if character_string evaluates to more than
three digits following the initial simple Latin character.

Example

This example and Example use the following table data:

 SELECT family_name FROM family;

 family_name

 John
 Joan
 Joey
 joanne
 michael
 Bob

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 579

Here are the results of the SOUNDEX function on the data in the family_name column:

 SELECT SOUNDEX(TRIM(family.family_name));

 Soundex(TRIM(BOTH FROM family_name))

 J500
 J500
 B100
 J000
 m240
 j500

Example

Find all family names in Family that sound like “Joan”.

 SELECT family_name
 FROM family
 WHERE SOUNDEX(TRIM(family.family_name)) = SOUNDEX('Joan');

 family_name

 John
 Joan
 Joanne

Examples of Non Valid Usage

The following SOUNDEX examples are not valid for the reasons given in the table.

Statement Why the Statement is Not Valid

SELECT SOUNDEX(12345); 12345 is a numeric string, not a character string.

SELECT SOUNDEX('ábç'); The characters á and ç are not simple Latin characters.

Related Information
• For information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language Syntax

and Examples, B035-1144.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 580

• For details on how to disable the SOUNDEX extension, see Teradata Vantage™ - Database
Utilities, B035-1102.

• For information on implicit type conversion of UDTs, see "Data Type Conversions" in Teradata
Vantage™ - Data Types and Literals, B035-1143.

STRING_CS
Returns a heuristically derived integer value that you can use to help determine which KANJI1-compatible
client character set was used to encode string_expression.

Note:
The result is not guaranteed correct, but should work for most strings likely to be encountered.

STRING_CS Function Syntax
STRING_CS (string_expression)

Syntax Elements

string_expression
A CHAR or VARCHAR character string or expression.

Argument Types

Use STRING_CS on character strings or character string expressions that use the KANJI1 server
character set. (Non-KANJI1 character strings will be coerced to KANJI1, but the results are unlikely to
be useful.)

STRING_CS does not accept CLOB or UDT types.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Value
STRING_CS returns a heuristically derived INTEGER value that you can use to help determine the client
character set that was used to encode the KANJI1 character string or expression. The result value can also
help determine which client character set to use to interpret the character data.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 581

IF the
result
value
is … THEN the heuristic found that string_expression …

-1 most likely uses a single-byte client character set encoding, but it may also contain a mix
of encodings.

0 does not contain anything distinguishable from any particular character set, so any character
set that you use to interpret string_expression provides the same result.
Not all translations use the same interpretation for the characters represented by 0x5C and
0x7E, however.
If string_expression contains:
0x5C and you want it to be interpreted as REVERSE SOLIDUS, use a single-byte
character set.
0x7E and you want it to be interpreted as TILDE, use a single-byte character set.
0x5C and you want it to be interpreted as YEN SIGN, or
0x7E and you want it to be interpreted as OVERLINE, use any of the following:
• KANJISJIS_0S
• KANJIEBCDIC5026_0I
• KANJIEBCDIC5035_0I
• KATAKANAEBCDIC
• KANJIEUC_0U

1 uses the encoding of one of the following:
• KANJIEBCDIC5026_0I
• KANJIEBCDIC5035_0I
• KATAKANAEBCDIC

2 uses the encoding of KANJIEUC_0U.

3 uses the encoding of KANJISJIS_0S.

Usage Notes
STRING_CS helps determine which encoding to use when using the TRANSLATE function to translate a
string from the KANJI1 server character set to the UNICODE server character set.

IF the result
value is …

THEN substitute the following value for source_TO_target in
TRANSLATE(string_expression USING source_to_target) …

-1 KANJI1_SBC_TO_UNICODE.

0 KANJI1_SBC_TO_UNICODE.

1 KANJI1_KANJIEBCDIC_TO_UNICODE.

2 KANJI1_KANJIEUC_TO_UNICODE.

3 KANJI1_KANJISJIS_TO_UNICODE.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 582

Examples

Example: Using STRING_CS to Determine the Client Character Set

Consider the following table definition:

 CREATE TABLE SysNames
 (SysID INTEGER
 ,SysName VARCHAR(30) CHARACTER SET KANJI1);

Suppose the session character set is KANJIEBCDIC5026_0I. The following statement inserts the mixed
single-byte/multibyte character string '<TEST >Q' into the SysName column of the SysNames table:

 INSERT SysNames (101, '0E42E342C542E242E30FD8'XC);

Using STRING_CS to determine the client character set that was used to encode the string produces the
results that follow:

 SELECT STRING_CS(SysName) FROM SysNames WHERE SysID = 101;
 String_CS(SysName)

 1

Example: Using STRING_CS to Translate a KANJI1 String to UNICODE

Consider the SysNames table from the preceding example, “Example: Using STRING_CS to Determine
the Client Character Set.”

The following statement uses STRING_CS to determine which encoding to use to translate strings in the
SysName column from the KANJI1 server character set to the UNICODE server character set:

 SELECT CASE STRING_CS(SysName)
 WHEN 0 THEN TRANSLATE(SysName USING KANJI1_SBC_TO_UNICODE)
 WHEN 1 THEN TRANSLATE(SysName USING KANJI1_KANJIEBCDIC_TO_UNICODE)
 WHEN 2 THEN TRANSLATE(SysName USING KANJI1_KANJIEUC_TO_UNICODE)
 WHEN 3 THEN TRANSLATE(SysName USING KANJI1_KANJISJIS_TO_UNICODE)
 ELSE TRANSLATE(SysName USING KANJI1_SBC_TO_UNICODE)
 END
 FROM SysNames;

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 583

Related Information
• “Compatible Types” in Teradata Vantage™ - SQL External Routine Programming, B035-1147.
• To activate and invoke embedded services functions, see Embedded Services System Functions.

STRTOK
Splits instring into tokens based on the specified list of delimiter characters and returns the nth token, where
n is specified by the tokennum argument.

STRTOK is an embedded services system function.

STRTOK Function Syntax
[TD_SYSFNLIB.] STRTOK (instring [, delimiter] [, tokennum])

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

instring
A character string or string expression.

If instring is NULL, NULL is returned.

delimiter
A list of delimiter characters. Each character in the string is considered a delimiter character.

If not specified, the value defaults to a space character.

tokennum
The ordinal token to return.

If not specified, the default value is 1.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• instring = VARCHAR(32000) or CLOB
• delimiter = VARCHAR(64)
• tokennum = INTEGER

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 584

• token size = The maximum limit of any token returned is 256.

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result data type is VARCHAR and the character set is the same as that of the instring argument. For
example, if the instring argument has a data type of VARCHAR CHARACTER SET UNICODE, the result
data type is VARCHAR CHARACTER SET UNICODE.

Usage Notes
STRTOK has similar semantics as the standard C/C++ library STRTOK function.

If instring contains fewer tokens than tokennum, the function returns NULL.

If either instring or delimiter is NULL, the function returns NULL.

Example: Using STRTOK
Consider the following table and inserted data.

 CREATE TABLE t (id INTEGER, str VARCHAR(256));
 INSERT INTO t VALUES (1,'Teradata-Warehouse 13.10 - Combine 2 powerful forms of
business intelligence (BI).');
 INSERT INTO t VALUES (2,'http://www.teradata.com/');

The following query returns the third token from the t.str string value. There are only two tokens in the
second string, so the function returns NULL for that row.

SELECT id, STRTOK(t.str, ' -/', 3) FROM t;

The output from the query is:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 585

 id STRTOK(str,' -/',3)
----------- --
 1 13.10
 2 NULL

STRTOK_SPLIT_TO_TABLE
Splits strings into a table of tokens based on the provided delimiter(s) string.

Note:
STRTOK_SPLIT_TO_TABLE has similar semantics to the standard C/C++ library STRTOK function.

STRTOK_SPLIT_TO_TABLE is an embedded services system function.

STRTOK_SPLIT_TO_TABLE Function Syntax
[TD_SYSFNLIB.] STRTOK_SPLIT_TO_TABLE (inkey, instring, delimiters)
 RETURNS (outkey, tokennum, token)

Syntax Elements

TD_SYSFNLIB.
Name of the database where the function is located.

inkey
A numeric or character expresssion.

instring
If instring is NULL, NULL is returned.

delimiters
A character string or string expression.

If delimiters is NULL, NULL is returned.

If not specified, the value defaults to a space character.

outkey
A numeric or character expresssion.

tokennum
A character argument.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 586

The token from the input string in the same character set as instring.

token
A character expression.

Argument Types and Rules

Expressions passed to this function must have the following data types:

• inkey = NUMERIC or VARCHAR
• instring = VARCHAR(32000) or CLOB
• delimiter = VARCHAR(64)

You can also pass arguments with data types that can be converted to the above types using the implicit
data type conversion rules that apply to UDFs.

Note:
The UDF implicit type conversion rules are more restrictive than the implicit type conversion rules
normally used by Vantage. If an argument cannot be converted to the required data type following
the UDF implicit conversion rules, it must be explicitly cast.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type
The result row type is:

• outkey = NUMERIC OR VARCHAR(64)
• tokennum = INTEGER
• token = VARCHAR(256)

Example
If:

CREATE TABLE t (id integer, str varchar(256)character set unicode);

and:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 587

INSERT INTO t VALUES (1,'Teradata-Warehouse 13.10 - Combine 2 powerful forms of
business intelligence (BI).');

and:

insert into t values (2,'http://www.teradata.com/');

then:

SELECT d.* FROM TABLE (strtok_split_to_table(t.id, t.str, ' -/')
RETURNS (outkey integer, tokennum integer, token varchar(20)character set
unicode)) as d order by 1,2;
outkey tokennum token
----------- ----------- --------------------------
 1 1 Teradata
 1 2 Warehouse
 1 3 13.10
 1 4 Combine
 1 5 2
 1 6 powerful
 1 7 forms
 1 8 of
 1 9 business
 1 10 intelligence
 1 11 (BI).
 2 1 http:
 2 2 www.teradata.com

SUBSTRING
Extracts a substring from a named string based on position.

SUBSTRING Function Syntax
ANSI

SUBSTRING (string_expression FROM n1 [FOR n2])

Syntax Elements

string_expression
A string expression from which the substring is to be extracted.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 588

n1
The starting position of the substring to extract from string_expression.

The length of the substring to extract from string_expression.

If n1 < 0, the function returns an error.

n2
The length of the substring to extract from string_expression.

If n2 < 0, the function returns an error.

If you omit n2, then you extract the entire right hand portion of the named string or string
expression, beginning at the position named by n1.

If string_expression is a BYTE or CHAR type and you omit n2, trailing binary zeros or pad
characters are trimmed.

Teradata

{ SUBSTRING | SUBSTR } (string_expression, n1 [, n2])

Syntax Elements

string_expression
A string expression from which the substring is to be extracted.

n1
The starting position of the substring to extract from string_expression.

n2
The length of the substring to extract from string_expression.

If n2 < 0, the function returns an error.

If string_expression is a BYTE or CHAR type and you omit n2, trailing binary zeros or pad
characters are trimmed.

Argument Types and Rules

SUBSTRING and SUBSTR operate on the following types of arguments:

• Character
• Byte
• Numeric

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 589

If the string_expression argument is numeric, it is implicitly converted to CHARACTER type.

• UDTs that have implicit casts to any of the following predefined types:

◦ Character
◦ Numeric
◦ Byte
◦ DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including SUBSTRING and
SUBSTR, is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

Result Type and Attributes
Here are the default result type and attributes for SUBSTR(string , n1 , n2) and SUBSTRING(string FROM
n1 FOR n2):

If the string argument is a:

• BLOB, the result type is BLOB(n).
• Byte string other than BLOB, the result type is VARBYTE(n).
• CLOB, the result type is CLOB(n).
• Numeric or character string other than CLOB, the result type is VARCHAR(n).

In ANSI mode, the value of n for the resulting BLOB(n), VARBYTE(n), CLOB(n), or VARCHAR(n) is the
same as the original string. In Teradata mode, the value of n for the result type depends on the number of
characters or bytes in the resulting string. To get the data type of the resulting string, use the TYPE function.

SUBSTRING Usage Notes

Result Value

SUBSTRING/SUBSTR extracts n2 characters or bytes from string_expression starting at position n1.

To get the number of characters or bytes in the resulting string, use the BYTE function for byte strings and
the CHARACTER_LENGTH function for character strings.

If either of the following conditions are true, SUBSTRING/SUBSTR returns a zero length string:

• (n1 > string_length) AND (0 ≤ n2)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 590

• (n1 < 1) AND (0 ≤ n2) AND ((n2 + n1 - 1) ≤ 0)

IF n2 is … THEN …

specified
IF … THEN …

n2 < 0 SUBSTRING/SUBSTR returns an error.

0 ≤ n2 and
n1 >
string_length

SUBSTRING/SUBSTR returns a string containing
zero characters.

0 ≤ n2 and
n1 < 1

SUBSTRING/SUBSTR sets n4 = n2 + n1 - 1 and sets n3
= 1.

IF … THEN SUBSTRING/
SUBSTR returns …

n4 ≤ 0 a string containing
zero characters.

n4 > string_length the source string.

0 < n4 <=
string_length

a string that starts at n3 and
extends for n4 characters.

0 < n2
AND
1 ≤ n1 ≤
string_length

IF … THEN SUBSTRING/
SUBSTR returns a string …

(n1 + n2 - 1) >
string_length

that starts at n1 and ends
with the last character of the
source string.

0 < (n1 + n2 - 1) ≤
string_length

that starts at n1 and extends
for n2 characters.

not
specified IF … THEN SUBSTRING/SUBSTR returns …

n1 < 1 the source string.
If the source string is a CHAR type, trailing pad characters
are trimmed.

n1 > string_length a string containing zero characters.

1 ≤ n1 ≤
string_length

a string that starts at n1 and ends with the last character of
the source string.
If the source string is a CHAR type, trailing pad characters
are trimmed.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 591

Usage Rules for SUBSTRING and SUBSTR

SUBSTRING is the ANSI SQL:2011 syntax. Teradata syntax using SUBSTR is supported for backward
compatibility. Use SUBSTRING in place of SUBSTR for ANSI compliance.

Use SUBSTRING in place of MSUBSTR. (MSUBSTR no longer appears in this book because its use is
deprecated and it will not be supported after support for KANJI1 is dropped.)

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes the
KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects is highly
restricted. Although many KANJI1 queries and applications may continue to operate, sites using KANJI1
should convert to another character set as soon as possible. For more information, see KANJI1 Character
Set in Teradata Vantage™ - Advanced SQL Engine International Character Set Support, B035-1125.

Difference Between SUBSTRING and SUBSTR

SUBSTRING and SUBSTR perform identically except when they operate on character strings in Teradata
mode where the server character set is KANJI1 and the client character set is KanjiEBCDIC.

