TI-Nspire ${ }^{\text {TM }}$ CAS Assisted Solutions
 VCE Specialist Mathematics Written Sample Examination 2 Section B

Explanatory notes:

Note that the VCAA only supplies multiple-choice answers to sample papers. Every effort has been made to ensure that these solutions are correct.

The author of these solutions has no affiliation with the VCAA.

SECTION B - Extended response questions

Question 1:
Part (a)

Working
$f(2)=2$

TI-Nspire CAS screenshot(s)
$A(x):=-2+2 \cdot \sec \left(\frac{\pi \cdot x}{6}\right) 10 \leq x<3$
A(2)
2

Part (b)

Working

f^{-1} is the reflection of f in the line $y=x$
f and f^{-1} intersect at $(0,0)$ and $(2,2)$.

On TI-Nspire CAS, graph $x=f(y)$ using the relation graphing feature.

TI-Nspire CAS screenshot(s)

Part (c)

Working

Solving $k \arccos \left(\frac{2}{2+2}\right)=2$ for k gives $k=\frac{6}{\pi}$.

TI-Nspire CAS screenshot(s)
solve $\left(k \cdot \cos ^{-1}\left(\frac{2}{2+2}\right)=2, k\right)$

Working	TI-Nspire CAS screenshot(s)
$L=\int_{0}^{2} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ where	
$f^{\prime}(x)=\pi \sin \left(\frac{\pi x}{6}\right)$	$\begin{aligned} & \text { Arc length } \\ & \mathrm{a}:=0 \times 0 \end{aligned}$
$3 \cos ^{2}\left(\frac{\pi x}{6}\right)$ So $L=3.067$ (correct to 3 dp).	$\begin{aligned} & \mathbf{b}:=2 \vee 2 \\ & \mathbf{f}(x):=-2+2 \cdot \sec \left(\frac{\pi \cdot x}{6}\right) \cdot \text { Done } \end{aligned}$
The Notes application can be used to calculate the arc length of a curve.	
	$f(x)=-2+2 \cdot \sec \left(\frac{\pi \cdot x}{6}\right) \cdot \text { Done }$
	$\begin{aligned} & \frac{d}{d x}(\mathbf{f}(x)) \cdot \frac{\pi \cdot \sin \left(\frac{\pi \cdot x}{6}\right)}{3 \cdot\left(\cos \left(\frac{\pi \cdot x}{6}\right)\right)^{2}} \\ & \operatorname{arcLen}(\mathbf{f}(x), x, \mathbf{a}, \mathbf{b}) \cdot 3.06738 \end{aligned}$

Question 2:
Part (a) (i)

Working
 $u=\operatorname{cis}\left(\frac{\pi}{3}\right)$

The Notes application can be used to perform complex number arithmetic.

TI-Nspire CAS screenshot(s)

\section*{| 1.4 | 1.5 | $2.1>$ |
| :--- | :--- | :--- |
| $>$ | | |}

Converting a complex number to polar form
$\mathbf{u}:=\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \cdot \frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i}$
$|\mathbf{u}| \cdot 1$
angle $(\mathbf{u}) \cdot \frac{\pi}{3}$
$u>$ Polar $\cdot \mathrm{e}^{\frac{\boldsymbol{i} \cdot \pi}{3}}$

Working			
u^{6}	$=\operatorname{cis}\left(6 \times \frac{\pi}{3}\right)$		
	$=\operatorname{cis}(2 \pi) \cdot$		
	$=1$	\quad	TI-Nspire CAS screenshot(s)
:---			
This question part (a one mark show that			
question) is best done without the use of TI-			

Part (a) (iii)

Working

We require 6 points located at:
$z= \pm 1, \frac{1}{2} \pm \frac{\sqrt{3}}{2} i,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$
And we require that u and w are labelled correctly.

TI-Nspire CAS screenshot(s)

Part (b) (i)

Working

Circle centre $(0,0)$ and radius 1 .

TI-Nspire CAS screenshot(s)

Diagram is below in (b) (ii).

