## Science Objectives

- Students will describe what "reactants" and "products" in a chemical equation mean.
- Students will explain the difference between "coefficients" and "subscripts" in chemical equations.
- Students will recognize that the number of atoms of each element is conserved in a chemical reaction.
- Students will balance a chemical equation.


## Vocabulary

- reactant
- product
- combustion
- decomposition
- synthesis (combination)
- double replacement (precipitation)
- neutralization (acid-base)
- single replacement (oxidationreduction)


## About the Lesson

- This lesson involves students using ChemBox feature of TINspire ${ }^{T M}$ technology to practice balancing chemical equations
- Students will use Edit mode of the activity to enter given reactants and products in a chemical equation.
- Students will use Balance mode for visual support necessary to balance a chemical equation.
- As a result, students will:
- Reinforce understanding that the number of atoms is conserved in a chemical reaction
- Recognize the meaning of coefficients and subscripts in a chemical equation.


## TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$

- Send out the Balancing_Chemical_Equations_Practice.tns file.
- Monitor student progress using Class Capture.
- Use Live Presenter to allow students to show how they manipulate variables that effect results.


TI-Nspire ${ }^{\text {TM }}$ Technology Skills:

- Open a document
- Move between pages
- Use a minimized slider
- Insert ChemBox


## Tech Tips:

Make sure that students properly capitalize the formulas and molecules on each side of the equation when using ChemBox.

## Lesson Materials:

Student Activity

- Balancing_Chemical_Equatio ns_Practice_Student.doc
- Balancing_Chemical_Equatio ns_Practice_Student.pdf

TI-Nspire document

- Balancing_Chemical_Equatio ns_Practice.tns


## Activity Materials

- TI-Nspire ${ }^{\text {TM }}$ Technology


## Discussion Points and Possible Answers

## Move to pages 1.2-1.4.

Have students answer questions 1-3 on the handheld, the activity sheet, or both.

Q1. Identify the reactants and products of the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$.

Answer: The reactants are $\mathrm{N}_{2}$ (nitrogen) and $\mathrm{H}_{2}$ (hydrogen). The product is $\mathrm{NH}_{3}$ (ammonia).

Q2. Explain the meaning of subscripts in the equation.

Answer: Subscripts indicate the ratio of elements in a chemical compound.

Q3. Explain whether this equation is balanced or not.

Answer: It is not balanced because there will be more N atoms in the reactants than in the product and there will be less H atoms in the reactants than in the product.

## Move to pages 1.5-1.7.

Have students review the instructions given on page 1.6 and the activity sheet for using the Chemical Balance tool on page 1.7.

1. Students are to click Balance to balance the equation. They need to use the up and down arrows to adjust coefficients that appear in front of each reactant or product until the scales in the bottom half of the screen are green and level.


Tech Tip: In Balance Mode click the up or down arrows to adjust the coefficients of each element until the formula is balanced. If no coefficients were entered during Edit mode, Balance mode will automatically show the number 1 for each product and reactant.

## Science Nspired

## Move to pages 1.8-1.10.

Have students answer questions 4-6 on the handheld, the activity sheet, or both.

Q4. How many atoms of each element are present on each side of an equation?

Answer: 2 N and 6 H are on each side

Q5. Explain the meaning of coefficients in the equation.

Answer: Coefficient represents the number of molecules of reactants or products.

Q6. Classify the reaction using the following categories. It may fall into more than one category.

Answer: Synthesis
2. For each equation given on pages $2.2-2.9$, students are to use the Chemical Balance tool to balance the equation and record it in the table. Record the number of atoms of each element in the reactant (left side) and the products (right side). Classify each reaction as a synthesis, decomposition, single replacement, double replacement, acid-base reaction, or combustion. Some reactions may fall into more than one category.