In this case, SUBSTR interprets n1 and n2 as physical units, making the DB2-compliant SUBSTR operate
on a byte-by-byte basis. Shift-Out and Shift-In bytes are significant because the result might be formatted
incorrectly. For example, the result string might not contain either the opening Shift-Out character or the
closing Shift-In character.

Otherwise, if string_expression is character data, then SUBSTRING expects mixed single byte and
multibyte character strings and operates on logical characters that are valid for the character set of the
session. In this case, n1 is a positive integer pointing to the first character of the result and n2 is in terms
of logical characters.

Examples

Example: Searching for Car Serial IDs

Suppose sn is a CHARACTER(15) field of Serial IDs for Automobiles and positions 3 to 5 represent the
country of origin as three letters.

For example:

 12JAP3764-35421
 37USA9873-26189
 11KOR1221-13145

To search for serial IDs of cars made in the USA:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 592

 SELECT make, sn
 FROM autos
 WHERE SUBSTRING (sn FROM 3 FOR 3) = 'USA';

Example: Accessing Serial ID Characters

If we want the last five characters of the serial ID, which represent manufacturing sequence number,
another substring can be accessed.

 SELECT make, SUBSTRING (sn FROM 11) AS sequence
 FROM autos
 WHERE SUBSTRING (sn FROM 3 FOR 3) = 'USA';

Example: Limiting Returned Characters

Suppose nameaddress is a VARCHAR(120) field, and the application used positions 1 to 30 for name,
starting address at position 31. To return address only, but limit the number of characters returned to
50 use:

 ...
 SUBSTRING (nameaddress FROM 31 FOR 50)

This returns an address of up to 50 characters.

Example: Using a SELECT Statement to Request Substrings

The following example shows a SELECT statement requesting substrings from a character field in
positions 1 through 4 for every row:

 SELECT SUBSTRING (jobtitle FROM 1 FOR 4)
 FROM employee ;

The result is as follows.

 Substring(jobtitle From 1 For 4)

 Tech
 Cont
 Sale
 Secr

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 593

 Test
 ...

Example: Using the CREATE TABLE cstr Table

Consider the following table:

 CREATE TABLE cstr
 (c1 CHAR(3) CHARACTER SET LATIN
 ,c2 CHAR(10) CHARACTER SET KANJI1);

INSERT cstr ('abc', '92 abc

INSERT cstr ('abc', '92abcFunction Result

SELECT SUBSTR(c2, 2, 3) FROM cstr; '2 a'

SELECT SUBSTR(c1, 2, 2) FROM cstr; 'bc'

Example: Differences Between SUBSTR and SUBSTRING

Consider the following table:

 CREATE TABLE ctable1
 (c1 VARCHAR(11) CHARACTER SET KANJI1);

The following table shows the difference between SUBSTR and SUBSTRING in Teradata mode for
KANJI1 strings from KanjiEBCDIC client character set.

IF c1 contains … THEN this query … Returns …

MN<ABC >P SELECT SUBSTR(c1,2) FROM ctable1; N<ABC>P

SELECT SUBSTR(c1,3,8) FROM ctable1; <ABC>

SELECT SUBSTR(c1,4) FROM ctable1; ABC >P
Note:
The client application might not
be able to properly interpret
the resulting multibyte characters
because the shift out (<) is missing.

SELECT SUBSTRING(c1 FROM 2)
FROM ctable1;

N<ABC>P

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 594

IF c1 contains … THEN this query … Returns …

SELECT SUBSTRING(c1 FROM 3 FOR 8)
FROM ctable1;

<ABC>P

SELECT SUBSTRING(c1 FROM 4)
FROM ctable1;

<BC>P

Example: Using the KanjiEUC Client Character Set with the ctable1 Table

The following table shows examples for the KanjiEUC client character set, where ctable1 is the table
defined in "Example: Effect of the Order of SELECT Statements on Data Type" in Teradata Vantage™ -
SQL Data Manipulation Language, B035-1146.

IF c1 contains … THEN this query … Returns …

A ss2 B CD SELECT SUBSTR(c1,2) FROM ctable1; ss2 B CD

ss3 A ss2 B ss3 C ss2 D SELECT SUBSTR(c1,2,2) FROM ctable1; ss2 B ss3 C

Example: Using Examples for the KanjiShift-JIS Client Character Set

The following table shows examples for KanjiShift-JIS client character set, where ctable1 is the table
defined in "Example: Effect of the Order of SELECT Statements on Data Type" in Teradata Vantage™ -
SQL Data Manipulation Language, B035-1146.

IF c1 contains … THEN this query … Returns …

mnABC X SELECT SUBSTR(c1, 6, 1) FROM ctable1; X

SELECT SUBSTR(c1,4) FROM ctable1; BC X

Example: Applying the SUBSTRING Function to a CLOB Column

The following statement applies the SUBSTRING function to a CLOB column in table full_text and stores
the result in a CLOB column in table sub_text.

 INSERT sub_text (text)
 SELECT SUBSTRING (text FROM 9 FOR 128000)
 FROM full_text;

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 595

Related Information
• For CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language Syntax and

Examples, B035-1144.

TRANSLATE
Converts a character string or character string expression from one server character set to another server
character set.

TRANSLATE Function Syntax
TRANSLATE (
 character_string_expression
 USING source_repertoire_name
 [_encoding]
 TO target_repertoire_name
 [_suffix]
 [WITH ERROR]
)

Syntax Elements

character_string_expression
A character string or character string expression for which the hexadecimal representation
is to be returned.

If character_string_expression is not a character type, an error is returned.

source_repertoire_name
The source character set of the string to translate.

A value of LOCALE can be specified for source_repertoire_name to translate a character
string from LATIN or KANJI1 to UNICODE using a source repertoire determined by the
language support mode of the system and the client character set of the session.

_encoding
A literal for translating from KANJI1 to UNICODE that indicates a specific encoding
of KANJI1.

The _encoding option is not allowed if LOCALE is specified for source_repertoire_name
or target_repertoire_name.

If the translation is from these character sets:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 596

• KatakanaEBCDIC
• KanjiEBCDIC5026_0I
• KanjiEBCDIC5038_0I

Use the following value for _encoding: _KanjiEBCDIC

KanjiEUC_0U, use the following value for _encoding: _KanjiEUC

KanjiShiftJIS_0S, use the following value for _encoding: _KANJISJIS

ASCII or EBCDIC, use the following value for _encoding: _SBC

target_repertoire_name
The target character set of the string to translate.

A value of LOCALE can be specified for target_repertoire_name to translate a character
string from UNICODE to LATIN or KANJI1 using a target repertoire determined by the
language support mode of the system and the client character set of the session.

_suffix
Specifies that the translation maps some source characters to semantically
different characters.

For example, a translation that specifies the _Halfwidth suffix maps any character with a
halfwidth variant to that variant, and all fullwidth variants to their non-fullwidth counterparts.

The _suffix option also indicates the form of character data translated from UNICODE to the
KANJI1 server character set, for example, _KanjiEUC.

Valid values are:

• _KanjiEBCDIC
• _KanjiEUC
• _KANJISJIS
• _SBC
• _PadSpace
• _PadGraphic
• _Fullwidth
• _Halfwidth
• _FoldSpace
• _VarGraphic

The _suffix option is not allowed if LOCALE is specified for source_repertoire_name
or target_repertoire_name.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 597

WITH ERROR
Specifies that the translation replaces offending characters in the string with a designated
error character, instead of reporting an error.

Argument Types

Use TRANSLATE on character strings or character string expressions.

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts to
predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including TRANSLATE,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Result Type and Attributes
The default attributes for TRANSLATE (string USING source _TO_target) are as follows:

• If the argument is CHAR or VARCHAR, the result is VARCHAR(n) or CHARACTER SET target
• If the argument is CLOB, the result is CLOB(n) or CHARACTER SET target

where source_TO_target determines the character set value of target, according to the supported
translations in “Supported Translations Between Character Sets”.

If the string USING source _TO_target argument is null, the result is null.

TRANSLATE Usage Notes

Supported Translations for CLOB Strings

The following translations are supported for CLOB strings:

• LATIN_TO_UNICODE
• UNICODE_TO_LATIN

Supported Translations Between Character Sets

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes the
KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects is highly

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 598

restricted. Although many KANJI1 queries and applications may continue to operate, sites using KANJI1
should convert to another character set as soon as possible. For more information, see KANJI1 Character
Set in Teradata Vantage™ - Advanced SQL Engine International Character Set Support, B035-1125.

The following table lists the supported values that you can use for source_repertoire_name
_TO_target_repertoire_name to translate between server character sets.

Value of source _TO_target Source Character Set Target Character Set

GRAPHIC_TO_KANJISJIS GRAPHIC KANJISJIS

GRAPHIC_TO_LATIN GRAPHIC LATIN

GRAPHIC_TO_UNICODE GRAPHIC UNICODE

GRAPHIC_TO_UNICODE_PadSpace GRAPHIC UNICODE

KANJI1_KanjiEBCDIC_TO_UNICODE KANJI1 UNICODE

KANJI1_KanjiEUC_TO_UNICODE KANJI1 UNICODE

KANJI1_KANJISJIS_TO_UNICODE KANJI1 UNICODE

KANJI1_SBC_TO_UNICODE KANJI1 UNICODE

KANJISJIS_TO_GRAPHIC KANJISJIS GRAPHIC

KANJISJIS_TO_LATIN KANJISJIS LATIN

KANJISJIS_TO_UNICODE KANJISJIS UNICODE

LATIN_TO_GRAPHIC LATIN GRAPHIC

LATIN_TO_KANJISJIS LATIN KANJISJIS

LATIN_TO_UNICODE LATIN UNICODE

LOCALE_TO_UNICODE KANJI1 UNICODE

LATIN

UNICODE_TO_GRAPHIC UNICODE GRAPHIC

UNICODE_TO_GRAPHIC_PadGraphic UNICODE GRAPHIC

UNICODE_TO_GRAPHIC_VarGraphic UNICODE GRAPHIC

UNICODE_TO_KANJI1_KanjiEBCDIC UNICODE KANJI1

UNICODE_TO_KANJI1_KanjiEUC UNICODE KANJI1

UNICODE_TO_KANJI1_KANJISJIS UNICODE KANJI1

UNICODE_TO_KANJI1_SBC UNICODE KANJI1

UNICODE_TO_KANJISJIS UNICODE KANJISJIS

UNICODE_TO_LATIN UNICODE LATIN

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 599

Value of source _TO_target Source Character Set Target Character Set

UNICODE_TO_LOCALE UNICODE KANJI1

LATIN

UNICODE_TO_UNICODE_FoldSpace UNICODE UNICODE

UNICODE_TO_UNICODE_Fullwidth UNICODE UNICODE

UNICODE_TO_UNICODE_Halfwidth UNICODE UNICODE

UNICODE_TO_UNICODE_NFC UNICODE UNICODE

UNICODE_TO_UNICODE_NFD UNICODE UNICODE

UNICODE_TO_UNICODE_NFKC UNICODE UNICODE

UNICODE_TO_UNICODE_NFKD UNICODE UNICODE

If the value specified for source_repertoire_name _TO_target_repertoire_name is
UNICODE_TO_LOCALE or LOCALE_TO_UNICODE, the repertoire that the translation uses for
LOCALE is determined by the language support mode for the system and the client character set
for the session.

IF the
language
support
mode is … AND the session character set is …

THEN the
repertoire that
the translation
uses for
LOCALE is …

standard any LATIN

Japanese • ASCII
• LATIN1252_0A
• LATIN1_0A
• LATIN9_0A

• EBCDIC
• EBCDIC037_0E
• EBCDIC273_0E
• EBCDIC277_0E

KANJI1_SBC

• any other client character set with a name that has a suffix of _0A
or _0E

• a single-byte, extended site-defined client character set

• KANJIEBCDIC5026_0I
• KANJIEBCDIC5035_0I
• KATAKANAEBCDIC
• any other client character set with a name that has a suffix of _0I

KANJI1_
KANJIEBCDIC

• UTF8
• UTF16
• KanjiShiftJIS_0S
• any other client character set with a name that has a suffix of _0S
• a multibyte extended site-defined client character set

KANJI1_
KANJISJIS

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 600

IF the
language
support
mode is … AND the session character set is …

THEN the
repertoire that
the translation
uses for
LOCALE is …

• KanjiEUC_0U
• any other client character set with a name that has a suffix of _0U

KANJI1_
KanjiEUC

Source Characters That Generate Errors

The following table lists the characters that generate errors for specific source_repertoire_name
_TO_target_repertoire_name translations. For supported translations that do not appear in the table, only
the error character generates errors.

Value of source _TO_target Source Characters That
Generate Errors

• LATIN_TO_GRAPHIC
• KANJISJIS_TO_GRAPHIC
• UNICODE_TO_GRAPHIC

non-GRAPHIC

• LATIN_TO_KANJISJIS
• KANJI1_KANJISJIS_TO_UNICODE
• GRAPHIC_TO_KANJISJIS
• UNICODE_TO_KANJI1_KANJISJIS
• UNICODE_TO_KANJISJIS
• LOCALE_TO_UNICODE or UNICODE_TO_LOCALE where the

repertoire that the translation uses for LOCALE is KANJI1_KANJISJIS

non-KANJISJIS

• KANJI1_KanjiEBCDIC_TO_UNICODE
• UNICODE_TO_KANJI1_KanjiEBCDIC
• LOCALE_TO_UNICODE or UNICODE_TO_LOCALE where the

repertoire that the translation uses for LOCALE is KANJI1_KanjiEBCDIC

non-KanjiEBCDIC
KANJI1 is very permissive,
so there may be characters
outside the defined region
of the encoding as well as
illegal form-of-use errors.

• KANJI1_KanjiEUC_TO_UNICODE
• UNICODE_TO_KANJI1_KanjiEUC
• LOCALE_TO_UNICODE or UNICODE_TO_LOCALE where the

repertoire that the translation uses for LOCALE is KANJI1_KanjiEUC

non-KanjiEUC

• KANJISJIS_TO_LATIN
• GRAPHIC_TO_LATIN
• UNICODE_TO_LATIN
• UNICODE_TO_KANJI1_SBC

non-LATIN

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 601

Value of source _TO_target Source Characters That
Generate Errors

• UNICODE_TO_LOCALE where the repertoire that the translation uses
for LOCALE is LATIN or KANJI1_SBC

Error Characters Assigned by the WITH ERROR Option

The error characters substituted for offending characters that cannot be translated to a designated target
character set are defined in the following table.

