Nitrate

INTRODUCTION

The tests described here are used to measure the concentration of nitrate ions, NO_3^- , in a water sample. The concentration of nitrate will be expressed throughout this section in units of mg/L NO₃⁻-N. The unit, NO₃⁻-N, means simply "nitrogen that is in the form of nitrate."

Nitrate ions found in freshwater samples result from a variety of natural and manmade sources. Nitrates are an important source of nitrogen necessary for plants and animals to synthesize amino acids and proteins. Most nitrogen on earth is found in the atmosphere in the form of nitrogen gas, N₂. Through a process called the *nitrogen cycle*,¹ nitrogen gas is changed into forms that are useable by plants and animals. These conversions include industrial production of fertilizers, as well as natural processes, such as legume-plant nitrogen fixation, plant and animal decomposition, and animal waste.

Sources of Nitrate lons

- Agriculture runoff
- Urban runoff
- Animal feedlots and barnyards
- Municipal and industrial wastewater
- Automobile and industrial emissions
- Decomposition of plants and animals

Although nitrate levels in freshwater are usually less than 1 mg/L, manmade sources of nitrate may elevate levels above 3 mg/L. These sources include animal feedlots, runoff from fertilized fields, or treated municipal wastewater being returned to streams. Levels above 10 mg/L in

drinking water can cause a potentially fatal disease in infants called *methemoglobinemia*, or Blue-Baby Syndrome. In this disease, nitrate converts hemoglobin into a form that can no longer transport oxygen.

High nitrate concentrations also contribute to a condition in lakes and ponds called *eutrophication*, the excessive growth of aquatic plants and algae. Unpleasant odor and taste of water, as well as reduced clarity, often accompany this process. Eventually, dead biomass accumulates in the bottom of the lake, where it decays and compounds the problem by recycling nutrients. If other necessary nutrients are present, algal blooms can occur in a lake with as little as 0.50 mg/L NO₃⁻-N.

Nitrate pollution of surface and groundwater has become a major ecological problem in some agricultural areas. Although fertilizer in runoff is most often blamed, there is evidence that concentration of livestock in feedlots is now the major source of agricultural nitrate pollution. Runoff from fertilized fields is still a significant source of nitrate, although fertilizer use peaked in 1981 and has remained fairly constant since.

¹ See *Test 10: Ammonium Nitrogen*, p. 10–1, for further information on the nitrogen cycle.

Expected Levels

The nitrate level in freshwater is usually found in the range of 0.1 to $4 \text{ mg/L NO}_3^-\text{-N}$. Unpolluted waters generally have nitrate levels below 1 mg/L. The effluent of some sewage treatment plants may have levels in excess of 20 mg/L.

In a study based on 344 USGS sites throughout the United States,² 80% of the sites reported nitrate levels less than 1 mg/L, 16% were in the range of 1–3 mg/L, and 4% were greater than 3 mg/L. The percentage of various land types reporting greater than 1 mg/L of nitrate were range land <5%, forested land ~10%, urban areas ~30%, and agricultural land ~40%.

Table 1: Nitrate Concentration in Selected Sites			
Site	Nitrate spring level (mg/L NO3 ⁻ -N)	Nitrate fall level_ (mg/L NO3 -N)	
Mississippi River, Clinton, IA	0.55	1.20	
Mississippi River, Memphis, TN	1.60	2.90	
Rio Grande River, El Paso, TX	0.38	0.59	
Ohio River, Benwood, WV	0.87	1.30	
Willamette River, Portland, OR	0.28	0.98	
Missouri River, Garrison Dam, ND	0.40	0.14	
Hudson River, Poughkeepsie, NY	0.49	0.64	
Platte River, Sharpes Station, MO	1.90	1.30	

Summary of Methods

Method 1: Nitrate Ion-Selective Electrode

A Vernier Nitrate Ion-Selective Electrode (ISE) is used to measure the nitrate-ion concentration in the water, in $mg/L NO_3^{-}N$, either on site or after returning to the lab.

Method 2: Nitrate—Colorimeter with a Single Standard

A Vernier Colorimeter is used to create a 2 point standard curve of absorbance *vs*. nitrate concentration using a blank and one nitrate standard solution. This method is faster and easier than the multiple-standard method, but because your measurement depends upon one standard, the chances for error are somewhat higher.

Method 3: Nitrate—Colorimeter with Multiple Standards

A Vernier Colorimeter is used to create a 4 point standard curve of absorbance *vs*. nitrate concentration using a set of four nitrate standards. This method takes more time and effort than the single-standard method, but the standard curve will be based on four points, reducing the chance of error.

² U.S. Geological Survey, National Water Summary 1990–91, Hydrologic Events and Stream Water Quality, Water-Supply Paper 2400, United States Government Printing Office, 1993, 122–123.