| Equation <br> Write the balanced equation below the given one. | Number of Atoms |  | Type |
| :---: | :---: | :---: | :---: |
|  | Reactants | Products |  |
| $\begin{aligned} & \mathrm{P}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{3} \\ & \mathrm{P}_{4}+\mathbf{3} \mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{P}_{2} \mathrm{O}_{3} \\ & \hline \end{aligned}$ | 4P, 60 | 4P, 60 | Synthesis or Combustion |
| $\begin{aligned} & \mathrm{BaS}+\mathrm{PtF}_{2} \rightarrow \mathrm{BaF}_{2}+\mathrm{PtS} \\ & \mathrm{BaS}+\mathrm{PtF}_{2} \rightarrow \mathrm{BaF}_{2}+\mathrm{PtS} \end{aligned}$ | 1Ba, 1S, 1Pt, 2F | 1Ba, 1S, 1Pt, 2F | Double replacement |
| $\begin{aligned} & \mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ | $\begin{gathered} 1 \mathrm{C}, 4 \mathrm{H}, \\ 4 \mathrm{O} \\ \hline \end{gathered}$ | $\begin{gathered} 1 \mathrm{C}, 4 \mathrm{H}, \\ 40 \\ \hline \end{gathered}$ | Combustion |
| $\begin{aligned} & \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{CaCl}_{2} \rightarrow \mathrm{NaCl}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\ & 2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{CaCl}_{2} \rightarrow 6 \mathrm{NaCl}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \end{aligned}$ | 6Na, 2P, 80, 3Ca, 2CI | 6Na, 2P, 80, 3Ca, 2CI | Double replacement |
| $\begin{aligned} & \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$ | $\begin{gathered} 2 \mathrm{Na}, 2 \mathrm{H}, \\ 2 \mathrm{C}, 6 \mathrm{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { 2Na, 2H, } \\ 2 \mathrm{C}, 6 \mathrm{O} \\ \hline \end{gathered}$ | Decomposition |
| $\begin{array}{\|l} \mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\ 2 \mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ \hline \end{array}$ | $\begin{gathered} 4 \mathrm{H}, 2 \mathrm{~N}, \\ 80,1 \mathrm{Ba} \\ \hline \end{gathered}$ | $\begin{gathered} 4 \mathrm{H}, 2 \mathrm{~N}, \\ 80,1 \mathrm{Ba} \\ \hline \end{gathered}$ | Neutralization or double replacement |
| $\begin{aligned} & \mathrm{Na}_{3} \mathrm{~N} \rightarrow \mathrm{Na}+\mathrm{N}_{2} \\ & \mathbf{2 \mathrm { Na } _ { 3 } \mathrm { N } \rightarrow 6 \mathrm { Na } + \mathrm { N } _ { 2 }} \\ & \hline \end{aligned}$ | 6Na, 2N | 6Na, 2N | Decomposition |
| $\begin{aligned} & \mathrm{Al}+\mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+\mathrm{H}_{2} \\ & \mathbf{2 ~ A I}+6 \mathrm{HCl} \rightarrow \mathbf{2} \mathrm{AlCl}_{3}+\mathbf{3} \mathrm{H}_{2} \end{aligned}$ | $\begin{gathered} 2 \mathrm{Al}, 6 \mathrm{H}, \\ 6 \mathrm{Cl} \end{gathered}$ | $\begin{gathered} 2 \mathrm{Al}, 6 \mathrm{H}, \\ 6 \mathrm{Cl} \end{gathered}$ | Single replacement |

3. For each word equation given on page 2.10 , students are to use the Chemical Balance tool on page 2.11 to balance the equation and record it in the table. First, they need to write the balanced equation using the element symbols. Record the number of atoms of each element in the reactant (left side) and the products (right side). Classify each reaction as a synthesis, decomposition, single replacement, double replacement, acid-base reaction, or combustion. Some reactions may fall into more than one category.