Target Character Set Error Character

LATIN 0x1A

KANJI1 0x1A

KANJISJIS 0x1A

UNICODE U+FFFD

GRAPHIC U+FFFD

Suffixes

The _suffix variable is used for translations that map source characters to semantically different
characters. They indicate the nature of the semantic transformation.

The translations perform minor, yet essential, semantic changes to the data, such as halfwidth/fullwidth
conversions, and Space folding modification.

The _suffix variable also indicates the form of character data translated from UNICODE
to the KANJI1 server character set in one of the four possible encodings, for
example Unicode_TO_Kanji1_KanjiEBCDIC.

This form of translation is also useful for migrating object names. For information, see Migration.

Translations Between Fullwidth and Halfwidth Character Data

UNICODE has an area known as the compatibility zone. Among other things, this zone includes halfwidth
and fullwidth variants of characters that exist elsewhere in the standard.

Translations between fullwidth and halfwidth are provided by the following source_repertoire_name
_TO_target_repertoire_name values.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 602

source _TO_target Meaning

UNICODE_TO_
UNICODE_Halfwidth

Maps the fullwidth characters of Unicode to the halfwidth characters of Unicode.
Other characters remain unchanged by the translation.
See UNICODE to UNICODE_Halfwidth, B035-1201.

UNICODE_TO_
UNICODE_Fullwidth

Maps the halfwidth characters of Unicode to the fullwidth characters of Unicode.
At the same time, it maps any character defined by the standard as a halfwidth
variant to its non-halfwidth counterpart outside the compatibility zone.
Other characters remain unchanged by the translation.
See UNICODE to UNICODE_Halfwidth, B035-1201.

UNICODE_TO_
GRAPHIC_
VarGraphic

This translation is an ANSI equivalent to the VARGRAPHIC function.
See UNICODE to Vargraphic, B0035-1057.

Note:
The mapping and translation files are readable, but are intended to be used by software. In most
cases, items not in a mapping file are mapped to themselves.

Also note that these translations are useful for maintaining more information as a step in translating
GRAPHIC to LATIN and vice versa.

Space Folding

Space folding is performed via UNICODE_TO_UNICODE_FoldSpace. All characters defined as space
are converted to U+0020.

All other characters are left unchanged.

UNICODE Normalization Form Translations

Teradata supports translation using the 4 UNICODE normalization forms: NFC, NFD, NFKC, and NFKD,
which correspond to the ANSI NORMALIZE function. You can perform these translations using:

• UNICODE_TO_UNICODE_NFC
• UNICODE_TO_UNICODE_NFD
• UNICODE_TO_UNICODE_NFKC
• UNICODE_TO_UNICODE_NFKD

Because normalization functions can cause errors due to not preserving BMP characters, you should use
the TRANSLATE_CHK function to verify a clean translation.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 603

Pad Character Translation

The following translations do not translate the pad character.

source _TO_target Pad Character Translation

GRAPHIC_TO_UNICODE A GRAPHIC string that includes an Ideographic Space is translated to a
UNICODE string with an Ideographic Space.

UNICODE_TO_GRAPHIC A UNICODE string with a Space character generates an error when
translated to GRAPHIC.

If you require pad character translation, use one of the following translations.

source _TO_target Pad Character Translation

GRAPHIC_TO_UNICODE_PadSpace Converts all occurrences of Ideographic Space (U+3000) to
Space (U+0020).

UNICODE_TO_
GRAPHIC_PadGraphic

Converts all occurrences of Space to Ideographic Space.

Other characters are not affected. Note that the position of a character does not affect the translation, so
not only trailing pad characters are modified.

Migration

During the migration process, any GRAPHIC data in the old form must be translated to the new
canonical form. Note that this involves converting the pad characters from Null (U+0000) to Ideographic
Space (U+3000).

Implicit Character Data Type Conversion

TRANSLATE performs implicit conversion if the string server character set does not match the type
implied by source_repertoire_name.

An implicit conversion generates an error if a character from character_string_expression has no
corresponding character in the source_repertoire_name type. This holds regardless of whether you
specify the WITH ERROR option.

For example, the following function first translates the string from UNICODE to LATIN, because Vantage
treats literals as UNICODE, and then translates the string from LATIN to KANJISJIS. However, the
translation generates an error because the last character is not in the LATIN repertoire.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 604

 ...
 TRANSLATE('abc ' USING LATIN_TO_KanjiSJIS WITH ERROR) ...

To circumvent the problem if error character substitution is acceptable, specify two levels of translation,
as used in the following example.

 ...
 TRANSLATE((TRANSLATE(_UNICODE 'abc' USING UNICODE_TO_LATIN WITH
ERROR)) USING LATIN_TO_KanjiSJIS WITH ERROR)

Examples

Function Result Type of the Result

TRANSLATE('abc' USING UNICODE_TO_LATIN) 'abc' VARCHAR(3)
CHARACTER SET LATIN

TRANSLATE('abc' USING UNICODE_TO_
UNICODE_Fullwidth)

'abc ' VARCHAR(3)
CHARACTER SET UNICODE

TRANSLATE('abc ' USING UNICODE_TO_LATIN
WITH ERROR)
where ε represents the designated error character for LATIN
(0x1A).

'abcε ' VARCHAR(4)
CHARACTER SET LATIN

Related Information
• For details about target_repertoire_name expression, see Supported Translations Between

Character Sets.
• For details about errors, see Error Characters Assigned by the WITH ERROR Option.
• For details on the mappings that Vantage uses for the TRANSLATE function, see Teradata Vantage™

- Advanced SQL Engine International Character Set Support, B035-1125.
• For details, see Teradata Vantage™ - Database Utilities, B035-1102.
• For information on implicit type conversion of UDTs, see "Data Type Conversions" in Teradata

Vantage™ - Data Types and Literals, B035-1143.
• For details, see Supported Translations Between Character Sets.
• For details on mappings or on which characters are converted to U+0020, see Teradata Vantage™ -

Advanced SQL Engine International Character Set Support, B035-1125.

TRANSLATE_CHK
Determines if a TRANSLATE conversion can be performed without producing errors; returns an integer test
result. Use TRANSLATE_CHK to filter untranslatable strings. You can choose to select translatable strings
only, or untranslatable strings only, depending on how you form your SELECT statement.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 605

Result Meaning

0 The string can be translated without error.

NULL The string result is null.

anything else The position of the first character in the string causing a translation error.
The value is a logical position for arguments of type LATIN, UNICODE, KANJISJIS, and
GRAPHIC. The value is a physical position for arguments of type KANJI1.

TRANSLATE_CHK Function Syntax
TRANSLATE_CHK (
 character_string_expression
 USING source_repertoire_name
 [_encoding]
 TO target_repertoire_name
 [_suffix]
)

Syntax Elements

character_string_expression
A character string or character string expression for which the hexadecimal representation
is to be returned.

If character_string_expression is not a character type, an error is returned.

source_repertoire_name
The source character set of the string to translate.

A value of LOCALE can be specified for source_repertoire_name to translate a character
string from LATIN or KANJI1 to UNICODE using a source repertoire determined by the
language support mode of the system and the client character set of the session.

_encoding
A literal for translating from KANJI1 to UNICODE that indicates a specific encoding
of KANJI1.

The _encoding option is not allowed if LOCALE is specified for source_repertoire_name
or target_repertoire_name.

If the translation is from these character sets:

• KatakanaEBCDIC
• KanjiEBCDIC5026_0I

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 606

• KanjiEBCDIC5038_0I

Use the following value for _encoding: _KanjiEBCDIC

KanjiEUC_0U, use the following value for _encoding: _KanjiEUC

KanjiShiftJIS_0S, use the following value for _encoding: _KANJISJIS

ASCII or EBCDIC, use the following value for _encoding: _SBC

target_repertoire_name
The target character set of the string to translate.

A value of LOCALE can be specified for target_repertoire_name to translate a character
string from UNICODE to LATIN or KANJI1 using a target repertoire determined by the
language support mode of the system and the client character set of the session.

_suffix
Specifies that the translation maps some source characters to semantically
different characters.

For example, a translation that specifies the _Halfwidth suffix maps any character with a
halfwidth variant to that variant, and all fullwidth variants to their non-fullwidth counterparts.

The _suffix option also indicates the form of character data translated from UNICODE to the
KANJI1 server character set, for example, _KanjiEUC.

Valid values are:

• _KanjiEBCDIC
• _KanjiEUC
• _KANJISJIS
• _SBC
• _PadSpace
• _PadGraphic
• _Fullwidth
• _Halfwidth
• _FoldSpace
• _VarGraphic

The _suffix option is not allowed if LOCALE is specified for source_repertoire_name
or target_repertoire_name.

Argument Types

Use TRANSLATE_CHK on character strings and character string expressions.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 607

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts to
predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including TRANSLATE_CHK,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
Default attributes for TRANSLATE_CHK (string USING source _TO_target) are:

Data Type Heading

INTEGER Translate_Chk(string using source _to_target)

If the string USING source _TO_target argument is null, the result is null.

TRANSLATE_CHK Usage Notes

Checking UNICODE Normalization Form Translations

When using TRANSLATE_CHK to verify UNICODE normalization form translations, any valid Unicode
string can be translated to any of the normalization forms. A successful result (0) is expected unless
the compatibility ideographs U+FA6C, U+FACF, U+FAD0, U+FAD1, U+FAD5, U+FAD6, or U+FAD7 are
present, because these characters normalize outside the BMP, that is, outside the range U+10000
to U+10FFF.

For all normalization forms, these characters normalize as follows:

Ideograph Normalized Form

U+FA6C U+242EE

U+FACF, U+2284A

U+FAD0 U+22844

U+FAD1 U+233D5

U+FAD5 U+25249

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 608

Ideograph Normalized Form

U+FAD6 U+25CD0

U+FAD7 U+27ED3

Examples

Example

Function Result

TRANSLATE_CHK(‘abc’ USING UNICODE_TO_LATIN) 0

TRANSLATE_CHK(‘abc ’ USING UNICODE_TO_LATIN) 4

Consider the following table definition:

 CREATE TABLE table_1
 (cunicode CHARACTER(64) CHARACTER SET UNICODE);

To find all values in cunicode that can be translated to LATIN, use the following statement:

 SELECT cunicode
 FROM table_1
 WHERE TRANSLATE_CHK(cunicode USING Unicode_TO_Latin) = 0;

Consider the following table definitions:

 CREATE TABLE table_1
 (ckanji1 VARCHAR(20) CHARACTER SET KANJI1);

 CREATE TABLE table_2
 (cunicode CHARACTER(20) CHARACTER SET UNICODE);

Assume table_1 is populated from the KanjiEUC client character set.

To translate the data in ckanji1 in table_1 to UNICODE, and populate table_2 with translations that have
no errors, use the following statement:

 INSERT INTO table_2
 SELECT TRANSLATE(ckanji1 USING Kanji1_KanjiEUC_TO_Unicode)

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 609

 FROM table_1
 WHERE TRANSLATE_CHK(ckanji1 USING Kanji_KanjiEUC_TO_Unicode) = 0;

After converting column ckanji1 in table_1 to column cunicode in table_2, you want to find all the fields in
table_1 that could not be translated.

 SELECT ckanji1
 FROM table_1
 WHERE TRANSLATE_CHK(ckanji1 USING Kanji1_KanjiEUC_TO_Unicode) <> 0;

Example

Consider the following table definition:

 CREATE TABLE table_1
 (cunicode CHARACTER(64) CHARACTER SET UNICODE);

To find all values in cunicode that can be translated to LATIN, use the following statement:

 SELECT cunicode
 FROM table_1
 WHERE TRANSLATE_CHK(cunicode USING Unicode_TO_Latin) = 0;

Example

Consider the following table definitions:

 CREATE TABLE table_1
 (ckanji1 VARCHAR(20) CHARACTER SET KANJI1);

 CREATE TABLE table_2
 (cunicode CHARACTER(20) CHARACTER SET UNICODE);

Assume table_1 is populated from the KanjiEUC client character set.

To translate the data in ckanji1 in table_1 to UNICODE, and populate table_2 with translations that have
no errors, use the following statement:

 INSERT INTO table_2
 SELECT TRANSLATE(ckanji1 USING Kanji1_KanjiEUC_TO_Unicode)
 FROM table_1
 WHERE TRANSLATE_CHK(ckanji1 USING Kanji_KanjiEUC_TO_Unicode) = 0;

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 610

Example

After converting column ckanji1 in table_1 to column cunicode in table_2, you want to find all the fields in
table_1 that could not be translated.

 SELECT ckanji1
 FROM table_1
 WHERE TRANSLATE_CHK(ckanji1 USING Kanji1_KanjiEUC_TO_Unicode) <> 0;

Related Information
• For information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language Syntax

and Examples, B035-1144.
• To disable this extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record

to TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.
• For information on implicit type conversion of UDTs, see "Data Type Conversions" in Teradata

Vantage™ - Data Types and Literals, B035-1143.

TRIM
Takes a character or byte string_expression argument, trims the specified pad characters or bytes, and
returns the trimmed string.

TRIM Function Syntax
TRIM (
 [{ BOTH | TRAILING | LEADING } [trim_expression] FROM]
 [character_set]
 string_expression
)

Syntax Elements

BOTH
TRAILING
LEADING

Specifies how to trim the specified trim character or byte from string_expression.

• BOTH means trim both trailing and leading characters or bytes.
• TRAILING means trim only trailing characters or bytes.
• LEADING mens trim only leading characters or bytes.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 611

If you omit this option, the default is BOTH, and the default trim character is a null byte for
byte types and a pad character for character types.

trim_expression
The specific character or byte to trim from the head, tail, or both, of string_expression.

The expression must evaluate to a single character.

You cannot specify trim_expression without also specifying BOTH, TRAILING, or LEADING.

You cannot specify a trim_expression of type KANJI1, nor can you apply a trim_expression
to a string_expression of type KANJI1.

character_set
The name of the server character set to associate with the string expression.

Valid values are:

• _Latin, which is the LATIN server character set
• _Unicode, which is the UNICODE server character set
• _KanjiSJIS, which is the KANJISJIS server character set
• _Graphic, which is the GRAPHIC server character set

string_expression
A byte or character string or string expression to be trimmed.

Argument Types and Rules

The trim_expression argument must evaluate to a single byte that has a byte data type or single character
that has a character data type.

TRIM operates on the following types of string_expression arguments:

• Character, except for CLOB
• Byte, except for BLOB
• Numeric

If a numeric expression is used as the string_expression argument, it is converted implicitly to
CHARACTER type.

• UDTs that have implicit casts to any of the following predefined types:

◦ Character
◦ Numeric
◦ Byte
◦ DATE

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 612

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including TRIM, is a
Teradata extension to the ANSI SQL standard.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
Here are the default result type and attributes for TRIM(string_expression):

• If string_expression is a byte string, the result type is VARBYTE.
• If the string_expression is a numeric expression or character string, the result type is VARCHAR.

