

About the Lesson

In this activity, students will explore how the measures of angles constructed in a circle are related to the measures of the intercepted arcs. Beginning with central and inscribed angles, students will investigate the angle-arc relationships. Then students will explore a figure that has an angle vertex either inside the circle (angles formed by chords) or outside the circle (angles formed by secants). As a result, students will:

- Conjecture a relationship between the measures of central and inscribed angles with the measures of their intercepted arcs.
- Conjecture a relationship between the measures of angles formed by chords, secants, and tangents with the measures of their intercepted arcs.

Vocabulary

central angle inscribed angle

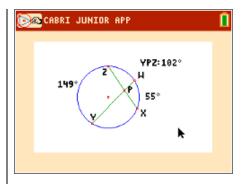
chord secant

Teacher Preparation and Notes

- There is no "arc measure" tool, so the measure of the central
 angle is used as the measure of the intercepted arc. If the
 intercepted arc is a major arc, the angle measure will be
 smaller than 180°, which will not be the correct arc measure.
 Subtract the angle measure from 360° to correct this issue in
 the case of a major arc.
- Before beginning the activity, the Cabri Jr. files ANGARC1.8xv and ANGARC2.8xv need to be transferred to the students' calculators via handheld-to-handheld transfer or transferred from the computer to the calculator via TI-Connect.

Activity Materials

• Compatible TI Technologies:


TI-84 Plus*

TI-84 Plus Silver Edition*

€TI-84 Plus C Silver Edition

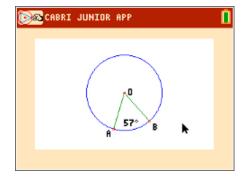
●TI-84 Plus CE

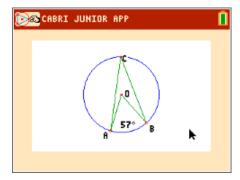
* with the latest operating system (2.55MP) featuring MathPrint [™] functionality.

Tech Tips:

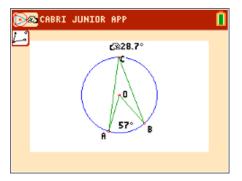
- This activity includes screen captures taken from the TI-84 Plus CE. It is also appropriate for use with the rest of the TI-84 Plus family. Slight variations to these directions may be required if using other calculator models.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at http://education.ti.com/calculato
 rs/pd/US/Online-Learning/Tutorials
- Any required calculator files can be distributed to students via handheld-to-handheld transfer.

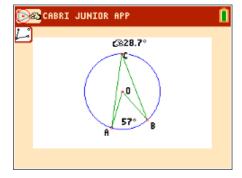
Lesson Files:


- AnglesArcs _Student.doc
- AnglesArcs Student.pdf
- ANGARC1.8xv
- ANGARC2.8xv


Tech Tip: Before beginning the activity, the Cabri Jr. Files ANGARC1.8xv and ANGARC2.8xv need to be transferred to the students' calculators via handheld-to-handheld transfer or transferred from the computer to the calculator via TI-Connect or TI-Connect CE.

Problem 1 - Central Angles & Inscribed Angles


Students begin by opening the ANGARC1 file in the Cabri Jr. app. A central angle $\angle AOB$ has been constructed and measured. Because Cabri Jr. has no "arc measure" tool, the central angle measure is used as the arc measure.


Students should create point C on the circle using the **Point On** tool. Next, students should use the **Segment** tool to construct \overline{AC} and \overline{BC} .

Students should measure $\angle ACB$. Then, students should drag points A or B to change the angles and observe the relationships of the angle measures and arc measure.

Next, students should plot point D on the circle and create segments to form $\angle ADB$. Students should relate $m\angle ADB$ to the other measures.

1. Record the measurements you made of the central and inscribed angles. Drag points A or B to change the angles.

Answers:

m∠AOB	m∠ACB	mAB
50°	25°	50°
100°	50°	100°
80°	40°	80°
120°	60°	120°
30°	15°	30°

2. Complete these conjectures:

Answer:

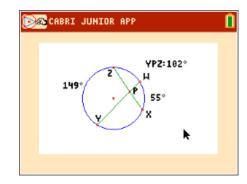
The measure of the inscribed angle is **half** the measure of the central angle.

The measure of the inscribed angle is **half** the measure of the intercepted arc.

3. Drag point *C* instead of *A* or *B*. What do you notice about the measurements? Why do you think this happens?

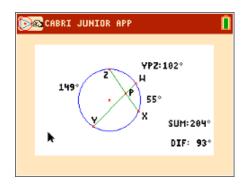
Answer: The measurements do not change because the intercepted arc does not change.

4. Place another point, D, on the circle. Construct and measure $\angle ADB$.

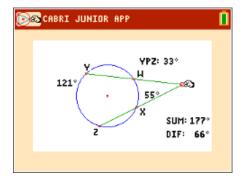

What do you notice about the measures of $\angle ADB$ and $\angle ACB$, which are angles that intercept the same arc?

Answer: The two angles have the same measurement

Problem 2 - Angles with Vertex Inside or Outside the Circle


For this problem, students should use the Cabri Jr. file ANGARC2. They should see that $\angle YPZ$ is constructed with its vertical angle $\angle WPX$. The intercepted arcs WX and YZ are measured.

The Calculate tool is used to find the sum and difference of the arc measures.



Students should move point P to five different locations \underline{inside} the circle and then to five locations $\underline{outside}$ the circle. They can also move points W and Z.

At each location, students should record the angle measures on their worksheet.

After some examination of the values, they should conclude that when P is inside the circle, the measure of $\angle YPZ$ is half of the sum of the arc measures. When P is outside the circle, the measure of $\angle YPZ$ is half the absolute value of the difference of the arc measures.

5. Drag point P to different locations <u>inside</u> the circle. Record the measure of $\angle YPZ$, the sum of the arc measures, and the absolute value of the difference of the arc measures. You can also drag W and X.

Answers:

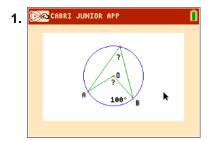
m∠YPZ	mYZ+mWX	mYZ-mWX
102°	204°	93°
34°	72°	39°
40°	80°	31°
80°	161°	50°
54°	108°	3°

6. Drag point *P* to different locations <u>outside</u> the circle. Record the measure of ∠ *YPZ*, the sum of the arc measures, and the absolute value of the difference of the arc measures. You can also drag *W* and *X*.

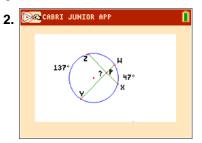
Answers:

m∠YPZ	mYZ+mWX	mYZ-mWX
28°	167°	56°
41°	194°	82°
16°	142°	32°
8°	94°	17°
20°	240°	40°

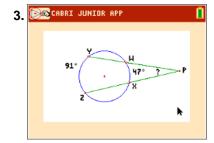
7. Based on the location of P, when is the measure of $\angle YPZ$ related to the sum of the arc measures? When is it related to the difference?


Answers: When P is inside the circle, $\angle YPZ$ is related to the sum of the arc measures. When P is outside the circle, $\angle YPZ$ is related to the difference of the arc measures.

8. What is the relationship between $\angle YPZ$ and the sum? between $\angle YPZ$ and the difference?


Answer: ∠YPZ is half the sum/ difference of the arc measurements.

Extension/Homework


Find the missing measure in each figure.

Answers: 50°, 25°

92°

22°