Part (b) (ii)

Working Straight line passing through $(0,0)$.	TI-Nspire CAS screenshot(s)

Working
By reading the answers from
Argand diagram we obtain
$\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$.

Alternatively (but not as efficiently):
Solving $|z|=1$ and $|z-u|=|z+u|$ for x and y gives the above intersection points.

TI-Nspire CAS screenshot(s)

Solving equations involving complex numbers
$\mathbf{z}:=x+y \cdot \boldsymbol{i} \cdot x+y \cdot \boldsymbol{i}$
$\operatorname{zeros}\left(\left\{\left.\left\{\begin{array}{l}|\mathbf{z}|-1 \\ \mathbf{z}-\mathbf{u}|-|\mathbf{z}+\mathbf{u}|\end{array}, x, y\right) \cdot\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2}\end{array}\right] \right\rvert\,\right.\right.$

Question 3:

Part (a)
Working
$\log _{e}(N)=6-3 e^{-0.4 t}$
$\frac{d}{d N}\left(\log _{e}(N)\right) \frac{d N}{d t}=\frac{1}{N} \frac{d N}{d t}$ and
$\frac{d}{d t}\left(6-3 e^{-0.4 t}\right)=1.2 e^{-0.4 t}$
So $\frac{1}{N} \frac{d N}{d t}=1.2 e^{-0.4 t}$.

Substituting into the LHS of the differential equation gives:
$1.2 e^{-0.4 t}+0.4\left(6-3 e^{-0.4 t}\right)-2.4=0$

TI-Nspire CAS screenshot(s)

This question part is best attempted without using CAS.

Part (b)

Working
$N=20$ (correct to the nearest integer)

TI-Nspire CAS screenshot(s)
solve $\left(\ln (n)=6-3 \cdot \mathbf{e}^{-0.4 \cdot t}, n\right) \mid t=0 \quad n=20.0855$

Part (c)

Working

When $t \rightarrow \infty, \log _{e}(N) \rightarrow 6$ and so $N \rightarrow 403$ (correct to the nearest integer).

TI-Nspire CAS screenshot(s)

$\lim _{t \rightarrow \infty}\left(e^{6-3 \cdot e^{-0.4} \cdot t}\right)$
403.429

Part (d) (i)

$$
\begin{aligned}
& \text { Working } \\
& \frac{d^{2} N}{d t^{2}}=\frac{d}{d N}\left(\frac{d N}{d t}\right) \frac{d N}{d t} \\
& =\left(0.4\left(6-\log _{e}(N)\right)+0.4 N \times \frac{-1}{N}\right) \frac{d N}{d t} \\
& =0.16 N\left(5-\log _{e}(N)\right)\left(6-\log _{e}(N)\right)
\end{aligned}
$$

TI-Nspire CAS screenshot(s)

This question part is best attempted without using CAS.

Part (d) (ii)

Working	TI-Nspire CAS screenshot(s)
Solving $\frac{d^{2} N}{d t^{2}}=0$ for N gives $N=148$ (correct to the nearest integer). This occurs at $t=2.7$ (years) (correct to 1 dp).	solve $(5-\ln (n)=0, n) \quad n=148.413$
	solve $\left(\ln (n)=6-3 \cdot \mathrm{e}^{-0.4 \cdot t}, t\right) \mid n=148.41315910^{\prime}{ }^{\prime}$
	400 y
	$\mathbf{f 1}(x)=\mathbf{e}^{6-3 \cdot} \mathrm{e}^{-0.4 \cdot x}$
	$\int_{-100} /(2.7,148)$

Working	TI-Nspire CAS screenshot(s)
TI-Nspire CAS can be used to help graph the function.	
See the above right screenshot.	$400 y$
Note that the differential equation graphing feature can graph the	$111111 / 11111111111$
$\frac{d N}{d t}=0.4 N\left(6-\log _{e}(N)\right)$	$\left[\begin{array}{lllllllllllll} \prime & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hdashline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array} 1\right.$
	$1 / 111 / 1 / 1 / 1 / 111 / 1$