It is possible for the length of the result to be zero.

The server character set of the result is the same as the argument.

If the string_expression argument is null, the result is null.

TRIM Usage Notes

Concatenation With TRIM

The TRIM function is typically used with the concatenation operator to remove trailing pad characters or
trailing bytes containing binary 00 from the concatenated string.

If the TRIM function is specified for character data types, leading, trailing, or leading and trailing pad
characters are suppressed in the concatenated string, according to which syntax is used.

Examples

Example

If the Names table includes the columns first_name and last_name, which contain the
following information:

 first_name (CHAR(12)) has a value of 'Mary '
 last_name (CHAR(12)) has a value of 'Jones '

then this statement:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 613

 SELECT TRIM (BOTH FROM last_name) || ', ' || TRIM(BOTH FROM first_name)
 FROM names ;

returns the following string (note that the seven trailing blanks at the end of string Jones, and the eight
trailing blanks at the end of string Mary are not included in the result):

 'Jones, Mary'

If the TRIM function is removed, the statement:

 SELECT last_name || ', ' || first_name
 FROM names;

returns trailing blanks in the string:

 'Jones , Mary '

Example

Assume column a is BYTE(4) and column b is VARBYTE(10).

If these columns contained the following values:

 a b
 ------------ ---------
 78790000 43440000
 68690000 3200
 12550000 332200

then this function:

 SELECT TRIM (TRAILING FROM a) || TRIM (TRAILING FROM b) FROM ...

returns:

 78794344
 686932
 12553322

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 614

Example

The following statement trims trailing SEMICOLON characters from the specified string.

 SELECT TRIM(TRAILING ';' FROM textfield) FROM texttable;

Example: Using TRIM Functions

The following table illustrates several more complicated TRIM functions.

Function Result

SELECT TRIM(LEADING 'a' FROM 'aaabcd'); 'bcd'

CREATE TABLE t2
 (i1 INTEGER, c1 CHAR(6), c2 CHAR(1));
INSERT t2 (1, 'aaabcd', 'a');
SELECT TRIM(LEADING c2 FROM c1) FROM t2;

'bcd'

CREATE TABLE t3
 (i1 INTEGER, c1 CHAR(6) CHAR SET UNICODE);
INSERT t3 (1, _Unicode '006100610061006200630064'XC);
SELECT TRIM(LEADING _Unicode '0061'XC FROM t3.c1);

'bcd'

SELECT TRIM(_Unicode 'ΔΔ abc ΔΔΔ '); 'abc '

SELECT TRIM(_Unicode 'ΔΔ abc ΔΔ Δ '); 'abc ΔΔ '
Δ (GRAPHIC pad) is not removed.

CREATE TABLE t1
 (c1 CHARACTER(6) CHARACTER SET GRAPHIC);
INSERT t1 (_Graphic 'abc ΔΔ ');
SELECT TRIM(c1) from t1;

'abc '
Δ (GRAPHIC pad) is removed because
the operand of the TRIM function is of
type GRAPHIC.

Related Information
For more information, see Teradata Vantage™ - SQL Data Definition Language Syntax and
Examples, B035-1144.

UPPER/UCASE
Returns a character string identical to character_string_expression, except that all lowercase letters are
replaced by their uppercase equivalents.

UPPER/UCASE does not convert multibyte characters to uppercase in the KANJI1 server character set.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 615

UPPER/UCASE Function Syntax
{ UPPER | UCASE } (character_string_expression)

Syntax Elements

character_string_expression
A character string or character string expression for which all lowercase characters are to be
replaced by their uppercase equivalents.

Argument Types

UPPER/UCASE is valid only for character strings and character string expressions. The function does not
accept CLOBs and non-character arguments.

By default, Vantage performs implicit type conversion on UDT arguments that have implicit casts to
predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition
Language Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including UPPER/UCASE,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type and Attributes
Here are the default result type and attributes for UPPER(arg)/UCASE(arg).

Data Type Heading

Same type as arg UPPER(arg)/UCASE(arg)

Usage Notes
The UPPER/UCASE function allows users who want ANSI portability to have case blind comparisons with
ANSI-compliant syntax.

This function is treated the same as the following obsolete form:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 616

 expression
 (UPPERCASE)

You can also replace characters with lowercase equivalents. For more information, see LOWER.

Examples

Example: Using a Table Definition with CASESPECIFIC Attributes

Consider the following table definition where the character columns have CASESPECIFIC attributes:

 CREATE TABLE employee
 (last_name CHAR(32) CASESPECIFIC
 ,city CHAR(32) CASESPECIFIC
 ,emp_id CHAR(9) CASESPECIFIC
 ,emp_ssn CHAR(9) CASESPECIFIC);

To compare on a case blind basis:

 SELECT emp_id
 FROM employee
 WHERE UPPER(emp_id) = UPPER(emp_ssn);

To compare with a string literal:

 SELECT emp_id
 FROM employee
 WHERE UPPER(city) = 'MINNEAPOLIS';

Teradata SQL also has the data type attribute NOT CASESPECIFIC, which allows case blind
comparisons. Note that the data type attributes CASESPECIFIC and NOT CASESPECIFIC are Teradata
extensions to the ANSI standard.

Example: Using UPPER to Store Values

The use of UPPER to store values is shown in the following examples:

 INSERT INTO names
 SELECT UPPER(last_name),UPPER(first_name)
 FROM newnames;

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 617

or

 USING (last_name CHAR(20),first_name CHAR(20))
 INSERT INTO names
 (UPPER(:last_name), UPPER(:first_name));

Example: Converting Single Byte Characters to Uppercase

This example shows that in the KANJI1 server character set, only single byte characters are converted
to uppercase.

 SELECT UPPER('abcd ');

The result is 'ABCD '.

Related Information
• For information on implicit type conversion, see "Data Type Conversions" in Teradata Vantage™ -

Data Types and Literals, B035-1143.
• To disable this extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record

to TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.

VARGRAPHIC
Returns the VARGRAPHIC representation of the character data in character_string_expression.

VARGRAPHIC Function Syntax
VARGRAPHIC (character_string_expression)

Syntax Elements

character_string_expression
A character string or character string expression for which the VARGRAPHIC representation
is to be returned.

Argument Types

VARGRAPHIC operates on the following types of arguments:

• Character, except for CLOB
• Numeric

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 618

If the argument is numeric, it is implicitly converted to a character type.

• UDTs that have implicit casts to any of the following predefined types:

◦ Character
◦ Numeric
◦ DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause.

Implicit type conversion of UDTs for system operators and functions, including VARGRAPHIC,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
Here are the default result type and attributes for VARGRAPHIC(arg):

Data Type Heading

VARCHAR(n) CHARACTER SET GRAPHIC Vargraphic(arg)

VARGRAPHIC Usage Notes

Rules

VARGRAPHIC reports an error if the session character set is UTF8 or a single-byte character set, such
as ASCII. If the argument is of type KANJI1, the only valid session character set is KanjiEBCDIC.

All characters in the string are converted into one or more graphics that are valid for the character set of
the current session. For more information, see VARGRAPHIC Function Conversion Tables.

The argument cannot be of type GRAPHIC.

A result that exceeds the maximum length of a VARCHAR CHARACTER SET GRAPHIC data type
generates an error.

VARGRAPHIC cannot appear as the first argument in a user-defined method invocation.

Specific rules apply to the server character set of character_string_expression.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 619

IF the string
specifies this
server
character set
… THEN VARGRAPHIC operates as follows …

KANJI1 Shift-Out/Shift-In characters in the character_string_expression do not appear in the
result string. They are required only to indicate the transition between single byte
characters and multibyte characters.
Improperly placed Shift-Out/Shift-Ins are replaced by the illegal character for the
character set of the session.
The SPACE CHARACTER translates to the IDEOGRAPHIC SPACE CHARACTER.

UNICODE • Characters with fullwidth representation in the UNICODE compatibility zone translate
to that fullwidth representation.

• Halfwidth characters from the compatibility zone translate to the corresponding
characters outside the compatibility zone.

• The SPACE CHARACTER translates to the IDEOGRAPHIC SPACE CHARACTER.
• The control characters U+0000 - U+001F and character U+007F are converted to the

VARGRAPHIC error character.
• Other characters are left untranslated.

anything else The result is as if string were first converted to UNICODE and then translated according
to the rules listed for UNICODE above.

In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes the
KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects is highly
restricted. Although many KANJI1 queries and applications may continue to operate, sites using KANJI1
should convert to another character set as soon as possible. For more information, see KANJI1 Character
Set in Teradata Vantage™ - Advanced SQL Engine International Character Set Support, B035-1125.

VARGRAPHIC Function Conversion Tables

The following table shows the translation of a single byte character to its double byte equivalent by the
VARGRAPHIC function. Values in columns 2, 3, and 4 are hexadecimal.

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

00 FEFE FEFE

01 FEFE FEFE

02 FEFE FEFE

03 FEFE FEFE

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 620

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

04 FEFE FEFE

05 FEFE FEFE

06 FEFE FEFE

07 FEFE FEFE

08 FEFE FEFE

09 FEFE FEFE

0A FEFE FEFE

0B FEFE FEFE

0C FEFE FEFE

0D FEFE FEFE

0E For KanjiEBCDIC, the SO
/SI is not placed in the
output of vargraphic function.
In particular, a single SO
character will not generate any
output, or strictly speaking will
generate a string with 0 length.

N/A N/A

0F For KanjiEBCDIC, the SO/SI
is not placed in the output of
vargraphic function. However,
if the SI character appears
in the input without matching
SO, we will generate FEFE for
that SI.

FEFE FEFE

10 FEFE FEFE

11 £ (Pound Sterling sign) 424A 424A

12 ¬ (Logical NOT) 425F FEFE

13 \ 43E0 FEFE

14 ~ 43A1 FEFE

15 FEFE FEFE

16 FEFE FEFE

17 FEFE FEFE

18 FEFE FEFE

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 621

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

19 FEFE FEFE

1A FEFE FEFE

1B FEFE FEFE

1C FEFE FEFE

1D FEFE FEFE

1E FEFE FEFE

1F FEFE FEFE

20 4040 4040

21 ! 425A 425A

22 " 4472 4472

23 # 427B 427B

24 $ 42E0 42E0

25 % 426C 426C

26 & 4250 4250

27 ' 4471 4471

28 (424D 424D

29) 425D 425D

2A * 425C 425C

2B + 424E 424E

2C , 426B 426B

2D - 4260 4260

2E . 424B 424B

2F / 4261 4261

30 0 42F0 42F0

31 1 42F1 42F1

32 2 42F2 42F2

33 3 42F3 43F3

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 622

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

34 4 42F4 42F4

35 5 42F5 42F5

36 6 42F6 42F6

37 7 42F7 42F7

38 8 42F8 42F8

39 9 42F9 42F9

3A : 427A 427A

3B ; 425E 425E

3C < 424C 424C

3D = 427E 427E

3E > 426E 426E

3F ? 426F 426F

40 @ 427C 427C

41 A 42C1 42C1

42 B 42C2 42C2

43 C 42C3 42C3

44 D 42C4 42C4

45 E 42C5 42C5

46 F 42C6 42C6

47 G 42C7 42C7

48 H 42C8 42C8

49 I 42C9 42C9

4A J 42D1 42D1

4B K 42D2 42D2

4C L 42D3 42D3

4D M 42D4 42D4

4E N 42D5 42D5

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 623

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

4F O 42D6 42D6

50 P 42D7 42D7

51 Q 42D8 42D8

52 R 42D9 42D9

53 S 42E2 42E2

54 T 42E3 42E3

55 U 42E4 42E4

56 V 42E5 42E5

57 W 42E6 42E6

58 X 42E7 42E7

59 Y 42E8 42E8

5A Z 42E9 42E9

5B [4444 FEFE

5C \ 425B 425B

5D] 4445 FEFE

5E ^ 4470 425F

5F _ 426D 426D

60 ` 4279 FEFE

61 a 4281 FEFE

62 b 4282 FEFE

63 c 4283 FEFE

64 d 4284 FEFE

65 e 4285 FEFE

66 f 4286 FEFE

67 g 4287 FEFE

68 h 4288 FEFE

69 i 4289 FEFE

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 624

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

6A j 4291 FEFE

6B k 4292 FEFE

6C l 4293 FEFE

6D m 4294 FEFE

6E n 4295 FEFE

6F o 4296 FEFE

70 p 4297 FEFE

71 q 4298 FEFE

72 r 4299 FEFE

73 s 42A2 FEFE

74 t 42A3 FEFE

75 u 42A4 FEFE

76 v 42A5 FEFE

77 w 42A6 FEFE

78 x 42A7 FEFE

79 y 42A8 FEFE

7A z 42A9 FEFE

7B { 42C0 FEFE

7C | 424F 424F

7D } 42D0 FEFE

7E - (Overline) 42A1 42A1

7F FEFE FEFE

80 FEFE FEFE

81 FEFE FEFE

82 FEFE FEFE

83 FEFE FEFE

84 FEFE FEFE

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 625

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

85 FEFE FEFE

86 FEFE FEFE

87 FEFE FEFE

88 FEFE FEFE

89 FEFE FEFE

8A FEFE FEFE

8B FEFE FEFE

8C FEFE FEFE

8D FEFE FEFE

8E FEFE FEFE

8F FEFE FEFE

90 FEFE FEFE

91 FEFE FEFE

92 FEFE FEFE

93 FEFE FEFE

94 FEFE FEFE

95 FEFE FEFE

96 FEFE FEFE

97 FEFE FEFE

98 FEFE FEFE

99 FEFE FEFE

9A FEFE FEFE

9B FEFE FEFE

9C FEFE FEFE

9D FEFE FEFE

9E FEFE FEFE

9F FEFE FEFE

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 626

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

A0 FEFE FEFE

A1 Ideographic period 4341 4341

A2 Left corner bracket 4342 4342

A3 Right corner bracket 4343 4343

A4 Ideographic comma 4344 4344

A5 Katakana middle dot 4345 4345

A6 Katakana letter WO 4346 4346

A7 Katakana letter A 4347 4347

A8 Katakana letter small I 4348 4348

A9 Katakana letter small U 4349 4349

AA Katakana letter small E 4351 4351

AB Katakana letter small O 4352 4352

AC Katakana letter small YA 4353 4353

AD Katakana letter small YU 5454 4354

AE Katakana letter small YO 4355 4355

AF Katakana letter small WO 4356 4356

B0 Katakana-Hiragana prolonged
sound mark

4358 4358

B1 A 4381 4381

B2 I 4382 4382

B3 U 4383 4383

B4 E 4384 4384

B5 O 4385 4385

B6 KA 4386 4386

B7 KI 4387 4387

B8 KU 4388 4388

B9 KE 4389 4389

BA KO 438A 438A

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 627

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

BB SA 438C 438C

BC SHI 438D 438D

BD SU 438E 438E

BE SEE 438F 438F

BF SO 4390 4390

C0 TAI 4391 4391

C1 CHI 4392 4392

C2 TSU 4393 4393

C3 TE 4394 4394

C4 TO 4395 4395

C5 NA 4396 4396

C6 NI 4397 4397

C7 NU 4398 4398

C8 NE 4399 4399

C9 NO 439A 439A

CA HA 439D 439D

CB HI 439E 439E

CC FU 439F 439F

CD HE 43A2 43A2

CE HO 43A3 43A3

CF MA 43A4 43A4

D0 MI 43A5 43A5

D1 MU 43A6 43A6

D2 ME 43A7 43A7

D3 MO 43A8 43A8

D4 YA 43A9 43A9

D5 YU 43AA 43AA

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 628

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

D6 YO 43AC 43AC

D7 RA 43AD 43AD

D8 RI 43AE 43AE

D9 RU 43AF 43AF

DA RE 43BA 43BA

DB RO 43BB 43BB

DC WA 43BC 43BC

DD N 43BD 43BD

DE Katakana-Hiragana voiced
sound mark

43BE 43BE

DF Katakana-Hiragana semi-voice
sound mark

43BF 43BF

E0 FEFE FEFE

E1 FEFE FEFE

E2 FEFE FEFE

E3 FEFE FEFE

E4 FEFE FEFE

E5 FEFE FEFE

E6 FEFE FEFE

E7 FEFE FEFE

E8 FEFE FEFE

E9 FEFE FEFE

EA FEFE FEFE

EB FEFE FEFE

EC FEFE FEFE

ED FEFE FEFE

EE FEFE FEFE

EF FEFE FEFE

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 629

Single Byte Character Double Byte Equivalent

JIS Internal Code JIS X 0201
Printable Character KanjiEBCDIC 5026/5035 Katakana EBCDIC