Method 1: NITRATE ION-SELECTIVE ELECTRODE

Materials Checklist

- _____ TI-83 Plus or TI-84 Plus graphing calculator
- ____ EasyData application
- ____ data-collection interface
- ____ Nitrate Ion-Selective Electrode
- _____ small paper or plastic cup (optional)

Advanced Preparation

The Vernier Nitrate Ion-Selective Electrode (ISE) must be soaked in the Nitrate High Standard solution (included with the ISE) for approximately 15–30 minutes prior to use. **Important:** Make sure the ISE is not resting on the bottom of the container, and that the small white reference contacts are immersed. Make sure no air bubbles are trapped below the ISE.

If the ISE needs to be transported to the field during the soaking process, use the Short-Term ISE Soaking Bottle. Remove the cap from the bottle and fill it 3/4 full with High Standard. Slide the bottle's cap onto the ISE, insert it into the bottle, and tighten. **Important:** Do not leave the ISE soaking for more than 24 hours. Long-term storage should be in the Long-Term ISE Storage Bottle.

Collection and Storage of Samples

- 1. This test can be conducted on site or in the lab. A 100 mL water sample is required.
- 2. It is important to obtain the water sample from below the surface of the water and as far away from shore as is safe. If suitable areas of the stream appear to be unreachable, samplers consisting of a rod and container can be constructed for collection. Refer to page Intro-4 of the Introduction of this book for more details.
- 3. If the testing cannot be conducted within a few hours, store samples in an ice chest or refrigerator.

Testing Procedure

- 1. Turn on the calculator. With the ISE still soaking in the High Standard solution, connect the Nitrate Ion-Selective Electrode, data-collection interface, and calculator.
- 2. Set up EasyData for data collection.
 - a. Start the EasyData application, if it is not already running.
 - b. Select (File) from the Main screen, and then select New to reset the application.
 - c. Select (Setup) from the Main screen, and then select Single Point.

- _____ tissues or paper towels
- ____ Low Standard (1 mg/L NO₃⁻-N)
- ____ High Standard (100 mg/L NO₃⁻-N)
- ____ distilled water

- 3. Set up the calibration for the Nitrate ISE.
 - a. Select (Setup) again, then select CH1:NO3.
 - b. Select (Calib) from the Sensor Setup screen.
 - If your instructor directs you to manually enter the calibration values, select (Edit) and then select Manual Entry... Type the slope value, and select (Next). Type the intercept value, and select (Next). Select (OK) twice, then proceed to Step 4.
 - If your instructor directs you to perform a new calibration, follow this procedure.

First Calibration Point

- c. Select (Edit), then select Two Point Live...
- d. When the voltage reading is stable, select $\ensuremath{\overline{\text{Keep}}}\xspace$.
- e. Enter 100 as the concentration of the standard in mg/L NO_3^--N , and select \overline{OK} .

Second Calibration Point

- f. Rinse the ISE thoroughly with distilled water and gently blot it dry with a tissue or paper towel. **Important:** Failure to carefully rinse and dry the ISE will contaminate the standard.
- g. Place the tip of the ISE into the Low Standard (1 mg/L NO_3^--N). Be sure that the ISE is not resting on the bottom of the bottle and that the small white reference contacts are immersed. Make sure no air bubbles are trapped below the ISE.
- h. After briefly swirling the solution, hold the ISE still and wait approximately 30 seconds for the voltage reading to stabilize. Select (Keep).
- i. Enter 1 as the concentration of the standard in mg/L NO_3^--N , and select \overline{OK} .
- j. Select \overline{OK} twice to return to the Main screen.
- 4. Collect nitrate concentration data.
 - a. Rinse the ISE with distilled water and gently blot it dry with a tissue. Place the tip of the ISE into the stream at Site 1, or into a cup with sample water from the stream. Make sure the small white reference contacts are immersed, and that the ISE is not resting on the bottom of the cup. Be sure no air bubbles are trapped below the ISE.
 - b. After briefly swirling the solution, hold the ISE still and wait approximately 30 seconds for it to stabilize.
 - c. Select (Start) to begin sampling. Important: Hold the ISE still for the next 10 seconds.
 - d. After 10 seconds, the nitrate concentration will appear on the screen. Record this value on the Data & Calculations sheet (round to the nearest 0.01 mg/L NO_3^--N). Note: The sensor does not read values accurately below 0.1 mg/L. If the reading is less than 0.1, write <0.1 on the Data & Calculations sheet.
 - e. Select \overline{OK} return to the Main screen.
 - f. Select $\overline{\text{Start}}$ to obtain a second reading. Record this value on the Data & Calculations sheet (round to the nearest 0.01 mg/L NO₃⁻-N).
 - g. Select $\overline{(OK)}$ to return to the Main screen.

