
TI-Nspire[™] CAS Assisted Solutions VCE Mathematical Methods Written Sample Examination 2 Section B

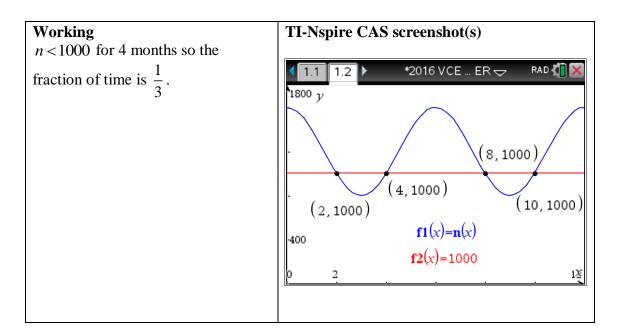
Explanatory notes:

Note that the VCAA only supplies multiple-choice answers to sample papers. Every effort has been made to ensure that these solutions are correct.

The author of these solutions has no affiliation with the VCAA.

SECTION B – Extended response questions Question 1: Part (a)

Part (b)


Working	TI-Nspire CAS screenshot(s)
From the graph above right,	
$n_{\rm max} = 1600$ and $n_{\rm min} = 800$.	

Part (c)

Working n(10) = 1000	TI-Nspire CAS screenshot(s)	
	$n(t) = 1200 + 400 \cdot \cos\left(\frac{\pi \cdot t}{3}\right)$	Done
	n(10)	1000

Part (d)

Question 2:

Part (a)

Working	TI-Nspire CAS screenshot(s)
$6480 = 5x^2 + 7hx$	
$7hx = 6480 - 5x^2$	$6480=2 \cdot x \cdot h + 2 \cdot h \cdot \frac{5 \cdot x}{2} + 2 \cdot x \cdot \frac{5 \cdot x}{2}$
$h = \frac{6480 - 5x^2}{7x}$	
7x	$6480=5 \cdot x^2 + 7 \cdot h \cdot x$
	$6480-5 \cdot x^{2}=5 \cdot x^{2}+7 \cdot x \cdot h-5 \cdot x^{2}$ $6480-5 \cdot x^{2}=7 \cdot h \cdot x$
	$\operatorname{comDenom}\left(\frac{6480-5\cdot x^2}{7\cdot x}=\frac{7\cdot h\cdot x}{7\cdot x}\right)$
	$\frac{6480-5 \cdot x^2}{7 \cdot x} = h$

Part (b)

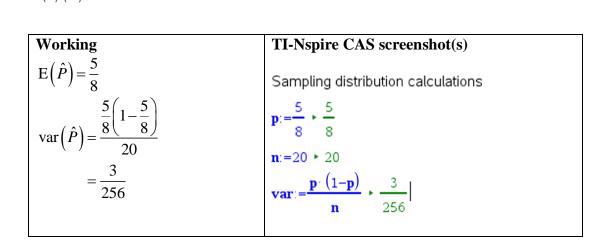
Working	TI-Nspire CAS screenshot(s)
Solving $V(x) > 0$ for x with $x > 0$ gives $0 < x < 36$.	Max/min problems
The Notes application can be used to solve max/min problems.	$\mathbf{v}(x) := \frac{5 \cdot x \cdot (6480 - 5 \cdot x^2)}{14} \cdot Done$
	$\operatorname{solve}(\mathbf{v}(x)>0,x) x>0 + 0 < x < 36$

Part (c)

Working	TI-Nspire CAS screenshot(s)
$\frac{dV}{dx} = -\frac{75}{14}x^2 + \frac{16200}{7}$ where $a = -\frac{75}{14}$ and $b = \frac{16200}{7}$	$\frac{d}{dx}(\mathbf{v}(x)) \mapsto \frac{16200}{7} - \frac{75 \cdot x^2}{14}$
Author comment: I am uneasy about what working is required for this 3-mark question part when TI-Nspire CAS gives $\frac{dV}{dx}$	
directly in its required form.	

Part (d)

Working	TI-Nspire CAS screenshot(s)
Solving $\frac{dV}{dx} = 0$ for x with $x > 0$	$\frac{d}{dx}(\mathbf{v}(x)) + \frac{16200}{7} - \frac{75 \cdot x^2}{14}$
gives $x = 12\sqrt{3}$ (cm). Substituting $x = 12\sqrt{3}$ into h	$\mathbf{xc} := \operatorname{zeros}\left(\frac{d}{dx}(\mathbf{v}(x)), x\right) x > 0 + \left\{12 \cdot \sqrt{3}\right\}$
gives $h = \frac{120\sqrt{3}}{7}$ (cm).	
	$h = \frac{6480 - 5 \cdot x^2}{7 \cdot x} x = xc \qquad h = \left\{ \frac{120 \cdot \sqrt{3}}{7} \right\}$