F0 FEFE FEFE

F1 FEFE FEFE

F2 FEFE FEFE

F3 FEFE FEFE

F4 FEFE FEFE

F5 FEFE FEFE

F6 FEFE FEFE

F7 FEFE FEFE

F8 FEFE FEFE

F9 FEFE FEFE

FA FEFE FEFE

FB FEFE FEFE

BC FEFE FEFE

FD FEFE FEFE

FE FEFE FEFE

FF FEFE FEFE

Examples

Example

The following table shows examples of converting strings that use the UNICODE and LATIN server
character sets to GRAPHIC data.

Function Result

VARGRAPHIC('92 abcΔ ') '92 abc Δ '

VARGRAPHIC('abc') 'abc '

Consider the following table definition with two character columns that use the KANJI1 server
character set:

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 630

 CREATE TABLE t1
 (c1 VARCHAR(12) CHARACTER SET KANJI1
 ,c2 VARCHAR(12) CHARACTER SET KANJI1);

Use the KanjiEBCDIC client character set and insert the following strings:

 INSERT t1 ('de
f', 'gH<ABC
>X
');

Convert the strings to GRAPHIC data:

Function Result

SELECT VARGRAPHIC (c1) FROM t1; 'def '

SELECT VARGRAPHIC (c2) FROM t1; 'gH ABCX '
(The single byte Hankaku Katakana X is converted to double
byte X .)

Example

Consider the following table definition with two character columns that use the KANJI1 server
character set:

 CREATE TABLE t1
 (c1 VARCHAR(12) CHARACTER SET KANJI1
 ,c2 VARCHAR(12) CHARACTER SET KANJI1);

Use the KanjiEBCDIC client character set and insert the following strings:

 INSERT t1 ('de
f', 'gH<ABC
>X
');

Convert the strings to GRAPHIC data:

Function Result

SELECT VARGRAPHIC (c1) FROM t1; 'def '

SELECT VARGRAPHIC (c2) FROM t1; 'gH ABCX '

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 631

Function Result

(The single byte Hankaku Katakana X is converted to double
byte X .)

Related Information
• For more information on CREATE CAST, see Teradata Vantage™ - SQL Data Definition Language

Syntax and Examples, B035-1144.

15: String Operators and Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 632

SQL UDF
A user-defined function is written using regular SQL expressions, and is used like a standard SQL function.

Self-referencing, forward-referencing, and circular-referencing SQL UDFs are not allowed.

SQL UDF Function Syntax
udf_name ([argument [,...]])

Syntax Elements

udf_name
The name of the SQL UDF.

argument
A valid SQL expression.

Required Privileges
You must have EXECUTE FUNCTION privilege on the function or on the database containing the function.

You can specify an SQL SECURITY clause with the DEFINER option in the CREATE/REPLACE
FUNCTION statement. This option is the default for an SQL UDF. SQL SECURITY DEFINER means that
when an SQL UDF is invoked, Vantage verifies that the immediate owner and the creator of the UDF have
the appropriate privileges on the underlying database objects referenced in the UDF. If the creator does not
exist when the privileges are checked, an error is returned.

To invoke a UDF that takes a UDT argument or returns a UDT, you must have the UDTUSAGE privilege
on the SYSUDTLIB database or on the specified UDT.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata extensions.

The requirement that parentheses appear when the argument list is empty is a Teradata extension to
preserve compatibility with existing applications.

User-Defined Functions

16

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 633

Usage Notes
An SQL UDF is a function that is defined by a user and is written using SQL expressions. When Vantage
evaluates an SQL UDF expression, it invokes the function with the arguments passed to it. The following
rules apply to the arguments in the function call:

• The arguments must be comma-separated expressions in the same order as the parameters declared
in the function.

• The number of arguments passed to the SQL UDF must be the same as the number of parameters
declared in the function.

• The data types of the arguments must be compatible with the corresponding parameter declarations
in the function and follow the precedence rules that apply to compatible types.

To pass an argument that is not compatible with the corresponding parameter type, use CAST to
explicitly convert the argument to the proper type. For more information, see "CAST in Explicit Data
Type Conversions" in Teradata Vantage™ - Data Types and Literals, B035-1143.

• A NULL argument is compatible with a parameter of any data type. You can pass a NULL argument
explicitly or by omitting the argument.

• Any form of SQL expression can be used as an argument with three important rules:

◦ The SQL expression must not be a Boolean value expression (that is, a conditional expression).
◦ If the expression is a nondeterministic SQL expression (expressions involving random functions

and/or nondeterministic UDFs), it must not correspond to a parameter that is used more than once
in the RETURN statement.

◦ The SQL expression must not be a scalar subquery.

When an SQL UDF is invoked, Vantage searches for the UDF in the following locations:

• In the database specified if the function call is qualified by a database name.
• In the current database.
• In the SYSLIB database.

The result type of an SQL UDF is based on the return type specified in the RETURNS clause of the
CREATE FUNCTION statement.

The default title of an SQL UDF appears as:

 UDF_name
(argument_list
)

Examples

Example: Defining the Function and Query

16: User-Defined Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 634

Consider the following function definition and query:

 CREATE FUNCTION Test.MyUDF (a INT, b INT, c INT)
 RETURNS INT
 LANGUAGE SQL
 CONTAINS SQL
 DETERMINISTIC
 SQL SECURITY DEFINER
 COLLATION INVOKER
 INLINE TYPE 1
 RETURN a + b - c;
 SELECT Test.MyUDF(t1.a1, t2.a2, t3.a3) FROM t1, t2, t3;

The user executing the SELECT statement must have the following privileges:

• SELECT privilege on tables t1, t2, and t3, their containing databases, or on the columns t1.a1, t2.a2,
and t3.a3.

• EXECUTE FUNCTION privilege on MyUDF or on the database named Test.

The privileges of the creator or owner are not checked since the UDF does not reference any database
objects in its definition.

Example: Referencing an External UDF

In this example, the SQL UDF named MySQLUDF references an external UDF named MyExtUDF in the
RETURN statement.

Consider the following function definition and query:

 CREATE FUNCTION Test.MySQLUDF (a INT, b INT, c INT)
 RETURNS INT
 LANGUAGE SQL
 CONTAINS SQL
 DETERMINISTIC
 SQL SECURITY DEFINER
 COLLATION INVOKER
 INLINE TYPE 1
 RETURN a + b * MyExtUDF(a, b) - c;
 SELECT Test.MySQLUDF(t1.a1, t2.a2, t3.a3) FROM t1, t2, t3;

The user executing the SELECT statement must have the following privileges:

• SELECT privilege on tables t1, t2, and t3, their containing databases, or on the columns t1.a1, t2.a2,
and t3.a3.

• EXECUTE FUNCTION privilege on MySQLUDF or on the database named Test.

16: User-Defined Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 635

Because the SQL UDF references MyExtUDF, the following privileges are also checked:

• The creator of MySQLUDF must exist and have the EXECUTE FUNCTION privilege on MyExtUDF
or its containing database.

• The database named Test (the immediate owner of MySQLUDF) must have the EXECUTE
FUNCTION privilege on MyExtUDF or its containing database.

Example: Invoking the SQL UDF

In this example, invocations of the SQL UDF named MyUDF2 are passed as arguments to the SQL UDF
named MyUDF1.

 CREATE FUNCTION test.MyUDF1 (a INT, b INT, c INT)
 RETURNS INT
 LANGUAGE SQL
 CONTAINS SQL
 DETERMINISTIC
 COLLATION INVOKER
 INLINE TYPE 1
 RETURN a * b * c;
 CREATE FUNCTION test.MyUDF2 (d INT, e INT, f INT)
 RETURNS INT
 LANGUAGE SQL
 CONTAINS SQL
 DETERMINISTIC
 COLLATION INVOKER
 INLINE TYPE 1
 RETURN d + e + f;
 SELECT test.MyUDF1(test.MyUDF2(t1.a1, 1, 2),
 test.MyUDF2(t1.b1, 2, 3), 5) FROM t1;

Example: Invoking Compatible Argument Data Types

In this example, the UDF invocation argument data type (BYTEINT) is not the same as that of the
corresponding UDF parameter data type (INTEGER) since the size of the argument data type is less
than the UDF parameter data type. However, because the two data types are compatible and a BYTEINT
argument can fit inside an INTEGER parameter, this is allowed.

 CREATE FUNCTION test.MyUDF (a INT, b INT, c INT)
 RETURNS INT
 LANGUAGE SQL
 CONTAINS SQL
 DETERMINISTIC

16: User-Defined Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 636

 COLLATION INVOKER
 INLINE TYPE 1
 RETURN a * b * c;
 CREATE TABLE t1 (a1 BYTEINT, b1 INT);
 SELECT test.MyUDF(t1.a1, t1.b1, 2) FROM t1;

Example: Invoking Argument Data Types of Different Sizes

In this example, the UDF invocation argument data type (INTEGER) is not the same as that of the
corresponding UDF parameter data type (BYTEINT) since the size of the argument data type is greater
than the UDF parameter data type. Although the two data types are compatible, an INTEGER argument
cannot fit inside a BYTEINT parameter, so an error is returned.

 CREATE FUNCTION test.MyUDF (a BYTEINT, b INT, c INT)
 RETURNS INT
 LANGUAGE SQL
 CONTAINS SQL
 DETERMINISTIC
 COLLATION INVOKER
 INLINE TYPE 1
 RETURN a * b * c;
 CREATE TABLE t1 (a1 INT, b1 INT);
 SELECT test.MyUDF(t1.a1, t1.b1, 2) FROM t1;

The following error is returned:

 Failure 5589: Function "test.MyUDF" does not exist.

To avoid the error, the caller must explicitly cast the value of t1.a1 to BYTEINT as follows:

 SELECT test.MyUDF(CAST(t1.a1 AS BYTEINT), t1.b1, 2) FROM t1;

Related Information
• For more information about CREATE FUNCTION or REPLACE FUNCTION, see Teradata Vantage™

- SQL Data Definition Language Syntax and Examples, B035-1144 or Teradata Vantage™ - Database
Administration, B035-1093.

• For more information about EXECUTE FUNCTION and UDTUSAGE privileges, see Teradata
Vantage™ - SQL Data Control Language, B035-1149.

• For details about data type compatibility, see Teradata Vantage™ - SQL Data Definition Language
Syntax and Examples, B035-1144.

16: User-Defined Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 637

• For details regarding UDF search resolution, see Teradata Vantage™ - SQL Data Definition Language
Syntax and Examples, B035-1144.

16: User-Defined Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 638

GetSystemTCore
GetSystemTCore returns the current TCore setting of the system.

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes

The EXECUTE privilege on GetSystemTCore is required in order to run it.

GetSystemTCore Syntax
[SYSLIB.] GetSystemTCore ()

Syntax Elements

SYSLIB
Name of the database where the function is located.

GetSystemTCore Example
Example

SELECT * FROM TABLE(SYSLIB.getSystemTcore()) AS t;

*** Query completed. One row found. 7 columns returned.

*** Total elasped time was 1 second.

StatusFlag 1
ErrorMsg Success for get systemtcore
BaselineTcore 75
CurrentTcore 100
MinTcore 0
MaxTCore 102

Elastic TCore Functions

17

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 639

SetSystemTCore
SetSystemTCore sets the TCore value of the system.

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
When using SetSystemTCore, keep the following in mind:

• Teradata monitors use of Elastic TCore. Customers that use more TCore than they have purchased to
date may incur additional charges as a result.

• The EXECUTE privilege on SetSystemTCore is required in order to run it.
• It is supported only on Intelliflex 2.1 and above systems.
• It is used only in the FROM clause of a SELECT request.
• It can be invoked only with constant expression input arguments.

SetSystemTCore Example
SELECT * FROM TABLE(SYSLIB.SetSystemTcore(75)) AS t;

SetSystemTCore Syntax
[SYSLIB.] SetSystemTCore (SystemTCoreToSet)

Syntax Elements

SYSLIB
Name of the database where the function is located.

SystemTCoreToSet
An integer representing the amount of TCore to give the system. To see the range of valid
values, run the GetSystemTCore function.

17: Elastic TCore Functions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 640

How to Read Syntax
This document uses the following syntax conventions.

Syntax Convention Meaning

KEYWORD Keyword. Spell exactly as shown.
Many environments are case-insensitive. Syntax shows keywords in uppercase
unless operating system restrictions require them to be lowercase or mixed-case.

variable Variable. Replace with actual value.

number String of one or more digits. Do not use commas in numbers with more than
three digits.
Example: 10045

[x] x is optional.

[x | y] You can specify x , y , or nothing.