Question 4:

Part (a)

Working	TI-Nspire CAS screenshot(s)
$\begin{aligned} \underset{\sim}{\dot{y}}(0) & =12 \cos \left(60^{\circ}\right) \underset{\sim}{i}+12 \sin \left(60^{\circ}\right) \underset{\sim}{j} \\ & =6 \underset{\sim}{\dot{i}}+6 \sqrt{3} \underset{\sim}{j} \end{aligned}$	$\left[12 \cdot \cos \left(60^{\circ}\right) \quad 12 \cdot \sin \left(60^{\circ}\right)\right] \quad\left[\begin{array}{ll}6 & 6 \cdot \sqrt{3}\end{array}\right]$

Part (c)

Working

At $t=T$, the skier lands on the down-slope represented by the equation $y=-x$.
Solving
$-\left(6 T-\frac{T^{3}}{60}\right)=6 \sqrt{3} T-\frac{g T^{2}}{2}+\frac{T^{3}}{60}$

TI-Nspire CAS screenshot(s)

$$
\text { solve }\left(-\left(6 \cdot t-\frac{t^{3}}{60}\right)=\frac{t^{3}}{60}-\frac{g \cdot t^{2}}{2}+6 \cdot \sqrt{3} \cdot t, t\right)
$$

$$
t=\frac{12 \cdot(\sqrt{3}+1)}{g} \text { or } t=0
$$

for T with $T>0$ gives
$T=\frac{12}{g}(\sqrt{3}+1)$.

Working
$\left|\stackrel{\dot{\sim}}{ }\left(\frac{12}{g}(\sqrt{3}+1)\right)\right|=22.5(\mathrm{~m} / \mathrm{s})$
(correct to 1 dp)
The Notes application can be used to perform vector calculus calculations.

TI-Nspire CAS screenshot(s)
$\operatorname{norm}(\mathbf{v}(t)) \left\lvert\, t=\frac{12 \cdot(\sqrt{3}+1)}{g}\right.$ and $g=9.8$

- 22.5004

Question 5:

Part (a)
Working
Solving $3 g-T_{1}=3 a$ and
$T_{1}-g=a$ for a and T_{1} gives
$a=\frac{g}{2}\left(\mathrm{~ms}^{-2}\right)$.

The Notes application can be used to solve equations of motion.

TI-Nspire CAS screenshot(s)

Equations of motion
solve $\left(\begin{array}{l}3 \cdot g-t 1=3 \cdot a \\ t 1-g=a\end{array}, a, t 1\right) \cdot a=\frac{g}{2}$ and $t 1=\frac{3 \cdot g}{2}$

Part (b)

Working

Solving the system of equations in (a) gives $T_{1}=\frac{3 g}{2}(\mathrm{~N})$.

TI-Nspire CAS screenshot(s)

See the above screenshot.

Part (c)

Working
Solving $3 g \sin \left(30^{\circ}\right)-T_{2}=3 b$ and
$T_{2}-g=b$ for b (and $\left.T_{2}\right)$ gives
$b=\frac{g}{8}\left(\mathrm{~ms}^{-2}\right)$.

TI-Nspire CAS screenshot(s)

Equations of motion
solve $\left(\left\{\begin{array}{l}3 \cdot g \cdot \sin \left(30^{\circ}\right)-t 2=3 \cdot b \\ t 2-g=b\end{array}, b, t 2\right)\right.$
$-b=\frac{g}{8}$ and $t 2=\frac{9 \cdot g}{8}$

Working
$b=0$ so $T_{2}=g$
Solving $3 g \sin (\theta)-g=0$ for θ gives $\theta=19.5^{\circ}$ (correct to 1 dp).