Question 3: Part (a) (i)

Working	TI-Nspire CAS screenshot(s)
$X \sim \operatorname{Bi}\left(20, \frac{5}{8}\right)$	Binomial Probability Calculations
$\Pr(X \ge 10) = 0.9153$ (correct to 4)	n :=20 ► 20
dp)	$\mathbf{p} := \frac{5}{8} + \frac{5}{8}$
The Notes application can be used to solve questions involving the binomial distribution.	binomCdf(n,p ,10,20) ► 0.915292

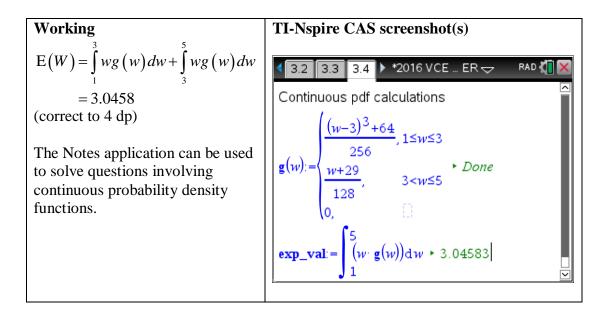
Part (a) (ii)

Working	TI-Nspire CAS screenshot(s)
$\Pr(X \ge 15 \mid X \ge 10)$	
$=\frac{\Pr(X\geq15)}{\Pr(X\geq10)}$	$\frac{\text{binomCdf}(\mathbf{n}, \mathbf{p}, 15, 20)}{\text{binomCdf}(\mathbf{n}, \mathbf{p}, 10, 20)} \ge 0.19531$
= 0.195 (correct to 3 dp)	

Part (a) (iii)

Working	TI-Nspire CAS screenshot(s)
Let X be the number from the	
sample that complete S in less	🖣 2.2 3.1 3.2 🕨 *2016 VCE ER 😓 🛛 🕅 🗶
than 3 mins.	
$\hat{P} = \frac{X}{20} \Longrightarrow X = 20\hat{P}$ and	$\mathbf{p} := \frac{5}{8} \times \frac{5}{8}$
$1 - \frac{1}{20} \rightarrow 1 - \frac{1}{20}$ and	8 8
$X \sim \operatorname{Bi}\left(20, \frac{5}{8}\right)$	n :=20 ► 20
$X \sim DI\left(\frac{20,-8}{8}\right)$	$\mathbf{var} = \frac{\mathbf{p} \cdot (1 - \mathbf{p})}{\mathbf{n}} \rightarrow \frac{3}{256}$
	$var = \frac{1}{n}$ 256
$\Pr\left(20\left(\frac{5}{8} - 2\sqrt{\frac{3}{256}}\right) \le X \le 20\left(\frac{5}{8} + 2\sqrt{\frac{3}{256}}\right)\right)$ $= \Pr\left(9 \le X \le 16\right)$	
$ \Pr 20 \left \frac{3}{9} - 2\sqrt{\frac{3}{256}} \right \le X \le 20 \left \frac{3}{9} + 2\sqrt{\frac{3}{256}} \right $	$\{20, (\mathbf{p}-2, \sqrt{\mathbf{var}}), 20, (\mathbf{p}+2, \sqrt{\mathbf{var}})\}$
$\left(\begin{array}{ccc} \left(8 & \sqrt{256}\right) & \left(8 & \sqrt{256}\right) \right)$	► {8.10987,10.8301}
$= \Pr(9 \le X \le 16)$	binomCdf(n , p ,9,16) ► 0.938595
= 0.939	
(correct to 3 dp)	

Part (a) (v)


Working	TI-Nspire CAS screenshot(s)
$\Pr\left(\hat{P} \ge \frac{3}{4} \mid \hat{P} \ge \frac{5}{8}\right)$	Binomial Probability Calculations
$= \Pr\left(X \ge 20 \times \frac{3}{4} \mid X \ge 15 \times \frac{3}{4}\right)$	n :=20 ► 20
$=\prod_{x \in 20, -4} \left[x \in 10, -4 \right]$	$\mathbf{p} := \frac{5}{8} + \frac{5}{8}$
$= \Pr\left(X \ge 15 \mid X \ge 13\right)$	8 8
= 0.352	$\operatorname{binomCdf}(\mathbf{n}, \mathbf{p}, 15, 20)$
(correct to 3 dp)	$\frac{\text{binomCdf}(\mathbf{n}, \mathbf{p}, 15, 20)}{\text{binomCdf}(\mathbf{n}, \mathbf{p}, 13, 20)} \ge 0.352001$

Part (b)