{ x | y } You must specify either x or y .

x [...] You can repeat x , separating occurrences with spaces.
Example: x x x
See note after table.

x [,...] You can repeat x , separating occurrences with commas.
Example: x, x, x
See note after table.

x [delimiter...] You can repeat x , separating occurrences with specified delimiter.
Examples:
• If delimiter is semicolon:
x; x; x

• If delimiter is {,|OR}, you can do either of the following:
◦ x, x, x
◦ x OR x OR x

See note after table.

Notation Conventions

A

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 641

Note:
You can repeat only the immediately preceding item. For example, if the syntax is:

KEYWORD x [...]

You can repeat x. Do not repeat KEYWORD.

If there is no white space between x and the delimiter, the repeatable item is x and the delimiter. For
example, if the syntax is:

[x, [...]] y

• You can omit x: y
• You can specify x once: x, y
• You can repeat x and the delimiter: x, x, x, y

Character Shorthand Notation Used in This Document
This document uses the Unicode naming convention for characters. For example, the lowercase character
‘a’ is more formally specified as either LATIN CAPITAL LETTER A or U+0041. The U+xxxx notation refers
to a particular code point in the Unicode standard, where xxxx stands for the hexadecimal representation of
the 16-bit value defined in the standard.

In parts of the document, it is convenient to use a symbol to represent a special character, or a particular
class of characters. This is particularly true in discussion of the following Japanese character encodings:

• KanjiEBCDIC
• KanjiEUC
• KanjiShift-JIS

These encodings are further defined in Teradata Vantage™ - Advanced SQL Engine International
Character Set Support, B035-1125.

Character Symbols

The symbols, along with character sets with which they are used, are defined in the following table.

Symbol Encoding Meaning

a-z
A-Z
0-9

Any Any single byte Latin letter or digit.

a-z
A-Z
0-9

Any Any fullwidth Latin letter or digit.

A: Notation Conventions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 642

Symbol Encoding Meaning

< KanjiEBCDIC Shift Out [SO] (0x0E).
Indicates transition from single to multibyte character in KanjiEBCDIC.

> KanjiEBCDIC Shift In [SI] (0x0F).
Indicates transition from multibyte to single byte KanjiEBCDIC.

T Any Any multibyte character.
The encoding depends on the current character set.
For KanjiEUC, code set 3 characters are always preceded by ss3.

I Any Any single byte Hankaku Katakana character.
In KanjiEUC, it must be preceded by ss2, forming an individual
multibyte character.

Δ Any Represents the graphic pad character.

Δ Any Represents a single or multibyte pad character, depending on context.

ss 2 KanjiEUC Represents the EUC code set 2 introducer (0x8E).

ss 3 KanjiEUC Represents the EUC code set 3 introducer (0x8F).

For example, string “TEST”, where each letter is intended to be a fullwidth character, is written as TEST.
Occasionally, when encoding is important, hexadecimal representation is used.

For example, the following mixed single byte/multibyte character data in KanjiEBCDIC character set:

LMN<TEST>QRS

is represented as:

D3 D4 D5 0E 42E3 42C5 42E2 42E3 0F D8 D9 E2

Pad Characters

The following table lists the pad characters for the various character data types.

Server Character Set Pad Character Name Pad Character Value

LATIN SPACE 0x20

UNICODE SPACE U+0020

GRAPHIC IDEOGRAPHIC SPACE U+3000

KANJISJIS ASCII SPACE 0x20

KANJI1 ASCII SPACE 0x20

A: Notation Conventions

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 643

Teradata Links
Link Description

https://docs.teradata.com/ Search Teradata Documentation, customize content to your needs, and
download PDFs.
Customers: Sign in to access Orange Books.

https://support.teradata.com One-stop source for Teradata community support, software downloads,
and product information.
Log in for customer access to:
• Community support
• Software updates
• Knowledge articles

https://www.teradata.com/University/Overview Teradata education network

https://support.teradata.com/community Link to Teradata community

Additional Information

B

Teradata Vantage™ - SQL Functions, Expressions, and Predicates,
Release 17.00 644

https://docs.teradata.com/
https://support.teradata.com
https://www.teradata.com/University/Overview
https://support.teradata.com/community

	Contents
	Chapter 1 : Introduction to SQL Functions, Expressions, and Predicates
	Chapter 2 : Functions, Operators, Expressions, and Predicates
	SQL Functions
	Types of SQL Functions
	Examples of Functions
	Embedded Services System Functions
	Activating Embedded Services System Functions
	Invoking Embedded Services System Functions
	Implicit Data Type Conversion Rules

	Related Information

	SQL Operators
	SQL Expressions
	Types of Expressions
	Examples of Expressions

	SQL Predicates
	Types of Logical Predicates
	Logical Operators that Operate on Predicates
	Predicate Quantifiers
	Examples of Predicates

	Chapter 3 : Aggregate Functions
	About Aggregate Functions
	Aggregates in the Select List
	Aggregates and GROUP BY
	Aggregates and Date
	Aggregates and Literal Expressions in the Select List
	Nesting Aggregates
	Results of Aggregation on Zero Rows
	Aggregates and Nulls
	Aggregate Operations on Floating Point Data
	Aggregates and LOBs
	Aggregates and Period Data Types
	Aggregates and SELECT AND CONSUME Statements
	Aggregates and Recursive Queries
	Aggregates in WHERE and HAVING Clauses
	DISTINCT Option
	Aggregates and Row Level Security Tables
	Time Series Aggregate Functions Overview
	Traditional Aggregate Functions that Support Time Series

	Related Information
	AVG
	AVG Function Syntax
	ANSI Compliance
	AVG Usage Notes
	Computation of INTEGER or DECIMAL Values

	Example: Using the AVG Function
	Related Information

	CORR
	CORR Function Syntax
	ANSI Compliance
	Result Type and Attributes
	CORR Usage Notes
	Support for UDTs
	Combination With Other Functions

	Example: Querying Data from the HomeSales Table
	Related Information

	COUNT
	COUNT Function Syntax
	Result Type and Attributes
	Usage Notes
	Examples: Using the COUNT Function
	Related Information

	COVAR_POP
	COVAR_POP Function Syntax
	ANSI Compliance
	Result Type and Attributes
	COVAR_POP Usage Notes
	Support for UDTs
	Combination With Other Functions

	COVAR_SAMP
	COVAR_SAMP Function Syntax
	ANSI Compliance
	Result Type and Attributes
	COVAR_SAMP Usage Notes
	Support for UDTs
	Combination with Other Functions

	Example: Using the SELECT statement to Return the Sample Covariance of Weight and Height

	GROUPING
	GROUPING Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Example: Viewing Sales Summaries by County and by City
	Related Information

	KURTOSIS
	KURTOSIS Function Syntax
	ANSI Compliance
	KURTOSIS Usage Notes
	Support for UDTs
	Conditions That Produce a NULL Return Value

	MAXIMUM
	MAXIMUM Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Support for UDTs

	Examples: Using the MAXIMUM Function

	MINIMUM
	MINIMUM Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Support for UDTs

	Examples: Using the MINIMUM Function

	PIVOT
	PIVOT Function Syntax
	Usage Notes
	Examples
	Example: Alias Names Contained in the IN List
	Example: Naming Columns with the <column_value_list> Values
	Example: Pivot Operation on View
	Example: Table Source Using the WITH Clause
	Example: SELECT Query with the WHERE Condition
	Example: CREATE TABLE AS Statement Contains Special Characters
	Example: The PIVOT Query Response in Different Response Modes
	Example: Pivot Query Truncates the Alias Name
	Example: Using TD_UNPIVOT or UNPIVOT as a Source to PIVOT
	Example: Aggregation on Two Columns from PIVOT Results
	Example: Subquery in PIVOT IN-List

	Related Information

	REGR_AVGX
	REGR_AVGX Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_AVGX Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Mean Height for regrtbl

	REGR_AVGY
	REGR_AVGY Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_AVGY Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Mean Weight from regrtbl
	Related Information

	REGR_COUNT
	REGR_COUNT Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_COUNT Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Number of Rows in regrtbl
	Related Information

	REGR_INTERCEPT
	REGR_INTERCEPT Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_INTERCEPT Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Intercept of the Regression Line for NbrSold and SalesPrice
	Related Information

	REGR_R2
	REGR_R2 Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_R2 Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Coefficient of Determination for Height and Weight
	Related Information

	REGR_SLOPE
	REGR_SLOPE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_SLOPE Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Slope of the Regression Line for NbrSold and SalesPrice
	Related Information

	REGR_SXX
	REGR_SXX Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_SXX Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Sum of Squares for Height
	Related Information

	REGR_SXY
	REGR_SXY Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_SXY Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Sum of Products of Height and Weight
	Related Information

	REGR_SYY
	REGR_SYY Function Syntax
	ANSI Compliance
	Result Type and Attributes
	REGR_SYY Usage Notes
	Support for UDTs
	Setting Up Axes for Plotting
	Combination With Other Functions

	Example: Returning the Sum of Squares for Weight

	SKEW
	SKEW Function Syntax
	Related Information

	STDDEV_POP
	STDDEV_POP Function Syntax
	ANSI Compliance
	STDDEV_POP Usage Notes
	Combination With Other Functions
	How GROUP BY Affects Report Breaks
	Measuring the Standard Deviation of a Population

	Related Information

	STDDEV_SAMP
	STDDEV_SAMP Function Syntax
	ANSI Compliance
	STDDEV_SAMP Usage Notes
	Combination With Other Functions
	How GROUP BY Affects Report Breaks
	Measuring the Standard Deviation of a Population

	Related Information

	SUM
	SUM Function Syntax
	Return Values

	ANSI Compliance
	Usage Notes
	Possible Result Overflow with SELECT Sum

	Examples
	Example: Accounts Receivable
	Example: Face Value of Inventory

	Related Information

	UNPIVOT
	UNPIVOT Function Syntax
	Usage Notes
	Examples
	Example: Unpivoted Sales and Cogs Columns
	Example: Using UNPIVOT for a Unique Year Value
	Example: Normalizing the UNPIVOT Operation
	Example: Using UNPIVOT with the INCLUDE NULLS Clause
	Example: Using UNPIVOT with the EXCLUDE NULLS Clause
	Example: Using an IN List with Multiple Column Lists and Unspecified Aliases
	Example: Using an IN List that Contains Multiple Columns with a Compatible Data Type
	Example: Using an IN List that Contains Multiple Columns with an Incompatible Data Type

	Related Information

	VAR_POP
	VAR_POP Function Syntax
	ANSI Compliance
	VAR_POP Usage Notes
	Combination With Other Functions
	GROUP BY Affects Report Breaks
	Measuring the Standard Deviation of a Population

	Related Information

	VAR_SAMP
	VAR_SAMP Function Syntax
	ANSI Compliance
	VAR_SAMP Usage Notes
	Combination With Other Functions
	GROUP BY Affects Report Breaks
	Measuring the Variance of a Population

	Related Information

	Chapter 4 : Arithmetic, Trigonometric, Hyperbolic Operators/Functions
	ANSI Compliance
	Arithmetic Operators and LOBs
	Arithmetic Operators and UDTs
	Related Information
	Binary Arithmetic Result Data Types
	Result Data Type
	DECIMAL Result Data Type
	Numeric Results and Rounding
	Error Conditions
	Integer Division and Truncation

	Structure of Arithmetic Expressions
	Order of Evaluation
	Format
	Example: Determining Employee Salary Increases

	Arithmetic Functions
	ABS
	ABS Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples: Using ABS Arithmetic Function Expressions

	CASE_N
	CASE_N Function Syntax
	ANSI Compliance
	Result Type and Attributes
	CASE_N Usage Notes
	Using CASE_N to Define Partitioned Primary Indexes
	Using CASE_N with CURRENT_DATE or CURRENT_TIMESTAMP in a PPI
	Using CASE_N with Character Comparison
	Restrictions

	Examples
	Example: Defining the Partition to Which a Row is Assigned
	Example: Using CASE_N in a List of Partitioning Expressions that Define a Multilevel PPI
	Example: Showing the Count of Rows in Each Partition
	Example: Creating a Table Partitioned with Orders Data
	Example: Verifying the Ending Bound of a Period Expression
	Example: Verifying the Ending Bound of a Transaction Time Column
	Example: Viewing Results for FALSE Conditions
	Example: Viewing Results for UNKNOWN Conditions
	Example: Defining Partitions Based on the Value of a

	Related Information

	CEILING
	CEILING Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Examples

	DEGREES/RADIANS
	DEGREES/RADIANS Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Format
	Usage Notes
	Examples: Representative DEGREES/RADIANS Function Expressions

	EXP
	EXP Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Examples: Representative EXP Arithmetic Function Expressions
	Related Information

	FLOOR
	FLOOR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples: Using the FLOOR Function
	Related Information

	HYPERBOLIC
	HYPERBOLIC Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Related Information

	LN
	LN Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples: Representative LN Arithmetic Function Expressions
	Related Information

	LOG
	LOG Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Representative LOG Arithmetic Function Expressions
	Related Information

	MOD
	MOD Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Using MOD Arithmetic Function Expression
	Related Information

	NULLIFZERO
	NULLIFZERO Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples
	Related Information

	POWER
	POWER Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples: Querying Returns for the Power of exponent_value
	Related Information

	RANDOM
	RANDOM Function Syntax
	ANSI Compliance
	Result Type and Attributes
	RANDOM Usage Notes
	Restrictions
	Multiple RANDOM Calls Within a SELECT List
	Using RANDOM as a Condition on an Index

	Example: Returning Random Integer Numbers as Results
	Related Information

	RANGE_N
	RANGE_N Function Syntax
	ANSI Compliance
	Result Type and Attributes
	RANGE_N Usage Notes
	Restrictions
	Using RANGE_N to Define Partitioned Primary Indexes
	Using RANGE_N with CURRENT_DATE or CURRENT_TIMESTAMP in a PPI
	Using RANGE_N with Character Data
	Using a UDT as the Test Expression

	Examples
	Related Information

	ROUND
	ROUND Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Related Information

	SIGN
	SIGN Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Related Information

	SQRT
	SQRT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples: Representative SQRT Arithmetic Function Expressions
	Related Information

	TRIGONOMETRIC
	TRIGONOMETRIC Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples: Representative Function Expressions
	Related Information

	TRUNC
	TRUNC Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples: Query Returns for SELECT TRUNC
	Related Information

	WIDTH BUCKET
	WIDTH BUCKET Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	WIDTH BUCKET Usage Notes
	Rules

	Example: Using WIDTH BUCKET to Create a Histogram for Employee Salaries within a Range
	Related Information

	ZEROIFNULL
	ZEROIFNULL Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Testing the Salary Column for Null
	Related Information

	Chapter 5 : Attribute Functions
	ANSI Equivalence of Teradata Attribute Functions
	BIT_LENGTH
	BIT_LENGTH Function Syntax
	ANSI Compliance
	Example
	Related Information