DATA & CALCULATIONS

Method 1: Nitrate Ion-Selective Electrode

Stream or lake:	Time of day:
Site name:	Student name:
Site number:	Student name:
Date:	Student name:

Column	A
Reading	Nitrate_ (mg/L NO3 ⁻ -N)
1	
2	
Average	

Column Procedure:

A. Record the nitrate concentration from the calculator, in mg/L NO3⁻-N.

Field Observations (e.g., weather, geography, vegetation along stream)

Test Completed:	Date:
-----------------	-------

TI-83 Plus or TI-84 Plus graphing calculator	0.1 g plastic measuring spoon
EasyData application	tissues (preferably lint-free)
data-collection interface	pipet pump or pipet bulb
Vernier Colorimeter	nitrate standard (2.5 mg/L NO ₃ ⁻ -N)
one 125 mL Erlenmeyer flask <i>per test</i>	Nitrate Reducing Reagent
one rubber stopper per Erlenmeyer flask	Mixed Acid Reagent
two 10 mL pipets (or graduated cylinders)	distilled water
one cuvette	

Collection and Storage of Samples

- 1. This test can be conducted on site or in the lab. A 100 mL water sample is required.
- 2. It is important to obtain the water sample from below the surface of the water and as far away from shore as is safe. If suitable areas of the stream appear to be unreachable, samplers consisting of a rod and container can be constructed for collection. Refer to page Intro-4 of the Introduction of this book for more details.
- 3. If the testing cannot be conducted within a few hours, refrigerate the samples. Do not keep samples more than 24 hours.

Testing Procedure

- 1. Obtain collection site samples and standard for testing.
 - a. Label one Erlenmeyer flask for each of the collection site samples you will be testing.
 - b. Measure 5 mL of sample into each corresponding Erlenmeyer flask.
 - c. Label one Erlenmeyer flask for the nitrate standard solution and measure 5 mL of standard into the flask.
- 2. Prepare the collection site samples for testing.
 - a. Add 5 mL of Mixed Acid Reagent to each flask (also to the 2.5 mg/L nitrate standard). Stopper each flask and shake. Wait 2 minutes for a complete reaction to occur.
 - b. Use the 0.1 g plastic spoon to add two spoonfuls (~0.2 g) of Nitrate Reducing Reagent to each of the flasks.
 - c. Stopper the flasks and invert at a rate of 50–60 times per minute for 2 minutes. Wait 12 minutes for a complete reaction. During the 12 minute reaction period, proceed to Step 3. **Note:** Any undissolved portion of Nitrate Reducing Agent that remains in the bottom of the tube will not adversely affect results.
- 3. Turn on the calculator. Connect the Colorimeter, data-collection interface, and calculator.

- 4. Prepare a *blank* by filling an empty cuvette 3/4 full with distilled water. Seal the cuvette with a lid. To correctly use a colorimeter cuvette, remember:
 - All cuvettes should be wiped clean and dry on the outside with a tissue.
 - Handle cuvettes only by the top edge of the ribbed sides.
 - All solutions should be free of bubbles.
 - Always position the cuvette with its reference mark facing toward the white reference mark at the right of the cuvette slot on the colorimeter.
- 5. Set up EasyData for data collection and calibrate the Colorimeter.
 - a. Start the EasyData application, if it is not already running.
 - b. Select (File) from the Main screen, and then select New to reset the application.
 - c. Select (Setup) from the Main screen, and then select Events with Entry.
 - d. Place the blank in the cuvette slot of the Colorimeter and close the lid.
 - e. Set the wavelength on the Colorimeter to 565 nm (Green). Then calibrate by pressing the CAL button on the Colorimeter.
- 6. Collect absorbance-concentration data for the blank and the nitrate standard (2.5 mg/L). This process will create a standard curve that will be used to determine the nitrate concentrations of the samples.
 - a. Select **Start** from the Main screen.
 - b. Select (Keep).
 - c. Enter **0** as the concentration in mg/L NO_3^- -N, and select \overline{OK}).
 - d. Discard the water in the cuvette. Using the 2.5 mg/L nitrate standard, rinse the cuvette twice with ~1 mL amounts and then fill it ³/₄ full. Seal the cuvette with a lid. Wipe the outside of the cuvette and place it in the colorimeter. After closing the lid, wait for the value displayed on the screen to stabilize.
 - e. Select (Keep), enter 2.5 as the concentration in $mg/L NO_3^--N$, and select (OK).
 - f. Select (Stop) to stop data collection. The absorbance and concentration values have now been saved for the standard.
 - g. Select Main to return to the Main screen.
 - h. Dispose of the remaining solution in the flask as directed by your instructor. **CAUTION:** *Any remaining solid particles in the flask are cadmium, a toxic metal.*
- 7. Find the absorbance of the sample.
 - a. Rinse the cuvette twice with solution from the first flask and fill it about ³/₄ full. Seal the cuvette with a lid. Wipe the outside of the cuvette and place it in the colorimeter. Close the lid.
 - b. Monitor the absorbance value displayed on the calculator. When this value has stabilized, record it on the Data & Calculations sheet (round to the nearest $0.01 \text{ mg/L NO}_3^-\text{-N}$).
 - c. Dispose of the remaining solution in the flask as directed by your instructor. **CAUTION:** *Any remaining solid particles in the flask are cadmium, a toxic metal.*
- 8. Determine the nitrate concentration of the sample water by interpolating the absorbance value on the standard curve created in Step 6.
 - a. Select (Graph) to see the graph of your data.
 - b. Select (Anlyz), and then select Linear Fit. The linear-regression statistics will be given.