| Equation <br> Write the balanced equation below the given one. | Number of Atoms |  | Type |
| :---: | :---: | :---: | :---: |
|  | Reactants | Products |  |
| Copper (s) + silver nitrate (aq) $\rightarrow$ silver (s) + copper (II) nitrate (aq) $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}(\mathrm{NO} 3)_{2}$ | $\begin{gathered} 1 \mathrm{Cu}, 2 \mathrm{Ag}, \\ 2 \mathrm{~N}, 6 \mathrm{O} \\ \hline \end{gathered}$ | $\begin{gathered} 1 \mathrm{Cu}, 2 \mathrm{Ag}, \\ 2 \mathrm{~N}, 60 \\ \hline \end{gathered}$ | Single replacement |
| Hydroiodic acid (aq) + sodium hydroxide (aq) $\rightarrow$ sodium iodide (aq) + water (I) $\mathrm{HI}+\mathrm{NaOH} \rightarrow \mathrm{NaI}+\mathrm{H}_{2} \mathrm{O}$ | $\begin{gathered} 2 \mathrm{H}, 1 \mathrm{l}, \\ 1 \mathrm{Na}, 10 \end{gathered}$ | $\begin{gathered} 2 \mathrm{H}, 11, \\ 1 \mathrm{Na}, 10 \end{gathered}$ | Neutralization or Double replacement |
| Calcium hydroxide (s) $\rightarrow$ calcium oxide (s) + water (v) $\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}$ | $\begin{gathered} 1 \mathrm{Ca}, 2 \mathrm{O}, \\ 2 \mathrm{H} \\ \hline \end{gathered}$ | $\begin{gathered} 1 \mathrm{Ca}, 2 \mathrm{O}, \\ 2 \mathrm{H} \\ \hline \end{gathered}$ | Decomposition |
| $\begin{aligned} & \text { Cesium (s) }+ \text { bromine (I) } \rightarrow \text { cesium bromide (s) } \\ & \mathbf{2 C s}+\mathrm{Br}_{2} \rightarrow \mathbf{2 C s B r} \\ & \hline \end{aligned}$ | 2Cs, 2 Br | 2Cs, 2 Br | Synthesis |
| Sulfuric Acid (aq) + potassium hydroxide (aq) $\rightarrow$ potassium sulfate $(\mathrm{aq})+$ water ( I ) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ | $\begin{array}{r} 2 K, 60, \\ 4 H, 1 S \end{array}$ | $\begin{array}{r} 2 \mathrm{~K}, 6 \mathrm{O} \\ 4 \mathrm{H}, 1 \mathrm{~S} \end{array}$ | Neutralization |
| Hydrogen (g) + chlorine (g) $\rightarrow$ hydrogen chloride (g) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ | $2 \mathrm{H}, 2 \mathrm{Cl}$ | 2H, 2CI | Synthesis |
| Magnesium chlorate (s) $\rightarrow$ magnesium chloride (s) + oxygen (g) $\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2} \rightarrow \mathrm{MgCl}_{2}+3 \mathrm{O}_{2}$ | $\begin{gathered} 1 \mathrm{Mg}, 2 \mathrm{Cl}, \\ 60 \\ \hline \end{gathered}$ | $\begin{gathered} 1 \mathrm{Mg}, 2 \mathrm{Cl}, \\ 60 \\ \hline \end{gathered}$ | Decomposition |
| Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{I})+$ oxygen (g) $\rightarrow$ carbon dioxide (g) + water (v) $2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ | $\begin{gathered} 12 \mathrm{C}, 12 \mathrm{H}, \\ 300 \end{gathered}$ | $\begin{gathered} 12 \mathrm{C}, 12 \mathrm{H}, \\ 300 \end{gathered}$ | Combustion |

Move to pages 3.1 - 3.7.

Have students answer questions 7-13 on the handheld, the activity sheet, or both.

Q7. Identify the reactants in the chemical equation $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.

Answer: A. $\mathrm{CH}_{4}$ and B. $\mathrm{O}_{2}$

Q8. Select all statements that are true.

Answer: A. The type and number of atoms must be the same on both sides of the equation.
C. The mass of the reactants and the mass of the products are the same.
D. An equation is balanced by writing whole numbers before a chemical symbol or formula.

Q9. Select all equations that are NOT balanced.

Answer: B. $\mathrm{C}_{2} \mathrm{H}_{6}+5 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$

Q10. Balance the equation $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$.

Answer: $2 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$

Q11. Write a balanced equation for the chemical reaction below.

Potassium (s) + water (I) $\rightarrow$ potassium hydroxide (aq) + hydrogen (g)

Answer: $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$

Q12. The chemical reaction $2 \mathrm{C}_{6} \mathrm{H}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ can be classified as:

Answer: C. combustion

Q13. The chemical reaction $\mathrm{HNO}_{3}+\mathrm{LiOH} \rightarrow \mathrm{LiNO}_{3}+\mathrm{H}_{2} \mathrm{O}$ can be classified as:

Answer: D. neutralization

TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ Opportunities
Allow students to volunteer to be the Live Presenter and demonstrate how to adjust the coefficients in the equation in order to balance it. Use Quick Poll to check for understanding during the course of the activity.

## Wrap Up

When students are finished with the activity, collect Balancing_Chemical_Equations_Practice.tns file using TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{T M}$. Save grades to Portfolio. Discuss activity questions using Slide Show.

## Assessment

- Answers to questions are written into the student worksheet.
- Assessment consists of eight questions in the Balancing_Chemical_Equations_Practice.tns file. The questions will be graded when the .tns file is retrieved. The Slide Show will be utilized to give students immediate feedback on their assessment.