	BYTE/BYTES
	BYTE/BYTES Function Syntax
	ANSI Compliance
	BYTE/BYTES Usage Notes
	Length Includes Trailing Zeros

	Example: Using BYTE to Obtain the Number of Bytes in a Badge Picture
	Related Information

	CHARACTER_LENGTH
	CHARACTER_LENGTH Function Syntax
	ANSI Compliance
	Result Type
	Usage Notes
	Suppressing Trailing Pad Characters

	Examples
	Related Information

	DEFAULT
	DEFAULT Function Syntax
	ANSI Compliance
	Result Type and Attributes
	DEFAULT Usage Notes
	Omitting the Column Name
	Using a Qualified Column Name
	Error Conditions

	Examples
	Example: Inserting the Default Value under Certain Conditions
	Example: Using DEFAULT in a Predicate
	Example: Specifying a View Column Name

	Related Information

	FORMAT
	FORMAT Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Example: Requesting the Format of the Salary Column
	Related Information

	OCTET_LENGTH
	OCTET_LENGTH Function Syntax
	ANSI Compliance
	Usage Notes
	Examples: Output from OCTET_LENGTH
	Related Information

	TITLE
	TITLE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Example: Requesting the title of the Salary Column
	Related Information

	TYPE
	TYPE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	TYPE Usage Notes
	Character Type Arguments

	Examples
	Related Information

	Chapter 6 : Bit/Byte Manipulation Functions
	Bit and Byte Numbering Model
	BYTEINT
	SMALLINT
	INTEGER
	BIGINT
	BYTE and VARBYTE
	HEXADECIMAL BYTE LITERALS

	Performing Bit-Byte Operations against Arguments with Non-Equal Lengths
	Example: Querying the BITAND Operation On An INTEGER

	BITAND
	BITAND Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples: Querying with the BITAND Function
	Related Information

	BITNOT
	BITNOT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the BITNOT Function

	BITOR
	BITOR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the BITOR Function

	BITXOR
	BITXOR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the BITXOR Function
	Related Information

	COUNTSET
	COUNTSET Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the COUNTSET Function
	Related Information

	GETBIT
	GETBIT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the GETBIT Function
	Related Information

	ROTATELEFT
	ROTATELEFT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples
	Example: Querying Input Argument 16 with the ROTATELEFT Function
	Example: Querying Input Argument 64 with the ROTATELEDT Function

	Related Information

	ROTATERIGHT
	ROTATERIGHT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples
	Example: Querying Input Argument 32 with the ROTATERIGHT Function
	Example: Querying Input Argument 4 with the ROTATERIGHT Function

	Related Information

	SETBIT
	SETBIT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples
	Example: Querying with the SETBIT Function
	Example: Querying Input Argument 23 with the ROTATERIGHT Function

	Related Information

	SHIFTLEFT
	SHIFTLEFT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the SHIFTLEFT Function
	Related Information

	SHIFTRIGHT
	SHIFTRIGHT Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the SHIFTRIGHT Function
	Related Information

	SUBBITSTR
	SUBBITSTR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the SUBBITSTR Function
	Related Information

	TO_BYTE
	TO_BYTE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Example: Querying with the TO_BYTE Function
	Related Information

	Chapter 7 : Built-In Functions
	ACCOUNT
	ACCOUNT Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Example: Requesting Account Strings for a User

	CURRENT_DATE/CURDATE
	CURRENT_DATE/CURDATE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Examples
	Example: Returning the Current Date for INTERVAL -'08:00' HOUR TO MINUTE
	Example: Returning the Current Date for INTERVAL -'09:00' HOUR TO MINUTE
	Example: Returning the Current Date for INTERVAL -'05:45' HOUR TO MINUTE
	Example: Returning the Current Date for the Time Zone String, 'America Pacific'
	Example: Changing the Default Output Format

	Related Information

	CURRENT_ROLE
	CURRENT_ROLE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	CURRENT_ROLE Usage Notes
	Result Value

	Example: Selecting CURRENT_ROLE

	CURRENT_TIME/CURTIME
	CURRENT_TIME/CURTIME Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Examples
	Example: Requesting the Current Time
	Example: Requesting the Current Time with a Time Zone String
	Example: Changing the Default Output Format

	Related Information

	CURRENT_TIMESTAMP
	CURRENT_TIMESTAMP Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Examples
	Example: Requesting the Current Timestamp
	Example: CURRENT_TIMESTAMP and the TimeDateWZControl Flag
	Example: Requesting the Current Timestamp with a Time Zone String
	Example: Changing the Default Output Format

	Related Information

	CURRENT_USER
	CURRENT_USER Function Syntax
	ANSI Compliance
	Result Type and Attributes
	CURRENT_USER Usage Notes
	Result Value

	Examples
	Example: Identifying the Current User
	Example: Selecting the Job Title for the Current User

	DATABASE
	DATABASE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Example: Requesting the Name of the Default Database

	DATE
	DATE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	DATE versus CURRENT_DATE

	Examples
	Related Information

	NOW
	NOW Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Example
	Related Information

	PROFILE
	PROFILE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Example

	ROLE
	ROLE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	ROLE Usage Notes
	Result Value
	Session logon is not directory-based
	Session logon is directory-based

	Example: Identifying the Session Current Role

	SESSION
	SESSION Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Example: Identifying the Session Number for the Current User

	TEMPORAL_DATE
	TEMPORAL_DATE Function Syntax
	Result Type and Attributes
	Usage Notes

	TEMPORAL_TIMESTAMP
	TEMPORAL_TIMESTAMP Function Syntax
	Result Type and Attributes
	Usage Notes
	Related Information

	TIME
	TIME Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Examples
	Related Information

	USER
	USER Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Examples
	Example: Identifying the User Name
	Example: Selecting the User Job Title

	Related Information

	Chapter 8 : Comparison Operators and Functions
	Comparison Operators
	Comparison Operator Syntax
	ANSI Compliance
	Results
	Comparison Operators Usage Notes
	Supported Comparison Operators
	Comparison Operators Using Subqueries

	Example: Using the ALL Quantifier to Compare Two Expressions
	Related Information

	Comparisons That Produce TRUE Results
	Conditions
	Null Expressions
	Floating Point Expressions
	Related Information

	Data Type Evaluation
	Implicit Type Conversion of Comparison Operands
	Data Types on Which Implicit Conversion is Performed
	Implicit Conversion of DateTime Types
	Data Types on Which Implicit Conversion is Not Performed

	Comparison of ANSI DateTime and Interval in USING Clause
	Proper Forms of DATE Types in Comparisons
	Examples

	Character String Comparisons
	Comparison of Character Strings of Unequal Length
	Character Strings and Server Character Sets
	Effect of Collation on Character String Comparisons
	Case Sensitivity
	Using UPPER for Case Blind Comparisons
	Example: Querying for Case-Specific Names
	Related Information

	Comparison of KANJI1 Characters
	Equality Comparison
	Nonequality Comparison
	Related Information

	Comparison Operators and the DEFAULT Function in Predicates
	DECODE
	DECODE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Usage Notes
	Result Type

	Examples
	Example: Decoding IDs
	Example: Decoding IDs Using NULL
	Example: Decoding IDs When ID is Not Equal to 1, 2 or NULL

	Related Information

	GREATEST
	GREATEST Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Usage Notes
	Result Type

	Examples
	Related Information

	LEAST
	LEAST Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Usage Notes
	Result Type

	Examples
	Related Information

	Chapter 9 : CASE Expressions
	Valued CASE Expression
	Valued CASE Expression Syntax
	ANSI Compliance
	Usage Notes
	Restrictions on the Data Types in a CASE Expression

	Examples
	Example: Calculating the Fraction of Cost
	Example: Using a CASE Expression
	Example: Combining a CASE Expression with a Concatenation Operator
	Example: Using UDT Data Types in Value Expressions
	Example 1: Using UDT Data Types in Scalar Expressions

	Related Information

	Searched CASE Expression
	Searched CASE Expression Syntax
	ANSI Compliance
	Usage Notes
	Rules for WHEN Search Conditions
	Restrictions on the Data Types in a CASE Expression

	Examples
	Example: Evaluating a Search Condition
	Example: Using a CASE Expression
	Example: Using an ELSE Clause
	Example: Using a CASE expression to Enhance Performance
	Example: Producing a Report to Show Employee Salary

	Related Information

	Error Conditions
	Rules for the CASE Expression Result Type
	THEN/ELSE Expressions Having the Same Non-Character Data Type
	THEN/ELSE Character Type Expressions
	Examples
	Examples of Character Data in a CASE Expression
	Examples of Character Data in a CASE Expression: Example 1
	Examples of Character Data in a CASE Expression: Example 2
	Examples of Character Data in a CASE Expression: Example 3
	Examples of Character Data in a CASE Expression: Example 4
	THEN/ELSE Expressions Having Mixed Data Types
	Examples of Numeric Data in a CASE Expression
	Example: CASE Expression Fails
	Example: Shortening the Scale of the Multiplier
	Example: Returning a DECIMAL(38,2) Result
	Examples of Character and Numeric Data in a CASE Expression
	Examples of Character and Numeric Data in a CASE Expression: Example 1
	Examples of Character and Numeric Data in a CASE Expression: Example 2

	Related Information

	Format for a CASE Expression
	Default Format
	Using Explicit Type Conversion to Change Format

	CASE and Nulls
	CASE Shorthands
	COALESCE Expression
	COALESCE Expression Syntax
	ANSI Compliance
	Usage Notes
	Restrictions on the Data Types in a COALESCE Expression

	Examples
	Example: Querying for a Phone Number
	Example: Using COALESCE with an Arithmetic Operator
	Example: Using COALESCE with an Comparison Operator

	Related Information

	NULLIF Expression
	NULLIF Expression Syntax
	ANSI Compliance
	Usage Notes
	Restrictions on the Data Types in a NULLIF Expression

	Examples
	Related Information

	Chapter 10 : Hash-Related Functions
	HASHAMP
	HASHAMP Function Syntax
	ANSI Compliance
	Usage Notes
	Examples
	Example Assumptions
	Example: Querying the Distribution of Hash Buckets
	Example: Querying the Number of Rows on Each Primary AMP
	Example: HASHAMP with a Contiguous Map
	Example: HASHAMP with an Expression and a Contiguous Map
	Example: Which AMPs Contain the Rows of a Table

	Related Information

	HASHBAKAMP
	HASHBAKAMP Function Syntax
	ANSI Compliance
	Usage Notes
	Examples
	Example Assumptions
	Example: Distributing the Hash Buckets Among the Fallback AMPs
	Example: Which Fallback AMPs Contain the Rows of a Table

	Related Information

	HASHBUCKET
	HASHBUCKET Function Syntax
	ANSI Compliance
	HASHBUCKET Usage Notes
	Using HASHBUCKET to Convert a BYTE Type to an INTEGER Type

	Examples
	Example Assumptions
	Example
	Example
	Example
	Example
	Example

	HASHROW
	HASHROW Function Syntax
	ANSI Compliance
	Usage Notes
	Examples
	Example
	Example
	Example

	Related Information

	Chapter 11 : Logical Predicates
	About Logical Predicates
	Where Logical Predicates Are Used
	Conditional Expressions as a Collection of Logical Primitives
	Restrictions on the Data Types Involved in Predicates
	Restrictions on the DEFAULT Function in a Predicate

	Logical Operators and Search Conditions
	Logical Operators
	Where To Use Search Conditions
	Rules for Order of Evaluation
	Evaluation Results
	AND Truth Table
	OR Truth Table
	NOT Truth Table
	Subquery Restrictions
	Examples of Logical Operators in Search Conditions

	ANY/ALL/SOME
	ANY/ALL/SOME Predicate Syntax
	ANSI Compliance
	ANY/ALL/SOME Usage Notes
	ANY/ALL/SOME Quantifiers and Literal Syntax
	ANY/ALL/SOME Quantifiers and Subquery Syntax
	Equivalences Using ANY/ALL/SOME and Comparison Operators
	Equivalences Using ANY/ALL/SOME and IN/NOT IN

	Examples
	Example: ANY Quantifier
	Example: ALL Quantifier
	Example: ANY/ALL/SOME

	BETWEEN/NOT BETWEEN
	BETWEEN/NOT BETWEEN Predicate Syntax
	ANSI Compliance
	Usage Notes
	Example

	EXISTS/NOT EXISTS
	EXISTS/NOT EXISTS Predicate Syntax
	ANSI Compliance
	EXISTS/NOT EXISTS Usage Notes
	Relationship Between EXISTS/NOT EXISTS and IN/NOT IN
	Example

	EXISTS Predicate Versus NOT IN and Nulls
	For ALL
	NOT EXISTS Clauses and Stored Procedures
	NOT EXISTS and Recursive Queries

	Examples
	Example: EXISTS with Correlated Subqueries
	Example: NOT EXISTS with Correlated Subqueries

	Related Information

	IN/NOT IN
	IN/NOT IN Predicate Syntax
	ANSI Compliance
	IN/NOT IN Usage Notes
	Result
	Relationship Between IN/NOT IN and EXISTS/NOT EXISTS
	Equivalences Using IN/NOT IN, NOT, and ANY/ALL/SOME
	Behavior of Nulls for IN
	Behavior of Nulls for NOT IN
	NOT IN Clauses and Stored Procedures
	NOT IN and Recursive Queries
	Queries With Large NOT IN Clauses Can Fail

	Examples
	Example: Searching for Atlanta Employees
	Example: Searching when DeptNo Has Two Columns
	Example: Using IN/NOT IN with a List of Literals

	IS NULL/IS NOT NULL
	IS NULL/IS NOT NULL Predicate Syntax
	ANSI Compliance
	Examples
	Example
	Example
	Example: Searching for NULL and NOT-NULL in the Same Statement
	Example: Searching a Table That Might Contain Nulls

	LIKE/NOT LIKE
	LIKE/NOT LIKE Predicate Syntax
	ANSI Compliance
	LIKE/NOT LIKE Usage Notes
	Optimized Performance Using a NUSI
	Null Expressions
	Case Specification
	Wildcard Characters
	ESCAPE Feature of LIKE
	Pad Characters
	ANY/ALL/SOME Quantifiers
	Behavior of the ESCAPE Character

	LIKE/NOT LIKE Examples
	Example: ESCAPE
	Example: ANY
	Example: Matching Patterns from Another Table
	Example: LIKE Predicate
	Example: Last Name Spelling
	Example: % and _ Characters
	Example: Pad Characters and Letter
	KanjiEBCDIC Examples
	KanjiEUC Examples
	KanjiShift-JIS Examples
	Miscellaneous Examples

	OVERLAPS

	Chapter 12 : Null-Handling Functions
	NVL
	NVL Function Syntax
	Argument Types and Rules