- c. Select \overline{OK} to display the graph of absorbance *vs*. concentration.
- d. To interpolate along the curve, press △. A cursor is displayed on the regression line, along with its X and Y coordinates above the graph. Use ④ and ④ to move the cursor to an absorbance value (Y value) that is closest to the absorbance reading you obtained in Step 7 above. The nitrate concentration, in mg/L NO₃⁻-N, will be equal to the corresponding X value. Record this value on the Data & Calculations sheet (round to the nearest 0.01 mg/L).

- e. Select Main to return to the Main screen.
- 9. Repeat Steps 7–8 for each of the remaining flasks. When you are finished, discard the solutions, as directed by your instructor. **CAUTION:** *Any remaining solid particles in the flask are cadmium, a toxic metal.*

DATA & CALCULATIONS

Method 2: Nitrate—Colorimeter with a Single Standard

Stream or lake:	Time of day:
Site name:	Student name:
Site number:	Student name:
Date:	Student name:

Column	А	В
Reading	Absorbance	NO3 ⁻ -N (mg/L)
1		
2		
Aver Nitr (mg/L N	ate	

Column Procedure:

- A. Record the absorbance value from the calculator.
- B. Record the NO₃⁻-N concentration as determined by interpolation of the standard curve.

Field Observations (e.g., weather, geography, vegetation along stream) _____

Test Completed: _____ Date: _____

Materials Checklist

TI-83 Plus or TI-84 Plus graphing calculator	0.1 g plastic measuring spoon
EasyData application	tissues (preferably lint-free)
data-collection interface	pipet pump or pipet bulb
Vernier Colorimeter	one cuvette
one 125 mL Erlenmeyer flask per test	Nitrate Reducing Reagent
one rubber stopper per Erlenmeyer flask	Mixed Acid Reagent
two 10 mL pipets	nitrate standard (2.5 mg/L NO ₃ ⁻ -N)
10 mL graduated cylinder	distilled water
stirring rod	

Collection and Storage of Samples

- 1. This test can be conducted on site or in the lab. A 100-mL water sample is required.
- 2. It is important to obtain the water sample from below the surface of the water and as far away from shore as is safe. If suitable areas of the stream appear to be unreachable, samplers consisting of a rod and container can be constructed for collection. Refer to page Intro-4 of the Introduction of this book for more details.
- 3. If the testing cannot be conducted within a few hours, refrigerate the samples.

Testing Procedure

- 1. Add about 30 mL of 2.5 mg/L NO_3^- -N standard solution to a 100 mL beaker. Obtain about 30 mL of distilled water in another 100 mL beaker.
- 2. Label four clean, dry, Erlenmeyer flasks 1–4. Pipet 4, 6, 8 and 10 mL of 2.5 mg/L NO₃⁻-N solution into Flasks 1–4, respectively. With a second pipet, deliver 6, 4, and 2 mL of distilled water into Flasks 1–3, respectively. (Flask 4 has no distilled water added to it.) *Thoroughly* mix each solution with a stirring rod. Clean and dry the stirring rod between stirrings. Volumes and concentrations for the trials are summarized below:

Flask number	2.5 mg/L NO3 ⁻ -N (mL)	Distilled H2O (mL)	Concentration (mg/L NO3 ⁻ -N)
1	4	6	1.0
2	6	4	1.5
3	8	2	2.0
4	~10	0	2.5

- 3. Measure 5 mL of the standard from Flask 1 into a graduated cylinder. Discard the solution remaining in the flask as directed by your instructor.
- 4. Add 5 mL of Mixed Acid Reagent to the graduated cylinder containing the standard from Flask 1, to bring the volume to a total of 10 mL.