Working	TI-Nspire CAS screenshot(s)
$\frac{3}{32} + \frac{1}{16} + \frac{3}{16} = \frac{11}{32}$	$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \qquad \qquad$

Part (c) (i)

Part (c) (ii)

Working	TI-Nspire CAS screenshot(s)
$200 \Pr(W > 4) = 52.3438$	
So 52 members (nearest integer).	200 $\int_{4}^{5} g(w) dw + 52.3438$

Part (d)

Working	TI-Nspire CAS screenshot(s)
$0.504 \le p \le 0.696$	
(correct to 3dp)	Number of successes: $\mathbf{x} = 60 + 60$
	Sample size: n:=100 ► 100
Author comment: This question part is worth one mark and so we	Confidence level: cl:=0.95 ► 0.95
can just write the answer down.	zInterval_1Prop x,n,cl: stat.results
	"Title" "1-Prop z Interval"
	"CLower" 0.503982
	 "CUpper" 0.696018
	"p̂" 0.6
	"ME" 0.096018
	"n" 100.

Question 4: Part (a) (i)

Working	TI-Nspire CAS screensh	ot(s)
$1-\frac{1}{e^2}$	$f(x) = e^{x}$	Done
	$\int_{-2}^{0} f(x) \mathrm{d}x$	1- e ⁻²

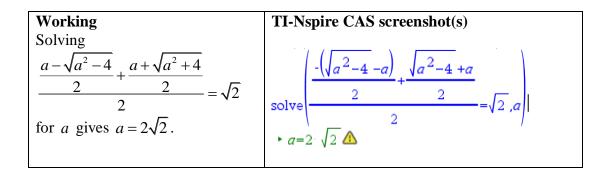
Part (a) (ii)

Working	TI-Nspire CAS screenshot(s)
$1 - \frac{1}{a^2}$	

Part (a) (iii)

Working	TI-Nspire CAS screenshot(s)	
$e-\frac{1}{e^2}$	$\int_{0}^{1} f(x) \mathrm{d}x + \int_{-2}^{0} f(x) \mathrm{d}x$	e -e ⁻²

Part (b) (i)


Working	TI-Nspire CAS screenshot(s)
Solving $g(x) = k(x)$ for x gives	$\mathbf{g}(\mathbf{x}) := \ln(\mathbf{x}) \cdot Done$
$a \pm \sqrt{a^2 - 4}$	$\mathbf{h}(x) := -\ln(a - x) \cdot Done$
$x = \frac{a \pm \sqrt{a^2 - 4}}{2}.$	$\mathbf{x}\mathbf{p} = \operatorname{zeros}(\mathbf{g}(x) - \mathbf{h}(x), x)$
The Notes application can be used to solve equations (use of the zeros command is shown here).	$\star \left\{ \left\{ \frac{-\left(\sqrt{a^2 - 4} - a\right)}{2}, -a \le \sqrt{a^2 - 4} \le a \right\} \right\}$
	$\left\{\frac{\sqrt{a^2-4}+a}{2}, -a \le \sqrt{a^2-4} \le a\right\}$

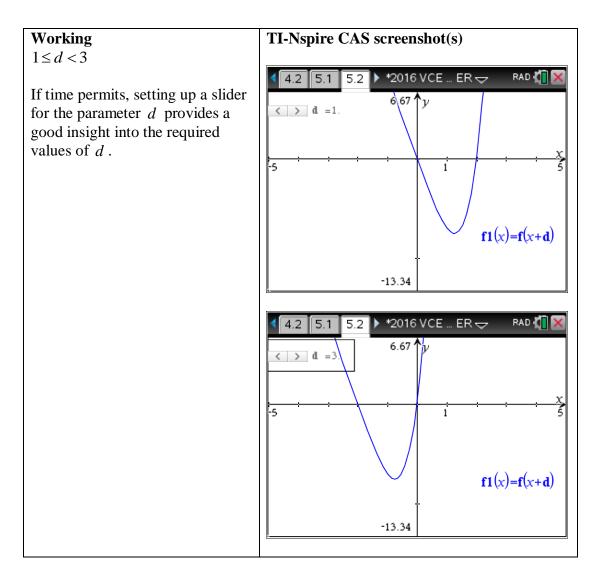
Part (b) (ii)

Working	TI-Nspire CAS screenshot(s)	
$a^2 - 4 > 0 \Longrightarrow a > 2(a > 0)$	solve $\left(a^2 - 4 > 0, a\right) a > 0$	a>2

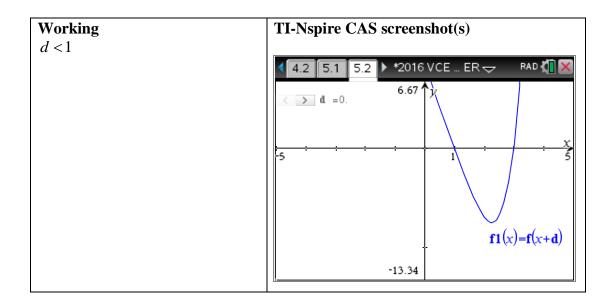
Part (c)