	Result Type
	Example
	Related Information

	NVL2
	NVL2 Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example

	Related Information

	Chapter 13 : Ordered Analytical/Window Aggregate Functions
	Ordered Analytical Functions
	Benefits
	Ordered Analytical Calculations at the SQL Level
	Teradata Warehouse Miner
	Example

	Characteristics of Ordered Analytical Functions
	The Function Value
	Use of QUALIFY Clause
	DISTINCT Clause Restriction
	Permitted Query Objects
	Where Ordered Analytical Functions are Not Permitted
	Use of Standard SQL Features
	Unsupported Data Types
	Ordered Analytical Functions and Period Data Types
	Ordered Analytical Functions and Recursive Queries
	Ordered Analytical Functions and Hash or Join Indexes
	Ordered Analytical Functions and Row Level Security Tables
	Computation Sort Order and Result Order
	Data in Partitioning Column of Window Specification and Resource Impact
	Using Ordered Analytical Functions
	Example: Using QUALIFY With RANK
	Example: Using QUALIFY With RANK

	Related Information

	The Window Feature
	PARTITION BY Phrase
	ORDER BY Phrase
	RESET WHEN Phrase
	RESET WHEN Condition Rules
	Rules For Using a DEFAULT Function As Part of a RESET WHEN Condition
	Examples
	Example
	Example
	Example
	Example

	ROWS Phrase
	Multiple Window Specifications
	Related Information

	Window Aggregate Functions
	The Window Specification
	Window Specification Syntax
	ANSI Compliance
	Type of Computation
	Arguments to Window Aggregate Functions
	Result Type and Format
	Result Title
	Problems with Missing Data
	Nesting Aggregates in Window Functions
	Alternative: Using Derived Tables

	Teradata-Specific Alternatives to Ordered Analytical Functions
	Teradata-Specific Functions and ANSI SQL:2011 Window Functions
	Comparing Window Aggregate Functions and Teradata-Specific Functions
	Example: Group Count
	Example: Remaining Count
	Example: Cumulative Maximum
	Example: Cumulative Minimum
	Example: Cumulative Sum
	Example: Group Sum
	Example: Group Sum
	Example: Moving Sum
	Example: Remaining Sum

	GROUP BY Clause
	GROUP BY and Window Functions
	GROUP BY and Teradata-Specific Functions
	Combining Window Functions, Teradata-Specific Functions, and GROUP BY
	Possible Result Overflow with SELECT Sum

	Related Information

	CSUM
	CSUM Function Syntax
	ANSI Compliance
	Result Type and Attributes
	CSUM Usage Notes
	Using SUM Instead of CSUM
	Possible Result Overflow with SELECT Sum

	Examples
	Example
	Example

	CUME_DIST
	CUME_DIST Function Syntax
	ANSI Compliance
	Results
	Example

	DENSE_RANK (ANSI)
	DENSE_RANK Function Syntax (ANSI)
	ANSI Compliance
	Result Type
	Example

	FIRST_VALUE/LAST_VALUE
	FIRST_VALUE/LAST_VALUE Function Syntax
	ANSI Compliance
	Usage Notes
	Example

	LAG/LEAD
	LAG/LEAD Function Syntax
	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Example: LAG with IGNORE NULLS
	Example: LAG with RESPECT NULLS
	Example: LAG with RESPECT NULLS without Explicitly Specifying RESPECT NULLS
	Example: LEAD with RESPECT NULLS
	Example: LEAD with IGNORE NULLS
	Example: LEAD with RESPECT NULLS without Explicitly Specifying RESPECT NULLS

	MAVG
	MAVG Function Syntax
	ANSI Compliance
	Result Type and Attributes
	MAVG Usage Notes
	Using AVG Instead of MAVG
	Problems With Missing Data
	Computing the Moving Average When Number of Rows < width

	Examples
	Example
	Example

	MDIFF
	MDIFF Function Syntax
	ANSI Compliance
	Result Type and Attributes
	MDIFF Usage Notes
	Using SUM Instead of MDIFF
	Problems With Missing Data
	Computing the Moving Difference When No Preceding Row Exists

	Examples
	Example
	Example

	Related Information

	MEDIAN
	MEDIAN Function Syntax
	ANSI Compliance
	Example
	Related Information

	MLINREG
	MLINREG Function Syntax
	ANSI Compliance
	Result Type and Attributes
	MLINREG Usage Notes
	Using ANSI-Compliant Window Functions Instead of MLINREG
	Computing MLINREG When Preceding Rows < width - 1

	Example
	Related Information

	MSUM
	MSUM Function Syntax
	ANSI Compliance
	Result Type and Attributes
	MSUM Usage Notes
	Using SUM Instead of MSUM
	Problems With Missing Data
	Computing MSUM When Number of Rows < width
	Possible Result Overflow with SELECT Sum

	PERCENT_RANK
	PERCENT_RANK Function Syntax
	ANSI Compliance
	Result Type and Attributes
	Examples
	Example: Relative Rank
	Example: Rank and Relative Rank
	Example: PERCENT_RANK and CUM_DIST

	PERCENTILE_CONT/PERCENTILE_DISC
	PERCENTILE_CONT/PERCENTILE_DISC Function Syntax
	ANSI Compliance
	Usage Notes
	Example

	QUANTILE
	QUANTILE Function Syntax
	ANSI Compliance
	Result Type and Attributes
	QUANTILE Usage Notes
	Using ANSI Window Functions Instead of QUANTILE

	Examples
	Example
	Example
	Example

	Related Information

	RANK (ANSI)
	RANK Function Syntax (ANSI)
	ANSI Compliance
	Result Type and Attributes
	Examples
	Example: Ranking Salespeople Based on Sales
	Example: Finding Differences Between RANK(ANSI) and DENSE_ RANK(ANSI)

	Related Information

	RANK (Teradata)
	RANK Function Syntax (Teradata)
	ANSI Compliance
	Result Type and Attributes
	RANK Usage Notes (Teradata)
	Using ANSI RANK Instead of Teradata RANK
	Computing Top and Bottom Values

	Examples
	Example
	Example
	Example

	Related Information

	ROW_NUMBER
	ROW_NUMBER Function Syntax
	ANSI Compliance
	ROW_NUMBER Usage Notes
	Window Aggregate Equivalent

	Example
	Related Information

	Chapter 14 : Regular Expression Functions
	REGEXP_SUBSTR
	REGEXP_SUBSTR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example

	Related Information

	REGEXP_REPLACE
	REGEXP_REPLACE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	REGEXP_REPLACE Usage Notes
	Limitation: NULL inside Input Strings

	Examples
	Example
	Example
	Example

	Related Information

	REGEXP_INSTR
	REGEXP_INSTR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example

	Related Information

	REGEXP_SIMILAR
	REGEXP_SIMILAR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example
	Related Information

	REGEXP_SPLIT_TO_TABLE
	REGEXP_SPLIT_TO_TABLE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example

	Chapter 15 : String Operators and Functions
	String Operators and Functions
	About String Functions
	Data Types on Which String Functions can Operate
	ANSI Equivalence of Teradata SQL String Functions
	Additional Functions That Operate on Strings

	Effects of Server Character Sets on Character String Functions
	Uppercase Character Conversion for LATIN
	Logical Characters vs. Physical Characters
	Untranslatable KANJI1 Characters
	Implicit Server Character Set Translation

	Concatenation Operator
	Concatenation Operator Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Concatenation Operator Usage Notes
	Concatenating Character Strings Having Different Server Character Sets

	Examples
	Example: Using Concatenation to Create More Readable Results
	Example: Concatenating First Name With Last Name
	Example: Concatenating Last Name With First Name
	Example: Concatenating Byte Strings
	Examples for Japanese Character Sets
	Example: KanjiEBCDIC
	Example: KanjiEUC
	Example: KanjiShift-JIS

	Related Information

	ASCII
	ASCII Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example
	Related Information

	CHAR2HEXINT
	CHAR2HEXINT Function Syntax
	Result Type and Attributes
	CHAR2HEXINT Usage Notes
	CHAR2HEXINT and Literal Strings
	UDT Arguments

	Examples
	Example
	Example

	Related Information

	CHR
	CHR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example
	Related Information

	CONCAT
	CONCAT Function Syntax
	Argument Type and Rules

	ANSI Compliance
	Result Type and Attributes
	Example
	Related Topic

	CSV
	CSV Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example

	Related Information

	CSVLD
	CSVLD Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example
	Related Information

	EDITDISTANCE
	EDITDISTANCE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Example
	Example
	Example
	Example

	Related Information

	INDEX
	INDEX Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	INDEX Usage Notes
	Expected Values
	Rules for Character Type Arguments
	Rules for KANJI1 Server Character Set
	Relationship Between INDEX and POSITION

	Examples
	Example: Using Simple INDEX Expressions
	Example
	Example: Using INDEX with KANJI1 and KanjiEBCDIC
	Example: Using INDEX with KANJI1 and KanjiEUC
	Example: Using INDEX with KANJI1 and KanjiShift-JIS
	Example: Applying INDEX to the SPACE Character
	Example: Using "Batch" in the Project Description
	Example: Using Concatenation, SUBSTRING, and INDEX

	Related Information

	INITCAP
	INITCAP Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example
	Related Information

	INSTR
	INSTR Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Example
	Example

	Related Information

	LEFT
	LEFT Function Syntax
	Usage Notes
	Result Type
	Example

	LENGTH
	LENGTH Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example
	Related Information

	LOCATE
	LOCATE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	Examples

	LOWER
	LOWER Function Syntax
	Argument Types

	Result Type and Attributes
	Usage Notes
	UDT Arguments

	Example
	Related Information

	LPAD
	LPAD Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example
	Example

	Related Information

	LTRIM
	LTRIM Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example

	Related Information

	NGRAM
	NGRAM Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Related Information

	NVP
	NVP Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example: Querying for Entree
	Example: Querying for Second Occurrence of 'store'
	Example: Querying for Entree (Default Value)
	Example: Querying for Entree with 1 Occurrence

	Related Information

	OREPLACE
	OREPLACE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Example
	Example
	Example
	Example
	Example

	Related Information

	OTRANSLATE
	OTRANSLATE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Examples
	Example: Returning the Current Database Version
	Example: Removing Extra Characters from the Query Results
	Example: Replacing and Returning Query Characters
	Example: Removing Characters without Replacing Them

	Related Information

	POSITION
	POSITION Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	POSITION Usage Notes
	Expected Values
	How POSITION and INDEX Differ

	Related Information

	REVERSE
	REVERSE Function Syntax
	Usage Notes
	Result Type
	Example

	RIGHT
	RIGHT Function Syntax
	Usage Notes
	Result Type
	Example

	RPAD
	RPAD Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example
	Example

	Related Information

	RTRIM
	RTRIM Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Examples
	Example
	Example

	Related Information

	SOUNDEX
	SOUNDEX Function Syntax
	Argument Types

	ANSI Compliance
	SOUNDEX Usage Notes
	Soundex Coding Guide

	Examples
	Example
	Example
	Example
	Examples of Non Valid Usage

	Related Information

	STRING_CS
	STRING_CS Function Syntax
	Argument Types

	ANSI Compliance
	Result Value
	Usage Notes
	Examples
	Example: Using STRING_CS to Determine the Client Character Set
	Example: Using STRING_CS to Translate a KANJI1 String to UNICODE

	Related Information

	STRTOK
	STRTOK Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Usage Notes
	Example: Using STRTOK

	STRTOK_SPLIT_TO_TABLE
	STRTOK_SPLIT_TO_TABLE Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type
	Example

	SUBSTRING
	SUBSTRING Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	SUBSTRING Usage Notes
	Result Value
	Usage Rules for SUBSTRING and SUBSTR
	Difference Between SUBSTRING and SUBSTR

	Examples
	Example: Searching for Car Serial IDs
	Example: Accessing Serial ID Characters
	Example: Limiting Returned Characters
	Example: Using a SELECT Statement to Request Substrings
	Example: Using the CREATE TABLE cstr Table
	Example: Differences Between SUBSTR and SUBSTRING
	Example: Using the KanjiEUC Client Character Set with the ctable1 Table
	Example: Using Examples for the KanjiShift-JIS Client Character Set
	Example: Applying the SUBSTRING Function to a CLOB Column

	Related Information

	TRANSLATE
	TRANSLATE Function Syntax
	Argument Types

	Result Type and Attributes
	TRANSLATE Usage Notes
	Supported Translations for CLOB Strings
	Supported Translations Between Character Sets
	Source Characters That Generate Errors
	Error Characters Assigned by the WITH ERROR Option
	Suffixes
	Translations Between Fullwidth and Halfwidth Character Data
	Space Folding
	UNICODE Normalization Form Translations
	Pad Character Translation
	Migration
	Implicit Character Data Type Conversion

	Related Information

	TRANSLATE_CHK
	TRANSLATE_CHK Function Syntax
	Argument Types

	ANSI Compliance
	Result Type and Attributes
	TRANSLATE_CHK Usage Notes
	Checking UNICODE Normalization Form Translations

	Examples
	Example
	Example
	Example
	Example

	Related Information

	TRIM
	TRIM Function Syntax
	Argument Types and Rules

	ANSI Compliance
	Result Type and Attributes
	TRIM Usage Notes
	Concatenation With TRIM

	Examples
	Example
	Example
	Example
	Example: Using TRIM Functions

	Related Information

	UPPER/UCASE
	UPPER/UCASE Function Syntax
	Argument Types

	ANSI Compliance
	Result Type and Attributes
	Usage Notes
	Examples
	Example: Using a Table Definition with CASESPECIFIC Attributes
	Example: Using UPPER to Store Values
	Example: Converting Single Byte Characters to Uppercase

	Related Information

	VARGRAPHIC
	VARGRAPHIC Function Syntax
	Argument Types

	ANSI Compliance
	Result Type and Attributes
	VARGRAPHIC Usage Notes
	Rules
	VARGRAPHIC Function Conversion Tables

	Examples
	Example
	Example

	Related Information

	Chapter 16 : User-Defined Functions
	SQL UDF
	SQL UDF Function Syntax
	Required Privileges
	ANSI Compliance
	Usage Notes
	Examples
	Example: Defining the Function and Query
	Example: Referencing an External UDF
	Example: Invoking the SQL UDF
	Example: Invoking Compatible Argument Data Types
	Example: Invoking Argument Data Types of Different Sizes

	Related Information

	Chapter 17 : Elastic TCore Functions
	GetSystemTCore
	GetSystemTCore Syntax
	GetSystemTCore Example

	SetSystemTCore
	SetSystemTCore Example
	SetSystemTCore Syntax

	Appendix A : Notation Conventions
	How to Read Syntax
	Character Shorthand Notation Used in This Document

	Appendix B : Additional Information
	Teradata Links