TI-Nspire CAS screenshot(s)

\section*{	4.2	4.3	5.1
$>$			}

Equations of motion
solve $\left.\left(\begin{array}{l}3 \cdot g \cdot \sin (\theta)-t 2=3 \cdot b \\ t 2-g=b\end{array}, \theta, t 2\right) \right\rvert\, b=0$
and $0<\theta<\frac{\pi}{2}$ and $g \neq 0$

- $\theta=\sin ^{-1}\left(\frac{1}{3}\right)$ and $g \neq 0$ and $t 2=g$
$\left(\sin ^{-1}\left(\frac{1}{3}\right)\right)$ DD $+19.4712^{\circ}$

Part (e)

Working

Solving
$T_{2}-3 g \sin (\theta)=\frac{3 g}{4}\left(1-\frac{3}{\sqrt{2}}\right)$ and
$g-T_{2}=\frac{g}{4}\left(1-\frac{3}{\sqrt{2}}\right)$ for $\theta\left(\right.$ and T_{2}
) gives $\theta=45^{\circ}$.

Question 6:
Part (a)

Working

$\mathrm{H}_{0}: \mu=10, \mathrm{H}_{1}: \mu<10$

TI-Nspire CAS screenshot(s)

Equations of motion
solve $\left(\begin{array}{l}\{t 2-3 \cdot g \cdot \sin (\theta)=3 \cdot b \\ g-t 2=b\end{array}, \theta, t 2\right)$,
$b=\frac{g}{4} \cdot\left(1-\frac{3}{\sqrt{2}}\right)$ and $0<\theta<\frac{\pi}{2}$ and $g \neq 0$

- $\theta=\frac{\pi}{4}$ and $g \neq 0$ and $t 2=\frac{3 \cdot g \cdot(\sqrt{2}+2)}{8}$
\qquad

Working$\begin{aligned} & p=\operatorname{Pr}(\bar{X} \leq 9.7 \mid \mu=10) \\ &=0.067 \\ & \text { (correct to } 3 \mathrm{dp} \text {) } \end{aligned}$	TI-Nspire CAS screenshot(s)
	Probability and Statistics
The Notes application can be used to solve probability and statistics exam questions.	$\boldsymbol{\mu}:=10 \times 10$
	$\overline{\mathbf{x}}:=9.7 \times 9.7$
	$\mathrm{s}=1 \times 1$
	n: $=25 \times 25$
	$\mid \text { pval: } \left.=\operatorname{normCdf}\left(-\infty, \overline{\mathbf{x}}, \mu, \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}\right) \cdot 0.066807 \right\rvert\,$

Part (c)

Working

Since $p>0.05(\alpha), H_{0}$ is not rejected at the 5% level of significance.

TI-Nspire CAS screenshot(s)

TI-Nspire CAS functionality does not offer any assistance here.

Part (d)

Working	TI-Nspire CAS screenshot(s)
with $p=0.05, \mu=10$ and $s=\frac{1}{5}$	
we obtain $C^{*}=9.671$ (correct to 3	Probability and Statistics
$\mathrm{dp})$.	$\boldsymbol{\mu}=10 \times 10$
	$\mathrm{s}:=1 \times 1$
	n: $=25 \times 25$
	$\mathbf{p}=0.05 \times 0.05$
	$\left.\mathbf{c}==\operatorname{invNorm}\left(\mathbf{p}, \boldsymbol{\mu}, \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}\right) \cdot 9.67103 \right\rvert\,$

Working	TI-Nspire CAS screenshot(s)
$\operatorname{Pr}(\bar{X}>9.67103 \mid \mu=9.5)=0.196$ (correct to 3 dp).	
	Probability and Statistics
	$\boldsymbol{\mu}:=9.5$ P 9.5
	cnew: $=9.67103 \times 9.67103$
	$\mathrm{s}=1 \times 1$
	n: $=25 \cdot 25$
	$\text { pval }=\text { normCdf }\left(\text { cnew }, \infty, \mu, \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}\right) \cdot 0.196234$

Part (e) (ii)

Working

This represents a type II error as it is the same as not rejecting H_{0} when it is false.
In other words, $\bar{X}>9.671$ results in H_{0} not being rejected even though $\mu=9.5$.

TI-Nspire CAS screenshot(s)

TI-Nspire CAS functionality does not offer any assistance here.