- 5. Pour the contents of the graduated cylinder back into the flask. Stopper each flask and shake.
- 6. Repeat Steps 3-5 for each of the remaining standards.
- 7. Use the 0.1 g plastic spoon to add two spoonfuls (~0.2 g) of Nitrate Reducing Reagent to each of the flasks.
- 8. Stopper the flasks and invert at a rate of 50-60 times per minute for 2 minutes. Wait 12 minutes for a complete reaction and best test results. During the 12 minute reaction period, proceed to Step 9 to continue with lab preparation. Note: Any undissolved portion of Nitrate Reducing Agent that remains in the bottom of the tube will not adversely affect results.
- 9. Turn on the calculator. Connect the Colorimeter, data-collection interface, and calculator.
- 10. Prepare a *blank* by filling an empty cuvette ³/₄ full with distilled water. Seal the cuvette with a lid. To correctly use a colorimeter cuvette, remember:
 - All cuvettes should be wiped clean and dry on the outside with a tissue.
 - Handle cuvettes only by the top edge of the ribbed sides.
 - All solutions should be free of bubbles.
 - Always position the cuvette with its reference mark facing toward the white reference mark at the right of the cuvette slot on the colorimeter.
- 11. Set up EasyData for data collection and calibrate the Colorimeter.
 - a. Start the EasyData application, if it is not already running.
 - b. Select (File) from the Main screen, and then select New to reset the application.
 - c. Select (Setup) from the Main screen, and then select Events with Entry.
 - d. Place the blank in the cuvette slot of the Colorimeter and close the lid.
 - e. Set the wavelength on the Colorimeter to 565 nm (Green). Then calibrate by pressing the CAL button on the Colorimeter.
- 12. After the 12 minute reaction period has ended, you are now ready to collect absorbanceconcentration data for the four nitrate standard solutions. This process will create a standard curve that will be used to determine the nitrate concentrations of the samples.
 - a. Select (Start) from the Main screen.
 - b. Empty the water from the cuvette. Using the solution in Flask 1, rinse the cuvette twice with ~1-mL amounts and then fill it ³/₄ full. Seal the cuvette with a lid. Wipe the outside with a tissue and place it in the

Colorimeter. After closing the lid, wait for the value displayed on the calculator screen to stabilize and select (κ_{eep}).

- c. Enter **1.0** as the concentration in $mg/L NO_3^--N$, and select (OK). The absorbance and concentration values have now been saved for the first solution.
- d. Discard the cuvette contents as directed by your teacher. Using the solution in Flask 2, rinse the cuvette twice with ~1-mL amounts and then fill it ³/₄ full. Seal the cuvette with a lid. Wipe the outside with a

- e. Enter 1.5 as the concentration in mg/L NO_3^- -N, and select \overline{OK}).
- f. Repeat the procedure for Flask 3 (2.0 mg/L) and Flask 4 (2.5 mg/L).
- g. Select (Stop) to stop data collection. Examine the data points along the displayed graph of absorbance *vs*. concentration. As you move the cursor right or left, the concentration (X) and absorbance (Y) values of each data point are displayed above the graph.
- h. Dispose of the remaining solution in the flask as directed by your instructor. **CAUTION:** *Any remaining solid particles in the flask are cadmium, a toxic metal.*
- 13. Plot a graph of absorbance vs. concentration with a linear regression curve displayed.
 - a. Select (Anlyz), and then select Linear Fit. linear-regression statistics for these two lists are displayed for the equation in the form

$$y = ax + b$$

where y is absorbance, x is concentration, a is the slope, and b is the y-intercept. **Note:** One indicator of the quality of your data is the size of b. It is a very small value if the regression line passes through or near the origin. The correlation coefficient, r, indicates how closely the data points match up with (or *fit*) the regression line. A value of 1.00 indicates a nearly perfect fit.

- b. To display the linear-regression curve on the graph of absorbance vs. concentration, select (OK). This graph should indicate a direct relationship between absorbance and concentration, a relationship known as Beer's law. The regression line should closely fit the four data points *and* pass through (or near) the origin of the graph.
- c. Select Main to return to the Main screen.
- 14. Prepare the water samples for testing. Repeat Steps 3–8 using samples from each of the collection sites you will be testing. If necessary, obtain more flasks and label them appropriately.
- 15. After the 12 minute reaction period has finished, find the absorbance of the water sample.
 - a. Rinse the cuvette twice with solution from Flask 1 and fill it about ³/₄ full. Seal the cuvette with a lid. Wipe the outside with a tissue and place it in the Colorimeter. Close the lid.
 - b. Monitor the absorbance value displayed on the calculator. When this value has stabilized, record it on the Data & Calculations sheet (round to the nearest $0.01 \text{ mg/L NO}_3^-\text{-N}$).
 - c. Dispose of the remaining solution in the flask as directed by your instructor. **CAUTION:** *Any remaining solid particles in the flask are cadmium, a toxic metal.*
- 16. Determine the nitrate concentration of the sample water by interpolating the absorbance value on the standard curve created in Step 12.
 - a. Select (Graph) to see the graph of your data.
 - b. Select (Anlyz), and then select Linear Fit. The linear-regression statistics will be given.
 - c. Select (OK) to display the standard curve of absorbance *vs.* concentration.