Question 5:

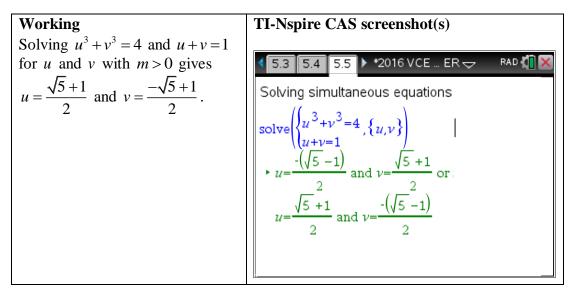
Part (a)


Working	TI-Nspire CAS screenshot(s)
$g(x) = x(x-2)((x+1)^{2}+3)$	$f(x) := (x-3) \cdot (x-1) \cdot (x^2+3) \cdot Done$
The Notes application can be used to solve extended answer questions testing knowledge of calculus and algebra.	$g(x) := x^{4} - 8 \cdot x * Done$ factor(g(x)) * x · (x-2) · (x ² +2 · x+4) completeSquare(x ² +2 · x+4,x) * (x+1) ² +3

Part (b)


Working	TI-Nspire CAS screenshot(s)
Translation of 1 unit in the	
negative direction of the <i>x</i> -axis.	f(x+1)=g(x) + true

Part (c) (ii)


Texas Instruments Part (d)

Working	TI-Nspire CAS screenshot(s)	
Solving $g'(x) = 0$ for x gives		
1	5.1 5.2 5.3 ▶ *2016 VCE ER	RAD 🚺 🗙
$x = 2^{\frac{1}{3}}.$	$g(x):=x^4-8 \cdot x \cdot Done$	
$n = g\left(2^{\frac{1}{3}}\right) = -6\left(2^{\frac{1}{3}}\right)$	$g(x) := x^{4} - 8 \cdot x \cdot Done$ $\frac{d}{dx}(g(x)) \cdot 4 \cdot x^{3} - 8$	
	$\mathbf{xc} := \operatorname{zeros}\left(\frac{d}{dx}(\mathbf{g}(x)), x\right) + \begin{cases} \frac{1}{2} \end{cases}$	
	$\mathbf{g}(\mathbf{x}\mathbf{c}) \mapsto \left\{ \frac{1}{-6 \cdot 2^{3}} \right\}$	
	g(xc) ► (-6·2)	

Part (e) (i)

Working	TI-Nspire CAS screenshot(s)
g'(u) = m and $g'(v) = -mAdding the two equations andsimplifying gives u^3 + v^3 = 4.$	$eq1:=\left(\frac{d}{dx}(g(x)) x=u\right)=m + 4 \cdot u^{3}-8=m$ $eq2:=\left(\frac{d}{dx}(g(x)) x=v\right)=-m + 4 \cdot v^{3}-8=-m$ $eq1+eq2 + 4 \cdot u^{3}+4 \cdot v^{3}-16=0$

Part (e) (ii)

Working	TI-Nspire CAS screenshot(s)
$y = g'(p)(x-p) + g(p) = 4(p^{3}-2)x - 3p^{4}$	Equations of tangents and normals $f(x) := x^4 - 8 \cdot x \cdot Done$
The Notes application can be used to calculate equations of tangents and normals.	$ \begin{array}{l} \gamma = \text{tangentLine}(\mathbf{f}(x), x, p) \\ \bullet \ \gamma = 4 \cdot \left(p^3 - 2\right) \cdot x - 3 \cdot p^4 \end{array} $

Part (f) (ii)

Working	TI-Nspire CAS screenshot(s)
Solving	< 5.4 5.5 5.6 🕨 *2016 VCE ER 🗢 🕬 RAD 🚺 🗙
$4(p^{3}-2)\left(\frac{3}{2}\right)-3p^{4} = -12 \text{ for } p$ gives $p = 0$ or $p = 2$. When $p = 0$, $y = -8x$. When $p = 2$, $y = 24x - 48$.	$f(x) := x^{4} - 8 \cdot x * Done$ $y = tangentLine(f(x), x, p)$ $* y = 4 \cdot (p^{3} - 2) \cdot x - 3 \cdot p^{4}$ $pval := zeros(y - tangentLine(f(x), x, p), p) x = \frac{3}{2}$ and $y = -12$ $* \{0, 2\}$ $y = tangentLine(f(x), x, p) p = pval $ $* y = \{ -8 \cdot x, 24 \cdot x - 48 \}$

