TI-Nspire[™] CAS Assisted Solutions VCE Specialist Mathematics Written Sample Examination 2 Section B

Explanatory notes:

Note that the VCAA only supplies multiple-choice answers to sample papers. Every effort has been made to ensure that these solutions are correct.

The author of these solutions has no affiliation with the VCAA.

SECTION B – Extended response questions Question 1: Part (a)

Part (b)

Part (c)

Part (d)

Question 2: Part (a) (i)

Texas Instruments Part (a) (ii)

Working	TI-Nspire CAS screenshot(s)
$u^{6} = \operatorname{cis}\left(6 \times \frac{\pi}{3}\right)$ $= \operatorname{cis}(2\pi) .$	This question part (a one mark show that question) is best done without the use of TI-Nspire CAS.
=1	

Part (a) (iii)

Part (b) (i)

Working	TI-Nspire CAS screenshot(s)
Circle centre $(0,0)$ and radius 1.	Diagram is below in (b) (ii).

Part (b) (ii)

Question 3: Part (a)

Working	TI-Nspire CAS screenshot(s)
$\log_{e}(N) = 6 - 3e^{-0.4t}$ $\frac{d}{dN} (\log_{e}(N)) \frac{dN}{dt} = \frac{1}{N} \frac{dN}{dt} \text{ and}$	This question part is best attempted without using CAS.
$\frac{d}{dt} \left(6 - 3e^{-0.4t} \right) = 1.2e^{-0.4t}$	
So $\frac{1}{N} \frac{dN}{dt} = 1.2e^{-0.4t}$.	
Substituting into the LHS of the	
differential equation gives:	
$1.2e^{-0.4t} + 0.4(6 - 3e^{-0.4t}) - 2.4 = 0$	

Part (b)

Working $N = 20$ (correct to the nearest	TI-Nspire CAS screenshot(s)	
integer)	solve $\left(\ln(n)=6-3 \cdot e^{-0.4 \cdot t}, n\right) t=0$	<i>n</i> =20.0855

Part (c)

Working	TI-Nspire CAS screenshot(s)	
When $t \to \infty$, $\log_e(N) \to 6$ and		
so $N \rightarrow 403$ (correct to the nearest integer).	$\lim_{t \to \infty} \left(e^{6-3 \cdot e^{-0.4 \cdot t}} \right)$	403.429

Part (d) (i)

Working	TI-Nspire CAS screenshot(s)
$\frac{d^2N}{dt^2} = \frac{d}{dN} \left(\frac{dN}{dt}\right) \frac{dN}{dt}$ $= \left(0.4 \left(6 - \log_e\left(N\right)\right) + 0.4N \times \frac{-1}{N}\right) \frac{dN}{dt}$ $= 0.16N \left(5 - \log_e\left(N\right)\right) \left(6 - \log_e\left(N\right)\right)$	This question part is best attempted without using CAS.

Part (d) (ii)

Part (e)

Question 4: Part (a)

Working	TI-Nspire CAS screenshot(s)	
$\dot{\mathbf{r}}(0) = 12\cos(60^\circ)\mathbf{i} + 12\sin(60^\circ)\mathbf{j}$	$[12 \cos(60^\circ) \ 12 \sin(60^\circ)]$	$\begin{bmatrix} 6 & 6 \cdot \sqrt{3} \end{bmatrix}$
$=6i+6\sqrt{3}j$		

Working

$$i(t) = -\frac{t^2}{20}i(-\left(gt - \frac{t^2}{20}\right)j + c$$

$$i(0) = 6i + 6\sqrt{3}j \text{ and so}$$

$$c = 6i + 6\sqrt{3}j$$

$$i(t) = \left(6 - \frac{t^2}{20}\right)i + \left(6\sqrt{3} - gt + \frac{t^2}{20}\right)j$$

$$i(t) = \left(6t - \frac{t^3}{60}\right)i$$

$$+ \left(6\sqrt{3}t - \frac{gt^2}{2} + \frac{t^3}{60}\right)j + d$$

$$r(t) = \left(6t - \frac{t^3}{60}\right)i$$

$$+ \left(6\sqrt{3}t - \frac{gt^2}{2} + \frac{t^3}{60}\right)j + d$$

$$r(t) = \left(6t - \frac{t^3}{60}\right)i$$

$$+ \left(6\sqrt{3}t - \frac{gt^2}{2} + \frac{t^3}{60}\right)j$$

$$+ \left(6\sqrt{3}t - \frac{gt^2}{2} + \frac{t^3}{60}\right)j$$
The Notes application can be used to perform vector calculus calculations.

Part (c)

Working
At
$$t = T$$
, the skier lands on the
down-slope represented by the
equation $y = -x$.
Solving
 $-\left(6T - \frac{T^3}{60}\right) = 6\sqrt{3}T - \frac{gT^2}{2} + \frac{T^3}{60}$ TI-Nspire CAS screenshot(s) $\log\left(-\left(6 \cdot t - \frac{t^3}{60}\right) = \frac{t^3}{60} - \frac{g \cdot t^2}{2} + 6 \cdot \sqrt{3} \cdot t, t\right)$
 $t = \frac{12 \cdot (\sqrt{3} + 1)}{g}$ or $t = 0$ for T with $T > 0$ gives
 $T = \frac{12}{g}(\sqrt{3} + 1)$.