- d. To interpolate along the curve, press . A cursor is displayed on the regression line, along with its X and Y coordinates above the graph. Use) and () to move the cursor to an absorbance value (Y value) that is closest to the absorbance reading you obtained in Step 15 above. The nitrate concentration, in mg/L NO₃⁻-N, will be equal to the corresponding X value. Record this value on the Data & Calculations sheet (round to the nearest 0.01 mg/L).
- e. Select Main to return to the Main screen.
- 17. Repeat Steps 15–16 for the remaining flasks. When you are finished, discard the solutions, as directed by your instructor. **CAUTION:** *Any remaining solid particles in the flask are cadmium, a toxic metal.*

DATA & CALCULATIONS

Method 3: Nitrate—Colorimeter with Multiple Standards

Stream or lake:	Time of day:
Site name:	Student name:
Site number:	Student name:
Date:	Student name:

Column	А	В
Reading	Absorbance	NO3 ⁻ -N (mg/L)
1		
2		
Aver Nitr (mg/L N	ate	

Column Procedure:

- A. Record the absorbance value from the calculator.
- B. Record the NO₃⁻N concentration as determined by interpolation of the standard curve.

Field Observations (e.g., weather, geography, vegetation along stream)

Test Completed: _____ Date: _____

ADDITIONAL INFORMATION

Tips for Instructors

Method 1: Nitrate Ion-Selective Electrode

1. There are several different combinations of equipment that will work for measuring nitrate ion levels. The most common method, which works for both the TI-83 Plus and TI-84 Plus families of calculators, is to use a Nitrate Ion-Selective Electrode connected to a LabPro or CBL 2.

The other method, which uses the USB port on TI-84 Plus calculators, is to connect a Nitrate Ion-Selective Electrode to an EasyLink. For more information on EasyLink refer to Appendix I. The EasyLink draws power directly from the calculator. Therefore, it is a good idea to have spare calculator batteries on hand.

- 2. The range of the Vernier Ion-Selective Electrode is 0.10 to $14,000 \text{ mg/L NO}_3^-\text{-N}$. As stated in the introduction, most values you measure from streams and lakes will be in the range of 0.1 to 4 mg/L—the lower end of the useful range of the sensor. If students obtain values lower than 0.1 mg/L, they should report these as < 0.1 mg/L.
- 3. High quality, uncontaminated standards are critical for proper calibration of Ion-Selective Electrodes. Two standard solutions are included with the Nitrate ISE—a High Standard that is 100 mg/L NO₃⁻-N, and a Low Standard that is 1 mg/L NO₃⁻-N.³ Vernier sells replacement standards for \$12 each (500 mL).

٠	Low Standard 1 mg/L NO ₃ ⁻ -N	NO3-LST
٠	High Standard 100 mg/L NO ₃ ⁻ -N	NO3-HST

You could also make the standards using these directions:

High Standard (100 mg/L NO3⁻-N)

a. Add 0.607 g of NaNO₃ to enough distilled water to prepare one liter of solution.

Low Standard (1 mg/L NO3⁻-N)

- b. Dilute the High Standard from 100 mg/L to 10 mg/L by combining 100 mL of the High Standard with 900 mL of distilled water. Mix well.
- c. Combine 100 mL of the 10-mg/L solution with 900 mL of distilled water. Mix well. This standard is now 1 mg/L NO₃⁻-N.
- 4. The Nitrate ISE can be used in a wide range of pH values, pH 2.5 to 11. The ions that are known to interfere with the Nitrate ISE (ClO₃⁻, Γ, ClO₄⁻, CN⁻, BF₄⁻) will not generally be encountered in significant concentrations in freshwater samples.
- 5. Even better results can be obtained if you bring all samples to the same ionic strength. This is especially important when working with very low concentrations of ions. This can be accomplished by the addition of ionic strength adjuster, ISA. Add Nitrate ISA in the ratio of approximately 1 to 50; for example, if your water sample is 50 mL in volume, add about 1 mL of ISA.

³ Prior to 1999, the Low Standard Solution shipped with each Nitrate ISE was 10 mg/L NO₃⁻-N. This standard can be diluted to 1 mg/L by carefully measuring out 10 mL of the 10 mg/L standard, and adding enough distilled water (~90 mL) to make 100 mL of 1 mg/L NO₃⁻-N standard.

To prepare 100 mL of Nitrate ISA solution, 2.0 M $(NH_4)_2SO_4$, add 26.42 g of solid ammonium sulfate, $(NH_4)_2SO_4$, to enough water to prepare 100 mL of solution.

- 6. Soaking your ISE prior to use is very important. The Advanced Preparation section recommends approximately 30 minutes of soaking in the High Standard solution. This is usually sufficient, but an hour-long soak is even better. If you are going out into the field, you can "soak as you go" using the Short-Term ISE Soaking Bottle. We began shipping Short-Term ISE Soaking Bottles with Vernier Ion-Selective Electrodes in January of 1999. If you purchased your ISEs prior to this and would like to use ISE Soaking Bottles, they can be purchased from Vernier Software (BTL-ISE, package of 5 bottles). **Important:** Do not let the ISE soak longer than 24 hours. Long-Term storage should be in the Long-Term ISE Storage Bottle.
- 7. The Nitrate ISE has a PVC membrane with a limited life expectancy. It is warranted to be free from defects for a period of twelve (12) months from the date of purchase. It is possible, however, that you may get somewhat longer use than the warranty period. If you start to notice a reduced response (for example, distinctly different voltages or voltage ranges during calibration), it is probably time to replace the membrane module. **Important:** Do not order membrane modules far in advance of the time you will be using them; the process of degradation takes place even when they are stored on the shelf.
- 8. The Single Point data-collection mode was designed to make measurements easier and more accurate. When Single Point mode is used, the interface takes readings for 10 seconds. These readings are averaged and this average value is displayed on the calculator. This method has several advantages over other data-collection modes: (1) It eliminates the need for students to choose one value over another if that value is fluctuating; (2) If the readings are fluctuating a little, an average of the values is desirable; (3) It requires the students to hold the sensor in the water longer that they might tend to otherwise.

Methods 2 and 3: Nitrate Using a Colorimeter

9. There are several different combinations of equipment that will work for measuring absorbance values. The most common method, which works for both the TI-83 Plus and TI-84 Plus families of calculators, is to use a Colorimeter connected to a LabPro or CBL 2.

The other method, which uses the USB port on TI-84 Plus calculators, is to connect a Colorimeter to an EasyLink. For more information on EasyLink refer to Appendix H.

- 10. The following reagents can be ordered directly from LaMotte Company (P.O. Box 329, Chestertown, MD 21620, Tel: 800-344-3100, www.lamotte.com):
 - Mixed Acid Reagent, two 60-mL bottles.....V-6278-H
 - Nitrate Reducing AgentV-6279-C

A Nitrate-N kit can also be ordered from LaMotte Company that includes both reagents:

- 11. We selected LaMotte Company reagents for the Nitrate colorimetric test because: (a) The recommended wavelength, 540 nm, is very close to the 565 nm wavelength setting on the Vernier Colorimeter,⁴ and (b) We found the range of this test, 0.1 to 3.0 mg/L NO₃⁻-N to be

⁴ Using a wavelength that is somewhat different from that recommended by LaMotte does not degrade results. Absorbance values may be somewhat lower, but a valid Beer's law relationship still exists at 565 nm.

very convenient for most freshwater samples. If samples are found to have nitrate levels higher than 3.0 mg/L, they may be diluted so they fall within this range. For example, a freshwater sample can be diluted to $\frac{1}{2}$ of its concentration by adding 100 mL of distilled water to 100 mL of the water sample. If the concentration of the diluted sample was found to be 2.6 mg/L using either colorimetric method, then the final value would be multiplied by 2, for a reported value of 5.2 mg/L.

12. In this test, nitrate concentration is not measured directly. Upon addition of the Nitrate Reducing Agent, nitrate is first reduced to nitrite, NO_2^- , by this reaction:

$$Cd(s) + NO_3(aq) + 2 H^+(aq) \longrightarrow Cd^{2+}(aq) + NO_2(aq) + H_2O(l)$$

Note: The 0.1 g plastic spoon (included with the Nitrate-N kit) can be used to measure out 0.2 g of Nitrate Reducing Agent—this reagent is added in excess, so it is not necessary to use an electronic balance.

After adding the Mixed Acid Reagent,⁵ the nitrite ion forms a reddish-purple color. The color is then compared to one standard solution containing the same added reagent (Method 2), or to a series of standards using Beer's law (Method 3). A Vernier Colorimeter is used to measure the absorbance of the unknown and standard solution(s). Because of the conversion of nitrate ions to nitrite ions, this test actually measures the *sum* of the nitrate and nitrite ion concentrations.

13. After performing the nitrate test, all waste should be placed in a labeled waste container. The waste contains a small amount of cadmium metal. Dispose of the waste according to your state and local regulations.

HAZARD ALERT:

Cadmium metal (in LaMotte Nitrate Reducing Agent): A known carcinogen; dust or fume inhalation especially toxic. Hazard Code: B—Hazardous.

The hazard information reference is Flinn Scientific, Inc., *Chemical & Biological Catalog/Reference Manual*, 1999, P.O. Box 219, Batavia, IL 60510. See *Appendix I* of this book, *Water Quality with Calculators*, for more information.