Texas Instruments

Part (d)

Working
$$\left|\dot{z}\left(\frac{12}{g}\left(\sqrt{3}+1\right)\right)\right| = 22.5 \text{ (m/s)}$$

(correct to 1 dp)TI-Nspire CAS screenshot(s)The Notes application can be used
to perform vector calculus
calculations. $12 \cdot \left(\sqrt{3}+1\right)$
gand $g=9.8$
g

Question 5: Part (a)

Working	TI-Nspire CAS screenshot(s)
Solving $3g - T_1 = 3a$ and $T_1 - g = a$ for a and T_1 gives $a = \frac{g}{2}$ (ms ⁻²).	Equations of motion solve $\begin{pmatrix} 3 \cdot g - t1 = 3 \cdot a \\ t1 - g = a \end{pmatrix} \ge a = \frac{g}{2}$ and $t1 = \frac{3 \cdot g}{2}$
The Notes application can be used to solve equations of motion.	

Part (b)

Working	TI-Nspire CAS screenshot(s)
Solving the system of equations in	
(a) gives $T_1 = \frac{3g}{2}$ (N).	See the above screenshot.

Part (c)

Part (d)

Working	TI-Nspire CAS screenshot(s)
$b=0$ so $T_2=g$	
Solving $3g\sin(\theta) - g = 0$ for θ	4.2 4.3 5.1 ▶ *2016 VCE ER RAD 4 Kan An
gives $\theta = 19.5^{\circ}$ (correct to 1 dp).	Equations of motion
	solve $\begin{pmatrix} 3 \cdot g \cdot \sin(\theta) - t2 = 3 \cdot b \\ t2 - g = b \end{pmatrix}$, $\theta, t2 = 0$
	and $0 < \theta < \frac{\pi}{2}$ and $g \neq 0$
	► $\theta = \sin^{-1}\left(\frac{1}{3}\right)$ and $g \neq 0$ and $t \geq 2 = g$
	$\left(\sin^{-1}\left(\frac{1}{3}\right)\right) \rightarrow DD \rightarrow 19.4712^{\circ}$

Part (e)

Working	TI-Nspire CAS screenshot(s)
Solving	
$T_2 - 3g\sin(\theta) = \frac{3g}{4} \left(1 - \frac{3}{\sqrt{2}}\right)$ and	Equations of motion
$I_2 - 3g \sin(\theta) = \frac{1}{4} \left(1 - \frac{1}{\sqrt{2}}\right)$ and $\left(1 - \frac{1}{\sqrt{2}}\right)$	solve $\begin{pmatrix} t^{2-3} g \sin(\theta) = 3 b \\ g - t^{2} = b \end{pmatrix}$, θ, t^{2}
$g - T_2 = \frac{g}{4} \left(1 - \frac{3}{\sqrt{2}} \right)$ for θ (and T_2)	solve $\left\{ \begin{array}{l} z = 0 & g & bin(0) & 0 & b & [\theta, t^2] \\ g - t^2 = b & & \\ b = \frac{g}{4} \cdot \left(1 - \frac{3}{\sqrt{2}} \right) \text{ and } 0 < \theta < \frac{\pi}{2} \text{ and } g \neq 0 \end{array} \right\}$
) gives $\theta = 45^{\circ}$.	$4 \left(\sqrt{2} \right) \qquad 2 \qquad (\begin{tabular}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\$
	$\bullet \theta = \frac{\pi}{4} \text{ and } g \neq 0 \text{ and } t2 = \frac{3 \cdot g \cdot (\sqrt{2} + 2)}{8}$
	4 8

Question 6: Part (a)

Working	TI-Nspire CAS screenshot(s)
$H_0: \mu = 10, H_1: \mu < 10$	TI-Nspire CAS functionality does not offer any assistance here.

Part (b)

Part (c)

Working	TI-Nspire CAS screenshot(s)
Since $p > 0.05(\alpha)$, H ₀ is not rejected at the 5% level of significance.	TI-Nspire CAS functionality does not offer any assistance here.

Part (d)

Working	TI-Nspire CAS screenshot(s)
Using the inverse normal feature	
with $p = 0.05$, $\mu = 10$ and $s = \frac{1}{5}$	5.1 6.1 6.2 ▶ *2016 VCE ER → RAD (× Probability and Statistics $\mu:=10 + 10$ $s:=1 + 1$ $n:=25 + 25$ $p:=0.05 + 0.05$ $c:=invNorm\left(p,\mu,\frac{s}{\sqrt{n}}\right) + 9.67103$
	\ \n /

Part (e) (i)

Working	TI-Nspire CAS screenshot(s)
$\Pr(\bar{X} > 9.67103 \mid \mu = 9.5) = 0.196$	5.1 6.1 6.2 ▶ *2016 VCE ER R RAD RAD R
(correct to 3 dp).	Probability and Statistics
	μ :=9.5 ▶ 9.5
	cnew :=9.67103 ► 9.67103
	s:=1 * 1
	n :=25 ► 25
	$\mathbf{pval}:=\operatorname{normCdf}\left(\operatorname{cnew}, \infty, \mu, \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}\right) \succeq 0.196234$

Part (e) (ii)

Working	TI-Nspire CAS screenshot(s)
This represents a type II error as it	
is the same as not rejecting H_0	TI-Nspire CAS functionality does not offer
when it is false.	any assistance here.
In other words, $\overline{X} > 9.671$ results	
in H_0 not being rejected even	
though $\mu = 9.5$.	