- 14. The directions in Methods 2 and 3 call for a nitrate standard solution with a concentration of 2.5 mg/L NO₃⁻-N. This solution can be prepared following these steps:
 - a. Prepare a 100-mg/L standard by adding 0.607 g of NaNO₃ to enough distilled water to prepare 1 liter of solution.
 - b. Dilute the 100-mg/L standard to 10 mg/L by combining 100 mL of 100 mg/L solution with 900 mL of distilled water.
 - c. Dilute the 10-mL/L solution to 2.5 mg/L by combining 250 mL of the 10 mg/L solution with 750 mL of distilled water. The resulting solution has a concentration of 2.5-mg/L NO_3^- -N.

General Information about Nitrate

- 15. Samples that are brought back to the lab for analysis should be stored in an ice chest or refrigerator prior to testing. You should try to test all samples within 24 hours of collection, so that biochemical processes do not change the nitrate levels.
- 16. Nitrate concentration in this test is reported in units of $mg/L NO_3^-N$. The ending, NO_3^-N , means simply "nitrogen that is in the form of nitrate." Expressing nitrate concentration in

⁵ The Mixed Acid Reagent contains sulfanilamide and N-(1-naphthyl)-ethylenediamene-dihydrochloride (NED).

Test results are sometimes published in units of $mg/L NO_3^-$ instead of NO_3^- -N. To convert 100 mg/L NO_3^- -N to mg/L NO_3^- , you would perform this calculation:

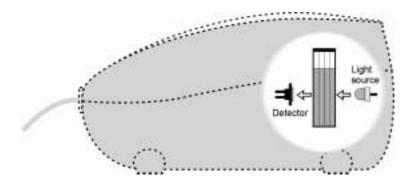
$$\frac{100 \text{ mg N}}{1\text{L}} \times \frac{62 \text{ g NO}_3}{14 \text{ g N}} = 443 \text{ mg/L NO}_3$$

- 17. Because many fertilizers contain nitrate ions, monitoring nitrate levels in a stream that borders fertilized fields may show significant seasonal differences in NO₃⁻ concentrations. Fertilizers are designated by numbers such as 6–12–8, indicating the percentages of N (6%), phosphorus as P₂O₅ (12%), and potassium as K₂O (8%). Farm manure corresponds to only 0.5–0.24–0.5 fertilizer. In the past, nitrate has been added to fertilizers in the form of ammonium nitrate, NH₄NO₃, and sodium nitrate, NaNO₃. Due to the hazardous nature of these two substances, urea, H₂NCONH₂, is now the most-favored nitrogen-containing fertilizer. Intensive use of any of these fertilizing agents will result in increased levels of nitrate in streams adjacent to fields.
- 18. Formation of much of the nitrate in freshwater results from a series of processes in the *nitrogen cycle*. Ammonia (NH₃) is converted to nitrite (NO₂⁻) by *nitrosomona* bacteria. Nitrite is then quickly converted to nitrate (NO₃⁻) by *nitrobacter* bacteria.
- 19. Significant flow rate in a stream can prevent the formation of algae blooms, even if essential nutrients, such as nitrate ions, are present.⁶ As a result, algae blooms may not occur in a stream until well into summer—when flow rates in the lower portions of a stream decrease. In lakes and ponds, where no appreciable current exists, if other nutrients are present, nitrate levels as low as 0.50 mg/L may result in significant growth of algae.
- 20. Nitrate levels measured in an aquarium will typically be higher than levels found in streams, often as high as 20–40 mg/L.
- 21. During the wet season, particularly when plants are dormant, rain or snowmelt may leach large amounts of nitrate into the water table.

How the Nitrate Ion-Selective Electrode Works

The Nitrate Ion-Selective Electrode is a membrane-based electrode that measures nitrate ions in an aqueous solution. The membrane is a porous plastic disk, permeable to the ion exchanger, but impermeable to water. When the membrane of the ISE is in contact with a solution containing the nitrate ion, a voltage, dependent on the level of nitrate in the solution, develops at the membrane. The interface reads the voltage and calculates the ion concentration.

⁶ Essential plant nutrients include nitrogen, phosphorus, carbon (CO₂), potassium, sulfur, magnesium, calcium, and a number of other micronutrients (B, Cl, Co, Cu, Fe, Mo, Mn, Na, Si, V, Zn). In most cases, phosphorus is the plant nutrient most likely to be *limiting*; that is, the one depleted first.


I

How the Vernier Colorimeter Works

The Vernier Colorimeter works by shining light of one wavelength (565 nm in this test) through a cuvette containing the sample solution. Some of the incoming light is absorbed by the solution. The light that does pass through the cuvette is detected by a photodiode and produces a voltage that is linear to percent transmittance. Absorbance is then calculated from percent transmittance according to the equation

$$A = \log(1/T)$$

The EasyData application will automatically make this calculation for you.

